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1 Introduction

Traditional textbook macroeconomics typically discusses short-run business cycle

fluctuations and long-run growth apart from each other, which is called the classical

dichotomy between the short and long run. Lucas (1987) argued that in a, at

this time standard, calibrated macroeconomic model, the benefits of evening out

business cycle fluctuations are negligible compared to the ones from fostering long-

run growth, which led to the proposition that macroeconomists should shift their

attention to long-run growth rather than the business cycle. On the other side,

the opposing view that short and long run are not dichotomous but integrated,

dates back to the seminal work of Schumpeter (1942), who argued that through

creative destruction the business cycle is a logical consequence of economic growth.

After Lucas’s influential paper, many authors went back to the idea of integration

between business cycles and long-run growth, arguing in favor of a more holistic

view on both.

For instance Caballero et al. (1994), Aghion and Saint-Paul (1998) and Barlevy

(2007) discuss the idea of the ”cleansing effect of recessions”. Aggregate TFP is

the average of the productivity of all individual firms and new, better ideas arrive

every period. During a recession, firms with low productivity are more likely to go

bankrupt and leave the market than firms with higher productivity, thus average

productivity increases. Consequently, any event that leads to a cyclical downturn

should stir up aggregate productivity. However, Fatas (2000) points out that in the

data economic growth as well as R&D is procyclical. He sees the main reason for this

in the research decision depending on firm profitability. Research is an investment

into future productivity, so firms that perceive a higher return to this investment

will research more and experience higher productivity growth. In consequence, a

positive demand shock leads to higher firm profitability and thus more research and

faster technological progress, while recessions are slowing down the growth process.

In contrast to that, Francois and Lloyd-Ellis (2003) argue that the integration of

business cycles and long-run growth is due to animal spirits of the economic agents.

They show that in their model there exist two equilibria, one is acyclical and fits the

classical dichotomy, while the other is cyclical and the business cycle is an integral

part of economic growth like in Schumpeter (1942). Ideas are produced by using a

part of labor for the research process. In the cyclical equilibrium, a boom induces

increasing labor costs and thus higher innovation costs. Consequently, firms will

lower their innovation effort, productivity growth is lower and the expected future

production decreases, which leads to a decline in the interest rate. The decline in
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the interest rate then leads to lower demand in the next period, thus lower labor and

innovation costs and higher productivity growth. The up and down of the business

cycle in this case is an integral part of technological progress. Barlevy (2004)

suggests an AK-model with diminishing returns to capital investment, which leads

to economic growth being a concave function of investment by construction. In this

case every business cycle shock that reduces investment directly reduces economic

growth. The aforementioned papers resemble the first attempts to systematically

integrate the business cycle and economic growth through various mechanisms, may

it be a cleansing effect of recessions, fluctuations in profitability, animal spirits or

the assumption of specific properties for the production process.

The nowadays mainstream framework for the integration of short-run business cy-

cles and longer-run technological progress hails back to the seminal paper of Comin

and Gertler (2006). They observe that traditional filter techniques, like the HP or

bandpass filter, tend to sweep the bulk of medium-run fluctuations into the trend

component. For example, figure 1.1 shows the trend component of U.S. TFP growth

between 1970 and 2020 as provided by Fernald (2012-2019). As it becomes evident,

Figure 1.1: Trend component of HP-filtered TFP growth provided by Fernald (2012-
2019) (smoothing parameter set to λ = 1600)

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Year

-0.5

0

0.5

1

1.5

2

in
 %

Trend component of TFP growth

trend growth is not nearly constant as implied by standard macroeconomic models,

but underlies medium-term fluctuations, where the swings in the growth rate can

last over 10 years. Comin and Gertler (2006) argue that in an endogenous growth
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model, short-run shocks can have longer-run implications through the nexus of

technology adoption. Typical business cycle shocks affect R&D instantaneously,

but the new ideas have to gradually diffuse through the economy before the full ef-

fect of the change in research embodies within TFP. Comin (2009) provides further

evidence that short- and medium-run fluctuations originate from the same shocks,

which are of low persistence themselves. In particular, they find that the same

variables that are associated with high frequency fluctuations (for instance output,

consumption or investment) also have a medium-run component and vice versa.

Concerning macroeconomic models, the technology adoption mechanism allows to

generate these medium-run fluctuations with short-run shocks. Moreover, Kogan

et al. (2017) construct an innovation measure that tries to capture the private rather

than scientific value of innovations by observing stock market responses to patents.

With their new measure, they find that technological innovations alone can induce

significant medium-run fluctuations in output and productivity. They also find ev-

idence in favor of the Schumpeterian view of technological progress, in particular

that new ideas lead to an increase in economic growth, sectoral reallocation and

the marginalization of older technologies.

The recent related literature has added the technology adoption mechanism in

otherwise standard models and analyzed the longer-run implications of traditional

macroeconomic shocks. For instance Bilbiie et al. (2012) study firm entry over

the business cycle and introduce technology adoption in form of a time-to-build

lag for entrants to the market. Innovations open up the opportunity to found a

new firm, which however is not able to produce immediately with the new tech-

nology, but only after a predefined period of setting up the firm. Thus, technology

shocks that cause economic expansions induce firm entry, which however does not

respond immediately, but over time. Benigno and Fornaro (2017) study the impact

of the Zero Lower Bound encountered during the Great Recession in a Keynesian

model featuring endogenous growth and technology adoption. In their paper, tech-

nology adoption is not included via a predefined time-to-build lag, but more like

in Comin and Gertler (2006) by a continuous diffusion process. They find that

the missing monetary policy reaction to demand fluctuations during a Zero Lower

Bound period makes animal spirits and multiple steady states possible. If house-

holds expect an economic downturn and reduce their demand for goods, firms have

lower liquidity and liquidity constrained R&D decreases. By technology adoption,

the reduction in R&D leads to medium-term lower productivity and an economic

downturn, thus the household expectations are self-fulfilling. During normal times,

the central bank can counteract demand declines, thus there is one stable growth
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path. In consequence, Benigno and Fornaro (2017) see the Zero Lower Bound as

a major reason for the productivity growth slowdown during the Great Recession,

as pessimistic expectations decreased the willingness to invest in research. An-

zoategui et al. (2019) in a similar model find that the downturn in demand also

caused a slowdown in the technology adoption rate, thus the medium-run effect of

research on productivity turned out to be lower during the Great Recession. They

reason that a positive liquidity demand shock during the Great Recession forced

the households to decrease savings and, consequently, there was less investment in

physical capital and productivity enhancements in the form of research and adop-

tion spending. They find that the liquidity demand shock explains the bulk of the

observed productivity growth slowdown during the financial crisis.

The present dissertation stands in the tradition of this technology adoption related

literature, as it takes a look on further standard macroeconomic shocks and their

longer-run consequences, in particular matching efficiency, inflation target, mone-

tary policy, news and noise shocks. It adds to the existing literature by studying

standard macroeconomic models that typically exclude endogenous growth by in-

cluding it and providing empirical support for the results regarding the longer-run

effect of these shocks.

Chapter 2 studies the impact of matching efficiency shocks on the labor market

and subsequent technological progress. For the U.S., the slowdown in productivity

growth during the Great Recession was accompanied by an outward shift in the

Beveridge Curve (see Hobijn and Şahin (2013), Sedláček (2014) or Diamond and

Şahin (2015)). The question stands, if these two events are related and in which

direction the causality goes. Even long before the event of the Great Recession,

there was work on how the labor market might influence technological progress. For

instance Bean and Pissarides (1993) argued that unemployment leads to less income

and thus less means to invest for households, which in an AK-model directly leads to

lower economic growth. Mortensen (2005) brought up the idea that the tightness of

the labor market (so the relation of vacancies to unemployed) plays a major role for

the entry decision of outside firms. If there are less unemployed per vacancy, firms

have a lower probability of finding a worker and hiring costs increase, consequently

firms might decide to postpone or cancel firm entry. If new firms are the ones

bringing new ideas into the economy like in standard horizontal growth models,

technological progress declines. However, Mortensen (2005) discusses only the effect

of the labor market tightness and not overall matching efficiency on technological

progress. Wheeler (2007) and the recent paper of Martellini and Menzio (2020)
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include this discussion about the role of matching efficiency in models of economic

growth in their work. They assume that worker skills are increasing over time and

are distributed among the population, where firms have specific needs regarding

the worker skill for each firm. A lower matching efficiency reduces the probability

of finding workers that have a fitting skill set and the resulting skill mismatch

leads to lower productivity of the respective firms. Wheeler (2007) and Martellini

and Menzio (2020), however, allow increasing productivity only by an exogenous

increase in worker skills and not by technological advancement of the firms.

Chapter 2 of the present dissertation brings together the work of Mortensen (2005),

Wheeler (2007) and Martellini and Menzio (2020) with a model containing endoge-

nous technological progress through technology adoption. It is assumed that in-

termediate firms are in Schumpeterian competition for the spot as incumbent in

the market, but are subject to standard labor market frictions, where vacant jobs

are filled according to a matching function. Thus, the lower the matching proba-

bility the higher the hiring costs per worker for the firms. Potential entrants, who

compete with the incumbents for the spot in the market, do not have a worker

stock, so the hiring costs impose an entry barrier to them. As by Schumpeterian

competition only the firm with the highest productivity can stay in the market,

a potential entrant would have to spend more on research than the incumbent in

order to replace it. Without any further restrictions, both incumbent and potential

entrant would choose to set research spending equal to the expected value of be-

ing next period’s incumbent, where both are indifferent regarding their innovation

choice. However, the introduction of the additional entry cost due to hiring costs

drives a wedge between the continuation value of incumbents and the entry value

of potential entrants, which allows the incumbents to lower their innovation effort

in order to make positive intertemporal profits. Thus, the lower the competitive

pressure from the potential entrants, the lower the innovation effort and longer-run

technological progress in the whole economy. Estimating the model using Bayesian

techniques reveals that the outward shift in the Beveridge Curve during the Great

Recession was induced by a significant drop in matching efficiency over about 20%

(see Sedláček (2014) for econometric proof). While matching efficiency shocks are

not a big contributor to endogenous technological progress during normal times,

the drop during the Great Recession was a major force behind the slowdown in en-

dogenous productivity growth during the Great Recession, even ahead of demand

or TFP shocks that the related literature identifies as the main drivers, and led

to a permanent 0.6% loss in TFP. Thus, to answer the causality question: The

bad conditions on the labor market were a major cause of the slower endogenous
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technological progress.

The third chapter discusses a discrepancy in the literature concerning the link

between inflation and longer-run economic growth. On the one hand, there is a

vast amount of papers finding a negative relationship between an increase in the

inflation rate and subsequent economic growth within and across countries (see

Bruno and Easterly (1996), Bruno and Easterly (1998), Vaona and Schiavo (2007),

Omay and Kan (2010), Bick (2010) or Kremer et al. (2013)). On the other hand,

recent papers like Moran and Queralto (2018) or Bianchi et al. (2019), studying

technological progress under technology adoption after a monetary policy shock,

find that expansionary monetary policy, which induces inflation, is beneficial for

productivity growth. During the Great Recession, central banks faced the Zero

Lower Bound and in order to prevent the repeat of this event, some authors like for

example Blanchard et al. (2010) suggested to permanently increase the inflation

target and thus the monetary policy rate and long-run average inflation, which

would give central banks more space before hitting the Zero Lower Bound. How

does this permanent or at least longer-run shock to monetary policy and inflation

affect technological progress? Would the longer-term higher monetary policy rate

and the higher inflation decrease technological progress and if so how can a tra-

ditional short-run positive monetary policy shock be detrimental for technological

progress, as found in Moran and Queralto (2018) or Bianchi et al. (2019)?

In chapter 3, a Newkeynesian model with endogenous technological progress un-

der technology adoption is proposed to answer these questions. Again, firms are

in Schumpeterian competition for the spot as incumbent in the market. Thus, in

order to not be destroyed by a competitor, they have to invest the expected dis-

counted value of continuing the firm into technological progress. Firms are subject

to quadratic price adjustment costs, which in the standard model implies that in-

flation leads to a markup decrease. The key difference between a classical monetary

policy and an inflation target shock is that the interest rate change due to a mon-

etary policy shock is much less persistent, as for instance in Smets and Wouters

(2003) or Ireland (2007). The reasoning is that if the central bank deviates from

its monetary policy rule for a longer time, this cannot be just craziness but has to

be a change in its policy target. In fact, it is assumed that the monetary policy

shock has a lower persistence than the duration necessary for a new technology to

be adopted. Expansionary monetary policy then leads to a lower discounting of

the firm continuation value, but by being of a shorter duration than the technology

adoption process, inflation returns back to its long-run mean fast and the future
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markup that is relevant for the innovation decision is insignificantly affected by

the monetary policy shock. In consequence, the discounting effect outweighs the

markup effect, firms spend more on research and technological progress accelerates.

However, a positive inflation target shock, the more persistent variant of a mone-

tary policy shock, affects longer-run inflation and the future markup relevant for

the innovation decision decreases stronger than under the monetary policy shock.

Estimating the model using Bayesian methods, it turns out that in this case the

markup effect dominates the discounting effect, firms spend less on research and

technological progress is slowed down. The point estimate hints that TFP is perma-

nently about 0.05% lower, if the policy rate and long-run inflation are permanently

increased about 5 percentage points, which would have been necessary to avoid an

encounter with the Zero Lower Bound during the Great Recession (see Blanchard

et al. (2010)). The model is thus able to both explain a longer-run negative effect of

inflation on technological progress and a short-run positive effect of expansionary

monetary policy. Furthermore, this part of the dissertation cautions against the

increase of the monetary policy rate to avoid the Zero Lower Bound, as it is costly

in terms of longer-run productivity.

Chapter 4, a joint work with Sascha A. Keweloh, deals with an issue related to

the matter of the third chapter. We argue that introducing stock returns and the

monetary policy rate at the same time into an SVAR leads to an identification

problem that cannot be solved by standard short- or long-run restrictions. One

would assume that at the, for macroeconomic data usual, quarterly data frequency,

both the stock market and monetary policy can react immediately to a shock hitting

the respective other agent, which makes short-run zero restrictions not suitable for

identification. Furthermore, there is no conclusive evidence in the literature that

gives reasons to set the impact effect of monetary policy or stock market shocks

on stock prices or the nominal interest rate to another specific number, so short-

run restrictions seem to be out of the question for the matter at hand. Thus,

Bjørnland and Leitemo (2009) or Kontonikas and Zekaite (2018) impose a long-run

zero restriction on the effect of monetary policy shocks on stock prices, which is

reasoned by the long-run monetary neutrality featured by standard macroeconomic

models. However, in light of the recent findings of Moran and Queralto (2018) or

Bianchi et al. (2019) that monetary policy shocks have a significant longer-run

effect on aggregate productivity, imposing a zero long-run effect of monetary policy

on stock prices appears to be too restrictive and possibly wrong.

In order to avoid imposing too much structure from the theory, we propose a
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new partly-recursive, partly data-driven SVAR estimator. We show in a modeling

exercise that, depending on the model, a monetary policy shock can have a long-

run negative or no long-run effect on stock prices. Imposing a long-run restriction

thus boils down to choosing a model ex ante, while our approach allows to test

the model implications without imposing them. We assume that a first block of

variables containing standard controls like output, investment and inflation can be

identified by a standard recursive ordering, while a second block containing stock

returns and the nominal interest rate is completely unrestricted. The assumption

of a recursive block is not necessary for identification, but improves the precision of

the estimates and thus allows for narrower confidence bands that enable us to draw

more conclusive results from the estimation. Furthermore, introducing a recursive

block makes it easier for the econometrician to label the resulting structural shocks,

as the shocks of the non-recursive block are only identified up to labeling (see for

instance Keweloh (2019)), and makes identification possible even if more than one

structural shock is Gaussian, but all than at most one of the Gaussian structural

shocks can be moved to the recursive block. The non-recursive block is estimated

by GMM using moments beyond the variance, which requires n− 1 of the n shocks

identified this way to be non-Gaussian. We provide evidence that this requirement

is fulfilled in an SVAR containing stock returns and the nominal interest rate in the

non-recursive block. In line with the related literature and the previous chapter

of this dissertation, we find no supportive evidence for the long-run neutrality

of monetary policy, as an exogenous increase in the federal funds rate leads to

permanently lower stock prices, investment and output, which however is associated

with high uncertainty. A stock market shock on the other hand leads to an increase

in output, investment and the federal funds rate, but the effect vanishes after a few

quarters.

The fifth chapter then uses the method layed out in the previous chapter to si-

multaneously identify news and noise shocks. Since the seminal paper of Beaudry

and Portier (2006), the inclusion of stock prices in SVARs is used to examine news

shocks. A news shock is here defined as a shock that is not correlated with cur-

rent TFP, but strongly with future TFP. Additionally, Lorenzoni (2009), Blanchard

et al. (2013) or L’Huillier and Yoo (2017) discuss so called noise shocks, which are

defined as shocks that never have a direct endogenous effect on TFP and only work

through expectations. For that matter, the related literature usually assumes a sig-

nal extraction problem, so economic agents do not directly observe news, but only

a signal that includes true news and noise. For example Blanchard et al. (2013)

argue that news and noise shocks in that case cannot be identified using standard

8



SVAR methods, as only one independent signal is not enough to extract two struc-

tural shocks. However, stock prices are only one variable that contains information

concerning news about the future. So what is needed is another variable that con-

tains additional information about news and noise. Comin et al. (2009) and Kung

and Schmid (2015) bring up the idea to interpret research related shocks as news

shocks, as through necessary technology adoption beforehand they are unrelated to

current TFP, but affect longer-run technological progress and are thus correlated

with future TFP. In this sense, research spending is an additional variable besides

stock prices that contains information about news and noise.

