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1. Motivation and objectives

Abstract

With the advent of high-performance computing and progress in fields like structural biology, structure-
based drug design (SBDD) has become an essential part in modern drug discovery projects. The
knowledge about the basic physicochemical principles of molecular interactions, combined with three-
dimensional structures of protein binding sites and small molecules, allows to make predictions about
ligand binding modes and affinities. Over the past decades, various methods, ranging from simple
descriptor-based approaches to the application of quantum mechanics and machine learning, have been
developed that aim at identifying the optimal small molecule partner for a given protein target to achieve
a desired biological modulation, and many of them have already been successfully applied in the

development of lead structures and approved drugs.

Yet, the “holy grail” of rational drug discovery, the completely automated de novo design of the
“perfect” ligand to a protein structure, so far remains unreached, even with today’s (re)emergence of
powerful machine learning techniques. One of the reasons for this is the difficulty to consider all
thermodynamically relevant details of protein-ligand complex formation in the modelling and design
process. In classical SBDD approaches, the intermolecular interactions between host and guest, like
hydrogen bonds, van der Waals interactions, or salt bridges, are usually well accounted for. More subtle
aspects include the change in both ligand and protein conformations upon binding and, above all, solvent

effects.

Investigating these solvent effects, and especially deriving rules how to exploit knowledge about the
local thermodynamic properties of protein hydration sites for drug design purposes, is the main objective
of this work. To tackle this challenge, the method of choice used in this work is the 3D reference
interaction site model (3D RISM) which is based on integral equation theory. It does not only allow to
predict the solvent distribution within a binding site, but also to calculate local thermodynamic
properties of specific hydration sites. The first part of this work therefore focuses on a large-scale
analysis of the thermodynamic signatures of protein hydration sites and their correlation with ligand
features. Water replacement rules for use in ligand design and optimisation are derived and exemplified

on the basis of matched molecular pairs (MMPs).

The second part of this work expands the concept of 3D RISM-derived thermodynamic binding site

characterisation to virtual probe sites mimicking specific functional groups whose distribution within a



binding site can be calculated by a 3D RISM solute-solute approach implemented in the Kast working
group by F. Mrugalla. An advanced framework combining RISM-based binding site characterisation
with automatised library preparation, docking, and scoring is established that allows to “convert” the
probe densities to a selection of promising fragments or small molecules, thus making one step towards

the “holy grail” of automated de novo ligand design.

In a third part, the afore-mentioned concepts are applied together onto three case studies from the
challenging field of protein-protein interactions (PPIs) to illustrate the practicability of the developed

approaches in real-life medicinal chemistry examples.



Zusammenfassung

Mit dem Aufkommen von Hochleistungsrechnern und Fortschritten in Bereichen wie der
Strukturbiologie ist das strukturbasierte Wirkstoffdesign zu einem wesentlichen Bestandteil moderner
Arzneimittelforschungsprojekte geworden. Das Wissen iiber die grundlegenden physikalisch-
chemischen Prinzipien molekularer Wechselwirkungen, kombiniert mit dreidimensionalen Strukturen
von Proteinbindetaschen und kleinen organischen Molekiilen, ermoglicht Vorhersagen tiber die
Bindemodi und Affinitdten von Liganden. In den letzten Jahrzehnten wurden verschiedene Methoden -
von einfachen Deskriptor-basierten Ansédtzen bis hin zur Anwendung von Quantenmechanik und
maschinellem Lernen - entwickelt, die darauf abzielen, den optimalen Liganden fiir ein bestimmtes
Proteintarget zu identifizieren, um eine gewiinschte biologische Modulation zu erreichen. Viele von
ihnen wurden bereits erfolgreich bei der Entwicklung von Leitstrukturen und zugelassenen

Arzneimitteln eingesetzt.

Doch der "heilige Gral" der rationalen Arzneimittelforschung, das vollstindig automatisierte de novo
Design des "perfekten" Liganden fiir eine Proteinstruktur, bleibt bisher unerreicht, selbst mit den heute
(wieder) aufkommenden Methoden des maschinellen Lernens. Einer der Griinde dafiir ist die
Schwierigkeit, alle thermodynamisch relevanten Details der Protein-Ligand-Komplexbildung im
Modellierungs- und Designprozess zu beriicksichtigen. In klassischen Ansitzen des strukturbasierten
Wirkstoffdesigns werden die intermolekularen Wechselwirkungen zwischen Rezeptor und Ligand, wie
Wasserstoffbriicken, van der Waals-Wechselwirkungen oder Salzbriicken, in der Regel gut
beriicksichtigt. Zu den subtileren Aspekten gehdren die Anderung der Liganden- und

Proteinkonformationen bei der Bindung und vor allem Losungsmitteleftekte.

Die Untersuchung dieser Losungsmitteleffekte und insbesondere die Ableitung von Regeln, wie das
Wissen iiber die lokalen thermodynamischen Eigenschaften von Wassermolekiilen in
Proteinbindetaschen fiir die Entwicklung von Liganden genutzt werden kann, ist ein Hauptziel dieser
Arbeit. Um diese Herausforderung zu bewaltigen, wird in dieser Arbeit das 3D reference interaction
site model (3D RISM) verwendet, das auf der Integralgleichungstheorie basiert. Es ermoglicht nicht nur
die Vorhersage der Losungsmittelverteilung innerhalb einer Bindetasche, sondern auch die Berechnung
lokaler thermodynamischer Eigenschaften spezifischer Wassermolekiile. Der erste Teil dieser Arbeit
konzentriert sich daher auf eine groB3 angelegte Analyse der thermodynamischen Signaturen von
Wassermolekiilen in Proteinbindetaschen und deren Korrelation mit Liganden-Eigenschaften. Es

werden Regeln fiir die Verdrangung von Bindetaschen-Wassermolekiilen durch Liganden abgeleitet, die



bei der Entwicklung und Optimierung von Liganden verwendet werden kénnen; diese werden anhand

von sog. matched molecular pairs (MMPs) veranschaulicht.

Im zweiten Teil dieser Arbeit wird das Konzept der thermodynamischen Charakterisierung von
Bindetaschen auf virtuelle probes ausgeweitet, die spezifische funktionelle Gruppen nachahmen. Thre
Verteilung innerhalb einer Bindetasche kann durch einen 3D-RISM wuu-Ansatz berechnet werden, der in
der Kast-Arbeitsgruppe von F. Mrugalla implementiert wurde. Es wurde ein Workflow etabliert, der die
RISM-basierte Charakterisierung von Bindetaschen mit automatisierter Bibliotheksvorbereitung,
Docking und Scoring kombiniert und es ermoglicht, die probe-Dichten in eine Auswahl
vielversprechender Fragmente oder kleiner Molekiile "umzuwandeln" - und damit einen Schritt in

Richtung des "heiligen Grals" des automatisierten de novo Liganden-Designs macht.

In einem dritten Teil werden die oben genannten Konzepte auf drei Fallstudien aus dem anspruchsvollen
Bereich der Protein-Protein-Interaktionen (PPIs) angewandt, um die Anwendbarkeit der entwickelten

Ansitze in realen Beispielen der medizinischen Chemie zu veranschaulichen.



2. Introduction

2.1 Ligand-receptor binding

The basis of all biological processes, ranging from enzyme reactions to the transcription of DNA or
hormone signalling, is the non-covalent formation of host-guest complexes between molecules.
Understanding the thermodynamic and kinetic principles of molecular recognition is a prerequisite for
the development of tools for modulating these interactions and, hence, physiological processes.
Generally, the association of a complex LR from an arbitrary receptor R and a ligand L can be described
via:!!

k

on

L+R=LR. (1)

k ff

of

Here, kon and kofr denote kinetic rate constants for the association and dissociation of the complex. In an
equilibrium state, forward and backward reaction should be balanced, so that

konCrCr =Ko Cig » 2

(©)

with cr, c1, and cir as the equilibrium concentrations of free ligand, free receptor, and the respective
complex (under the approximation that the respective activity constants are 1). From the ratio of ko, and
kor, the binding or association constant Ky can be defined according to:!!

k
Kok L
koff Kd

3)

Its reciprocal is the dissociation constant Kq. K4 is given in units of concentration (i.e. mol/L) and is not
a thermodynamic equilibrium constant. Hence, “good” binders show low Ky values (i.e. in the
“nanomolar range”). In the context of protein ligand interactions, especially the inhibition of enzymes,
often the inhibition constant K; is reported, which simply denotes the special case of an equilibrium

constant for the dissociation process of an inhibitor-enzyme complex.?!

The binding constant of complex formation is related to the standard binding free energy, AbindG:R , via
the Gibbs relation, and can be expressed as the difference of the standard chemical potential u;u of the
different species in solution via:'

0
Ay Gl =—RT | L E 6 | _prink, | (4)
nrn GGy

with the molar gas constant R, the absolute temperature 7, y; as the activity constant of a given species
in solution, and C° as the standard concentration. The more negative the associated change in the Gibbs

free energy of the system is upon complex formation, the more favourable the reaction.’] Under



physiological conditions, not only ligand and receptor themselves are involved in this process, but also
the surrounding solvent including buffer components and other molecules that are present in the solution
(especially in living cells). This results in molecular crowding effects and a highly complex interplay of

interactions and energy exchanges between all involved species.

Accordingly, AbindG:R can be calculated as the difference of the standard chemical potential /1:01,1. of the

different species in solution via:*!

. . . . c'c
AyindGir = Mg = Hrr — Heur =—RT In [&—LR] =-RTInK, (5)
7re CCr eq

A,;,4GLx can be attributed to enthalpic and entropic contributions according to the fundamental relation:
Abind(;LR = Abind]_ILR - TAbindSLR 4 (6)

with AbindHiR and AbindSIoR denoting the (standard) enthalpic and entropic changes upon ligand binding.
For simplicity, the standard notation is often (as in the later parts of this work) omitted but assumed
implicitly. At the molecular level, these contributions can be attributed to several physical phenomena:[!
The most obvious is the formation of non-covalent interactions between the ligand and the receptor,
including e.g. van der Waals interactions, hydrogen bonds, and salt bridges, which can be considered to
be mainly enthalpy-driven. Effects dominated by entropy include changes in the configurational disorder
of both binding partners upon association. Another important factor, which is a main topic of this work
and is discussed in detail in the following sections, are changes in the solvation of ligand and receptor
including the release of solvent molecules into bulk solvent or the formation or disruption of solvent-
solvent or solvent-solute interactions. In this complex interplay, the changes in enthalpy and entropy are
often opposed to each other, e.g. the formation of strong interactions between a ligand and a receptor is
favourable from an enthalpic point but unfavourable in terms of entropy since it reduces the degrees of
freedom for both compounds. This compensation effect is referred to as “enthalpy-entropy

compensation”.”!

2.2 Methods in SBDD

The general concept behind SBDD is to guide the design of a novel ligand by exploiting 3D structural
information about its binding partner, e.g. a protein.l’! The very first attempts to explain molecular
recognition on a structural basis date back to the 19" century, when E. Fischer proposed the “lock and
key” concept according to which a complex can only be formed if the ligand (the key) perfectly matches
the binding cavity (key hole) of the receptor.l”! In contrast to conventional forward drug discovery, where

the identification of lead structures is obtained by experimental high-throughput screening (HTS), a

6



rational design process is less costly and more effective since a ligand is especially tailored towards a

known biological target.[®!

The foundation of SBDD lies in the progress in structural biology and computer science which enabled
researchers to obtain, process, store and analyse the 3D structures of pharmaceutically relevant targets.
Since the very first steps in the middle of the last century, when the X-ray structures of myoglobin and
insulin were solved,”!Y the field has massively advanced, resulting not only in several success-stories
of FDA-approved drugs (e.g. Saquinavir,!'!! Raltitrexed,'"” Amprenavir,!'¥! Isoniazid,"'¥), Epalrestat,'!
Flurbiprofen!'®!) but also in the development of powerful algorithms and software, thus giving rise to
methods like docking and molecular dynamics (MD) simulations. The detailed description of all of these
applications is clearly without the scope of this work; yet, the basic ideas and principles behind the most
important approaches will be presented in the following paragraphs in order to put the results of this

work into context in the large menagerie of SBDD methods.

2.2.1 Binding site identification

Generally, the absolute prerequisite for the structure-based design of a ligand to a given protein is
knowledge of the respective binding site. In case that only an apo structure, i.e. without a bound ligand,
is available, it must be identified. A plethora of methods has been developed for this task which can be
roughly grouped into sequence-based, template-based, geometric, and energy-based.!!”) While the first
two classes rely on the annotation of already known binding sites, the latter two in principle allow the

identification of binding sites only from the structure without any similar templates.

The basic assumption of geometric approaches is that binding sites show a distinct shape, like a deep
cleft or pocket, that can be distinguished from the rest of the protein surface by geometric descriptors.

Prominent examples of algorithms include POCKET,!"® LIGSITE,"” and SURFNET.!*"!

The idea behind energy-based approaches is that binding sites exhibit specific energetic properties which
can be identified. One of the very first applications used in this context is the famous GRID?!! approach
by Goodford which calculates the interaction energy between the protein and chemical probes
mimicking specific ligand functional groups, resulting in interaction maps. The GRID force fields is for
instance used in the binding site identification program Q-SiteFinder,??! but also other force fields have

been employed by a variety of approaches.[2>242°]



2.2.2 Lead identification by de novo design and virtual screening approaches

With the binding site identified, the next step in the SBDD process is finding a lead candidate. This can
in principle be achieved by two different approaches, the complete de novo construction of a molecule,

or hit identification in a virtual screening.

2.2.2.1 De novo design

For the de novo construction, building blocks in form of fragments, functional group units, or atoms, are
fitted into the binding site. This is in analogy to the experimental fragment-based screening via co-
crystallisation of fragments, which can then be grown or linked together via computational search
algorithms and scoring functions. So far, however, few available ready-to-use software exists for this
purpose. One of the first approaches developed for de novo design is LUDIP® which calculates
interaction sites based on the provided receptor using distributions of non-bonded contacts in the
Cambridge Structural Database (CSD) and performs consequent fitting of fragments. The program
SPROUT™"! ytilises constraints in form of interaction sites derived from the steric, hydrophobic, and
electrostatic properties of the desired binding partner to step by step generate a novel compound from
user-defined templates. It has been applied to the design of inhibitors of B-Site APP cleaving enzyme 1
(BACE1).®! The Program LigBuilder!®”! constructs a ligand stepwise from a library of organic
fragments under consideration of the given protein binding site by deriving a pharmacophore model
based on the binding energies of the protein with different probes, similar to the GRID approach. It has
been extended and used for the design of dual-target inhibitors of cyclooxygenase-2 (COX-2) and 5-
lipoxygenase (5-LOX).% Besides, there are also ligand-based approaches that do not consider the target
structure but rely on the structure of an already known ligand. The program DOGS (Design of Genuine
Structures)!l generates new compounds based on a single reference compound with desired activity

32.33.34] Besides, in recent years, machine-learning (ML)-based

and has been used in multiple case studies.!
methods have been pursued, like the “generative artificial intelligence” approach coined by Schneider

and co-workers that includes training of neural networks on databases of drug-like molecules.?*”

2.2.2.2 Virtual screening approaches

Much more well-established approaches exist for the identification of promising ligands via virtual
screening, i.e. the selection of a compound with presumably desired biological properties from an
existing in silico molecule library. As for the de novo design, two general approaches can be

distinguished: ligand-based approaches, which utilise information about already known binders to i.e.



build a pharmacophore model or to carry out similarity searches, and receptor-based methods, which

rely on the 3D structure of the binding partner and which will be discussed here in more detail.

2.2.2.2.1 Pharmacophores

One example for a receptor-based virtual screening method is pharmacophore-based screening.
Although traditionally used in ligand-based virtual screening, pharmacophore models can also be
derived from 3D ligand-receptor complex structures or even from apo receptor structures. The concept
of a “pharmacophore” was already established in the beginning of the 20™ century by P. Ehrlich as “a
molecular framework that carries (“phoros”) the essential features responsible for a drug's
(“pharmakon”) biological activity”.**! Since then, the definition was extended towards “an arrangement
of molecular features or structural elements related to biological activity”.”-*®) Commonly used features
e.g. include hydrogen bond donor or acceptor (HBA, HBD), cation, anion, aromatic, or

3949 which can be defined based on suitable complementarity to structural features of an

hydrophobic,!
apo binding site or, if available, based on interactions in a known ligand-receptor complex structure.
The advantage of deriving pharmacophore features from an apo binding site is that it can be applied for
targets for which no ligands are known so far. Besides, even if there are known ligands, it can be
beneficial to create an unbiased pharmacophore model completely independent from existing ligands to

increase the chance of “scaffold hopping”,*! i.e. finding compounds with so far unexploited scaffolds

for improved synthetic availability or for circumventing problems with intellectual property.

Pharmacophore features can be derived in different ways, which can be generally differentiated into
pattern-based and molecular field-based methods.!** Pattern-based approaches e.g. assign predefined
features like HBD based on the presence of functional groups. Molecular field-based methods utilise
interaction fields which can be generated by GRID or similar applications to identify areas with highly
favourable interaction energies between the binding site and specific molecular probes as location of
pharmacophore features. A prominent example of such a field-based approach is FLAP.*¥ Several
programs and software packages have been developed for pharmacophore generation and
pharmacophore-based screening that offer implementations of different feature assignment algorithms,

i.e. MOE,"*¥ LigandScout,*>) PHASE, ¢ and Catalyst.[*”!

After generation of a pharmacophore model, virtual screening of in silico databases can be performed
either based on fingerprint-comparison or by means of a 3D alignment. For fingerprint comparison, like
used in FLAP, the information about the presence of pharmacophore features is converted to a
fingerprint vector, thus allowing for efficient comparison by e.g. a Tanimoto coefficient.*®! In a 3D

alignment, which is e.g. used by LigandScout, MOE and Catalyst, 3D conformations of the screening

9



compounds are aligned to the 3D pharmacophore model to calculate the feature matching, which is
computationally expensive.[*”! A noteworthy peculiarity in this context is the pattern-matching 3D
alignment algorithm of LigandScout which utilises inter-feature distance fingerprints to achieve a faster
comparison when more features are included in the pharmacophore model, while usually the screening

time drastically increases with the number of features.!*”!

2.2.2.2.2 Docking

The probably most-frequently used approach for virtual screening is docking. Usually, the term
“docking” is used to describe a two-step process, namely the prediction of the binding mode of a given
compound in its receptor, typically a protein binding site, and the assessment of this pose via a scoring

function to yield an approximation or relative measure of the respective binding affinity.>"

Several well-established programs have been developed for conducting docking experiments, e.g.
GOLD,! Glide,™ Flexx,5 DOCK,** and AutoDock,*> each encompassing different algorithms for
pose generation and scoring. In the following, a short overview will be given about the most common

strategies concerning both the “docking” and “scoring” challenge.

Even under the (clearly over-simplified) assumption of a rigid ligand and receptor, which was used in
the early program DOCK, docking can be considered a highly complex six-dimensional puzzle since a
molecule can be translated and rotated within the binding site. When considering that both the ligand
and the protein can undergo conformational changes upon binding, the challenge becomes even more
complex, requiring elaborate and efficient algorithms to generate reasonable binding modes. Generally,
there are two strategies, stochastic and systematic search, with the latter being differentiated into
exhaustive search, fragmentation search and conformational ensemble search.*” In the exhaustive
search, as for instance used in Glide, all rotatable bonds are rotated systematically in certain increments
to generate all possible conformations of the ligand, thus resulting in a combinatoric explosion for
molecules with a large number of rotatable bonds. To reduce the computational cost, usually constraints
based on the binding site are applied in the beginning of the pose generation process, and the exhaustive
search is only carried out for the most promising conformations. In fragmentation search, as for instance
used in Flexx, the ligands are divided into rigid fragments, and the binding conformation is grown inside
the binding site by first docking a starting fragment and then adding the other ones. Conformational
ensemble methods, on the other hand, perform rigid docking of a set of pre-computed ligand

conformations.

In contrast to systematic search, stochastic search approaches aim at sampling the ligand conformational
space inside the binding site by introducing random changes to both the angles of rotatable bonds and

10



the positioning of the ligand. A change can be accepted or rejected according to a probabilistic criterion,
for instance a Boltzmann probability function based on an estimate of the respective energy of the pose
before and after the change. One of the most widely used docking programs, GOLD, utilises a genetic
algorithm (GA). In a first step, a population of initial poses is generated via assignment of ligand dihedral
angles, torsions, and ring conformations as well as positioning of the ligand inside the binding site via
matching of HBD, HBA, and hydrophobic fitting points. Both the conformational parameters and the
mapping of protein and ligand fitting points of a pose are stored in “chromosomes”, and similar poses
within the population are stored in “islands”. In analogy to the biological evolution process, these initial
“parent” poses are subjected to random mutation (change of individual values in a chromosome), cross-
over (exchange of whole chromosome parts within islands), or migration (exchange of whole
chromosomes between different islands). The probability of a specific chromosome being selected as
parent chromosome, which can “inherit” its information to the next generation, is proportional to its
assessment by a scoring function (s. next chapter), thus applying a selection-pressure towards poses with

higher scores.*!

While the ligand’s conformational freedom is thus usually well accounted for in today’s docking
software, the protein is treated as rather rigid, which is a massive simplification. Already in the middle
of the 20™ century, it was noted that small molecules and proteins also bind to each other when their
initial structures do not match well, leading to the “induced fit” model by Koshland which assumes that
the structure of the receptor binding site is flexible and undergoes conformational changes to
accommodate the ligand.*®! Later, based on the free energy landscape (FEL) theory of protein structure

and dynamics,"-3%5%:6% the “conformational selection” model!®!:6%:63:64]

was proposed which suggests that
an ensemble of protein conformations exists in an equilibrium state, and that the ligand, by binding to
the most suitable conformation, shifts this population. To address protein structural changes during
docking, certain strategies have been developed. One approach which is typically applied is so-called
“soft docking”, which simply works by softening the interaction potential terms used in the respective
scoring functions to allow a small degree of overlap between protein and ligand atoms to implicitly
mimic small structural changes of the protein.’% A step towards explicit treatment of protein flexibility
1s the use of rotamer libraries for amino acid sidechains, so that the side chain conformations can be
varied for selected residues.) Another, rather intuitive way is to perform an ensemble docking into

multiple available protein structures, either obtained from experiment or from MD simulations and

homology modelling.[6:¢”]

Another factor often ignored in conventional docking is the treatment of binding site water molecules.

As will be outlined in detail later, replacing or addressing water molecules can have huge effects on

11



protein ligand binding. Consequently, studies showed that inclusion of selected water molecules during

68691 The most straight-forward way to incorporate water is to

docking can lead to improved results.t
treat all or selected experimentally determined water positions in a binding site as part of the protein.
However, this might lead to bias in case that crystallographic waters are artefacts and can also limit the
conformational space of possible ligand binding modes.!”%’"! Besides, accurate scoring protocols must

be used to accurately capture the respective contributions. A summary of methods concerning selection,

prediction, and scoring w.r.t. water molecules in drug design will be given in chapter 2.4.

2.2.2.2.3 Scoring functions

As outlined earlier, the correct scoring of a ligand pose is essential for docking performance since it
influences both the predicted binding mode of a single molecule and its ranking w.r.t. other compounds
in a virtual screening experiment. Over the last decades, numerous scoring functions have been
developed, which can be roughly differentiated into physics-based, empirical, knowledge-based, and

machine learning-based.

(73] attempt to approximate the

Physics-based scoring functions, such as DOCK!?! and Goldscore,
binding (free) energy of a pose directly by utilising molecular mechanics (MM), solvation models,
and/or quantum mechanical (QM) calculations. A classical approach are force field-based scoring
functions which e.g. include terms for electrostatic and van der Waals interactions, bond stretching and
bending, and torsions. To address solvation effects, additional implicit or explicit solvation models must
be used."*>7677 In an attempt to address factors like polarisation, charge transfer, or the formation of
covalent bonds, approaches based on QM or QM/MM have been developed; however, they remain

78,79,80

computationally expensive.! I Another problematic aspect in this context is to account for the

change in conformational or configurational entropy of a given molecule upon binding.

Empirical scoring functions, too, estimate the binding free energy of a given protein-ligand complex
structure, but in contrast to physics-based approaches, summation is performed over weighted simple,
empirical energy terms A, G, ;, with the weighting-factors w: being determined by regression on a

training data set.

AyinaGir :Z WAy GLR,i (7

Due to the simpler energy terms, empirical scoring functions are often more efficient; however, they
rely on the quality of the respective training set.®® A prominent example is ChemPLP,"®!) the default
scoring function used in GOLD, which was employed in this work. It includes terms for the steric

complementarity of ligand and binding site (based on geometry and chemical properties), ligand torsion,
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angle- and distance-dependent hydrogen bonds and metal interactions, as well as terms describing

clashes of atoms.

Knowledge-based scoring functions are based on the assumption that the frequency of a specific pair of
atom types i and j at a specific distance » in a data set can be converted into a distance-dependent
potential of mean force wy; using the inverse Boltzmann relation. The binding free energy is then

obtained by summation over all protein-ligand atom pairs in the complex according to:

{” "f‘(f)J ®)
Pi

Here, kg is the Boltzmann constant, 7 the absolute temperature, p;(») the number density of the protein—

L R L R
AyingGir = ZZWU(’”) = —kBTZZIH
i=lj i=l j=1

i Jj=1 Jj=

828384851 Dye to the pairwise

ligand atom pair ij at distance r, and p; the pair density in a reference state.!
evaluation, knowledge-based scoring functions are usually computationally efficient, and since they are
based on a large number of complexes, they are rather robust and offer high accuracy especially in terms
of binding pose prediction.’”®! The main challenge w.r.t. knowledge-based scoring functions is the
determination of a suitable reference state. This can for instance be achieved via randomisation of the

87.88] However, this technique

atoms in the data set, as implemented e.g. in ASPScore!® and DrugScorel
neglects important factors like excluded volume;!® therefore, approaches including correction terms or
circumventing the reference state problem via a physics-based iterative method have been

developed [89,90,91,92,93,94]

The fourth category of scoring functions, based on ML techniques, is relatively new and is different
from all the above-discussed “classic” approaches insofar that ML based-scoring functions do not have
a defined, mathematical form with physically or statistically interpretable contribution terms. Hence,
they are not expert- or theory-driven, but rather data-driven. The majority of ML algorithms perform as
a “black box” which predicts a desired output, e.g. a binding free energy, via pattern recognition based
on training on a provided data set. The advantage of this is that ML, if provided with enough high-
quality data, has the potential to implicitly encode aspects of protein-ligand binding which are difficult
to model explicitly.”> However, the accuracy and robustness of the prediction heavily rely on the quality
of the training data. Thus, a suitable training data set is a prerequisite for all ML approaches. From this
data set, specific features are derived as input for the ML;®% this can be e.g. fingerprints encoding
structural features or interactions,””! simple molecular descriptors,'*® SMILES,” molecule graphs, %

101,102,103]

individual energy terms from classical scoring,! or even 3D grids encoding molecular

conformations.['%4
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The most commonly applied techniques include support vector machines (SVMs), random forests (RFs),
artificial neural networks (ANNS), and convolutional neural networks (CNNs).'%! SVMs map data into
high-dimensional space via non-linear kernels and identify a hyperplane which leads to optimal

1061 The scoring function IDScore by Ding ef al.

separation of data points, e.g. into active and inactive.!
is based on a modified support vector regression and utilises descriptors in form of categories related to
protein-ligand interactions (e.g. electrostatic, hydrogen bond) to predict experimental binding

affinities.l'?”]

As the name implies, a RF is a combination of a large number of decision trees and thus an ensemble
learning method.!”® One of the most prominent ML-based scoring functions, RF-Score, uses simple
geometric descriptors in form of protein-ligand atom pairwise counts in specific distances.” It has been
mainly used for binding affinity prediction, and several versions using modified or additional descriptors

have been published to improve accuracy.”-1%!

ANN:Ss, in analogy to neural networks in biology, consist of individual neurons which are connected to
the other neurons in a specific topology, e.g. several inter-connected layers including an input and output
layer, and in many cases one or more hidden layers. Today, usually a NN is considered a “deep” NN if
the number of hidden layers is more than three. Each neuron receives an input from the previous layer
and applies a nonlinear function to it, with the resulting output being the input for the next layer. In the
last layer, the output then corresponds to the desired prediction, e.g. a classification or a distinct value
such as a binding free energy. During training, the error in the form of the difference between the
network output and the “true” values is minimised via so-called backpropagation which adjusts the
weights of the neuron connections.['”! The first NN-based scoring function, NNScore, takes a list of
selected pairwise potentials describing for instance the electrostatic energy of different types of protein-
ligand atoms pairs as input and was originally employed to classify docked compounds into binders and

110

non-binders.!''”) Since then, several improvements have been introduced, allowing for quantitative

111

prediction of pKjy values rather than a mere classification.!''!] Apart from retrospective validation, it has

also been successfully applied in the development of ligands of several proteins relevant for medicinal

chemistry.“ 12,113,114,115,116]

CNNs are a deep learning approach frequently applied in image recognition. Its hidden layer topology
consists of convolutional layers, pooling layers and fully connected layers. Usually, the input to a CNN
is a 2D or 3D matrix, e.g. colour channels of each pixel in an image or element information on a 3D grid
of a protein-ligand complex. The convolutional layer converts this matrix input to abstracted feature

maps which are then subsampled by the pooling layers to reduce redundancy. After several units of
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convolutional and pooling, the output is submitted to fully connected layers, in which every neuron is
connected to each other neuron in the previous and next layer, to yield a final output in form of a
prediction or classification.l°*!!”] One of the first CNN-based scoring functions is AtomNet which takes
the 3D grid of a binding site as input, with each voxel containing information about respective structural
features present in this voxel. It was evaluated on e.g. the DUD-E data set and showed good

discrimination between active and inactive molecules.['!?

I The CNN-based scoring function Kpggp was
especially developed for predicting binding affinities and achieved an RMSE of around 1.3 pK units on
the PDBbind core set 2016.1'"") However, 3D CNNs are highly demanding w.r.t. GPU memory and
storage. Therefore, also graph CNN-based approaches like the message passing NN (MPNN)
GraphDelta have been developed which uses a molecule graph as input that encodes the 2D molecule
structure as well as specific atom-based descriptors related to the interactions of the atoms in a protein-

ligand complex.['%

2.2.2.2.4 Assessment of scoring

When assessing the performance of a given scoring function from any of the four above-presented
categories, several aspects have to be carefully considered: In general, there are four tasks based on
which a scoring can be evaluated, namely docking power, ranking power, screening power, and

prediction power.

Docking power describes the successful differentiation between “good” and “bad” poses of a single
ligand, i.e. the capability of scoring the true binding mode above the other poses generated by the
docking algorithm. Ranking power is the capability to correctly rank multiple ligands of a given target
according to their experimental binding affinities. Screening power refers to the binary differentiation
between active and inactive molecules and is of great importance in virtual screening, as presented e.g.
in chapter 4.2 in this work. Screening power is usually evaluated by metrics like the enrichment-factor,
which defines how many actives were enriched over inactives (“decoys”) at a certain percent of a ranked
list compared to random classification, and the area under the curve of the receiver operating
characteristic (ROC-AUC). The ROC curve is obtained by plotting the true positive rate (TPR) against
the false positive rate (FPR) for each position 7 in the ranking that is obtained by sorting the active and
decoy molecules according to their score. The TPR (also called “sensitivity” or “hit rate”) at a given
position 7 in the ranking is defined according to:

Nactive,i
TPR, = el 9)

active,total
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where Nacive,i 1S the number of active compounds that have been successfully retrieved in the ranking up
to position 7, and Nciive,total the total number of actives in the data set. Hence, when iterating through the

ranking positions, the value of TPR increases up to a value of 1.0 when all actives are found.

The FPR at a given position i in the ranking, consequently, is defined as:

N, .
FPR, = — &0 (10)

decoy,total

where Nyecoy,i 18 the number of decoy compounds that have been retrieved in the ranking up to position i
(and are thus false positives, since ideally all actives should be ranked before all decoys), and Ngccoy,total
the total number of decoys in the data set. Hence, like the TPR, the value of FPR increases up to a value

of 1.0.

For an ideal ranking that perfectly differentiates between actives and decoys, all actives would be ranked
before all decoys, resulting in an TPR that grows to 1.0 while the FPR is still 0.0. This would result in
the ROC “curve” being a horizontal line at TRP = 1.0, so that the corresponding AUC would have a
value of 1.0. On the other hand, for a random classification of actives and decoys, TPR and FRP would
grow alike, resulting in the ROC “curve” being the bisecting line, hence yielding an AUC of 0.5. Thus,

ROC-AUC values near 1.0 denote a good differentiation between active and inactive molecules.

Prediction power (sometimes referred to as scoring power), on the other hand, defines the quantitative
prediction of a binding free energy, often in form of a pKy value, for a given protein-ligand complex

structure from experiment or docking.¢!

Ideally, a scoring function would succeed equally well in all four tasks; however, different studies have

1051201 Several benchmark data sets have been established that can

shown that this is often not the case.!
be employed for validation of new scoring approaches: The PDBbind database, which is regularly
updated and was used in this work, is a selection of experimental complex structures from the PDB with
available binding affinity values, with a high-quality core set comprising some hundred structures and

121.122,123,124.1231 Tt ig thus especially suited for estimating

a refined set with several thousand complexes.!
the prediction power of scoring functions, but also docking power and ranking power. The Directory of
Useful Decoys (DUD)!?%) and DUD Enhanced (DUD-E),!'*” as well as the Maximum Unbiased
Validations (MUV) data sets!'?®) and DEKOIS data sets!'**! provide collections of active and presumably

inactive molecules for several proteins relevant in medicinal chemistry, thus allowing for the assessment

of screening power.

The probably most prominent large-scale benchmark which is regularly carried out with the latest

available scoring functions and current data sets is the Comparative Assessment of Scoring Functions
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(CASF).l'22123] Evaluation of prediction power in CASF-2016 for instance revealed that the majority of
classical, well-established scoring functions do not show satisfactory results in this task, with most
Pearson correlation coefficients R being below 0.6, but perform much better for ranking and docking.!'?!
This might result from the fact that many classical scoring functions were not specifically developed to
predict accurate, absolute binding affinities but rather to enrich good binders from poor binders, a task
for which the prediction of absolute values is not necessarily essential. ML-based scoring functions, on
the other hand, are primarily trained on experimental binding affinity data and are often not directly
included in a docking software but rather applied as a post-docking rescoring. Interestingly, an
assessment by Rognan ef al. revealed that indeed the tested ML-based scoring functions outperformed
classical scoring functions w.r.t. prediction power. However, they failed to discriminate between active
and inactive molecules in the DUD-E data set and could not differentiate between native and other

1201 This study impressively

binding modes, thus failing w.r.t. both screening and docking power.!
highlights that care has to be taken concerning the robustness and applicability domain of newly

developed approaches, especially for data-driven ML-methods.

2.2.3 MD simulations

All the approaches described so far rely on static 3D structures like an experimentally determined
protein-ligand complex or an ensemble of these. However, in reality, molecular interactions are dynamic
processes. Characterising these inherent dynamics can be of great advantage in SBDD, e.g. for the

130,131

identification of so far untargeted cryptic binding pockets,' ! for optimising a ligand by assessing

132 or even for studying the binding and unbinding

the overall stability of its interactions with the protein,!
process itself.!!33:134135] The most frequently applied approach for studying the dynamics of molecules
computationally are MD simulations, in which atoms and their interactions are described via classic

molecular mechanics (MM).

2.2.3.1 Theoretical background

In contrast to QM, in which the electronic structure of a system can in principle be completely described
by a respective wave function, MM treats atoms as spheres which are connected via springs without
differentiation between electrons and nuclei. Consequently, the energy of a given molecule can be stated
as a function of the molecule’s resistance w.r.t. distortions from the “natural” length and angle of its
bonds. The entity of i) the mathematical expression of these geometry-based energy terms, and ii) the

136

parameters used in them are defined as a force field.!'* Usually, they contain terms for energy

contributions from bond stretching, angle bending, and torsions for covalent interactions and
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electrostatic and van der Waals interactions for non-bonded interactions. Over the decades, various force
fields have been developed for different purposes; the most-widely used ones include CHARMM, !37:138]
ff14SB,!13%:1401 GROMOS,!"*!1 OPLS,["*) MMFF94s!!*¥], and the general AMBER force field
(GAFF).'""1 In the latter, the energy U of a system is expressed in the following form:

U= k-r)+ Y k©-0)+ 3 %(l+cos(n¢—7))+2{i+&+%} (11)

12 6
bonds angles dihedrals i<j R[j RU &‘R[j

Here, k., ko, and v, are the force constants for bonds with the length », bond angles with angle 6, and
dihedrals with multiplicity #, angle ¢ and phase angle y, respectively, with the subscript eq denoting
equilibrium values; g, 4;, and B, are the partial charges and Lennard-Jones parameters of atoms i and

144] Compared to solving the Schrodinger equation, evaluation

j at distance Ry; € is the dieletric constant.!
of the force field terms is far faster, thus allowing for the investigation of larger systems like protein-

ligand complexes, which would be unfeasible with QM.

In MD simulations, the aim is to obtain a trajectory of the given system over time. The new position of
an atom i after a time step Az, ri{#+Af), can be approximated from the current position, ri(f), using a

Taylor series according to: [

A* + O(AY), (12)

or,(t) 1 azr.(t)
r(t+At)=r.(t)+—=At+———
i )=5() ot 2 ot

with the second and third term being the atom’s velocity v; and acceleration a;; O denotes the order of

the error. The same can be applied for a step backwards in time. Addition of the resulting expression

and Eq. (12) yields the Verlet algorithm, which is given by: [14%14¢]

r (¢t +Af) =2r,(¢) —r.(t — At) +a,(H) A (13)

and allows to determine the new position ri{#+Af) based on the current and last position of the atom and

its acceleration. Following Newtonian mechanics, a; can be obtained from the gradient of the potential

U and its mass by:[1%]

F =-0U(r,,..ry)/0r,=ma,, (14)

with F; denoting the force acting on atom i. Thus, the respective equations have to be solved for each

atom in the system for each time step.

The length of this time step is limited by the vibration modes with the highest frequency of the system,

147

like the hydrogen stretching, and accordingly is usually in the fs range.!'*”) Biologically interesting

48] Hence, a

processes, like protein folding or ligand binding, exhibit time scales in the ns or us range.!
huge number of time steps has to be simulated, resulting in high computational demand especially for

very large systems containing e.g. membrane proteins. To reduce the computational cost, distance
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cutoffs can be introduced for the evaluation of the Lennard-Jones potential. Calculation of the Coulomb
interactions can be improved via Ewald summation by separation into a short-range term, efficiently

computable in real space using cutoffs, and a long-range term which is solved in Fourier space.['*”!

Besides, to obtain physically relevant results, several other aspects have to be addressed in MD
simulations: Since physiological processes take place in aqueous solution and not in vacuum, not only
the molecule of interest has to be simulated, but also the surrounding solvent. This can be achieved via
different explicit and implicit solvent models, which will be discussed more detailed in chapter 2.3. To
avoid boundary effects due to the limited size of the simulation box, usually periodic boundary
conditions are applied; here, the simulation box is treated as if it were surrounded by 26 identical copies

of itself.[!+]

When performing an MD simulation, an ensemble of configurations of the system is produced. If the
configurational space of the system has been sampled sufficiently, this ensemble statistically represents
the state of the given system and allows to derive specific properties as ensemble averages or integrals
over the configurational space. If Newton’s equations of motion are applied on a system of fixed volume
V and atom number N without additional constraints, the total energy E of the system is constant,
resulting in the microcanonical NVE ensemble. However, this does usually not well represent the
experimental conditions of the studied systems of interest, so that methods have been developed to
realise other thermodynamic ensembles. The most frequently employed ensembles are the canonical
NVT ensemble with constant temperature 7, and the isothermal-isobaric NpT ensemble with both
temperature and pressure being held constant. To realise the NVT ensemble, the temperature has to be

controlled by a thermostat algorithm which adds or removes energy e.g. by velocity scaling. Prominent

149] 150]

approaches include the Nosé-Hoover thermostat,’ the Berendsen thermostat,! or Langevin

151]

dynamics.| For approximating an NpT7 ensemble, an additional barostat, for instance the

152 153]

Berendsen!'*? or Anderson barostat!!>*], is needed to control the pressure, e.g. by scaling of the box

volume or interatomic distances.

2.2.3.2 Role of MD simulations in drug discovery

Unlike the approaches described in 2.2.2, MD simulation make it possible to explicitly capture structural
flexibility and dynamics of the studied system, thus making it possible to study entropic effects and even

the kinetics of protein-ligand binding.!'>%

In the early beginnings of MD simulation applications for drug discovery, snapshots of obtained
trajectories were used to provide input to classical SBDD methods: For instance, by extracting multiple
binding side conformations from a trajectory, input structures for ensemble docking approaches were
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generated.['! With growing computational power and thanks to graphical processor unit (GPU)

architectures, MD simulations can now be run sufficiently long (up to us or, in few examples, even ms

1341 For instance, it

range) to study the conformational space and dynamics of a protein-ligand complex.!
is nowadays often used for post-processing of docked protein-ligand complexes. Following the
assumption that “bad” docking poses will result in unstable trajectories, the predicted binding modes

can be validated.['*¥]

Yet, exploring the binding or unbinding process itself and the associated kinetics and free energy

156

landscape is still a challenge since such processes often occur on a very long time scale.!'>% To overcome

this, enhanced sampling methods have been developed to make high-energy-states observable within

157] 158]
b

the simulation. This includes, among others, free energy perturbation (FEP),!'>”) umbrella sampling,!
replica exchange,'™ and steered MD.!'®) With these approaches, it has become possible to study

protein-ligand binding and the respective kinetics and energetics.

In drug discovery, FEP is also used to estimate the binding free energy difference between two related
compounds. As the free energy is a state function, respective differences are independent of the path
between two systems A and B. Hence, generally, for two different systems A and B, the difference in

free energy can be defined as:['"]
GB—GA:AG:_RT1n<e—AU/RT>A, (15)

with U denoting a potential and the bracket term denoting an ensemble average over a system. For FEP,
it is assumed that there is a parameter A that can vary between 0 and 1, so that U(4) can be formulated

as:[161

U =AUz +(1-)U,, (16)
so that U= Ux for A =0 and U = Ug for A = 1. Then, Eq. (15) can be generalized to:

Gy =G, =AG=Y ~RTIn(e™ ") (17)

1
7=0 4

with AU = Uj+4, - U Hence, the free energy calculation is performed by making small variations in A.

Alternatively, in a thermodynamic integration (TI), a free energy difference between two pre-defined
systems (characterized by 4 = 0 or 4 = 1) can be calculated by defining a thermodynamic path between

these states and performing integration along this reversible path using 4 as integration variable:

AG =J.;d/1<%>l (18)
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By evaluating the ensemble average of the derivative of the potential w.r.t. A at various values of 4,

(181 Hence, such protocols can be

numerical integration can be used to obtain the free energy difference.
employed for in-depth studies of identified lead candidates or for explaining SAR-trends. MD
simulations have thus become a powerful tool that are nowadays employed in different stages of the

SBDD process.

2.3 Solvation models

As outlined above, solvation effects are an important factor in all ligand-receptor binding events. The
association constant K, of a complex LR in aqueous solution as introduced in 2.1 can be calculated
according to:['%%

AbindG(g) + Ahyd RL (AhdeR + AhdeL)

In(K,) = RT

(19)

from the free energy of binding between ligand and receptor in gas phase, AvindG'®, and the respective
hydration free energies of ligand, receptor and complex, AnyaGx. This formally corresponds to the
thermodynamic cycle of first transferring R and L from solution to gas phase, forming the complex LR

in gas phase and transferring the complex to solution (Figure 1).

(2
RV(?C + Ll'ﬂ'c Abde RL
vac
-A, .G
e AhvdGRL
_AhdeL
RW+LM o
(sol)
Abind(;

Figure 1: Thermodynamic cycle for the calculation of ApinaG*®” by transferring R and L from solution

to gas phase, forming the complex LR in gas phase and transferring the complex to solution.

Generally, Ben-Naim defined hydration as the transfer of a given solute molecule in a fixed position in
an ideal gas phase to a fixed position in the aqueous phase at constant pressure and temperature. In the
so-called Ben-Naim reference state, identical formal concentrations in solution and in gas phase are
obtained. Hence, the hydration free energy AnyG is defined as the respective change in the Gibbs free
energy associated with this process; for arbitrary liquids other than aqueous solution it is called solvation

162,163

free energy.! ! AnydG can be separated into enthalpic and entropic contributions arising from the
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formation of bonds between solute and solvent and the accompanying increased ordering of the solvent

molecules.

As Eq. (19) emphasises, hydration effects add a significant contribution to the free energy of binding of
a complex in solution. However, in practice, this thermodynamic cycle can hardly be applied since the
transfer to/from gasphase is usually associated with substantial structural, energetic and also entropic
changes. Therefore, to account for hydration effects in simulations or energy calculations, different
solvation models have been developed to approximate the effect of the solvent on the respective solute
molecules. Generally, these approaches can be divided into explicit, implicit and hybrid models with

varying focus onto accuracy and efficiency.

