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Abstract
Inspired by the successful application of the embedded cluster reference interaction site model (EC-RISM), a combination 
of quantum–mechanical calculations with three-dimensional RISM theory to predict Gibbs energies of species in solution 
within the SAMPL6.1 (acidity constants, pKa) and SAMPL6.2 (octanol–water partition coefficients, log P) the methodology 
was applied to the recent SAMPL7 physical property challenge on aqueous pKa and octanol–water log P values. Not part of 
the challenge but provided by the organizers, we also computed distribution coefficients log D7.4 from predicted pKa and log 
P data. While macroscopic pKa predictions compared very favorably with experimental data (root mean square error, RMSE 
0.72 pK units), the performance of the log P model (RMSE 1.84) fell behind expectations from the SAMPL6.2 challenge, 
leading to reasonable log D7.4 predictions (RMSE 1.69) from combining the independent calculations. In the post-submission 
phase, conformations generated by different methodology yielded results that did not significantly improve the original 
predictions. While overall satisfactory compared to previous log D challenges, the predicted data suggest that further effort 
is needed for optimizing the robustness of the partition coefficient model within EC-RISM calculations and for shaping the 
agreement between experimental conditions and the corresponding model description.
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Introduction

For more than a decade the SAMPL blind prediction chal-
lenges (Statistical Assessment of Modeling of Proteins and 
Ligands) [1] represent an optimal testbed for evaluating 
and optimizing the performance of computational models 
to predict experimental reference data. Our group partici-
pated in the past in a number of challenges on small mol-
ecule physicochemical properties, starting with SAMPL2 
on tautomerization free energies in water [2], SAMPL5 on 
cyclohexane-water distribution coefficients (log D7.4) [3], 
SAMPL6.1 on aqueous pKa values [4], and SAMPL6.2 on 
octanol–water partition coefficients (log P) [5]. The meth-
odology employed throughout was the embedded cluster 
reference interaction site model (EC-RISM) developed by 
us on the basis of combining three-dimensional (3D) RISM 

theory [6–8] as a solvation model with quantum–mechanical 
(QM) calculations [9]. This computational model allows for 
the calculation of Gibbs energies of species in solution that 
can be combined in thermodynamic cycles to yield derived 
quantities such as the previous SAMPL challenge targets 
mentioned above. The challenges themselves triggered fur-
ther development of the model in terms of identifying and 
optimizing methodical details throughout the history, as has 
been discussed in broad detail in a recent overview paper 
[10]. Briefly summarizing the key results, we expect a pKa 
accuracy on the order of 1 and octanol–water log P accu-
racy below 1 pK units. log D7.4 values at the pH given as 
subscript have only been computed thus far for cyclohexane-
water distributions, yielding expected errors on the order 
of 2 pK units, despite considerably better performance of 
the underlying pKa and log P models. This finding even 
holds for a re-evaluation of the older SAMPL5 dataset with 
the most highly optimized EC-RISM setup, giving rise to 
speculations about fundamental inconsistencies of the com-
putational representation of experimental reality [10]. These 
issues have not been resolved yet as related but methodically 
different QM-based log D models typically exhibit similar 
error margins.
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The latest SAMPL7 physical property challenge [11] rep-
resents a continuous further development, as participants 
were this time asked to predict both aqueous pKa values sim-
ilar to SAMPL6.1 and octanol–water partition coefficients, 
log P, as during SAMPL6.2. Both quantities could be com-
bined in the usual way to compute log D7.4 values. Experi-
mental reference data on these quantities have been provided 
after the submission deadline although these were not part of 
the challenge. Based on our earlier experiences we decided 
to essentially apply our established models from SAMPL6.1 
and 6.2 [4, 5]. Slight variations to be described below were 
not projected to influence the expected performance. As will 
be demonstrated, the performance of the acidity model even 
surpassed expectations while the partition coefficient results 
were significantly worse than found before for both train-
ing and SAMPL6.2 test set data, merging to an overall still 
satisfactory result for log D7.4 predictions. This inspired us 
in the post-submission phase to generate a new set of con-
formations to be tested as a potential source of uncertainty. 
Results of the original submission and the variation includ-
ing consensus values are discussed in the following, also in 
comparison with data from other participants who submitted 
both pKa and log P predictions.