In the fifth chapter it is argued that including both, stock prices and research

spending, in an SVAR allows to simultaneously identify news and noise shocks. To

solve the singularity hailing from the signal extraction problem, it is assumed that

researchers have an informational advantage concerning the truth of news compared

to the other economic agents, as they are closer to the source of research related

news. This allows for a testable implication, namely that for a noise shock that

induces the same stock price boom as a news shock, the research spending response

should be more cautious. Furthermore, as a noise shock has no direct effect on

productivity, the productivity and stock price responses should be considerably

weaker for the noise shock compared to the news shock. In order to be able to

not impose this structure on the data when testing the theory, but be as agnostic

as possible, the identification scheme based on moments beyond the variance as

in the previous chapter is employed for news and noise shocks. It turns out that

this approach is able to identify a news shock that has similar features as for

instance in Beaudry and Portier (2006) and a noise shock that confirms the testable

implications from the theory, namely a compared to news shocks more cautious

response in research spending and a weaker response of stock prices and TFP.

Thus, the empirical evidence is in favor of the assumption that research spending

to some extend provides information about the truth of news.

The sixth chapter concludes and summarizes the contribution of the present dis-

sertation to the existing literature. Mainly this dissertation continues to examine

the longer-run implications of business cycle shocks standard in the macroeconomic

literature that were not considered yet within a model framework containing en-

dogenous productivity under technology adoption. It finds that matching efficiency

shocks reduce technological progress and were a major contributor to the slowdown

in endogenous productivity growth during the Great Recession. Furthermore, in-

flation target shocks that induce an increase in longer-run inflation also have a
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negative effect on technological progress and thus are a, in terms of productivity,

costly way to hedge against the Zero Lower Bound. Concerning monetary policy

shocks, the recent result of them having longer-run implications is confirmed using

a new SVAR estimator, in particular a contractive monetary policy shock leads

to a longer-run decrease in real stock prices, output and investment. At last it is

shown, how news and noise shocks can simultaneously be identified by using re-

search spending as a further variable in an SVAR. It turns out that noise shocks

induce a more cautious response in research spending than news shocks and have

a weaker effect on productivity and stock prices.
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2 Outward shifts in the Beveridge Curve, losses

in TFP: How search and matching influences

technological progress

2.1 Introduction

Between the years 2008 and 2010 a persistent outward shift in the U.S. Beveridge

Curve has been observed1, which is largely attributed to a significant drop in overall

matching efficiency between firm vacancies and unemployed2. At the same time,

a notable productivity growth slowdown took place in the U.S.3, resulting in per-

sistently lower aggregate productivity. The present paper argues that these two

observations are causally linked, more specifically that the outward shift in the

Beveridge Curve during the Great Recession is a major contributor to the subse-

quently lower productivity growth.

The general idea is as follows: Decreasing matching efficiency, which leads to an

outward shift of the Beveridge Curve, reduces the probability of filling a vacancy

for firms and as maintaining a job posting is assumed to be costly, it becomes more

expensive for them to hire a given number of workers. There are two types of firms:

Incumbents, who are in the market, have a worker stock for production and sell

their products, and outside firms, who have no worker stock and are not producing,

but compete with incumbents for their position in the market. Both are in Schum-

peterian competition for the spot as future incumbent, thus it is assumed that the

future incumbent will always be the firm with the highest technology level. Out-

side firms are constantly trying to replace the current incumbents by attaining a

higher productivity level, for which they have to invest in new technologies. With-

out any further restrictions, otherwise free entry to the competition for the spot in

the market dictates that outsiders and incumbents would be willing to spend the

expected discounted value of being the incumbent in the next period for innova-

tion. Spending less means to lose the Schumpeterian competition, spending more

yields a negative value of being the incumbent. Consequently, at this indifference

point, the intertemporal profit for the incumbent is zero. However, here outside

firms do not have any worker stock and thus incur additional hiring costs if they

wish to overtake the position as incumbent, so they have a structural disadvantage

1see Diamond and Şahin (2015), Hobijn and Şahin (2013), Barlevy (2011) or Sedláček (2014)
2see Sedláček (2014) or Furlanetto and Groshenny (2016)
3see Sprague (2017)
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compared to the current incumbent firms, who already have a worker stock. So

hiring costs impose an additional entry cost to outside firms, which is higher if

the matching probability is lower. Higher entry costs, however, lower the value of

becoming the incumbent for outside firms and thus reduce the amount they are

willing to spend for innovation, which reduces the competitive pressure in the race

for the highest productivity on the incumbent firms they are competing with and

allows them to reduce spending on innovations as well, in order to incur positive

intertemporal profits. Consequently, innovation in the economy and therefore en-

dogenous TFP growth decreases, if the matching efficiency between firm vacancies

and unemployed decreases.

Estimating the model using Bayesian techniques and U.S. data between 2000 and

2019, it turns out that during normal times matching efficiency shocks are not

responsible for fluctuations in the TFP growth rate to a large extent, but for the

Great Recession period between 2008 and 2012 this changed and the observed

significant exogenous decrease in aggregate matching efficiency about over 20% was

a major contributor to the decrease in endogenous TFP growth during this time.

It turns out that the total loss in TFP caused by the strong decline in matching

efficiency during the Great Recession is permanent and summed up to an over 0.6%

lower TFP in the beginning of 2019.

How does the present paper fit into the related literature about the interrelation of

TFP and the Beveridge Curve? There are lots of papers discussing how changes in

the labor market might affect productivity: For instance Bean and Pissarides (1993)

argue that in a model with constant returns to capital, unemployment leads to

lower economic growth, as being unemployed leads to lower income and thus lower

means to invest into capital. However, as it can be seen in the data, the growth in

trend TFP was also low after the Great Recession, when the unemployment rate

recovered to a long-term low, but the Beveridge Curve was still shifted outwards.

Mortensen (2005) proposes a model, where firms are in competition for workers

such that finding a worker easier makes it more attractive for entrants to enter the

market with new technologies, which is quite close to the model proposed here.

However, Mortensen (2005) only considers the effect of labor market tightness, so

the ratio of vacancies to unemployed, on the entry decision, where a higher number

of contacts between firms and unemployed raises the attractiveness of market entry.

But again, there are plenty of movements and thus changes in the labor market

tightness along the Beveridge Curve in the data after it shifted out, while trend

TFP growth remained low, so it seems that ultimately the matching probability
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is much more decisive than the labor market tightness it is attributed to. The

present paper, however, stays agnostic and allows also shocks to the labor market

tightness in the form of job destruction shocks in order to assess their importance

relative to matching efficiency shocks. Indeed it turns out that they have a rather

negligible influence on endogenous technological progress compared to matching

efficiency shocks. Consequently and in line with this paper’s findings, shifts of

the entire Beveridge Curve have to affect trend TFP more than fluctuations in

the labor market tightness. Wheeler (2007) and Martellini and Menzio (2020)

discuss the relationship between matching efficiency and productivity as in the

present paper. They impose a distribution of worker skills, where a higher matching

efficiency increases the match quality between the skill requirements of firms and

the skill level of workers such that overall productivity increases. The present paper

abstracts from labor productivity given by an exogenous skill distribution of workers

and models an endogenous innovation sector, which allows to study the effect of

matching efficiency shocks on endogenous technological progress. Furthermore, it

applies its findings to the decline in trend TFP growth observed after the Great

Recession.

On the other side, there are many papers discussing the reverse effect of TFP

shocks on labor market variables, mainly discussing the reaction of job creation

and destruction to productivity shocks. Aghion and Howitt (1994) argue that

there is a capitalization effect (higher productivity increases the return from new

jobs and thus job creation) and a creative destruction effect (higher productivity

makes some jobs obsolete and increases job destruction). Pissarides and Vallanti

(2007) and Kaas and Kircher (2015) find that in practice TFP growth has a negative

effect on unemployment and that faster growing firms require more workers than

slower growing ones, which means that the capitalization effect should be stronger

than the creative destruction effect. Michelacci and Lopez-Salido (2007) argue

that the type of technological change is important, where neutral change leads to

more job destruction and investment specific change leads to less job destruction.

Finally, Zagler (2009) proposes a model, where structural change is the driving

factor behind productivity growth, but also leads to sectoral reallocation of labor

and thus unemployment during the reallocation process. So when discussing the

effects of changes in the search and matching process on TFP growth, the reverse

effect has to be taken into account, which is done in the present paper’s model by

allowing TFP shocks to affect the hiring decision of the firms. Still it turns out

that matching efficiency shocks are the most important driver of the slowdown in

endogenous TFP growth after 2010.
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The remainder of this paper is organized as follows: Section 2 gives a short insight

into the behavior of the Beveridge Curve and TFP between 2000 and 2019, laying

out the case for this paper. Section 3 presents the model and shows how matching

efficiency affects endogenous TFP growth. In Section 4 the model is estimated

and a shock decomposition is performed, to demonstrate to what extent matching

efficiency shocks and especially the strong decline in matching efficiency during the

Great Recession between 2008 and 2012 affected endogenous technological progress.

Section 5 concludes.

2.2 A first look at the data

Before diving into theory, a first look at the data is intended to reveal the crucial

observations that are to be explained afterwards. Figure 2.1 shows a scatterplot

of the U.S. vacancy rate against the U.S. unemployment rate. Red circles depict

observations before the first quarter of 2008 (so before the Great Recession) and

blue ones observations afterwards. Furthermore, it shows a linear quadratic fit

from an OLS regression of the vacancy rate on a constant, the unemployment rate

and the squared unemployment rate before 2008 (red line) and after 2010 (blue

line), which is intended to visualize the Beveridge Curve. The linear-quadratic ap-

proximation of the Beveridge Curve is solely for visualization purposes and not to

impose any theoretical structure on it. Data for the quarterly vacancy rate is taken

from the Job Openings and Labor Turnover Survey (JOLTS) data set (U.S. Bureau

of Labor Statistics (2020b)), which tries to extrapolate the hard to measure true

total vacancies by observing for instance online and offline job offers, help wanted

signs and firm surveys. Though it might still not be able to catch every vacancy,

especially only internal employment adverts, many related papers (for example the

JOLTS dataset is used in Hobijn and Şahin (2013), Sedláček (2014) or Diamond

and Şahin (2015)) consider it the best approximation available. Data for the quar-

terly unemployment rate is from the Current Population Survey (CPS) of the U.S.

Bureau of Labor Statistics (2020a). As it can be seen, between the first quarter

of 2008 and the first quarter of 2010 the U.S. Beveridge Curve shifted outwards,

which in the literature is largely attributed to a drop in overall matching efficiency

between vacancies and unemployed after the Great Recession (e.g. Furlanetto and

Groshenny (2016)). For instance Sedláček (2014) and Barlevy (2011) estimate the

drop in matching efficiency to be around 15-20% after the Great Recession. Dia-

mond and Şahin (2015) argue that outward shifts in the Beveridge Curve regularly

accompany recessions and the outward shift during the Great Recession can be ex-
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Figure 2.1: U.S. Beveridge Curves before and after the financial crisis of 2008.
Beveridge Curves are visualized as the fitted values of an OLS regression of the
vacancy rate on the unemployment rate and the squared unemployment rate. The
pre-crisis period is defined as t < 2008, while the post-crisis period is defined as
t ≥ 2010.
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plained by workers having to relocate from high labor turnover industries like the

housing and construction sector (where the crisis originated) to low turnover ones

like health care4. This paper follows Furlanetto and Groshenny (2016) in inter-

preting aggregate matching efficiency shocks as ”take all shocks” for any structural

mismatches on the labor market not captured by the set of other shocks included

in the model or as a ”Solow residual” of the matching function. This paper is not

concerned about the exact microeconomic origins of the fluctuations in aggregate

matching efficiency, as they are irrelevant to the proposed model mechanism, as

long as they behave like an exogenous aggregate matching efficiency shock.

What also can be observed is that TFP growth slowed down after the Great Re-

cession. Figure 2.2 depicts the cyclical and trend component of TFP received by

HP-filtering the quarterly TFP series provided by Fernald (2012-2019) (smoothing

parameter set to a common value of λ = 1600). The huge negative TFP shock that

is associated with the Great Recession in 2008 is visible in the cyclical component.

What is striking is that between 2008 and 2010 the long-run trend component of

TFP was almost horizontal with approximately zero growth and after 2010 the

4for further evidence see Hobijn and Şahin (2013)
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Figure 2.2: Decomposing TFP (source Fernald (2012-2019)) into a cyclical and
trend component using the two-sided HP-filter with smoothing parameter λ = 1600.
Linear fit of trend TFP is given by an OLS regression of trend TFP on a linear
time trend, pre- and post-crisis periods defined as above.
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long-run TFP path lies persistently below the path before 2008 without any sign

of recovery, which can be seen by comparing the red and blue line (linear fits of

the growth paths of TFP before and after the Great Recession) in figure 2.2. Even

more, the slope of the blue line (so growth of trend TFP after the Great Reces-

sion) is lower than the slope of the red line (so growth of trend TFP before the

Great Recession), thus the loss in aggregate productivity due to the slowdown in

productivity growth seems to be still growing. Of course the results here have to

be taken with a grain of salt, as the HP-filter is atheoretic and the separation of

business cycle fluctuations and longer-run growth might not be perfectly accurate

(see for instance the critique in Comin and Gertler (2006) mentioned in the intro-

ductory chapter of this dissertation), however the main observation of a slowdown

in longer-run technological progress during the Great Recession stands.

The present paper argues that the outward shift in the Beveridge Curve in conse-

quence of a severe negative matching efficiency shock and the slowdown in trend

growth of TFP, both observed during the Great Recession, are causally linked. The

next section presents a model, where the lower matching efficiency implied by the

outward shift of the Beveridge Curve leads to a higher entry barrier for outside

firms, which reduces the innovative pressure on incumbent firms and thus reduces
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aggregate TFP. Estimating the model, it turns out that the negative matching ef-

ficiency shock can explain a major part of the drop in endogenous TFP growth

during the Great Recession. The permanent loss in TFP amasses to an over 0.6%

lower TFP in the beginning of 2019.

2.3 The model

The model proposed here includes a labor market with search friction as for in-

stance in Mortensen and Pissarides (1994). In particular, a matching function is

assumed that produces matches between firm vacancies and unemployed workers.

The matching function implies that a certain firm vacancy cannot be filled with

the first unemployed worker that is met on the labor market, but that there is a

probability this worker is no match for the firm and search has to continue. Con-

tinuing job search is assumed to be costly, thus the lower the matching efficiency

the higher the hiring costs. Furthermore, there is an R&D and technology adoption

sector as in Anzoategui et al. (2019), Benigno and Fornaro (2017) or Comin and

Gertler (2006), where new ideas do not instantly improve productivity but have to

be adopted over time beforehand. This mechanism allows short-run business cycle

shocks, like for instance matching efficiency shocks, to have long-run implications,

as short-run shocks affect innovation today, but the effect of innovation on actual

productivity only falls in to place over the long-term, because new technologies first

have to diffuse through the firm sector.

Additionally, there is a firm sector with Schumpeterian competition between out-

siders and incumbents for the position in the market, which always goes to the

firm with the highest productivity. A quality ladder as in Grossman and Helpman

(1991) is assumed, where a new adopted technology increases product quality. An

alternative specification to vertical technological progress, as implied by the quality

ladder assumption, would be horizontal technological progress like in a love for va-

riety model, where there is a growing number of firms and each firm needs a patent

to come into existence. Both specifications are commonly used in the literature

and have similar implications for technological progress. The reason for favoring

vertical technological progress here is that labor and productivity should both be

concerning one and the same firm if one wants to study the effect of labor market

conditions on technological progress. If labor is employed by a growing number

of firms and the firm number is the growth inducing factor, then either aggregate

labor has to constantly grow as well and labor productivity stays constant, which
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does not fit the data, or decrease per firm to allow a constant aggregate unem-

ployment rate and growing labor productivity on the balanced growth path, but

implies increasing labor turnover along the balanced growth path, which again does

not fit the data. Consequently, vertical growth fits the data better and is the more

natural choice for the matter at hand, but otherwise is without loss of generality.

Schumpeterian competition implies that only the firm with the highest rung on the

quality ladder can stay in the market, while low quality firms have to leave the

market5. The notion of more competition stirring up technological progress is well

known to the literature6 and is incorporated in the present model as competition

for the position as incumbent.

The labor market friction imposes an entry barrier to the outsiders, who are as-

sumed to have no worker stock in contrast to the incumbents as in Mortensen

(2005). So if hiring workers becomes more difficult because matching efficiency

declines, outsiders will face a higher entry barrier and thus a lower incentive to

become the next incumbent, which reduces innovative pressure on the current in-

cumbents and gives them an incentive to lower their innovation spending as well.