2.3.1 Explicit solvation models

The most straight-forward way to consider the solvent in any kind of simulation or calculation is to
explicitly add solvent atoms to the system, e.g. by placing three-dimensional water molecules around a
protein structure, and to treat their interactions exactly like those of the rest of the system. The obvious
advantage is that interactions between the solvent and the solute are directly captured, thus allowing e.g.
to identify hydrogen bonds between a conserved binding site water molecule and a protein residue. At
the same time, this atomistic treatment leads to a massive increase of required calculations, making it
costly w.r.t. computational power. Hence, atomistic treatment of the solvent in QM calculations is
computationally very expensive. As a result, explicit solvation models are primarily used in MM
approaches, like classical MD. Even here, idealistic models of the solvent (e.g. with fixed geometry and
charges) are used to reduce the degrees of freedom. Frequently used water models are the TIPXP model
(transferable intermolecular potential with X points),['**1%] and the SPC (simple point charge)!'%®! or

1661 An approach that allows to include

SPC/E model (with an additional polarisation correction term).!
electronic polarisation effects is ab initio MD (AIMD). Unlike in classical MD simulations, the forces
needed for the generation of the trajectory are obtained from QM calculations: In each time step,
electronic structure calculations are carried out using first-principles methods. Examples include the

Born-Oppenheimer MD (BOMD) and the Car-Parrinello MD (CPMD).[!67]

2.3.2 Implicit solvation models

An alternative to the accurate yet computationally expensive explicit treatment of individual solvent
molecules is to approximate the overall effect that the solvent exerts on the solute without consideration

of distinct solvent atoms. This type of methods is called implicit or continuum models.!'*®] Here, the
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solvent is described as a uniform medium with dielectric constant € and a cavity for the embedded

solute.[1%%]

Consequently, AnyaG can be decomposed according to:

AiG = Ay Gie + DGy + AraG (20)

hyd elec rep-disp cav

into terms describing electrostatic interactions (AnydGelec), repulsion-dispersion interactions (AnydGrep-
dgisp), and the cavity formation (ApyaGeav). Often, the two latter terms are combined to a non-polar
contribution term AnydGhonpotar.!'®? Usually, these models applied for a specific geometry, i.e. assuming
a rigid body — otherwise, computationally more expensive ensemble averages are required (for instance
by Molecular mechanics Poisson—-Boltzmann surface area (MM-PBSA) or molecular mechanics

generalized Born surface area (MM-GBSA) calculations).!'”")

Electrostatic contributions to solvation can be described via continuum electrostatic theory by describing
the solute as a cavity in a dielectric environment. The respective electrostatic potential V(r) for
nonhomogeneous media (e.g solvent including ions) can be obtained by solving the Poisson-Boltzmann

(PB) equation:

V[e(r)VV(r)] =—dnp’ (r)—4ﬂZcf°ziqexp(—ﬂzqu(r))ﬂ(r) (1)

Here, ¢ is the dielectric constant of the solvent, pf(r) the charge density of the solute including only
molecular charges, ¢i” the concentration of ion i at an infinite distance from the solute, z; the valency of

the ion, g the proton charge, 3 the reciprocal temperature, and A(r) the accessibility to ions at r.['7!]

A computationally more efficient approach is the Generalised Born (GB) formalism which attempts to
approximate the solution of the PB equation by describing the solute as a set of spheres with a specific

dielectric constant. AnyaGelec can thus be approximated via:

1 1 49:4;
Ahdee:lec :_E(I_ZJZ f : . (22)
LJ GB

Here, g;and g; are are partial charges of atoms i and j, and fGg is a function which interpolates an effective

Born radius when the distance r; between i and j is short and the r; itself at large distances.!'”

AnyaGronpolar 18 Often estimated from the solute geometry, e.g. solvent accessible surface area (SASA) or
solvent-exclusion volume, in combination with empirically determined proportionality
parameters.['”*!74173] Commonly, the GB model estimating AnyqGeiec is combined with a term estimating

176]

AnydGronpolar from SASA to approximate AnyaG in a so-called GB/SA approach.!
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Generally, implicit solvent models allow for highly efficient calculations; however, effects like
hydrogen bonds or reorientation of specific solvent molecules in the proximity of a solute cannot be

directly captured since implicit models rather represent the bulk properties of the solvent.

2.3.3 Integral equation theory of molecular liquids

2.3.3.1 Classical density functional theory

Classical density functional theory (DFT) is a statistical mechanical theory to study the structure and
thermodynamic properties of liquids that has many similarities to the well-known quantum DFT. In
quantum DFT, the Hamiltonian of a multi-electron system in an external field (for instance due to the
presence of the nuclei) is expressed as a unique functional of the electronic density. The electronic
density of the ground state of the system minimises this functional and can thus be obtained via the

177

variational principle.l'””! The same principles also apply to classical systems, so that the presence of a

solute in a liquid can be seen as an external potential Vex(r) that is exerted on the liquid.['”®
Consequently, the Helmholtz energy F can be written as a functional of the particle density p(r), with

minimisation w.r.t. density yielding the equilibrium density peq(T).

For a grand canonical ensemble, with constant 7, V, and chemical potential 4, the grand potential Qy of

a monoatomic liquid can be expressed as:['7!

Q,[p(r)] = FLp)]+ [ pe) {V,, (r) - )dr (23)

with the intrinsic Helmholtz free energy F. In case of the equilibrium density, Qy is minimised, i.e:

R A CTCY 24)

opm)|, "~ op(r)

with J denotig the functional derivative, thus yielding:

oF 3 3
o Uy (1) = u(r) =V, (r), (25)

with uin(r) being defined as the so-called intrinsic potential which is the part of the chemical potential

that does not depend on the external potential.

From Eq. (24), pe(r) can thus be determined if an analytical expression of F' is available. /' can be

separated into an ideal part F'¢ of a non-interacting, ideal fluid, and an excess part F** due to solvent-

solvent interactions:!'7"]

Flo)=F*[p]+F* (] 2o

The ideal part can be written as:!%%
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F[p]==p" [ p(r)(n[ £'p(r)]-1)dr, 27

with 4 as the thermal wavelength; this expression is exact. The excess part, on the other hand, can be

approximated using a Taylor series:!!””]

Fo I:p(l’):| — p [peJ + J‘%Ap(r)dr +%J‘%Ap(r)Ap(r')drdr'+ .. (28)

where Ap = p - peq. The multi-body direct correlation functions ¢ can be generally defined as:['3%

5ﬁF€X

" (1,1,,..1,) =
" ap(r)op(ry)...op(r,)

(29)

Consequently, F*™ can be written as:
Fe"l:p(r)]:F‘”‘[peq] V' I(l) )Ap(r)dr— —ﬂ .[(2) (r,r')Ap(r)Ap(r')drdr'+...(30)

The functional derivative of the ideal part yields:
5Fid
dp(r)

=—p"'In[ £p(r)] (31)
Together with the definition of the direct correlation function, the derivative of F'is thus obtained as:

ﬂm(r)z—)_ﬂ In| £°p(r)]|-p"c"(r). (32)

The ideal gas chemical potential u'¢ is defined as:!'®!]

‘=" In[4'pn)]. (33)

so that the term S'cV in Eq. (32) corresponds to the system’s excess chemical potential in absence of

an external field.

The functional derivative of uin w.r.t. p(r) is linked to the inverse of the so-called density-density

correlation function H™ via;!'7"]

el 5/1;,,(1’): 1 S C) N — (21 '
¥ —5p(r') p(r)é(r r)—c(r,r)=H " (rr"), (34)

with the delta function §. H® itself is defined as:

HO (rr') = ﬂ-lgip((‘":,) p(£) ()12 (£.6) 4 p(£) 5 (k- 1), (35)

where 4 is the so called pair correlation function which is defined as:

h(z)(l‘l,l‘z)=g(2)(l'1,l'2)—1 (36)
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with the pair density distribution function g”(r) (also termed pair distribution function or pair

correlation function):[16179]

(n)
g(n) (l‘n ) _ pl—[(:'l ’p(;?) ] (37)

Via combination of H® and H®"' and the functional definition of the delta function, the Ornstein-

Zernike equation can be obtained, which is expressed for a uniform, isotropic liquid as:['>17!

h(ny)=c(ry)+ [ h(ry)e(ny)dr (38)

with r; denoting the distance between particles i and j. The OZ equation thus connects the total
correlation function to the direct correlation function. The total correlation of two particles is formally
separated into a direct correlation, i.e. the effect that particle 1 exerts directly on particle 2, and an
indirect part that other particles, which are in turn influenced by the presence of particle 1, exert on
particle 2. When trying to solve the OZ equation recursively by eliminating the 4(r) in the integral, it
becomes apparent that the right hand side of the equation is an infinite series of “chains” of different

direct correlations:!%%

h(r,) =c(42)+pjc(igz)c(133)dig +pzjc(}g4)c(43)dig dr, +... 39)

Since the OZ equation contains two unknown functions, 4(7) and c¢(r), a second equation is needed to
solve it, which is called “closure relation”. This closure relation can be expressed as: 17182183

h(r)+1=g(r) = exp(=pu(r) + h(r) —c(r) + B[t(r)]) (40)

Here, u(r) is the pair interaction potential between the particles, and B[#(r)] a so-called bridge function
which is a functional of the indirect correlation function #r) = A(r) — c(r). However, the correct
expression of B[#(7)] is unknown, so that finding a suitable approximation is a main challenge in this
field. The simplest approximation is to set B[#(r)] = 0; this corresponds to the so-called hypernetted
chain (HNC) closure.['#]

The equations presented above describe monoatomic, isotropic liquids. To extend the theory to non-

spherical molecules, the dependence of the correlation from the respective orientation has to be

considered. This is expressed in the so-called Molecular Ornstein Zernike (MOZ) equation:!!¢?)
h(r,,0,,0,)=c(r,,0,,0,) +%Ic(rl3,®l,®3)h(r32,®3,®2 )dr,d©, 41)

Here, ©, und O, are sets of the Euler angles denoting the orientation of the two molecules 1 and 2 to

each other, and Z is 4= for linear molecules or 87? for non-linear molecules.
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When regarding a solute molecule in pure solvent at infinite dilution, it is possible to express the
correlation via three independent equations for solvent-solvent, solute-solvent, and solute-solute

correlation functions.!'®?!

2.3.3.2 Reference interaction site model

Solving the MOZ in Eq. (41) in principle allows for the direct calculation of solvent structure; however,
in practice the high dimensionality leads to several problems, so that methods have been developed to

184]

reduce the dimensionality of the MOZ. They are based on the work of Chandler and Andersen!'®*! and

are termed reference interaction site models (RISM).!16]

In the RISM approach, solute and solvent molecules are considered as a set of spherically symmetric
interactions sites (which can correspond e.g. to the molecule’s individual atoms) that can be described
by a set of site-site correlation functions, so that the 6D MOZ is reduced to several 1D equations. Thus,
there are three types of correlation functions which depend only on the radial distance » between these
sites: the intramolecular correlation functions w(r), the direct correlation functions ¢(r), and the total

correlation functions /(r).[162183]

The intramolecular correlation w(r) for two sites a and a’ of one molecule at distance 7., it is given

by:“éz]

w,@:——ﬂﬁ. (42)

The intermolecular direct correlation function c4(r) of two sites a and y is approximated via the sum

over the individual site-site correlation functions:['#!

€ (1) =222 (1) (43)

Thus, the total correlation functions can be obtained from the intramolecular and the direct correlation

functions via a set of 1D equations. This resulting RISM equation can be expressed in matrix form as:['%"]

h=o*c*0+po*c*h, (44)
where * denotes a matrix convolution. In general, the convolution f+g of two functions f, g: R" — C is
defined as:

(f*)(0):= [ f()gx—1)dr. (45)

R”

For discrete functions f, g: D — C, the integral is replaced by a summation:

(f*&)x)= f(D)g(x~7) (46)

reD
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When considering not only the pure solvent, but mixtures of solvent with a solute at infinite dilution,
the respective RISM equation is given by:

php=o*c*m+o*c*php (47)

The respective matrices can be reorganised into blocks containing only either the solvent-solvent (vv),

solute-solvent (uv) or solute-solute (uu) correlation functions.

hVV — (OV *cVV *0)\1 +(0V * cVV *pvhvv (48)
hllV — (DM >X<cll\/ *(DV + O)V *cMV * pVhVV (49)
hull — (oll *cuu *(oll +(01l *cuv * pVhllV (50)

As can be seen, the resulting equations are hierarchical, so that h*” can be used for solving h*’, which

can in turn be employed for solving h*“. The solvent-solute equation can be rewritten as:
hMV — (oll *cMV * (pV)—l (pvmv + pVhVVpV) (51)

to separate the solvent-solute related matrices from those only related to solvent-solvent correlations.

The term in brackets is defined as the solvent-susceptibility function y:
X — pv(ov +pVhVVpV (52)
It has to computed only once for a given solvent and can then conveniently be used for any uv

calculation.

The above outlined 1D RISM equations can be converted to three dimensions by replacing the spatial
distribution functions by radial distribution functions, so that the molecular orientation of the solvent

around the infinitely diluted solute is averaged out. For the uv case, this results in:['86:187]

Pl )= e, 0)* 7, (I). (53)

where y,, is the pure solvent susceptibility, which can be precomputed by 1D RISM, and pf the bulk

density. Consequently, the respective closure relations (one per solvent site) are given by:
h,(r )—exp( Pu, (r)+h, (r)-c, (r)+B, (r))—l (54)

A highly relevant property which can be calculated by RISM is the excess chemical potential, u®.
Formally, it can be derived from the coupling parameter integral:['3%!

0 du, (r,2

I /”LZIdrp r,A)———— ( ) , (55)

0

with p,(r,A) = pygy(r,4), and du/dA denoting the partial derivative of the interaction potential «, between

solute and solvent w.r.t. the coupling parameter A. Solving this equation directly would be
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computationally costly since it would require solving it for every 4 step. However, using RISM and
respective closure relation approximations, the expression for u.x is an integral over an exact differential

which can hence be solved analytically. For the HNC-closure, this yields:!?]

pine = [ary 2 10—, (- h, 0,0 (56)

As outlined above, the HNC closure ignores the bridge function by approximating it as 0, which is a
suitable approximation for large distances but can lead to numeric instabilities. In this work, the “partial
series expansion” of order n (PSE-n) developed by Kast and Kloss was applied for uv RISM

calculations;[!8818°]

exp[t,(n)]-1  <¢(r)<0

h, (1) = M /-1 @) >0

(57)

with £,"(r) = h,(r) - ¢,(r) - Bu,(r). The PSE-n closure satisfies the HNC closure approximation for n — oo.

The interaction potential u,(r) between a solvent site y and the solute is given by:[!6%

u,(r)=>"u, (|r, —r), (58)

with:

t,, (

12 6
r, —ry‘) Uy +Up" = 24(9“7 [—0“7 J —[—O—‘” J + Z—qd% ) (59)
ay

ra—ry‘ ra—ry‘ o 47, ra—ry‘

Here, 04, and ¢, are the mixed Lennard-Jones parameters and ¢, and g, the partial charges of the
respective solute and solvent sites. Usually, Ewald summation is used for enhanced performance by
separating the electrostatic potential into a short-range part, which can be solved in real-space, and a

long-range part, which can be solved in reciprocal space after Fourier transformation.

For the PSE-n closure, the expression for u is given by:[18819]

Hise = fdrzp LR () - c(r)——h (e, (r) - ®<h<»(((»)‘ (60)

with the Heaviside function ©.

Within the applied approximations (e.g. neglecting reorganisation and polarization of the solute upon
solvation), the 4 in water corresponds to the hydration free energy AnyG. The ensemble-independent

AnyaG!"Y can thus be defined as an integral over a free energy density pg(r) according to:!*%

Hine = AngG = [drpg (1) (61)
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In this work, this is of special interest since it allows to determine the contribution of a spatial region to
the total hydration free energy. For instance, when considering a protein binding site in water, the local
information about the solvent density, provided by g,(r) = A,(r) + 1, permits to draw conclusions about
the position of specific hydration sites. Integration of pg(r) over the spatial region corresponding to one
water molecule then yields the contribution of this specific water molecule w the free energy of
hydration of the protein, AnyaGp. This procedure allows to predict unstable water molecules within a
binding site and can be used to get a detailed picture of the thermodynamic signature of apo (but also

holo) protein binding sites which is highly relevant for SBDD.

3D RISM uu calculations treating two solutes 1 and 2 in solvent require the individual uv results of both
reactants in the respective solvent, namely ¢’ (r; Ri, Qi) and p 4", (r; Rz, ), which depend on their
positions and orientations (R;, €;) in the 3D grid (r). The respective expression for 4 can then be
formulated using the distance vectors and Euler angles R, and Q,, of a “super-molecule” consisting of

solute 1 and solute 2 in fixed relative geometry:

Ly Ve

K (R, ,) =" (R, Q)+ >.¢ * p I (R,,€,,). (62)
V4

An implementation of the 3D RISM uu formalism was developed in the Kast group by F. Mrugalla and
was used in the past for designing molecular complexes using free-energy derivatives: As shown in the
respective work, the solute-solute equation of RISM allows to compute derivatives of the potential of
mean force (PMF) w.r.t. potential parameters, thus allowing to define an optimisation direction in the
chemical space towards and optimised binding of the respective molecular partners.>°! In this work, the
uu formalism is of special interest for the second part of studies, since it allows for a detailed
characterisation of binding sites by determining the local distribution of pharmacophoric probes: Based
on the 3D uv calculation of a protein and a 1D RISM uv calculation of a simple, spherical probe that
mimics a ligand functional group (for instance a positively charged nitrogen), a 3D RISM uu calculation
can be performed to obtain the pair distribution function of the respective probe within the binding site.
By doing this with different probes representing distinct pharmacophoric features, this yields a detailed

profile of the binding site w.r.t. physicochemical properties of suitable ligand groups.

Besides, RISM theory can also be combined with quantum chemical calculations. In the Kast group, the
so-called embedded cluster RISM (EC-RISM) was implemented and successfully applied for
quantitative prediction of pK,, logP, and logD values.!!>*!**1% ' While 3D RISM gives access to the
excess chemical potential in solution, it does not yield the intramolecular energy of the molecule
polarised by the solvent since this is not possible with fixed charge force fields. Hence, polarisable

forcefields or quantum chemical calculations — as in EC-RISM — are necessary to obtain this
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intramolecular energy. Within the EC-RISM framework, an iterative cycle is carried out: First, an
electrostatic potential is determined from the vacuum wave function of the fixed solute. As a second
step, the polarised solvent distribution based on this electrostatic potential is determined. Afterwards,
the solute is embedded in a set of point charges that represent the point charges, thus yielding a new
wave function and electrostatic potential. The second and third step are repeated until self-consistency

of electronic and solvent structure is reached.

All in all, the RISM theory thus offers a powerful framework to obtain the equilibrium structure, and
hence thermodynamic properties, of systems in solution at significantly less computational effort than
for instance explicit solvent MD simulations (using a rigid body approximation). In MD, an equilibrium
structure has to be calculated as averages over a large number of individual configurations, requiring
sufficient sampling and thus long simulation times. With RISM, in contrast, this equilibrium solvent
structure is obtained based on a single configuration of a system while still reflecting the atomistic

characteristics of the solvent, which is not the case for continuum methods.!"%?

2.3.3.3 Empirical corrections for 3D RISM

When calculating absolute values of the excess chemical potential using 3D RISM, a well-known artifact

162,195,196,197

has to be accounted for which usually leads to values which are too high.! I' A reason for this

1621 This error however shows

is the overestimation of the energy required to form a cavity in the solvent.!
an almost linear correlation with the solute’s partial molar volume Vi, a thermodynamic quantity which
describes the variation of a solution’s volume upon addition of the solute and which can be readily
obtained by 3D RISM calculations.!"®?) Hence, a rather simple correction term can be defined to account

for this overestimation.

In addition, in case of an ionic solute, another aspect has to be considered: Within 3D RISM, the solvent
is infinite and hence does not have a surface, so that surface polarisation is neglected. To account for

this, an additional correction term based on the solute’s charge ¢ can be defined.

Accordingly, similar to work by others,[1®*1%¢] 3 respective correction for the absolute value of 4 was
formulated in the author’s working group that takes both aspects into account:['?>:1%8]
uEt=u" + eV, +eq (63)

Here, u* is the uncorrected excess chemical potential of a given solute in a solvent as obtained by 3D
RISM, Vi, the solute’s infinite dilution partial molar volume as obtained by 3D RISM, and ¢ the solute’s
charge. The correction parameters ¢y and ¢, have to be obtained via regression on available experimental

data for a given solvent (for instance experimental solvation free energies).
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Although the present work is not concerned with the prediction of absolute hydration free energies but
rather with the analysis of respective local contributions of specific spatial regions, it might be of interest
to investigate if and how the described correction affects the underlying pg(r) field as described in Eq.
(60) and (61). This can be achieved by performing the Vix-based correction as defined in Eq. (63) not on
absolute values, but on grid level. This approach for a local PMV correction on grid level is presented
in the following and was applied on a selected protein structure in a proof-of-concept study within this

work.

According to site-site Kirkwood-Buff theory, the absolute Vi, of a solute in a given solvent at infinite

dilution can be obtained from the site-site direct correlation function cqy as:['*”!

v = ,B‘lx(l -y e, (r)47rr2drj (64)

Here, x denotes the pure solvent’s isothermal compressibility (which can be obtained from 1D RISM),

p the pure solvent’s density, and ¢, the site-site direct correlation function of solvent and solute sites a

198

and y.'" Consequently, within the 3D RISM framework, a local Vm(r;) can be evaluated at each volume

element r; of the grid r according to:

Bk
N

r

V,(@r)= BlepV () e, (r), (65)

with N, denoting the total number of volume elements in the grid and ¥(r;) the volume of one volume

element (please note that r; refers to a specific volume element in this case and not an atom).

Hence, at each volume element, a local Vin- and g-corrected u* contribution, u#**°"(r;), can be obtained
by applying the correction defined in Eq. (66):

B ) = 1 () 46, () e o (66)

r

with the side condition that:

Z’uex,corr (rl) — Iuex,corr A ZV(I.L) =V , (67)

with V being the total volume of the grid.

By summing up the u®(r;) or x**°"(r;) contributions of volume elements around a given water position
ry, an estimate of the respective contribution of that water molecule w to the total free energy of
hydration of the protein, AnaGp., is obtained. Comparison of the resulting AnyaGr, values for the
original and corrected pg(r) field allows to estimate if the correction affects the local free energy

distribution (e.g. if it leads to a switch of an unfavourable AwyaGp contribution to a favourable one or
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vice versa). However, as will be shown later in this work, it was found that the local Vx- and g-correction

does not lead to relevant inversions in the free energy distribution.

2.4 Water in SBDD

2001 in protein-ligand binding has

In drug design, the relevance of water molecules as a “third party”
increasingly been recognised. Several case studies are known where displacement of structural water

201]

molecules plays an important role, for instance the cyclic urea series of HIV-1 protease inhibitors*’!! or

the 5-cyanopyrimidine derivatives of p38a MAP kinase inhibitors. %%

Whether the effect of replacing or targeting a hydration site on the free energy of binding, ApinaGpr, 18

[192] If a water molecule with an unfavourable

favourable or unfavourable depends on different factors:
contribution to the hydration free energy of the protein, AnyaGp, is displaced, this will be beneficial for
AvingGrL. If a ligand atom displaces a water molecule with a favourable Ay ¢Gp contribution, on the other
hand, this loss has to be compensated by favourable enthalpy contributions ApinaHpr, i.€. favourable

interactions between the ligand and the binding site residues. Water molecules that are not displaced can

still contribute to ApinaGrr due to interactions with the ligand.

Analyses on experimental protein-ligand complex structures have shown that water can have a
stabilising effect by bridging interactions between the ligand and the binding site residues.?*3204

Besides, the presence of water networks with many H-bonds around the ligand was found to correlate

205,206,207

with improved binding affinity.! ! Thus, for rationally modulating ligand affinity, it is highly

desirable to have information about the positions and thermodynamic properties of hydration sites in the
respective protein binding site. Terminologies like “happy” and “unhappy” or “cold” and “hot” waters
have been coined to intuitively capture the relevance of water thermodynamics for drug design

[208

purposes.?®! A very prominent example is WaterMap by Schrodinger which will be in detailed

explained below [20:210:211]

The first step towards including water molecules in rational drug design is the classification of

experimental water positions, e.g. from X-ray crystallography, into conserved and displaceable ones.

212 213

Two of the first programs for such a discrimination include Consolv?'?! and WaterScore?'3! which are
based on analysing temperature B-factors and the protein environment of experimental structures.
PyWATER,?"* a PyMOL plugin, identifies conserved water molecules in a protein structure based on
superposition with structures of the same protein family. A similar approach was already pursued 1998

by WatCH (Waters Clustered Hierarchically).*'>) WaterRank!*!®! provides a conservation/non-
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conservation classification of water molecules based on HINT (Hydropathic INTeractions)?!”! and a

geometric descriptor.

When no experimental water positions are available, they have to be predicted by suitable methods.
Knowledge based approaches for prediction of water positions include AQUARIUS,?!® AcquaAlta,!”!
the tetrahedron-water-cluster model,'**”) and WarPP[??!!, which was validated on approx. 1500 protein
structures. WATGEN!??2] was especially developed for describing water networks at protein protein
interfaces. WaterDock,’"! a docking based approach, utilises AutoDock Vina for hydration site
prediction and a combination of data-mining, heuristic and machine learning techniques for their

classification into displaced and conserved sites.

The so far described methods mainly focus on a binary conserved/displaceable classification. However,
as will be shown later in this work, the question if a water can be replaced or not might actually be
influenced by the properties of the replacing group. Therefore, it is beneficial to obtain quantitative
information about the water molecules’ thermodynamic properties rather than a mere classification. The
methods suitable to obtain such quantitative information can be roughly categorised into simulation or

grid-based methods.

In general, simulation-based methods generate a huge number of possible configurations of the
respective system including explicit solvent atoms, which are then subjected to statistical analysis.
Hence, simulation-based approaches require significant computational cost and might suffer from

insufficient sampling but allow for a detailed description of individual interactions and water

networks.[?23224:223]

The probably most popular and widely used method for predicting hydration sites and their

209,210,211

thermodynamic properties is WaterMap! I'by Schrodinger which combines MD simulation with

2262271 Usually, a short (approx. 2 ns) MD simulation is

Inhomogeneous Solvation Theory (IST):!
performed with the protein held rigid. Based on the resulting trajectory, populations are determined via
a cluster analysis. The thermodynamic properties of each hydration site are then calculated via IST by
approximating the respective average interaction energy contribution and the entropic penalty resulting
from the decrease in the degrees of freedom. WaterMap was successfully applied in several case studies

210211.228.229] A similar approach is the combination of MD with grid-based IST

in medicinal chemistry.!
(GIST) as developed by Gilson et al.,**?3!! where the energy and entropy contributions are discretised
onto a 3D grid. This approach was integrated into the scoring function AutoDock4 to directly use it in

232

docking.l’”! Besides, it was employed to predict hydration free energies,”*?! and to identify spatial

regions within a system with specific enthalpic or entropic properties.***! Other MD-based approaches
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include STOW, > SPAM, >3] WATsite,?*®! the Two-Phase Thermodynamic (2PT) Model,”*”! and the

“cell-theory” ansatz by Henchman.!>3¥!

Another set of simulation-based methods relies on employing Monte Carlo (MC) simulations, e.g. grand
canonical MC (GCMC(),!#3%240.2411 MC reference state (MCRS),1**?] and JAWS.!*¥}! Barillari et al.
employed MC using replica exchange thermodynamic integration and the double decoupling approach
for calculating binding free energies of water molecules and showed that conserved water molecules are

244

generally more tightly bound.**¥ In these approaches, usually no larger conformational changes are

allowed, so that proteins are treated as rather rigid.

In contrast to simulation-based methods, grid-based approaches do not generate multiple configurations
of the system of interest (i.e. a protein in water) but try to generate the equilibrium configuration. They
are usually much faster than simulation-based methods but can lack the atomistic detail (depending on
the used theory). One prominent example is WaterFLAP™¥ by Molecular Discovery. It utilises the GRID
molecular interaction fields to identify the position and interaction energy of a respective spherical water
probe. SZMAPE#4241 by OpenEye relies on the calculation of a Poisson-Boltzmann potential on a grid,
followed by placement and energy evaluation of a water probe which in contrast to the WaterFLAP

184.186,187.247] which is employed in this work and is in

probe can have different orientations. 3D RISM,!
detail described in 2.3.3, is another grid-based method. It allows to estimate the equilibrium density of
water (or any other solvent) around a solute and provides an analytical expression of the free energy of
hydration, which can be evaluated w.r.t. local contributions of specific hydration sites.!24824%250-251 Thys,
it offers more atomistic detail than continuum models at significantly less computational cost than

simulation-based approaches.

2.5 Aims and approaches of this work

In the last sections, an overview of SBDD methods was presented, with a focus on the relevance and
treatment of solvation effects. The investigation of these solvent effects, and the deduction of rules to
exploit knowledge about the local thermodynamic properties of protein hydration sites for drug design
purposes, is the main objective of this work. The method of choice to achieve this is the afore-presented
3D RISM theory. As explained in 2.3.3., it does not only allow to predict the solvent distribution within

a binding site, but also to calculate local thermodynamic properties of specific hydration sites.

The first part of this work therefore focuses on a large-scale analysis of the thermodynamic signatures

of protein hydration sites and their correlation with ligand features. Water replacement rules for use in
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ligand design and optimisation are derived and exemplified on the basis of matched molecular pairs

(MMPs).

The second part of this work expands the concept of 3D RISM-derived thermodynamic binding site
characterisation to virtual probe sites that mimic specific functional groups whose distribution within a
binding site can be calculated by the afore-presented 3D RISM solute-solute approach implemented in
the Kast group. An advanced framework combining RISM-based binding site characterisation with
automatised library preparation, docking, and scoring is established that allows to “convert” the probe
densities to a selection of promising fragments or small molecules, thus making one step towards

automated de novo ligand design.

In a third part, the afore-mentioned concepts are applied together onto three case studies from the
challenging field of protein-protein interactions (PPIs) to illustrate the practicability of the developed

approaches in real-life medicinal chemistry examples.
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3. Computational details

3.1 Data sets and structure preparation

Protein structures

In all cases, a common workflow for structure preparation was used. The protein structures were

2921 and, if present, crystallographic water molecules and buffer

centered using openbabel version 2.3.2,
molecules were removed. To obtain apo structures for the 3D RISM calculations, the ligand was
removed. Protein structures were protonated and parametrised using the tleap program from the
AMBER18 software package!*** with the ff14SB force field!'*”! assuming a pH of 7.4. Protonation of
ligands was used as provided (PDBbind data set) or carried out using babel assuming a pH of 7.4 (all

144]

other structures). For ligand parametrisation, the GAFF force field (version 1.7)["*! was employed.

Atomic charges of the ligands were calculated with antechamber using the AMI1-BCC charge

254,255

modell 1. All structures used in this work are provided in the Electronic Appendix (with respective

exact paths referenced in the respective result sections).

PDBbind refined 2019:

A subset of 3812 structures from the PDBbind refined set 2019!"?!! was used (list of PDB codes in SI).
Due to the large number of complexes, the preparation had to be automatised, and only those structures
for which automated preparation was successful were included (since for instance manual
parametrisation of ligands, cofactors or special residues was not feasible). Ligand mol2 and sdf files as

well as pdb files of the binding pockets were taken as provided.

PDBbind core set 2013:[!23]

All complex structures were taken as provided; 18 structures out of the 195 were excluded since they
contained covalently bound cofactors or since the systems were too large for feasible calculations (list
of used PDB codes in appendix, 7.2). Prior to structure preparation, duplicate chains of multimer

complexes were removed.

XIAP, hTEAD, Bel-xL:

All complex structures were retrieved from the PDB (the codes are given in the respective chapters).
For XIAP structures, the cysteine residues coordinating the Zn were renamed to CYM according to
AMBER naming conventions. For hTEAD structures, the covalently bound cofactor in the central

pocket was removed prior to parametrisation since it is far away from the studied binding site.
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Ligand data sets for docking

Starting from SMILES codes, protonation and the generation of a 3D structure as starting point for

256]

docking were performed using the RDKit functionalities in KNIME?*®! with default settings.

The specific data sets that were used are described in 3.3 and are given in the Electronic Appendix.

3.2 RISM calculations

3D RISM uv:

For all 3D RISM calculations, a precomputed solvent susceptibility was used which was calculated in
the working group with the dielectrically consistent (DRISM/HNC) theory for pure water (modified
SPC/E model®") using in-house 1D RISM vv code. Respective calculations were performed on a
logarithmic grid with 512 grid points with grid spacing ranging between 0.0059 A and 164.02 A. The
solvent density was set to 0.03334 A3, the dielectric constant to 78.4, and the temperature to 298.15 K.
The convergence threshold was set to a maximum deviation of 107 of the direct correlation functions

2381 All 3D RISM uyv calculations were performed with the software

between successive iteration steps.!
developed in the working group on cubic grids with a grid spacing of 0.25 A and box dimensions based
on the protein size (in each dimension, the box length was set to the maximum distance between two
protein atoms in this dimension plus 14 A on each side). The PSE-2 closure was applied throughout.

Long range electrostatics were evaluated using the PME of order 8, short range interactions were cut at

14 A. The convergence threshold was set to 10°.

3D RISM uu:

Solving the uu RISM equations of two solutes 1 and 2 in solvent requires prior uv calculations of both
solute species, in this case a simple, spherical probe and a protein, in the respective solvent. Therefore,

consecutive RISM calculations were performed with the software developed in the Kast working group.

The uv calculations of the probes (parameters given in Table 1) were carried out as in earlier work!?*”]

with in-house 1D RISM uv code (with the convergence criterion set to 107°) using the modified SPC/E
susceptibilities. The uv calculations of the proteins were carried out using the in-house 3D RISM code
as described above. Afterwards, the uu calculations were performed with the in-house 3D RISM uu code

2391 As probes, an uncharged ¢3 probe as well as charged n4 and o probes

implemented by F. Mrugalla.
were used with epsilon and sigma LJ parameters derived from the respective values of the atom types
c3, n4, and o in the GAFF force field. The charges of the n4 and o probe were set to +1 and —1,

respectively. In this work, 3D RISM wuu calculations were performed for the complexes in the PDBbind
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core set and for selected structures of the proteins XIAP, Bcl-xL, and hTEAD (pdb codes given in the

respective chapters).

Table 1: Used charge, epsilon and sigma parameters for the uu probes.

probe charge /e sigma / A epsilon/ 102! ]
c3 0 3.39967 0.760078
n4 +1 3.25000 1.181109
0 -1 2.95992 1.459017

3.3 Docking experiments

Docking experiments were carried out using GOLD (version 18.1 for pose recovery and 20.1 in all other
cases).’'! In all cases, the binding site was determined from the bound ligand in the complex structure
with a radius of 10.0 A. The options “flip free corners”, “match ring templates” and “flip_planar n”

were enabled; for virtual screening runs, also the option “allow early termination” was enabled. After

docking, the obtained poses were converted to pdb files using babel for further post-processing.

Pose recovery:

For pose recovery experiments, 100 diverse poses (RMSD > 1.5 A) were generated for each ligand of

the PDBbind core set 2013 three times, resulting in 300 poses per ligand.

Virtual screening of XIAP DUD-E data set:

127

For virtual screening on the protein XIAP, the respective DUD-E data set was used.!'”) The molecules

262

were taken as provided and docked into the provided pdb structure 3h15.°2) A maximum of 25 poses

was generated, and the top solution was kept.

The ROC-AUC values for the resulting rankings were determined using the ROC-node in KNIME.[?%°]

Virtual screening of fragments in XIAP:

For virtual screening of fragments, the library as described by Sandor et al. was used,”®” with three

261) Starting from the

additional fragments derived from the ligand bound in the complex structure 5¢7a.t
SMILES, the molecules were prepared as described in 3.1 and docked into pdb structure 3h15.2621 A

maximum of 25 poses was generated, and the top solution was kept.
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Docking of " TEAD4 compounds provided by the Brunschweiger group:

The hTEAD4 data set provided by the Brunschweiger group was prepared as described in 3.1, starting
from the SMILES, and docked into structure 6q36. The Cl-indole moiety of the co-crystallised modified
Y AP-peptide was used as scaffold constraint and for the binding site definition. The search efficiency

was set to 200 % owing to the size and number of rotatable bonds of the molecules.

3.4 Analysis of water thermodynamics

Water placement:

1921 based on the pair

Placement of distinct water molecules was performed as described in earlier work!
distribution function of the water oxygen atom, go(r). In the placement algorithm, only volume elements
with a go(r) value exceeding the 99.9 percentile threshold are retained. These elements are kept in a list
and sorted descending by their go(r) values. Water positions are then calculated by iterating over this
list: The volume element with the highest go(r) value is saved as a water position r,, then this element

and all other elements within a distance cutoff of 2.5 A are deleted from the list as they are considered

to belong to the same water molecule. This procedure is repeated until the list is empty.

Analysis of free energy density:

The hydration free energy density pg(r) represents the contribution of spatial regions around the protein
to its total free energy of hydration, Ay Gp. However, this field is rather rugged, so that small variations
of a given position r; can result in a large difference of the resulting hydration free energy value. To
overcome this, a Gaussian convolution of the pg(r) field was performed using a sigma of 1.4 A
(representing approximately a water molecule’s radius), which formally corresponds to an integration
with smooth boundaries and results in a respective smoothed field p '6(r). To determine the individual
contribution of a specific water molecule w to the total free energy of hydration of the protein, the p 'G(r)
field was evaluated at the respective position r,. For conversion of this respective free energy density
value p ’6(rv) to an absolute energy contribution of the respective water molecule, AnyaGp.w, p ‘(1) Was
multiplied with an arbitrary volume of 11.494 A3, corresponding to a spherical water molecule with a
radius of 1.4 A (which was used as sigma in the respective Gaussian convolution). Since only selected
water positions were placed within this workflow (see above, 99.9 percentile threshold w.r.t. go-
function), it has to be noted that the sum of all individual AwyGpr, values of all placed water molecules

w is in this case not equal to the total value of u.x that is obtained by integration of the pg(r) field, i.e.:
Hisen = DiyaGy = [drpe(6) = [drp'o (1) £ 3" A, Gy, (68)
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Similar to obtaining the individual contribution AwyGp,. at a specific water position, the respective field
can also be evaluated at the positions where ligand atoms are present in the solo complex structure.
Thus, each ligand atom / is assigned a value AnyaGp; which is a measure for the AnyaGp contribution of
the apo water molecule that this ligand atom replaces upon binding. Negative values accordingly denote
displacement of a stable, favourably bound water molecule, positive values that of a water molecule
with an unfavourable contribution to AnyaGp. This procedure allows for a direct and fast mapping of apo
water thermodynamics onto /olo ligand atom positions and thus enables an efficient correlation between

ligand chemistry and water thermodynamics.
Local empirical corrections for 3D RISM:

In a proof-of-concept study, the local V- and g-based correction as defined in Eq. (66) was carried out
for an exemplary complex within the PDBbind refined set (pdb: 2xbv) with ¢y = -0.10251 kcal mol'A-3

198] Tt has to be noted that these values

and ¢, = 15.728 kcal mol™! ¢! as determined by Tielker et al.!
were obtained for an EC-RISM based workflow (at the MP2/6-311+G(d,p)/EC-RISM// B3LYP/6-
311+G(d,p)/PCM level of theory); however, they can serve as a first reference in the provided proof-of-
concept study. For each water position r,, as determined from the go(r) field, the respective individual
contribution to the total free energy of hydration of the protein, AnyaGp,v, was determined by summation

of the u®(r;) values of all volume elements within 2.5 A of the water position r,, thus yielding two

values, AnyaGp w,orig and AnyaGp . corr, for each water molecule.

3.5 Analysis of probe densities

With help of 3D RISM uu calculations, the pair distribution function of selected pharmacophoric probes
can be determined in a protein binding site. Based on the respective 3D RISM uv calculation of a given
protein in water, three individual 3D RISM uu calculations were performed for each of the three
pharmacophoric probes (c3, n4, o, s. Table 1), resulting in three individual densities fields. These fields
can be evaluated at the position of ligand atoms / in docking poses or experimental complex structures
(linear interpolation from the nearest grid points). The obtained value g;, hence corresponds to the g-
function value of the respective probe (c3, n4, or o) in the apo binding site at the position where the
ligand atom / is located in the complex. These values allow to assess how well the respective ligand
structure matches the binding site properties, following the assumption that for instance ligand oxygen
atoms should be located in areas of the binding site with high g-function values for the o probe. To
achieve a quantitative measure for such a ligand structure — probe density match, a respective score was
developed with the aim to capture how well the ligand atoms are in line the probe fields. The respective

equations are discussed in the results section in 4.2.2.
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3.6 MD Simulation and analyses on Bcl-xLL

In the following, the workflow for the MD simulation and clustering of Bcl-xL structures is described
which was performed by J. Borchert within the scope of a bachelor thesis that led to the structures which
were used in this work. The work described here was not done by the author but is described here for

clarification and is strongly oriented at the methods section in the respective thesis.?!%

All systems simulated in J. Borchert’s work were parameterised using the tleap program with the ff14SB
force field'*” for proteins and GAFF!'*! for ligands. The partial charges of ligands were calculated

254,255

using antechamber and the AMI1-BCC charge model. I Single-charged ions were added to

neutralise the system (Na* and CI°); they were parameterised using the parameters of Li and Merz.[*%*!
The box dimensions were chosen to have at least 18 A distance between the protein and the edge of the

box in each dimension. SPC/E water was used as the water model.

The starting point of the simulations was the NMR structure of Bcl-xL in complex with a co-crystallised
ligand from Abbot (pdb: 1ysi**”). For the simulation, the acylsulfonamide in the Abbot ligand was
assumed to be deprotonated since acylsulfonamides are known in literature as isosteres for carboxylates

264

with pK, values in the range of 4.%64 First, the Bcl-xL complex with the Abbott ligand was simulated,

and the obtained trajectory was clustered using the Density Based Spatial Clustering of Applications

265,266

with Noise (DBSCAN) algorithm with the program cpptraj.. ! The parameters used for clustering

are shown in Table 2.

Table 2: Parameters of the DBSCAN clustering of the investigated systems. The parameter minPt is the
minimum number of structures per cluster, and the parameter o defines the distance (RMSD values) in

A between the structures in a cluster.

System minPt/c
Bcl-xL + Abbott ligand 100/2
Bcl-xL + Ugi model compound 1~ 50/2,2
Bcl-xL + Ugi model compound 2 50/2,2

The centroid of the highest populated cluster was then split into protein and ligand. Then, the two Ugi
model compounds provided by the Brunschweiger group (structures given in 4.3.2) were docked into
the binding site of this representative structure using the program GOLD (version 18.1).5! Here, the
binding site of Bcl-xL was defined based on the location of the Abbott ligand with a radius of 10.0 A,
and the biphenyl moiety served as a scaffold constraint for the biphenyl moieties of the Ugi model
compounds. For each of the two ligands, 100 poses were created using the ChemPLP scoring function.

From these poses, the top ranked structure was visually inspected and selected as the initial structure for
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the simulations. These newly generated complexes were prepared in the same way as described above
and then simulated, followed again by clustering to obtain a representative structure for the trajectories
of the complexes with the two Ugi model compounds. This workflow is illustrated in Figure 52 in the

respective results chapter 4.3.2.

All simulations were performed at 298.15 K at a pressure of 1 bar, and the size of a single time step was

253

always 2 fs. The simulations were performed using Amber 18.1°%! First, energy minimisation was

performed, then the system was heated to a temperature 0f 298.15 K in 20 ps in the NVT ensemble using

151

a Langevin thermostat.!">!! For this part of the simulation, a harmonic restraint with a spring constant of

4.00 ksT was placed on the Cx atoms. In the third part, the system was brought to the desired pressure

in the NpT ensemble. This was done over a period of 4 ns using a Berendsen barostat!!?]

using the same
restraint as in the previous step was used. The system was then simulated in the NpT ensemble. This
procedure was performed for all simulated systems. The parameters of each simulated system can be

found in Table 3.

Table 3: Simulated systems with charges of protein and ligand, qp and q., simulation time t, and number

of atoms.

system grle qule t/ns number of atoms
Bcel-xL + Abbott ligand -12 -1 300 73564
Bcel-xL + Ugi model compound 1 -12 0 300 62282
Bcl-xL + Ugi model compound 2 -12 0 330 62279

Using cpptraj, the ions and water molecules were first removed from the resulting trajectories, and the
complex was centered on its origin. The modified trajectories were saved and served as the basis for all

further analyses.

For this work, the original pdb structure 1ysi, the docking poses of both Ugi model compounds in Bcl-
xL, and the three respective representative structures obtained by the clustering for the systems Bel-xL
+ Abbot ligand, Bel-xL + Ugi model compound 1, and Bel-xL + Ugi model compound 2 were used as

input structures for RISM calculations.

3.7 Visualisation

All graphical representations of protein and ligand structures in this work were generated using PyMOL

267 268

version 1.8.1°7 Histograms and scatter plots were generated using R version 3.4.4.126%! In the histograms,
values on the y-axis correspond to probability densities (with reciprocal units of the parameter on the x-

axis), such that the total area of the histograms always has a value of 1.
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4. Results and Discussion

4.1 Analysis of water thermodynamics

The first part of this work focuses on the thermodynamic properties of binding site water molecules and
their relevance for drug design. To obtain robust and meaningful results, a large-scale analysis was
performed on several thousand complex structures of the PDBbind refined set. Using the approaches
described in 3.4, the positions and Any¢Gr contributions of hydration sites in the respective binding sites

were calculated both for the respective apo (i.e. without the bound ligand) and &olo form.