Computational details

As the RISM solvation Gibbs energy parametrizations for 
water and octanol as well as the optimized pKa model were 
taken from previous SAMPL challenges [4, 5] (with one 
minor adjustment for octanol described below), we here 
focus on comparing the different schemes for generating 
conformations of the challenge compounds that had been 
employed in the past.

For the submission, the workflow originally developed 
during the SAMPL5 challenge was applied to all micro-
states, including the additional relevant microstates com-
plementing the set during the submission phase [1, 3, 10]. 
For each individual microstate, 200 conformations were 
generated starting from the original structures with the 
EmbedMultipleConfs utility of RDKit [12, 13]. If the 
molecule contained fewer than 7 rotatable bonds only 
50 conformations were generated instead to reduce the 
computational cost for compounds with less conforma-
tional degrees of freedom. All conformations generated 
this way were optimized using the antechamber tool of 
the Amber12 suite [14], parametrized with AM1-BCC 
charges and GAFF version 1.7 parameters for bonded and 
non-bonded terms [14–17]. Solvation in water and octanol 
was simulated using an ALPB implicit solvation model 
with dielectric constants of 78.5 for water and 9.86294 for 
octanol, yielding two separate sets of 50 or 200 conforma-
tions each [18]. After the optimization an energy-filtered 

structural root mean square differences (RMSD) based 
clustering was applied to reduce the number of confor-
mations to a more manageable number. Structures with a 
force field energy 20 kcal mol−1 above the apparent global 
minimum structure of a given microstate were discarded, 
with the minimum structure seeding the first cluster. All 
other conformations were then compared to the minimum 
structure in the order of increasing force field energies by 
using the GetBestRMS function of RDKit to calculate the 
RMSDs. If a structure had an RMSD of less than 0.5 Å 
it was discarded, while structures with a larger RMSD 
were added as additional cluster representatives. The 
resulting cluster representatives were optimized quantum-
chemically using the B3LYP/6–311 + G(d,p)/IEFPCM 
level of theory implemented in Gaussian 16 Rev. C.01 
[19]. After the quantum-chemical optimization another 
purely RMSD-based clustering using a cutoff of 0.5 Å 
was employed to remove conformations that reached the 
same minima during optimization. Up to five conforma-
tions with the lowest quantum-chemical energy were used 
in EC-RISM calculations to determine the Gibbs energy in 
solution per microstate by computing a partition function 
average. The compounds’ microstate Gibbs energies in the 
respective solvents Gsol

t
 was computed with the approach 

used in the SAMPL6 log P challenge by taking the sum of 
the electronic energy of the polarized wave function Esol

tc
 

and the corrected excess chemical potential �ex
tc,corr

 of all 
conformations c per microstate t as 

with � = (RT)−1 representing an inverse temperature. 
Detailed descriptions of how the electronic energies and 
excess chemical potentials are calculated and the specific 
corrections used for water and octanol can be found in previ-
ously publicized works [3–5]. The partition coefficient then 
follows from

with

After the original submission, the conformer generation 
approach used during the SAMPL6 challenges was also 
applied to the microstates of the SAMPL7 challenge to 
investigate if another set of conformations yields different 
results [4, 5]. In this case we generated the initial struc-
tures for QM optimization by using a force field-based 
sampling procedure. Structures of each microstate were 
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taken as SMILES strings provided by the organizers. The 
flipper utility that is part of Omega [20] was used to per-
form a full enumeration of stereoisomers (i.e. generation 
of both formal E/Z isomers in cases they were not specified 
in the SMILES string), and initial 3D coordinates were 
generated using Corina [21]. For compounds bearing a sul-
foxide moiety, additional stereoisomers with inverted chi-
rality at the sulfur atom were added manually. The subse-
quent conformational analysis of all states was performed 
using Maestro 12.5 and Macromodel 12.9 as included in 
the 2020–3 release of the Schrödinger software suite [22]. 
Default parameters were used unless stated otherwise. We 
used the mixed torsional/low-mode conformational search 
algorithm and employed the OPLS3 force field in conjunc-
tion with an implicit water model. Conformational search 
up to a maximum of 1000 steps was carried out with 100 
steps per rotatable bond present in the microstate. For sav-
ing conformations an energy window of 5 kcal mol−1 was 
used and redundant conformations were eliminated based 
on a RMSD cutoff of 1.5 Å. All resulting microstate con-
formations were forwarded to QM-based geometry opti-
mization on the B3LYP/6–311 + G(d,p)/IEFPCM level 
of theory, and again up to 5 highest-ranking (lowest free 
energy) structures were selected for further processing by 
EC-RISM. Unlike the RDKit-based workflow employed 
for submission where different conformational sets for 
water and octanol were obtained und reoptimized, the 
sampling approach yielded only one set of conformations 
representative for water while final structural ensembles 
again differed slightly between solvents due to IEFPCM 
optimization mimicking the respective water and octanol 
environments.