In consequence, aggregate innovation spending and long-run productivity decrease

after matching efficiency on the labor market declines.

2.3.1 Labor market

Assume a standard matching function of the form

m(ut, vt) = µtu
ξ
tv

1−ξ
t , ξ ∈ (0, 1), (2.1)

where ut is the number of unemployed, vt is the number of vacancies and µt is the

matching efficiency, which is given by

µt = µ̄ exp(ft), µ̄ > 0, (2.2)

where µ̄ is the steady state matching efficiency and ft are short-run fluctuations of

the matching efficiency, which follow an autoregressive process of the form

ft = ρfft−1 + εft , ρf ∈ (0, 1), (2.3)

5see Olley and Pakes (1996)
6for further evidence see Arrow (1962), Nickell (1996) and Blundell et al. (1995)
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with εft an i.i.d. aggregate shock to the matching efficiency. Positive shocks lead to

an inward shift of the Beveridge Curve with higher matching efficiency, while nega-

tive ones lead to an outward shift with lower matching efficiency (higher matching

efficiency leads to more matches for a given number of vacancies and unemployed,

thus in the equilibrium a given number of vacancies is associated with fewer un-

employed and the new Beveridge Curve lies below the old one, so shifted inwards,

and vice versa). This paper follows Furlanetto and Groshenny (2016) in interpret-

ing the matching efficiency shock as a ”take all shock” or ”Solow residual” of the

matching function for any structural mismatches on the labor market that remain

unexplained by the rest of structural shocks included in the model. Define labor

market tightness θt =
vt
ut
, then the probability of filling a vacancy for the firms is

Φv(θt) =
m(ut, vt)

vt
= µt

(
ut

vt

)ξ

= µt

(
1

θt

)ξ

(2.4)

and the probability of finding a job for unemployed is given by

Φj(θt) =
m(ut, vt)

ut

= µt

(
vt
ut

)1−ξ

= µtθ
1−ξ
t = θtΦ

v(θt). (2.5)

The probability of filling a posted job vacancy Φv(θt) is crucial for the entry decision

of outside firms and thus fulfills an important role for technological progress as

explained further below. Especially note that ∂Φv(θt)
∂µt

> 0, so an exogenous increase

in matching efficiency increases the probability of filling a posted vacancy for firms.

In every period there is Nash bargaining about the real wage between workers and

firms. Let St denote the surplus from having a job for workers and Jt the surplus

of having a worker for firms. Then the real wage wt is found by maximizing the

total value of the bargain

wt = argmax(St)
τ (Jt)

1−τ , τ ∈ (0, 1), (2.6)

where τ is the bargaining power of workers. Denote the marginal revenue product

of labor for intermediate firms as Θt and the unemployment benefit for unemployed

workers as bt, then Jt is given by the marginal revenue product of labor minus the

real wage, while the value of having a job is the difference between receiving the

real wage wt or only unemployment benefits bt, so

Jt = Θt − wt (2.7)
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St = wt − bt. (2.8)

Solving the Nash bargaining problem from above, the usual sharing rule obtains

wt = τΘt + (1− τ)bt, (2.9)

so the real wage will be close to the unemployment benefit, if the bargaining power

of workers is low and close to the marginal revenue product of workers, if their

bargaining power is high.

2.3.2 R&D sector

The R&D sector produces new unadopted (so not yet ready to increase firm pro-

ductivity) ideas Rt by employing real research effort Xt, which is paid as a transfer

to the household sector. The production function for new unadopted ideas reads

Rt = χ

(
Xt

qt

)1−κ

, χ > 0, κ ∈ (0, 1), (2.10)

where qt is the economy’s TFP level. That a higher TFP level negatively affects

idea production is required for the existence of a balanced growth path and reflects

the idea that in advanced economies it becomes increasingly difficult to push for-

ward the technological frontier. As a consequence of growing productivity, there

are more means to invest in research in each period. So without any counteracting

variable, research and thus productivity would explode. For instance Comin and

Gertler (2006) explicitly model a congestion externality for research spending, in

particular they assume that higher aggregate research spending reduces the pro-

ductivity of individual research spending. Alternatively, Anzoategui et al. (2019)

see the congesting factor in aggregate skilled labor that is used in the production

of new ideas. All of these congesting factors are ultimately related to aggregate

productivity, the present paper stays agnostic about the exact R&D process and

thus uses aggregate productivity as a proxy for what ever might hinder research

efficiency.

The R&D sector sells new unadopted ideas to the licenser at competitive price pRt ,

so the profit maximization problem reads

max
Xt

Γt = pRt Rt −Xt, (2.11)
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subject to (2.10). The first order condition then reads

(1− κ)χ
pRt
qt

=

(
Xt

qt

)κ

, (2.12)

so the optimal input amount of research effort depends on the price for new un-

adopted ideas.

2.3.3 Licenser

The licenser holds and accumulates the stock of unadopted ideas Ut by buying

new unadopted ideas Rt from the R&D sector and selling licenses for technology

adoption to the technology adoption sector that may result in ∆A
t of the unadopted

ideas becoming adopted technologies, if the technology adopter succeeds in adopting

these particular technologies. In consequence, the stock of unadopted ideas evolves

according to

Ut = (1− δU)Ut−1 +Rt −∆A
t , δU ∈ (0, 1), (2.13)

where δU is the obsolescence rate of unadopted ideas. The licenser grants a license

to the technology adopters for the usage of an unadopted idea at competitive price

pUt , so the maximization problem of expected lifetime profits for the licenser reads

max
Rt

Et

∞∑

s=0

Λt,t+sΞt+s = Et

∞∑

s=0

Λt,t+s

[
pUt+sUt+s−1 − pRt+sRt+s

]
, (2.14)

with Et the expectations operator and Λt,t+s the stochastic discount factor between

periods t and t+ s, while subject to (2.13). Consequently, the FOC for the licenser

reads

pRt = EtΛt,t+1p
U
t+1, (2.15)

so the expected license price is equal to the current price for new unadopted ideas.

2.3.4 Technology adopter

The technology adopter buys a license for adoption of an unadopted technology in

period t from the licenser at price pUt . The probability of succeeding to adopt a

certain technology and thus the speed of diffusion of unadopted ideas into adopted

ideas is given by ϕ(Υt, qt) = γ
(

Υt

qt

)1−φ

, with γ > 0, φ ∈ (0, 1), where Υt is real

adoption effort modeled as a real resource cost paid to the household sector. Again,

with the same reasoning as for the R&D sector, the TFP level shows up in the
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denominator to guarantee the existence of a balanced growth path, as in a growing

economy there are more means to spend on adoption in every subsequent period and

without any counteracting variable, the growth path would be explosive. Including

the aggregate TFP level in the denominator of the diffusion speed reflects the idea

that more advanced technologies are more difficult to adopt. New adopted ideas

∆A
t thus are given by

∆A
t = γ

(
Υt

qt

)1−φ

Ut−1. (2.16)

Newly adopted ideas are sold to intermediate goods producing firms at competitive

price pAt , so the profit maximization problem of the technology adopter reads

max
Υt,Ut−1

Ωt = pAt ∆
A
t − pUt Ut−1 −Υt (2.17)

subject to (2.16), yielding the following FOC:

pAt
qt
(1− φ)γUt−1 =

(
Υt

qt

)φ

(2.18)

γ

(
Υt

qt

)1−φ

=
pUt
pAt

(2.19)

Equation (2.18) gives the optimal input relation between adoption effort and un-

adopted ideas at a given price pAt , where a higher ratio of adoption spending com-

pared to the stock of unadopted ideas has to be associated with a higher price for

adopted technologies. Equation (2.19) gives the optimal adoption effort depending

on the price ratio between unadopted and adopted technologies, where with a higher

price of unadopted ideas in relation to adopted ideas, the technology adopter will

choose to increase the adoption rate rather than to acquire new unadopted ideas.

2.3.5 Final goods sector

The final goods producer uses capital Kt−1 and intermediate goods zi,t from a

continuum of intermediate firms with mass 1 as inputs to produce final output Yt.

The production function for final goods reads

Yt =
1

1− α

[∫ 1

0

z1−α
i,t di

]
Kα

t−1, α ∈ (0, 1). (2.20)

Intermediate goods are bought from intermediate goods producers at price pzi,t,

while capital is rented from the households at rental rate rKt , so the profit maxi-
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mization problem of the final goods producer reads

max
zi,t,Kt−1

Df
t = Yt −

∫ 1

0

pzi,tzi,tdi− rKt Kt−1, (2.21)

which yields the following first order conditions

zi,t = (pzi,t)
− 1

αKt−1 (2.22)

rKt =
α

1− α

[∫ 1

0

z1−α
i,t di

]
Kα−1

t−1 . (2.23)

Equation (2.22) says that the demand for intermediate goods negatively depends

on their price, where the demand elasticity is the inverse production elasticity of

intermediate goods, but positively on capital demand. Equation (2.23) implies that

the real capital rental rate will be equal to the marginal product of capital in the

optimum.

2.3.6 Intermediate firms

An individual intermediate firm i is the monopolistic supplier of intermediate good

zi,t. The intermediate good is produced according to the production function

zi,t = qi,tni,t, (2.24)

where qi,t is the productivity level and ni,t the labor input of firm i. The productivity

level of firm i is given by

qi,t = λAi,t−1exp(et), λ > 1, (2.25)

where Ai,t−1 is the stock of adopted technologies firm i has acquired with accumu-

lation constraint

Ai,t = Ai,t−1 +∆A
i,t. (2.26)

and et are exogenous aggregate TFP fluctuations with the autoregressive law of

motion

et = ρqet−1 + εqt , ρq ∈ (0, 1), (2.27)

where εqt is an i.i.d. aggregate TFP shock that affects the productivity of all indi-

vidual intermediate goods firms at the same time (so the shock is not firm specific,

but a shock to overall productivity). Incumbent intermediate firms have a stock of

23



workers following the law of motion

ni,t = (1− δjt )ni,t−1 + Φv(θt)vi,t, (2.28)

where Φv(θt)vi,t are the vacancies that are filled with a worker, thus the inflow of

new workers, and δjt is the exogenous separation rate given by

δjt = δ̄jexp(dt), δ̄j ∈ (0, 1), (2.29)

with dt denoting exogenous fluctuations in the separation rate following the autore-

gressive law of motion

dt = ρjdt−1 + εjt , ρj ∈ (0, 1), (2.30)

with εjt an exogenous i.i.d. shock to the separation rate. Posting a vacancy incurs

a vacancy cost of ςt, where
ςt
qt

= ς̄ and ς̄ > 0, which is necessary for the existence

of a steady state in detrended form and reflects the idea that a higher technology

level makes job descriptions more complex and thus increases the cost of posting

a vacancy, as otherwise, with increasing productivity and profits, hiring and thus

total labor would increase along the balanced growth path. In every period, the

intermediate firm and outside competitors can invest in their future productivity

level and buy new adopted technologies from the technology adopter at price pAt

and add them to their stock of technologies.

Assume further Schumpeterian creative destruction: Only the firm with the high-

est quality level for a certain intermediate product i survives. The current level of

quality can be copied without any cost by everyone, while quality improvements

are only attained by buying new adopted technologies from the technology adopter.

The incumbent firm faces competition for its position as the incumbent by outside

competitors: If it does not improve its own quality level enough every period, out-

siders will attain a higher quality level and destroy the incumbent, leaving it with

zero profits for the rest of time. Looking at the entry condition for the outside com-

petitors, their optimal quality improvement decision per period can be obtained:

For entry, outsiders will have to pay innovation cost pAt ∆
A
i,t in order to improve the

technology level. Furthermore, outsiders have a structural disadvantage compared

to incumbents as they are assumed to not have any worker stock, so they need to

hire the equivalent of the worker stock of any incumbent firm they want to replace

(by symmetry the i index can be dropped) to be able to produce. This of course

is costly and depends on the current situation of the labor market. Gaining the
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position of the incumbent yields the expected lifetime profits of being the incum-

bent in the future. Period profits are revenue from selling intermediate goods at

price pzi,t minus period labor and hiring costs, as well as potential innovation costs

for staying in the market for one period longer. Thus, define lifetime profits in the

Bellman type equation

Mi,t = pzi,tzi,t − wtni,t − ςtvi,t − pAt ∆
A
i,t + EtΛt,t+1Mi,t+1. (2.31)

As from a certain firm’s point of view, may it be current incumbent or outsider,

all other firms are assumed to behave optimally and only the firm with the highest

quality qĩ,t = max qi,t can be the incumbent, the i index can be replaced by ĩ in

each firm branch i for the relevant decision about which innovation spending will

win the innovation contest.

However, outsiders would have to pay additional hiring costs in order to become

incumbents. Recall that the expected worker stock current incumbents would have

at their disposal in the next period is Et(1 − δjt+1)nt and in order to replace the

current incumbent as the producing firm, Et
(1−δjt+1)nt

Φv(θt)
vacancies are required to build

up this worker stock as a potential entrant. Free entry to the innovation contest

dictates that a winning outside firm would always have to be at the indifference

point between contesting and not contesting. Spending less is a guaranteed loss in

the innovation contest, as a competitor could spend a little bit more and win with

a positive gain from contesting, spending more yields a negative value of becoming

the incumbent, as the gain of being the future incumbent then would be lower than

the effort to win the contest. The following term gives this indifference point for

outside firms:

pAt ∆
A
ĩ,t
+ Et

(
ςt+1

(1− δjt+1)nt

Φv(θt)

)
!
= EtΛt,t+1Mĩ,t+1, (2.32)

so indifference between innovating or not innovating is reached at the point where

expected entry costs (the sum of innovation and hiring costs on the left-hand side)

equal expected entry gain (the expected discounted future lifetime profits on the

right-hand side). Here the influence of matching efficiency on the innovation deci-

sion becomes evident: The probability of finding a worker enters the denominator of

the entry costs on the left-hand side, so if it becomes harder to acquire new workers

for possible entrants, it will reduce their gain from innovating. A negative matching

efficiency shock, by being persistent, also reduces the expected discounted future

profits on the right hand side, as it will become harder to acquire workers in the
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future, so innovation becomes less attractive and potential entrants would choose

to innovate less and thus the innovative pressure on the incumbents decreases.

Condition (2.32) imposes a lower bound on the innovation decision of the incum-

bents, as spending less always leads to a loss in the innovation contest. If for

instance current incumbents innovate less, an entrant will replace them and leave

them with zero profits. Would the current incumbents like to innovate more than

that at this point, as they have to pay lower hiring costs than outsiders and thus

have more means to invest in technology? Under the model assumptions made here,

the answer is no. Figure 2.3 for simplicity assumes that a matching efficiency shock

is a one-time event and shows that current incumbents will choose their innovation

spending according to the indifference point of the outside firms. As becomes ev-

Figure 2.3: This figure schematically plots innovation cost pAt ∆
A
t (black solid line)

and gain EtΛt,t+1Mt+1 (black dashed line) depending on the amount of innovation
∆A

t . The hiring costs shift the innovation gain of potential entrants downwards (red
dashed line). If there were no hiring costs, optimal innovation is at point A for both
entrants and incumbents and with zero profits for both. With hiring costs, optimal
innovation is at point B for both entrants and incumbents, but with positive profits
for incumbents (red solid line). A negative one-time shock to matching efficiency
shifts the gain curve downwards (blue dashed line) and leads to lower innovation
at point C with higher profits for incumbents (blue solid line).

A

Optimal Innovation decision

Innovation gain

Innovation gain - Hiring Costs (baseline)

Innovation gain - Hiring Costs (shock)

Innovation Costs

Hiring Costs (shock)

Hiring Costs (baseline)

B

A
A

A

C

A

A

B

C

ident from figure 2.3, in order to have a unique interior optimum, the innovation

cost curve has to be at first below the innovation gain curve, but the slope of the
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cost curve has to be higher than the slope of the gain curve to get an intersection

point, where further innovation does not yield any more profit. With no hiring

costs, incumbents and potential entrants are equal and the optimal innovation de-

cision would be at point A. However, the hiring costs, being independent of the

innovation decision, shift the innovation gain of potential entrants down, so the

intersection of innovation gain and costs is at point B, where outsiders are at their

indifference point. At point B, incumbents have positive intertemporal profits, but

any movement to the right, so more innovation, decreases these profits. This is be-

cause the intertemporal profits made at this point are equal to the distance between

the cost and gain curve, which by construction is equal to the distance between

the gain curves with and without hiring costs (blue solid line for the case without

matching efficiency shock, red solid line for the event of a one-time matching effi-

ciency shock). The intertemporal profits current incumbents can generate are thus

equal to the additional hiring costs outsiders would incur, which are independent

of the innovation decision of the current incumbent. Consequently, increasing in-

novation spending from this point onward will always reduce intertemporal profits

and is thus not optimal. So incumbents will also choose point B as their optimal

innovation decision. Consequently, the optimal innovation decision is exogenously

given by the competition between incumbents and potential entrants. A negative

matching efficiency shock increases the hiring costs for entering firms and shifts the

innovation gain curve downwards, leading to less innovation at point C.