In chapter 4.1.1, an in-depth analysis w.r.t. the apo water thermodynamics is presented. At first,
parameters like experimental B-factors and the protein microenvironment are correlated with water
“happiness” to elucidate general characteristics of “happy” and “unhappy” water molecules. Afterwards,
the influence of water thermodynamics on aspects like replaceability and druggability is investigated.
Finally, a detailed analysis follows that correlates the replacement of “happy” and “unhappy” water
molecules by specific functional groups with respective binding free energies, thus allowing to derive
rules about which kind of binding site water molecules should be preferentially replaced with which

kind of ligand groups.

In chapter 4.1.2, the thermodynamic properties of ~olo hydration sites are analysed in a similar manner,
and an attempt is made to correlate the presence of “unhappy” water molecules in complexes with ligand

affinity.

In chapter 4.1.3, the findings from the analyses in 4.1 and 4.2 are exemplified on suitable sets of MMPs
to provide concrete illustrations of how the 3D RISM-based water placement and characterisation can

help to optimise a given ligand.

Besides, a brief poof-of-concept study is presented in chapter 4.1.4 in which the well-established PMV-
correction for 3D RISM (s. 2.3.3) is applied locally on grid-level. While this correction does not change
the overall picture significantly (as will be shown), such developments could be pursued in the future to

further advance 3D RISM-based hydration site characterisation.

All raw data for the analyses in 4.1 can be found in the Electronic Appendix (Electronic Appendix/
PDBbind refined set/). This includes respective ligand and protein structures (ligand.pdb, pocket.pdb)
as well as the calculated water positions with thermodynamic properties (Ghyd@water apo.pdb,
Ghyd@water holo.pdb) and the interpolated apo water thermodynamic data on the ligands
(Ghyd@lig.pdb) for each structure within the used PDBbind refined subset.
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4.1.1 Analysis of apo water thermodynamics

4.1.1.1 Reproduction of experimental water positions

For the more than 3800 structures of the used PDBbind refined subset, the positions (and individual
AnyaGp contributions) of apo water molecules were predicted based on 3D RISM calculations and the
methodology presented in 3.4. It should be noted that, in the context of this work, the term “water
position” always refers to the predicted position of the water oxygen atom since only the respective go-

function is considered in the placement.

The correct placement of water molecules is the prerequisite for any further analysis; therefore, it was
first evaluated if the water positions predicted by the used algorithms come close to the respective
experimental water positions. Indeed, the distribution of the distances between the available
experimentally determined water positions and the corresponding nearest predicted water positions
(Figure 2) shows good agreement. For 88 % of the predicted apo water molecules in the binding sites
of the used PDBbind refined subset, the distance to the nearest predicted water position is below 2.0 A;

for 74 % and 49 % below 1.5 A and 1.0 A, respectively.
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Figure 2: Probability densities of the distances d between the experimental holo water positions and the
corresponding nearest calculated apo water positions as predicted by 3D RISM-based algorithms for
all structures within the used PDBbind refined subset. The probability density has the inverse unit of the
x-axis parameter, i.e. 1/A. The respective raw data can be found in the Electronic Appendix (Electronic

Appendix/ PDBbind_refined set/ data/Figure2 distances _apo/).
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As will be shown later in this work, some discrepancies can be attributed to the fact that calculated apo
water positions are compared with experimental water positions of #olo complex structures; when

considering the ligand, even better overall agreement can be achieved (chapter 4.2).

Besides, it has to be noted that the protein structures used in the analysis are no “true” apo structures
but “pseudo” apo structures that were generated by removing the ligand from the complex structures,

1921 already showed that this procedure leads

which of course is an approximation. Yet, previous work!
to reliable results, with predicted hydration sites that overlap nicely with experimental water positions
in several different fXa X-ray structures and that allow to explain SAR trends. Nevertheless, the
potential influence of this approximation was investigated on selected examples of the PDBbind refined

2091 Figure 3 shows

set for which “true” apo structures are readily available in the Protein Data Bank:|
the superposition of the calculated water positions (based on the respective “pseudo” apo structures)
with the X-ray water positions of “true” apo structures for HIV-1 protease, neuraminidase, carbonic
anhydrase, and fXa. For all examples, the calculated “pseudo” (cyan) and experimental “true” apo water
positions (red) are close, with only small deviations that can be attributed to the fact that two different
X-ray structures of the same protein always show certain deviations, e.g. different loop or sidechain
conformations or the presence of buffer molecules, even if two apo structures are compared. This again

suggests that the use of “pseudo” apo structures results in reliable hydration site predictions comparable

to those on “true” apo structures.
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Figure 3: Comparison of apo water positions as calculated by the 3D RISM-based algorithms (cyan)
using “pseudo” apo structures (white) with experimental water positions (red) of “true” apo structures
(orange) of the same protein for exemplary structures in the used PDBbind refined subset. All
experimental water positions of the “true” apo structure (aligned to the used “pseudo” apo structure
using Pymol) within 4 A of the holo ligand are shown together with the respective nearest corresponding
calculated apo water position as predicted by the algorithms described in 3.4. a) HIV-1 protease
(1hbv,?""1 3ixo’ (“true” apo)); b) neuraminidase (1f8b,*’? 6d3b/*’* (“true” apo)), c) carbonic
anhydrase (3ibu,?’" 1ca2P™! (“true” apo)); d) fXa (2xbv'?’% 1hcg!”” (“true” apo)). The respective
Structures  can  be  found in  the  FElectronic  Appendix  (Electronic  Appendix/

PDBbind refined_set/structures/) in the respective structure folders (1hbv, 1f8b, 3ibu, 2xbv).

47



4.1.1.2 Are water molecules with low B-factors better reproduced?

For the experimentally determined water molecules, structural B-factors are available, which are a
measure for the molecules’ thermal mobility. Studies suggest that conserved water molecules tend to
have lower B-factors.?!*! Therefore, it was investigated if water molecules with lower B-factors are
better reproduced by the 3D RISM-based calculations (Figure 4, Table 4; water molecules within 1.5 A
of the ligand were excluded since the experimental B-factor might be influenced by the presence of the

ligand which was not considered here).

Indeed, the positions of the 10 % and 25 % most localised water molecules are reproduced within 1.0 A
in 73 % and 69 % of cases, within 2.0 A in 97 % and 96 %, respectively. On the other hand, only 28 %
and 32 % of the 10 % and 25 % of water molecules with the highest B-factors can be reproduced within
1.0 A (79 % and 76 % for a 2.0 A threshold). A similar trend was already observed in an analysis of
predicted water molecules at protein-protein interfaces.!”??! Apart from high thermal mobility, high
B-factors can be the result of disorders in the crystal structure or a not well-defined electron density. For

some cases, this might explain the discrepancies between predicted and experimental water positions.
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Figure 4: Probability densities of the distances between the experimental holo water positions and the
corresponding nearest calculated apo water positions as predicted by 3D RISM-based algorithms for
subsets of experimental water positions within the used PDBbind refined subset w.r.t. B-factor (blue:
10 % lowest B-factors, red: 10 % highest B-factors). The probability density has the inverse unit of the
x-axis parameter, i.e. 1/4. The respective raw data can be found in the Electronic Appendix (Electronic

Appendix/ PDBbind_refined_set/ data/ Figure4_Table4 Bfactors apo/).
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Table 4: Percentages of the experimental water positions (holo, since PDBbind refined set only contains
complexes) in complexes of the used PDBbind refined subset that are correctly reproduced by the
calculated apo water positions by the 3D RISM-based placement algorithm (using three different
distance thresholds, 1.0, 1.5 and 2.0 A). Percentages are shown for all experimental water molecules
(“all”) as well as for subsets of water molecules with the highest and lowest B-factors (“min X %" and
“max % B-factor”). The respective raw data can be found in the Electronic Appendix (Electronic

Appendix/ PDBbind_refined set/ data/ Figure4_Table4 Bfactors apo/).

dist. threshold / min 10 % min 25 % max 25 % max 10 %
A all B-fact. B-fact. B-fact. B-fact.
1.0 49.1% 73.0% 68.5 % 31.8 % 28.3 %
1.5 73.5% 90.1 % 87.6 % 59.0 % 54.5%
2.0 87.8% 96.5% 95.7 % 79.0 % 76.2 %

4.1.1.3 Distribution of water thermodynamics within the data set

In the following sections of this chapter, different analyses are presented w.r.t the thermodynamic
properties of the predicted apo water molecules in the structures of the used PDBbind refined subset -
in this work, this always refers to the predicted apo water molecules’ individual Ay eGp contributions as
calculated by the 3D RISM-based algorithm as described in 3.4. As in indicated in the introduction in
2.3.3.3, empirical correction terms were developed within the author’s working group that improve the
calculation of absolute solvation free energy values. A localised version of this empirical correction was
also applied on a selected case study within this work (in detailed presented in 4.1.4), but the analysis
revealed that such a correction has no significant effect on the individual AnyaGp contributions of specific
water molecules. Hence, all Ay aGp contributions discussed here do not include any further empirical

corrections.

Before correlating AnyaGp contributions with specific parameters — like the properties of near residues
or replacing ligand groups -, it is reasonable to get an overview about the general distribution of the
water molecules’ AnyaGr contributions within the data set. In Table 5, respective average AnyaGpr,» values
over the whole dataset are given together with median and percentile values; the respective histogram
is shown in Figure 5. As could be expected, the majority of water molecules has AyyaGr contributions
which are slightly favourable or unfavourable (with a median of -0.08 kcal'mol') and fewer water
molecules with high absolute AwyaGre, values. However, it can be seen that the distribution is not
perfectly symmetric but that there are slightly more water molecules with highly favourable than with

highly unfavourable Apny¢Gr contributions, and they also have slightly higher absolute values. This small,
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inherent bias towards more negative, and hence favourable, AnyaGr contributions has to be kept in mind

in the upcoming analyses.

Table 5: Average AnwaGp contributions (in kcal/mol) as well as respective median and percentile values
for the predicted apo water molecules in all structures in the used PDBbind refined subset as calculated
by the 3D RISM-based algorithms described in 3.4. The respective raw data can be found in the
Electronic Appendix (Electronic Appendix/ PDBbind_refined set/ data/
Figure5 Table5 Ghyd distribution/).
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Figure 5: Probability densities of the calculated Ay, Gp contributions (in kcal/mol) of all predicted apo
water molecules in the used PDBbind refined subset as calculated by the algorithms presented in 3.4.
The average value is shown as a red dashed line; the median, 10 %, and 90 % percentile are shown as
blue dashed lines. The probability density has the inverse unit of the x-axis parameter, i.e. kcal'-mol.
The respective raw data can be found in the Electronic Appendix (Electronic Appendix/

PDBbind refined_set/ data/ Figure5 Table5 Ghyd_distribution/).

4.1.1.4 Are localised water molecules “happier”?

Based on the B-factor analysis in 4.1.1.2, the next aim was to investigate the reasonable hypothesis that

water molecules with low B-factors may be highly localised because they are tightly bound and undergo
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favourable interactions with their protein environment. This would imply that water molecules with
lower B-factors have a more favourable contribution to AnyaGp. On the other hand, they could also be

trapped in an unfavourable environment and could have unfavourable entropic properties.

To investigate this, it was analysed if there is a correlation between the B-factors of the experimental
water positions and the AnGp contributions of the corresponding predicted apo water molecule
positions for the structures in the used PDBbind refined subset. In this analysis, badly predicted water
molecules with a distance between experimental and predicted position exceeding 1.5 A were excluded.
Besides, experimental water positions in direct proximity of the ligand (3.0 A) were excluded in this
analysis since the water positions and AnyaGp contributions were calculated for the apo binding site, and

the experimental holo B-factors might be highly influenced by the presence of the ligand.

In Figure 6, the distribution of B-factors is shown for two subsets of experimental water positions based
on the AnyeGp contributions of their respective nearest calculated water positions (25 % most and least
“happy” water molecules). In addition, in Table 6, the respective average B-factors of different subsets

are given.
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Figure 6: Probability densities of the B-factors of the experimental water positions within the used
PDBbind refined subsets for subsets of experimental water molecules w.r.t. the A4, Gp contributions of
the corresponding nearest predicted water molecules as predicted by 3D RISM (blue: water molecules
with the 10 % most favourable AyyaGp contributions, red: water molecules with the 10 % least favourable
AwaGp contributions). The probability density has the inverse unit of the x-axis parameter, i.e. 1/4°. The
respective raw data can be found in the Electronic Appendix (Electronic Appendix/

PDBbind refined_set/ data/ Figure6 Table6 Bfactor Ghyd/).
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Table 6: Mean B-factor values of experimental water positions for water subsets based on the AnyGp
contributions of the corresponding predicted water positions as determined from 3D RISM for
complexes in the PDBbind refined set (four subsets containing only those water molecules with the 10 %,
and 25 % most and least favourable Ay, Gp contributions). The respective raw data can be found in the
Electronic Appendix (Electronic Appendix/ data/ PDBbind refined_set/
Figure6 Table6 Bfactor Ghyd/).

X % most favourable AnyaGp contributions X % least favourable AnyaGp contributions
10 % 25 % 25 % 10 %
B-factor 28.8+13.3 29.2+13.0 26.9+13.2 259+13.3

Intriguingly, there are only small differences between the subsets, and in contrast to expectations, even
a trend for slightly lower B-factors for “unhappy” waters can be observed, suggesting that many highly
localised water molecules are rather “unhappy”. Thus, this analysis shows that the experimental B-factor
alone does not provide information about a hydration site’s thermodynamic properties and that advanced

theoretical methods like 3D RISM are needed for such a characterisation.

4.1.1.5. Influence of the protein microenvironment

A water molecules’ thermodynamic properties are determined by its microenvironment, i.e. near binding
site residues and other solvent molecules. Other studies!?'?! have shown that the atomic density, defined
as the number of protein heavy atoms within 3.5 A distance of a water molecule, is an important property
to distinguish between bound and replaced water molecules. In this work, the atomic density as well as
the apolar and polar atomic density (here simply defined as the number of carbon or oxygen, nitrogen,
and sulphur atoms within the defined distance) was analysed for predicted water molecules in complexes

of the used PDBbind refined set, divided into subsets based on their AnyaGp contributions.

The average total, polar, and apolar atomic densities for water subsets containing the water molecules
with the 10 % and 25 % most and least favourable AnyGp contributions are given in Table 7; in addition,
the respective histograms for the 10 % subsets are shown in Figure 7. The results show that the total
atomic density is slightly higher for water molecules with less favourable AnyGp contributions,
suggesting that they are more buried. A more pronounced trend can be observed for the apolar atomic
density, which is in average almost twice as high for “unhappy” water molecules than for “happy” ones.
The polar atomic density, on the other hand, shows the opposite trend, albeit less pronounced. These
findings are highly intuitive since water molecules can undergo hydrogen bonds with polar environment,

which is not possible in deeper and more hydrophobic pockets in the protein.
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Table 7: Average total, polar, and apolar atomic density values (i.e the number of i) protein heavy
atoms, ii) protein nitrogen, oxygen, and sulphur atoms, or iii) protein carbon atoms within 3.5 4 around
the water position as predicted by 3D RISM-based algorithms) for water molecule subsets based on
AwaGp contributions (i.e. comprising only those water molecules with the X % most and least favourable
AwaGp contributions) for the complexes of the used PDBbind refined subset. All water molecules, not
only binding site water molecules, were considered for the analysis. The respective raw data can be
found in the Electronic Appendix (Electronic Appendix/ PDBbind refined set/ data/

Figure7 Table7 atomic density/).

X % most favourable AnyaGp X % least favourable AnyqGp
contributions contributions
atomic density 10 % 25% 25% 10 %
total 35+1.6 34+1.6 4.1+22 4.7+2.5
polar 21+1.0 1.9+1.0 1.5+1.2 1.7+1.3
apolar 14+1.2 14+1.2 2.6+ 1.7 30+1.9
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Figure 7: Probability densities of the total atomic density (left), apolar atomic density (middle), and
polar atomic density (right) for subsets of water molecules with the 10 % most (“happy ”, blue) and least
(“unhappy”, red) favourable A Gp contributions in the used PDBbind refined subset. The probability
density has the inverse unit of the x-axis parameter, i.e. 1/atomic density, 1/apolar atomic density, and
1/polar atomic density, respectively. The respective raw data can be found in the Electronic Appendix

(Electronic Appendix/ PDBbind_refined _set/ data/ Figure7 Table7 atomic density/).

In addition, also the number of other water molecules and of charged groups (Glu/Asp and Lys/Arg
sidechain groups) in the proximity (3.5 A) of water molecules in the two subsets (Figure 8, Table 8) was
investigated. In accordance with the finding that “unhappy” water molecules tend to be more buried,

they have fewer neighbouring water molecules than those of the “happy” subset. W.r.t. the number of
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charged groups, it can be seen that practically no “unhappy” water molecules are located in the proximity

of such groups.

Table 8: Average number of water molecules and charged groups (Asp, Glu, Lys, and Arg sidechains)
within 3.5 A around the water position as predicted by 3D RISM) for water molecule subsets based on
AwaGp contributions (i.e. comprising only those water molecules with the X % most and least favourable
AwaGp contributions) for the complexes of the used PDBbind refined subset. All water molecules, not
only binding site water molecules (within 3.5 A of the ligand), were considered for the analysis. The
respective raw data can be found in the Electronic Appendix (Electronic Appendix/

PDBbind refined set/ data/ Figure8 Table8 near contacts Ghyd)).

X % most favourable ApyaGp X % least favourable AnyaGp
contributions contributions
10 % 25 % 25 % 10 %
waters 26+1.3 25+1.2 21+1.2 20+£1.2
basic/acidic 0.9+0.9 0.7+0.8 0.1+£04 0.1+£04
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Figure 8: Probability densities of the number of other water molecules and charged groups in the
proximity (3.5 A) of predicted water positions for subsets of water molecules with the 10 % most
(“happy”, blue) and least (“unhappy”, red) favourable Ay, Gp contributions in the used PDBbind
refined subset. The probability density has the inverse unit of the x-axis parameter. The respective raw
data can be found in the Electronic Appendix (Electronic Appendix/ PDBbind refined set/ data/
Figure8 Table8 near contacts Ghyd)).
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Following these results, the specific influence of certain protein functional groups was analysed, namely
the influence of mainchain amides, the carboxylates of Glu and Asp, the primary amine of Lys, the
guanidinium group of Arg, the sidechain amides of Gln and Asn, the hydroxyl groups of Ser, Thr, and
Tyr, the aromatic atoms of Phe, Tyr, and Trp, and the aliphatic sidechain atoms of Ala, Leu, Ile, and
Val. The average AnaGr contributions of water molecules in the proximity (3.5 A) of the specified

groups are given in Table 9; the respective histograms are shown in Figure 9.

The results show that water molecules in the proximity of charged groups, i.e. Glu, Asp, Lys, and Arg
sidechains, have the most favourable Ay Gp contributions, followed by polar hydroxyl groups and
sidechain and main chain amides. Only water molecules near aromatic and aliphatic sidechains show an
unfavourable average AnyGp contribution. The observed trends are intuitive and in agreement with a
similar study by Beuming et al.’’® who analysed the structures of 27 proteins using WaterMap. While
the absolute free energy values are shifted to more negative values in this work, the authors observed
very similar trends, with water molecules near carboxylates, Lys, and Arg sidechains having the most
favourable contributions, followed by hydroxyls, sidechain amides, and backbone carbonyl. In the study
by Beuming et al., the least favourable contributions are observed for aromatic and aliphatic groups and,
interestingly, for backbone amides. The latter trend is not observed in this work, where water molecules

near mainchain nitrogen and oxygen atoms in average show slightly favourable AnyGp contributions.

Table 9: Average AnaGp contributions (in units of kcal/mol) of water molecules in the proximity (3.5 A)
of specific protein groups (carboxylates of Asp and Glu, amine of Lys, guanidinium of Arg, hydroxyls of
Ser and Thr, sidechain amides, main chain O atoms, main chain N atoms, aromatic atoms in Trp, Phe,
and Tyr, aliphatic atoms in Ala, Leu, lle, Val) for complexes in the used PDBbind refined subset. All
predicted water molecules were considered in this analysis. The respective raw data can be found in the

Electronic Appendix (Electronic Appendix/ PDBbind_refined set/ data/ Figure9 Table9 Ghyd AA/).

Functional Group av. AnyaGp,, / kcal'mol!
Carboxylates -2.02 +£4.80
Lys Amine -1.89 +£2.87
Arg Guanidinium -1.36 +£2.47
Hydroxyls -0.64 + 3.66
Sidechain Amides -0.38+1.58
Main chain O -0.34+1.41
Main chain N -0.15+£1.57
Aromatic 0.08 £1.37
Aliphatic 0.19+1.15
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Figure 9: Probability densities of the calculated AnaGp contributions (in kcal/mol) of water molecules
in the proximity (3.5 A) of specific protein groups (aliphatic atoms in Ala, Leu, Ile, Val, aromatic atoms
in Trp, Phe, and Tyr, sidechain amides, mainchain N atoms, main chain O atoms, hydroxyls,
carboxylates of Asp and Glu, guanidinium of Arg, amine of Lys) for complexes in the used PDBbind
refined subset. All predicted water molecules were considered in this analysis. Respective average
values are shown as red dashed lines. The probability density has the inverse unit of the x-axis
parameter, i.e. kcal-mol. The respective raw data can be found in the Electronic Appendix (Electronic

Appendix/ data/ PDBbind refined_set/ Figure9 Table9 Ghyd AA/).

Despite the very intuitive overall trend, it has to be noted that standard deviations of the AnyGr
contributions are rather high, meaning that there are also water molecules near polar groups with
unfavourable contributions and water molecules with favourable contributions near aliphatic sidechains.
This shows that, although there are clear tendencies, water thermodynamics seem to be highly dependent

on the precise properties and arrangement of the microenvironment. This underlines the need for
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accurate methods to elucidate the thermodynamic properties of specific binding site water molecules for

drug design purposes.

4.1.1.6 Are replaced water molecules less “happy” than retained ones?

Another hypothesis that was investigated is whether the water molecules that are sterically displaced by
ligand atoms have per se less favourable AnyGp contributions than the retained ones. This would

massively facilitate the choice which water molecules should be targeted when designing a ligand.

Therefore, all predicted binding site water molecules in the used PDBbind refined subset were divided
into two subsets, sterically replaced and retained water molecules. In this analysis, a binding site water
molecule is defined as a water molecule within 3.5 A of any ligand and protein atom, and “sterically
replaced” denotes water molecules within a given threshold (here: 1.0 or 1.5 A) of any ligand atom. The
distribution of the respective AnyaGp contributions for the replaced and retained waters using a threshold
of 1.0 and 1.5 A are shown in Figure 10. In addition, the binding site water molecules were also divided
into subsets based on their AngGp contributions, and the respective percentages of replaced water

molecules within these subsets was determined (Table 10).
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Figure 10: Probability densities of the AnaGp contributions (in kcal/mol) for the replaced (red) and
retained (blue) apo binding site water molecules within the used PDBbind refined subset as calculated
by 3D RISM for replacement thresholds of 1.0 A and 1.5 A. A binding site water molecule denotes any
water position within 3.5 A of any ligand and protein atom. The probability density has the inverse unit
of the x-axis parameter, i.e. kcal-mol. The respective raw data can be found in the Electronic Appendix

(Electronic Appendix/ PDBbind_refined set/ data/ Figurel0 Tablel0 replacement Ghyd)).
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Table 10: Percentages of replaced water molecules for subsets of binding site water molecules based
on AwaGp contributions (X % most and least favourable AnGp contributions) for two replacement
thresholds (1.0 and 1.5 A) in the complexes of the used PDBbind refined subset. The respective
percentage of retained water molecules is given implicitly since both values add up to 100 % (all water
molecules are either replaced or retained). A binding site water molecule denotes any water position
within 3.5 A of any ligand and protein atom. The respective raw data can be found in the Electronic

Appendix (Electronic Appendix/ PDBbind refined set/ data/ FigurelO Tablel0 replacement Ghyd)/).

X % most favourable AnyaGr X % least favourable ApnyaGp
contributions contributions
10 % 25 % 25 % 10 %
replaced (1.0 A) 39.1 % 30.6 % 22.1 % 20.7 %
replaced (1.5 A) 57.3 % 50.1 % 45.1 % 40.3 %

W.r.t. to the overall distribution of AwyGr contributions within the replaced and retained subset (Figure
10), there are no significant differences, which is rather surprising since one would assume that
“unhappy” water molecules should be replaced more easily, and hence more often, than “happy” water
molecules (as replacement of a “happy” water molecule is associated with a respective penalty that has

192] Interestingly, when considering

to be compensated by respective negative contributions to ApinaHpr).l
the percentages of replaced water molecules in the binding site water subsets with especially favourable
and unfavourable Ay Gr contributions (Table 10), the trend is even reverse: the percentage of replaced
water molecules is significantly higher for water molecules with the most favourable AnyGp
contributions than for those with unfavourable AnyaGr contributions. This is an intriguing finding which
leads to several questions and considerations. First, one has to keep in mind that the definition of the
“replaced” set used here is an approximation; some of the “replaced” water molecules might actually be
still present in the #olo form but slightly shifted in their position. However, this would likely effect
“happy” and “unhappy” waters alike and would not change the trends w.r.t. the different replacement
percentages. Hence, the interesting question arises whether the reason for the higher replacement ratio
within the “happy” water subset lies in physical principles or rather in a bias introduced by the design
process of the ligands (in section 4.1.1.8, a detailed analysis correlating water “happiness” with ligand
binding affinity will be presented). Polar ligand groups can compensate the enthalpic penalty of
replacing a favourably bound water molecule by making favourable interactions with the respective
microenvironment. As was shown in the microenvironment analysis, water molecules with favourable
AnyaGp contributions are preferentially located in a more polar environment with the possibility for

hydrogen bonds. Such parts of a binding site are of course also highly attractive areas for the design of
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ligands since ApinaHpL can be optimised via hydrogen bonds and ionic interactions. Water molecules
with less favourable Ay aGp contributions might be located in areas less attractive for design which might
be a reason why they are less frequently replaced although this would result in a favourable contribution
to AvinaGrL. However, it might also be the case that — for the ligands in the data set, which were often
“designed” by mere trial and error — certain water molecules simply have to be replaced to achieve
strong binding, or that factors like the formation of direct ligand-protein interactions outweigh the ApyaGp
contribution by far. Yet, the presented findings are a reason to further investigate apo water
thermodynamics since an analysis might reveal so far untargeted parts of a binding site where

displacement of water molecules might not be obvious but highly favourable.

4.1.1.7 Influence of water thermodynamics on druggability

280279.278] guggest a correlation between the thermodynamic properties of binding site

Previous studies!
water molecules and the respective druggability of the protein binding site. Some of the complexes in
the used PDBbind refined subset are part of the NRDLD set by Krasowksi et al.!**°! which provides a
classification into druggable and undruggable structures (list in Appendix, 7.3). To evaluate if the trend
observed in literature can also be seen in the present study, the AnaGp contributions of the predicted
binding site water molecules within the druggable and undruggable structure subsets were investigated.
The distribution of AnyaGr contributions in the druggable and undruggable set are shown in Figure 11.

In addition, the average Ay Gp contributions and respective percentile values for the 10 % and 25 % of

water molecules with the most and least favourable Any¢Gp contributions are given in Table 11.

In accordance with literature, the results show that the average AnyaGp contributions of water molecules
in undruggable binding sites are much more favourable than for druggable binding sites. In average, the
25 % “unhappiest” water molecules in undruggable binding sites have Any¢Gr contributions only slightly

larger than for the 25 % “happiest” water molecules in druggable binding sites.
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Figure 11: Probability densities of the Ay,aGp contributions (in kcal/mol) for the binding site water
molecules in the structures of the druggable (blue) and undruggable (red) protein subset. A binding site
water molecule is defined as any predicted water position within 3.5 A of any protein and ligand atom.
The druggable and undruggable subsets are defined as the intersection between the used PDBbind
refined subset and the NRDLD set (PDB codes given in SI 7.3). The probability density has the inverse
unit of the x-axis parameter, i.e. kcal-1-mol. The respective raw data can be found in the Electronic

Appendix (Electronic Appendix/ PDBbind_refined_set/ data/ Figurell Tablell Ghyd druggability/).

Table 11: Average AaGp contributions (in kcal/mol) of binding site water molecules in the structures
of the druggable and undruggable protein subset as well as respective AwaGp percentile thresholds for
the water molecules with the X % most and least favourable A, aGp contributions. A binding site water
molecule is defined as any predicted water position within 3.5 A of any protein and ligand atom. The
druggable and undruggable subsets are defined as the intersection between the used PDBbind refined
subset and the NRDLD set (PDB codes given in Appendix, 7.3). The respective raw data can be found
in the Electronic Appendix (Electronic Appendix/ data/ PDBbind refined set/ Figurell Tablell
Ghyd_druggability/).

AnyaGp contributions / kcal-mol™!

percentile thr. X % most

favourable contributions

percentile thr. X % least

favourable contributions

mean 10 % 25 % 25 % 10 %
druggable 0.01 +£2.41 -2.14 -0.71 1.37 1.92
undruggable 3.50+6.17 -11.13 -4.57 0.15 091
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This is especially interesting when considering the results from the replaced/retained analysis: The
finding that undruggable binding sites contain more “happy” water molecules suggests that one reason
for their undruggability is that the water molecules there are tightly bound and thus more difficult to
replace. At first glance, this seems to be somewhat contradictory to the finding that, when considering
the whole data set, the ratio of replaced water molecules is even slightly higher for those hydration sites
with especially favourable AnyaGp contributions. This seeming discrepancy, however, could result from
different effects: As already indicated, rather “unhappy” water molecules are maybe less often replaced
than “happy” ones not because they are tightly bound and hard to replace but because they simply have
not been targeted during the design process. Furthermore, the presented replaced/retained analysis is a
descriptive study of the available data, but it does per se not provide any assessment if the found
preferences are “optimal” w.r.t. ligand binding. Such an assessment is difficult to achieve since it would
in principle require knowledge about the “optimal” ligand for any given binding site. W.r.t. to the given
data set, however, a step towards such an evaluation is done in the next section by taking into

consideration the provided affinity data.

4.1.1.8 Influence of water thermodynamics on ligand affinity

The idea is that, if the replacement of “unhappy” water molecules is on average more favourable for
AvinaGprr than replacement of a “happy” water molecule, the average properties of the replaced apo water
molecules should be different for ligands with very high and very low affinity (although water

replacement is of course only one aspect that contributes to ApinaGpr).

Therefore, the used PDBbind refined subset was divided into subsets based on ligand affinity (structures
with the 1 %, 5, %, 10 %, and 25 % most and least affine ligands), and the average AnyaGp contributions
of the respective binding site water molecules were analysed. In Table 12, the respective average AnyaGp
contributions of i) all (= replaced + retained) binding site water molecules, ii) the replaced binding site
water molecules, and iii) the retained binding site water molecules are listed for all affinity subsets. The
illustrative distribution of the AnyeGp contributions of the replaced water molecules for complexes with

the 5 % most and least affine ligands is shown in Figure 12.
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Table 12: Average calculated Ay,aGp contributions (in kcal/mol) for all, replaced, and retained predicted
apo binding site water molecules for subsets of complexes in the used PDBbind refined subset based on
the corresponding affinity of the ligand (eight bins corresponding to complex structures with the 1 %,
5%, 10 %, and 25 % most and least affine ligands. Respective pKi/pK, thresholds (combined as pK,y)
are given in column 1; as explained in 2.1, K; denotes the special case of an equilibrium constant for
the dissociation process of an inhibitor-enzyme complex, so that both values are mixed within the
PDBbind refined set. For the replaced/retained separation, a threshold of 1.0 A was used. The respective
raw data can be found in the Electronic Appendix (Electronic Appendix/ PDBbind refined set/ data/
Figurel2 Tablel2 Ghyd affinity/).

affinity subset av. AnyaGp contributions / kcal'mol™!

all replaced (1.0 A) retained (1.0 A)
Max 1 % (pKas. > 11.2) -0.46£2.77 -0.89 +3.48 -0.32+£2.47
Max 5 % (pKas. > 9.7) -0.71 £ 4.41 -1.38+5.96 -0.48£3.73
Max 10 % (pKatr. > 9.0) -0.71 £4.40 -1.51+6.44 -0.43 £ 3.38
Max 25 % (pKatr. > 7.9) -0.79 + 4.58 -1.71 £6.92 -0.47 £3.36
Min 25 % (pKasr. < 5.0) -1.19+5.59 -1.92 £7.54 -0.96 + 4.80
Min 10 % (pKasr. < 3.8) -1.28 £ 6.45 -2.07 £ 8.51 -1.04 £ 5.68
Min 5 % (pKasr. < 3.2) -1.51+5.99 -2.67+8.61 -1.17£4.92
Min 1 % (pKas. <2.3) -1.74 £ 6.38 -3.61+£10.43 -1.18 £4.32

Intriguingly, the analysis indeed reveals significant differences for the high and low affinity structures.
W.r.t. all binding site water molecules, it can be seen that the average AnyGp contributions are slightly
higher (and thus less favourable) for structures with the most affine ligands (i.e. the highest pK4/pKi
values). Further separation of these binding site water molecules into replaced and retained ones reveals
a strong trend for the replaced waters and only a slight trend for the retained ones: As can also be seen
in Figure 12, in average, the water molecules which get replaced by highly affine ligands are
significantly less “happy” than those that get replaced by the least affine ligands. For the retained water
molecules, much smaller differences are observed. This is a highly relevant finding since the stronger
trend for the replaced water molecules compared to the retained ones implies that replacement of

“unhappy” water molecules in the binding site indeed correlates with a higher binding affinity.
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Figure 12: Probability densities of the calculated Ay, aGp contributions (in kcal/mol) for the predicted
replaced binding site water molecules in structures of complexes with the 10 % most (blue) and least
(red) affine ligands within the used PDBbind refined subset. The probability density has the inverse unit

of the x-axis parameter, i.e. kcal-mol. The respective raw data can be found in the Electronic Appendix

(Electronic Appendix/ PDBbind_refined set/ data/ Figurel? Tablel2 Ghyd affinity/).

Following this conclusion, the high replacement ratios of “happy” water molecules for the overall data
set might be interpreted — as least to a certain extent - as result of a non-optimal ligand design. An
unambiguous assessment however is difficult to achieve in this case. As already mentioned in 4.1.1.6,
many of the investigated ligands were “designed” via trial and error, and it is hardly possible to disprove
the hypothesis that certain water molecules simply had to be replaced (independent of their “happiness”)
to allow for necessary protein-ligand interactions. Yet, the results of this study suggest that knowledge
about the thermodynamic properties of binding site water molecules could indeed be exploited for
optimizing ligand affinity. As a consequence, the results also highlight the need for the rigorous
assessment of trends extracted from large data sets. Especially with the re-emergence of ML methods,
which make excessive use of available structural data and ligand chemistry, methods are needed to
critically assess if commonly observed trends in the data can be attributed to physical principles or rather
to common but maybe non-optimal design principles. Approaches like the one presented in this work

can thus help to improve future drug design strategies.
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4.1.1.9 Water displacement by ligand atoms - replacement propensities

As a first step towards water replacement rules for drug design, it was investigated if atoms of a certain
element type (hydrogen, carbon, nitrogen, oxygen, phosphorous, sulphur, fluorine, and chlorine)

displace water molecules more frequently than others.

To develop a quantitative measure for the replacement propensities of the respective elements at
different distances to a water position, a data set-wide pair distribution function of each element w.r.t.
the oxygen water position can be analysed. Such a pair distribution function shows the propensity of

finding the selected element at any given distance to a water oxygen atom.

Here, the continuous pair distribution function is approximated by calculating the replacement
propensity p(X,d), i.e the probability of finding an atom of a given element X; within a given distance
bin d (here: 0.1 A bins from 0.0 to 3.0 A) to a predicted water position in relation to all other elements,
based on all complex structures in the used PDBbind refined subset, according to (69):

P(de):M

N

> N(X,.,d)

(69)

Here, N(X;d) denotes the number of atoms of element X; that are found within a distance bin d of any
predicted water molecule within the PDBbind refined subset. For instance, a value of 0.53 for oxygen
in the 0.1 — 0.2 A bin means that 53 % of all investigated atoms that are found within a distance of 0.1
to 0.2 A of any predicted water position in the whole PDBbind refined subset are oxygen atoms (and

thus that all other elements combined only make up 47 %).

However, to get a complete picture, one should also consider the relative frequency of a given element
among all ligand atoms in the PDBbind refined subset since e.g. hydrogen and carbon atoms are much
more abundant than fluorine atoms and thus naturally will replace water molecules more frequently. To
account for this, also a normalised displacement propensity value p'(X,d) was determined which is
normalised by the relative occurrence of the given element among all investigated elements according

to (70):

(X, d)=—2Eid) (70)

Xy

N(X)/ D N(X,)

Here, N(X;) denotes the total number of atoms of element type .X; in all ligands in the PDBbind refined
subset. Consequently, the p*(X;d) shows if atoms of a certain element type replace water molecules
more or less often than would be expected from their occurrence: If p'(X,d) > 1, it is overrepresented

among atoms that replace water molecules at a given distance, if p"(X;d) < 1, it is underrepresented.
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Both the p(X,d) and p*(X,d) values for hydrogen, carbon, nitrogen, oxygen, phosphorous, sulphur,
fluorine, and chlorine atoms for distances between 0.0 and 3.0 A are plotted in Figure 13 (left: p(X,d),
right: normalised p (X, d)).
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Figure 13: Unnormalised and normalised displacement propensities p(Xid) (left panel) and p"(X,d)
(right panel) for hydrogen, carbon, nitrogen, oxygen, phosphorous, sulphur, fluorine, and chlorine as
defined in Eq. (69) and (70) for the used PDBbind refined subset for distance bins d between 0.0 and
3.0 Ain 0.1 A increments. Unnormalised p(X,d) values denote the fraction of atoms of element type X;
among all regarded atoms present at a given distance to any water molecule within the data set,
normalised p"(X,,d) values indicate if atoms of element type X; are over- or underrepresented among all
regarded atoms present at a given distance w.r.t. to their natural occurrence. The respective raw data
can be found in the Electronic Appendix (Electronic Appendix/ data/ PDBbind refined set/

Figurel3 displacement_propensities/).

When looking at the unnormalised displacement propensities in Figure 13, the by far highest values at
small distances can be observed for O atoms. This is in accordance with other studies!’®! and highly
intuitive since a ligand oxygen atom is well suited to mimic the water oxygen role and maintain the
respective interactions, especially hydrogen bonds, with the water molecule’s microenvironment. When
taking into account the relative frequency of the elements (Figure 13, right panel), it can be seen that,
for distances up to 0.5 A, oxygen atoms can be found three to seven times more often than would be

expected for a uniform probability among the investigated elements.

By absolute values, hydrogen atoms are the second most abundant element in the proximity of apo water
positions, with a peak at distances between 0.7 and 1.0 A. This can be attributed to the fact that hydrogen
atoms are bound to many replacing heavy atoms. Due to its high frequency, only values around 1 are
obtained for the normalised replacement propensities, indicating no enrichment among the water

replacing atoms.
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A similar trend is observed for carbon atoms: They are only rarely found to displace water molecules
directly although they are by far the most frequent element type. For small distances, they are clearly
underrepresented with p“(carbon,d) < 1, and for distances > 1 A, the displacement propensities roughly

correspond to the expected value based on frequency with p“(carbon,d) = 1.

The second most frequent heavy atom type to replace water molecules are nitrogen atoms, which are
rather polar and potentially capable of reproducing the water molecule’s interactions. When taking into

account the overall frequency, nitrogen is slightly overrepresented at distances around 0.5 A.

Interestingly, a different tendency is observed for fluorine, phosphorous, sulphur, and chlorine: While
these elements have low unnormalised displacement propensities because of their low overall frequency,
there are clear trends for the normalised displacement propensities: Phosphorous is overrepresented at
distances of around 1.3 A to 2.0 A. This is likely an indirect effect since phosphorous is present in the
ligands within phosphate groups whose oxygen atoms are likely to replace the water molecules. A
similar trend is observed for sulphur which occurs in thiol groups, but also in oxygen-containing sulfone
or sulfoxide groups. Fluorine atoms are overrepresented among the replacing ligand atoms below 1.0 A,
and chlorine between 0.7 A and 1.5 A, even exceeding the relative probabilities of nitrogen. This is
interesting since halogen atoms have rather different properties than a water oxygen atom und should

not be able to retain its hydrogen bonds.

This directly leads to the question if displacement probabilities are different for water molecules with
different thermodynamic properties. Therefore, the normalised displacement propensities were
determined for two subsets of water molecules with different properties, namely the 25 % of predicted
water molecules in the used PDBbind refined subset with the most and least favourable AnyaGe

contributions. The respective results are given in Figure 14.

For oxygen atoms, no large difference can be seen w.r.t. the two subsets: Both “happy” and “unhappy”
water molecules alike are frequently replaced by oxygen-containing groups. This suggests that the
respective replacement is dominated by enthalpic effects, i.e. the formation of favourable interactions
between the ligand and the binding site which compensate or outweigh potential penalties w.r.t.

solvation effects.!'??

T'A completely different picture, however, is obtained for the other element types:
Nitrogen atoms are clearly overrepresented at small distances to “happy” water molecules but not in the
proximity of “unhappy” water molecules. An even more pronounced effect can be observed for
phosphorous and sulphur: Both elements are highly overrepresented at approx. 1.5 A distance to water

molecules with the most favourable AnyaGp contributions, with values exceeding those of oxygen, but

show values around 1 for the water molecules with the least favourable AnGp contributions. This
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suggests that especially “happy” water molecules tend to get replaced by ligand phosphate groups and
S-containing groups like thiols or sulfones. These functional groups are charged or highly polar, being
in accordance with the finding that “happier” water molecules tend to be located in more polar regions
of the protein. Concordantly, “happy” water molecules are practically never displaced by fluorine or
chlorine atoms which are rather nonpolar and not able to mimic a water molecule’s polar interactions.
Both elements are, however, highly overrepresented among the atoms displacing ‘“unhappy” water
molecules: For distances up to 1.5 A, they exhibit normalised replacement propensities partially
exceeding those of oxygen. This suggests, that here — opposed to the oxygen atoms -, the replacement
is dominated by solvation effects rather than by enthalpic contributions. This is an important finding
since it allows to derive direct rules for drug design based on the thermodynamic signature of the apo

binding site water molecules.
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Figure 14: Normalised displacement propensities p'(X,d) for hydrogen, carbon, nitrogen, oxygen,
phosphorous, sulphur, fluorine, and chlorine as defined in Eq. (70) for two water subsets containing
only those water molecules within the used PDBbind refined subset that exhibit the 25 % most
favourable (panel a, “happy”) and 25 % least favourable (panel b, “unhappy”) AwaGp contributions,
with distance bins d between 0.0 and 3.0 A in 0.1 A increments. The normalised p*(X,,d) values indicate
if atoms of element type X; are over- or underrepresented among all regarded atoms present at a given
distance w.r.t. to their natural occurrence. The respective raw data can be found in the Electronic
Appendix (Electronic Appendix/ data/ PDBbind refined_set/

Figurel4 displacement propensities_happy unhappy/).

4.1.1.10 Mapping water thermodynamics onto ligand atoms

To elucidate further if water molecules with certain properties are preferentially replaced by certain
atoms, it is highly desirable to directly map apo water thermodynamics onto specific ligand atoms. As

outlined in the computational details section, the calculations and algorithms used in this work allow for
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a fast and efficient way to achieve this: After applying a Gaussian convolution on the free energy density
field, the resulting field can simply be evaluated at a respective ligand atom position to obtain an

approximation of the AnyaGp contribution of the apo hydration site that was replaced by this ligand atom.

An illustrative example is shown in Figure 15 for a fXa complex structure. Overlay of the predicted apo
water positions, coloured according to their AwyaGe contributions, and the /#olo ligand, coloured by the
interpolated AnyeGp contributions on each atom /, shows that the interpolation nicely captures the apo
water thermodynamics w.r.t. replacing ligand groups. For instance, it directly reveals the replacement
of a highly unstable hydration site by the chlorine substituent, whose effect on SAR was already
investigated in earlier work.!'*?! With the interpolated AnyaGp contributions, there is now a tool at hand

to directly correlate ligand chemistry with apo water thermodynamics in an efficient manner.

a complex P —— b apowater thermodynamics ¢ interpolationto ligand =

Q P (%)

Figure 15: Illustration of the interpolation of apo water thermodynamics to ligand atoms; a) complex
2xbV?7%  b: apo water molecules (within 4.0 A of any ligand atom) as predicted by 3D RISM-based
algorithms, coloured by their calculated AnuGp contributions (from blue to red from -2.0 to +2.0 in
units of kcal/mol); c: overlay with the ligand, coloured by the interpolated Ay, Gp contributions (same
colour code). The respective raw data can be found in the Electronic Appendix (Electronic Appendix/

PDBbind refined_set/ structures/ 2xbv/).