For the EC-RISM calculations similar settings and solvent 
susceptibilities to those used in the SAMPL6 log P chal-
lenge were employed here to calculate the Gibbs energies 
of the compounds in solution, with one minor adjustment 
already pointed out as a perspective in our SAMPL6.2 paper 
[5]. Here, the water-saturated octanol solvent susceptibility 
was generated using the experimental number densities of 
1.3598·10–3 Å−3 for water and 3.65787·10–3 Å−3 for octanol 
sites, and a dielectric permittivity of 8.41. As discussed in 
the original paper this is not expected to lead to significant 
deviations from the original water-saturated octanol model. 
Parametrization results and slightly changed resulting 
parameters for correcting the RISM excess chemical poten-
tial are shown in Fig. S1 and Table S1 in Online Resource 
(OR) 1. The 3D RISM calculations were conducted utiliz-
ing the PSE-2 closure [23] for water and the PSE-1 (Kova-
lenko-Hirata) closure for octanol. The RISM equations were 
solved on a cubic periodic grid of fixed size consisting of 
1283 grid points and 0.3 Å grid spacing. The partial molar 
volumes entering the free energy correction expression [5] 
were calculated with the experimental compressibility of 

0.761·10–9 Pa−1 for octanol and the 1D RISM estimate of the 
isothermal compressibility of 0.717062·10–9 Pa−1 for water 
[18, 24] from the total correlation function route. All EC-
RISM calculations were done using the MP2/6–311 + G(d,p) 
level of theory within Gaussian 09 Rev. E.01 [25] using 
exact electrostatics taken directly from the wave function 
[4]. As in previous works, a more recent version of Gaussian 
was used for optimizations to take advantage of performance 
improvements [3, 5].

Aqueous pKa values were calculated from the optimized 
model developed in our SAMPL6.1 publication [4] for each 
pair of microstates separated by one unit charge difference 
and transformed, along with tautomer Gibbs energy differ-
ences, to the standard reaction free energy format required 
by the organizers by referring to a specific microstate ref-
erence [11]. As will be shown elsewhere in the SAMPL7 
overview paper [26], the transformation from microstate pKa 
values (or corresponding standard reaction free energies) to 
the macrostate pKa values is equivalent to the “state transi-
tion” (ST) formalism analyzed by us recently [27, 28], so 
these values were submitted along with the microstate stand-
ard reaction free energies from microstate-specific Gibbs 
energies calculated according to Eq. (1). In the following we 
also compare these results to the “partition function” (PF) 
approach [27] using the same input data for state Gibbs ener-
gies. Gas phase energies were not needed, neither for pKa 
nor for log P calculations, as these cancel exactly because 
the gas phase ensembles of compounds evaporating from the 
water or the octanol phases are identical [10]. Finally, log 
D7.4 predictions were derived from calculated pKa and log 
P data in the usual way [3, 10].