In the optimum, the current incumbent will always stay the incumbent, as in con-

trast to outsiders it has a strictly positive continuation value and can always choose

to spend one infinitely small increment more on innovation than outsiders and win

the innovation race. Therefore, the expected lifetime profit optimization problem

of intermediate firm i reads

max
pzi,t

Et

∞∑

s=0

Λt,t+sD
im
i,t+s = Et

∞∑

s=0

Λt,t+s(p
z
i,t+szi,t+s−wt+sni,t+s−ςt+svi,t+s−pAt+s∆

A
ĩ,t+s

)

(2.33)

subject to equations (2.24)-(2.30). Solving this yields the optimal pricing behavior

of the intermediate firm given by

pzi,t =
1

1− α

[
wt

qt
+

ς̄

Φv(θt)
− EtΛt,t+1(1− δjt+1)

ς̄

Φv(θt+1)
(1 + gqi,t+1)

]
, (2.34)

where gqi,t =
qi,t−qi,t−1

qi,t−1
is the productivity growth rate for firm i. Equation (2.34)
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has the usual interpretation that monopolist i′s optimal price will be a markup on

the real marginal production costs.

From the setup of the intermediate sector above, the marginal revenue product of

labor for firm i used in the wage bargaining (2.9) reads

Θi,t = pzi,tqi,t. (2.35)

2.3.7 Government sector

The government collects a lump-sum tax Tt from the households and finances un-

employment benefits with it, so the government budget reads

btut = Tt. (2.36)

Assume further for simplicity that the government keeps the unemployment benefits

in a fixed ratio to the real wage, so

bt = (1− ω)wt, ω ∈ (0, 1). (2.37)

Though the assumptions here are simplifying, they do not clash with reality too

much. Unemployment benefits are persistently around roughly 1/3 of the average

wage for the U.S., so assuming a constant ratio between bt and wt seems to be a

good approximation for reality concerning the purpose of the model at hand.

2.3.8 Household sector

The representative household maximizes the following utility function

Ut = Et

∞∑

s=0

exp(gt)β
s ln(Ct), β ∈ (0, 1), (2.38)

where Ut denotes lifetime utility, gt = ρggt−1+εgt , ρ
g ∈ (0, 1) are consumer preference

fluctuations with εgt an i.i.d. consumer preference shock and Ct is consumption,

subject to the budget constraint given in any period by (by symmetry intermediate

firms are identical and the i index on intermediate firm residual profits can be

dropped)

Ct+It+Tt = wtnt+btut+rKt Kt−1+Γt+Ξt+Ωt+Dim
t +Df

t +ςtvt+Xt+Υt, (2.39)
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where It denotes investment. Capital accumulation is given by

Kt = (1− δK)Kt−1 + It, δK ∈ (0, 1). (2.40)

The labor force is normalized to one such that

ut + nt = 1. (2.41)

Consequently, the FOCs of utility maximization yield the usual Euler equation,

which gives the optimal consumption-savings decision

C−1
t = Etβ

exp(gt+1)

exp(gt)
(1 + rKt+1 − δK)C−1

t+1. (2.42)

2.3.9 Aggregate resource constraint

As ex-post all intermediate firms will behave exactly the same and the mass of firms

is normalized to 1, individual quantities will equal aggregate quantities. Putting to-

gether the resource constraints of every sector described above yields the aggregate

resource constraint given by

Yt = Ct + It. (2.43)

2.3.10 Equilibrium

By symmetry all individual intermediate firms will behave the same, so the i-index

can be dropped. Summing up, an aggregate equilibrium is given by the sequence

of variables

{
θt+s, µt+s, vt+s, ut+s, ft+s, wt+s,Θt+s, bt+s, p

z
t+s, qt+s, Rt+s, Xt+s, p

R
t+s,

Ut+s, p
U
t+s,Λt,t+s, r

K
t+s,∆

A
t+s,Υt+s, p

A
t+s, At+s, Yt+s, zt+s, Kt+s, nt+s, et+s, ςt+s,

δjt+s, dt+s, g
q
t+s,Mt+s, It+s, Ct+s, gt+s

}∞

s=0

that fulfill the following set of equilibrium conditions

Φv(θt) = µt

(
1

θt

)ξ

(2.44)

θt =
vt
ut

(2.45)
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µt = µ̄ exp(ft) (2.46)

ft = ρfft−1 + εft (2.47)

wt = τΘt + (1− τ)bt (2.48)

Θt = pzt qt (2.49)

bt = (1− ω)wt (2.50)

Rt = χ

(
Xt

qt

)1−κ

(2.51)

(1− κ)χ
pRt
qt

=

(
Xt

qt

)κ

(2.52)

Ut = (1− δU)Ut−1 +Rt −∆A
t (2.53)

pRt = EtΛt,t+1p
U
t+1 (2.54)

Λt,t+1 = Et
1

1 + rKt+1 − δK
(2.55)

∆A
t = γ

(
Υt

qt

)1−φ

Ut−1 (2.56)

pAt
qt
(1− φ)γUt−1 =

(
Υt

qt

)φ

(2.57)

pAt γ

(
Υt

qt

)1−φ

= pUt (2.58)

At = At−1 +∆A
t (2.59)

Yt =
1

1− α
z1−α
t Kα

t−1 (2.60)

zt = (pzt )
− 1

αKt−1 (2.61)

rKt =
α

1− α
z1−α
t Kα−1

t−1 (2.62)

zt = qtnt (2.63)

qt = λAt−1exp(et) (2.64)

et = ρqet−1 + εqt (2.65)
ςt
qt

= ς̄ (2.66)

δjt = δ̄jexp(dt) (2.67)

dt = ρjdt−1 + εjt (2.68)

nt = (1− δjt )nt−1 + Φv(θt)vt (2.69)

pzt =
1

1− α

[
wt

qt
+

ς̄

Φv(θt)
− EtΛt,t+1(1− δjt+1)

ς̄

Φv(θt+1)
(1 + gqt+1)

]
(2.70)

gqt =
qi,t − qi,t−1

qi,t−1

≈ ln(qt)− ln(qt−1) = ln(λ)∆A
t−1 + ln(et)− ln(et−1) (2.71)
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Et

(
pAt ∆

A
t + ςt+1

(1− δjt+1)nt

Φv(θt)

)
= EtΛt,t+1Mt+1 (2.72)

Mt = pzt zt − wtnt − ςtvt − pAt ∆
A
t + EtΛt,t+1Mt+1 (2.73)

Kt = (1− δK)Kt−1 + It (2.74)

ut + nt = 1 (2.75)

C−1
t = β

exp(gt+1)

exp(gt)
Et(1 + rKt+1 − δK)C−1

t+1 (2.76)

gt = ρggt−1 + εgt (2.77)

Yt = Ct + It (2.78)

The economy has a balanced growth path, where all growing variables grow at

a common rate of gqtt−1 = ln(λ)∆At−1 . In the appendix, this trend growth rate,

detrended form and steady state of the model are derived, which are used to nu-

merically solve the model using Dynare7. Especially note, that inserting the pro-

duction function of intermediate goods producers into the production function of

final goods producers yields the aggregate production function of the form

Yt =
1

1− α
(qtnt)

1−α Kα
t−1, (2.79)

so qt can be interpreted as total factor productivity with labor augmenting techno-

logical progress.

2.4 Bringing the model to the data

In this section, some of the model parameters are calibrated externally, while the

crucial parameters are estimated using Bayesian techniques. The focus lies on un-

covering the long-run effects on endogenous technological progress that the strong

decline in matching efficiency during the Great Recession had. As an additional

robustness check, it is checked if aggregate shocks to job destruction, TFP and

consumer preferences mitigated the impact of the strong decline in matching effi-

ciency on endogenous technological progress. The first part of the section discusses

the calibration or estimation procedure for the model parameters, while the second

part discusses the estimated effect of matching efficiency shocks on endogenous

TFP growth.

7see Adjemian et al. (2011)
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2.4.1 Calibration and parameter estimation

The scaling parameters of the model are not estimated, but calibrated such that

some crucial steady state values fit observational means from the data. Table 2.1

summarizes the parameters calibrated and the reasons for the chosen values: The

Table 2.1: Externally calibrated parameters

Parameter Value Source
µ̄ 0.89 Fitting the mean job finding rate (Sedláček (2014))
ω 0.61 U.S. mean unemployment benefits to wage ratio
χ 0.88 Fit mean R&D to GDP ratio
δU 0.03 Technology obsolescence rate (Comin and Gertler (2006))
β 0.98 standard calibration
γ 0.395 Fit mean TFP growth rate
δK 0.025 standard calibration
λ 1.03 Technology hazard rate (Basu and Fernald (1997))
ς̄ 21 Fitting mean vacancy rate
δ̄j 0.043 Job destruction rate (Sedláček (2014))

steady state matching efficiency is calibrated such that the steady state unem-

ployment rate from the model matches the mean unemployment rate of about 6%

observed in the data and matches a job finding rate of about 60% as in Sedláček

(2014). Sedláček (2014) estimates the average job separation rate for the U.S. to

be about 4.2% , so δ̄j = 0.042. The fraction of unemployment benefits to the av-

erage wage is about 39% for the U.S., so ω is set to 0.61. Following Comin and

Gertler (2006), the obsolescence rate of unadopted ideas is about 3%, so δU = 0.03.

Concerning the technological hazard rate8 λ, Basu and Fernald (1997) find it to

be around 1.03. Finally, the values of the discount rate (β = 0.98) and the depre-

ciation rate of capital (δK = 0.025) are set to widely used standard values in the

literature. The scaling parameters χ, γ and ς̄ are calibrated such that the steady

state values of the R&D to GDP ratio, TFP growth and vacancy rate match their

respective mean in the data. The mean R&D ratio in the data is about 2.84%, the

mean TFP growth rate about 1.13% and the mean vacancy rate about 3.08%.

The remaining parameters and shock standard errors are then estimated using

Bayesian methods. There are 5 observables: The TFP growth rate9, the vacancy

8The interpretation of λ as a hazard rate comes from the idea that each climb on the quality
ladder replaces older vintages of a certain technology by newer ones, which increases productivity.

9TFP is adjusted to be in line with the assumption of purely labor augmenting technological
progress as in the model and not labor and capital augmenting as assumed by Fernald (2012-
2019), so the residual between output growth and input factor growth that is defined as TFP
growth by Fernald (2012-2019) is multiplied by 1

1−α . For the derivation see the appendix.
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and unemployment rates as defined above, the output growth rate (growth of out-

put per capita) provided by Fernald (2012-2019) and the R&D to GDP ratio in

percent provided by the FRED (2020). The exogenous variable ιxy has the usual

interpretation of a measurement error in the R&D to GDP ratio, because R&D

expenditures are notoriously hard to measure, as large parts of private research

spending that do not lead to success remain unaccounted for. The introduction of

a measurement error allows the model estimation to be more flexible with respect

to such mismeasurements. Furthermore, the inclusion of the measurement error

in addition to the four structural shocks eliminates stochastic singularity that oc-

curs, if there are fewer structural shocks than observed variables. Consequently,

the observation equations in terms of the model variables read (where tildes denote

detrended variables)

vacancy ratet =
vt

vt + ut

· 100 (2.80)

unemployment ratet =
ut

ut + nt

· 100 (2.81)

TFP growtht = (gqtt−1 + et − et−1) · 400 (2.82)

output growth = (gqtt−1 + et − et−1 + ln(Ỹt)− ln(Ỹt−1)) · 400 (2.83)

R&D ratio =

(
X̃

Ỹ
+ ιxy

)
· 100. (2.84)

The choice of prior distributions follows mainly the propositions of Smets and

Wouters (2003). The priors for the persistence parameters ρf , ρq and ρj accordingly

follow a Beta distribution with mean 0.85 and standard error 0.05. Preestimation

of the persistence parameter ρg shows that it is much lower than the persistence

parameters for the other shock processes. As this paper wants to remain agnostic

concerning the shock persistence, the prior mean is adjusted accordingly to be only

about 1/3 of the other parameters, which appears to be more accurate judging by

the preestimation. Also following Smets and Wouters (2003), the shock standard

error priors follow an Inverse Gamma distribution with standard error 2, the re-

spective means are obtained by preestimations. The parameters ξ, κ, α, φ and

τ are crucial for the reaction of labor market variables and technological progress

to matching efficiency shocks, therefore they are especially interesting to be esti-

mated. The latter five parameters all should lie between 0 and 1, so a Beta prior

is chosen. There are concrete estimates of the parameters in the literature, so the

priors are chosen to be narrow around these values with a standard error of 0.025.

Griliches (1990) estimates the parameter κ to be around 0.3, so the prior mean for
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this parameter is chosen to be 0.3. Sedláček (2014) estimates ξ to be about 0.567

and τ to be around 0.204, so the prior means are chosen accordingly. Anzoategui

et al. (2019) estimate the adoption elasticity parameter 1−φ to be about 0.925, so

a prior mean of 0.075 is chosen for φ. Finally, the capital share α is usually set to 1
3

in the literature so the prior mean for α is set to this value. Table 2.2 summarizes

the assumptions on the parameter prior distributions. Table 2.3 then summarizes

Table 2.2: Assumptions on Prior distributions

Parameter Type Mean Std. Error
ξ BETA 0.567 0.025
κ BETA 0.3 0.025
α BETA 1

3
0.025

φ BETA 0.075 0.025
τ BETA 0.204 0.025
ρf BETA 0.85 0.05
ρq BETA 0.85 0.05
ρj BETA 0.85 0.05
ρg BETA 0.286 0.05

s.e. εf INV. GAMMA 0.07 2
s.e. εq INV. GAMMA 0.01 2
s.e. εj INV. GAMMA 0.08 2
s.e. εg INV. GAMMA 0.35 2
s.e. ιxy INV. GAMMA 0.01 2

the estimation results for the posterior distributions10. Finally, figure 2.4 plots the

prior and posterior densities for the estimated model parameters, while figure 2.5

plots the prior and posterior densities for the estimated shock standard errors. All

of the parameter modes estimated above take reasonable values comparable to the

literature, thus the model above seems to be in line with the major findings of

the related literature concerning the estimated parameters. Only the mode for the

parameter α is a little bit lower than usually assumed, but with a narrow posterior

distribution around it and not out of the reasonable range.

2.4.2 How labor market fluctuations affect long-run technological progress

Now the estimated model is used to assess the question to what extent the shift

of the Beveridge Curve during the Great Recession affected endogenous long-run

10Posterior distributions received by employing the Metropolis Hastings algorithm. The algo-
rithm uses a Markov-Chain-Monte-Carlo (MCMC) simulation with 20,000 draws in total, while
10,000 draws are finally kept and another 10,000 draws discarded as burning-in draws.
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Table 2.3: Properties of the posterior distributions

Parameter Mode Std. Error (Hessian) 5% Mean 95%
ξ 0.5825 0.0217 0.5465 0.5835 0.6243
κ 0.2528 0.0129 0.2269 0.2521 0.2789
α 0.2506 0.0032 0.2450 0.2505 0.2566
φ 0.1095 0.0310 0.0658 0.1209 0.1825
τ 0.1688 0.0125 0.1462 0.1691 0.1916
ρf 0.9385 0.0158 0.9098 0.9352 0.9630
ρq 0.9288 0.0190 0.8808 0.9212 0.9586
ρj 0.8451 0.0254 0.8014 0.8446 0.8853
ρg 0.2442 0.0317 0.1851 0.2484 0.3135

s.e. εf 0.0668 0.0067 0.0579 0.0684 0.0788
s.e. εq 0.0096 0.0008 0.0084 0.0098 0.0112
s.e. εj 0.0801 0.0074 0.0700 0.0818 0.0924
s.e. εg 0.3365 0.0306 0.2976 0.3433 0.3872
s.e. ιxy 0.0026 0.0002 0.0022 0.0026 0.0030

Figure 2.4: Prior and posterior densities for the estimated model parameters.
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technological progress. At first, figure 2.6 shows the impulse responses of the TFP

level qt (retrieved by integrating over the effect on the TFP growth rate gqt ), the

value of being the incumbent Mt, the job filling probability Φv
t , the stock of un-

adopted ideas Ut, production of new ideas Rt and adoption effort Υt to a matching

efficiency shock of size one standard deviation, which translates to an increase in

matching efficiency of about 7%. As it can be seen, a matching efficiency shock of
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Figure 2.5: Prior and posterior densities for the estimated shock standard errors.
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Figure 2.6: Impulse responses of TFP and variables associated with endogenous
TFP growth to a 1 standard deviation shock in matching efficiency (increase in
matching efficiency about 7%) as implied by the estimated model. The dashed
lines give the 90% credible interval based on the highest posterior density interval
(HPDI).
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about one standard deviation leads to a long-run increase in the TFP level q until

it settles down to a nearly 0.2% higher TFP than without the shock after about 60

quarters. The reasoning for this long-run increase is as follows: On impact of the

matching efficiency shock, the job filling probability Φv increases by about 0.1%,

thus the labor hiring costs decrease and the entrance barrier for outside firms is low-

ered. Consequently, the competitive pressure in the innovation race increases and

firms will demand more new technologies, which leads to an increase in technology

adoption effort Υ about 0.15%, an increase in research spending R of nearly 0.3%

and thus an increase in the stock of unadopted technologies U of about 0.075%.