For a set of various GAFF atom types, the average interpolated apo water AnyqGp contributions on all
respective ligand atoms / in the used PDBbind refined subset were determined. However, the
interpolated value AnyaGr, alone does not capture if a specific ligand atom does actually replace a distinct
hydration site. To include this information, only those ligand atoms with high interpolated go(r) values
(here: > 3; other thresholds were also tested but did not yield different trends) were considered in the
analysis, i.e. only atoms which coincide with a predicted water position and can thus be considered a
replacing ligand atom. The respective average AnyaGr, values of atoms of the different GAFF atom types

for atoms with go(r) values > 3 are given in Table 13 in the first column (“all”).
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When interpreting the results, it is useful to keep in mind that there are — as worked out in earlier work

1921 _ basically two cases w.r.t. the replacement of an apo water molecule upon ligand

by the Kast group!
binding: If a hydration site with a positive, hence unfavourable, AnyGp contribution is replaced, the
solvation contribution to AwinaGpr is favourable. If a water molecule with negative, hence favourable,
AnyaGr contribution is replaced, this penalty must be compensated by respective, favourable
contributions to AwinaHpL, 1.. by formation of interactions between the ligand and the binding site
residues. Since ionic and polar interactions (salt bridges, hydrogen bonds) are stronger than van der
Waals interactions, it is to be expected that ionic and polar ligand groups can replaced “happy” und

“unhappy” waters alike (since their interactions should be strong enough to compensate the associated

penalty), while apolar groups likely replace more “unhappy” water molecules.

Table 13: Average interpolated AnaGp contributions (in kcal/mol) of the replaced apo water molecules
at the respective ligand atom positions for ligand atoms of specific GAFF atom types (n4, n, o, oh, c3,
ca, f, cl) in the used PDBbind refined subset that exhibit interpolated go values > 3. Results are given
fori) all ligand atoms of a given type that fulfil the go > 3 criterion (all), ii) for respective ligand atoms
belonging to the 25 % most affine ligands (max 25 %), and iii) for respective atoms belonging to the
25 % least affine ligands (min 25 %) within the used PDBbind refined subset. The respective raw data
can be found in the Electronic Appendix (Electronic Appendix/ PDBbind refined set/ data/
Figurel6 Tablel3 Ghyd atomtypes/).

Atom type av. interpolated AnyaGp contributions / kcal-mol™!

all Max 25 % (pKasr. > 7.9) Min 25 % (pKasr. <5.0)
n4 (N w. four substituents) -347+2.44 -3.16 £ 2.04 -3.34+2.77
n (N in amides) -1.82+£5.46 -0.99+ 1.44 -3.73+£941
0 (O in carbonyl or carboxyl) -3.15+ 7.69 -2.18+5.86 -4.31+9.95
oh (O in hydroxyl) -2.04 +£5.85 -2.63 +£4.69 -1.16 £3.46
c3 (sp3 C) -0.58+1.43 -0.34+£1.02 -0.85+2.05
ca (aromatic carbon) -0.14 £ 0.91 -0.06 +0.79 -0.11 +£0.92
f (any F) 0.15£1.07 0.12+1.24 -0.02 +£1.28
cl (any CI) 0.38£1.12 0.75+£1.05 0.22+£0.99

Indeed, the results reveal large differences between the selected GAFF atom types. In average, halogen
atoms displace water molecules with the least favourable AnyGp contributions. This is in line with the
analysis of the replacement propensities, which shows a clear overrepresentation of fluorine and chlorine
atoms in the proximity of “unhappy” water molecules. They also exhibit rather low standard deviations,

supporting the hypothesis that displacement can only be observed for those “unhappy” water molecules
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since the penalty for displacing a water molecule with favourable interactions cannot be compensated
by favourable contributions to ApinaHpr Vvia i.e. hydrogen bonds or salt bridges. A similar picture is
obtained for carbon atoms (GAFF types ¢3 and ca), which were shown to generally be underrepresented
within water replacing ligand atoms. If they replace a water molecule, then rather those with relatively

unfavourable AyyeGp contributions.

Charged or polar ligand atoms, on the other hand, tend to replace water molecules with more favourable
AnyaGr contributions in average. This trend is especially pronounced for n4, a positively charged
nitrogen, which seems to replace exclusively “happy” water molecules. For the other polar or charged
atom types, the average AnyaGp,; values are also negative, however with high standard deviations,
implying that especially atoms of type o and oh also replace a lot of water molecules with unfavourable
AnyaGr contributions. Similar to the replacement analysis, this finding again poses an interesting
question: To what extent are the displacement preferences observed in the used PDBbind refined subset
based on natural principles, and to what extent does one rather measure the effect of the design process?
For instance, the displacement of “unhappy” water molecules by polar groups could be an indirect effect

of a medicinal chemist’s intuition to displace a crystallographic water with an oxygen atom.

As already outlined, dissecting the found statistics into general principles and bias is a difficult task
since there is no knowledge about the “perfect” ligand for each structure, which would in principle allow
to draw unambiguous conclusions. However, again an attempt was made towards such an assessment
by taking into consideration the affinity values of the given ligands. Following the assumption that the
most affine ligands within the data set are the most optimal w.r.t. to improving AvinaGrr, the average
AnyaGr, values of the selected GAFF atom types were determined considering only atoms belonging to
the 25 % most and least affine ligands in the used PDBbind refined subset. The results are given in Table

13 in column two and three, and the respective histograms are shown in Figure 16.

Comparison of the average AnyaGp, values for the whole data set and for subsets with the most and least
affine ligands reveals some striking trends: In accordance with the replacement analysis, values for the
most affine ligands are generally shifted to less negative values as it was shown that the most affine
ligands generally replace more “unhappy” water molecules. This could in principle be interpreted as a
kind of “evolutionary selection” during the ligand design process: Even if factors like water replacement
are not directly included in the design process, the best ligands w.r.t. binding affinity get selected and
further optimised over several stages in the drug design process, so that — in many cases - those which

are most suitable for the given binding site (including solvation effects) naturally prevail.
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Consequently, the preference for the replacement of “unhappy” water molecules by carbon and
especially halogen atoms is even more pronounced for the most affine ligands, albeit the differences are

rather small.

For the n4 atom type, the results for both subsets are similar to those for the overall set, with the n4
atoms replacing exclusively “happy” water molecules (Figure 16). For the other polar atom types,
however, highly interesting trends can be observed: In the most affine ligands, the average AnyaGp, value
for the atom type n is much higher than for the overall set and for the least affine ligands, with rather
small standard deviations, as can also be seen in the respective histogram (Figure 16). Given the fact
that the differences for the atom types c3, ca, f, cl, and n4 between the subsets are rather small, with a
small shift to more unfavourable Ay, Gp,; values for most affine ligands, the massive differences
observed for the n atom type can be considered meaningful. The trend suggests that the replacement of
especially “happy” water molecules with amide groups correlates with lower ligand affinity, indicating
that an amide group might not be ideally suited to compensate the energetic penalty associated with this
replacement. Hence, some ligands might be improved w.r.t. affinity when substituting an amide group

with for instance a hydroxyl group.

Intriguingly, a similar finding is observed for the o atom type in carbonyl and carboxyl groups: In the
least affine ligands, respective atoms replace much more “happy” water molecules (Figure 16) than
those in the most affine ligands. This is a surprising and important finding since oxygen atoms are the
atoms which replace by far the most water molecules, and adding a carbonyl or carboxyl group to target
a crystallographic water for replacement seems highly intuitive. The trend observed here, however,

suggests that this might not always be an optimal strategy.

The most striking and important difference, however, can be seen of the oh atom type: In contrast to the
overall observed shift to less negative AnyaGp, values for most affine ligands, the average AnyaGp, value
of oh atoms within the most affine ligands is much more negative than for the least affine ligands and
for the whole data set, as can be also seen in the histogram (Figure 16). This allows to draw conclusions
that are highly relevant for drug design: Obviously, in the least affine ligands, many “unhappy” water
molecules get replaced by hydroxyl groups. This is likely due to the general design strategy of replacing
a crystallographic water molecule with a similar functional group in the ligand. However, the results
obtained here imply that this is a suboptimal choice w.r.t. binding affinity when the respective water is
an “unhappy” one. Likely, the microenvironment which leads to highly unfavourable ApyGp
contributions of the water molecule is likewise not ideal for accommodating a hydroxyl group. Here,

rather substitution of the hydroxyl group with a carbon or halogen atom would be beneficial for binding
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affinity. This observation thus illustrates that the overall observed trend - that ligand atoms of type o and
oh replace water molecules with a wide range of thermodynamic properties — is indeed not based on
thermodynamic principles but rather an effect imposed by the common design strategy to replace
crystallographic water molecules with oxygen-containing ligand groups. However, in many cases, the
“evolutionary selection” discussed above naturally led to selection of a highly suited ligand, generally

resulting in rather slight trends with high fluctuations.

Yet, by revealing this bias, important conclusions can be drawn for new design principles: Following
the presented analysis, hydroxyl group should be used to replace especially “happy” water molecules
since they can best take up the water molecule’s interactions. Carbonyl groups, on the other hand, do
not seem to be a good choice for replacing especially “happy” water molecules, probably because they
are not that well suited to mimic the water molecule’s hydrogen bonds. The same holds true for amide
groups. “Unhappy” water molecules, on the other hand, should be targeted by aromatic or aliphatic
groups and especially by halogen atoms, but can also be replaced by more polar groups. Here, the
microenvironment and the possibilities for hydrogen bonds are likely the determining factor since
replacement of an “unhappy” water should generally be beneficial for ApinaGpr but favourable
interactions lead to further improvement via contributions to ApinaHpr. This study thus confirms the

192]

principles presented in earlier work!'*? in a large-scale analysis und can help to optimise future drug

design processes w.r.t. solvation effects.
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Figure 16: Probability densities of interpolated AnaGp contributions (in kcal/mol) of the displaced apo
water molecules at the respective atom positions for ligand atoms of specific GAFF atom types (f, cl,
ca, c3, n4, n, oh, o) belonging to the 25 % most affine (blue) and least affine (red) ligands in the used
PDBbind refined subset. Only ligand atoms that exhibit interpolated go values > 3 were considered in
the analysis. The probability density has the inverse unit of the x-axis parameter, i.e. kcal”’-mol. The
respective raw data can be found in the Electronic Appendix (Electronic Appendix/ data/

PDBbind refined set/ Figurel6 Tablel3 Ghyd atomtypes/).
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4.1.1.11 Summary

In the presented study, novel physics-based approaches derived from 3D RISM integral equation theory
were used to determine the local thermodynamic properties of water molecules within binding sites of

a large data set containing more than 3800 protein structures.

Correlation of the respective results with experimental data and ligand chemistry allowed to gain a
complete picture of the characteristics and the relevance of protein hydration sites: It was shown that
water “happiness” is determined by the precise microenvironment within the binding site, and that
highly localised water molecules with low experimental B-factors are not per se more “happy” than

other water molecules.

W.r.t. to the replacement of water molecules, the analysis revealed that, although “happy” and
“unhappy” water molecules are replaced alike within the whole data set, replacement of more “unhappy”
hydration sites favourably correlates with ligand binding affinity and druggability. Following this
conclusion, replacement preferences for different elements and atom types were investigated to derive
practical rules for drug design. By correlating the found trends with provided binding affinity data, a
hidden bias in the data set could be identified. For instance, it was shown that the replacement of a water
molecule with an oxygen atom is not always optimal but rather depends on the specific thermodynamic
properties of the targeted hydration site. Based on this analysis, improved replacement strategies were
introduced that can now be employed for the rational design and optimisation of ligands. Thus, the
presented study also showed that some trends derived from large-scale data might actually be biased by
common design principles in medicinal chemistry and thus highlights the need for the critical assessment

of available data to gain an optimal benefit for future research.
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4.1.2 Analysis of holo water thermodynamics

Chapter 4.1 dealt with the characteristics of apo protein hydration sites and their correlation with ligand
features. However, especially w.r.t. the optimisation of an existing ligand, it can also be of interest to
characterise the water molecules in the proximity of a bound ligand. Such an analysis might for instance
reveal newly introduced unstable hydration sites which could be replaced by addition of further
substituents. Therefore, in this chapter, the thermodynamic properties of solo water molecules will be

analysed and compared with those from the apo binding sites.

4.1.2.1 Reproduction of experimental water positions

As in 4.1, a prerequisite for any further analysis is the correct placement of the water molecules. In this
part of the work, an even better matching between predicted and experimental water position is expected:
While in 4.1, predicted apo water positions based on pseudo-apo structures (based on deletion of the
ligand, s. Figure 3) were compared with experimental holo water positions, this time predicted /olo

water positions are compared with the experimental iolo water positions.

The respective percentages of reproduced water positions at different distance thresholds and for

different B-factor subsets are given in Table 14 and are illustrated in Figure 17.

Table 14: Percentages of all experimental water positions in complexes of the used PDBbind refined
subset that are correctly reproduced by the 3D RISM-based placement algorithm (using three different
distance thresholds, 1.0, 1.5, and 2.0 A). Percentages are shown for all experimental water molecules
(“all”) as well as for subsets of water molecules with the highest and lowest B-factors (“min X %" and
“max X % B-factor”). Corresponding values for the apo structures are given in chapter 4.1 in Table 4.
The respective raw data can be found in the Electronic Appendix (Electronic Appendix/

PDBbind refined_set/ data/ Figurel7 Tablel4 holo distances B-factors/).

distance - min 10 % Min 25 % Max 25 % Max 10 %
threshold / A B-fact. B-fact. B-fact. B-fact.
1.0 52.3% 75.2 % 70.8 % 34.9 % 31.3%
1.5 77.7 % 92.0 % 89.7 % 64.9 % 60.7 %
2.0 91.6 % 97.5% 96.8 % 85.2% 82.8 %
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Figure 17: a) Probability densities of the distances between the experimental water positions in the
complexes and the corresponding nearest calculated holo water positions as predicted by the used
algorithms for all experimental water positions within the used PDBbind refined subset; b) respective
probability densities for subsets of experimental water positions within the used PDBbind refined subset
w.r.t. B-factor (blue: 10 % lowest B-factors, red: 10 % highest B-factors). Respective plots for the apo
results are shown in 4.1 in Figure 2 and Figure 4. The probability density has the inverse unit of the x-
axis parameter, i.e. 1/4. The respective raw data can be found in the Electronic Appendix (Electronic

Appendix/ PDBbind _refined_set/ data/ Figurel7 Tablel4_holo distances B-factors/).

As expected, the agreement between predicted and experimental positions is even slightly better than
for the apo calculations (Table 4) because the presence of the ligand is considered in the holo
calculations): 78 % of experimental water positions are within 1.5 A of a predicted holo water position
(versus 74 % for the predicted apo hydration sites).The trend for better reproduction of experimental
water molecules with low B-factors, too, is even slightly more pronounced for the #olo calculations than
for the apo calculations: 92 % of the experimental water molecules with the 10 % lowest B-factors are

reproduced within 1.5 A (versus 90 % for predicted apo positions).

4.1.2.2 Holo water thermodynamics

Upon ligand binding, several water molecules get sterically replaced by ligand atoms. Apart from this,
the presence of the ligand of course also has an impact on the remaining water molecules’ positions and
thermodynamic properties. For instance, certain water molecules might get isolated from a former water
network that was disrupted, while others might undergo favourable interactions with a polar ligand

group. Analysing this altered water environment within a #olo binding site yields important information
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for further ligand design, i.e., it can reveal water molecules that were destabilised upon ligand binding

and could be targeted for replacement by introducing further suitable substituents.

In order to analyse to what extent the water environment within a binding site changes upon complex
formation, the calculated positions and thermodynamic properties of predicted apo and holo water
molecules in the used PDBbind refined subset were compared. Binding site water molecules were
defined here as all water molecules with a predicted position within 3.5 A of any ligand atom and protein

atom.

When comparing holo with the apo water positions, two categories of hydration sites can be
distinguished: conserved hydration sites, where a water molecule is present in both the apo and holo
form (within a given threshold, here: of 1.0 or 1.5 A), and newly introduced hydration sites (i.e. those
which do not have an apo counterpart within 1.0 or 1.5 A), which can correspond to apo water molecules
which are shifted due to the presence of the ligand. Thus, all predicted holo water molecules are
classified as either conserved or newly introduced within the presented definition. This is of course an

approximation since the binding site water molecules cannot be “tracked” from apo to holo.

In Table 15, the percentages and average AnyGp contributions are given for the conserved (i.e. those
with apo counterparts within the respective distance threshold) and newly introduced hydration sites
(i.e. those without apo counterparts within the respective distance threshold) using two distance
thresholds, as well as the respective values for the corresponding apo pendants of the conserved set. For

the 1.0 A threshold, the respective histograms are shown in Figure 18.

Table 15: Average A aGp contributions of conserved and newly introduced holo binding site water
molecules in the structures of the used PDBbind refined subset using a 1.0 and 1.5 A distance threshold.
In addition, also the average Ay, aGp contributions of the apo pendants of the conserved water positions
are given. The respective raw data can be found in the Electronic Appendix (Electronic Appendix/

PDBbind refined set/ data/ Figurel8 Tablel5 Ghyd apo holo conserved/).

subset av. AwyaGp contributions / kcal-mol™!
conserved (holo, 1.0 A threshold) -0.24 +3.44 (53 %)
conserved (apo pendant, 1.0 A threshold) -0.72 +4.20
newly introduced (holo, 1.0 A threshold) -0.33 £2.77 (47 %)
conserved (holo, 1.5 A threshold) -0.25 £ 3.31 (69 %)
conserved (apo pendant, 1.5 A threshold) -0.74 +4.13
newly introduced (holo, 1.5 A threshold) -0.35+2.75 (31 %)
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Figure 18: a) Probability densities of the average AnaGp contributions of conserved (blue) and newly
introduced (red) hydration sites in holo binding sites in the used PDBbind refined subset in kcal/mol;
b) probability densities of the average AwaGp contributions of conserved holo hydration sites (blue) and
their pendant in the apo form (threshold: 1.0 A). The probability density has the inverse unit of the x-
axis parameter, i.e. kcal'-mol. The respective raw data can be found in the Electronic Appendix

(Electronic Appendix/ PDBbind_refined set/ data/ Figurel8 Tablel5 Ghyd apo holo conserved)).

Depending on the used threshold, 53 % to 69 % of the holo hydrations sites are conserved with a
corresponding pendant in the apo form. When comparing the average AnyaGp contributions of the
conserved and newly introduced subsets, there is a slight trend for more favourable values for the newly
introduced hydration sites, implying a thermodynamically favoured shift of the apo water positions due

to the changed environment.

Interestingly, comparison of the thermodynamic properties of the conserved #olo water molecules with
their apo pendants reveals that, on average, the hydration sites are slightly more “happy” in the apo
binding sites. Reasons for this might be that their former water network was disrupted and that they can
undergo less polar interactions, which also limits the number of possible orientations. For future work,
it might be of interest to achieve a further dissection of solvation effects into entropic and enthalpic

factors.

In a protein ligand complex, water molecules can play an important role by bridging interactions
between the binding site residues and ligand groups. Therefore, the average AnyaGp contributions were
analysed for holo water subsets of bridging and non-bridging water molecules. Here, a (potentially)
bridging water molecule was simply defined as any predicted #olo water molecule within 3.0 A of both
a polar ligand and a polar protein atom, neglecting preferential hydrogen bond angles. Moreover, for the

non-bridging water molecules, additional subsets were defined for hydration sites which have at least
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one polar ligand or protein polar contact or no polar ligand or protein contact at all. The respective

average Any¢Gp contributions are given in Table 16, histograms are shown in Figure 19.

Table 16: Average An,aGp contributions in kcal/mol of holo binding site water molecules in the structures
of the used PDBbind refined subset which are considered bridging or non-bridging, the latter molecules
are divided in sub groups with only polar protein contacts, only polar ligand contacts, and no polar
protein or ligand contacts. The respective raw data can be found in the Electronic Appendix (Electronic

Appendix/ PDBbind_refined set/ data/ Figurel9 Tablel6 holo bridging nonbridging/).

subset av. AnyaGp contributions / kcal-mol™!
bridging -1.17£5.56 (15 %)
non-bridging -0.12 £2.44 (85 %)

- only protein contact -0.35+3.08 (37 %)
- only ligand contact -0.36 +2.28 (12 %)
- neither +0.19 £ 1.51 (35 %)

Within the approximation of the used definition, 15 % of the /#olo binding site water molecules are
considered bridging. In average, they exhibit more favourable AnGp contributions than the non-
bridging ones. The non-bridging solo water molecules can be further separated into those which have
either a ligand or protein polar contact or neither of them. While the hydration sites with at least one
ligand or protein polar contact show comparable, slightly favourable AnyaGr contributions, those with
no polar contacts are in average more “unhappy”. This is in accordance with the finding in 4.1.5 that

water molecules in the proximity of polar groups are more “happy” than those in an apolar environment.
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Figure 19: a) Probability densities of the average AnaGp contributions of bridging (blue) and non-
bridging (red) water molecules in holo binding sites in the used PDBbind refined subset; b) probability
densities of the average Ay, Gp contributions of non-bridging water molecules with only ligand polar
contacts (red) and only protein polar contacts (red), c) probability densities of the average AnaGp
contributions of bridging water molecules (blue) and non-bridging water molecules which have neither
a polar contact with a protein nor ligand atom. Bridging water molecules were defined by being within
3.0 4 of both a polar ligand and a polar protein atom, neglecting preferential hydrogen bond angles.
The probability density has the inverse unit of the x-axis parameter, i.e. kcal'-mol. The respective raw
data can be found in the Electronic Appendix (Electronic Appendix/ PDBbind refined set/ data/
Figurel9 Tablel6 holo bridging nonbridging/).

Apart from protein and ligand atoms, also other neighbouring water molecules coin the chemical
environment of a given hydration site. Therefore, the thermodynamic properties of water molecules with
varying numbers of neighbouring water molecules were investigated. The respective average AnyaGp

contributions are presented in Table 17, and a representative histogram is shown in Figure 20.
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Table 17: Average AnaGp contributions of holo binding site water molecules in the structures of the
used PDBbind refined subset which have 1) no neighbouring water molecules, 2) no neighbouring water
molecules and no polar ligand or protein contacts (subset of 1), 3) one neighbouring water molecule,
and 4) two or more neighbouring water molecules, using a threshold of 3.0 A. The respective raw data
can be found in the Electronic Appendix (Electronic Appendix/ PDBbind refined set/ data/
Figure20 Tablel7 holo near waters/).

subset av. AnyaGp contributions / kcal'mol™!

no neighbouring water molecules +0.17 £3.37 (30 %)

- no neighbouring water molecules + no polar contact +0.59 + 1.16 (10 %)

1 neighbouring water molecule -0.27 £2.65 (37 %)
2 or more neighbouring water molecules -0.71 £3.37 (33 %)
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Figure 20: Probability densities of the average Ay,aGp contributions of holo binding site water molecules
with no neighbouring water molecules (red) and with two or more neighbouring water molecules (blue),
using a threshold of 3.0 A. The probability density has the inverse unit of the x-axis parameter, i.e.
kcal'-mol. The respective raw data can be found in the Electronic Appendix (Electronic Appendix/ data/

PDBbind refined_set/ data/ Figure20 Tablel7 holo near waters/).

In general, water molecules with two or more neighbouring water molecules, which make up one third
of all binding site water molecules, show the most favourable An,aGp contributions. For hydration sites
with only one neighbouring water molecule, the average Ay aGp contribution is still slightly favourable,

while those with no other water molecules in their proximity in average exhibit slightly unfavourable
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AnydGp contributions. The most pronounced trend can be observed for a subset of water molecules which
have neither neighbouring water molecules nor polar ligand or protein contacts. The identification of
such isolated, high-energy hydration sites is of relevance for drug design purposes since their
replacement by a slightly modified ligand is likely highly beneficial for binding affinity, as will also be
shown in chapters 4.1.3, 4.3.1, and 4.3.3. In future work, it could be of interest to further dissect the
solvation effects into enthalpic and entropic contributions since entropy is likely a determining factor
for rather isolated binding site water molecules. Steps into this direction have already been made using
GIST;?*!] however, in this case, the entropy is described by solute-water correlations only (ASw),
neglecting the water-water-correlations (AS.v). Hence, a 3D RISM-based approach including both terms
might be desirable in the future to get a deeper insight why a specific water molecule is “happy” or

“unhappy”.

4.1.2.3 Influence on ligand affinity

In chapter 4.1, the correlation of apo water thermodynamics and ligand affinity was investigated. The
respective studies revealed that, in general, the druggable binding sites (which are represented within
the data set) contain more high energy hydration sites than undruggable ones, and that high affinity
ligands tend to replace more “unhappy” water molecules. Furthermore, specific replacement
propensities of certain ligand functional groups were observed, for instance that hydroxyl groups
preferentially replace “happy” water molecules, while halogen atoms and aromatic carbon atoms replace

rather “unhappy” water molecules.

In this chapter, it will be investigated if any trends can be observed w.r.t. holo water properties and
ligand affinity. For instance, one might assume that an increase in the number of high energy water
molecules is unfavourable for binding - however, this might of course be compensated by respective
interactions. Likewise, the presence of a lot of bridging waters could be beneficial in terms of polar

interactions but might go along with an isolation or oriental restriction of the respective water molecules.

Besides, the used PDBbind refined subset contains a large variety of complexes of different protein
classes and ligands of varying size and chemical space, even for the same protein, which makes an
analysis difficult. Therefore, some important aspects have to be considered when trying to draw
conclusions: As indicated, in 4.1.1.7 it was shown that binding sites which are considered druggable
exhibit a higher fraction of water molecules with unfavourable Any¢Gp contributions, and that the ratio
of “unhappy” apo water molecules correlates with higher ligand affinity. Therefore, even in the presence
of the ligand, the more druggable binding sites with the ligands of higher affinity will have an increased

number of “unhappy” water molecules, so that parameters like the average AnyaGr contribution of all
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binding site water molecules, or the ratio of “unhappy” binding site water molecules among all hydration
sites are not well-suited to capture trends w.r.t. ligand affinity. Rather, a measure is needed that captures

the changes in binding site water thermodynamics due to the presence of the ligand.

Here, the parameter ANunappy,i 1S introduced which measures the change in the number of “unhappy”

water molecules from the apo to the holo form of a given protein i according to:

A]vunhappy,i = N unhappy,holo,i - N unhappy,apo,i (7 l)
Here, N ooy oo @04 Ny, denote the total number of binding site water molecules whose AnyaGp

contribution is >= 0.0 kcal/mol (“unhappy” binding site water molecules) in the apo and holo form of a
given protein i. Due to the used definition of binding site water molecules (within 3.5 A of any ligand
and protein atom), the total number of binding site water molecules increases with ligand size, which
itself correlates with ligand affinity. To obtain a relative measure, ANunnappy,i can be divided by the total
number of holo binding site water molecules in a given protein i, Njo,i, yielding the ratio Axushappy.i

according to:

AN, ,
A)C — unhappy,i ( 7 2)

diff,unhappy,i
holo i

In contrast to the analysis in 4.1.1, the measures ANunhappy,i and AXunhappy,; d0 not only capture the steric
replacement of “unhappy” apo binding site water molecules, but also the possible introduction of new
high energy hydration sites due to the presence of the ligand. The latter could potentially compensate or

overweigh the beneficial effects of the apo waters’ replacement.

In Table 18, the R- and p-values for the correlation of ANunhappy and Axunhappy With ligand affinity on the
whole used PDBbind refined subset are given (scatterplots in Appendix, 7.5) together with exemplary
average values of ANunhappy and AXunnappy fOr subsets containing only complexes with the 10 % and 25 %
most and least affine ligands. In addition, for comparison, the same values are given for Xunhappy, SImply
defined as the ratio of “unhappy” water molecules among all solo binding site water molecules using
the same thresholds. Respective histograms for the 10 % most and least affine ligands are shown in

Figure 21.
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Table 18: R- and p-values of the Pearson correlation of Xunhappy, the ratio of “unhappy” water molecules,
ANunhappy, and AxXunhappy as defined in Eq. (71) and (72) with ligand affinity for the whole used PDBbind
refined set. In addition, average values of the parameters are given for subsets of complexes with ligands
with the X % highest and lowest affinity. The respective raw data can be found in the Electronic

Appendix (Electronic Appendix/ PDBbind refined set/ data/ Figure2l Tablel8 diff unhappy/).

parameter R p max 10 % max 25 % min 25 % min 10 %
pKaff. >9.0 pKaff. >79 pKaff. <5.0 pKaff. <38
Xunhappy 0.08 <0.01 0.59+£0.21 0.56+0.22 0.51+£0.27 0.50+0.26

ANubappy ~ -0.20 < 0.01 -3.57+531 -297+524 -030+3.88 -0.13+3.47
AXunhappy -0.14 <0.01 -024+042 -0.19+0.41 -0.05+0.33 -0.04%0.32

The results show that Xunhappy, the ratio of “unhappy” water molecules within a given binding site, is in
average higher for complexes with ligands of high affinity. As discussed above, this is an indirect effect
because druggable binding sites contain more “unhappy” water molecules in general. For ANunnappy and
Axushappy, however, a different trend is observed: For both parameters, there is a slight, yet significant
anti-correlation with affinity which can also be seen in the respective histograms for the subsets with
the most and least affine ligands (Figure 21). This implies that, in the high affinity complexes, a larger
net reduction of the number of “unhappy” water molecules is achieved from the apo to the holo form.
This anti-correlation is more pronounced for the absolute count ANunappy than for the relative ratio
AXunhappy (R = -0.20 vs. -0.14), which might result from fact that larger ligands, which in average are
more affine, indeed replace more “unhappy” water molecules. However, overall, the correlation of all
studied parameters with ligand affinity is rather weak since other factors, like intermolecular interactions
or internal ligand energy easily outweigh the effect of the reduction of the number of “unhappy” water

molecules.
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Figure 21: Probability densities of a) Xunhappy, the ratio of “unhappy” water molecules among all holo
binding site water molecules, b) Axunhappy, and ¢) ANunhappy as defined in Eq. (71) and (72) for subsets
containing only complexes with the 10 % most (blue) and 10 % least (ved) affine ligands within the used
PDBbind refined subset. The probability density has the inverse unit of the x-axis parameter. The
respective raw data can be found in the Electronic Appendix (Electronic Appendix/

PDBbind refined set/ data/ Figure2l Tablel8 diff unhappy/).

So far, all presented analyses cover the whole PDBbind refined set, or affinity subsets of it, to derive
universally valid trends w.r.t. water thermodynamics. However, the large number of complexes in the
data set potentially also allows for an investigation of trends within specific protein classes. Therefore,
selected proteins were studied which are represented within the used PDBbind refined subset by at least
25 complex structures and whose ligands cover a broad affinity range (>= 5 pKi/pKq units). The R- and

p-values for the Pearson correlation of Xunhappy, ANunhappy, and AxXumhappy With ligand affinity for the
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respective protein subsets are given in Table 19. The corresponding scatterplots can be found in the

Appendix (7.5.2).

Table 19: Average number of heavy ligand atoms (Nuy), as well as R- and p-values for the Pearson
correlation of Xunhappy, the ratio of “unhappy” water molecules among all holo binding site water
molecules, ANunhappy,» And AXunhappy as defined in Eq. (71) and (72) with ligand affinity for selected
proteins within the used PDBbind refined subset (* and ** denote significant and highly significant
correlations). Corresponding scatterplots can be found in the Appendix (7.5.2). The respective raw data
can be found in the Electronic Appendix (Electronic Appendix/ PDBbind refined set/ data/
Tablel9 protein_groups/).

Xunhappy ANunhappy AxXunhappy
Nua R 4 R 4 R 4
BACEI 31+£13 -0.55%* <0.01 -0.27 0.10 -0.25 0.13
BRD4 27+5 -0.27 0.06 -0.22 0.11 -0.16 0.27
CA2 18+ 6 0.21** <0.01 0.08 0.20 -0.01 0.83
caseinkinasell 206 -0.26 0.10 0.48** <0.01 0.54** <0.01
fXa 32+3 0.27 0.09 0.19 0.24 0.25 0.13
HIV1PR 44 +7 0.32%%* <0.01 0.19%* <0.01 0.11 0.09
HSP90 24+ 6 -0.20 0.06 -0.22%* 0.03 -0.19 0.08
MMP12 29+ 12 0.42%* 0.03 0.38 0.05 0.44* 0.02
NA 20+£2 0.44%* 0.02 -0.33 0.09 -0.32 0.11
thermolysin 27+6 -0.32 0.09 -0.56%* <0.01 -0.60** <0.01
thrombin 27+£5 -0.30 0.11 -0.30 0.11 -0.22 0.25
trypsin 22+£10 -0.06 0.64 -0.24 0.07 0.00 1.00

Unfortunately, almost no significant correlations can be observed for the protein subsets. One reason for
this likely is the small size of each subset. However, the main reason for the lack of significance probably
is that the results are biased if complexes of the same protein contain ligands of strongly differing size
or ligands that occupy different parts of a binding site (due to the definition of binding site water
molecules via a distance criterion from the ligand). Besides, the provided subsets usually do not contain

ligand series of highly related structures but a variety of ligands with different scaffolds.

Yet, certain differences can be observed both between the different protein subsets and in comparison
with the statistics on the whole data set: For the proteins BACE1, BRD4, HSP90, thermolysin, and
thrombin, a higher ligand affinity does not only correlate with more negative values of ANuhappy and
AXunhappy, 1.€. @ higher net replacement of “unhappy” water molecules, but also with a lower ratio of
“unhappy” water molecules in the Aolo binding sites. This is opposed to the overall trend of a higher
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“unhappy” water ratio for high affinity ligands. Yet, it is intuitive because the binding site heterogeneity
that leads to a non-uniform distribution of ligand affinities between the different proteins is neglected
when regarding only one protein. Thus, when comparing ligands that bind in roughly the same area, it
is reasonable that the presence of less “unhappy” water molecules in the proximity of the ligands can

correlate with higher affinity.

Indeed, BACEI is known as a prominent example for which water thermodynamics play an important
role in ligand SAR. A study by Brodney et al. revealed a strong correlation between ligand affinity and
the free energy liberation of binding site water molecules as calculated by WaterMap for a series of
spiropiperidine ligands.?®! In the used PDBbind refined subset, BACEI is represented by 38 complex
structures whose ligands however vary in size and are not structurally closely related, so that only rough
trends can be observed, with the correlation of Xunnappy With binding affinity being the only one that is
statistically significant. Nevertheless, the observed tendencies are in line with the trends observed in

literature, highlighting the relevance of binding site water molecules for drug design on BACE].

Thermolysin is another interesting target in this context. Studies revealed that replacement of waters
from imperfectly hydrated pockets is favourable for binding.!*®*?%3 This is captured by the strong and
highly significant correlation of ANunhappy and Axunnappy With ligand affinity, which is more pronounced
than for any of the other protein subsets. Visual inspection of the respective complex structures revealed
that most ligands in the thermolysin subset share a phosphonamidate backbone and occupy similar areas

of the binding sites (Figure 22a), which makes this subset ideally suited for a comparative analysis.

Figure 22: Overlay of representative ligands in the used protein subsets for a) thermolysin

(5m9w,5ma7,[284] 5n2t2%7 Izdp,[286] 1qf2,[287] 5jss,[206] 1tmn,%% 5tmn ;2% cartoon: 5m9w[284]), and b)

MMPI2 (31ka," 31ir,2° 3(18,%% 31jg, !l 1rmz,%Y 3£16,%) 3ts4,2° 5d3¢c;% cartoon: 3lka®").
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An illustrative example of a Matched Molecular Pair (MMP) within the data set is shown in Figure 23.
The ligand in complex structure Stmn differs from the one in Sm9w only in the addition of an isopropyl
substituent which occupies a pocket untargeted by the ligand in Smw9. As the interpolated apo AnyaGp
contributions reveal, it replaces highly unstable hydration sites, leading to a massive gain in affinity
(5m9w: pKagr = 2.24, Stmn: pKagr = 8.04).

apo holo

5m9w, pK,; = 2.24

Figure 23: Thermolysin MMP in complex structures Sm9w'*** and 5tmn:?*! Left: ligand, coloured by
the interpolated A1,aGp contributions of replaced apo water molecules (from blue to red from -2.0 to
+2.0 in units of kcal/mol); right: ligand with predicted holo water molecules (within 3.5 A of any ligand
atom), coloured by their calculated Ay, Gp contributions (same colour code). The respective raw data
can be found in the Electronic Appendix (Electronic Appendix/ PDBbind refined_set/ structures/) in the
respective pdb folders.
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The clear trend for the thermolysin subset emphasises that the analysis of water thermodynamics is well
suited to help explain SAR trends for a set of structurally related ligands of a given protein. However,
as stated before, these water thermodynamics-related trends are easily outweighed by other effects.
Therefore, no or even an opposed tendency can be seen for the proteins CA2, fXa, HIVIPR, MMP12,
and NA, since the protein-specific ligand subsets used here are rather small and diverse. For MMP12,
for instance, ligands vary strongly in size and occupy different parts of the pocket (Figure 22b). For a
meaningful analysis for specific protein classes, larger data sets with closely related ligands would be
needed. Such data sets — especially with crystal structures of all related ligands — are most likely to be
generated during drug development programmes in pharmaceutical industry but unfortunately are often

not publicly available.

Yet, the strong correlations for BACE1 and thermolysin, two prominent examples with known relevance
of water replacement for ligand design, underline that 3D RISM based analysis of apo and holo
structures can yield strategies for ligand improvement. Therefore, in the next chapter, both the apo and
holo analyses will be exploited for explaining SAR trends for a set of MMPs within the used PDBbind

refined subset.
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4.1.3 Water thermodynamics and SAR trends — MMP case studies

In Chapter 4.1 and 4.2, the characteristics of water molecules in apo and holo protein binding sites were
studied using a large data set, and valuable conclusions were drawn w.r.t. ligand design. While the afore
described analysis was focused on general trends and statistics, the following chapter will present
specific case studies of MMPs within the used PDBbind refined set for which water thermodynamics
can be employed to explain respective SAR trends. Special emphasis will be put on the replacement
rules derived in 4.1.10. Here, it was shown that rather hydrophobic groups practically exclusively
replace “unhappy” water molecules — since the penalty of replacing a more “happy” water molecule
cannot be sufficiently compensated by favourable, strong interactions with the binding site residues.
“Happy” waters, on the other hand, tend to get replaced by polar groups, likely because their
microenvironment is well suited to accommodate such ligand moieties. A particularly relevant finding
was found for hydroxyl groups — the analysis in 4.1.10 revealed that, in high affinity ligands, this
functional group scarcely replaces any “unhappy” water molecules, thus suggesting that primarily
“happy”” water molecules should be targeted by a hydroxyl moiety. The analysis that is presented in this
chapter provides concrete examples to illustrate and complement the general trends derived by the

described large-scale analysis.

In the following examples, MMPs are discussed by investigating the structural complex data with both
the apo and holo water positions and thermodynamics. In the respective illustrations, the less affine
MMP complex is always shown on the left side of the panel, the more affine one on the right. The apo
water positions and thermodynamics are shown in the top row, the respective holo data in the bottom
row. For the apo form, the ligands are additionally coloured according to the interpolated apo AnyGp
contributions. In the top right panel, areas of special interest (for instance, where MMPs differ or where
a water molecule with an especially favourable or unfavourable AnyGp contribution is located) are

highlighted with a green circle.

When looking at the examples, one has to keep in mind that the presented analysis is limited to the
solvation part and completely neglects direct interactions or the respective ligand conformation. Hence,
the respective analysis should not be over-interpreted but should rather be seen as one part of the

explanation for the affinity differences in the presented ligands.

Figure 24 shows an MMP of a-mannosidase 1. Both ligands do only differ in an additional methyl group
at the nitrogen atom in the 5-ring, yet the change in affinity is remarkable (3ddf:**%! pK.¢ = 4.66,
3ddg:*®! pKaer = 6.00). Water thermodynamics can help to explain this notable gain in affinity: While
the apo water molecules in the proximity of the catalytic Zn ion show highly favourable AnycGp
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contributions, the region which accommodates the additional methyl group in 3ddg contains unstable
hydration sites. The methyl group is able to efficiently replace these “unhappy” water molecules while
the hydrogen atom in 3ddf is too small. This is also represented in the predicted water thermodynamics
of the holo form: In 3ddf, a high energy water molecule is still located next to the respective hydrogen
of the pyrrolidine ring at the same position as in the apo form. In 3ddf, on the other hand, the water

molecules in the respective area are eliminated due to the presence of the larger methyl group.

Intriguingly, there is another MMP of a-mannosidase II ligands in the used PDBbind refined set which
is related to a similar substitution in the very same region of the binding site. As can be seen in Figure
25, the more affine ligand in 3dx21*°”) bears an additional methylsulfinyl moiety corresponding to the
position of the methyl group in 3ddg. The methylsulfinyl group replaces several high energy water
molecules, while the unsubstituted ring system is not large enough, so that “unhappy” water molecules
remain in the respective binding site part. The achieved gain in affinity for this MMP is even more
pronounced (3dx1:°"! pKy = 3.58, 3dx2: pKa.r = 6.82) than for 3ddf/3ddg, which impressively
highlights that small structural changes in a ligand can have a tremendous impact on binding affinity

when optimally adjusted to the binding site environment.
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Figure 24: Complex structures 3ddf (pKuy = 4.66) and 3ddg (pKuy = 6.00) with apo and holo water
positions as predicted by 3D RISM-based algorithms, coloured by their AyGp contributions, and
experimental holo water positions (cyan). For the apo form, the ligand is coloured by the respective
interpolated AyyaGp contributions of replaced apo water molecules (colouring from blue to red from -2.0
to +2.0 in units of kcal/mol). Water positions within 3.5 4 of the ligand are shown. The respective raw
data can be found in the Electronic Appendix (Electronic Appendix/ PDBbind refined set/ structures/)

in the respective pdb folders.
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Figure 25: Complex structures 3dx1 (pK.y = 3.58) and 3dx2 (pK.y = 6.82) with apo and holo water

positions as predicted by 3D RISM-based algorithms, coloured by their Ay,aGp contributions, and
experimental holo water positions (cyan). For the apo form, the ligand is coloured by the respective
interpolated AnaGp contributions of replaced apo water molecules (colouring from blue to red from -
2.0 to +2.0 in units of kcal/mol). Water positions within 3.5 A of the ligand are shown. The respective
raw data can be found in the Electronic Appendix (Electronic Appendix/ PDBbind refined set/

structures/) in the respective pdb folders.
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In Figure 26, an MMP of adenosine deaminase is shown which, too, illustrates the relevance of the
replacement of unstable hydration sites. In the more affine ligand, a phenyl substituent is replaced by a
larger naphthalene moiety (1ndw:**® pK,er = 5.23; 1ndy:**® pK,e = 6.17). Comparison of the respective
apo water thermodynamics reveals that the region where the phenyl and naphthalene moieties bind are
occupied by several high energy water molecules. The larger naphthalene moiety can more efficiently
replace them, as can be seen nicely in the interpolated apo AnyaGp contributions. For the holo complexes,
no significant differences can be seen when comparing both complexes; due to the presence of the
hydrophobic ligand groups, some “unhappy” water molecules are present at the ridge of the binding site.
Thus, in this MMP, the replacement of a higher number of unfavourable apo hydration sites likely is,
among others (like i.e. the possibility to undergo stronger van der Waals interactions), one factor that

leads to the increased affinity of the 1ndy ligand.
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Figure 26: Complex structures Indw (pKyy = 5.23) and Indy (pK.y = 6.17) with apo and holo water

positions as predicted by 3D RISM-based algorithms, coloured by their AnaGp contributions, and
experimental holo water positions (cyan). For the apo form, the ligand is coloured by the respective
interpolated AnaGp contributions of replaced apo water molecules (colouring from blue to red from -
2.0 to +2.0 in units of kcal/mol). For the Indw apo form, water molecules within 6 4 of the ligand are
shown for better comparison, otherwise within 3.5 A. The respective raw data can be found in the
Electronic Appendix (Electronic Appendix/ PDBbind refined_set/ structures/) in the respective pdb
folders.
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In Figure 27, an interesting MMP of fXa is shown for which the same “unhappy” water molecules are
replaced by groups with different properties: The more affine ligand (2xbv:®"! pKas = 8.43) contains a
difluoroethyl substituent at the pyrrolidine ring, while the less affine ligand (2xbx:7! pK, = 7.82) bears
a methylsulfonyl substituent at the respective position. Hence, both groups replace the unstable
hydration sites located in this area. Likely, the respective environment is better suited to accommodate
the less polar difluoroethyl group, which is in line with the finding that, in the more affine ligands,
halogen atoms tend to replace especially “unhappy” water molecules while sulfones are enriched in the

proximity of “happy” water molecules. However, in this case the affinity difference is rather small.