Results and discussion

General outline and pKa predictions

We not only present our own data but also try to put the 
results into context by comparison with other participants. 
Here we chose only those submissions for which the final 
quantity, log D7.4 could in principle be calculated, i.e. chal-
lenge contributions containing both, ranked pKa and log 
P predictions. Without going into methodical detail, the 
following 5 submissions satisfied the conditions, termed 
according to the submission nomenclature (1) “MD 
(CGenFF/TIP3P)|Gaussian_corrected”, (2) “TFE-SMD-
solvent-opt|DFT_M06-2X_SMD_explicit_water”, (3) 
“TFE-NHLBI-TZVP-QM|TZVP-QM”, (4) “TFE IEFPCM 
MST|IEFPCM/MST”, (5) “TFE b3lypd3|DFT_M05-2X_
SMD” [11]. The first part in front of the pipe symbol refers 
to the log P model, the second to the pKa approach. Accord-
ingly, our own models are termed (0) “EC_RISM_wet|EC_
RISM”. As outlined in the preceding section, besides data 
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from the original structure set (“orig”) we also report results 
from the new set of geometries (“new”) separately and from 
a combination (“comb”) by simply augmenting the micro-
state partition function with the new energies, ignoring the 
possibility of duplicates. In the following analysis of acidity 
constants, the state transition approach [27] was used for 
deriving macroscopic pKa values from submitted free ener-
gies throughout for all submissions.

All pKa models agreed in the choice of the relevant ioni-
zation state change related to the observed macroscopic pKa 
values, going from a neutral acid to a negatively charged 
base, which greatly simplified the analysis. Transitions from 
charged acids were accompanied throughout by negative pKa 
predictions and could be ignored for comparison with exper-
iment. Results for macroscopic acidity constants are shown 
in Table 1 and Fig. 1 with individual compound data summa-
rized in Table 2. Apparently, EC-RISM outperformed other 

methods, exceeding expectations from earlier challenges 
and the training set performance (ca. 1 pK unit RMSE) 
with a submission RMSE of 0.72 pK units. High correla-
tion measured by R2 and a regression slope near one, small 
absolute and signed errors indicate an overall robust model. 
The new set of conformations performed slightly inferior, 
though still in line with the metrics of the original set and 
not overlapping with prediction statistics of other models. 
Somewhat unexpectedly it turned out that the combined set 
of conformations did not lead to improvement. This means 
that the new conformations do not fully overlap with the old 
ones but add some new low-energy structures to the partition 
function that yield larger deviations in terms of their pKa 
performance. The only conclusion at this point is that the 
observed discrepancy between different conformation sets 
can be taken as a measure of model uncertainty (not to be 
confused with expected prediction uncertainty).

Table 1   Statistical metrics for 
predicted acidity constants pKa 
(root mean square error RMSE, 
mean absolute error MAE, 
mean signed error MSE, slope 
m′, intercept b′, and coefficient 
of determination R2 from 
descriptive regression) using 
EC-RISM and the other models 
discussed in this work

Model RMSE MAE MSE m′ b′ R2

(0) EC_RISM (orig) 0.72 0.53 − 0.20 0.80 1.46 0.93
(0) EC_RISM (new) 0.94 0.80 − 0.02 0.65 2.96 0.92
(0) EC_RISM (comb) 0.76 0.62 − 0.09 0.72 2.24 0.95
(1) Gaussian_corrected 5.36 5.12 − 5.12 0.35 0.33 0.76
(2) DFT_M06-2X_SMD_

explicit_water
5.12 2.56 0.35 1.10 − 0.47 0.20

(3) TZVP-QM 2.90 2.75 − 1.20 − 0.11 8.16 0.23
(4) IEFPCM/MST 1.82 1.30 0.25 0.86 0.96 0.56
(5) DFT_M05-2X_SMD 2.90 2.28 0.78 0.15 7.97 0.03

Fig. 1   Macroscopic acidity constants for the SAMPL7 set calculated 
using EC-RISM (A) and other models discussed in this work (B) 
with different sets of conformations in panel (A) encoded by symbol 
and line colors, original: black, (0) EC_RISM (orig); new: orange, 
(0) EC_RISM (new); combined: green, (0) EC_RISM (comb). 
The model comparison in panel (B) is color-coded as black: (0) 
EC_RISM (orig), orange: (1) Gaussian_corrected, green: (2) DFT_
M06-2X_SMD_explicit_water, yellow: (3) TZVP-QM, magenta: (4) 