The higher matching efficiency on the labor market leads to a medium-run decrease

in the number of unemployed (for a further discussion of the business cycle effects

of the matching efficiency shock see the appendix), thus with a declining shock

effect and an increase in the labor market tightness θt =
vt
ut
, the effect on the job

filling probability becomes negative after about 10 quarters and decreases by over

0.1% after 20 quarters, thus hiring cost increase again. However, on the other side

the higher existing stock of workers of the incumbents implies lesser overall need

for hiring and thus lesser future hiring costs. Consequently, the value of being the

incumbent M increases, in fact about nearly 0.5% after 10 quarters, and thus the

incentive for innovation remains above the steady state and declines only slowly

over 60 quarters, so the above average growth in TFP continues over this period of

time.

So what can be seen is that the size of the reaction of endogenous TFP to the

matching efficiency shock is relatively small in the short run and it needs time

until the effect becomes more sizable. This is because the technology adoption and

innovation effort might decrease immediately, but due to the process of technology

adoption, the long-run effect only kicks in over time. So a one standard deviation

shock to matching efficiency does not incur much fluctuation in the endogenous

TFP growth rate in the short run, but unfolds in the medium run. Consequently, if

one wants to have a look on the effect of the outward shift of the Beveridge Curve

on endogenous TFP during the Great Recession, one has to look at the longer-run

implications.

Furthermore, one has to keep in mind that the strong decrease in matching effi-

ciency during the Great Recession is unprecedented for the data sample at hand.

Figure 2.7 shows the smoothed matching efficiency shock series estimated using the

Kalman-filter from the model. The outward shift in the Beveridge Curve is visible

in the large negative shock to the matching efficiency between 2008 and 2010, where
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Figure 2.7: Historical simulation of the identified matching efficiency shock series
as implied by the model
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matching efficiency dropped by over 20%. The negative matching efficiency shock

during the Great Recession identified by the model matches the findings of Barlevy

(2011) and Sedláček (2014) in timing and size, suggesting that the estimated model

performs well in mimicking the events during the Great Recession. As it can be

seen, the sharp decline in matching efficiency during the Great Recession is strong

compared to its usual fluctuations. Consequently, also the effect of the matching

efficiency shock during the Great Recession is stronger than usual, because the

shocks itself were exceptionally large during this time, in fact so strong that the

Beveridge Curve shifted outwards visibly.

To assess the overall importance of matching efficiency shocks for technological

progress, a variance decomposition is performed. Define gqt = ln(λ)∆A, the trend

component of TFP growth, table 2.4 then shows the variance decomposition in

percent for the endogenous TFP growth rate, cyclical output Ỹ , unemployment u

and vacancies v. As becomes evident, overall the matching efficiency shock εf is

not responsible for most of the overall variance in the endogenous TFP growth rate,

as it only explains about nearly 9% of it. The most dominant contributor to the

variance in the endogenous TFP growth rate is the consumer preference shock εg,

which explains over 88% of it, while the influence of TFP and job destruction shocks

is negligible. Demand side shocks being decisive for endogenous TFP growth in the
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Table 2.4: Variance Decomposition (in Percent)

Variable εf εq εj εg

gqt 8.70 1.22 1.65 88.44
u 79.30 0.04 18.41 2.25
v 28.55 0.76 40.04 30.65

Ỹ 9.97 16.23 2.12 71.68

model above is, however, not surprising, as higher demand allows for higher profits

of the intermediate firms and thus a higher incentive to stay in or get into the market

with more innovations. Furthermore, in the appendix it is shown that the business

cycle itself is mostly demand-driven, thus as short-run shocks induce medium-run

fluctuations due to technology adoption, it is unsurprising that demand shocks are

also to a large extent responsible for fluctuations in technological progress. Looking

at the labor market, obviously the labor market related shocks explain most of the

variation in unemployment and vacancies, where matching efficiency shocks are very

influential for the variance of unemployment, explaining nearly 80% of it, while job

destruction shocks εj are the most influential factor for the variation in vacancies,

explaining about 40% of it. From the variance decomposition of cyclical output, it

becomes evident that matching efficiency shocks play an inferior role here, as most

of the variance in cyclical output is driven by the consumer preference shock and

the TFP shock.

The variance decomposition yields the unsurprising insight that the variance of

labor market variables is mostly influenced by labor market related shocks, while

cyclical output and endogenous TFP growth fluctuations are mostly influenced by

the demand side shock. However, figure 2.8 takes a closer look on the time between

2008 and 2012, showing the influence of the 4 structural shocks during the Great

Recession. The solid line shows the historical simulation for the percentage point

deviation of endogenous TFP growth from its steady state during the Great Re-

cession, the teal bars depict the influence of matching efficiency shocks, the yellow

bars the influence of consumer preference shocks and the red bars the impact of

job destruction shocks. The impact of TFP shocks (black bars) and the measure-

ment error (blue bars) is negligible. As becomes evident, despite being not a main

contributor to the overall variance of the endogenous TFP growth rate, the shock

decomposition shows that during the Great Recession the decline in matching ef-

ficiency was the main reason for the decline in endogenous TFP growth. So while

not being very influential during normal times, the outward shift of the Beveridge

Curve due to a sharp decline in matching efficiency was a main contributor for
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Figure 2.8: Shock decomposition for endogenous TFP growth during the Great
Recession
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the slowdown in endogenous TFP growth during the Great Recession. Performing

a counterfactual analysis, so calculating what TFP could have been without the

drop in matching efficiency, it turns out that in 2019 TFP is about 0.6% lower than

without the shock. Judging by the impulse responses in figure 2.6, where the new

long-run level is approximately reached after 60 quarters, one can expect the full

effect of the outward shift of the Beveridge Curve to fully materialize at least in

a few years from now on, thus the full long-run loss in TFP due to the negative

matching efficiency shock during the Great Recession is likely to be stronger.

2.5 Conclusion

The present paper reasons that the observed outward shift in the Beveridge Curve

during the Great Recession between 2008 and 2012 caused a slowdown in endoge-

nous TFP growth. It proposes a model, where search frictions in the labor market

impose an additional entry barrier to outside firms, who do not have any worker

stock yet and thus are structurally disadvantaged against incumbent firms in the

market. If the matching efficiency decreases and thus the Beveridge Curve shifts

out, the probability of filling a vacancy for firms decreases and it becomes more

costly for outsiders to hire a stock of workers. Firms are in Schumpeterian compe-
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tition for the spot as market incumbent, in consequence the additional labor hiring

costs for outside firms leave them less resources for innovation to attain a higher

quality than incumbents and replace them. The reduced innovative pressure on

the incumbents then gives them an incentive to reduce innovation spending as well

and overall technological progress decreases.

Estimating the model, it turns out that matching efficiency shocks are not an

important contributor to the variance of endogenous TFP growth during normal

times, but were a major reason for the decline in endogenous TFP growth during

the Great Recession. The reason why the effect was so strong during the Great

Recession is that the matching efficiency shock during the Great Recession was

exceptionally strong during this time, where matching efficiency dropped by over

20%. Comparing the TFP level in 2019 with its counterfactual without the strong

negative matching efficiency shock during the Great Recession, it turns out that the

loss has amassed to over 0.6%. The finding of permanent TFP losses due to negative

matching efficiency shocks gives rise to the possibility that labor market policy has

not only short-run, but also long-run consequences, as the economy can benefit in

the long run, if strong structural mismatches on the labor market like during the

Great Recession can be avoided. It thus cannot only avoid undesirable short-run

unemployment, but also yield long-run productivity gains. With the gain of labor

market policies being higher than anticipated by standard models, optimal labor

market policy is likely to be more aggressive against structural mismatches than

models excluding endogenous technological progress would predict. An interesting

avenue for future research thus would be to study optimal labor market policy in

a model including endogenous technological progress.

2.6 Appendix: Further derivations for section 2.3

2.6.1 Detrended form of the model

In order to perform a linear approximation around the steady state for the model, it

has to be detrended. Notice that qt = λAt−1exp(et). So the TFP level is driven by a

growing trend component qtt−1 = λAt−1 and a stationary business cycle component

qct = exp(et). On the balanced growth path, all growing variables grow at the rate

of the trend TFP growth rate. To eliminate the trend, every growing variable has

to be divided by qtt−1, which yields a stationary model in detrended form. Variables

growing on the balanced growth path are: the real wage wt, the marginal revenue

product of labor Θt, unemployment benefits bt, R&D spending Xt, the price for new
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unadopted goods pRt , the license price p
U
t , adoption effort Υt, the price for adopted

technologies pAt , aggregate output Yt, intermediate good output zt, physical capital

Kt, vacancy posting costs ςt, expected lifetime firm profits Mt, consumption Ct

and investment It. All other variables are stationary on the balanced growth path.

Detrended variables are denoted by a tilde, so the detrended form model equations

read (where gqtt =
qti,t−qti,t−1

qti,t−1
):

Φv(θt) = µt

(
1

θt

)ξ

(2.85)

θt =
vt
ut

(2.86)

µt = µ̄ exp(ft) (2.87)

ft = ρfft−1 + εft (2.88)

w̃t = τΘ̃t + (1− τ)b̃t (2.89)

Θ̃t = pzt exp(et) (2.90)

b̃t = (1− ω)w̃t (2.91)

Rt = χ

(
X̃t

exp(et)

)1−κ

(2.92)

(1− κ)χ
p̃Rt

exp(et)
=

(
X̃t

exp(et)

)κ

(2.93)

Ut = (1− δU)Ut−1 +Rt −∆A
t (2.94)

p̃Rt = EtΛt,t+1p̃U t+1(1 + gqtt ) (2.95)

Λt,t+1 = Et
1

1 + rKt+1 − δK
(2.96)

∆A
t = γ

(
Υ̃t

exp(et)

)1−φ

Ut−1 (2.97)

p̃At

exp(et)
(1− φ)γUt−1 =

(
Υ̃t

exp(et)

)φ

(2.98)

p̃Atγ

(
Υ̃t

exp(et)

)1−φ

= p̃U t (2.99)

Ỹt =
1

1− α
z̃1−α
t K̃α

t−1 (2.100)

z̃t = (pzt )
− 1

α K̃t−1 (2.101)

rKt =
α

1− α
z̃1−α
t K̃α−1

t−1 (2.102)
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z̃t = exp(et)nt (2.103)

et = ρqet−1 + εqt (2.104)

ς̃t
exp(et)

= ς̄ (2.105)

δjt = δ̄jexp(dt) (2.106)

dt = ρjdt−1 + εjt (2.107)

nt = (1− δjt )nt−1 + Φv(θt)vt (2.108)

pzt =
1

1− α

[
w̃t

exp(et)
+

ς̄

Φv(θt)
− EtΛt,t+1(1− δjt+1)

ς̄

Φv(θt+1)
(1 + gqt+1)

]
(2.109)

gqtt =
qti,t − qti,t−1

qti,t−1

≈ ln(λ)∆A
t (2.110)

∆A
t =

EtΛt,t+1(1 + gqtt )

(
M̃t − ς̄exp(et)

(1−δjt+1)nt

Φv(θt+1)

)

p̃At

(2.111)

M̃t = pzt z̃t − w̃tnt − ς̄exp(et)vt − p̃At∆
A
t + EtΛt,t+1M̃t+1(1 + gqtt ) (2.112)

K̃t(1 + gqtt ) = (1− δK)K̃t−1 + Ĩt (2.113)

ut + nt = 1 (2.114)

C̃−1
t = Etβ

exp(gt+1)

exp(gt)

1 + rKt+1 − δK

1 + gqtt
C̃−1

t+1 (2.115)

gt = ρggt−1 + εgt (2.116)

Ỹt = C̃t + Ĩt (2.117)

The detrended model above then can be approximated linearly using Dynare. The

next section derives the steady state of the model and discusses its stability and

uniqueness.

2.6.2 Steady state of the detrended form model

For the detrended form model derived in the previous section there exists a steady

state determined by the following conditions (asterisks denote steady state values),

calculated by dropping time indices:

Φv(θ∗) = µ∗
(

1

θ∗

)ξ

(2.118)

θ∗ =
v∗

u∗ (2.119)

µ∗ = µ̄ (2.120)
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f ∗ = 0 (2.121)

w̃∗ = τΘ̃∗ + (1− τ)b̃∗ (2.122)

Θ̃∗ = pz∗ (2.123)

b̃∗ = (1− ω)w̃∗ (2.124)

R∗ = χ
(
X̃∗
)1−κ

(2.125)

(1− κ)χ ˜pR∗ =
(
X̃∗
)κ

(2.126)

U∗ =
R∗ −∆A∗

δU
(2.127)

˜pR∗ = Λ∗ ˜pU∗(1 + gqt∗) (2.128)

Λ∗ =
1

1 + rK∗ − δK
(2.129)

∆A∗ = γ
(
Υ̃∗
)1−φ

U∗ (2.130)

˜pA∗(1− φ)γU∗ =
(
Υ̃∗
)φ

(2.131)

˜pA∗γ (Υ∗)1−φ = ˜pU∗ (2.132)

Ỹ ∗ =
1

1− α
(z̃∗)1−α(K̃∗)α (2.133)

z̃∗ = (pz∗)−
1
α K̃∗ (2.134)

rK∗ =
α

1− α
(z̃∗)1−α(K̃∗)α−1 (2.135)

z̃∗ = n∗ (2.136)

e∗ = 0 (2.137)

ς̃∗ = ς̄ (2.138)

δj∗ = δ̄j (2.139)

d∗ = 0 (2.140)

n∗ =
Φv(θ∗)v∗

δj∗
(2.141)

pz∗ =
1

1− α

[
w̃∗ +

ς̄

Φv(θ∗)
− Λ∗(1− δj∗)

ς̄

Φv(θ∗)
(1 + gqt∗)

]
(2.142)

gqt∗ ≈ ln(λ)∆A∗ (2.143)

∆A∗ =
Λ∗(1 + gqt∗)

(
M̃∗ − ς̄ (1−δj∗)n∗

Φv(θ∗)

)

˜pA∗
(2.144)

M̃∗ = pz∗z̃∗ − w̃∗n∗ − ς̄v∗ − ˜pA∗∆A∗ + Λ∗(1 + gqt∗)M̃∗ (2.145)

Ĩ∗ = (gqt∗ + δK)K̃∗ (2.146)

n∗ = 1− u∗ (2.147)
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β =
1 + gqt∗

1 + rK∗ − δK
(2.148)

g∗ = 0 (2.149)

Ỹ ∗ = C̃∗ + Ĩ∗ (2.150)

There are 9 forward looking variables and 9 eigenvalues larger than 1 in modulus, so

the Blanchard-Kahn conditions are fulfilled and a unique and stable steady state for

the detrended model exists. The detrended model can thus be analyzed using stan-

dard perturbation methods and the Dynare software. The long-run implications

can be retrieved by integrating over the TFP growth rate.

2.6.3 Recalculation of TFP growth in contrast to Fernald (2012-2019)

The TFP growth series calculated by Fernald (2012-2019) is defined as the residual

between output and input growth. He assumes a production function with capital

and labor augmenting technological progress of the form (variable definitions as

before)

Yt = qFernald
t Kα

t−1n
1−α
t (2.151)

and by taking logs and first differences

ln(Yt)−ln(Yt−1) = α (ln(Kt−1)− ln(Kt−2))+(1−α) (ln(nt)− ln(nt−1))+gq,Fernald
t

⇔ gq,Fernald
t = ln(Yt)−ln(Yt−1)−α (ln(Kt−1)− ln(Kt−2))−(1−α) (ln(nt)− ln(nt−1)) .

(2.152)

However, the model in this paper assumes purely labor augmenting technological

progress, so the production function reads

Yt =
1

1− α
Kα

t−1 (qtnt)
1−α , (2.153)

thus by taking logs and first differences

ln(Yt)− ln(Yt−1) = α (ln(Kt−1)− ln(Kt−2)) + (1− α) (ln(nt)− ln(nt−1) + gqt )

⇔ (1−α)gqt = ln(Yt)−ln(Yt−1)−α (ln(Kt−1)− ln(Kt−2))−(1−α) (ln(nt)− ln(nt−1))

(2.154)

and thus

gqt =
1

1− α
gq,Fernald
t . (2.155)
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In order to make the observed TFP series fitting to the model implied TFP series,

the data series of Fernald (2012-2019) is multiplied with 1
1−α

. In fact Fernald (2012-

2019) also provides data on the capital share αt for each observation period, which

is used to recalculate the TFP series before estimating the parameter α from the

model, which is assumed to be constant and not time-varying. The recalculation of

the TFP growth rate does not have strong implications for the estimated parame-

ters, shocks and impulse responses, but mainly affects the scaling parameters. In

consequence, the main implications of the paper are unaffected by the changes in

the TFP growth calculation.