Another fXa MMP worth discussing is presented in Figure 28. As already outlined by the Kast working

1921 the S1 pocket of fXa contains a highly unstable hydration site whose

group in earlier work,!
replacement is beneficial for affinity. This can also be seen for the complexes in Figure 27, where the
respective hydration site is replaced by a chlorine residue at the pyridine ring. The two complexes shown

29 how

in Figure 28 (2bq7: pKas = 7.05, 2boh: pKag = 8.52) present an example, known in literature,!
binding affinity is decreased if the respective ligand group is too small for completely desolvating the
S1 pocket: While the more affine ligand in 2boh contains an isoxazole and a thiophene ring with a
chlorine substituent, the less affine ligand in 2bq7 only bears a methoxyphenyl moiety in this region.
Consequently, the respective branch is shorter, so that the methoxyphenyl group cannot fully occupy
the S1 pocket. As can be seen for the holo forms, this leads to the presence of an isolated, unstable
hydration site in the proximity of the methoxy group in the S1 pocket for 2bq7, while no retained /4olo
water position is predicted for 2boh. This is in accordance with the experimental structural data: the
respective crystallographically determined water molecule observed near the methoxy group in 2bq7
(shown in cyan) is in good agreement with the predicted water position. Like the a-mannosidase 11

ligands, this example highlights the potential large impact of a single, unstable hydration site for binding

affinity.
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2xbx 2xbv

Figure 27: Complex structures 2xbx (pKuyy = 7.82) and 2xbv (pKyy = 8.43) with apo and holo water

positions as predicted by 3D RISM-based algorithms, coloured by their AyGp contributions, and
experimental holo water positions (cyan). For the apo form, the ligand is coloured by the respective
interpolated AnaGp contributions of replaced apo water molecules (colouring from blue to red from -
2.0 to +2.0 in units of kcal/mol). Water positions are shown within 3.5 A of the ligand. The respective
raw data can be found in the Electronic Appendix (Electronic Appendix/ PDBbind refined set/

structures/) in the respective pdb folders.
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Figure 28: Complex structures 2bq75"! (pK,7 = 7.05) and 2boh®"! (pK 7 = 8.52) with apo and holo

water positions as predicted by 3D RISM-based algorithms, coloured by their A,aGp contributions, and
experimental holo water positions (cyan). For the apo form, the ligand is coloured by the respective
interpolated AwaGp contributions of replaced apo water molecules (colouring from blue to red from -
2.0 to +2.0 in units of kcal/mol). Water positions are shown within 3.5 A of the ligand. For the 2bq7
holo form, the experimentally determined water position in the Sl-pocket is shown in cyan for
comparison. The respective raw data can be found in the Electronic Appendix (Electronic Appendix/

PDBbind refined_set/ structures/) in the respective pdb folders.
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In Figure 29, a MMP of CKD2 inhibitors is illustrated. The more affine ligand (1pxn:P°" pKye= 7.15;

3 pKair = 6.66) bears a methylamino substituent instead of a methyl substituent at the thiazole

1pxp:!
ring and a phenol instead of a dimethylaniline. Analysis of the apo water thermodynamics reveals that
the respective binding site contains mostly “happy” water molecules. The interpolated AnyaGp
contributions show that especially the region where the hydroxyl group of the phenol (or, respectively,
the dimethylamino group of the aniline) binds contains highly favourably bound water molecules. The
analysis in 4.1 revealed that replacement of such “happy” water molecules by hydroxyl groups correlates
with higher ligand affinity, while carbon atoms tend to replace more “unhappy” water molecules in
general. Hence, the more affine 1pxn ligand nicely fulfils the derived replacement rules, while a methyl

group is located in the respective “happy” water area in the 1pxp complex. Besides, the hydroxyl group

likely can undergo better interactions with the nearby Lys sidechain than the dimethylamino group.

Interestingly, for this MMP, also significant differences can be seen when taking into account the 4olo
water thermodynamics: In the proximity of the hydroxyl group, all water molecules remain similarly
“happy” like in the apo form, while the presence of the dimethylamino group leads to the introduction
of an unstable hydration site. A similar trend can be observed for the thiazole substituent: In 1pxp, an
“unhappy” water molecule can be observed in the proximity of the methyl group that is not observed
near the corresponding aminomethyl group in 1pxn. This nicely illustrates that replacement of especially
“happy”” water molecules by unsuitable ligands groups may not be only disadvantageous because their
favourable AnyaGr contributions have to be compensated but also because an unfavourable environment
for the surrounding water molecules is created, for instance due to the decrease in the number of

hydrogen bonding partners.
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Figure 29: Complex structures Ipxp (pKuy = 6.66) and Ipxn (pKyy = 7.15) with apo and holo water

positions as predicted by 3D RISM-based algorithms, coloured by their AnGp contributions, and
experimental holo water positions (cyan). For the apo form, the ligand is coloured by the respective
interpolated AnaGp contributions of replaced apo water molecules (colouring from blue to red from -
2.0 to +2.0 in units of kcal/mol). Water positions within 3.5 A of the ligand are shown. The respective
raw data can be found in the Electronic Appendix (Electronic Appendix/ PDBbind refined set/

structures/) in the respective pdb folders.
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Another MMP where substitution of a hydroxyl group plays a role is shown in Figure 30. Formycin A
and 5'-methylthiotubercidin are both ligands of Arabidopsis thaliana 5'-Methylthioadenosine

3021 (pKar = 5.08), bears a methylsulfanyl

nucleosidase. 5'-methylthiotubercidin, complexed in 2qtgl
moiety instead of an ethylhydroxyl group and contains a different scaffold in the base analogue moiety
compared to formycin A, complexed in 2qttP" (pKur = 4.32). Analyses of the apo water
thermodynamics shows that the binding site region which is accommodating the hydroxyl groups of the
sugar ring contains water molecules with highly favourable Any¢Gp contributions, thus being nicely in
line with the replacement rules derived in 4.1. However, the area where the ethylhydroxyl group binds
(or, respectively, the methylsulfanyl group) contains several high energy water molecules.
Consequently, the more hydrophobic methylsulfanyl group in 5'-methylthiotubercidin is better suited to
replace these water molecules and likely can undergo enhanced interactions with the environment, i.e.
the neighbouring Met residue. However, the presence of the methyl group leads to the presence of some
“unhappy” water molecules in the /olo structure, too, so that in this case the affinity gain is probably
rather dominated by interactions. Interestingly, when comparing the base analogue moieties, the
formycin A scaffold is more in line with the derived replacement rules, with a nitrogen group being
located in a “happy” water region. Consequently, there is a high energy water molecule predicted by 3D
RISM for the 5'-methylthiotubercidin complex which is not present in the formycin A complex. Thus,
when regarding only water thermodynamics, the formycin A scaffold seems to fit the binding site
properties more nicely; however, this effect is likely outweighed by the larger impact of the
methylsulfanyl substituent. Once again, this MMP thus illustrates how apo water properties can be

exploited for choosing the optimal substituent at a given ligand.
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Figure 30: Complex structures 2qtt (pKqy = 4.32) and 2qtg (pKuyy = 5.08) with apo and holo water

positions as predicted by 3D RISM-based algorithms, coloured by their AnuGp contributions, and
experimental holo water positions (cyan). For the apo form, the ligand is coloured by the respective
interpolated AnaGp contributions of replaced apo water molecules (colouring from blue to red from -
2.0 to +2.0 in units of kcal/mol). Water positions within 3.5 4 of the ligand are shown. The respective
raw data can be found in the Electronic Appendix (Electronic Appendix/ PDBbind refined set/

structures/) in the respective pdb folders.
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4.1.4 Local empirical corrections for 3D RISM

As described in 2.3.3.3, empirical corrections were introduced for the calculation of absolute hydration
free energies using 3D RISM that take into account the solute’s partial molar volume V;, and charge ¢
and thus make up for known artifacts within the 3D RISM framework. Although the present work is not
focused on the calculation of absolute hydration free energies but rather on local contributions of specific
spatial regions, it is of interest to investigate if and how the correction affects the local free energy
distribution (e.g. if a specific water molecule is considered “unhappy” based on the original ps(r) field

but “happy” based on the corrected field or vice versa).

Therefore, in a proof-of-concept study, the local V- and g-based correction was carried out according

to Eq. (66) for an exemplary complex within the PDBbind refined set (pdb: 2xbv).

In Figure 31, the respective minima and maxima of the original and corrected pg(r) fields (i.e. regions
with especially favourable and unfavourable contributions to 4™ or ") are shown for two different
thresholds. It can be seen that there is no significant visual difference between the two fields — suggesting
that the local correction does not affect the local distribution of regions with especially favourable and
unfavourable contributions to #** (and thus the localisation of especially “happy” and “unhappy” water

molecules).

Yet, an analysis was performed to study the effect of the local correction on the AnyGbr,, value of each
water molecule: For each water position r,, as determined from the go(r) field, two respective individual
hydration free energy contributions (AnyaGp w.orig and AnyaGp,wcorr) Were calculated based on the original
and the corrected pg(r) field. Here, it has to be noted that the current methodical framework did not
allow for application of a Gaussian convolution as post-processing, so that the respective “raw” original
and corrected pg(r) fields had to be used. Hence, AnyaGp,.orig and AnyaGp,weor Were determined by
summation of the u®(r;) (or x**°"(r;)) values of all volume elements within 2.5 A of the water position
r,. This procedure is different from the methodology described in 3.4 and is generally less well suited
to determine individual AnyaGp contributions since the raw fields are highly rugged, so that small
deviations in space can lead to large variations in the respective energy values. However, it still allows
to estimate the effect of the local PMV correction on the invidual Ay Gp contributions of the different

water molecules.

The scatter plot for the respective values AnyaGpaworig and AnyaGpcor based on the original and
uncorrected pg(r) fields is shown in Figure 32. In addition, a visual comparison of the respective binding
site. with water molecules in the proximity of the ligand coloured according to AnyaGpw.org and

AnydGp wcorr 18 given in Figure 33.
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Figure 31: Minima (blue) and maxima (orange) of the original and corrected pc(r)-field (without
application of a Gaussian convolution) according to Eq. (66) for the apo structure 2xbv for two different
pa(r) thresholds. The respective raw data can be found in the Electronic Appendix (Electronic Appendix/
PDBbind refined_set/ data/PMV _correction/).
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Figure 32: Scatter plot of the original and corrected AwaGp, values (in kcal/mol) of predicted water
molecules in structure 2xbv. The local correction was carried out according to Eq. (66), and ApaGpw
values were calculated via summation over all volume elements within 2.5 A of the water position. The

respective raw data can be found in the Electronic Appendix (Electronic Appendix/

PDBbind refined_set/ data/PMV _correction/).
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Figure 33: Binding site of structure 2xbv with apo water molecules as predicted by 3D RISM based

algorithms within 3.5 A of the ligand, coloured according to the original and corrected AuGp
contributions (from blue to red from -17.8 to +17.8 kcal/mol). The local correction was carried out
according to Eq. (66), and AnaGp, values were calculated via summation over all volume elements
within 2.5 A of the water position. The respective raw data can be found in the Electronic Appendix
(Electronic Appendix/ PDBbind_refined set/ data/ PMV _correction/)
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Comparison of the original and corrected AnyaGr contributions shows that, with few exceptions, the
values are only slightly affected by the correction. The high deviations for some of the water molecules
likely result from the fact that the pg(r) fields were not smoothed via a Gaussian convolution in this
case, so that certain areas exhibit very high absolute values where small changes result in large absolute
shifts. For comparison, the smoothened original ps(r) field, p ‘s(r), is shown in Figure 34.

p'c(r) field

[ &)

Threshold: +0.3/-0.5 k,T/A3 a

Figure 34: Minima (blue) and maxima (orange) of the p’c(r)-field obtained by applying a Gaussian
convolution with a o of 1.4 4 to the original pe(r) field for the apo structure 2xbv. The respective raw
data can be found in the Electronic Appendix (Electronic Appendix/ PDBbind refined set/
data/PMV _correction/).

However, in most cases, even a large shift does not result in an inversed trend: for instance, for the water
molecule with the largest difference between AnyaGporig and AnyaGpawcor, the value is shifted
from -22.3 kcal/mol to -39.4 kcal/mol. In addition, the visual comparison in Figure 33 reveals that no
relevant shifts are observed for any of the water molecules in the proximity of the ligand. This is an
important finding since it underlines the validity of the presented analysis: Although the V- and g-based
correction is needed for the correct calculation of absolute hydration free energy values, it does not
severely affect the local distribution of the hydration free energy, so that the ranking of the water
molecules w.r.t. their Apy¢Gp contributions remains the same (i.e. the most “unhappy” water molecules
in the binding site are still the most “unhappy” ones after the correction). A reason for this likely is that
the correction does not that much affect the solvent regions but rather the regions where the solute is

located.

Although the energetic ordering of the water molecules is not relevantly changed by the correction, and
although only small changes are observed for most of the water molecules, it can be interesting to
investigate if the correction generally shifts the AnyaGp contributions to more unfavourable or to more
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favourable values. For the original AwyaGp, values, the average is -6.5 + 11.0 kcal/mol, for the corrected
ones -5.2 = 11.0 kcal/mol, implying only a very slight shift to more unfavourable values (s. also Figure
35). The differences are so small that they would likely be not observable after applying a Gaussian

convolution on the respective pg(r) fields.
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Figure 35: Probability densities of the original and corrected AnaGp,w values (in kcal/mol) of predicted
water molecules in structure 2xbv. The local correction was carried out according to Eq. (66), and
AnyaGp.w values were calculated via summation over all volume elements within 2.5 A of the water
position. The average values are shown as dashed lines (blue: original, red: corrected). The respective
raw data can be found in the Electronic Appendix (Electronic Appendix/ PDBbind refined set/ data/
PMYV correction/).

In general, the shift towards negative AnyaGbr,» values for both the corrected and uncorrected values is an
interesting finding when considering the results discussed in 4.1.1.5: When comparing the average
AnyaGp contributions in the proximity of specific amino acids groups with corresponding results from an

[278] a highly similar ranking is obtained, but the absolute hydration free

analysis based on WaterMap,
energy values are shifted to almost exclusively positive values for the WaterMap calculations. This is a
hint that, while both methods are in excellent agreement w.r.t. relative hydration free energy
distributions, there might be artifacts in the respective theoretical frameworks that lead to a systematic
shift of the absolute values. This might be investigated in the future to improve the calculation of

absolute AnyGp contributions. In this context, a direct comparison of results from 3D RISM with other

methods, like WaterMap, on the very same protein structures could be highly beneficial.
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4.2 Binding site characterisation based on 3D RISM uu calculations

In the previous chapters, the focus was set on the local hydration site thermodynamics within apo and
holo binding sites and their correlation with ligand features. In this chapter, the concept of local
thermodynamic characterisation will be extended towards a more general thermodynamic signature of
binding sites: Inspired by Goodford’s GRID approach, 3D RISM solute-solute (uu) calculations were
carried out to determine the distribution of specific probes, mimicking ligand functional groups, within
binding sites. This allows to get a detailed thermodynamic binding site profile considering both
hydration and the distribution of distinct pharmacophore features. Similar to the AnaGp contributions
and the solvent site densities, the probe densities can be interpolated and mapped to the atoms of a bound
ligand, e.g. from an experimental complex or from docking. Thus, the obtained probe densities can be
exploited for the de novo design of ligands that match the binding site profile, or to complement scoring
in virtual screening. In the following chapters, the concept will first be validated by analysing the
correlation between probe densities and ligand features based on the PDBbind core set 2013. Afterwards,
a ligand-probe matchscore will be introduced that will be validated for both pose recovery and virtual
screening. Finally, a workflow will be presented to exploit the probe densities for the fragment-based

de novo design of novel ligands.

All raw data for the analyses in 4.2 can be found in the Electronic Appendix (Electronic Appendix/
PDBbind core set/ and Electronic Appendix/XIAP/). This includes respective ligand and protein
structures (ligand.pdb, pocket.pdb) as well as the interpolated probe g-function data on the ligands
(gUU_xy@lig.pdb) for each structure within the PDBbind core set and for the discussed XIAP structures

with respective ligands and docking poses.

4.2.1 Correlation between probe densities and native licands

In the presented work, three simplistic, spherical probes derived from GAFF atom types (s. 3.2) were
employed to mimic distinct pharmacophoric features, namely an uncharged c3 probe as well as a
positively charged n4 and a negatively charged o probe. Using the 3D RISM uu formalism, respective
density fields of each probe within an apo binding site binding site are obtained which can be used for

ligand design.

However, to validate the concept of 3D RISM wuu-derived pharmacophoric probe densities, it is first
necessary to correlate the different densities within a binding site with the structure of known ligands.
Under the assumption that a bound ligand shows near-ideal interactions with the protein, peaks for a

specific pharmacophoric probe should coincide with corresponding ligand atoms.
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An illustrative example of the probe densities and their matching with ligand features is presented in
Figure 36. It shows the binding site of XIAP (pdb: 5¢7al?%!!) with respective densities of the three used

probes in the respective apo binding site and their interpolation onto the bound ligand.

Figure 36: Probe densities and interpolated densities mapped onto ligand atoms for 5c7a. Upper row:

c3 probe (density threshold = 10, colouring from white to grey from 0 to 8), middle row: n4 probe
(density threshold = 300, colouring from white to blue from 0 to 50), lower row: o probe (density
threshold = 30, colouring from white to red from 0 to 10). The respective raw data can be found in the

Electronic Appendix (Electronic Appendix/ XIAP/ 5c7a/).
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While the density fields (left column) themselves seem rather abstract, comparison of the resulting
mapping and the ligand structure (middle and right column) reveals a striking matching: The amine
group and the carbonyl group in the ligand coincide with respective probe density peaks. Interestingly,
the region around the nitrogen atom in the piperazine ring in the western region of the binding site shows
a high density for both the n4 and o probe, implying that this area could potentially accommodate various
polar groups. Carbon atoms are naturally more abundant in small molecules; yet, very good agreement
can also be observed for the c3 probe: Especially the methyl group at the piperazine ring and carbon

atoms of the indole ring exhibit high interpolated ¢3 probe density values.

To quantify this finding, respective 3D RISM wuu calculations were performed for the apo proteins of
the complexes in the PDBBind core set 2013, and the interpolated probe g-function values on the given
ligand atoms / was determined. The results for the respective average probe g-function values at i) atoms
with matching atom type, ii) atoms with a matching element, and iii) all other atoms are shown in Table
20. In case of the c3 probe, also atoms of the ca type were considered a matching atom type, and since
it is meant to be a more general probe for apolar groups, halogen atoms were also considered a matching

element.

Table 20: Average interpolated apo probe g-function values g, with standard deviation of the n4, o and
c3 probe at ligand atoms of i) the corresponding type (n4, o, and c3 and ca for the c3 probe), ii) the
corresponding element (N, O, C/Halogen), and iii) at all other atoms on respective ligand atoms for all
structures in the PDBbind core set. The respective raw data can be found in the Electronic Appendix

(Electronic Appendix/ PDBbind_core set/ data/ Table20 uu_mapping/).

&in4 glo Zic3
corresponding atom type 48.1 £46.6 35.8+43.8 3.7+8.7
corresponding element 29.1+£415 28.1+414 41+£104
other atoms 17.3+342 59+194 3.1+96

The results in Table 20 show strong trends for the n4 and o probe, with ligand atoms of a matching type
having the highest average interpolated probe g-function values, followed by atoms of a matching
element, while all other atoms exhibit lower values, especially for the o probe. The less pronounced
trend for the ¢3 probe meets expectations since carbon atoms are much more abundant in ligands so that
naturally many carbon atoms are located in areas with lower probe density. Nevertheless, higher values
are observed for atoms of the respective type and element than for other atoms. To further investigate if
areas with high c3 probe density coincide with apolar regions in the ligand, the average interpolated c3

probe g-function value was determined on carbon atoms with no polar atoms (nitrogen, oxygen, sulphur,
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or phosphorous) within 3.0 A. Indeed, the resulting value (11.0 with a high standard deviation of 25.6)
is much higher, suggesting that hydrophobic parts of the ligands match areas of high c¢3 probe density.
The generally lower values for the ¢3 probe compared to the charged n4 and o probes can be simply

attributed to the lack of electrostatic interactions for this probe.

Since the three probe atoms have different charges, it was also analysed if there is a correlation between
the partial charge of a given ligand atom and the respective interpolated probe g-function values. In
Table 21, the average interpolated g-function values of the n4, o and c3 probes are shown for subsets of

ligand atoms with different partial charges.

Table 21: Average interpolated apo probe g-function values g, with standard deviation of the n4, o and
c3 probe at atoms with different partial charges q. for all ligand atoms in structures in the PDBbind
core set. The respective raw data can be found in the Electronic Appendix (Electronic Appendix/

PDBbind _core_set/ data/ Table21 probe values_partial charges/).

q Zin4 gio Zic3
q>0.75 6.1+£229 36+153 1.8+3.1
qg>0.5 120+29.7 32+£128 22+6.3
q>0.25 122+304 4.0+£15.6 1.6+4.8
qg>0.1 154+327 44+165 2.8+8.3
-0.1<¢g<0.1 19.8+36.2 68+205 40+11.4
q <-0.1 18.6+351 14.7+£32.2 3.6+9.5
q<-0.25 175+348 224+38.0 24+7.6
qg<-0.5 16.8£34.9 264+403 23+8.0
q <-0.75 14.0+323 393+449 1.7+5.5

Indeed, there is a clear trend for the o probe: The average interpolated g, value significantly increases
with decreasing partial charge of the ligand atom, i.e. negatively charged atoms in average have
significantly higher interpolated g, values. This meets expectations since peaks of the negatively charged
o probe are likely found in an environment suitable for accommodating negatively charges groups like
carboxylates. For the n4 probe, an opposite trend could be expected — however, no trend w.r.t. the partial
charge subsets is observed here. The reason for this simply is that, although groups like tertiary amines
have a net positive charge, the partial charges of the nitrogen and hydrogen atoms within these groups
have opposite signs. Therefore, when an n4 probe density peak overlaps with the position of e.g. a
ternary amine, high interpolated n4 probe densities are observed on atoms with negative and positive
partial charges alike. Hence, no significant correlation between atom partial charges and interpolated g4

1s seen here.
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For the uncharged c¢3 probe, on the other hand, the highest interpolated g.; values are observed for
subsets of ligand atoms with the lowest absolute charges. This again meets expectations since c3 probe
density peaks are likely found in binding site areas with few charged residues which are suitable to
accommodate uncharged ligand moieties. Hence, the correlation of the average, interpolated probe
g-function values and the atom partial charges is in line with the results in Table 20 and emphasises the

relevance of the charge parameter for the probe distribution.

All in all, the presented analyses thus confirm that the probe densities are highly correlated with the
ligand atoms’ element identities and properties thus can be exploited for assessing and designing ligand

structures.

4.2.2 Introducing a score for lisand-probe-matching

To achieve a quantitative measure for a ligand structure-probe density match, a respective score was
developed with the aim to capture how well the ligand atoms are in line the probe fields, e.g. if nitrogen

atoms are located at positions with high g-function values of the n4 probe.

To quantify this, all atoms / of a molecule m with an interpolated probe g-function value g;, exceeding
a certain threshold #, (here: 20 for n4, 10 for o and 3.5 for c3, derived from the analysis on the PDBbind
core set) are considered maxima in the respective probe fields, resulting in N maxima of a given probe

p in a molecule structure m, depending on threshold ¢,, Nmaxp,m(%).

Nownlt) =i €l 2,,>1, (73)

For each ligand atom, it is evaluated if this atom (or a neighbouring atom within a distance d of 1.5 A)
has the “right” corresponding element type e, i.e. if the maximum is matched or not, resulting in N probe

maxima in a ligand that are considered “fulfilled”’, Nmatchp,m(Zy):

T

Nty (zp)z\{ jellg,,>t, and (e, =e, ore, =e, kel|d(k,j)<=15 A)}\ (74)

Thus, for each molecule m, a ratio Xuifilied peaks,p,m(f) can be determined for each probe p as the ratio of
Nmatch,p, m(tp)/Nmax,p, m(tp) :

Nyt 7

xﬁﬂﬁlled_peaks,p,m (tp) =

Thus, Xfufilied peaks,p.m(Z) has a value of 1.0 if all maxima coincide with a “correct” element and 0.0 if none
_p! P P.

of them do.

Additionally, it is also important to account for mismatches. The ratio Xsusited peaks,p,m(Zp) Only captures if

the “correct” atom is present in an area with high density for a given probe. It does not capture if there
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are other atoms of the respective type within the ligand which lie in areas with low probe density.
However, it should also be considered that atoms with low interpolated density values should NOT be
an element of the respective type. Therefore, another measure, termed Xifiticd_clements p,m(»), 18 introduced
as the ratio of Nmaichp,m(2y) and the total number of atoms of the corresponding element type in the ligand,

Npm:

N, match, p,m (t )
xﬁllﬁlled_elements, p,m (t P ) = Np . (76)

p,m

Thus, Xfuifited_clements p,m(Zp) has a value of 1.0 if all atoms of a given element are considered peaks of the
respective probe, for instance if all oxygen atoms within the molecule have interpolated g, values
exceeding the chosen threshold, and 0.0 if none of them are peaks. Xfufitied peakspm(Zp) and
Xulfilled_clements,p,m(Zp) are then multiplied to get an overall match score for each probe p, xp,m(¢,), which is

zero if Xuifilied_peaksp,m(fp) OT Xfulfilled clements,p,m(Zp) 18 ZETO.

Xpm (¢ » ) = Xeiiilled | peaks, p,m (¢ p) * Xfulfilled_elements, p,m (¢ p) (77)

A total score for the binding mode of molecule m (or, in case of docking, a molecule pose), s, is then
obtained via summation of all probe scores (divided by the number of probes N, in this case 3, to obtain

a range from 0.0 to 1.0):

2% (t,)

s,{t, D =—— (78)

P

Alternatively, if the score has to be more restrictive, for instance for virtual screening purposes, when
a lot of poses should be filtered out, it can also be obtained as the product of all probe scores, resulting

in a total score of zero if one of the probe scores is zero:

snde, D 1x,.@,) (79)

It is important to consider that both resulting scores are derived from ratios and are thus designed to not
depend on molecule size. This was chosen since the intention is not do build a full scoring function but
to obtain a measure for how well a molecule matches the RISM-derived thermodynamic binding site
profile. Especially, it is intended to employ it for the de novo design of novel ligands via virtual fragment
screening and for guiding the design of target-focused combinatorial libraries. For this purpose, it is
vital not to find the molecules with the already highest affinity but the best matching fragments which

can then be combined into a larger and more affine ligand.
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4.2.3 Pose recovery of native licands

As the analysis based on the PDBbind core set 2013 confirmed the correlation between pharmacophoric
probe peaks and the ligands’ element identity, a probe-ligand matchscore was introduced to capture how
well a given ligand binding pose matches the thermodynamic binding site profile. As described above,
it evaluates 1) if probe maxima coincide with the presence of respective elements, and ii) if, vice versa,
the presence of respective atoms in a ligand coincides with “correct” corresponding probe g-function
maxima. Thus, it is a measure for how perfectly a given ligand conformation fits the thermodynamic

signature of the protein.

To assess the utility of the ligand-probe matchscore for the assessment of docking results, a redocking
of the ligands in the PDBbind core set 2013 was performed. For each ligand, three similar docking runs
were carried out to create 100 diverse (inter-pose RMSD > 1.5 A) solutions each time, resulting in a
total of 300 poses per ligand. For all of them, the ligand-probe matchscore, sp0sc, Was calculated. In Table
22, the average spose Values for pose subsets based on RMSD over the whole data set are shown. In
addition, also the average RMSD values for pose subsets based on sp.sc Were determined; they are given
in

Table 23.

Table 22: Average values of Spose as defined in Eq. (78) with standard deviations for docking pose subsets
based on RMSD for the docking poses of ligands in the PDBBind core set 2013 (300 diverse poses per
ligand). The respective raw data can be found in the Electronic Appendix (RMSD values and Spose values:
Electronic Appendix/ PDBbind_core set/ data/ Table22 Table23 score pose recovery/; docking poses
with interpolated probe g-function values gi, are given in the respective pdb folders in Electronic

Appendix/ PDBbind_core_set/ structures/).

RMSD / A Spose

<1.0 0.254 +0.076

1.0-1.5 0.250+0.114

1.5-2.0 0.223 +0.124

2.0-25 0.209 + 0.122

2.5-3.0 0.208 £ 0.118

30-35 0.184+0.111

35-50 0.172 £ 0.101

>35.0 0.156 £ 0.089
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Table 23: Average RMSD values with standard deviations for docking pose subsets based on Spose as
defined in Eq. (78) for docking poses of ligands in the PDBBind core set 2013 (300 diverse poses per
ligand). The respective raw data can be found in the Electronic Appendix (RMSD values and Spose values:
Electronic Appendix/ PDBbind core set/ data/ Table22 Table23 score pose recovery/; docking poses
with interpolated probe g-function values g, are given in the respective pdb folders in Electronic

Appendix/ PDBbind_core_set/ structures/).

Spose RMSD /A

Spose > 1/3 37424
1/4 <spose <13 43+27
1/6 <Spose < 1/4 55429
1/12 < spose < 1/6 62+2.8

Spose < 1/12 6.0+2.7

The results show a clear trend of higher sp0sc Values for poses with lower RMSDs to the native binding
mode; correspondingly, the average RMSD values for subsets of poses with higher ligand-probe
matching scores are lower. Usually, poses with an RMSD threshold of 2.5 A are considered satisfactory.
Interestingly, even within these satisfactory poses, a trend for higher average sposc values for poses with
especially low RMSD values below 1.5 and 1.0 A can be observed. This implies that the (near) native
binding modes exhibit the best matching with the probe densities and that the sy sScore can be used to
distinguish between “good” and implausible ligand poses. This is quite noteworthy since - while the
interaction energy of the probes is included 3D RISM wuu formalism - the score does not include any
information about the ligand’s conformation’s internal energy. The results thus underline that the probe
densities include valuable information about the binding site thermodynamics and can be exploited for

SBDD purposes.

Encouraged by these results, it was analysed if maybe even a direct correlation could be observed
between the probe-ligand matchscore of the bound ligand conformation and the ligand affinity within
the PDBbind core set 2013. A respective correlation analysis revealed that this is not the case (R value:
-0.027, p value: 0.12; affinity and score data can be found in the Appendix, 7.6). However, this can
likely be attributed to the heterogeneity of the binding sites within the data set which comprises several

different protein families. Due to the different sizes and characteristics of the binding sites of different
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proteins, conventional docking scores are usually not comparable for different proteins and hence do

not allow for a direct conversion of scores to actual binding affinities (s. 2.2.2.2.4).

4.2.4 Virtual screening on XIAP

Encouraged by the good results from the pose recovery docking experiments, the next goal was to probe
the usefulness of the probe densities for an even more challenging task, virtual screening. Therefore,
docking of the XIAP benchmarking data set provided by DUD-E was performed which comprises 129
active and 5213 corresponding decoy molecules. As already mentioned, the ligand-probe matching score
is not designed to be a complete scoring function as it completely neglects any internal ligand energy.
Besides, it does not correlate with the molecule size, which is the case for most scoring functions (like
the GOLD ChemPLP scoring function which was used here), and which is by trend beneficial for
classical virtual screening benchmarks since usually larger molecules indeed have higher affinity.
Therefore, it cannot be expected that the ligand-probe matching score alone can compete with the
scoring quality of an approved and well-established scoring function like ChemPLP. Rather, the aim
was to investigate whether it can be used as a filtering criterion to further improve the enrichment of
active molecules by sorting out molecules with high scores but a bad matching with the thermodynamic

binding site profile.

Therefore, different combinations of the ligand-probe matching score and ChemPLP were probed for
filtering down poses obtained by docking, and respective ROC AUC values were determined as a
measure for the differentiation of active and decoy molecules (Table 24). A detailed description of the

ROC AUC measure can be found in 2.2.2.2.4.

AUC values can range from 0 to 1, with 0.5 denoting a random ranking of active and decoys and 1.0 a
perfect differentiation for which all actives are ranked before all decoys. The results for the XIAP
benchmark data set (Table 24) show that GOLD’s ChemPLP scoring function already yields a very good
differentiation with an AUC of 0.81 (Figure 37). Intriguingly, when scoring the molecules only based
on the ligand-probe matching scores, Spose and the more restrictive spose, AUC values of 0.72 are
obtained. This is not as high as for ChemPLP, yet surprisingly good when considering the simplicity of

the measure, once again highlighting the validity und utility of the concept.

Besides, the AUC of the spose- and spose -based scoring was determined after filtering out molecules with
low ChemPLP scores < 60, 70, and 75, respectively. In case of the less restrictive spose, this does not
result in an improved AUC while a considerable increase can be observed for spose’ to an AUC of 0.77,

0.83, and 0.85, respectively.
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Table 24: ROC AUC values for the scoring of poses obtained by docking of the DUD-E benchmark data

set for XIAP by ChemPLP score, the ligand-probe matching scores Spose and spose™ as defined in Egs.

(78) and (79) and combination of them for filtering purposes. For those cases where a filtering is applied

(i.e. only docking poses with a ChemPLP or ligand-probe matching score above a certain threshold are

retained for the subsequent scoring), the number of remaining molecules after filtering is given in the

3" column; x, and X.4 denote the matching with only o and n4 probe as defined in Eq. (77). The

respective ROC curves can be found in the Appendix (7.7). The respective raw data (poses, scores,

interpolated probe g-function values) can be found in the Electronic Appendix (Electronic Appendix/

XIAP/ data/ DUD-E_VS /).

Score AUC N(molecules)
ChemPLP 0.81 5342
Spose 0.72 5342
Spose (ChemPLP > 60) 0.75 2648
Spose (ChemPLP > 70) 0.72 491
Spose (ChemPLP > 75) 0.74 178
ChemPLP (spose > 1/6) 0.86 2580
ChemPLP (sposc > 1/4) 0.95 778
ChemPLP (spose > 1/3) 0.99 199
ChemPLP (x, and xn4 > 0.0) 0.97 612
ChemPLP (x, or x, > 0.0) 0.86 3356
ChemPLP (x, > 0.0) 0.93 2397
ChemPLP (x, > 0.0) 0.87 1571
Spose. 0.72 5342
Spose. (ChemPLP > 60) 0.77 2648
Spose. (ChemPLP > 70) 0.83 491
Spose. (ChemPLP > 75) 0.85 178
ChemPLP (sposc’ > 0.0) 0.97 609
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Figure 37: Selected ROC curves for the scoring of poses obtained by docking of the DUD-E benchmark
data set for XIAP by ChemPLP score, the ligand-probe matching scores Spose and Spose® as defined in
Eqs. (76) and (77) and combination of them for filtering purposes. The respective raw data can be found
in the Electronic Appendix (Electronic Appendix/ XIAP/ data/ DUD-E VS/). All ROC curves are given

in the appendix (7.7).

The most promising strategy for combining the ligand-probe matching score with classical scoring,
however, is to filter the poses according to the ligand-probe matching score and to then perform ranking
w.r.t. the ChemPLP score of the remaining poses. Filtering out all poses with spesc <= 1/6, 1/4, and 1/3
(Figure 37) leads to a significant increase of the AUC to 0.86, 0.95, and 0.99, respectively, i.e. a lot
more decoys than actives were filtered out successfully. In case of the > 1/3 threshold, the AUC of 0.99
implies a nearly perfect ranking of the remaining molecules, which is extremely valuable if one wants
to select a small number of compounds for experimental testing. Large improvements in the AUC can
also by obtained when considering only those poses for which the ligand-probe matching score for either
the n4 probe, the o probe, the n4 or the o probe, or the n4 and the o probe (Figure 37) is > 0 (resulting

AUCs: 0.93, 0.87, 0.86, 0.97), with again a nearly perfect ranking when both the o and n4 density are
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matched. The considerable increase to 0.93 when including all poses with matching for the n4 probe
implies an especially high relevance of this probe for the binding site thermodynamics. This is in
agreement with literature since the region with highest n4 probe density, the P1 pocket of the XIAP
binding site which accommodates the piperazine ring in 5c¢7a, was shown to be highly important for

ligand binding affinity.%!

The spose’ score by definition is zero if one of the probe densities is not matched. Filtering by spose” thus
is similarly restrictive as keeping only poses with spesc > 0 for the o and n probe and, too, yields a nearly

perfect ranking of the remaining molecules with an AUC of 0.97.

The results thus show that combination of classical scoring with the ligand-probe matching score can be
successfully used to filter out molecules which have relatively high ChemPLP scores but do not match
the thermodynamic binding site profile well, resulting in a massive improvement in ranking power for
the remaining molecules. It is therefore advocated to use the ligand-probe matching score as a filter
criterion for the post processing of docking results in case of virtual screening, with the threshold

depending on the desired level of restrictiveness.

4.2.5 Virtual fragment library screening on XIAP

As described, the intended purpose of the ligand-probe matching score is to find molecular fragments
which match the thermodynamic binding site profile of a given target and can be selected for the design
of novel, high affinity ligands. As a first benchmark study, the fragment library as described by Sandor

260

et al.,”®" plus three fragments derived from the fragment-like ligand in 5¢7a (Figure 38), were docked

into the same XIAP structure as used for the virtual screening benchmark.

Fragment 1 only comprises the piperazine ring and the carbonyl group. Fragment 2 directly corresponds
to the ligand in 5c7a. For fragment 3, only the methyl substituent of the piperazine ring was removed to
analyse to what extent small structural changes influence the scoring. The aim was to retrieve these three
fragments with 10, 18, and 19 heavy atoms from the other 189 fragments, whose heavy atom count

ranges from 6 to 22.

A prerequisite for the ranking of fragments is the correct positioning by the docking program. In Figure
38, the top docking poses of the three fragments in 3hl5 are depicted in overlay with the complex
structure 5c7a (ligand in grey, protein in white). The overlay shows that there are no considerable
structural discrepancies between 3hl5 (pale green) and Sc7a (white) in the respective binding site region,
and that the docking poses are in excellent agreement with the overlaid crystal structure in case of

fragments 2 and 3. For the smaller fragment 1, the overlap with the native binding mode of the ligand
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in 5c7a is not as perfect but still sufficiently good considering that the binding site was defined as a

rather large region of 10 A radius around the native ligand in 3hl5.

v

Figure 38: Top ranked docking poses of the three fragments derived from 5c7a by ChemPLP as
generated by GOLD in 3hl5 (pale green) in overlay with the complex structure 5c7a (protein: white,
ligand: grey). The respective raw data can be found in the Electronic Appendix (Electronic Appendix/
XIAP/ fragments screening/ (fragment 1:pose 104_5; fragment 2: pose 103 5; fragment 3: pose
101 _6)).The respective ranks of the three fragments using conventional scoring and different

combinations with the ligand-probe matching score are presented in Table 25.

Different than for classical virtual screening, the dependence of classical scoring functions like
ChemPLP on molecule size can be problematic for fragment screening since larger fragments will per
se obtain higher scores, which hampers the search for small but promising novel scaffolds that show

ideal agreement with the thermodynamic profile of the respective binding site region.

Indeed, when ranking only according to ChemPLP, the respective fragments 1, 2, and 3 are found on
ranks 71, 1, and 4, respectively (Table 25). While the quite large fragments 2 and 3 are among the top

ranked molecules, the smaller fragment 1 could not be retrieved via conventional scoring.

To account for molecule size in virtual screening, it is a common practise to normalise docking scores
by molecule size, for instance heavy atom count. When performing ranking according to ChemPLP
score divided by the heavy atom count, the resulting ranks of fragments 1, 2, and 3 are 1, 41, and 32
(Table 25). Thus, employing this modified scoring scheme, the smallest fragment could be retrieved,

while the two larger ones are no longer among the top ranked molecules, which is again not satisfactory.
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Table 25: Ranks of fragments 1, 2, and 3 in the docked fragment data set for scoring according to

ChemPLP, ChemPLP normed by heavy atom count, ligand-probe matching scores Spose, Spose as defined

in Eq. (78) and Eq. (79), and combinations of them using filtering thresholds; x, and x.4 denote the

matching with only o and n4 probe as defined in Eq. (77). The lines corresponding to the method yielding

the best rankings (i.e. those where all three fragments are successfully retrieved at the beginning of the

ranking) are marked in green. The respective raw data can be found in the Electronic Appendix

(Electronic Appendix/ XIAP/ fragments screening/).

Fragment 1 Fragment 2 Fragment 3
ChemPLP 71 1 4
ChemPLP/N(HA) 1 41 32
Spose 1 29 2
Spose 1 6 2
ChemPLP (sposc > 1/6) 44 1 4
ChemPLP (spose > 1/4) 24 1 4
ChemPLP (spose > 1/3) 17 1 3
ChemPLP (xo and xa > 0.0) 8 1 2
ChemPLP (xo or xn > 0.0) 47 1 4
ChemPLP (xn> 0.0) 36 1 3
ChemPLP (x, > 0.0) 19 1 3
ChemPLP (spose” > 0.0) 8 1 2
ChemPLP/N(HA) (spose > 1/6) 1 35 27
ChemPLP/N(HA) (spose > 1/4) 1 28 23
ChemPLP/N(HA) (spose > 1/3) 1 24 19
ChemPLP/N(HA) (xo and xn > 0.0) 1 4 2
ChemPLP/N(HA) (xo or xa > 0.0) 1 35 27
ChemPLP/N(HA) (xn > 0.0) 1 29 22
ChemPLP/N(HA) (xo > 0.0) 1 10 7
ChemPLP/N(HA) (spose” > 0.0) 1 4 2
Spose (ChemPLP > 30) 1 26 2
Spose (ChemPLP > 40) 1 17 2
Spose (ChemPLP > 50) - 4 1
Spose. (ChemPLP > 30) 1 6 2
spose. (ChemPLP > 40) 1 3 2
Spose. (ChemPLP > 50) - 2 1
Spose (ChemPLP/N(HA) > 2) 1 29 2
Spose (ChemPLP/N(HA) > 3) 1 23 2
Spose (ChemPLP/N(HA) > 4) 1 - -
Spose. (ChemPLP/N(HA) > 2) 1 6 2
spose. (ChemPLP/N(HA) > 3) 1 4 2

Spose* (ChemPLP/N(HA) > 4)

121



Ranking w.r.t. the ligand-probe matching scores spose and spose , 0N the other hand, yields good retrieval
for fragment 1 and 3 (ranks 1 and 2, respectively). Fragment 2 is scored on rank 29 for sp0sc but is nicely
retrieved by spose’ (rank 6). Thus, using only the restrictive spose , all the fragments can be found among
the top ten scoring molecules. This underlines the benefit of the non-additive nature of the overlap score:
it allows to retrieve fragments which match the thermodynamic binding site profile without being
considerably biased towards larger or smaller molecules. Consequently, and opposed to the results for
the virtual screening, usage of the ligand-probe matching score alone (without ChemPLP) here leads to
more satisfactory results than usage of ChemPLP. As indicated, this results from the nature of the
ChemPLP scoring function which was designed for classical virtual screening where molecules are

usually not fragment-like.

To investigate the reasonability of the ligand-probe matching score, the poses of the other high scoring
fragments ranked before fragment 2 according to spose Were analysed; they are illustrated in Figure 39
in overlay with the ligand in 5c7a. The respective docking poses reveal that especially the fragment on
rank 3 shows good overlap with the ligand in 5¢7a w.r.t. functional groups: An ester carbonyl oxygen
atom can be found in the same region where the amide carbonyl is located in 5c7a and which is highly
favourable for accommodation of an oxygen substituent according to probe densities. Similarly, the
nitrogen atoms in the five-ring are located in the area with high n4 probe density, albeit they are not
charged, and the methyl group nicely overlaps with the methyl substituent of the 5c7a ligand.

The fragment on rank 4, too, shows nice overlay with the probe densities: It contains an amine located
in the P1 pockets and bears a phosphate groups which, in the predicted pose, occupies an area of the
binding site untargeted by the ligand in 5c7a which however exhibits high o probe densities (s. Figure
36).

The fragment on rank 5 contains a sulfonamide group in the respective region, as well as a carbonyl and
a methyl group that overlay with their counterparts in the 5c7a ligand. Thus, the respective fragments
can be considered reasonable “hits” w.r.t. matching the thermodynamic binding site profile. They even
show the versatility of the concept since they are examples of structurally completely dissimilar

molecules of different size which nevertheless show good matching with the probe densities.
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Figure 39: Docking poses of fragments with a high ligand-probe matching score in 3hl5 (pale green) in
overlay with the complex structure 5c7a (protein in white, ligand in grey); a) fragment 61 (rank 2 by
Spose ), b) fragment 35 (rank 4 by Spse’), ¢) fragment 47 (rank 5 by Spose ). The respective raw data can
be found in the Electronic Appendix (Electronic Appendix/ XIAP/ fragments screening/ (fragment 61:
pose 61 1, fragment 35: pose 35 _16; fragment 47: pose 47 25)).

Despite the good performance of spose alone, it was investigated if - like for the virtual screening - an
improved retrieval of the three fragments of interest can be achieved by combination of ChemPLP and
the ligand-probe matching score via filtering. The results (Table 25) show that ranking of molecules by
ChemPLP after filtering based on absolute spose Values results in a better rank for fragment 1 (from 71
to 44, 24, and 17 for threshold 1/6, 1/4, and 1/3) which is however still not satisfactory. Only when
demanding that x, and x, > 0.0 or spese > 0.0, fragment 1 can be found among the top 10 ranked
molecules. This indicates that, when dealing with fragment-like molecules, a stricter filtering criterion

w.r.t. the ligand-probe matching score has to be applied than in the classical virtual screening scenario.