IEFPCM/MST, blue: (5) DFT_M05-2X_SMD. Two data points of 
submission (2) DFT_M06-2X_SMD_explicit_water are not shown in 
panel (B) as they lie far outside the experimental range. Dashed lines 
indicate descriptive linear regression results. Raw data are provided 
as OR3 for structures and OR4 for energies. Macroscopic pKa values 
for other participants’ models were taken from the SAMPL7 reposi-
tory [11] and are additionally collected in OR7
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Individual compound data in Table 2 further illustrates 
the prediction balance, with the largest deviation between 
prediction and experiment on the order of 1.6 pK units found 
for SM34 and SM39. For completeness, we there also show 
results from applying the partition function approach [27] 
which – as expected – only marginally differs from the state 
transition results.

log P and log D7.4 predictions

Given the successful application of the EC-RISM model 
to octanol–water phase partitioning of neutral compounds 
during SAMPL6.2 [5] (training and test set RMSEs of ca. 
1.5 and 0.5 pK units), we expected similar performance for 
the SAMPL7 compound set. However, numbers reported in 
Tables 3 (statistical metrics) and 4 (individual compound 
data) and illustrated in Figs. 2 and 3 for log P and log D7.4, 
respectively, show a satisfactory, yet worse than expected 
overall result. With a log P RMSE for the original confor-
mations of 1.84 pK units the upper limit of our expectation 
was slightly exceeded, and the non-zero MSE and regres-
sion intercept indicates a systematic trend to overestimate 
log P values, which has not been observed with our models 
before. Adding new conformations here somewhat improves 

the results, unlike the pKa case, but not to an extent that we 
would assume to have pinpointed the origin of the discrepan-
cies. It is possible that the specific chemistry of the SAMPL7 
set is so different from earlier datasets tested that our model 
development is not yet robust enough to capture very diverse 
systems. One candidate for deeper investigation is the ele-
ment sulfur which is not well represented in our reference 
datasets and which could have implications for the chosen 
theoretical level of theory, most likely the basis set.

Compared to the other log P models analyzed in this work 
our results rank average, with the best performing model 
(4) yielding an RMSE of ca. 1 pK unit. However, all mod-
els analyzed, including our own, show very little degree of 
correlation measured by R2, despite relatively reasonable 
regression slopes. This can be clearly traced back to a num-
ber of substantial outliers (e.g. SM42, SM43, see Table 4), 
for which there is no apparent explanation. The RMSE-wise 
best model (4) yields even a smaller value for this metric 
than ours, hinting at the possibility that chance plays a large 
role for obtaining good results.

Results from log D7.4 predictions are slightly better, being 
even below our expectation of more than 2 pK units devia-
tion with an RMSE of 1.69 pK units, ranking second (by 
a very small margin to the third) in the field of challenge 

Table 2   Experimental and 
calculated data for individual 
compound pKa values from 
the different EC-RISM-based 
approaches

a No experimental data available
b Numbers in parenthesis indicate results from more than 2 decimal figures in raw Gibbs energy data 
whereas all other numbers resulted from the original submission format restriction

Compound pKa,exp pKa,calc(orig, PF) pKa,calc(orig, ST) pKa,calc(new, ST) pKa,calc(comb, ST)

SM25 4.49 5.42 5.42 5.33 5.36
SM26 4.91 5.53 5.53 6.11 5.91
SM27 10.45 10.17 10.17 10.13 10.16
SM28a – 13.95 13.95 14.38 14.30
SM29 10.05 9.88 9.88 9.61 9.78
SM30 10.29 9.40 9.40 9.18 9.27
SM31 11.02 11.15 11.15 9.81 10.50
SM32 10.45 10.25 10.25 10.08 10.18
SM33a – 9.80 9.80 9.62 9.63
SM34 11.93 10.40 10.40 10.95 10.82
SM35 9.87 9.59 (9.592)b 9.59 (9.588)b 9.22 9.36
SM36 9.80 9.41 9.41 8.85 8.97
SM37 10.33 9.94 (9.944)b 9.94 (9.941)b 10.19 10.11
SM38 9.44 9.31 9.31 9.33 9.32
SM39 10.22 8.45 8.45 8.33 8.39
SM40 9.58 9.40 9.40 9.62 9.51
SM41 5.22 5.74 5.74 6.49 6.15
SM42 6.62 5.59 5.59 6.97 6.56
SM43 5.62 6.52 6.52 6.49 6.52
SM44 6.34 6.32 6.32 7.28 6.63
SM45 5.93 6.05 6.05 7.63 6.91
SM46 6.42 6.52 6.52 7.05 6.76
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participants with the best model (4) reaching 1.27. Here, 
adding new conformations again slightly worsened results 
due to weaker performance already observed for pKa values. 
Scatter is, however, still large, so it is not possible to draw 