2.7 Appendix: Computational details

In order to make the computation more robust and less dependent on initial values

for numerical solver routines, the steady state system of equations can be reduced

to two equations in the two unknowns u∗ and Υ̃∗. The two steady state conditions

then read

Υ̃∗ − β(1− φ)

[
M̃∗ − ς(1− δ̄j)(1− u∗)

µ̄
(
u∗
v∗
)ξ

]
!
= 0 (2.156)

(
1 + ln(λ)γ(Υ̃∗)1−φU∗

β
− 1 + δK

)
−
(

α

1− α
(1− u∗)1−α(K̃∗)α−1

)
!
= 0, (2.157)

with

v∗ =

(
δ̄j(1− u∗)

µ̄(u∗)ξ

) 1
1−ξ

(2.158)

pz∗ =

(
1− β(1− δ̄j)

1− α

)
1

1−
(

τ
(1−α)(1−(1−τ)(1−ω))

) ς

µ̄
(
u∗
v∗
)ξ (2.159)

K̃∗ = (1− u∗)(pz∗)
1
α (2.160)

U∗ =
(
1 +

γ

δU
(Υ̃∗)1−φ

)−κ ( χ

δU

)κ
(
(1− κ)χβΥ̃∗

1− φ

)1−κ

(2.161)

M∗ =
1

1− β

[(
1−

(
τ

1− (1− τ)(1− ω)

))
pz∗(1− u∗)− ςv∗ − Υ̃∗

1− φ

]
. (2.162)

This system of equations can then be solved using the fsolve routine of Matlab,

which uses a trust-region dogleg algorithm, a variant of the Powell dogleg method,

by default to find a numerical solution for u∗ and Υ̃∗. The remaining variables that
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are non-zero or given by a parameter are then found by reinserting u∗, Υ̃∗, v∗, pz∗,

K̃∗, U∗ and M∗ in the following equations

Φv∗ = µ̄

(
u∗

v∗

)ξ

(2.163)

θ∗ =
v∗

u∗ (2.164)

w̃∗ =
τ

1− (1− τ)(1− ω)
pz∗ (2.165)

Θ̃∗ = pz∗ (2.166)

b̃∗ = (1− ω)w̃∗ (2.167)

˜pU∗ =
Υ̃∗

(1− φ)U∗ (2.168)

X̃∗ =
[
(1− κ)χβ ˜pU∗

] 1
κ

(2.169)

R∗ = χ(X̃∗)1−κ (2.170)

˜pR∗ = β ˜pU∗ (2.171)

rK∗ =
α

1− α
(1− u∗)1−α(K̃∗)α−1 (2.172)

Λ∗ =
1

1 + rK∗ − δK
(2.173)

∆A∗ = γ(Υ̃∗)1−φU∗ (2.174)

˜pA∗ =
˜pU∗

γ(Υ̃∗)1−φ
(2.175)

Ỹ ∗ =
1

1− α
(1− u∗)1−α(K̃∗)α (2.176)

z̃∗ = 1− u∗ (2.177)

n∗ = z̃∗ (2.178)

gqt∗ = ln(λ)∆A∗ (2.179)

Ĩ∗ = (gqt∗ + δK)K̃∗ (2.180)

C̃∗ = Ỹ ∗ − Ĩ∗. (2.181)

These results are passed on to the Dynare steady state file. For the Bayesian

estimation, the Monte-Carlo based optimization routine (mode compute = 6 in

Adjemian et al. (2011)) is used.
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2.8 Appendix: Business cycle effects of the matching effi-

ciency shock

The main body of this paper investigates the long-run consequences of matching

efficiency shocks that are so far not considered by the related literature. In order to

check on the plausibility of the model implications regarding the identified match-

ing efficiency shock, its short-run business cycle effects on variables like output,

consumption, investment, wages, unemployment and vacancies are discussed. As

a first step, table 2.5 summarizes the variance decomposition for these variables

regarding the four structural shocks considered in the model. As it becomes evi-

Table 2.5: Variance Decomposition (in Percent)

Variable εf εq εj εg

u 79.30 0.04 18.41 2.25
v 28.55 0.76 40.04 30.65
w̃ 0.51 20.87 0.17 78.44

Ỹ 9.97 16.23 2.12 71.68

Ĩ 0.06 0.15 0.03 99.76

C̃ 0.22 0.33 0.04 99.42

dent, the matching efficiency shock is overall not responsible for the major part of

the variance in real wages, output, consumption and investment. In fact, business

cycle fluctuations of these variables seem to be demand driven, as the consumer

preference shock is able to explain the variance in consumption and investment

almost on its own and, together with the TFP shock, the bulk of the variance in

output and real wages. Unsurprisingly however, matching efficiency shocks have

a much stronger effect on vacancies and unemployment. Regarding vacancies, the

matching efficiency shock explains like consumer preference shocks about 30% of

the variance, falling behind job destruction shocks that explain about 40%. For

the unemployment rate, matching efficiency shocks explain about 80% of the vari-

ance, while the influence of TFP and consumer preference shocks seems to be

negligible. Summing up and in line with a common view of the business cycle, fluc-

tuations in output, wages, investment and consumption are mainly demand-driven

(see Beaudry and Portier (2014) for a discussion), while matching efficiency shocks

are mainly influential concerning labor market variables like unemployment and

firm vacancies.

In the analysis of business cycle effects, it is common to evaluate the impulse re-

sponses of the detrended, ”cyclical” part of variables like output, investment, real
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wages or consumption, where the term ”cyclical” refers to high frequency fluctu-

ations. The relevant counterparts from the detrended model are Ỹ , Ĩ, W̃ and C̃.

Figure 2.9 shows the impulse responses of these variables, unemployment rate and

vacancy rate to a matching efficiency shock of size one standard-deviation. In con-

Figure 2.9: Impulse responses of unemployment, vacancies, detrended wages, de-
trended output, detrended investment and detrended consumption to a 1 standard
deviation shock in matching efficiency as implied by the estimated model. The
dashed lines give the 90% credible interval based on the highest posterior density
interval (HPDI).
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sequence of a matching efficiency shock, the unemployment rate decreases about

4% on impact and about 9% within the first 5 quarters. After that, the unem-

ployment rate slowly returns back to its mean. Higher matching efficiency means

that the probability of finding a job for an unemployed increases, thus aggregate

unemployment decreases. After the shock effect on the job finding probability gets

weaker, the exogenous job destruction gets stronger than the additional job creation

and unemployment slowly returns back to its steady state level. The exogenously

higher matching efficiency also increases the job filling probability for the firms

and thus reduces their hiring costs. Consequently, vacancies increase by about 6%

on impact, but return back to their steady state within 10 quarters as the shock

effect on the job filling probability declines again. Regarding wages, the decline in

hiring cost in consequence of the matching efficiency shock implies a decrease in the

price markup for intermediate goods on impact and thus a lower marginal revenue
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product of labor, which implies a decline of the real wage of about 0.05%. As the

job filling probability begins to decline again and hiring costs increase, the price

markup and marginal revenue product increase, so wages start to increase again.

As the economy is growing faster in the medium run, the stochastic discounting

factor Λt,t+1 decreases and the expected future value of existing jobs decreases.

Firms will compensate the loss in job value with a higher intermediate goods price,

thus the marginal revenue product of labor and wages overshoot the steady state,

before slowly returning back to it again. On the other side, the decrease in unem-

ployment leads to an increase in household income and demand, thus output and

consumption increase about 0.2% on impact and slowly return back to the steady

state over more than 40 quarters. The increase in intermediate good production

increases the marginal return to capital and thus the capital rental rate, thus in-

vestment increases about 0.2% on impact and about 0.6% after 5 quarters before

slowly returning back to its steady state.

In summary, the matching efficiency shock leads to a business cycle boom with in-

creasing output, investment and consumption, as well as decreasing unemployment.

These results are consistent with the findings in Furlanetto and Groshenny (2016).

However, a typical feature of business cycles is also comovement in real wages, while

after a positive matching efficiency shock real wages first decline. Consequently and

in line with the findings of the variance decomposition, matching efficiency shocks

are unlikely to be the major driver of the business cycle. However, as the main

body of the paper showed, the huge negative matching efficiency shock during the

Great Recession was a strong contributor to the decline in endogenous TFP growth

at this time.
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3 The long-run consequences of changes in the

inflation target

3.1 Introduction

After most central banks hit the Zero Lower Bound during the Great Recession,

there was a discussion about if the target inflation rate and thus long-run average

inflation should be raised, in order to attain a higher average nominal interest

rate (given the Fisher equation I = r + π, with I the nominal interest rate, r

the real interest rate and π the inflation rate and given the classical assumption

that the real interest rate is not affected by nominal quantities in the long run,

the average nominal interest rate is directly proportional to the long-run average

inflation rate) and give central banks more space for monetary policy before they

encounter the Zero Lower Bound1. However, for instance Coibion et al. (2012)

show that in standard business cycle models, from a welfare optimization point of

view, the optimal inflation target remains low, even if it means that the economy

hits the Zero Lower Bound more often (in fact they show that the welfare costs of

high positive average inflation itself are higher than the welfare costs incurred by

an overall unlikely event like an encounter with the Zero Lower Bound).

In light of the recent work by Moran and Queralto (2018) or Bianchi et al. (2019),

who study the influence of monetary policy shocks on technological progress in a

Newkeynesian model with endogenous growth and find that a negative monetary

policy shock leads to an increase in longer-run technological progress, the present

paper adds another layer to the discussion about higher inflation targets by studying

their long-run consequences. While both, negative monetary policy and positive

inflation target shocks, are considered to be expansionary monetary policy, inflation

target shocks discern from classical monetary policy shocks, as a positive inflation

target shock implies increasing inflation and nominal interest rates at the same

time, while a classical negative monetary policy shock implies decreasing nominal

interest rates and increasing inflation. Another difference assumed in the present

paper is that exogenous deviations from the policy rule of the central bank can only

be attributed to a monetary policy shock in the very short run. If the central bank

deviates from its rule for a longer time, it has to be an exogenous change in their

policy target and not just short-run ”craziness”. Thus, the findings of Moran and

Queralto (2018) or Bianchi et al. (2019) regarding monetary policy shocks are not

1for the discussion see Blanchard et al. (2010) or Ascari and Sbordone (2014) for a survey

51



automatically valid for inflation target shocks as well. In order to study the long-run

consequences of inflation target shocks, the present paper proposes a Newkeynesian

model featuring endogenous TFP growth via R&D and technology adoption as in

Comin and Gertler (2006), intermediate firms subject to quadratic price adjustment

costs as in Rotemberg (1982) and a central bank following a Taylor Rule with a

fluctuating inflation target as in Ireland (2007). The model is then estimated using

Bayesian methods. It turns out that permanently increasing the inflation target

about 5%, which would have been required to avoid the Zero Lower Bound during

the Great Recession2, reduces TFP permanently by over 0.05%. If the inflation

target shock is only transitory, TFP recovers in the medium run. However, using

transitory inflation target shocks to defend against the Zero Lower Bound would

require to predict an encounter with it beforehand, which might not be an easy

task and renders inflation target policy a difficult instrument to hedge against the

Zero Lower Bound.

The mechanism is as follows: If the inflation target increases exogenously, expected

and thus also current inflation increases. The central bank does not counteract

the inflationary pressure and in response increases the nominal interest rate by

less than the increase in the inflation rate in order to reduce the real interest rate,

which leads to an increase in demand and thus again a higher inflation rate. Inter-

mediate goods firms, who are monopolistic suppliers of their respective intermediate

good, are subject to nominal rigidities and the upcoming inflation then, as common

in Newkeynesian models, reduces their price markup. Furthermore, intermediate

good firms are in Schumpeterian competition with outside firms for the position

as incumbent, who is the only firm actually producing and selling the respective

intermediate good and where only the firm with the highest attained quality can

be the market incumbent in the next period of time. To attain a higher quality,

firms have to invest in new technologies, which are invented by the R&D sector

and subsequently adopted by the technology adopter. Under free entry to the in-

novation competition for next period’s market incumbent, firms will have to spend

the expected discounted value of being the market incumbent for their innovation

investment, as spending more yields a negative intertemporal value of participating

in the innovation contest, while spending less is a guaranteed loss where the firm

invests in technology without getting the position as incumbent, thus not partic-

2Blanchard et al. (2010) state that the FED would have liked to reduce the FFR about addi-
tional 2-5% during the Great Recession. From the model, a permanent one standard deviation
shock to the inflation target would induce a 5% higher nominal interest rate, which is in the
aforementioned range and is thus taken as the reference interest rate increase in the present
paper.
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ipating in the contest is a better option in this case. The reduction in the price

markup following the sudden increase in the inflation rate reduces future expected

sales revenues for the intermediate firms and makes it less attractive for both in-

cumbents and outside competitors to participate in the innovation contest. Thus,

the overall technological progress is slowed down and TFP growth is lower than

without the inflation target shock. If the central bank reverts back to its previous

inflation target, this induces a period of slow disinflation, marginally lower wages,

a slight increase in the price markup and thus an increase in the future value of

becoming the incumbent. The higher innovation incentive during this time leads to

a long-run recovery of the initial negative TFP effect of the inflation target shock.

However, if the inflation target shock is permanent, average inflation will be higher

permanently and thus the recovery period will not take place. Consequently, a

permanent increase in the inflation target might help to hedge against the event

of hitting the Zero Lower Bound, but comes with a long-run cost in form of a

permanent reduction in TFP.

How does this paper fit into the related literature? There is a vast amount of papers

finding a negative effect of inflation on subsequent economic growth within and

across countries3, which supports the present paper’s prediction that permanent

positive inflation target shocks create higher average inflation and a medium-run

decrease in TFP growth. Despite the empirical evidence being quite clear, there is

still an ongoing debate about the exact transmission channel behind this finding.

For instance Annicchiarico et al. (2011) and Annicchiarico and Rossi (2013) argue

that higher inflation volatility increases uncertainty and reduces investment, which

in an AK-type model leads to lower growth. Chu et al. (2015) argue that R&D

is subject to a cash-in-advance constraint, where inflation decreases the real value

of cash and thus the R&D level, which in turn decreases technological progress.

Additionally, recent research hints that a higher nominal interest rate is associated

with a slowdown in R&D, which is another prediction of the present paper’s model.

For example Chu and Cozzi (2014) find an increasing nominal interest rate to be

connected with decreasing R&D effort in a model with a cash-in-advance constraint

on R&D. What sets apart traditional monetary policy shocks and inflation target

shocks is that in consequence of an increase in the nominal interest rate the former

leads to a decrease in the inflation rate, while the latter leads to an increase. The

present paper is also closely related to Moran and Queralto (2018) and Bianchi

et al. (2019), who find that a monetary policy shock (so an exogenous increase in

3see Bick (2010), Bruno and Easterly (1996), Bruno and Easterly (1998), Kremer et al. (2013),
Vaona and Schiavo (2007) or Omay and Kan (2010)
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the nominal interest rate without affecting the inflation target) is associated with

lower TFP growth, as the higher discounting on future profits and lower overall

demand reduces the incentive of current research. However, their approach is not

able to explain the negative relation between inflation and economic growth, in fact

it predicts a positive relation. An inflation target shock also leads to an increase in

the nominal interest rate and a decrease in the TFP growth rate, however associated

with increasing inflation. Thus, the model proposed in the present paper is able to

capture both of the two empirical observations: First a monetary policy shock and

an inflation target shock will induce an increasing nominal interest rate, where in

both cases TFP growth will decline. Second a long-run increase in the inflation rate

following an inflation target shock will lead to a long-run loss in TFP and income.

Furthermore, the present paper is loosely related to the recent literature around

Anzoategui et al. (2019), Benigno and Fornaro (2017) and Guerron-Quintana and

Jinnai (2019), who introduce endogenous growth induced by R&D and technology

adoption into standard business cycle models and Garga and Singh (2021), who

discuss optimal monetary policy including TFP growth as an additional objective.

The present paper is complementary to this literature by additionally analyzing the

effect of inflation target shocks, as discussed by for instance Smets and Wouters

(2003) and Ireland (2007), on technological progress. The papers mentioned above

rely on technology adoption as a mechanism to propagate short-run shock effects

to the medium run and thus create a sluggish reaction of productivity to high-

frequency shocks. The present paper also uses this mechanism to create sluggish

and highly persistent reactions of TFP to monetary policy and inflation target

shocks.

The remainder of this paper proceeds as follows: Section 2 presents the model and

discusses the main mechanisms that drive the results mentioned earlier. In section

3 the model is estimated using Bayesian methods and the resulting model impulse

responses of TFP and related variables to temporary and permanent inflation target

shocks are analyzed. Section 4 concludes.

3.2 The model

The model proposed here features a central bank following a Taylor Rule with a

fluctuating inflation target as in Smets and Wouters (2003) and Ireland (2007).

Furthermore, trend TFP growth is endogenous following a quality ladder as in

Grossman and Helpman (1991). Endogenous growth models either use models of
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vertical growth, as implied by the quality ladder assumption for the model at hand,

or horizontal growth, like in love for variety models. However, horizontal growth

models typically imply a growing number of firms, where each firm comes into ex-

istence with a newly created patent. The increasing number of firms then leads to

increasing competition between the firms and thus constantly decreasing intermedi-

ate goods prices. For the purpose of the model here, this is an undesirable feature,

as imposing quadratic price adjustment costs on constantly decreasing goods prices

with at the same time constant aggregate inflation yields positive price adjustment

costs in the steady state, which makes the analysis more cumbersome. Moran and

Queralto (2018) solve this problem by moving away price rigidity from interme-

diate goods producers to a retail sector, thus the nominal price for final goods is

moved away from the growing firm number. However, this is again undesirable as it

also moves away the markup reduction effect inflation has in Newkeynesian models

from the intermediate firms, which is later shown to have an important effect on

the innovation decision of the firms. For technological progress itself, both types of

growth models have similar implications. Thus, the assumption of vertical growth

is without loss of generality for that matter, but allows to impose an otherwise

standard Newkeynesian model.