Similar results are obtained for ranking according to ChemPLP normalised by the heavy atom count
after filtering based on overlap score: Filtering by absolute spose values > 1/3 improves the ranks of
fragment 2 and 3 from 41 and 32 to up to 24 and 19. Ranking among the top 10 molecules is achieved
when demanding that x, > 0.0 or that x, and xn4 > 0.0, with the latter yielding almost perfect retrieval of
the three fragments within the top four ranked molecules. The same result is achieved via combination
of normalised ChemPLP and filtering by spose , which thus slightly outperforms ranking by ligand-probe
matching score alone. The combination with spese  already lead to almost perfect active-decoy
differentiation in virtual screening, underlining that a strict filtering according to probe density followed

by (potentially normalised) conventional scoring is a promising way of post-processing docking results.

Filtering molecules according to conventional ChemPLP score, followed by ranking by spesc, leads to
moderate improvement for thresholds of 30 and 40 (ChemPLP). For higher thresholds, however,

fragment 1 is sorted out due to its small size and thus small absolute ChemPLP score. A similar trend is
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observed for filtering according to the normalised ChemPLP score: here, fragments 2 and 3 are sorted
out for high thresholds due to their higher number of heavy atoms. When combining the respective
filtering with spose -based ranking, ideal or nearly ideal retrieval is achieved for ChemPLP > 40 and

ChemPLP/N(HA) > 3.

In summary, the results for the fragment library screening show that the ligand-probe matching score is
a suitable means to retrieve fragments of any size or chemical structure which match the thermodynamic
binding site profile. For optimal ranking power, it should be employed as a filtering criterion together
with classical scoring. In contrast to classical virtual screening, the filtering criterion should be rather
strict for fragment-like molecules to compensate the dependence of classical scoring functions on the
molecule size. Thus, new chemical scaffolds can be found as starting points for the de novo design of

novel ligands.

124



4.3 Application of RISM-based descriptors for SBDD — case studies

In the previous chapters, RISM-based approaches for the local characterisation of binding sites and
protein-ligand interactions were introduced, and proof-of-concept studies as well as validation studies
on available data sets were presented. In this chapter, the developed methods will be applied to specific

case studies to illustrate their benefit on existing challenges relevant in medicinal chemistry.

A particularly important yet highly demanding field in this context are protein-protein interactions (PPI).
They play an important role in all physiological processes; hence, their dysregulation is involved in
many diseases. Yet, there are so far only few therapeutic agents on the market that target PPIs since their
characteristics make them challenging targets for drug design: PPI interfaces are usually flat and large,
and no natural small molecule binding partners are available that could serve as a starting point for

rational drug design.l**¥

In this chapter, the utility of the RISM-based water analysis and pharmacophoric probe densities will be
investigated w.r.t. the characterisation of PPI interfaces and the design of respective binding partners on
the basis of three exemplary proteins that are relevant to medicinal chemistry: In a first case study, both
the local water and probe thermodynamics will be used to retrospectively evaluate the development of
a hit-to-lead series of inhibitors of the protein XIAP which is an important regulator of apoptosis. In a
second example, the respective approaches are applied to develop a design strategy for the generation
of Ugi-type inhibitors of Bcl-xL, a highly challenging target that exhibits considerable structural
flexibility. In a third case study, the binding site of the protein hTEAD, a regulator of the Hippo pathway
relevant for cell proliferation, is characterised to explain SAR trends on modified peptide binding
partners and to prospectively guide the design of respective screening libraries: Thanks to an advanced
technology developed there, the Brunschweiger group has a broad portfolio of chemical reactions that

3051 In this work, an

can be applied for the synthesis of large, combinatorial DNA-encoded libraries.
attempt was made to support the selection of especially promising starting building blocks for these

libraries.

All raw data for the analyses in 4.3 can be found in the Electronic Appendix (folders XIAP/, Bcl-xL/,
and TEAD/). This includes respective ligand and protein structures (ligand.pdb, pocket.pdb), the
calculated  water  positions  with  thermodynamic  properties (Ghyd@water apo.pdb,
Ghyd@water_holo.pdb), as well as the interpolated apo water thermodynamic data on the ligands
(Ghyd@lig.pdb) and the interpolated probe g-function data on the ligands (gUU_xy@lig.pdb). For

examples for which probe densities are shown in this work, also respective cube files are provided.
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4.3.1 XIAP — Analysing a hit-to-lead series

The benefit of RISM-derived thermodynamic binding sites profiles for ligand optimisation is best
illustrated for a set of closely related compounds, ideally in a hit-to-lead series. Analysis of the 4olo
binding site water molecules for different ligands can for instance reveal conserved hydration sites but
also newly introduced or destabilised sites. The respective ligand parts can then be modified, e.g. by
introducing larger groups to replace an isolated, unstable water position. Likewise, the pharmacophoric
probe densities in the direct proximity of a hit molecule show where respective substituents could be

added, thus also providing valuable information w.r.t. to design directions.

A suitable example that allows to investigate the utility of both the water analysis and the
pharmacophoric probe densities is the protein XIAP, which was already used in the proof-of-concept
studies in 4.2. The availability of several respective complex structures, including a hit-to-lead series,**"!
and the high relevance of this protein for the treatment of cancer make it an ideal model system for this
work. In the following, both the water thermodynamics and the probe densities will be discussed for the
respective structures w.r.t. their usefulness for explaining the corresponding SAR trends and design
strategy. Throughout the whole analysis, the same algorithms and settings were used as for the data sets

in 4.1 and 4.2, i.e. hydration site positions and their AnyaGp contributions were calculated as described

in 3.4, and the probe densities were calculated and analysed as outlined in 3.2 and 3.5.

The starting point for the study is the complex structure 5c3h with a hit compound (ICso > 5000 uM)
containing a piperidine ring and a piperazine ring. The latter binds in the same region as the N-terminal

381 In Figure 40, the respective complex

Ala residue of XIAP’s natural peptide binding partners.!
structure is shown together with the predicted apo water molecules and the interpolated c¢3, n4, and o

probe densities, similar to Figure 36 in 4.2.1.

It can be seen that the P1 pocket, which accommodates the piperazine ring, contains water molecules
with highly favourable Any¢Gp contributions. This is in line with the finding from 4.1 that ligand atoms
of the n4 type are found to replace almost exclusively “happy” water molecules. Consequently, the
position of the respective amine in the piperazine ring coincides with an n4 probe maximum. Since this
is the position where the terminal amino group of the Ala residue in XIAP’s natural binding partners is
usually accommodated, this is highly intuitive. As already shown for 5c7a in 4.2, there is also a nice
match between o probe density and the carbonyl group in the ligand in 5c3h. Its position in the P2 pocket
corresponds to the location of the backbone carbonyl in XIAP’s peptide binding partners and can

303

undergo an H-bond with a neighbouring Thr residue.*®*! High interpolated ¢3 probe values can be

observed for the piperidine ring which is located in the P3 pocket where usually a Pro sidechain is
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accommodated.?®! Thus, the probe and water-based analysis reveals a good match between the ligand

structure and the binding site profile, which is reasonable since the ligand mimics several characteristics

of the natural binding partner peptides.

Figure 40: Apo water thermodynamics and interpolated apo c3, n4, and o probe g-function values on
XIAP complex structure 5c3h. Predicted apo water molecules are coloured by their calculated AyyaGp
contributions (from blue to red from -2.0 to +2.0 in units of kcal/mol); c3 probe: colouring from white
to grey from 0 to 2, n4 probe: colouring from white to blue from 0 to 30; o probe: colouring from white
to red from 0 to 10). Water molecules within 3.5 A of the ligand are shown. The respective raw data can

be found in the Electronic Appendix (Electronic Appendix/ XIAP/ 5¢3h/).
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To get an idea how the ligand in 5c3h can be further optimised, the respective water thermodynamics
and probe densities of the holo complex can be investigated. In Figure 41, the predicted holo water

thermodynamics in the proximity of the piperazine ring are shown.

L 5c3h holo l’— 5c7a holo
N 7\ \\ </

\

Figure 41: Holo water thermodynamics in XIAP complexes 5c¢3h and 5c7a. Predicted holo water
molecules are coloured by their calculated AnaGp contributions (from blue to red from -2.0 to +2.0 in
units of kcal/mol). Water molecules within 3.5 A of the ligand are shown. The respective raw data can

be found in the Electronic Appendix (Electronic Appendix/ XIAP/) in the respective pdb folders.

Intriguingly, although the respective amine is ideally accommodated by the P1 pocket, 3D RISM-based
algorithms predict the presence of several highly unstable hydration sites in the proximity of the
piperazine ring. Hence, replacement of these rather isolated, unstable hydration sites via introduction of

suitable substituents should be favourable.

Fortunately, a closely related compound with an additional methyl group at the piperazine ring was
synthesised and co-crystallised by Chessari et al., leading to complex structure 5¢7a (Figure 41).126"
Indeed, in this kolo structure, two destabilised water positions are eliminated. The exact influence of
this water replacement on affinity cannot be determined since, in addition to introduction of the methyl
group, the piperidine ring in the hit compound was changed to an indole ring. However, the large overall

gain in affinity (ICso > 495 uM) can be seen as a hint that replacement of the newly introduced unstable

hydration sites has a favourable effect.

In Figure 42, the corresponding c3 probe densities for 5c3h are depicted in comparison with the

respective modified ligand 5c7a. Indeed, there is a large area with solo c3 probe density next to the
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piperidine ring, suggesting there is space to accommodate larger apolar groups in this region.
Consequently, the 5c7a ligand, which contains an indole ring instead of the piperidine ring, nicely
overlaps with this density. Interestingly, at the chosen thresholds, no additional peak could be observed
in the area where the methyl group is added in 5¢7a and which showed clear optimisation potential w.r.t.
water thermodynamics. At the same time, no significant high energy water molecules were predicted in
the region around the piperidine ring (Figure 41). This nicely demonstrates that both approaches, the
water and probe analysis, can complement each other and together provide an in-depth thermodynamic

picture that can be used for rational ligand optimisation and SAR studies.

4 5;:73 holo

/5:3h holo, c3 &

Figure 42: Complex 5c¢3h with holo c3 probe densities (threshold: 10) and complex 5c7a of the modified

ligand. The respective raw data can be found in the Electronic Appendix (Electronic Appendix/ XIAP/
Sc3h/).

In a next step, the ligand of 5c7a was modified by Chessari ef al. via addition of a chlorine substituent
at the 6-position and two methyl groups at the 3-position of the indole moiety, which leads to a
hundredfold improvement w.r.t. inhibition (ICso = 5.5 pM). To see if these or similar modifications
could have been proposed by the water and probe approaches, the respective holo results for 5c7a can
be evaluated: The water analysis (Figure 43) predicts the presence of a newly introduced unstable water
molecule near the six-ring of the indole moiety and thus indeed suggests the addition of a large
substituent at the 6-position. Based on the analysis in 4.1, a halogen atom or a methyl group could be
considered a suitable group, which thus is in nice agreement with the found SAR. Consequently, the
respective analysis on the complex with the modified compound (5¢7c, right panel in Figure 43) indeed
reveals that the unstable water molecule is eliminated in the presence of the chlorine substituent.

Comparison with the respective apo binding site situation shows that the water molecules in the area of
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the chlorine substituent exhibit slightly positive AwyaGp contributions also in the apo form. Thus, the
overall replacement here is roughly in line with the rules derived in 4.1.1, although the trend is not as
pronounced as for the MMP examples in 4.1.3. The hydration sites near the 5-ring in 5c7a, which are
replaced or shifted due to the presence of the methyl groups in 5c7c, show moderate AnyGp

contributions, suggesting that they are not particularly unstable but should be rather easy to replace.

5c¢7a holo 5c7c holo

5c¢7c apo

Figure 43: Holo water thermodynamics in XIAP complexes 5c7a and 5c7c as well as apo water
thermodynamics of 5c7c for comparison. Predicted holo water molecules are coloured by their
calculated AwaGp contributions (from blue to red from -2.0 to +2.0 in units of kcal/mol). The respective
raw data can be found in the Electronic Appendix (Electronic Appendix/ XIAP/) in the respective pdb
folders.
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5c7c holo

Figure 44: Complexes 5c7a with holo c3 probe densities (threshold: 10) and 5c7c of the modified ligand.
The respective raw data can be found in the Electronic Appendix (Electronic Appendix/ XIAP/) in the
respective pdb folders.

The holo ¢3 probe density of 5c7a (Figure 44) shows peaks around the indole moiety, in the area where
the newly introduced methyl groups and the chlorine substituent are located. Thus, the probe density is

again in good agreement with the design strategy by Chessari ef al.

From 5c7¢ to 5¢83 (ICso = 0.16 uM) and to 5m6h (ICsp = 0.15 uM),1*%! rather large modifications are
introduced (addition of a phenyl group and an aliphatic ether group/morpholine amide. In 5c7c¢, (Figure
45) there are respective c3 probe peaks above the indole ring and in the proximity of the chlorine
substituent, which nicely overlap with the newly introduced phenyl ring and the terminal methyl group

of the ether substituent.
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5c7c holo, c3 5¢83 holo

Figure 45: Complexes 5c7c with holo ¢3 probe densities (threshold: 10) and 5¢83 of the modified ligand.
The respective raw data can be found in the Electronic Appendix (Electronic Appendix/ XIAP/) in the
respective pdb folders.

The ligand in 5m6h is not more potent than the one complexed in 5¢83 but bears an alternative
morpholine moiety in the region of the methoxy group. In Figure 46, the 4olo ¢3 and o probe density in
5¢83 is shown. The c3 probe density is mainly located around the methyl group, while the respective o
probe density nicely overlaps with the carbonyl oxygen atom position of the modified substituent. The
o peak in this area is not obvious at first glance since there are no binding site residues in the direct
proximity, and the morpholine moiety in the respective ligand rather points out of the binding site.
However, analysis of the respective crystal structure 5Smo6h and the predicted ~olo water thermodynamics
(Figure 47) reveals the presence of a water molecule near the carbonyl group that has a highly favourable
AnyaGp contribution and bridges hydrogen bonds between the oxygen atom and a near Gln and Trp

residue.

The presented analysis thus shows that the RISM-based water analysis and pharmacophoric probe
densities can be employed for guiding the further optimisation of hit compounds. While the c¢3 probe
density peaks rather reveal overall regions where larger, apolar groups can be added, the o and n4 probe
peaks hint at areas that can be exploited for hydrogen bonds or ionic interactions. As the above presented
example shows, it also reveals less obvious regions where respective groups can undergo bridged
hydrogen bonds via neighbouring water molecules. The respective RISM-based water analysis can be
employed to identify such bridging water molecules but also to reveal specific, often newly introduced
unstable hydration sites which can then be specifically targeted for replacement by tailored

modifications.
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Figure 46: Complex 5¢83 with holo c3 (grey, threshold: 10) and o (red, threshold: 400) probe densities
and complex Sm6h of the modified ligand. The respective raw data can be found in the Electronic

Appendix (Electronic Appendix/ XIAP/) in the respective pdb folders.

Figure 47: Experimental (cyan) and predicted holo water position (colouring according to the
calculated AwaGp contributions from blue to red from -2.0 to +2.0 in units of kcal/mol) in S5m6h that
bridges an interaction between the carbonyl group and an Trp and Glin residue of XIAP. The respective

raw data can be found in the Electronic Appendix (Electronic Appendix/ XIAP/5m6h)
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4.3.2 Bel-xL. — Deriving design strategies for DNA-encoded libraries

As a regulator of apoptosis, Bcl-xL and other proteins of the Bcl2 family are attractive targets for the
treatment of cancer. Abbot Laboratories developed orally available inhibitors of the Bcl-2 family based

on an N-acylsulfonamide scaffold."’

I Démling et al. could show that it is possible to replace this N-
acylsulfonamide scaffold by the a-acylaminocarboxamide backbone of the Ugi reaction (Figure 48,
Figure 49), which is highly attractive due to the relatively fast and easy synthesis and the circumvention

308

of issues concerning intellectual property.%! Furthermore, the Ugi reaction is an attractive synthesis

route for combination with DNA-encoded libraries as designed by Kunig et al.**

However, the respective compounds exhibit binding in the low micromolar range and thus are at least 2
to 3 orders of magnitude less potent than the Abbot compounds.*®®) Hence, it is highly attractive to
optimise the choice and design of the Ugi reaction components to improve the interactions of the

a-acylaminocarboxamide-based compounds in the binding site of Bel-xL.
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Figure 48: Exemplary Bcl-xL N-acylsulfonamide-based inhibitor by Abbot Laboratories (ligand

Z=—0O

1ysi)"1 and a representative Ugi-based compound synthesised by Domling et al®™ (Démling cmpd
11).
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Figure 49: Schematic illustration of the Ugi multicomponent reaction.
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The aim of the work presented in this chapter therefore was to generate respective design strategies for
a Bcl-xL-tailored DNA-encoded library on the basis of two Ugi model compounds (Figure 50) using
RISM-based binding site characterisation. The studies shown here are based on analyses and MD
simulations performed by J. Borchert in the Kast group under guidance of the author.?'% Structures that
were generated within the scope of these studies were used here to perform the RISM-based analyses

introduced in 3.5 and 3.6 to get insights w.r.t. further ligand design.
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Figure 50: Chemical structure of the Ugi model compounds,; compound 1: R1 = H, R2 = Me, R3 = F;
compound 2: R1 = Et, R2 = n-Pr, R3 = H.

Derived from the Abbot inhibitors, the two model compounds contain a biphenyl group and a
phenylsulfanyl group; the latter can be introduced via an amide coupling after the Ugi reaction. The
phenyl ring corresponds to the nitro-phenyl group in the Abbot inhibitors, and the N-acylsulfonamide-
based backbone is replaced by the a-acylaminocarboxamide backbone of the Ugi reaction using different

substituents for the R1 and R2 position.

Bcl-xL is a challenging target with a highly flexible binding site that undergoes large structural changes
upon ligand binding: Overlay of representative structures (Figure 51) shows that the protein adapts
depending on the bound ligand, so that for instance the ligand as bound in complex structure 4c5d?*!!
would collide with the protein’s conformation in the complex structure 1ysi.*”! This high flexibility
makes the structural design of ligands highly challenging since it hampers the use of classical tools like

docking with a rigid protein binding site.
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Figure 51: Flexibility of the Bcl-xL binding site: overlaid structures 1ysi®’” (grey), 2yxjl*'? (green),
4c5dP" (orange), and 4cin’*'¥ (purple) (peptide bound in 4cin not shown).

Therefore, a prerequisite for the RISM-based binding site characterisation w.r.t. Ugi-based compounds
is the availability of suitable protein conformations. Until today, no crystal structure has been solved of
Bcl-xL with an Ugi-based inhibitor. Therefore, the needed binding site conformations especially tailored
towards Ugi-based compounds were generated within the scope of a Bachelor thesis by J. Borchert under
guidance of the author using a multistep workflow comprising MD simulation and docking (Figure 52).
In this workflow, an MD simulation of the complex structure 1ysi with an N-acylsulfonamide-based
inhibitor (Figure 48) from which the respective Ugi model compounds were derived was performed
first. The respective trajectory was clustered, and a representative structure of the highest populated
cluster was used for docking of the two Ugi model compounds (Figure 50) into Bcl-xL. The top docking
poses of both Ugi model compounds were then again submitted to MD simulation, and a representative

structure of the highest populated cluster was determined.”*!"’
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1ysi from PDB (Bcl-xL + Abbot ligand) ‘

Simulation, Clustering

Representative structure with Abbot ligand

Delete Abbot ligand
Docking of Ugi model compounds

Docking poses of Ugi model compounds in Bcl-xL

Simulation, Clustering

‘ Representative structure with Ugi model compounds

Figure 52: Overview of the workflow that was employed by J. Borchert to obtain complex structures of

the Ugi model compounds in Bcl-xL.

In this work, the representative structures of Bcl-xL with two Ugi-type model compounds obtained by
J. Borchert’s studies were used for RISM-based binding site characterisation with the aim to draw design
conclusions w.r.t. the building blocks for the different components of the Ugi reaction, i.e. the carboxylic
acid, amine, aldehyde, and isonitrile part (s. Figure 49), as well as the sulfanylphenyl part which is added
after the Ugi reaction via amide coupling. For instance, it is important to characterise where the
respective substituents are located within the binding site and what kind of interactions they can undergo.
In addition, for use of the Ugi-based compounds in DNA-encoded libraries, an anchor position for a
linker to the DNA barcode as unique identifier of the compounds it needed. The positioning of this linker
in the molecule is of utmost importance since addition at a region which is deeply buried in the binding
site or undergoes vital interactions with a protein residue would impede binding and would thus generate
false negatives during the experimental screening. Therefore, finding the optimal position where a linker
can be introduced in all library compounds was also part of the studies carried out by J. Borchert and

the further analysis in this work.

In Figure 53, the input structures for the MDs (white) carried out by J. Borchert and the representative
structure of the highest populated cluster of the resulting MDs (pale green) are shown for a) the Abbot
inhibitor from lysi, b) the Ugi model compound 1 docked into the representative structure of the Abbot
MD, and ¢) the Ugi model compound 2 docked into the representative structure of the Abbot MD (s.

3.6). It has to be noted that, due to introduction of the R1 substituent, model compound 2 has a chirality
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centre, and both enantiomers can be obtained by the Ugi reaction. In J. Borchert’s work, all simulations
were carried out with the R-enantiomer for which the ethyl group nicely points out of the binding pocket
in the starting conformation. Therefore, the analyses presented here are also limited to the R-enantiomer

for this compound.

Figure 53: Overlay of MD starting structures (white) and the representative structure of the highest
populated cluster of the MD for a) the Abbot inhibitor in lysi; b) Ugi model compound 1 in the
representative structure of the Abbot inhibitor MD; c¢) Ugi model compound 2 in the representative
structure of the Abbot inhibitor MD. The respective raw data can be found in the electronic appendix

(Electronic_Appendix/Bcl-xL/) in the respective structure folders (1ysi, rep_1ysi, rep_ugi, rep_ugi 2).

Comparison of the structures shows that during the MD simulation, all three ligands undergo rather large
conformational changes. In case of the Abbot ligand, the phenylsulfanyl group switches from a stacked
conformation to an extended conformation, implying that this region is rather flexible. The docking
poses of both Ugi ligands in the representative structure of the Abbot MD exhibit a similar, elongated
conformation, while in the representative cluster structures, the phenylsulfanyl group assumes a
different conformation. In addition, also the a-acylaminocarboxamide backbone and the neighbouring
ring system show rather large structural changes compared to the starting structure, emphasising that the

Bcl-xL binding site is difficult to tackle when neglecting flexibility.

To examine how the presence of the different ligands and their different conformations influence the
overall thermodynamic binding site profile, RISM-based water thermodynamics and pharmacophoric
probe densities were calculated for the MD starting structures and representative cluster structures for
all three ligands. The resulting apo water molecules and interpolated probe densities are given in Figure

54 to Figure 56.

In the following, the respective results will be discussed to draw conclusions for the optimal choice of
the respective building blocks, i.e. the isonitrile, carboxylic acid, aldehyde, and amine part as well as

the amide coupling part containing the phenylsulfanyl moiety.
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1ysi 1ysi MD rep

Figure 54: Apo water thermodynamics and interpolated apo c3, n4, and o probe g-function values for
Bcl-xL structure 1ysi as taken from the PDB (left) and for the respective cluster representative of the
MD simulation with the native ligand (vight). Water molecules within 3.5 A of the ligand are shown and
coloured by their calculated AnuGp contributions (from blue to red from -2.0 to +2.0 in units of
kcal/mol); probe colouring: c3 - from white to grey from 0 to 3; n4 - from white to blue from 0 to 50; o
- from white to red from 0 to 0.3. The different absolute ranges result from the charge of the protein (-
12), leading to higher densities for the positively charged n4 probe and lower ones for the o probe. The
respective raw data can be found in the electronic appendix (Electronic_Appendix/Bcl-xL/) in the

respective structure folders (lysi, rep 1ysi).
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Figure 55: Apo water thermodynamics and interpolated apo c3, n4, and o probe g-function values for
Ugi model compound 1 as docked into the representative structure of lysi (left) and for the respective
cluster representative of the MD simulation (right). Water molecules within 3.5 A of the ligand are
shown and coloured by their calculated AwaGp contributions (from blue to red from -2.0 to +2.0 in units
of kcal/mol); probe colouring: c3 - from white to grey from 0 to 3; n4 - from white to blue from 0 to 50;
o0 - from white to red from 0 to 0.3. The different absolute ranges result from the charge of the protein
(-12), leading to higher densities for the positively charged n4 probe and lower ones for the o probe.
The respective raw data can be found in the electronic appendix (Electronic_Appendix/Bcl-xL/) in the

respective structure folders (rep_lysi, rep_ugi 1).
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Ugi 2 docked Ugi 2 MD rep

Figure 56: Apo water thermodynamics and interpolated apo c3, n4, and o g-function values for Ugi
model compound 2 as docked into the representative structure of 1ysi (left) and for the respective cluster
representative of the MD simulation (right). Water molecules within 3.5 A of the ligand are shown and
coloured by their calculated AnuGp contributions (from blue to red from -2.0 to +2.0 in units of
kcal/mol); probe colouring: c3 - from white to grey from 0 to 3; n4 - from white to blue from 0 to 50; o
- from white to red from 0 to 0.3. The different absolute ranges result from the charge of the protein
(-12), leading to higher densities for the positively charged n4 probe and lower ones for the o probe.
The respective raw data can be found in the electronic appendix (Electronic_Appendix/Bcl-xL/) in the
respective structure folders (rep _lysi, rep_ugi 2).
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4.3.2.1 Carboxylic acid part

Inspired by the Abbot inhibitors, the carboxylic acid building block introduces a biphenyl moiety into
the Ugi model compounds. While the eastern part of all investigated ligands (based on the orientation
in Figure 50 and Figure 51), especially the region around the phenylsulfanyl moiety, shows large
structural changes from MD starting structure to the representative cluster structure (Figure 53 to Figure
56), the biphenyl ring seems to be a stable anchor. As can be seen in Figure 57 for the representative
structure of the simulations with the Abbot inhibitor, and as implied by the throughout high interpolated
c3 probe values in all structures (Figure 54 to Figure 56), it is located in a large, hydrophobic pocket

with multiple high energy apo water sites.

w

water

Figure 57: Close-up of the representative structure of the highest populated cluster for the MD of the
Abbot inhibitor with predicted apo water molecules within 3.5 A of the ligand coloured by their
calculated AnyuGp contributions (left; from blue to red from -2.0 to +2.0 in units of kcal/mol) and the
apo c3 probe density (right, threshold: 25). The biphenyl moiety corresponding to the carboxylic acid
building block of the Ugi reaction is highlighted with a green circle in the right panel, the nitro group
from the isonitrile building block in yellow. Surface colouring according to element identity. The
respective raw data can be found in the electronic appendix (Electronic_Appendix/Bcl-xL/) in the

respective structure folders (rep_lysi).

According to the probe matching, this part of the ligand thus already perfectly matches the
thermodynamic binding site profile, which might also be a reason for the high stability of this ligand
part w.r.t. the simulations. The fluorine substituent, which is present in the Abbot inhibitor and Ugi

model compound 1, coincides with a ¢3 peak maximum and an apo “unhappy” water molecule and thus
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can be considered to nicely match the properties of the surrounding pocket. Interestingly, regarding the
results from 4.1.1, the respective part of the binding pocket represents another example where
replacement of “unhappy” water molecules by an apolar ligand group is presumably highly favourable,
as is also suggested by the matching of the water properties and the ¢3 probe density. Noteworthily, this
correlation of “unhappy” waters and c3 probe density peaks in this part of the binding site can be
observed for all investigated structures, both the crystal structure and docking poses and the
representative MD structures. This again emphasises the large relevance that displacement of “unhappy”

hydration sites by apolar ligand substituents can have for ligand binding.

W.r.t. library design, it is therefore advocated to use the biphenyl moiety with an apolar substituent in
the para-position as a stability anchor with only minor modifications. Potentially, a polar group could
be added in an ortho-position to the backbone amide: The probe analysis reveals high interpolated o and
n4 g-function values in these ortho-positions for both structures of the Abbot inhibitor and for the
docking poses of both Ugi model compounds. An Arg and Tyr sidechain in the proximity could
potentially be targeted for ionic interactions or hydrogen bonds, for instance by adding a polar
substituent or by introducing a heteroatom into the biphenyl system. In any case, the linker for use in
DNA-encoded libraries should not be positioned in this part of the molecules since it would impede the

stable binding in the hydrophobic groove.

4.3.2.2 Isonitrile part

The isonitrile building block introduces an aromatic ring system into the Ugi model compounds at which
the phenylsulfanyl moiety is added via linker. In contrast to the Abbot inhibitors, this aromatic ring is

not decorated with a nitro group in the Ugi model compounds.

In case of the Abbot inhibitor, the respective ring system adopts a similar orientation and location in the
crystal structure and the representative MD structure (Figure 54). For the Ugi model compounds, the
orientation and position of the phenyl ring show larger changes between the docking pose and the MD
structure (Figure 53), which might be a hint that the respective part of the molecule is not as optimally

bound as in the Abbot inhibitor.

Analysis of the water thermodynamics and probe densities in all used Bcl-xL structures shows that,
similar to the biphenyl groove, the binding site region which accommodates the respective phenyl ring
is rather hydrophobic and contains many high-energy water molecules. Especially the nitro group in the
Abbot inhibitor shows high interpolated ¢3 probes g-function values and low values for the o and n4
probe. A close-up of the respective region in the representative cluster structure with the corresponding
apo water molecules and the regions of maximum c3 probe density is shown in Figure 57. It reveals that
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the ring with the nitro group (yellow circle in Figure 57) is indeed located in a quite deep, hydrophobic

pocket with two high energy apo water positions that coincide with the 4olo oxygen positions.

This is an interesting finding w.r.t. to further library design since the nitro group in the Abbot ligand
was not introduced based on structural design but as a requirement for the synthesis route to modulate
the reactivity of the ring system. The RISM-based analysis implies that this group is well suited for
binding in this area in terms of steric properties but not in terms of chemical properties. Neither in the
starting structure nor in the representative MD structure, suitable polar interaction partners are found in
the proximity of the nitro group. Thus, substitution of the nitro group with a substituent which is similar
in size but more apolar, for instance a methyl or halogen substituent, might still improve the ligand’s
affinity since it would better match the thermodynamic profile. As the nitro group is not necessary for
the synthesis route of the Ugi compounds, this position offers a promising region for introducing
modifications and improving the reduced affinity of the Ugi type compounds compared to the Abbot
compounds. Due to the adaptivity of the binding site, it might even be possible to further exploit the
respective pocket with larger groups. A search in the PDB revealed that there is already a published
inhibitor which contains a SO,CF; substituent in the respective position, with the near Tyr residue being

flipped to accommodate the larger group (pdb 6qgj, Figure 58).

vA!

Figure 58: Bcl-xL crystal structure 6qgj with a modified substituent at the phenyl ring adjacent to the

sulfone group.
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W.r.t. linker placement, the respective ring system might be an option if sufficient fixation is achieved
via a substituent. In the Abbot complex, the carbon atoms in para and meta-position to the nitro group

point out of the binding site, thus offering possible positions for adding a linker chain.

4.3.2.3 Amine and aldehyde part

The R1 and R2 substituents in the Ugi backbone are introduced via the aldehyde and amine component
of the Ugi reaction. In the two model compounds, only minimal substituents in form of H, Me, Et, or n-
Pr were used in analogy to the Abbot inhibitor which does not contain corresponding substituents since
the acylsulfonamide backbone is located in the respective region. However, both positions might thus
offer possibilities to exploit areas of the binding site not accessible to acylsulfonamide-based

compounds.

A close-up of the respective region the representative MD structures of both model compounds together
with the c3, n4, and o probe density is shown in Figure 59. For both compounds, the respective R1 and
R2 positions are oriented in a way that they point out of the binding site. This is promising w.r.t. linker
placement since longer substituents could likely be added at both positions without hindering the overall
binding of the molecule. In the representative structures, the substituents at the R2 position point towards
a rather hydrophobic area on the surface of Bel-xL which exhibits a lot of ¢3 probe density and minor o
and n4 probe peaks at the rim of the area. Considering the adaptivity of the Bcl-xL binding site, this
region could potentially be targeted by larger R2 substituents. This would allow to exploit a part of the
protein surface which cannot be addressed by the Abbot-type inhibitors and thus is a promising strategy
to improve binding affinity of the Ugi-based inhibitors. Therefore, the R1 position should be the
preferred choice for addition of the linker, while a variety of larger substituents should be probed at the

R2 position.

W.r.t. the backbone, it is noteworthy that, for model compound 2, the carbonyl oxygen atom nicely
matches an o probe peak both in the docked and the representative structure. Although the predicted
water molecules in this area exhibit rather high AnGp contributions (likely due to the overall rather
apolar environment), the presence of an oxygen atom seems to be favourable in this area since it can
undergo a hydrogen bond with a near Asn residue (Figure 54). Such a hydrogen bond between this Asn
residue and a sulfone oxygen atom can also be observed in the representative MD structure of the Abbot
compound. This indicates that the Ugi backbone is able to undergo stable, polar interactions with the

Bcl-xL binding site similar to the Abbot compounds.
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Ugi 1 MD rep Ugi 2 MD rep

Figure 59: Close-up of the Ugi back bone part for the representative cluster structures of Ugi model
compound 1 and 2 with apo c3 (threshold: 10), n4 (threshold: 200), and o probe (threshold: 10) densities
of the binding site. The respective raw data can be found in the electronic appendix

(Electronic_Appendix/Bcl-xL/) in the respective structure folders (rep_ugi 1, rep_ugi 2).
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4.3.2.4 Amide coupling part

The part containing the phenylsulfanyl moiety is not introduced directly in the Ugi reaction but is added
to the compound via a subsequent amide coupling. For both the Abbot and the Ugi-based compounds,
this part exhibits by far the highest flexibility, implying that it does not undergo stable interactions.
Together with the adaptive character of the Bcl-xL binding site, this makes rational design of this
molecule part rather challenging. For the whole molecule part, there are no hydrogen bonds observed in
any of the starting or representative MD structures. Introducing groups capable of forming stable polar

interactions might therefore be a promising strategy for fixating this part of the molecule.

The interpolated probe densities (Figure 54 to Figure 56) in the respective molecule part show high n4
probe densities, suggesting that introduction of a polar or charged nitrogen group in this part of the
molecule can serve as a stability anchor. Literature search revealed that there are indeed several
published Bcl-xL inhibitors (2yxj, 3wiz, 4qvx, 6qgg, 6qgj) which contain a ternary amine in the
respective region. Analysis on two representative examples (Figure 60, 2yxj, 4qvx) shows that the
position of the amine nicely coincides with n4 probe peaks in the proximity of Asp residues in both
cases. However, the two ligand parts have different shape and size, and the protein conformation and
Asp side chain orientation also differ, again highlighting that the Bcl-xL binding site can accommodate
groups of differing chain length, shape and size. It is therefore advocated to use this part of the molecule
as a diversity region. Various substituents should be tested here, with polar or charged nitrogen groups

in different positions to fully exploit the adaptivity of the binding site.

147



Figure 60: Structures and interpolated n4 probe density (colouring from white to blue from 0 to 50) for
2yxj and 4qvx. The respective raw data can be found in the FElectronic Appendix

(Electronic_Appendix/Bcl-xL/) in the respective structure folders (2yxj, 4qvx).

4.3.2.5 Summary of design proposals

The RISM-based binding site profiles for the Bcl-xL conformations tailored towards Ugi-based
compounds yielded valuable information for the design of a respective combinatorial, DNA-encoded
library. As summarised in Figure 61, it was found that the linker can be added at the R1 position via the
aldehyde component without hampering the binding of the molecule. The biphenyl moiety, as
introduced by the carboxylic acid component, should be used as a stability anchor, potentially with the
introduction of polar groups in the ring system adjacent to the backbone. In the isonitrile moiety, an

apolar substituent should be introduced to exploit the apolar pocket which, in the complex with the
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Abbot inhibitor, accommodates the nitro group. Diversity can be introduced at the R2 position via the
amine component of the Ugi-reaction and via the eastern part of the molecule which is added to the
isonitrile part via amide coupling. The group at the R2 position could target so far unexploited areas on
the surface of Bcl-xL by for instance addressing Tyr159. In the amide coupling part, a large variety of
substituents can be introduced. They should however contain polar or charged nitrogen groups to target
the region containing two Asp residues that could be exploited for forming hydrogen bonds or a salt

bridge to fixate the molecule in the binding site.

While some of these results could also have been derived from the analysis of the original crystal
structure 1ysi alone (good matching of the biphenyl moiety, substitution proposal for the isonitrile part),
the inclusion of representative structures from respective MD simulations added valuable insights w.r.t
conformational stability. For instance, comparison between the starting structures and the representative
structures confirmed the high stability of the biphenyl moiety and the flexibility of the amide coupling

part. In the future, however, the proposals made here have to be validated by experimental data.

a Diversity region: branched substituents b
Bulky group for containing polar nitrogen groups

exploiting untargeted
surface parts o /@
O D 6 Nkﬂs
N l ,
il\u

Introducing substituent for
targeting apolar pocket

Stability anchor

Linker

Figure 61: a) Design strategy for the Ugi-reaction based combinatorial DNA-encoded library tailored
towards Bcl-xL. b) Representative structure of the highest populated cluster for the MD of Ugi model

compound 2.
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4.3.3 TEAD — Investigating large protein-protein-interfaces

The interaction between the transcriptional enhancer factor domain (TEAD) and the co-transcription
factor Yes-associated protein (YAP) plays an important role in the Hippo pathway which was found to

3141 Disrupting this interaction is therefore an attractive

be dysregulated in many types of cancer.!
potential therapeutic strategy. However, the PPI is a challenging target since the interface is large and
spans over different regions, involving dozens of amino acids (Figure 62), so that so far only few small

molecule inhibitors are known.

Via screening of DNA-encoded indole-focused Ugi peptidomimetics, the Brunschweiger group could
identify compounds containing a Cl-indole moiety that inhibit the interaction of human TEAD4 with

314 The aim of the presented study therefore was to

YAP with ICs values in the low micromolar range.!
derive reasonable predictions where and how the respective compounds might bind, and to derive a
design strategy for another indole-focused DNA-encoded library that allows for synthesis via click
reaction. Therefore, at first, the apo binding site of TEAD as well as complexes with known peptide
binding partners were characterised to elucidate respective SAR trends. Based on the gained insights,
constrained docking studies of model compounds for a DNA-encoded library using click reaction

provided by the Brunschweiger group were carried out to predict the potential binding modes and to

make suggestions for building block selection.

4.3.3.1 Characterizing the TEAD binding site and interactions with peptides

TEAD interacts with YAP at two distinct sites on its surface, one binding amino acids 61-73, which

exhibit a helical conformation, and one binding the amino acids 85-99, which exhibit a Q-loop

315

conformation.®!! An overview of the respective interaction and a close-up of the Q-loop region are

shown in Figure 62.

A hit fragment identified from experimental screening was shown to bind in a pocket where Phe69 of

YAP is accommodated in complex with hTEADA4.1*'% In addition, TEAD also contains a central pocket

314

where it is palmitoylated and where several small molecules are known to bind.?'#! This large number

of potential interaction sites makes it hard to make a reasonable prediction where and how the indole-

314]

containing hit compounds by Kunig ef al.*'*l might bind. The natural Y AP peptide does not contain any

Trp residues but several other apolar residues like Phe, Met and Ile.
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Figure 62: Binding site characterisation of hTEAD4 based on complex structure 6q2x (TEAD4-YAP
interaction) with close-up of the Q-loop region. Predicted apo water sites (colouring according to
AwaGp contributions from blue to red from -2.0 to +2.0 in units of kcal/mol) as well as c3, n4, and o
probe densities are shown (thresholds: c3 - 25; n4 - 100; o - 40). The respective raw data can be found

in the electronic appendix (Electronic Appendix/ TEAD/ 6q2x).
151



However, fortunately, Furet et al. performed structure-based design of several peptides that bind at the
Q-loop region and inhibit the YAP-TEAD interaction in the nanomolar range.*'*! They achieved this by
introducing unnatural amino acids, including the mutation of Met86 to Trp and 6-Cl-Trp, which led to
an approx. 3- and 12-fold increase in potency compared to the original peptide. Due to the massive
improvement in potency upon introduction of 6-CI-Trp, it is reasonable to assume that the screening hits

by Kunig et al. are likely to bind in the same region via the Cl-indole moiety.

To further investigate the respective binding site and draw conclusions about binding mode and SAR,
RISM-based calculations of the binding site water molecules and pharmacophoric probe densities were

performed on both the apo TEADA4 protein and the YAP-TEAD4 complex (Figure 62).

As shown in Figure 62, the respective Q-loop region is located in a hydrophobic groove surrounded by
polar residues. As a consequence, the apo site contains several high energy water sites and c3 probe
density peaks, whereas o and n4 probe density is found at the rim of the region. In the natural YAP-
TEAD4 complex, Met86, Leu91, and Phe95 are accommodated in the hydrophobic groove. However,
when studying this cavity in detail (Figure 63), as Furet et al. did for structure-based design of the

3131 it is apparent that especially the Met residue does not fully exploit the cavity. Results of

peptides,!
3D RISM-based calculations on the YAP-TEAD4 complex show that, in the presence of YAP, there is
still considerable c3 probe density in the deeper regions of the groove as well as multiple high energy

water sites which are trapped in the remaining space (Figure 63).

Overlay with the structure including 6-Cl-Trp shows that especially the chlorine overlaps with the
biggest c3 probe peak in the region and with a high energy water site which thus is replaced in the
complex with the modified peptide (Figure 63). This release of a high energy water molecule might also
explain the large gain in affinity when switching from Trp to CI-Trp. This, again, is a strong indication

that the Met86 cavity is indeed the anchor region for the respective peptidomimetics.
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Figure 63: Apolar cavity in the Q-loop region of the YAP-TEAD4 interaction in structure 6q2x. Upper
left: apo c3 probe density (threshold: 25),; upper right: holo c¢3 probe density (threshold: 25); bottom
left: holo water thermodynamics (colouring according to A4aGp contributions from blue to red from -2.0
to +2.0 in units of kcal/mol); bottom right: overlay with the modified peptide in 6q36 (green) and apo
c3 probe density (threshold: 25). The respective raw data can be found in the electronic appendix

(Electronic Appendix/ TEAD/ 6q2x).

Encouraged by the agreement of this thermodynamic analysis and the SAR trends observed by Furet et
al., two other sites were analysed where modifications were introduced. Pro92 was modified to Hyp to
form a hydrogen bond with a backbone carbonyl (Figure 65). The RISM-based analysis shows that the

hydroxyl group replaces a water molecule with average thermodynamic properties in a region where a
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small o probe density peak can be observed. Here, the affinity gain thus likely originates directly from

the hydrogen bond and not from the release of a water molecule.

Figure 64: Pro to Hyp modification from 6q2x to 6q36. Upper left: apo o probe density (threshold: 40);
upper right: holo o probe density (threshold: 40),; bottom left: holo water thermodynamics (colouring
according to A,aGp contributions from blue to red from -2.0 to +2.0 in units of kcal/mol); bottom right:
overlay with the modified Hyp residue in 6q36 (green). The respective raw data can be found in the

electronic appendix (Electronic Appendix/ TEAD/) in the respective pdb folders.

Another modification is the substitution of Pro98 to a Glu residue (Figure 65). Here, the newly
introduced carboxyl group occupies an area with high o probe density in both the apo TEAD structure

and the holo TEAD-YAP complex. In addition, the oxygen atoms coincide with the positions of two
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“unhappy” water molecules in the TEAD-Y AP complex. This implies that addition of the carboxylic

group in this area is favourable both because of the improved interaction with the TEAD binding site

residues and because of the release of the respective high energy water molecules.

Figure 65: Pro to Glu modification from 6q2x to 6q36. Upper lefi: apo o probe density (threshold.: 40);
upper right: holo o probe density (threshold: 40); bottom left: holo water thermodynamics (colouring
according to A4, Gp contributions from blue to red from -2.0 to +2.0 in units of kcal/mol); bottom right:
overlay with the Glu residue in 6q36 (green). The respective raw data can be found in the electronic

appendix (Electronic Appendix/ TEAD/) in the respective pdb folders.

All in all, the retrospective study on the modified peptide thus show that the water thermodynamics and

probe densities are well-suited to explain the respective SAR trends, suggesting that their combination
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with docking studies should be a promising approach to elucidate potential binding modes of the indole-

containing model compounds and to propose further strategies for a screening library design.

4.3.3.2 Docking of peptidomimetics

To guide the selection of Cl-indole containing compounds for a DNA-encoded library, a set of 48
compounds as proposed by the Brunschweiger group (list in Appendix, 7.4) was docked into the TEAD4
structure 6q36 (poses can be found in the Electronic Appendix (Electronic Appendix/TEAD/Docking/)).
The core structure of the compounds in the data set and the structures of used substituents are shown in
Figure 66. All molecules contain the 6-Cl-indole moiety which is also present in the modified peptide
of Furet ef al.,*'! with an exit vector at the 2-position containing a triazole moiety, thus allowing for

synthesis via click reaction.
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Figure 66: Core Structures and used substituents of the compounds in the TEAD4 data set provided by

the Brunschweiger group.
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Since the 6-Cl-indole moiety was shown to be a key factor for the enhanced affinity of the modified
peptide, it was used as a constrained anchor position for the docking experiments. The resulting poses
were then then evaluated w.r.t. a consensus ranking based of the summed ranks according to
conventional ChemPLP score, a normed ChemPLP score per heavy atom, and the ligand-probe matching
score as presented in 4.2. This way of ranking was chosen to achieve an optimal balance between the

scoring metrics and to prevent the favouritism of especially large or small compounds in the data set.