some general performance conclusions for this small and 
chemically focused dataset. One trend is obvious: Physics-
based models such as those analyzed and compared in this 
work, that perform reasonably well and balanced in different 

Table 3   Statistical metrics for 
partition (log P) and distribution 
coefficient predictions (log D7.4) 
(root mean square error RMSE, 
mean absolute error MAE, 
mean signed error MSE, slope 
m′, intercept b′, and coefficient 
of determination R2 from 
descriptive regression) using 
EC-RISM and the other models 
discussed in this work

For log D entries only the pKa part of the model string is given. For compounds SM28 and SM33 where 
no experimental pKa value was assigned and reported experimental log P and log D7.4 are identical, we 
assumed a hypothetically predicted log D7.4 to equal to predicted log P. The signs of log P predictions 
for model (3) TFE-NHLBI-TZVP-QM have been inverted as accidentally the wrong reaction direction has 
been submitted

Model RMSE MAE MSE m′ b′ R2

log P
(0) EC_RISM_wet (orig) 1.84 1.49 1.49 0.96 1.56 0.29
(0) EC_RISM_wet (new) 1.73 1.47 1.47 0.89 1.65 0.33
(0) EC_RISM_wet (comb) 1.72 1.45 1.45 0.90 1.61 0.33
(1) MD (CGenFF/TIP3P) 1.63 1.41 1.38 1.26 0.93 0.54
(2) TFE-SMD-solvent-opt 2.39 2.19 − 2.19 1.09 − 2.35 0.40
(3) TFE-NHLBI-TZVP-QM 1.55 1.34 − 1.34 1.16 − 1.59 0.52
(4) TFE IEFPCM MST 1.03 0.80 0.07 0.85 0.32 0.27
(5) TFE b3lypd3 2.19 1.98 − 1.98 1.06 -2.08 0.40
log D7.4

(0) EC_RISM (orig) 1.69 1.43 1.43 0.95 1.49 0.53
(0) EC_RISM (new) 1.82 1.62 1.62 0.85 1.81 0.53
(0) EC_RISM (comb) 1.73 1.52 1.52 0.88 1.66 0.55
(1) Gaussian_corrected 2.27 2.13 − 1.84 1.53 − 2.49 0.62
(2) DFT_M06-2X_SMD_explicit_water 4.54 2.92 -2.88 1.92 -4.00 0.25
(3) TZVP-QM 1.72 1.47 − 1.26 0.64 − 0.82 0.25
(4) IEFPCM/MST 1.27 0.98 − 0.24 1.31 − 0.62 0.55
(5) DFT_M05-2X_SMD 2.15 1.78 − 1.78 0.80 − 1.54 0.32

Fig. 2   Partition coefficients for the SAMPL7 set calculated using EC-
RISM (A) and other models discussed in this work (B) with differ-
ent sets of conformations in panel (A) encoded by symbol and line 
colors, original: black, (0) EC_RISM_wet (orig); new: orange, (0) 
EC_RISM_wet (new); combined: green, (0) EC_RISM_wet (comb). 
The model comparison in panel (B) is color-coded as black: (0) EC_
RISM_wet (orig), orange: (1) MD (CGenFF/TIP3P), green: (2) TFE-
SMD-solvent-opt, yellow: (3) TFE-NHLBI-TZVP-QM, magenta: (4) 