Intermediate goods firms are in Schumpeterian competition for the position in the

market, where only the firms with the highest quality can be the incumbents4. In

this setup, the competition for the place as incumbent producer is crucial for the

innovation decision of the firms5. New technologies are produced by an R&D sector

and subsequently adopted for usage in production by a technology adopter as in

Comin and Gertler (2006), Benigno and Fornaro (2017) or Anzoategui et al. (2019).

Each period there is a given incumbent, who in this period can produce and sell its

respective intermediate good. But in each period there is also competition for the

spot as market incumbent in the next period between the current incumbent and

outside firms, where this spot is attained by the firm that invests the highest amount

into new technologies compared to its competitors. Free entry to the innovation race

dictates that the winning firm has to invest the expected discounted value of being

next period’s incumbent into new technologies. Investing less means that another

firm can invest more and make positive intertemporal profits from becoming next

period’s incumbent, while investing more yields a negative intertemporal value of

competing in the innovation race, thus not participating is a better option.

4see Olley and Pakes (1996)
5evidence for this found by Arrow (1962), Blundell et al. (1995) and Nickell (1996)

55



All intermediate firms are subject to quadratic price adjustment costs, as proposed

by Rotemberg (1982), with indexation to a mix of the current inflation target and

past inflation, as in Ireland (2007). As usual, upcoming inflation in this type of

model reduces price markups and thus the expected discounted value of being next

period’s incumbent. Consequently, all firms have a lower incentive to participate

in the innovation race and equilibrium innovation investment and technological

progress will decrease in response to an inflation target shock.

3.2.1 Central bank

The central bank reacts to deviations of inflation from its target level and to devi-

ations of employment6 from its steady state level by following a Taylor Rule of the

form

rt = r̄

(
πt

πT
t

)ωπ (nt

n̄

)ωn

exp(εrt ), ωπ > 0, ωn > 0, (3.1)

where rt is the real interest rate, r̄ is the steady state level of the real interest rate,

πt is the inflation rate, πT
t is the target inflation rate, nt is employment, n̄ is steady

state employment and εrt is an exogenous i.i.d. shock to the interest rate that will

be called a monetary policy shock for convenience. The target inflation rate follows

πT
t = π̄T exp(ft), π̄T ≥ 0, (3.2)

where π̄T
t is the steady state inflation target and ft are fluctuations of the central

bank’s inflation target. To distinguish monetary policy shocks from inflation target

shocks, the modeling follows Smets and Wouters (2003) and assumes that monetary

policy shocks are non-persistent, while inflation target shocks are persistent by

assuming

ft = ρfft−1 + επt , ρf ∈ (0, 1), (3.3)

with επt an exogenous i.i.d. shock to the inflation target. Assuming that a monetary

policy shock is a one-time event is just for convenience and not necessary for the

model mechanism at hand. What is important is that the persistence of the mon-

etary policy shock is lower than the speed of intermediate firms in implementing

new technologies into their production process. For instance Bilbiie et al. (2012)

assume a time-to-build lag for a new technology to be embodied within a firm. The

model mechanism requires monetary policy shocks to have a lower persistence than

6where in this model employment also coincides with detrended output, see the appendix for
the derivation.
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this time-to-build lag. The intuition is as follows: As described in the introductory

passage of the modeling section, positive inflation target shocks affect technologi-

cal progress by decreasing the expected future intermediate price markups, which

reduces technological progress. Moran and Queralto (2018) mute this markup ef-

fect by moving away the price rigidity to another sector, so a higher interest rate

decreases demand and increases discounting of expected future profits, thus firms

have a lower incentive to participate in the innovation contest. This allows them

to have a clear negative effect of a positive monetary policy shock on technological

progress. If there is a time-to-build lag, firms will not base their innovation deci-

sion on the expected value of winning the innovation contest for the next period,

but on the expected value of being the incumbent after the time-to-build lag has

passed. Thus, assuming that the monetary policy shock has a lower persistence

than the speed of intermediate firms in implementing new ideas, essentially mutes

the markup effect of monetary policy shocks regarding the innovation decision as

well. Higher inflation induced by an inflation target shock for that matter will

persistently reduce future price markups and lower the incentive to participate in

the innovation contest.

3.2.2 R&D sector

The R&D sector produces new unadopted ideas Rt according to the production

function

Rt = χ

(
Xt

qt

)1−κ

Uµx

t−1, χ > 0, κ ∈ (0, 1), µx ∈ (0, 1), (3.4)

where Xt is real R&D spending and qt is the aggregate TFP level. The R&D spend-

ing is deflated by the TFP level to ensure the existence of a balanced growth path

and resembles the idea that it becomes more difficult for advanced economies to

push forward their innovation frontier7. As the economy grows, the means to spend

on research increase and without any counteracting force, research spending and

ultimately technological progress would explode. For instance Comin and Gertler

(2006) impose that there is a congestion externality, where the aggregate amount

of research spending decreases the productivity of individual research spending.

Anzoategui et al. (2019) see the congesting factor in the provision of skilled labor,

where higher employment of skilled labor reduces the productivity of each skilled

worker within the research process. All of these variables are ultimately correlated

7empirical evidence for the real world existence of this mechanism is provided by Griliches
(1990)
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with aggregate productivity and as the present paper wants to stay agnostic about

the exact research process, aggregate productivity is used as a proxy for whatever

might reduce the productivity of research spending along the balanced growth path.

Furthermore, following Romer (1990) and Moran and Queralto (2018), there is a

spillover from the total stock of ideas Ut−1 such that more existing ideas benefit

the research of new ideas.

The R&D sector sells new unadopted ideas Rt to the licenser at competitive price

pRt , so the maximization problem reads

max
Xt

Γt = pRt Rt −Xt (3.5)

subject to (3.4), which yields the first order condition

pRt
qt

χ(1− κ)Uµx

t−1 =

(
Xt

qt

)κ

, (3.6)

so the real spending on R&D depends positively on the price of new unadopted

ideas and the stock of unadopted ideas.

3.2.3 Licenser

The licenser accumulates a stock of unadopted ideas Ut by buying new unadopted

ideas Rt from the R&D sector and sells licenses for technology adoption to the

technology adopters at competitive price pUt that may result in ∆A
t of the unadopted

ideas becoming adopted. So the stock of unadopted ideas evolves according to

Ut = (1− δU)Ut−1 +Rt −∆A
t , δU ∈ (0, 1), (3.7)

where δU is the obsolescence rate of unadopted ideas. Thus, the optimization

problem of the licenser reads

max
Rt

Et

∞∑

s=0

Λt,t+sΞt+s = Et

∞∑

s=0

Λt,t+s

(
pUt+sUt+s−1 − pRt+sRt+s

)
, (3.8)

with Et the expectation operator and Λt,t+s the stochastic discount factor between

periods t and t+s, which is subject to (3.7). Consequently, the first order condition

of the licenser reads

pRt = EtΛt,t+1p
U
t+1 (3.9)
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such that the expected discounted license price equals the current price of new

unadopted ideas.

3.2.4 Technology adopter

The technology adopter buys a license for the usage of an unadopted idea in the

adoption process from the licenser at price pUt . The success probability for adopting

an unadopted idea and thus the speed of diffusion between unadopted and adopted

technologies is given by ϕ(Υt) =
(

Υt

qt

)1−ξ

, where Υt is real adoption effort, which

is also deflated by the current TFP level to ensure the existence of a balanced

growth path, resembling the idea that it becomes more and more difficult to adopt

new technologies for advanced economies. Again, as the economy grows there are

more and more means to spend on technology adoption, thus the effectiveness

of adoption spending has to decrease along the balanced growth path to ensure

stability. Consequently, new adopted technologies ∆A
t per period are given by

∆A
t =

(
Υt

qt

)1−ξ

Ut−1, ξ ∈ (0, 1). (3.10)

The technology adopter sells newly adopted ideas to the intermediate goods firms

at competitive price pAt , so its optimization problem reads

max
Υt,Ut−1

Ωt = pAt ∆
A
t − pUt Ut−1 −Υt (3.11)

and thus the first order conditions are

pAt
qt
(1− ξ)Ut−1 =

(
Υt

qt

)ξ

(3.12)

pAt

(
Υt

qt

)1−ξ

= pUt . (3.13)

Equation (3.12) gives the optimal input relation between adoption effort and un-

adopted ideas at a given price pAt , where a higher ratio of adoption spending com-

pared to the stock of unadopted ideas has to be associated with a higher price for

adopted technologies. Equation (3.13) gives the optimal adoption effort depend-

ing on the price ratio between unadopted and adopted technologies, where with a

higher price of unadopted ideas in relation to adopted ideas the technology adopter

will choose to increase the adoption rate rather than to acquire new unadopted

ideas.
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3.2.5 Final goods producer

The final goods sector follows the standard Blanchard and Kiyotaki (1987) ap-

proach. There is a continuum of intermediate goods firms of mass 1, each selling a

unique intermediate good to the final goods producer, who uses them to produce a

single final good, which is sold at price Pt to the households. The price aggregate

reads

Pt =

(∫ 1

0

p1−ε
i,t di

) 1
1−ε

, ε > 0, (3.14)

where pi,t is the price of intermediate good i. The final good is produced subject

to a CES aggregate of the form

Yt =

(∫ 1

0

y
ε−1
ε

i,t di

) ε
ε−1

, (3.15)

so the optimization problem of the final goods producer reads

Df
t =

(∫ 1

0

p1−ε
i,t di

) 1
1−ε
(∫ 1

0

y
ε−1
ε

i,t di

) ε
ε−1

−
∫ 1

0

pi,tyi,tdi (3.16)

and thus the first order condition is

yi,t =

(
pi,t
Pt

)−ε

Yt (3.17)

such that the demand for intermediate good yi,t is negatively dependent on its

real price
pi,t
Pt
, where ε parameterizes the price elasticity of demand, and positively

dependent on the aggregate income level.

3.2.6 Intermediate goods producer

Each intermediate good firm i produces a differentiated intermediate good under

the production function

yi,t = qi,tni,t, (3.18)

where ni,t is the labor input and qi,t the productivity level of firm i. The individual

productivity level follows a quality ladder, as in Grossman and Helpman (1991), of

the form

qi,t = λAi,t−1exp(et), λ > 1, (3.19)
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where Ai,t−1 is the stock of adopted technologies accumulated by firm i, where the

stock of adopted technologies follows the law of motion

Ai,t = Ai,t−1 +∆A
i,t (3.20)

and et are exogenous fluctuations of the aggregate productivity level following the

autoregressive law of motion

et = ρeet−1 + εqt , ρe ∈ (0, 1), (3.21)

where εqt is an i.i.d. aggregate TFP shock.

Intermediate firms are monopolistic suppliers of their respective intermediate good

yi,t and sell it at price pi,t. For production, they hire labor at real wage Wt and

spend pAt ∆
A
i,t units on productivity enhancements that lead to a higher productivity

level in the future. Furthermore, the intermediate firms are subject to quadratic

price adjustment costs following Rotemberg (1982). As in Ireland (2007), price ad-

justment costs with an indexation to past inflation and the central bank’s inflation

target are assumed and read

Θi,t =
θ

2

[
pi,t

(1 + πT
t )

ι(1 + πt−1)1−ιpi,t−1

− 1

]2
Yt, θ > 0, ι ∈ (0, 1), (3.22)

where ι is a parameter that measures how dependent on past inflation price adjust-

ment costs of the intermediate firms are.

Between periods, there is Schumpeterian competition for the spot as incumbent,

where each incumbent firm is challenged by outside competitors for its position in

the market and only the firm with the highest quality level can stay in the market.

Competitors can imitate the current state of technology without any cost, but

incumbents and outside competitors alike have to innovate by buying new adopted

technologies in order to increase the technology level. The firm that attains the

highest productivity level, may it be current incumbent or outside competitor, will

be the market incumbent during the next period. As the current productivity

level can be imitated without any costs and as winning the innovation contest

only saves the position as market incumbent for one period, the current status

as market incumbent or outside competitor does not matter for the innovation

decision. Define the period gain of being the incumbent as

Mi,t =
pi,t
Pt

yi,t −Wtni,t −Θi,t, (3.23)
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where Wt is the real wage. Innovation spending pAt ∆
A
i,t is dropped here, as current

incumbents can always choose to set pAt ∆
A
i,t = 0 and not participate in the innova-

tion contest for next period’s incumbent, thus innovation spending does not concern

the current value of being the incumbent, but only the effort to become next pe-

riod’s incumbent. Free entry to the innovation contest for next period’s incumbent

dictates that the winning firm has to be the one spending the expected discounted

value of being next period’s incumbent. Spending more, yields a negative intertem-

poral value of participating in the innovation contest, as innovation costs are higher

than the expected value of being next period’s incumbent, while spending less is a

guaranteed loss in the innovation contest, as another firm could spend marginally

more on innovation and take the position as incumbent, leaving the firm with zero

gain from participating in the innovation contest. Thus, in the optimum the win-

ning firm of the innovation contest will spend the expected discounted value of

being next period’s incumbent that obtains under optimal behavior. Consequently,

today’s innovation spending of next period’s incumbent reads

pAt ∆
A
i,t = EtΛt,t+1Mt+1, (3.24)

where the i index on next period’s incumbent gains are dropped, because the win-

ner of the innovation contest has to consider optimal behavior of all its competitors

and base its innovation decision on the aggregate value of being next period’s in-

cumbent, which is exogenous to the individual firm. In consequence, the innovation

decision itself is exogenous for the winning firm. Optimal innovation is thus at the

indifference point between participating in the innovation contest or not participat-

ing. One firm will choose innovation spending as dictated by equation (3.24) and

become next period’s incumbent, while the others will withdraw from the innova-

tion contest. In this model, it is unclear if always the same firm will stay incumbent

or if there is continuous exchange. However, for the relevant model mechanisms

the identity of next period’s incumbent is irrelevant, as current incumbent and out-

side competitors are equal ex ante and have to consider the same restrictions and

economic environment. Thus, for all practical means, the firms producing inter-

mediate good i can be considered as one continuously incumbent firm that has to

respect (3.24) as a constraint for its innovation spending, if one is not interested in

the firm dynamics behind it.

Taking this into account, the innovation decision for the firm branch i is exogenously

given by (3.24) and firms only have to decide about setting the optimal price pi,t

in each period. Consequently, the profit maximization problem of the intermediate
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goods firm i reads

max
pi,t

= Et

∞∑

s=0

Λt,t+sD
im
i,t+s = Et

∞∑

s=0

Λt,t+s

(
pi,t
Pt

yi,t −Wtni,t −Θi,t − pAt ∆
A
i,t

)
,

(3.25)

subject to (3.17), (3.18), (3.19), (3.20), (3.22) and (3.24). As ex post all incumbent

firms are identical, firm indices can be dropped. Furthermore, define the inflation

rate as πt =
Pt

Pt−1
− 1, so the first order condition of the intermediate firms yields

the Phillips Curve of the form

[
1 + πt

(1 + πT
t )

ι(1 + πt−1)1−ι
− 1

]
1 + πt

(1 + πT
t )

ι(1 + πt−1)1−ι
=

ε− 1

θ

[
ε

ε− 1

Wt

qt
− 1

]

+ EtΛt,t+1

[
1 + πt+1

(1 + πT
t+1)

ι(1 + πt)1−ι
− 1

]
(1 + gyt+1)

1 + πt+1

(1 + πT
t+1)

ι(1 + πt)1−ι
, (3.26)

where gyt = Yt

Yt−1
− 1 is the output growth rate. As usual the Phillips Curve says

that current inflation depends on expected future inflation and the deviation of

marginal production costs from their steady state level.

How do inflation target shocks affect the innovation decision of the firms? Note

that by inserting (3.18) and (3.31) in the definition of Mi,t and by symmetry one

can write

Mt = qtnt − n1+φ
t qt −

θ

2

[
1 + πt

(1 + πT
t )

ι(1 + πt−1)1−ι
− 1

]2
qtnt

= qt

(
nt − n1+φ

t − θ

2

[
1 + πt

(1 + πT
t )

ι(1 + πt−1)1−ι
− 1

]2
nt

)
= qtΨ(nt, πt, π

T
t ), (3.27)

where Ψ(nt, πt, π
T
t ) are the detrended sales revenues minus price adjustment costs.

Note further that qt+1−qt
qt

≈ ln(qt+1)− ln(qt) = ln(λ)∆A
t and the stochastic discount

factor simplifies to Λt,t+1 =
1

1+rt
, thus the expected discounted value of being next

period’s incumbent reads

EtΛt,t+1Mt+1 = Et
1

1 + rt
(1 + ln(λ)∆A

t )qtΨ(nt+1, πt+1, π
T
t+1), (3.28)

where the term = Et
1

1+rt
(1+ln(λ)∆A

t )Ψ(nt+1, πt+1, π
T
t+1) should be stationary on the

balanced growth path and only qt is growing. Figure 3.1 schematically depicts the

innovation gain, so the expected discounted value of being next period’s incumbent,

and innovation costs in dependence of the number of new technologies ∆A
t that are

about to be implemented. In order to have a unique interior optimum, the cost
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Figure 3.1: Schematic depiction of innovation decision under an inflation target
shock. The optimal amount of new implemented technologies ∆A

t is at the inter-
section point A between the innovation gain and innovation cost curve. An inflation
target shock leads to a decrease in discounting and a decrease in price markups and
sales revenues, where the latter effect dominates the former. Thus, the gain curve
is shifted downwards and the new intersection point between cost and gain curve
at B implies a lower number of new adopted technologies implemented by the in-
termediate firms.