Figure 67 shows an overview of the binding site in the respective structure 6q36 and an overlay of the
bound peptide with the docking pose of the top ranked molecule for clarity. The docking poses of the
six top ranked molecules are shown in Figure 68 in the same orientation as in Figure 67. The

corresponding scores and ranks of all molecules are listed in Table 26.

It is noteworthy that, with exception of rank 2, the predicted binding modes are in good agreement with
each other, with the triazole-linked branch of the molecule pointing out of the hydrophobic groove
flanked by two Glu residues, while the second branch is located near Lys273. This was also observed
for most of the other molecules (/Electronic_ Appendix/ TEAD/ Docking/). Considering the rather large
number of rotatable bonds in the molecules and the large binding site, this is a promising finding w.r.t.

the reliability of the docking experiment.

Interestingly, as can be seen in the overlay of the top ranked pose with the peptide from 6q36 (Figure
67), the docking predicts the molecules’ triazole-linked branch to occupy a region of the binding site
that is not exploited by the peptide, while the branch containing the R2 substituent is predicted to lie in
the same area as a Pro residue in YAP. The large hydrophobic groove that accommodates the Phe and
Cba residues of the peptide in 636 is not occupied in the respective docking poses, which however

seems reasonable due to the rather polar character of the compounds.

W.r.t. the R2 substituent, the consensus scoring shows a strong preference for an amino group: Four of
the six top ranked compounds, rank 1, 3, 4, and 5, contain the amino substituent, and in all cases it is
predicted to lie at the polar rim of the hydrophobic pocket near Glu391 so that a salt bridge can be
formed. In the compound on rank 6, the R2 substituent is a succinate-tBu-ester which is predicted to lie
in the area where the terminal Pro residue of the modified YAP-peptide is located in 6q36. Due to the
length of the succinate chain, the ester group extends towards Lys273 and can thus form a hydrogen
bond via the carbonyl oxygen atom. The respective ester was also present in the hit compounds by Kunig

et al. which however contained a different core structure.’!4
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Figure 67: Apo probe densities in 6q36 (thresholds: c3 - 25; n4 - 100; o - 40) (upper left and bottom
left) and overlay of the respective bound peptide with the top ranked docking pose for the Brunschweiger
compounds (upper right and bottom right). The respective raw data can be found in the electronic

appendix (Electronic_Appendix/ TEAD/ 636/ and /Electronic_Appendix/ TEAD/ Docking/).
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Figure 68: Docking poses of the six top ranked molecules of the TEAD4 data set provided by the

Brunschweiger group in the binding site of 6q36. The respective raw data can be found in the Electronic

Appendix (/Electronic_Appendix/ TEAD/ Docking/).
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Table 26: Scores and corresponding ranks for the docked compounds provided by the Brunschweiger

group according to conventional ChemPLP score, normalized ChemPLP score, the ligand-probe

matching score Spose, and a resulting consensus rank (generated by summing up the ranks of all three

individual scores and sorting in ascending order). The respective raw data (poses and scores) can be

found in the electronic appendix (/Electronic_Appendix/ TEAD/ Docking/). A plot of the conventional

ChemPLP scores and normalized ChemPLP scores against the ligand-probe matching score Spose is

provided in the Appendix (7.8).

Cmpd ChemPLP ChemPLP/N(HA) consensus
score rank score rank score rank rank
ml 71 39.71 48 2.65 1 0.231 9 13
ml0 61 70.14 18 2.13 4 0.319 4 1
mll 14 70.00 19 1.94 13 0.192 21 9
ml2 91 56.33 46 2.09 8 0.197 18 24
ml3 29 63.18 37 2.18 2 0.227 10 7
ml4 94 56.33 47 1.48 43 0.135 41 48
ml5 76 58.82 42 1.96 12 0.586 1 10
ml6 90 64.68 33 1.70 29 0.155 34 42
ml7 24 64.80 31 2.09 6 0.245 7 5
ml8 &3 65.21 28 1.86 15 0.115 45 35
ml9 11 62.31 38 1.64 33 0.200 16 34
m2 20 58.39 43 2.16 3 0.183 25 23
m20_59 67.34 25 1.37 47 0.174 28 43
m21 95 65.10 29 1.59 37 0.141 39 44
m22 54 74.30 9 1.52 41 0.162 29 30
m23 2 63.19 36 1.50 42 0.091 48 47
m24 35 60.70 41 2.02 9 0.217 12 16
m25 93 74.10 10 1.61 36 0.108 46 39
m26 31 63.81 34 1.39 46 0.213 13 40
m27 43 73.13 12 1.56 39 0.138 40 38
m28 82 84.48 1 1.54 40 0.200 17 14
m29 32 64.85 30 1.47 44 0.226 11 33
m3 38 65.39 27 1.72 27 0.145 35 36
m30 43 69.33 21 1.58 38 0.202 15 25
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Cmpd ChemPLP ChemPLP/N(HA) Spose consensus

score rank score rank score rank rank

m31 6 76.88 5 1.79 18 0.105 47 21
m32 84 82.70 2 1.80 17 0.243 8 2
m33 9 75.47 8 1.68 32 0.157 30 22
m34 78 72.49 13 1.69 30 0.156 33 27
m35 3 58.29 44 1.94 14 0.182 26 32
m36 29 73.22 11 1.79 19 0.191 22 8
m37 12 76.37 6 1.74 25 0.143 37 19
m38 93 72.15 14 1.68 31 0.157 31 28
m39 15 79.60 4 1.73 26 0.141 38 20
m4 77 69.60 20 1.74 23 0.322 3 6
m40 78 79.65 3 1.63 35 0.120 44 31
m41 80 75.61 7 1.84 16 0.156 32 11
m42 87 67.78 24 1.41 45 0.249 5 26
m43 52 61.00 40 1.33 48 0.486 2 37
m44 7 63.46 35 1.98 11 0.194 19 18
m45 57 57.40 45 1.74 24 0.133 42 46
m46 58 61.83 39 1.63 34 0.143 36 45
m47 22 68.62 22 1.72 28 0.126 43 41
m48 86 72.12 15 1.76 20 0.178 27 17
mS5 42 71.46 16 1.74 22 0.194 20 15
moé6 4 65.62 26 2.12 5 0.245 6 3
m7_70 68.34 23 2.01 10 0.188 23 12
m8 3 71.07 17 2.09 7 0.208 14 4
m9 90 64.73 32 1.75 21 0.185 24 29

Thus, the consensus scoring clearly advocates the use of polar substituents for R2 to target the charged
residues Lys273 and Glu391 at the rim of the binding site. This might explain the flipped binding mode
which is predicted for the compound on rank 2: Here, the R2 substituent is a rather hydrophobic niflumic
acid moiety which could not undergo respective polar interactions. Rather, it is predicted to extend over
the rim towards another hydrophobic area, so that instead the R1 branch is positioned near Glu391 and

Lys273.
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W.r.t. to the R1 substituents, the consensus scoring shows a slight preference for the imidazopyridine,

34 Like the niflumic acid moiety in the rank 2

which was also present in the initial hits by Kunig ef al.!
molecule, it extends over the rim to a hydrophobic area where the methyl substituent nicely coincides
with a c3 probe density peak (Figure 67). A similar binding mode is predicted for the thiazole substituent
bearing an isopropyl group, for the oxazole substituent with a phenyl group, and for the azepane

substituent. In case of the latter, the positively charged amine lies in an area with high n4 probe density

between Glu416 and Glu391, thus potentially allowing the formation of salt bridges.

Thus, the presented study was able to propose a reasonable, potential binding mode for the molecules
in the respective library, using the assumption that the Cl-indole moiety of the respective compounds
binds in the same region as the Cl-indole of the modified YAP peptide. Given the predicted poses, the
consensus scoring suggests to combine polar R2 substituents with rather hydrophobic R1 substituents
to build compounds which can optimally target the area around the polar rim of the YAP binding site.
For targeting the hydrophobic groove of the binding site, which is occupied by apolar residues of the

Y AP peptide, additional exit vectors or substituents at the indole moiety could be added.

Although detailed experimental affinity data and crystal structures will be needed to validate these
predictions, the presented case study showed how the RISM-based water analysis and probe densities
can be used to explain SAR trends for challenging PPI targets and to guide the design and synthesis of

suitable screening candidates.
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5. Summary and outlook

In this work, novel algorithms and workflows were developed that now allow to directly convert primary
results of 3D RISM calculations into interpretable parameters — and ultimately a score — to guide the

structure-based design of a ligand for a given protein target.

The first part of this work focused on the thermodynamic properties of binding site water molecules and
their influence on ligand binding and ligand affinity. Building on previous work within the Kast group,
a framework was developed that does not only permit to determine the AnyaGr contributions of specific,
predicted hydration sites but to directly map apo water thermodynamics onto atoms of bound ligands.
This is a very powerful tool for SBDD since it opens up the possibility to directly correlate binding site
water thermodynamics with structural ligand features and even with ligand affinity, which was not

possible in such a direct and convenient way before.

To ensure a meaningful and statistically significant analysis, the developed approaches were applied
onto a large data set comprising several thousand protein ligand complex structures — an order of
magnitude that has, to the best knowledge of the author, not yet been covered in published studies using
any other approaches related to water thermodynamics in binding sites. A key finding from the analysis
in this work was that the thermodynamic properties of a given hydration site are coined by the precise
microenvironment and cannot be directly connected to experimental parameters like B-factors. Hence,

approaches as presented in this work are needed to gain such information.

A key part of this work then was to correlate apo water thermodynamics with ligand replacement. Water
molecules were characterised as “happy” or “unhappy” depending on whether they exhibit a favourable
or unfavourable contribution to the total free energy of hydration of the protein, AnyaGp, as calculated by
the 3D-RISM based algorithms. The analysis revealed that, although “happy” and “unhappy” water
molecules are replaced alike within the whole data set, replacement of more “unhappy” hydration sites
favourably correlates with ligand binding affinity and druggability. Following this result, replacement
preferences for different elements and atom types were investigated. By then correlating these found
trends with provided binding affinity data, a hint towards a hidden bias in the data set was revealed: The
correlation with ligand affinity showed that replacement of a water molecule with an oxygen atom is not
always optimal but rather depends on the specific thermodynamic properties of the targeted hydration
site. For instance, hydroxyl groups should be used to target “happy” water molecules while apolar
substituents should be used to replace “unhappy” water molecules. To illustrate the findings from the
large-scale analysis, several case studies of MMPs were presented for which both the apo and /holo water

thermodynamics can be used to explain — at least to a certain extent — the affinity differences between
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the closely related molecules. In the future, the “replacement rules” revealed in this work can be

employed to lead the rational design and optimisation of ligands for any given protein target.

Apart from the direct impact on rational drug design, the presented study also impressively demonstrated
that some trends derived from large-scale data might actually not be attributed to physical principles but
to bias introduced by common design principles. Thus, it also highlights the need for the critical

assessment of available data to gain an optimal benefit for future research.

In the second part of the work, the concept of local thermodynamic binding site characterisation was
extended towards pharmacophoric probes mimicking ligand functional groups. With the implementation
of the 3D RISM wuu formalism by F. Mrugalla as described in 2.3.3.2, the distribution of those probes in
the binding site can be determined. As for the water thermodynamics, an approach was presented to
directly map the apo g-function values of these probe onto atoms of the bound ligand, thus allowing to
analyse if areas with high g-function values of a given probe coincide with the presence of corresponding
ligand atoms. An analysis on the protein-ligand complex structures in the PDBbind core set indeed
revealed a good matching between probe density peaks in the binding site and the presence of respective
ligand groups. Building on this, a quantitative ligand-probe matching score was developed to capture
how well a bound ligand in a given complex (or docking pose) matches the pharmacophoric probe
distribution. In a proof-of-concept study w.r.t. pose recovery docking using the PDBbind core set it was
shown that the score indeed correlated with the RMSD of the poses, i.e. that poses with higher ligand-
probe matching scores were closer to the native binding mode. After this encouraging analysis, a scoring
scheme using a combination of conventional ChemPLP score and the ligand-probe matching score was
applied in a proof-of-concept study of virtual screening on a respective data set for XIAP. Here, the
ROC AUC, i.e. the retrieval of actives before decoys, could be strongly improved by applying the ligand-
probe match score as a filtering criterion before ranking by conventional ChemPLP score. This strategy
is especially promising for virtual screening of large libraries since inactive molecules can be filtered

out effectively.

Another highly promising application of the ligand-probe matching score is the identification of suitable
molecule fragments that can be used as a starting point for ligand design or could serve as building
blocks for the synthesis of combinatorial libraries. W.r.t. to the collaboration with the Brunschweiger
group, this application was of special interest for this work. Therefore, a semi-automated workflow was
developed comprising automated library preparation in KNIME and docking in GOLD, followed by
scoring according to the ligand-probe matching score. A proof-of-concept study on XIAP showed that

a combination of normalised ChemPLP score and the ligand-probe matching score is well suited to
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retrieve known binders from the rest of the fragments. Hence, the developed workflow can now be
employed to identify suitable molecule fragments that ideally match the respective binding site profile

of a given target - thus making one more step towards the automated de novo ligand design.

In the third part, the water analysis and the pharmacophoric probes combined were used to tackle
challenging PPI targets in medicinal chemistry that are under investigation in the Brunschweiger group:
XIAP, Bel-xL and hTEAD. For XIAP, the RISM-based analyses were successfully employed to explain
SAR trends in a series of closely related ligands. In case of Bcl-xL, the same analyses were performed
on a set of complex structures that were obtained by previously performed simulations of the protein
with Ugi-type model compounds provided by the Brunschweiger group (done by J. Borchert). By
analysing the water thermodynamics and the distribution of the pharmacophoric probes, suggestions for
the design of respective libraries using the Ugi reaction were made which have to be validated by future
experiments. For the highly demanding target " TEAD which exhibits several large binding grooves, the
Brunschweiger group already obtained hit molecules in a screening that contain a Cl-indole moiety. By
analysing available complex structures of peptides with respective SAR trends, a prediction of the most
likely binding position of the hit molecule was made. Afterwards, docking of a set of model compounds
for a click reaction-based screening library provided by the Brunschweiger group were docked and
scored according to the developed workflow, and a proposal was made for the most promising building
blocks. All in all, the analyses on the PPI targets showed that the approaches developed in this work
together allow to get a complete picture of the thermodynamic signature of a protein binding site, thus

allowing to generate design strategies for novel ligands or screening libraries.

In the future, the proposed strategies have to be validated by biochemical assays and ideally by co-
crystallisation of respective model compounds. Besides, an iterative circle should be established, in
which newly gained experimental insights are taken up to optimise the developed computational
approach, which then in turn can be used for improved hit-to-lead development. Potentially, the
integration of ML-based approaches could help to automatise such a workflow: Thanks to the possibility
to interpolate 3D RISM-derived fields onto distinct ligand atoms, which was introduced in this work,
respective atom-based descriptors are readily available and could be used with graph convolutional
neural networks (CNN). Alternatively, whole fields could be used as input for 3D CNNs. Thus,
ultimately, a scoring function could be trained to automatically guide the design of novel ligands for a

given target protein structure.

W.r.t. water thermodynamics, it could be interesting to further investigate a local V- and g-based

correction as proposed in 2.3.3.3. In this context, a direct comparison with alternative methods, for
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instance WaterMap, on the same protein structures would be helpful to further improve the calculation
of absolute AnyaGp contributions. In addition, it would also be of interest to achieve a further separation

of the local information about AnyGp into enthalpic and entropic contributions to gain further insights.

All in all, the approaches and workflows developed in this work were shown to be well-suited for driving
ligand design and optimisation. They can complement the existing SBDD toolbox by adding valuable

insight into effects that are not or only indirectly addressed by conventional methods.
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7. Appendix

7.1 List of used PDBbind refined set structures

10gs, 1841, 1851, 1861, 1871, 1881, 1a28, 1adk, 1adr, 1ladw, 1269, 1a99, 1a9m, 1a9q, laaq, 1add, ladl,
lado, lai4, 1ai5, 1ai7, laid, lajn, lajp, lajq, lajv, lajx, lalw, lamk, lamw, latl, lavn, lax0, lazm,
1b55, 1b57, 1b6k, 1b61, 1b8n, 1b8o, 1b8y, 1bcd, 1bcu, 1bdq, 1bgq, 1bhx, 1bju, 1bjv, Ibm7, 1bma, 1bnl,
1bn3, 1bn4, 1bnn, 1bng, 1bnt, 1bnu, 1bnv, 1bnw, 1bp0, 1bg4, 1br6, 1bty, 1bv7, 1bv9, 1bwa, 1bxo, 1bxq,
Ibzc, 1bzj, 1bzy, Iclr, Iclu, 1clv, 1¢3x, Icdu, 1cSc, 1c5n, 1cSo, 1c5p, 1¢5q, 1c5s, 1c5t, 1¢5x, 1cSy,
1¢70, 1¢83, 1c86, 1c87, 1c88, 1cbx, lceb, lcet, 1cgl, 1ciz, lenw, lenx, leny, lcps, lett, lctu, 1d09,
1d3d, 1d3p, 1d4h, 1d4i, 1d4j, 1d4k, 1d41, 1d4p, 1d4y, 1d6v, 1dow, 1d7i, 1d7j, 1d9i, 1dar, 1det, 1df8,
1dgm, 1dhi, 1dhj, 1dif, 1dl7, 1dmp, 1dqn, 1drj, 1drk, 1drv, 1dud, 1duv, 1dy4, 1dzk, lelv, lelx, le2k,
le2l, 1e3g, 1e3v, ledh, 1e66, 1e6q, 1ebs, 1eb2, lebw, leby, lebz, lecO, lecl, lec2, lec3, lecq, lefy,
legh, lejn, lela, lelb, lelc, leld, lele, lenu, lepo, lerb, lew8, lew9, lezq, 110s, 1f0t, 1f0u, 1{3e, 1f4e,
1f4f, 1fag, 114x, 1157, 115k, 1151, 1£73, 174, 1f8b, 1f8c, 1{8d, 18, 1fao, 11js, 1fkb, 1fkf, 1fkg, 1fkh,
1ki, 1fkw, 1113, 1flr, 1fpc, 15, 11t7, 1ftim, 1{v0, 1fzq, 1gld, 1g2k, 1g21, 1g20, 1230, 1232, 1g35, 1g36,
1g45, 1g46, 148, 1gdo, 1g52, 1253, 1g54, 1g74, 1g71, 1g7g, 1285, 1gai, 1gar, 1gfy, 1ghw, 1gil, 1gnm,
lgnn, 1gno, 1gpk, 1gpn, lgrp, lgvw, 1gwv, 1gx8, lgyx, 1gyy, 1hls, 1h22, 1h23, 1h46, 1h4w, 1h6h,
lhbv, 1hdq, 1hee, 1hfs, 1hii, 1hk4, 1hmr, 1hms, 1hmt, 1hn4, 1hos, 1hp5, 1hpo, 1hps, 1hsh, 1hsl, 1hvh,
lhvi, 1hvj, 1hvk, 1hvl, 1hvs, 1hxb, 1hxw, lhyo, lile, 1i2s, 1i37, 1i5r, 1i7z, 119n, 1i9p, 1ie9, 1if7, 1if8,
ligb, ligj, liih, liiq, 1ik4, likt, livp, liy7, lizh, lizi, 1501, 1j14, 1j16, 1j17, 1336, 1j37, 1j4r, 1jak, 1jao,
ljaq, 1jgl, 1jmg, 1jqy, 1jsv, 1jvu, 1jys, 1jzs, 1k1i, 1k1j, 1k11, 1k1n, 1klo, 1kly, 1k21, 1k22, 1k27, 1k4g,
1k4h, 1k6c, 1k6p, 1k6t, 1k6v, 1k9s, 1kav, 1kc7, 1kdk, 1koj, 1kpm, 1ksn, 1kv1, 1kv5, 1kyv, 1kzk, 1kzn,
1183, 118g, 1lag, 1lah, 11bk, llcp, llee, 11£2, ligw, 1lhu, 11i2, 11i3, 11i6, 1lke, 1lnm, 1lpg, 11pk, 1lpz,
11rh, 11st, 1lyx, 11zq, 1m0Ob, 1mOo, 1m0q, Im1b, I1m2p, Im2q, Im2r, Im2x, Im48, Im5Sw, Im7y, I mai,
Imes, 1met, Imfi, ImhS5, 1mjj, Immgq, Immr, Imoq, 1mq5, 1mqg6, Imrn, Imrw, 1mrx, Imsm, 1msn,
Imtr, Imu6, Imu8, 1mue, 1my4, 1n0s, Inlm, 1n3i, 1n46, 1ndh, 1n5r, Incl, 1nc3, Indv, Indw, Indy,
Indz, 1nf8, Infu, Infw, Infx, Infy, Injc, Inje, Injs, Inki, 1nli, Inm6, 1no6, 1np0, 1nq7, Intl, 1nvq,
Invr, 1nvs, Inw4, 1nw5, Inw7, 100h, 100m, 100n, 1ols, 102h, 102r, 103i, 105a, 1o5c, 105g, 105r,
lo70, 1086, loar, loba, 10d8, 1odi, 1odj, 1oe8, logd, 1ogx, 1ogz, 1ohr, 1oif, 1okl, lom1, lonz, lork,
1os0, loss, loxr, loyq, loyt, 1p19, 1pln, 1plo, 1plq, 1p57, 1pa9, 1pb8, 1pb9, 1pbq, 1pdz, 1pfu, 1pgp,
Ipkx, 1pme, 1pot, 1ppc, 1pph, 1ppk, 1ppl, 1ppm, 1pr5, 1pro, 1ps3, 1px4, 1pxn, 1pxo, 1pxp, 1pzi, 1pzp,
1qlg, 195k, 165, 1972, 1q7a, 1q84, 1g8t, 1q8u, 1q8w, 1q91, 1qan, 1qaw, 1gbl, 1gbq, 1gbr, 1gbs, 1gbv,

1qf0, 1qf1, 1qf2, 1qft, 1qin, 1qji, 1gk3, 1qk4, 1qkt, 1ql7, 1q19, 1qyl, 1qy2, 1qyg, 1t0p, 1rlh, 1rlj, 115y,
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1191, 1rbp, 1rd4, 1rjk, 1rmz, 1rnm, 1rnt, 1ro6, 1rpf, 1rpj, 1rgl, 1rr6, 1rtf, 1s19, 1538, 139, 155z, 1589,
Isbg, 1sdt, 1sdu, 1sdv, 1sgu, 1sh9, 1siv, 1sln, 1sqa, 1sqo, 1sqt, 1sr7, 1srg, 1ssq, 1stc, 1sv3, 1sw2, 1swg,
Iswr, 1syh, 1syi, 1szd, 1t31, 1tdv, 1t5f, 1t7d, 1tcx, 1td7, 1tjp, 1tkb, 1tlp, 1tmn, 1tng, 1tnh, 1tni, 1tom,
1tx7, 1txr, lulw, 1u33, 1u71, luho, 1ui0, 1uj5, luml, luou, lupf, lusi, lusk, lusn, lutj, lutl, lutm,
lutn, luto, 1uv6, luvt, luw6, luwf, luwt, luwu, luzl, luz4, 1vll, 1v16, 1vlj, 1vim, 1v2j, 1v2k, 1v2l,
1v2n, 1v20, 1v2r, 1v2s, 1v2t, 1v2u, 1v2w, 1v48, 1v7a, 1vin, 1vso, 1vyf, 1vyg, 1vzq, Iw0z, 1wl1, 1wl3,
1w3j, 1wdo, 1wdp, 1w4q, 1wSv, 1wSw, 1w5x, IwSy, 1w7g, Iw96, 1wcq, 1wht, lwml, 1wn6, 1wsl,
1ws4, 1wvj, 1x1z, 1x38, 1x39, 1x8d, 1x8j, 1xap, 1xbo, 1xd0, 1xh5, 1xhy, 1xjd, 1xk5, 1xk9, 1xka, 1xkk,
Ixow, 1xpz, 1xq0, 1xt8, 1xug, 1xws, 1y20, 1y3v, 1y3x, 1y6q, ly6r, lycl, lyc4, lyda, lydb, 1ydd, 1ydk,
lydr, lyds, lydt, lyet, 1yfz, 1yp9, lype, lypg, lypj, lyq7, lyqj, lyvm, 1z1h, 1z6e, 1271, 1z9g, 129y,
1z¢9, 1zdp, 1zfq, 1zge, 1zhy, 1zoe, 1zog, 1zoh, 1zp8, 1zpa, 1zs0, 1zsf, 1zvx, 2al4, 2ad4m, 2a5b, 2a5c,
2aac, 2afw, 2afx, 2aj8§, 2al5, 2am4, 2amt, 2ans, 2aoc, 2aod, 2aoe, 2aog, 2aqu, 2arm, 2avm, 2avo, 2avq,
2avs, 2ayr, 2blg, 2b4l, 2b7d, 2b9a, 2baj, 2bak, 2bal, 2bet, 2bfq, 2bmk, 2bo4, 2boh, 2boj, 2bpv, 2bpy,
2bq7, 2bqv, 2brl, 2brb, 2brm, 2bt9, 2bvd, 2bvr, 2bvs, 2byr, 2bys, 2bza, 2¢3i, 2¢31, 2¢80, 2¢94, 2ca8,
2¢bj, 2¢bu, 2¢cbv, 2cc7, 2ccb, 2cce, 2cej, 2cen, 2ceq, 2cer, 2ces, 2cet, 2cex, 2¢f8, 2cgf, 2cgr, 2cht, 2cle,
2cli, 2clk, 2¢n0, 2csn, 2cte, 2d0k, 2d1n, 2d1o, 2d3u, 2d3z, 2doo, 2drc, 2dri, 2dw7, 2elw, 2e27, 2e2r,
2¢e7f, 2e9u, 2epn, 2erz, 2ewa, 2ewb, 2exm, 2ez7, 2flg, 2134, 2{35, 2f7i, 270, 2f7p, 2180, 2f8g, 2fdp,
2fle, 21lr, 2fmb, 2fqo, 2fqt, 2fqw, 2fqx, 2fqy, 2fu8, 2fvd, 2fw6, 2fxs, 2fxu, 2fxv, 2g5u, 2g94, 2gh9, 2gj5,
2gkl, 2gl0, 2glp, 2gss, 2gst, 2gv7, 2gvv, 2gyi, 2gzl, 2h15, 2h21, 2h3e, 2h4n, 2h6b, 2ha2, 2ha3, 2ha,
2hah, 2hb3, 2hhn, 2hjb, 2hl4, 2hne, 2hnx, 2hoc, 2hu6, 2hzl, 2hzy, 2i0a, 2i2c, 2i4j, 2i4u, 2idv, 2i4w,
2i4x, 2i4z, 2i6b, 2i80, 2ihj, 2ihq, 2iuz, 2iwx, 2izl, 2j27, 2j2u, 2j34, 2j47, 2j4g, 2j4i, 2j62, 2j75, 277,
2§78, 2§79, 2j7b, 2j7d, 2jTe, 2j71, 2j7g, 2j7h, 2j94, 2j95, 2jdm, 2jdp, 2jds, 2jdu, 2jf4, 2jfz, 2jg0, 2jgs,
2jh0, 2jiw, 2jke, 2jkh, 2jkp, 2jxr, 2mas, 2nmx, 2nmz, 2nnl, 2nn7, 2nnd, 2nsj, 2nsl, 2nt7, 200u, 204j,
204k, 2041, 204n, 204r, 204z, 20ag, 20ax, 20c2, 20gy, 20i2, 20iq, 20jg, 20jj, 20lb, 20le, 20n6, 20vv,
20vy, 20xd, 20xn, 20xx, 20xy, 20ym, 2p15, 2p16, 2p2a, 2p3a, 2p3b, 2p3c, 2p3i, 2p4j, 2pds, 2pdy, 2p53,
2p7a, 2p7g, 2p7z, 2p95, 2pbw, 2pcp, 2pgz, 2pk6, 2pog, 2pou, 2pov, 2pow, 2pql, 2pqz, 2psu, 2psv, 2ptz,
2pu2, 2pvh, 2pvj, 2pvk, 2pvm, 2pvu, 2pwc, 2pwd, 2pwg, 2pwr, 2pym, 2pyn, 2qlq, 2938, 2q54, 2q55,
2q5k, 2q63, 2q64, 2q7q, 2988, 2q89, 2q8h, 2q8z, 2qbq, 2gbu, 2qdt, 2qe4, 2qg0, 2qg2, 2ghy, 2qhz, 2qi0,
2qil, 2qi3, 2qi4, 2qi5, 2qi6, 2qi7, 2qm9, 2qmg, 2qnn, 2qnp, 2qnq, 2qpq, 2qpy, 2qrl, 2qtg, 2qtt, 2qwl,
2qwb, 2qwc, 2qwd, 2qwe, 2qwf, 2qzr, 2r0h, 2rly, 2r2m, 2r2w, 2r38, 2r3t, 2r3w, 2r43, 2158, 2r59, 2r5a,
2r5p, 2r9w, 2r9x, 2ra0, 2ra6, 2rcb, 2rd6, 2reg, 2ri9, 2rin, 2rka, 2rkd, 2rke, 2rkf, 2rkg, 2rkm, 2sim, 2std,
2tmn, 2usn, 2uwd, 2uxi, 2uxz, 2uy0, 2uy3, 2uy4, 2uy5, 2uyn, 2uyq, 2uz9, 2v00, 2v2c, 2v2h, 2v2q, 2v2v,
2v3d, 2v3u, 2v57, 2v58, 2v59, 2v77, 2v95, 2vb8, 2vba, 2vc9, 2ves, 2vh0, 2vh6, 2vj8, 2vjx, 2vk2, 2vke6,
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2vkm, 2vl4, 2vimc, 2vimd, 2vmf, 2vnp, 2vnt, 2vo5, 2vot, 2vpn, 2vpo, 2vqt, 2vrj, 2vuk, 2vvc, 2vvn, 2vvs,
2vvu, 2vvv, 2vwl, 2vw5, 2vwe, 2vwl, 2vwm, 2vwn, 2vwo, 2vyt, 2vzr, 2w26, 2w47, 2wax, 2w66, 2w67,
2w8j, 2w8w, 2w9h, 2wb5, 2wbg, 2wc3, 2wc4, 2wca, 2web, 2wec, 2wed, 2weg, 2weh, 2wej, 2weo,
2weq, 2wer, 2wf5, 2wgj, 2whp, 2wk6, 2wky, 2wkz, 2wl0, 2wn9, 2wnc, 2wnj, 2wor, 2wq5, 2wr8, 2wuf,
2wvt, 2wvz, 2wzf, 2wzs, 2x00, 2x09, 2x0y, 2x2r, 2x4z, 2x6X, 2x7t, 2x7u, 2x8z, 2x91, 2x95, 2x96, 2x97,
2xab, 2xb7, 2xb8, 2xbv, 2xbx, 2xc0, 2xc4, 2xd9, 2xda, 2xde, 2xdk, 2xdl, 2xdx, 2xef, 2xeg, 2xei, 2xej,
2xht, 2xib, 2xii, 2xj1, 2xj7, 2xjg, 2xjj, 2Xjx, 2xm1, 2xm2, 2xmy, 2xn3, 2xn5, 2xnb, 2xog, 2xp7, 2xpk,
2xxt, 2xyd, 2xye, 2xyf, 2xys, 2xyt, 2y5f, 2y5g, 2y5h, 2y7x, 2y7z, 2y8c, 2ya6, 2ya7, 2ya8, 2yb0, 2ydw,
2yek, 2yel, 2yfa, 2yfe, 2yfx, 2yge, 2ygf, 2yhw, 2yi0, 2yi7, 2yix, 2ykl, 2yki, 2ymd, 2yme, 2ypi, 2yz3,
2z1w, 2294, 2za0, 2za5, 2zbl, 2zc9, 2zcs, 2zda, 2zdk, 2zdl, 2zdm, 2zdn, 2zfp, 2zfs, 2zft, 2zgx, 2zjw,
2zmm, 2zq0, 2zq2, 2zwz, 2zx6, 2zx7, 27x8, 2zxd, 2zxg, 2zym, 3a20, 3a5y, 3a9i, 3aas, 3aau, 3ag9, 3agl,
3ahn, 3aho, 3aid, 3alt, 3a02, 3ao5, 3ap4, 3arq, 3arx, 3axz, 3blm, 3b24, 3b25, 3b26, 3b27, 3b3c, 3b3x,
3b4f, 3b4p, 3b50, 3b65, 3b71, 3b7j, 3b7r, 3be9, 3bex, 3bft, 3bfu, 3bgb, 3bgc, 3bgq, 3bgs, 3bgz, 3bkk,
3bkl, 3bl0, 3bll, 3bqc, 3bra, 3brn, 3bul, 3buf, 3bug, 3buh, 3bva, 3bwj, 3bxe, 3bxg, 3c20, 3c2r, 3c2u,
3¢39, 3c4h, 3cct, 3cew, 3cez, 3c¢d0, 3cdS, 3cda, 3cdb, 3cf8, 3cfn, 3¢j2, 3¢j4, 3¢jS, 3ckb, 3ckz, 3cl0,
3cm2, 3cow, 3coy, 3coz, 3¢s7, 3ctt, 3cyx, 3cyz, 3czl, 3czv, 3d0b, 3d0e, 3d1x, 3dly, 3d4y, 3d4z, 3d50,
3d51,3d52, 3d6o, 3d6p, 3d78, 3d7z, 3d83, 3d8w, 3d8z, 3d91, 3d9z, 3da9, 3daz, 3dbu, 3dc3, 3dcc, 3ddO,
3dds, 3ddf, 3ddg, 3djk, 3djo, 3djp, 3djq, 3djx, 3dk1, 3dnd, 3dne, 3dp4, 3dp9, 3dsz, 3dx1, 3dx2, 3dx3,
3dx4, 3dyo, 3dzt, 3e5a, 3e5u, 3eby, 3¢92, 3e93, 3eax, 3ebl, 3ebh, 3ebi, 3ebl, 3ebo, 3ebp, 3ed0, 3ehx,
3ehy, 3ejp, 3ejq, 3ejr, 3eko, 3ekr, 3ekw, 3ekx, 3ell, 3el4, 3el5, 3el9, 3elc, 3eqr, 3ewc, 3ewj, 315, 316,
3f17, 3f18, 319, 3fla, 333, 3134, 337, 3f3c, 3f5k, 3151, 368, 370, 378, 3f7i, 3f8c, 3f8e, 3{8f, 3fat,
3fcq, 3fed, 3fee, 3ffg, 3ffp, 3th7, 3thb, 3fjg, 3115, 3fqe, 3fql, 3fvl, 3fv2, 3fvk, 3fvl, 3fvn, 3g0e, 3201,
3g0w, 3glv, 3g2y, 3g27,3g30, 3g31, 3g32, 3g34, 3g35, 3g5k, 3ga$5, 3gba, 3gbe, 3gc4, 3gc5, 3gcp, 3gcs,
3gcu, 3ge7, 3ggu, 3gi4, 3gi5, 3gi6, 3gjw, 3gkl, 3gkz, 3gm0, 3gnw, 3gqz, 3gr2, 3gs6, 3gsm, 3gst, 3gta,
3gtc, 3gv9, 3gvb, 3gx0, 3gy2, 3gy3, 3gy4, 3gy7, 3hlx, 3h30, 3h78, 3h89, 3hb4, 3hcm, 3hek, 3hig, 3hit,
3hk1, 3hkn, 3hkq, 3hkt, 3hku, 3hkw, 3hky, 3hl5, 3h17, 3h18, 3hll, 3hmo, 3hmp, 3hp9, 3hs4, 3hu3, 3huc,
3hv8, 3i25, 3i4b, 3i5z, 3160, 3i60, 3i7e, 3i19g, 3ibi, 3ibl, 3ibn, 3ibu, 3ies, 3igp, 3imc, 3ime, 3iob, 3ioc,
3ioe, 3iof, 3ip9, 3iph, 3ipu, 3isj, 3iss, 3iub, 3iue, 3ive, 3ivg, 3ivx, 3iw5, 3iw6, 3iww, 3jdw, 3jrs, 3jrXx,
3juk, 3juo, 3jup, 3jvr, 3jy0, 3jya, 3jyr, 3jzj, 3k00, 3k02, 3k2f, 3k37, 3k4d, 3k5v, 3k5x, 3k8q, 3k97,
3k99, 3kdc, 3kdd, 3kdm, 3kek, 3kgp, 3kgq, 3kgt, 3kgu, 3kiv, 3kjd, 3kku, 3kmc, 3kmx, 3kmy, 3kqr,
3kr4, 3kr8, 3kv2, 3kyq, 313m, 313n, 314u, 314w, 3159, 31dp, 31dq, 31e9, 3lea, 3lgs, 3lir, 3liw, 3ljg, 3ljo,
3ljz, 31k8, 3lka, 3lp4, 3Ip7, 31pi, 3lpk, 3lpl, 3lvw, 3Ixe, 3Ixk, 31zs, 3mlk, 3m35, 3m36, 3m37, 3m3z,