TFE IEFPCM MST, blue: (5) TFE b3lypd3. Dashed lines indicate 
descriptive linear regression results. The signs of log P predictions 
for model (3) TFE-NHLBI-TZVP-QM have been inverted as acci-
dentally the wrong reaction direction has been submitted. The log P 
values for other participants’ models were taken from the SAMPL7 
repository [11]. Raw data are provided as OR5 for structures and 
OR6 for energies and are additionally collected in OR7
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Fig. 3   Distribution coefficients for the SAMPL7 set calculated using 
EC-RISM (A) and other models discussed in this work (B) with dif-
ferent sets of conformations in panel (A) encoded by symbol and line 
colors, original: black, (0) EC_RISM_wet (orig); new: orange, (0) 
EC_RISM_wet (new); combined: green, (0) EC_RISM_wet (comb). 
The model comparison in panel (B) is color-coded as black: (0) 
EC_RISM_wet (orig), orange: (1) MD (CGenFF/TIP3P)|Gaussian_
corrected, green: (2) TFE-SMD-solvent-opt|DFT_M06-2X_SMD_
explicit_water, yellow: (3) TFE-NHLBI-TZVP-QM|TZVP-QM, 

magenta: (4) TFE IEFPCM MST|IEFPCM/MST, blue: (5) TFE 
b3lypd3|DFT_M05-2X_SMD. Dashed lines indicate descriptive 
linear regression results. One data point of submission (2) TFE-
SMD-solvent-opt|DFT_M06-2X_SMD_explicit_water is not shown 
in panel (B) as it lies far outside the experimental range. The signs 
of underlying log P predictions for model (3) TFE-NHLBI-TZVP-
QM|TZVP-QM have been inverted as accidentally the wrong reaction 
direction has been submitted. Calculated data are provided as OR7

Table 4   Experimental and calculated data for individual compound log P and log D7.4 values from the different EC-RISM-based approaches. 
“log D7.4,exp (indirect)” denotes numbers reconstructed from experimental log P and pKa values

a For compounds SM28 and SM33 where no experimental pKa value was assigned and reported experimental log P and log D7.4 are identical, we 
assumed a hypothetically predicted log D7.4 to equal to predicted log P. Applying our pKa predictions for these compounds in order to convert 
log P to log D7.4 leaves the two decimals provided here unchanged

Cmpd log Pexp log Pcalc
(orig)

log Pcalc
(new)

log Pcalc
(comb)

log D7.4,exp log D7.4,exp
(indirect)

log D7.4,calc
(orig)

log D7.4,calc
(new)

log D7.4,calc
(comb)

SM25 2.67 4.23 3.86 4.02 − 0.09 − 0.24 2.25 1.79 1.97
SM26 1.04 2.39 2.25 2.27 − 0.87 − 1.45 0.51 0.94 0.77
SM27 1.56 2.21 2.42 2.27 1.56 1.56 2.21 2.42 2.27
SM28 1.18 2.18 1.98 2.00 1.18 1.18 2.18a 1.98a 2.00a

SM29 1.61 2.07 1.83 2.01 1.61 1.61 2.07 1.83 2.01
SM30 2.76 3.78 3.63 3.72 2.76 2.76 3.78 3.62 3.71
SM31 1.96 3.27 4.02 3.44 1.96 1.96 3.27 4.02 3.44
SM32 2.44 2.59 3.46 3.09 2.44 2.44 2.59 3.46 3.09
SM33 2.96 5.27 5.28 5.28 2.96 2.96 5.27a 5.28a 5.28a

