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Monolithic Newton-multigrid FEM for the simulation of thixotropic flow
problems
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This contribution is concerned with the application of Finite Element Method (FEM) and Newton-Multigrid solvers to simu-
late thixotropic flows. The thixotropic stress dependent on material microstructure is incorporated via viscosity approach into
generalized Navier-Stokes equations. The full system of equations is solved in a monolithic framework based on Newton-
Multigrid FEM Solver. The developed solver is used to analyse the thixotropic viscoplastic flow problem in 4:1 contraction
configuration.
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1 Introduction

The thixotropy phenomena are introduced to yield stress material by taking into consideration the internal material micro-
structure using a structure parameter. Firstly, the viscoplastic stress is modified to include the thixotropic stress dependent on
the structure parameter




σ = 2ηD(u) + τ

D(u)

||D(u)|| , if ||D(u)|| ̸= 0,

||σ|| ≤ τ, if ||D(u)|| = 0,

(1)

where D(u) denotes the strain rate tensor. The norm for a tensor Λ is given by ||Λ|| =
√

Tr(Λ2). We use ||D(u)|| and ||D||
alternately. η denotes plastic viscosity, and τ defines a yield stress that is a threshold parameter from which the material starts
yielding. The shear stress has two contributions: a viscous part, and a strain rate independent part. Secondly, an evolution
equation for the structure parameter is introduced to induce the time-dependent process of competition between the destruction
(breakdown) and the construction (buildup) inhabited in the material(

∂

∂t
+ u · ∇

)
λ = F − G (2)

where, F and G are two nonlinear functions representing the buildup and breakdown of material micro-structure. A collection
of thixotropic models with various choices of η, τ , F and G is given in Table 1;
Table 1: Thixotropic models

η τ F G
Worrall & Tulliani [1] λ η0 τ0 a(1− λ) ||D|| bλ ||D||
Coussot et al. [4] λg η0 a bλ ||D||
Houška [2] (η0 + η1λ) ||D||n−1

(τ0 + τ1λ) a(1− λ) bλm ||D||
Mujumbar et al. [5] (η0 + η1λ) ||D||n−1

λg+1G0Λc a(1− λ) bλ ||D||
Dullaert & Mewis [6] λη0 λG0(λ ||D||)Λc (a1 + a2 ||D||)(1− λ)tp bλ ||D|| t−p

where (η0, τ0) are initial plastic viscosity and yield stress in the absence of any thixotropic phenomena, (η1, τ1) are thixotropic
plastic viscosity and yield stress. Λc is the critical elastic strain, and G0 is the elastic modulus of unyielded material. a and b
are buildup and breakage constants, and g, p,m, n are rate indices.

2 Quasi-Newtonian thixotropic flows models

In quasi-Newtonian modeling approach for thixotropic flows, an extended viscosity µ(·, ·) is used for the generalized Navier-
Stokes equations [8]. As for instance [3],

µ(DII , λ) = η(DII , λ) + τ(DII , λ)

√
2

2

1√
DII

(
1− e−k

√
DII

)
(3)

k is the regularization parameter. The generalized Navier-Stokes equations and the evolution equation for the structure param-
eter constitute the full set of modeling equations, which is given as follows
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2 of 3 Section 18: Numerical methods of differential equations





(
∂

∂t
+ u · ∇

)
u−∇ ·

(
2µ(DII , λ)D(u)

)
+∇p = 0 in Ω

∇ · u = 0 in Ω
(

∂

∂t
+ u · ∇

)
λ−F(DII , λ) + G(DII , λ) = 0 in Ω

(4)

where u denotes velocity, p the pressure, λ the structure parameter, F and G the nonlinear functions for buildup and breakdown
of material micro-structure. DII =

1
2

(
D(u) : D(u)

)
is the second invariant of the strain rate tensor D(u).

3 Newton-Multigrid FEM Solver

The Newton-Multigrid FEM Solver is a monolithic approach for solving the full system of equations all at once. Firstly, we
use a stable FEM approximation pair for velocity and pressure with biquadratic velocity and discontinuous pressure Q2/P

disc
1 ,

and biquadratic Q2 for structure parameter with the appropriate stabilization for the convective terms. Secondly, the discrete
nonlinear system is treated with generalized Newton’s method w.r.t. the Jacobian’s singularities having a global convergence
property. Thirdly, the linearized systems inside the outer Newton loops are solved using a geometrical multigrid solver with a
Vanka-like smoother. The combination of a stable finite element approximations, Q2/P

disc
1 , together with multigrid results in

a high numerically accurate, flexible, and efficient FEM-multigrid solver. For details, we refer to [7].

4 Numerical Results
We investigate numerically Houška’s [2] thixo-viscoplastic material in a 4:1 curved contraction configuration. The fully-
developed flow conditions according to Houška thixotropic model are imposed at entry and exit together with no-slip on the
top and bottom walls of reservoir and downstream channel. Our emphasis is to examine the transitions in shape and extent
of the unyielded zones w.r.t breakdown parameter on isobands of material micro-structuring level λ. Figure 1 illustrates the
impact of thixotropy breakdown parameter b. In fact, increasing the breakdown parameter induces more beakdown layers
close to the walls of downstream channel, which prevent the material from rest inside long pipelines, typically used in trans-
portation of waxy crude oils. In consequence, the design for the pipelines needs to be revisited taking in consideration the
thixotropic phenomena inherited in the material. Furthermore, it is interesting to observe that unyielded zones in upstream

(i) Upstream channel & Entrance zone (ii) Downstream channel

Fig. 1: Thixotropic flows in contractions: Impact of breakdown parameter b on λ isobands for thixotropic flows. While the other
parameters are set to constants η0 = η1 = 1.0, τ0 = 0.0, a = 1.0,τ1 = 2.0, and k = 104.

and downstream parts of contraction domains do not merge at all. Physically, this happens because the unyielded material in
the vicinity of center of reservoir becomes more rigid (or less flexible due to its inelastic nature). That means, the material can
not deform elastically. Thus, when the material elements cross the contraction zone, they are not able to undergo even a small
scale elastic crosswise extension, and thus remain disconnected and travel like a rigid-body in downstream channel. Further
investigations are to consider the nonzero flow below the critical yield stress limit by considering the elastic behaviour in more
general model i.e. thixotropic elasto-viscoplastic models.
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