3m5e, 3m67, 3mb6r, 3m8u, 3m96, 3mam, 3mdz, 3mf5, 3mfv, 3mfw, 3mhc, 3mho, 3mhw, 3mi3, 3miy,
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3mjl, 3ml2, 3ml5, 3mmf, 3mna, 3mof, 3ms9, 3mss, 3muz, 3mxd, 3mxe, 3myg, 3myq, 3mzc, 3n0n, 3n2u,
3n2v, 3n35, 3n3g, 3n3j, 3ndb, 3n76, 3n7a, 3n70, 3n86, 3n8k, 3nb5, 3nee, 3neo, 3nes, 3nex, 3ng4, 3nhi,
3nht, 3nkk, 3nox, 3npc, 3nq3, 3nq9, 3nw3, 3nx7, 3nxq, 3nyx, 3nzk, 304k, 3056, 305x, 3075, 307u,
3084, 308p, 3099, 309a, 309d, 309¢, 3091, 309p, 30af, 3ocp, 3ocz, 3oil, 30im, 30k9, 3oku, 3ovn, 3owj,
3own, 30y0, 30yq, 3oyw, 30zj, 30zp, 3p17, 3p2e, 3p3g, 3p3s, 3p3t, 3p4v, 3p58, 3p51, 3pS0, 3p8n, 3p8o,
3p8p, 3p8z, 3pb7, 3pb8, 3pb9, 3pbb, 3pd8, 3pd9, 3pel, 3pe2, 3pgl, 3pgu, 3pju, 3pnl, 3pnd, 3pol, 3pob,
3ppm, 3ppp, 3ppq, 3ppr, 3prs, 3psl, 3pwk, 3pww, 3pyy, 3qlx, 3q2j, 3q44, 3q6w, 3q6z, 3q71, 3qaa,
3qbc, 3qdd, 3qfy, 3qfz, 3qgw, 3qgy, 3qlm, 3qox, 3gps, 3qqs, 3qt6, 3qto, 3qtv, 3qwe, 3gx5, 3gxt, 3qxv,
3rl6, 3r17, 3rlv, 3r24, 3r4m, 3r4n, 3rdp, 3r6u, 3r70, 3r88, 3rdo, 3rdq, 3re4, 3rf4, 3rf5, 3rlb, 3rlp, 3rlq,
3rlr, 3rm4, 3rm9, 3roc, 3rr4, 3rsx, 3rt8, 3rtf, 3rul, 3rux, 3rv8, 3rwp, 3ryj, 3ryv, 3ryx, 3ryy, 3ryz, 3rz0,
3rzl, 3rz5, 3rz7, 3rz8, 3s0b, 3s0d, 3s0e, 3s2v, 3s5y, 3s6t, 3s71, 3572, 3573, 3575, 3576, 3577, 3578, 3sfg,
3sha, 3shc, 3si3, 3si4, 3sio, 3sjf, 3sk2, 3slz, 3spf, 3sr4, 3st5, 3str, 3su0, 3sul, 3su2, 3su3, 3su4, 3sus,
3su6, 3sue, 3suf, 3sug, 3sur, 3sus, 3sut, 3suu, 3suv, 3suw, 3sv2, 3sw8, 3sww, 3sxf, 3t08, 3t0b, 3tla,
3tlm, 3t2w, 3t3u, 3t5u, 3t60, 3t64, 3t70, 3t82, 3t83, 3t84, 3t85, 3t8v, 3tay, 3tb6, 3td4, 3tf6, 3tfn, 3tfp,
3tfu, 3th9, 3tmk, 3ts4, 3tsk, 3tt4, 3ttm, 3ttp, 3tu7, 3tvc, 3twp, 3tz0, 3tzm, 3ul0, 3usj, 3uSl, 3ubh, 3u8l,
3u8j, 3u8k, 3u8l, 3u8n, 3u92, 3u9q, 3ubd, 3ucj, 3udd, 3ueu, 3uev, 3uew, 3uex, 3ug2, 3ui7, 3uil, 3uj9,
3ujc, 3ujd, 3umgq, 3uo4, 3uod, 3up2, 3upk, 3usx, 3uul, 3uug, 3uuo, 3uxd, 3uxk, 3uxl, 3uz5, 3uzj, 3v2n,
3v2p, 3v2q, 3v3q, 3v4t, 3v51, 3v5p, 3v5t, 3v7x, 3vbd, 3vd4, 3vd9, 3veh, 3vf5, 3vh9, 3vha, 3vhe, 3vhd,
3vhk, 3vjc, 3vje, 3vtr, 3vw2, 3w37, 3w5n, 3w9k, 3w9r, 3wgg, 3wha, 3wjw, 3wmc, 3wtn, 3wto, 3wvm,
3wz6, 3wz7, 3wz8, 3wzn, 3x00, 3zbx, 3zc5, 3zcl, 3zdg, 3zdh, 3zi8, 3zj6, 3zk6, 3zIl, 3zIn, 3zlr, 3zm9,
3zns, 3zpu, 3zqe, 3zso0, 3zsq, 3zsx, 3zsy, 3zt2, 3zt3, 3zv7, 3zxz, 3zyu, 3zze, 456¢, 4adq, 4adv, 4adw,
4a6b, 4a6c, 4a6s, 4a7i, 4ab9, 4aba, 4abb, 4abd, 4abe, 4abg, 4abh, 4acc, 4aci, 4ado6, 4afg, 4ag8, 4agc,
4agl, 4agm, 4agn, 4ago, 4agp, 4agq, 4ahr, 4ahs, 4ahu, 4ai5, 4aia, 4aj4, 4aje, 4aji, 4ajl, 4alx, 4ap7, 4app,
4aqh, 4arw, 4asd, 4ase, 4asj, 4att, 4auj, 4av4, 4av5, 4avh, 4avi, 4avj, 4avs, 4ax9, 4ayp, 4ayq, 4ayu, 4az5,
4az6, 4azb, 4azc, 4azg, 4azi, 4b0b, 4blj, 4b2i, 4b2l, 4b32, 4b33, 4b34, 4b35, 4b3c, 4b3d, 4b5d, 4b5s,
4b5t, 4b5w, 4b6o, 4b6p, 4bb6r, 4b6s, 4b73, 4b74, 4b76, 4b7j, 4b7r, 4b9k, 4b9z, 4bah, 4bak, 4bam, 4ban,
4bao, 4baq, 4bb9, 4bcS5, 4bck, 4ben, 4bco, 4bep, 4bcs, 4bfl, 4bf6, 4bi6, 4bi7, 4bj8, 4bks, 4bkt, 4bqg,
4bgh, 4bgs, 4br3, 4bt3, 4bt4, 4bt5, 4btk, 4bup, 4buq, 4cly, 4c2v, 4c5d, 4cbu, 4¢9x, 4cas, 4ca’7, 4cas,
4cc5, 4¢d0, 4ceb, 4cfl, 4cg8, 4¢g9, 4cga, 4egi, 4cig, 4ciw, 4cj4, 4cjp, 4cjq, 4cjr, 4ck3, 4cl6, 4clj, 4cmo,
4cp7, 4eps, 4ept, 4cpw, 4epy, 4epz, 4erS, 4er9, 4era, 4erb, 4cere, 4erf, 4crl, 4csd, 4css, 4cu7, 4cus, 4cwf,
4cwn, 4cwo, 4cwp, 4cwq, 4cwr, 4cws, 4ewt, 4d1j, 4d3h, 4d8z, 4da5, 4daf, 4db7, 4dbm, 4ddh, 4ddk,
4ddm, 4de0, 4del, 4de2, 4de5, 4der, 4des, 4det, 4deu, 4dew, 4dff, 4dfg, 4djo, 4djp, 4djq, 4djr, 4dju,
4djv, 4djw, 4djx, 4djy, 4dko, 4dkp, 4dkq, 4dkr, 4dmw, 4do4, 4do5, 4dq2, 4dst, 4dsu, 4duh, 4dv8, 4dzy,
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4e0x, 4elk, 4e3g, 4e4l, 4edn, 4eSw, 4e6d, 4e6q, 4e70, 4e7r, 4eb8, 4ef6, 4efk, 4efs, 4egk, 4ehz, 4eid,
4¢j8, 4ejl, 4ek9, 4elf, 4elg, 4elh, 4end, 406, 4e08, 4eoh, 4eor, 4epy, 4erl, 4erf, 4etz, 4eu0, 4euo, 4ewn,
4exs, 4109, 410c, 4111, 42w, 4139, 43¢, 413k, 415y, 4f6u, 4fow, 4f7v, 49u, 419w, 419y, 4fai, 4fcq, 4fev,
4few, 4ffs, 4fht, 41k6, 4flp, 4fm7, 4fmS8, 4fnn, 41p1, 4fs4, 4fsl, 4fxq, 41zj, 4g0z, 4g4p, 4g5f, 4g8m, 4g8n,
4g8v, 4g8y, 4g90, 495, 4gbd, 4gel, 4gfm, 4gfo, 4ggz, 4gid, 4gih, 4gii, 4gj2, 4gkh, 4gki, 4gq4, 4gql,
4gqp, 4gqq, 4gqr, 4gr0, 4gr3, 4gr8, 4gu6, 4gu9, 4gue, 4gzp, 4gzt, 4h3f, 4h3j, 4h42, 4h7q, 4h81, 4h85,
4hbm, 4hdb, 4hdf, 4hdp, 4heg, 4hf4, 4hfp, 4hge, 4hj2, 4ht0, 4ht2, 4hul, 4hw3, 4hwp, 4hws, 4hy1, 4hym,
4hzm, 4154, 4i5c, 4171, 4172, 4174, 417j, 417k, 417m, 4i7p, 4i8n, 4i8w, 4i8x, 418z, 419h, 4i9u, 4ibb, 4ibc,
4ibd, 4ibe, 4ibf, 4ibg, 4ibi, 4ibj, 4ibk, 4igt, 4ih3, 4ih5, 4ih6, 4ih7, 4iic, 4iid, 4iie, 4iif, 4ij1, 4ipi, 4ipj,
4ipn, 4ish, 4isi, 4isu, 4itp, 4iue, 4iuo, 4iva, 4ivb, 4ivc, 4ivd, 4iwz, 4j21, 4j22, 4j28, 431, 4j7d, 4j7e, 4j93,
4jal, 4je7, 4jfk, 4jfm, 4jfs, 4jh0, 4jia, 4jkw, 4jn2, 4jsa, 4jss, 4jsz, 4jwk, 4jx9, 4jxs, 4jym, 4jyt, 4jz1, 4jzi,
4k0y, 4k3h, 4k3n, 4k4j, 4k61, 4k77, 4k71, 4k 7n, 4k70, 4k9y, 4kao, 4kb9, 4keq, 4kfq, 4km0, 4km?2, 4kn0,
4knl, 4kni, 4knj, 4knm, 4knn, 4ko8, 4kow, 4kp5, 4kp8, 4ksl, 4ks4, 4ksy, 4kwf, 4kwg, 4kwo, 4kxb,
4kyh, 4kyk, 4kz3, 4kz4, 4kz6, 4kz7, 4kzq, 4kzu, 4119, 4121, 414v, 414z, 4151, 4191, 4lar, 41bu, 41ch, 4leq,
41ko, 41kq, 4113, 411}, 411k, 411p, 4l1x, 4lm2, 41m3, 41m4, 4loh, 4loi, 4loo, 4lov, 4loy, 4luz, 41vt, 41xz, 4ly1,
41y9, 4lyw, 4lzr, 41zs, 4mOe, 4mOf, 4mOr, 4mOy, 4m12,4m13, 4m14, 4m2r, 4m2u, 4m2v, 4m2w, 4m3p,
4m6u, 4m8e, 4m8h, 4m8x, 4m8y, 4mc6, 4mc9, 4mdn, 4mgd, 4mhy, 4mhz, 4mjp, 4mme, 4mmm, 4mmp,
4mnp, 4mo4, 4mpn, 4mq6, 4mr3, 4mr6, 4mre, 4mrg, 4mrw, 4msc, 4mss, 4muf, 4mul, 4muv, 4n07,
4n5d, 4n6g, 4n6z, 4n7m, 4n8q, 4n9a, 4na9, 4nbk, 4nbl, 4nbn, 4ndu, 4ngm, 4ngn, 4ngp, 4nh7, 4nh8,
4nll, 4nnr, 4np2, 4np3, 4nra, 4nue, 4nvp, 4nwc, 4nyf, 4004, 4005, 4007, 4009, 400a, 400b, 400%, 400y,
402b, 402p, 403f, 4061, 4097, 409v, 4o0ak, 40c0, 4ocl, 4oc2, 40c3, 4oc5, 4ocq, 4oct, 40g3, 4ogj, 4oiv,
4oma, 4omj, 4omk, 4ovf, 4ovg, 4ovh, 4owm, 4owv, 4p3h, 4p58, 4p5d, 4p5z, 4pbw, 4p6X, 4pb2, 4pcs,
4pee, 4pf3, 4pft, 4pfu, 4phu, 4pin, 4pmm, 4pnu, 4poh, 4poj, 4pop, 4pow, 4pox, 4pp0, 4pp3, 4pp3, 4pqa,
4psb, 4pum, 4pv5, 4pzv, 4908, 4909, 490k, 4q19, 4q3t, 4q3u, 4q40, 494p, 4q4q, 4q4r, 494s, 4q6d, 4q6e,
4q7p, 4q7s, 4q7v, 4q7w, 4981, 4q83, 4987, 498x, 4q8y, 4990, 4993, 4999, 4990, 4q9y, 4qac, 4qb3,
4qdo, 4qdk, 4qem, 4qer, 4qev, 4qew, 4qf7, 4qf8, 4qf9, 4qgd, 4qge, 4qgi, 4qj0, 4qjw, 4qjx, 4qll, 4qlk,
4qll, 4qnb, 4qp2, 4qsu, 4qsv, 4qtl, 4gxo, 4qy3, 4qyy, 4r06, 4r0a, 4rdc, 4rdi, 4rdo, 4rat, 4159, 4r5a, 4r5b,
4r5t, 4173, 4176, 4ral, 4rak, 4rdn, 4re2, 4red, 4rfc, 4rfd, 4rfm, 4rfr, 4riv, 4158, 4rlt, 4rlu, 4rlw, 4rn4, 4rpn,
4rpo, 4rqk, 4rqv, 4rr6, 4rra, 4rrf, 4rrg, 4rsk, 4rux, 4ruy, 4ruz, 4rvr, 4rwj, 4drww, 4slg, 4std, 4tjz, 4tkb,
4tkh, 4tkj, 4tmn, 4tqn, 4trc, 4tte, 4tud, 4tun, 4twp, 4ty6, 4ty7, 4tz2, 4u0f, 4ud3, 4us4, 4usn, 4uso, 4uSs,
4ubc, 4u70, 4u7l, 4u73, 4u8w, 4ual, 4uac, 4ual, 4ucc, 4uth, 4ufi, 4ufj, 4ufk, 4ufl, 4ufm, 4uin, 4ujl,
4uj2, 4uja, 4ujb, 4uma, 4und, 4unp, 4up3, 4ury, 4urz, 4uye, 4uyf, 4v01, 4v24, 4w52, 4w97, 4w9c, 4w9d,
4w9f, 4w9h, 4w9i, 4w9j, 4wk, 4wIl, 4w9o0, 4w9p, 4wa9, 4whs, 4wiv, 4wk1, 4wkb, 4wkn, 4wko, 4wkp,
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4wn$, 4wov, 4wrb, 4wt2, 4x24, 4x48, 4x50, 4x5p, 4x5r, 4x5y, 4x6m, 4x6n, 4x60, 4x80, 4x8u, 4x8v,
4xaq, 4xar, 4xas, 4xip, 4xiq, 4xir, 4xit, 4xk9, 4xmb, 4x08, 4xoc, 4xoe, 4xt2, 4xtv, 4xty, 4xu0, 4xul,
4xu2, 4xu3, 4xxh, 4xy8, 4xya, 4y0a, 4y2q, 4y3j, 4y3y, 4y4j, 4y59, 4y5d, 4y79, 4y8x, 4ybk, 4yc0, 4yes,
4ygf, 4yha, 4yhm, 4yho, 4ykk, 4ymb, 4ymg, 4ymh, 4yml, 4ymq, 4ynb, 4yo8, 4yrd, 4ysl, 4ytc, 4yx4,
4yxi, 4yyt, 4yzu, 4207, 420k, 4z0q, 4zle, 4z1j, 4z1k, 4283, 4284, 4293, 4zae, 4zb6, 4zb8, 4zba, 4zbf,
4zbi, 4zcs, 4zeb, 4zec, 4zek, 4zgk, 4zip, 4zji, 4214, 4zls, 4zme, 4z05, 4zt8, 4zvi, 4zw5S, 4zw6, 4zw7,
4zw8, 4zwx, 4zx0, 4zx1, 4zx3, 4zx4, 4zyf, 4zzd, 4zzx, 4zzy, 4zzz, 5a5q, Sabk, 5a6x, 5a7b, 5a81, 5aa9,
Saan, Saba, Sacy, 5afv, Sahw, Salb, Sam6, 5am7, 5amd, Samg, 5aml, 5ant, 5anu, Sanv, 5aoi, 5aoj, Saol,
Saqz, Saut, Savf, Sayt, 5b25, 5b2d, 5b5f, Sb5g, 5boj, Sbry, 5bs4, Sbtx, Sbw4, Sbwc, Sbyi, Sclm, Sclw,
5¢28, 5c2a, 5¢2h, 5¢3p, 5¢5t, 5¢8n, Scap, Scaq, Scas, Scau, Scbm, Scbr, 5cbs, Scc2, Scep, Schk, 5¢j6,
5¢jf, 5cks, Scp5, Scp9, Scqt, Scqu, Scs6, Scso, Scsp, Scst, Scud, Scxa, Scy9, Sczm, 5d0c, 5d0r, 5dlr,
5d21, 5d24, 5d25, 5d26, 5d2r, 5d3c, 5d3h, 5d3j, 5d31, 5d3n, 5d3p, 5d3t, 5d45, 5d47, 5d48, 5dbm, Sdey,
5dfp, 5dgu, 5dgw, 5dh4, 5dhS5, 5dit, Sdkn, 5dlx, Sdnu, 5dpx, 5dq8, 5dqc, 5dqe, 5dqf, 5drr, 5dus, Sduw,
Sdwr, 5dx4, 5dxt, 5dyo, 5e13, Sels, 5e28, 5e2k, 5e2l, 5e20, Se2p, 5e2s, 573, 5e74, 5¢7n, 5e89, Sedb,
Sedc, Seei, Seek, Seen, 5ef7, Seth, Segm, Segu, Seh5, Seh7, 5eh8, Sehq, Sehr, Sehv, Sehw, 5ei3, Seij,
Seis, Sekm, 5el9, Selw, Sen3, Seng, Sep7, Sepn, 5eql, Seqe, Seqp, Ser2, Serd, Setb, Setj, Seul, Sev8,
Sevb, Sevd, Sevk, Sew0, Sewa, Sewk, Sewy, Sexl, Sexm, Sexn, Seyr, 5f08, 5{0f, 5f1h, 5flr, 5flv, 525,
5f2p, 5160, 561, 563, 5{8y, 59b, 5fck, Sfcz, Sfdc, Sfdi, 5fe6, Ste7, 5fe9, Sth7, 5th8, Sthm, Sthn, Stho,
5114, 5115, 5116, 5flo, 5flq, 5fls, 5flt, Sfnc, Stnd, Sfnf, Sthg, Star, Sfns, Sfnt, Sfnu, Sfol, 5£s5, Sfsc, Sfsn,
5fso, 5fsy, Sftg, Sfto, Sfut, 5g17, 5gla, 5glz, 5g2b, 5g2¢g, 5g45, 5g46, 5gdm, S5g4n, S5gdo, 5g57, 5g5f,
5g5v, 5g5z, 5g60, 5g61, 5gj9, Sgja, Sgmh, Sgsa, Sh1t, Shlu, Shlv, Sh5f, Sh85, Sh8e, Sh8g, Shor, Shal,
Shbn, Shbs, Shct, Shev, Shey, Shi7, Shrv, Shrw, Shrx, Shtl, Shtz, Shu9, Shvs, Shvt, Shwv, 5hz6, 5hz8,
5hz9, 5ilq, 5129, 5i2e, 5i2f, 5i3a, 5i3v, 513w, 5i3x, 5i7x, 517y, 5180, 5188, 5i8g, 519y, 5ia0, Sial, 5ia2,
5ia3, 5ia4, 51a5, Siel, 5igm, 5ih9, 5ihh, 5ii2, 5ijr, Sikb, Sime, Sioz, Sipc, 5ipj, Sito, Sitp, Sivc, Sive, Sivv,
Sivy, S5iwg, 5ix0, Siyy, 5j0d, 5j1r, 5j1x, 5520, 5j27, 5j2x, 5j31, 5j64, 5j6a, 5j61, 5j6m, 5j6n, 5j7q, 5]7w,
5j82, 5186, 5;8m, 5j8u, 5j8z, 5j9x, 5jfp, 5jfu, 5jgl, 5jgi, 5jgq, 5jhb, Sjhk, 5ji8, S5jop, 5jox, 5jq5, 5js3,
5jsg, 5jsj, 5jss, 5jt9, Sjvi, 5jxn, 5jxq, 5jy3, 5k03, 5kOh, 5kOm, 5k1f, 5k8s, 5k9w, Skal, Ska7, Ska9, Skab,
Skad, Skax, 5kbe, Skej, 5kh3, Skhm, 5kly, Skm9, Skma, 5kol, 5ko5, Skqx, Skr2, Skva, 5kz0, 512s, 5130,
513a, 5141, 514j, 514m, 517e, 517g, 517h, 518a, 518y, 519g, 519i, 5191, 5190, Slaq, 51d8, 5lif, 5ljq, Sljt, Sllc,
Slle, 5llg, 511h, 5llo, 5llp, Slny, Slom, 51sg, Slsh, 51tn, 5lud, 5Ivd, 5lvq, Slvr, 5lwd, 51z4, 5125, 5127, 5Sm25,
5m28, 5m7s, Sm7u, Sm9w, Sma7, Smeh, Smes, Smg2, Smge, Smgf, Smgj, Smgk, Smkr, Smks, Smlj,
Smme, Smmg, Smnl, Smnn, Smnr, Smo8, Smod, Smpk, Smpn, Smpz, Smqge, Smrb, Smrm, Smro, Smrp,

Smsb, Smwh, Smwp, Smwy, Smxf, Smy8, 5mz8, 5n0d, 5n0e, 5n0f, 5n17, 5n18, Snlr, Snls, Snlz, Sn24,
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5n25, 5n2t, 5n2z, 5n31, 5n34, 5n3v, 5n3y, 5n84, 5n93, 5n9r, Snap, Snau, Snbw, 5ndf, SneS, Snea, Sneb,
Snee, Sngz, Snih, 5njz, 5nk2, 5nk3, 5nk4, 5nk6, 5nk7, 5nk8, Snka, Snkb, Snkc, Snkd, Snkg, Snkh, 5nki,
Snlk, 5nn5, 5nn6, Snvv, Snvw, Snvx, Snw0, Snwl, Snw2, Snwe, 5nxi, Snxp, Snxw, Snyl, Sny3, Snya,
Snyh, 5nz4, Snze, 5nzf, 5Snzn, 501d, 501f, So1h, 502d, 504f, 505a, 5090, 509p, 509q, 509r, 509y, 50a6,
Sodx, Soei, 50h2, 50h3, 50h4, 50h7, 50h9, 5oha, 5oku, Som2, Som3, Som7, Soot, Sop4, 50p5, 50q8,
Soqu, Sorg, Sorh, 5orj, Sork, Sorv, Sorw, 50s2, 50s4, 50s5, 50s7, 50s8, Sose, Sosl, Soss, Sost, 50t8, 50t9,
Sota, Sotc, Sotr, Sotz, Souh, Sov8, Sowl, 5std, Ssym, 5sz0, 5sz1, 5522, 5573, 5sz4, 5sz5, 5526, 5sz7, 5t19,
S5t7s, 5t8o, 5t9u, 5t9w, 5ta2, 5tb6, Stbe, Stcj, 5tfx, Sth4, 5ti0, Stmn, 5tp0, Stpx, 5tt3, Stuo, Stuz, Stwj,
Stxy, 5ty9, Stya, Su0d, Su0e, 5u0g, SuOw, 5uly, Sulz, Sull, 5ul2, Sul3, Sul4, 5u28, 5u49, Sudb, Sudd,
Su6j, 5u8c, Sucd, Sucj, Sueu, Suez, 5uf0, Sufc, Suff, Sufp, Sufr, Sufs, Suk8, Sula, Suln, Sulp, Sult, Sumx,
Sumy, 5uoo, Suov, Supe, Supf, Supj, Supz, Suv2, Suxf, 5v0n, 5v79, Sv7a, 5v82, Svar, Svb5, S5vb7, Svcv,
Svew, 5vd0, 5vdl, 5vd2, 5vd3, Svgy, 5Svih, 5vij, 5vja, Svke, 5v12, 5vmO0, 5vol, 5voj, 5vp9, 5vr8, Svsf,
Svsj, Svyy, Swle, 5Sw44, Swa8, Swa9, Swal, Swbm, Swe9, Swex, Swgp, Swl0, Swlo, Swp5, Swqc, Swuk,
Swyx, Swyz, 5x62, 5x74, 5xg5, Sxmx, 5x07, 5xpi, 5xsr, 5xva, 5xvg, 5y12, 5y13, 5y8y, 5y94, Syas,
Syas, 5yh8, Syhe, Syhg, 5yj8, Syjm, 5yl2, 5z5f, 5z27b, 5z7], 5299, 5za7, 5za8, 5za9, 5zae, 5zaf, 5zag,
Szaj, 5z¢5, 5zke, 6ags, 6ayo, 6ayq, 6blk, 6b4l, 6b4u, 6b59, 6b7a, 6b7b, 6b96, 6b97, 6b98, 6bbx, 6bdy,
6bhv, 6bm5, 6bm6, 6¢0s, 6¢7q, 6¢7w, 6¢7x, 6¢bf, 6¢bg, 6¢dj, 6¢dl, 6¢e6, 6¢ced, 6¢ckr, 6¢cks, 6¢pa, 6cpw,
6¢sp, 6¢sq, b¢sr, 6¢ss, 6cwh, 6cwn, 6d20, 6d50, 6d55, 6d56, 6d5e, 6d5g, 6d5h, 6d5j, 6d9%, 6dai, 6dak,
6dar, 6dh1, 6dh2, 6dh6, 6dh7, 6dh8, 6dif, 6dil, 6dj1, 6dj2, 6dj5, 6dj7, 6dq4, 6e4a, 6¢7j, 69a, 6edr, 6eed,
6¢i5, 6¢if, 6¢ij, 6eiq, beir, beis, 6eiz, 6¢j2, 6¢j3, 6ekq, 6elS5, 6eln, 6elo, 6elp, 6enS5, 6eog, 6eol, 6ep4,
6epa, 6epy, 6epz, 6eql, 6eq8, 6eqp, 6equ, beuw, 6eux, bevr, 6ex1, 6exi, bexs, 6ey8, 6ey9, 6eya, beyb,
6eyt, 6f1j, 6f1n, 620, 6128, 6f3b, 6190, 6192, 6f9¢g, 6f9u, 619v, 6fad, 6faf, 6fba, 6fe0, 6fel, 6fgg, 6fhq,
6fmc, 6fmj, 6fnf, 6fng, 6fni, 6fnj, 6fng, 6fnr, 6fo5, 6fs0, 6fs1, 6ftp, 6ftz, 6fuh, 6fui, 6fuj, 6fyz, 6g34,
6g35, 6g36, 6237, 6238, 6239, 6g3a, 623q, 6g3v, 6298, 6291, 629u, 6ge7, 6219, 6gfs, 6gfz, 6ghh, 6gji,
6gjj, 6gjl, 6gjm, 6gjn, 6gjr, 6218, 6819, 6gnm, 6gnp, 6gnr, 6gnw, 6gon, 6got, 6guc, 6gue, 6guh, 6guk,
6gvz, 6gw4, 6gwr, 6gzd, 6gzm, 6h29, 6h2t, 6h2z, 6h33, 6h34, 6h36, 6h37, 6h38, 6hSx, 6h8s, 6hai, 6hd6,
6hh3, 6hh5, 6hke, 6hix, 6hly, 6hpw, 6hqy, 6hrq, 6hsh, 6ht1, 6htg, 6iiu, 6ma2, 6ma3, 6ma4, 6mas, 6mjf,
6msy, 6std, 6upj, 7std, 7upj, 8a3h, 8cpa, 966¢
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7.2 List of used PDBbind core set 2013 structures

10gs, 1a30, 1bcu, 1e66, 1f8b, 118¢c, 1f8d, 1gpk, 1h23, 1hfs, 1hnn, 1igj, 1jyq, 1kel, 11bk, 1lol, 1loq, 1lor,
Img6, Inlm, 1n2v, Invq, 103f, 105b, 10s0, loyt, 1plq, 1ps3, 1g8t, 1q8u, 1qi0, 115y, 1sln, 1sqa, lulb,
1u33, luto, 1vso, 1w3k, 1w3l, 1w4o, 1xd0, 1ycl, 1295, 1zea, 2brb, 2¢cbj, 2cet, 2d10o, 2d3u, 2fvd, 2g70,
2gss, 2hbl, 2iwx, 2j62, 278, 2jdm, 2jdu, 2jdy, 20bf, 2ole, 2p4y, 2pcp, 2pq9, 2qbp, 2qbr, 2qft, 2qmj,
2123, 2v00, 2v7a, 2vl4, 2vo5, 2vot, 2vvn, 2vwS5, 2w66, 2wbg, 2wca, 2weg, 2wtv, 2x00, 2x0y, 2x8z,
2x97, 2xb8, 2xbv, 2xdl, 2xhm, 2xnb, 2xy9, 2y5h, 2yfe, 2yge, 2yki, 2ymd, 2zcq, 2zcr, 2zjw, 2zwz, 27xd,
3acw, 3ag9, 3a04, 3b3s, 3b3w, 3b68, 3bfu, 3bkk, 3bpc, 3cyx, 3d4z, 3dd0, 3dxg, 3e93, 3ehy, 3ejr, 3f17,
3f3e, 3fcq, 3tkl1, 3fvl, 3g0w, 3g2z, 3gbb, 3gcs, 3ge7, 3gnw, 3gy4, 3huc, 3imc, 3ivg, 3jvs, 3k5v, 3kgp,
3kv2, 3kwa, 313n, 3lka, 3mfv, 3mss, 3myg, 3n7a, 3nox, 3nq3, 3nw9, 3oe5, 3ovl, 3owj, 3o0zt, 3pe2,
3pww, 3pxf, 3s80, 3su2, 3su3, 3su5, 3u9q, 3udh, 3ueu, 3uex, 3uri, 3utu, 3vh9, 3zso, 3zsx, 4del, 4de2,
4des, 4dew, 4djr, 4djv, 4g8m, 4gid, 4gqq, 4tmn

7.3 Druggability data set

Druggable: 1uou, 1e66, 1kzn, 2brl, 1lpz, 105t

Undruggable: 1v16, 3jdw, 1kc7, 1mai, 1px4, 10d8, 1d09, 1moq, 1rnt, lonz, 1jak, 2gyi, 1086

7.4 TEAD4 Brunschweiger data set

CIC1=CC=C(C(CNCCHC)=CN2)C2=C1
CIC1=CC=C(C=C(CNCC2=CN(CCN3CCCCCC3)N=N2)N4)C4=C1
CIC1=CC=C(C=C(CNCC2=CN(CC3=CN(C=C(C)C=C4)C4=N3)N=N2)N5)C5=C1
CIC1=CC=C(C=C(CNCC2=CN(CC3=NC=C(C4=CC=CC=C4)03)N=N2)N5)C5=C1
CIC1=CC=C(C=C(CN(C(C)=0)CC2=CN(CCN3CCCCCC3)N=N2)N4)C4=C1
CIC1=CC=C(C=C(CN(C(C)=0)CC2=CN(CC3=CN(C=C(C)C=C4)C4=N3)N=N2)N5)C5=C1
CIC1=CC=C(C=C(CN(C(C)=0)CC2=CN(CC3=NC=C(C4=CC=CC=C4)03)N=N2)N5)C5=C]
CIC1=CC=C(C=C(CN(C(CNC(OC(C)(C)C)=0)=0)CC2=CN(CCN3CCCCCC3)N=N2)N4)C4=C1
CIC1=CC=C(C=C(CN(C(CNC(OC(C)(C)C)=0)=0)CC2=CN(CC3=CN(C=C(C)C=C4)C4=N3)N=N2)N5)C5=C1
CIC1=CC=C(C=C(CN(C(CNC(OC(C)(C)C)=0)=0)CC2=CN(CC3=NC=C(C4=CC=CC=C4)03)N=N2)N5)C5=C1
CIC1=CC=C(C=C(CN(C(CCC(OC(C)(C)C)=0)=0)CC2=CN(CCN3CCCCCC3)N=N2)N4)C4=C1
CIC1=CC=C(C=C(CN(C(CCC(OC(C)(C)C)=0)=0)CC2=CN(CC3=CN(C=C(C)C=C4)C4=N3)N=N2)N5)C5=C1
CIC1=CC=C(C=C(CN(C(CCC(OC(C)(C)C)=0)=0)CC2=CN(CC3=NC=C(C4=CC=CC=C4)03)N=N2)N5)C5=C1
CIC1=CC=C(C=C(CN(C(CN)=0)CC2=CN(CCN3CCCCCC3)N=N2)N4)C4=C1
CIC1=CC=C(C=C(CN(C(CCC(0)=0)=0)CC2=CN(CCN3CCCCCC3)N=N2)N4)C4=C1
CIC1=CC=C(C=C(CN(C(CN)=0)CC2=CN(CC3=NC=C(C4=CC=CC=C4)03)N=N2)N5)C5=C1
CIC1=CC=C(C=C(CN(C(CCC(0)=0)=0)CC2=CN(CC3=NC=C(C4=CC=CC=C4)03)N=N2)N5)C5=C
CIC1=CC=C(C=C(CN(C(CN)=0)CC2=CN(CC3=CN(C=C(C)C=C4)C4=N3)N=N2)N5)C5=C]1
CIC1=CC=C(C=C(CN(C(CCC(0)=0)=0)CC2=CN(CC3=CN(C=C(C)C=C4)C4=N3)N=N2)N5)C5=C]
CC(C)C1=NC(CN(N=N2)C=C2CNCC3=CC4=CC=C(CI)C=C4N3)=CS1
CC(C)C1=NC(CN(N=N2)C=C2CN(C(CNC(OC(C)(C)C)=0)=0)CC3=CC4=CC=C(CI)C=C4N3)=CS1
CC(C)C1=NC(CN(N=N2)C=C2CN(C(C)=0)CC3=CC4=CC=C(Cl)C=C4N3)=CS1
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CC(C)C1=NC(CN(N=N2)C=C2CN(C(CCC(OC(C)(C)C)=0)=0)CC3=CC4=CC=C(Cl)C=C4N3)=CS1
CC(C)C1=NC(CN(N=N2)C=C2CN(C(CN)=0)CC3=CC4=CC=C(CI)C=C4N3)=CS1
CC(C)C1=NC(CN(N=N2)C=C2CN(C(C(CCCC)N)=0)CC3=CC4=CC=C(C1)C=C4N3)=CS1
CIC1=CC=C(C=C(CNCC2=CN(CC(C3=CC=CC=C3NC4=CC(C(F)(F)F)=CC=C4)=0)N=N2)N5)C5=C1
CIC1=CC=C(C=C(CN(C(CNC(OC(C)(C)C)=0)=0)CC2=CN(CC(C3=CC=CC=C3NC4=CC(C(F)(F)F)=CC=C4)=0)N=N2)N5)C5=C1
CIC1=CC=C(C=C(CN(C(C)=0)CC2=CN(CC(C3=CC=CC=C3NC4=CC(C(F)(F)F)=CC=C4)=0)N=N2)N5)C5=C1
CIC1=CC=C(C=C(CN(C(CCC(OC(C)(C)C)=0)=0)CC2=CN(CC(C3=CC=CC=C3NC4=CC(C(F)(F)F)=CC=C4)=0)N=N2)N5)C5=C1
CIC1=CC=C(C=C(CN(C(CN)=0)CC2=CN(CC(C3=CC=CC=C3NC4=CC(C(F)(F)F)=CC=C4)=0)N=N2)N5)C5=C1
CIC1=CC=C(C=C(CN(C(C(CCCC)N)=0)CC2=CN(CC(C3=CC=CC=C3NC4=CC(C(F)(F)F)=CC=C4)=0)N=N2)N5)C5=C1
CIC1=CC=C(C=C(CN(C(C2N(C(C(C(C)C)NC(C)=0)=0)CCC2)=0)CC3=CN(CC4=CN(C=C(C)C=C5)C5=N4)N=N3)N6)C6=C1
CIC1=CC=C(C=C(CN(C(C2N(C(C(C(C)C)NC(C)=0)=0)CCC2)=0)CCI=CN(CC4=NC=C(C5=CC=CC=C5)04)N=N3)N6)C6=C1
CIC1=CC=C(C=C(CN(C(C2N(C(C(C(C)C)NC(C)=0)=0)CCC2)=0)CC3=CN(CC(C4=CC=CC=C4NC5=CC(C(F)(F)F)=CC=C5)=0)N=N
3)N6)C6=C1

0=C(C(C(C)C)NC(C)=0)N1CCCCICN(CC2=CN(CC3=CSC(C(C)C)=N3)N=N2)CC4=CC5=CC=C(C)C=C5N4)=0
CIC1=CC=C(C=C(CN(C(C2N(C(C(C(C)C)NC(C)=0)=0)CCC2)=0)CC3=CN(CCN4CCCCCC4)N=N3)N5)C5=C]
BrC1=CC=CC(NC2=CC=CC=C2C(N(CC3=CC4=CC=C(CI)C=C4N3)CC5=CN(CCN6CCCCCCE)N=N5)=0)=C1
BrC1=CC=CC(NC2=CC=CC=C2C(N(CC3=CN(CC4=NC=C(C5=CC=CC=C5)04)N=N3)CC6=CCT=CC=C(C)C=CTN6)=0)=Cl
CIC1=CC=C(C=C(CN(C(C2=CC=CC=C2NC3=CC(Br)=CC=C3)=0)CC4=CN(CC5=CN(C=C(C)C=C6)C6=N5)N=N4)N7)C7=C1
CC(C)C1=NC(CN(N=N2)C=C2CN(C(C3=CC=CC=C3NC4=CC(Br)=CC=C4)=0)CC5=CC6=CC=C(CI)C=C6N5)=CS1
CIC1=CC=C(C=C(CN(C(C(N2C=CC=C2)C3=CC=CC=C3)=0)CC4=CN(CCN5CCCCCC5)N=N4)N6)C6=C1
0=C(C(N1C=CC=C1)C2=CC=CC=C2)N(CC3=CN(CC4=NC=C(C5=CC=CC=C5)04)N=N3)CC6=CC7=CC=C(C))C=CTNG
CIC1=CC=C(C=C(CN(C(C(N2C=CC=C2)C3=CC=CC=C3)=0)CC4=CN(CC5=CN(C=C(C)C=C6)C6=N5)N=N4)N7)C7=C1
CIC1=CC=C(C=C(CN(C(C2=C(NC3=CC=CC(C(F)(F)F)=C3)N=CC=C2)=0)CC4=CN(CCN5CCCCCC5)N=N4)N6)C6=C1
0=C(C1=C(NC2=CC=CC(C(F)(F)F)=C2)N=CC=C1)N(CC3=CN(CC4=NC=C(C5=CC=CC=C5)04)N=N3)CC6=CCT=CC=C(CI)C=CTN6
CC(C)C1=NC(CN(N=N2)C=C2CN(C(C(N3C=CC=C3)C4=CC=CC=C4)=0)CC5=CC6=CC=C(Cl)C=C6N5)=CS1
CIC1=CC=C(C=C(CN(C(C2=C(NC3=CC=CC(C(F)(F)F)=C3)N=CC=C2)=0)CC4=CN(CC5=CN(C=C(C)C=C6)C6=N5)N=N4)N7)C7=C1
CC(C)C1=NC(CN(N=N2)C=C2CN(C(C3=C(NC4=CC=CC(C(F)(F)F)=C4)N=CC=C3)=0)CC5=CC6=CC=C(C)C=C6N5)=CS1
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7.5 Holo water thermodynamics and ligand affinity - scatterplots

7.5.1 Whole PDBbind refined set
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Figure 69: Scatterplot of ligand affinity (pKi/pKa) and the parameter ANunhappy as defined in Eq. (71) for
complexes in the used PDBbind refined subset with linear regression (blue) and respective 0.95 level of

confidence interval (grey) as calculated by ggplot2 functionalities in R.
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Figure 70: Scatterplot of ligand affinity (pKi/pKaq) and the parameter Axunhappy as defined in Eq. (72) for
complexes in the used PDBbind refined subset with linear regression (blue) and respective 0.95 level of

confidence interval (grey) as calculated by ggplot2 functionalities in R.
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7.5.2 Protein subsets
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Figure 71: Scatterplot of ligand affinity (pKi/pK4) and the parameters Xunhappy, AXunhappy, ANd ANynjappy fOF
BACE| complexes in the used PDBbind refined subset with linear regression (blue) and respective 0.95

level of confidence interval (grey) as calculated by ggplot2 functionalities in R.
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BRD4
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Figure 72: Scatterplot of ligand affinity (pKi/pK,) and the parameters Xunhappy, AXunhappy, ANd ANynhappy fOF
BRD4 complexes in the used PDBbind refined subset with linear regression (blue) and respective 0.95

level of confidence interval (grey) as calculated by ggplot2 functionalities in R.
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CA2
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Figure 73: Scatterplot of ligand affinity (pKi/pKa) and the parameters Xunhappy, AXunhappy, ANAd AN yniappy for

CA2 complexes in the used PDBbind refined subset with linear regression (blue) and respective 0.95

level of confidence interval (grey) as calculated by ggplot2 functionalities in R.
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Caseinkinase
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Figure 74: Scatterplot of ligand affinity (pKi/pKa4) and the parameters Xunhappy, AXunhappy, ANd AN uniappy for

Caseinkinase complexes in the used PDBbind refined subset with linear regression (blue) and respective

0.95 level of confidence interval (grey) as calculated by ggplot?2 functionalities in R.
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fXa
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Figure 75: Scatterplot of ligand affinity (pKi/pK4) and the parameters Xunhappy, AXunhappy, ANd ANyniappy fOF

fXa complexes in the used PDBbind refined subset with linear regression (blue) and respective 0.95

level of confidence interval (grey) as calculated by ggplot2 functionalities in R.
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HIV1PR
12- . 12-

10- 10-

> >
= =
= 8 € 8
E E
© ©
6- 6-
4 . 4 .
0.2 0.4 0.6 0.8 -0.6 -0.3 0.0 0.3
Xunhappv AXunha;:q:n,'
12- Py et ® s !
. oo, H ole .
. ! 1. s, .
. * Setal ol ! noo
10- ; e®lee® L Y .
. (] [} : .
.
i) - L K] ‘ .
' 8 Oy = R O T
k o A
% AT o c ',:-:;' .3-
[ (] o ®
. Py . : L] . : A
6- L] L .
(] ' ]
L] - .
. . &
.
4- .
-20 -15 -10 5 0 5
A‘.\’ur’whapp\(

Figure 76: Scatterplot of ligand affinity (pKi/pK4) and the parameters Xunhappy, AXunhappy, ANd ANyniappy fOF
HIVIPR complexes in the used PDBbind refined subset with linear regression (blue) and respective

0.95 level of confidence interval (grey) as calculated by ggplot2 functionalities in R.
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HSP90
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Figure 77: Scatterplot of ligand affinity (pKi/pK4) and the parameters Xunhappy, AXunhappy, ANd ANyniappy fOF
HSP90 complexes in the used PDBbind refined subset with linear regression (blue) and respective 0.95

level of confidence interval (grey) as calculated by ggplot2 functionalities in R.
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MMP12
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Figure 78: Scatterplot of ligand affinity (pKi/pK4) and the parameters Xunhappy, AXunhappy, A0d ANyniappy fOF
MMP12 complexes in the used PDBbind refined subset with linear regression (blue) and respective 0.95

level of confidence interval (grey) as calculated by ggplot2 functionalities in R.
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NA
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Figure 79: Scatterplot of ligand affinity (pKi/pK,) and the parameters Xunhappy, AXunhappy, A0d ANynjappy fOF

NA complexes in the used PDBbind refined subset with linear regression (blue) and respective 0.95

level of confidence interval (grey) as calculated by ggplot2 functionalities in R.
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Thermolysin
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Figure 80: Scatterplot of ligand affinity (pKi/pK4) and the parameters Xunhappy, AXunhappy, ANAd ANyniappy fOF

thermolysin complexes in the used PDBbind refined subset with linear regression (blue) and respective

0.95 level of confidence interval (grey) as calculated by ggplot2 functionalities in R.
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Thrombin
10- ¢

10.0-
>
=
= 4
:‘E T:5
(1]
5.0-
L]
L ]
L]
0.0 0.2 0.4 0.6 0.8 0.4 -0.2 0.0 0.2
Xunhappy l&"’unhay.:;p\,t
10-
g
>
=
€
o ©

-10

lANumhappy
Figure 81: Scatterplot of ligand affinity (pKi/pK4) and the parameters Xunhappy, AXunhappy, A0d ANyuniappy fOF

thrombin complexes in the used PDBbind refined subset with linear regression (blue) and respective

0.95 level of confidence interval (grey) as calculated by ggplot2 functionalities in R.
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Figure 82: Scatterplot of ligand affinity (pKi/pK4) and the parameters Xunhappy, AXunhappy, ANd ANyuniappy fOF
trypsin complexes in the used PDBbind refined subset with linear regression (blue) and respective 0.95

level of confidence interval (grey) as calculated by ggplot2 functionalities in R.
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7.6 Ligand-probe matchscore vs. ligand affinity (PDBbind core set 2013)

Table 27: Binding affinities and the calculated ligand-probe matchscore for the complex structures in

the PDBbind core set 201 3.

PDB pKar | s
4djr 11.52 | 0.186
2j62 11.34 | 0.165
2x00 11.33 | 0.152
1mq6 11.15 | 0.272
llor 11.06 | 0.411
3utu 10.92 | 0.217
4gid 10.77 | 0.306
3myg 10.7 | 0.200
4tmn 10.17 | 0.174
ligj 10 0.127
1e66 9.89 | 0.330
3pe2 9.76 | 0.289
3g0w 9.52 ] 0.246
2yki 9.46 | 0.333
3fvl 93 0.315
Isqa 9.21 | 0.259
2xy9 9.19 |0.133
3su3 9.13 | 0.145
3gnw 9.1 0.185
2pdy 9 0.021
3ddo 9 0.249
3nw9 9 0.296
3uri 9 0.207
3e93 8.85 | 0.355
20bf 8.85 | 0.347
2zcq 8.82 | 0.381
2wtv 8.74 | 0.313
1hfs 8.7 0.278
ljyq 8.7 0.293
2pcp 8.7 0.098
3ge7 8.7 0.354

207



Appendix

PDB pKarr | s
3nox 8.66 | 0.260
317 8.63 | 0.308
3ejr 8.57 |0.375
2fvd 8.52 | 0.278
2vw5 8.52 ] 0.143
2xbv 8.43 | 0.306
2qbp 8.4 0.263
3b68 8.4 0.247
1h23 8.35 | 0.522
2v7a 8.3 0.285
2cbj 8.27 |0.148
Invq 8.25 |0.312
313n 8.18 | 0.375
2pq9 8.11 | 0.331
3ag9 8.05 | 0.070
2cet 8.02 | 0.342
3cyx 8 0.235
lo3f 7.96 | 0.190
2x8z 7.96 | 0.452
4g8m 7.89 | 0.187
lulb 7.8 0.273
27wz 7.79 | 0.421
2g70 7.77 | 0.263
2dlo 7.7 0.379
2zjw 7.7 0.256
3f3e 7.7 0.417
2xb8 7.59 | 0.298
1f8¢ 7.4 0.385
3su2 7.35 | 0.150
3kv2 7.32 | 0.063
3pww 7.32 | 0.184
2vvn 7.3 0.345
1kel 7.28 | 0.359
2ole 7.25 | 0.156
3gcs 7.25 | 0.570
loyt 7.24 | 0.263

208




Appendix

PDB pKair | s
2vot 7.14 | 0.267
1xd0 7.12 | 0.136
1295 7.12 | 0.244
4dew 7 0.180
2d3u 6.92 | 0.268
3uex 6.92 | 0.241
3gbb 6.9 0.433
3o0e5 6.88 | 0.196
2zcr 6.87 | 0.383
3s80 6.85 | 0.177
2xnb 6.83 | 0.395
2xhm 6.8 0.264
2jdu 6.72 | 0.261
4djv 6.72 | 0.319
2iwx 6.68 | 0.159
Isln 6.64 | 0.221
2yfe 6.63 | 0.290
3jvs 6.54 | 0.272
2weg 6.5 0.302
IrSy 6.46 | 0.479
2§78 6.42 | 0.270
10gs 6.4 0.318
11ol 6.39 | 0.587
2qbr 6.33 | 0.363
3k5v 6.3 0.358
1w3l 6.28 | 0.124
3bfu 6.27 | 0.289
lhnn 6.24 | 0.270
3vh9 6.24 | 0.204
lycl 6.17 | 0.284
3bkk 6.08 | 0.344
3owj 6.07 | 0.294
los0 6.03 | 0.268
2vl4 6.01 | 0.151
3huc 599 |0.281
1q8u 596 | 0.268
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PDB pKar | s
4del 596 |0.283
3ehy 5.85 |0.227
4des 5.85 |0.360
2y5Sh 5.79 | 0.060
lo5b 5.77 | 0.207
Inlm 5.7 0.660
2x97 5.66 | 0.146
2wca 5.6 0.185
3sub 5.58 | 0.164
1f8b 5.4 0.276
2jdm 54 0.208
lgpk 5.37 | 0.604
2qft 526 |0.133
3ueu 5.24 | 0.250
1w4o 522 0.235
1zea 522 |0.139
2zxd 5.22 | 0.255
3ovl 52 0.171
3zso 5.12 1 0.433
3gy4 5.1 0.190
2yge 5.06 | 0.053
2gss 494 |0.244
Iplq 4.89 |0.187
2vo5 4.89 |0.126
3d4z 4.89 |0.563
2brb 4.86 |0.304
3bpc 4.8 0.154
1q8t 4.76 | 0.189
3acw 4.76 | 0.265
lvso 4.72 | 0.228
3mss 4.66 | 0.235
1u33 4.6 0.145
2x0y 4.6 0.264
2wbg 445 | 0.257
3pxf 443 | 0.496
3u9q 438 |0.333
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PDB pKair | s
2jdy 4.37 |0.280
1a30 43 0.272
1w3k 43 0.131
3ivg 4.3 0.289
2qmj 421 |0.098
3b3w 4.19 | 0.244
3ozt 4.13 | 0.501
4de2 4.12 | 0.170
In2v 4.08 | 0.269
3kwa 4.08 | 0.167
2w66 4.05 |0.342
2hbl 3.8 0.401
3nq3 3.78 | 0.233
2r23 3.72 | 0.239
lloq 3.7 0.454
3n7a 3.7 0.143
2v00 3.66 | 0.204
1£8d 3.4 0.395
Ibcu 3.28 |0.103
3zsx 3.28 | 0.406
11bk 3.18 | 0.335
2ymd 3.16 | 0.421
2xdl 3.1 0.325
3imc 296 |0.519
4gqq 2.89 |0.439
3udh 2.85 |0.439
3lka 2.82 | 0.266
3fcq 2.77 | 0.100
3fkl1 2.62 | 0.440
3kgp 2.57 | 0.125
3b3s 2.55 | 0.206
3mfv 2.52 | 0.262
3dxg 2.4 0.212
3g2z 2.36 | 0.000
1qi0 2.35 | 0.067
1ps3 228 |0.364
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PDB pKaff S
luto 2.27 | 0.167
3ao4 2.07 |0.307
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7.7 Virtual screening of XIAP — ROC curves
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Figure 83: ROC curves for the scoring of poses obtained by docking of the DUD-E benchmark data set

for XIAP by ChemPLP score alone and in combination with the ligand-probe matching score Spose for

filtering purposes, x, and x4 denote the matching with only o and n4 probe as defined in Eq. (77).
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Figure 84: ROC curves for the scoring of poses obtained by docking of the DUD-E benchmark data set

for XIAP by ChemPLP score, the ligand-probe matching score Spose and different combinations of them

for filtering purposes; x, and x4 denote the matching with only o and n4 probe as defined in Eq. (77).
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Figure 85: ROC curves for the scoring of poses obtained by docking of the DUD-E benchmark data set
for XIAP by ChemPLP score, the ligand-probe matching score syos. as defined in Eq. (79) and different

combinations of them for filtering purposes.
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7.8 TEADA scores
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Figure 86: Scatter plot of ChemPLP scores and spose values as defined 4.2.2. for the docking of the data
set provided by the Brunschweiger group in TEAD4 structure 6q36. The raw data can be found in the
electronic appendix (Electronic_Appendix/ TEAD4/ Docking/).
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Figure 87: Scatter plot of normalized ChemPLP scores (score divided by number of heavy atoms) and
Spose Values as defined 4.2.2. for the docking of the data set provided by the Brunschweiger group in
TEAD4 structure 6q36. The raw data can be found in the electronic appendix (Electronic Appendix/
TEAD4/ Docking/).
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