SM34 2.83 5.27 4.43 4.65 2.83 2.83 5.27 4.43 4.65
SM35 0.88 0.95 1.14 1.06 0.87 0.88 0.95 1.13 1.06
SM36 0.76 2.59 2.88 2.79 0.76 0.76 2.59 2.86 2.78
SM37 1.45 2.14 2.33 2.29 1.45 1.45 2.14 2.33 2.29
SM38 1.03 2.30 2.48 2.43 1.03 1.03 2.29 2.47 2.42
SM39 1.89 4.16 4.21 4.19 1.89 1.89 4.12 4.16 4.15
SM40 1.83 3.61 3.81 3.74 1.82 1.83 3.61 3.81 3.74
SM41 0.58 3.31 3.24 3.25 − 0.42 − 1.60 1.64 2.28 1.98
SM42 1.76 6.26 5.09 5.26 0.99 0.91 4.44 4.52 4.36
SM43 0.85 4.27 4.22 4.27 0.42 − 0.94 3.34 3.27 3.33
SM44 1.16 1.62 1.46 1.52 0.06 0.06 0.51 1.09 0.68
SM45 2.55 3.17 3.25 3.24 1.06 1.07 1.80 3.05 2.63
SM46 1.72 2.56 2.47 2.51 0.69 0.70 1.63 1.96 1.78
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prediction domains, will also perform well in combined 
model problems such as log D7.4 predictions. Still, log D7.4 
remains a challenging property to be examined further in 
order to understand and improve model weaknesses. There 
is also room for improvement on the experimental side. 
We noted in some cases (see Table 4) that originally meas-
ured and reconstructed log D7.4 from pKa and log P differ. 
Although there is apparently no correlation with prediction 
performance or failure, this could at least stimulate questions 
to further converge computational representations to match 
experimental reality.

Concluding discussion

The most remarkable finding in this work is that apparently 
different conformational search or sampling strategies even 
for rather small molecules like those of the SAMPL7 set 
yield quite different results. Time did not permit deeper anal-
ysis of individual conformations, but it is clear that extended 
effort is needed for developing more consistent conforma-
tional sampling workflows. It is very likely that the problem 
originates already from the initial force field sampling stage 
as further QM-based optimization including a solvation 
model did not yield converged conformational ensembles.

However, our results show that conformational uncertain-
ties alone are not responsible for the observed errors in ther-
modynamic quantities, which in our case imply an overesti-
mated hydrophobicity. For water, results appear to be more 
reliable than for octanol, despite our earlier findings during 
SAMPL6.1 and SAMPL6.2 from which we expected better 
performance for log P than for pKa predictions. In light of 
the different chemistry of SAMPL7 compared to SAMPL6 
compounds, this hints at a possibly problematic description 
of sulfur-octanol interactions which could be related to the 
QM level of theory and/or sulfur-octanol dispersion inter-
actions that are not modeled by first principle methods but 
by empirical Lennard–Jones terms. In the SAMPL7 chal-
lenge each compound contains a sulfone moiety whereas this 
functional group is represented by only one single MNSOL 
database entry, (sulfolane, test2027). This compound was 
predicted with an error of 4.83 kcal mol−1 for octanol, the 
largest in the entire training set [5]. For water the error is 
only 3.63 kcal mol−1, so it is likely that the error cancella-
tion within the same solvent, as seen for the acid/base pair 
within pKa predictions, does no longer apply for transfer free 
energies between different solvents. However, more solvent-
specific experimental data, such as solvation free energies 
are necessary to confirm this hypothesis.

Another remarkable observation is that log D values 
taken directly from experiment or from a reconstruction 
based on experimental acidity and partition coefficients 
do not yield identical numbers in all cases. In cases where 

the two approaches differ significantly, i.e. for SM25, 26, 
41–43, the reconstructed distribution coefficient is smaller, 
i.e. more negative than the direct measurement. This means 
that possibly a higher amount of the compound is dissolved 
in the aqueous phase than expected from neutral state par-
titioning alone if we take the reconstructed data as correct. 
If we, however, accept the direct experimental result then 
the opposite conclusion would emerge, namely that a larger 
compound fraction is dissolved in the organic phase. In other 
words, this could be interpreted as a missing contribution 
of charged species in the organic phase in our calculations 
where, via the standard formula for converting log P to log 
D, the presence of charged microstates in the nonaqueous 
phase is by definition excluded. This statement should in 
any case be viewed with caution as a range of alternative 
explanations could come into play, such as aggregation, 
nonideality effects due to insufficient dilution and so forth. 
However, observed inconsistencies are again a source and 
stimulus of deeper analysis including the correct agreement 
between experimental reality and its computational model 
representation.
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