A

Optimal Innovation decision

Innovation gain (BGP)

Innovation gain (inflation target shock)

Innovation Costs

A

A

A

B

A

B

curve has to at first lie beneath the gain curve, but has a higher slope. According to

equation (3.24), optimal innovation lies at the intersection of gain and cost curve,

which on the balanced growth path is at point A, where the dashed blue line depicts

the innovation gain on the balanced growth path and the black line the innovation

costs. If the central bank wants to increase the inflation target, it has to work

towards lowering the real interest rate in order to increase inflation. The decrease

in the real interest rate itself lowers discounting and in consequence has a partially

positive influence on the amount of innovation spending. However, from standard

Newkeynesian theory one would expect an increase in the inflation rate to lead to a

decrease in the price markup of firms and thus lower sales revenues, as the marginal

production costs increase faster than the price for the intermediate goods, thus one

would assume that
∂Ψ(nt+1,πt+1,πT

t+1)

∂επt
< 0, which implies lower innovation spending.

From the estimation of the model later on, it is evidenced that the latter effect
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is stronger than the former and an inflation target shock actually shifts the gain

curve downwards (the dashed red line in the figure). Thus, the intersection point

B between the new gain curve and the cost curve lies farther to the left and the

number of new implemented technologies ∆A
t decreases.

3.2.7 Household sector

The representative household maximizes its expected lifetime stream of utility given

by

Et

∞∑

s=0

Ut+s = Et

∞∑

s=0

βtexp(dt)

(
ln(Ct+s)−

n1+φ
t+s

1 + φ

)
, φ > 0, (3.29)

where β is the discount factor, dt = ρβdt−1 + εβt are demand fluctuations with εβt

an exogenous i.i.d. consumer preference shock and Ct is the consumption level.

Households are subject to their budget constraint, which in every period reads

Ct+Bt+Tt = Wtnt+(1+rt−1)Bt−1+Γt+Xt+Ξt+Ωt+Df
t +Dim

t +Υt+Θt, (3.30)

where Bt are riskless government bonds and Tt is a lump-sum tax.

Consequently, the optimality conditions for the household read

nφ
t = WtC

−1
t (3.31)

C−1
t = Etβ

exp(dt+1)

exp(dt)
(1 + rt)C

−1
t+1, (3.32)

where (3.31) is the usual labor supply condition, which says that the real wage

is increasing in labor and the consumption level. Equation (3.32) is the standard

Euler equation, which implies that households will smooth their consumption path

depending on the real interest rate and household discounting.

3.2.8 Government budget and aggregate resource constraint

To close the model, a simple government budget constraint is assumed, where the

government just collects lump-sum taxes Tt and incurs new government debt Bt to

pay off previous government debt Bt−1 and the interest on it, so the government

budget constraint reads

Tt +Bt = (1 + rt−1)Bt−1. (3.33)
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Putting together the resource constraints of all sectors yields the aggregate resource

constraint, which in this case reads

Yt = Ct. (3.34)

3.2.9 Equilibrium

By symmetry, all individual intermediate firms will behave the same, so the i-index

can be dropped. The equilibrium is given by the sequence of variables

{
Rt+s, Xt+s, qt+s, p

R
t+s,Ut+s,∆

A
t+s,Λt,t+s, p

U
t+s, rt+s,Υt+s, p

A
t+s, At+s, πt+s, π

T
t+s,

ft+s, nt+s, et+s,Mt+s,Wt+s, Ct+s, βt+s, dt+s, Yt+s, g
y
t+s

}∞

s=0

(3.35)

that fulfill the following set of equilibrium conditions

rt = r̄

(
πt

πT
t

)ωπ (nt

n̄

)ωn

exp(εrt ) (3.36)

πT
t = π̄T exp(ft) (3.37)

ft = ρfft−1 + επt (3.38)

Rt = χ

(
Xt

qt

)1−κ

Uµx

t−1 (3.39)

pRt
qt

χ(1− κ)Uµx

t−1 =

(
Xt

qt

)κ

(3.40)

Ut = (1− δU)Ut−1 +Rt −∆A
t (3.41)

pRt = EtΛt,t+1p
U
t+1 (3.42)

∆A
t =

(
Υt

qt

)1−ξ

Ut−1 (3.43)

pAt
qt
(1− ξ)Ut−1 =

(
Υt

qt

)ξ

(3.44)

pAt

(
Υt

qt

)1−ξ

= pUt (3.45)

Yt = qtnt (3.46)

qt = λAt−1exp(et) (3.47)

At = At−1 +∆A
t (3.48)

et = ρeet−1 + εqt (3.49)
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Mt = Yt −Wtnt −
θ

2

[
1 + πt

(1 + πT
t )

ι(1 + πt−1)1−ι
− 1

]2
Yt (3.50)

pAt ∆
A
t = EtΛt,t+1Mt+1 (3.51)

gyt =
Yt

Yt−1

− 1 (3.52)

[
1 + πt

(1 + πT
t )

ι(1 + πt−1)1−ι
− 1

]
1 + πt

(1 + πT
t )

ι(1 + πt−1)1−ι
=

ε− 1

θ

[
ε

ε− 1

Wt

qt
− 1

]

+ EtΛt,t+1

[
1 + πt+1

(1 + πT
t+1)

ι(1 + πt)1−ι
− 1

]
(1 + gyt+1)

1 + πt+1

(1 + πT
t+1)

ι(1 + πt)1−ι

(3.53)

nφ
t = WtC

−1
t (3.54)

C−1
t = β

exp(dt+1)

exp(dt)
(1 + rt)C

−1
t+1 (3.55)

dt = ρβdt−1 + εβt (3.56)

Λt,t+1 =
1

1 + rt
(3.57)

Yt = Ct (3.58)

The economy has a balanced growth path, where all growing variables grow at a

common rate gqtt−1 = ln(qtt−1) − ln(qtt−2) = ln(λ)∆A
t−1. In the appendix, this trend

growth rate, detrended form and steady state of the model are derived, which are

used to numerically solve the model using Dynare8.

3.3 Bringing the model to the data

In this section the crucial parameters for the model mechanism proposed here are

estimated using Bayesian methods. Looking at the impulse responses of TFP to

inflation target and monetary policy shocks from the estimated model, it turns out

that monetary policy shocks have a long-run negative effect on TFP as in Moran

and Queralto (2018) and Bianchi et al. (2019). Inflation target shocks on the other

side have a slightly stronger negative effect, but are only influential in the medium

run with the shock effect fully degrading in the long run, if the shock is temporary,

while the effect is permanent, if the inflation target increases permanently. This

coincides with the findings of Bick (2010), Bruno and Easterly (1996), Bruno and

Easterly (1998), Kremer et al. (2013), Vaona and Schiavo (2007) or Omay and Kan

(2010), who find a negative relationship between inflation and long-run economic

8see Adjemian et al. (2011)
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growth. The Dynare software is used for all estimations and simulations in the

following section.

3.3.1 Calibration and parameter estimation

Some parameters are calibrated to either fit some moments of the data or according

to standard values set by the literature. Table 3.1 sums up the externally calibrated

parameters. The parameter χ is chosen such that the model steady state of the

Table 3.1: Calibrated Parameters

Parameter Value Source
χ 2.5 Matching mean R&D to GDP ratio of about 2.6%

π̄T 0.005 Matching FED announced inflation target of 2%
ωn 1 Moran and Queralto (2018)
λ 1.03 Matching technology hazard rate (Basu and Fernald (1997))
φ 0.5 Moran and Queralto (2018)
β 0.997 Matching mean FFR of about 4%

R&D spending to output ratio coincides with the observed mean R&D to GDP

ratio of about 2.6% for the U.S. in the data. The discount factor β is calibrated

such that the steady state nominal interest rate implied by the model equals the

long-run mean Federal Funds Rate (FFR) of roughly 4%. The FED since 2012

follows a 2% p.a. inflation target and before that regularly announced a desired

inflation rate, which was usually around 2% p.a. as well. As the model periodicity

is set to quarterly, π̄T is set to 0.005. The central bank’s reaction parameter to the

employment gap is set to 1 as in Moran and Queralto (2018). The inverse Frisch

elasticity φ is set to 0.5, again as in Moran and Queralto (2018) and the technology

hazard rate9 λ is set to the standard value of 1.03 as evidenced by Basu and Fernald

(1997).

For the estimation of the remaining parameters, five observable variables for the

U.S. are considered: The TFP growth rate and output growth rate measured in %

p.a. are provided by Fernald (2012-2019)10. The FFR measured in % p.a. is taken

from the FRED (2019), but for the recent zero lower bound period the actual FFR

9The interpretation of λ as a hazard rate comes from the idea that each climb on the quality
ladder replaces older vintages of a certain technology by newer ones, which increases productivity.

10where TFP is adjusted to be in line with the assumption of purely labor augmenting tech-
nological progress as in the model (as there is no capital) and not capital and labor augmenting
technological progress as assumed by Fernald (2012-2019), so the residual between output growth
and input factor growth that is defined as TFP growth by Fernald (2012-2019) is multiplied by
1

1−α . For a more thorough reasoning see the appendix.
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is replaced by the shadow rate provided by Wu and Xia (2016). The inflation rate

is defined as the annualized growth rate of the U.S. CPI. The fifth observable is

the R&D expenditures to GDP ratio in percent, where both are also provided by

the FRED (2019). All observables are in quarterly periodicity and are observed

between 1960 and 2019. The observation equations in terms of the model variables

(tildes denote detrended variables, the detrended model is given in the appendix)

then read

TFP growtht = (gqtt−1 + et − et−1) · 400 (3.59)

Output growtht = (gqtt−1 + et − et−1 + ln(Ỹt)− ln(Ỹt−1)) · 400 (3.60)

R&D ratiot =

(
X̃t

Ỹt

+ γt

)
· 100 (3.61)

Inflationt = πt · 400 (3.62)

FFRt = It ≈ (rt + πt) · 400, (3.63)

where It is the nominal interest rate approximated by the Fisher equation and γt

is an additional exogenous variable with the usual interpretation of a measurement

error as R&D is notoriously hard to measure, which also avoids stochastic singu-

larity as the number of structural shocks is smaller than the number of observed

variables.

Table 3.2 summarizes the Prior distributions for the parameters to be estimated.

The type of distributions mainly follows the suggestions of Smets and Wouters

(2003). Consequently, the prior distributions for the estimated shock standard

errors follow an Inverse Gamma distribution with a standard error of 2. The prior

means are obtained by first preestimating the shock standard errors and then using

the estimated mean as the prior mean in the second run. Also following Smets and

Wouters (2003), the priors for the persistence parameters ρe and ρf follow a Beta

distribution with mean 0.85 and standard error 0.1. Preestimations show that the

persistence parameter for demand fluctuations is much lower than the other ones,

thus the prior mean is set to about 1/3 to the respective other prior means, which

appears to be more appropriate.

The parameter ωπ measures the reaction of the central bank to inflation deviating

from its target level and is set to 0.5 by Moran and Queralto (2018), so this value is

taken as the prior mean. The prior is assumed to follow a Normal distribution with

a standard error of 0.25 to cover a 50% more or less aggressive reaction of the central

bank to inflation. The parameter ι measures to what extent price adjustment costs
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Table 3.2: Assumptions on prior distributions

Parameter Type Mean Std. Error
ωπ NORMAL 0.5 0.25
ι BETA 0.5 0.15
ε NORMAL 6 1
θ NORMAL 98.81 10
κ BETA 0.3 0.05
µx BETA 0.7 0.05
ξ BETA 0.075 0.05
δU BETA 0.1 0.05
ρe BETA 0.85 0.1
ρf BETA 0.85 0.1
ρβ BETA 0.286 0.1

s.e. επ INV. GAMMA 1.3 2
s.e. εr INV. GAMMA 1.1 2
s.e. εq INV. GAMMA 0.01 2
s.e. εβ INV. GAMMA 0.08 2
s.e. γ INV. GAMMA 0.002 2

depend on the current inflation target and the past inflation rate. The parameter

should be in the interval between 0 and 1, thus a Beta prior distribution is chosen.

Ex ante a 50:50 mix is assumed, so the prior mean is set to 0.5, but as there is

no strong evidence for this parameter, a broader prior with standard error 0.15 is

chosen. The parameter ε determines the steady state markup set by intermediate

firms. The commonly used value for this is 6 (see Ireland (2001)), which implies a

steady state markup of 20%. The prior follows a Normal distribution with standard

error 1, which translates into 5% more or less steady state markup. Using the

formula provided by Keen and Wang (2007) 11, the (prior) values of β and ε with

20% reoptimizing firms per period translate into a value of 98.81 for the price

stickiness factor θ. The prior follows a Normal distribution with standard error

10, which allows for a broad band of reasonable values. The following parameters

should also lie in the range between 0 and 1, so a Beta prior is chosen respectively:

Griliches (1990) estimates the elasticity of new ideas with respect to R&D spending

κ to lie between 0.2 and 0.4, so the prior mean is set to 0.3. As there is clear

evidence about the parameter, a narrow prior with standard error 0.05 is chosen.

The parameter µx gives the strength of the spillover from the idea stock to the

11Keen and Wang (2007) show that the pricing parameter θ of the Rotemberg model can be

calculated as θ = (ε−1)η
(1−η)(1−βη) , where ε is the markup parameter, β the household’s discounting

factor as defined in the model and 1− η is the fraction of firms allowed to reoptimize and change
their prices in a given period as in a Calvo model.

70



production of new ideas. Moran and Queralto (2018) estimate this value to be

0.7, so again as there is evidence about the parameter, a Beta prior with standard

error 0.05 and mean 0.7 is chosen. The elasticity of the adoption probability with

respect to adoption effort is given by 1− ξ. Anzoategui et al. (2019) estimate this

parameter to be about 0.925, so ξ should be around 0.075. A Beta prior with

mean 0.075 and standard error 0.05 is chosen accordingly. At last δU measures the

obsolescence rate of ideas, which is set to 0.1 by Moran and Queralto (2018), so a

Beta prior with mean 0.1 and standard error 0.05 is chosen.

Table 3.3 sums up the resulting estimated posterior distributions of the parame-

ters12. All parameters seem to be at reasonable values close to the related literature

Table 3.3: Properties of the posterior distributions

Parameter Mode Std. Error (Hessian) 5% (MH) Mean (MH) 95% (MH)
ωπ 0.2922 0.1034 0.2133 0.2912 0.3706
ι 0.2731 0.0586 0.2199 0.2729 0.3242
ε 5.5007 0.1921 5.2467 5.6194 5.9624
θ 124.8911 1.6764 120.1526 129.4833 139.8270
κ 0.2880 0.0170 0.2566 0.2897 0.3286
µx 0.7439 0.0081 0.6610 0.7209 0.7772
ξ 0.0314 0.0168 0.0081 0.0456 0.0868
δU 0.0447 0.0184 0.0159 0.0506 0.0797
ρe 0.9966 0.0099 0.9936 0.9961 0.9987
ρf 0.9706 0.0099 0.9516 0.9687 0.9878
ρβ 0.0249 0.0122 0.0124 0.0296 0.0474

s.e. επ 1.2808 0.2020 1.0529 1.3180 1.5778
s.e. εr 1.0928 0.1188 1.0127 1.1054 1.2001
s.e. εq 0.0115 0.0006 0.0106 0.0116 0.0125
s.e. εβ 0.0797 0.0048 0.0733 0.0797 0.0869
s.e. γ 0.0022 0.0001 0.0020 0.0022 0.0025

at the posterior mode and mean. Figure 3.2 depicts the prior and posterior densities

of the estimated model parameters, while figure 3.3 plots the prior and posterior

densities of the estimated shock standard errors.

3.3.2 The effect of inflation target shocks on technological progress

In this section the impulse responses of technology related variables with respect

to inflation target and monetary policy shocks are analyzed. In the appendix a

12Posterior distributions received by employing the Metropolis Hastings algorithm. The algo-
rithm uses a Markov-Chain-Monte-Carlo (MCMC) simulation with 20,000 draws in total, while
10,000 draws are finally kept and another 10,000 draws discarded as burning-in draws.
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Figure 3.2: Prior and posterior densities for the estimated parameters.
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Figure 3.3: Prior and posterior densities for the estimated shock standard errors.
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deeper discussion of the historical relevance of inflation target shocks and the effect

of monetary policy and inflation target shocks on output, consumption, wages and
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the real interest rate is provided. Figure 3.4 shows the impulse responses of TFP

q, inflation π, the nominal interest rate I, the period gain of being an incumbent

M, the production of unadopted ideas R and the adoption effort Υ to a transitory

inflation target and monetary policy shock of size one standard deviation (which

translates into a change of about 5 percentage points in the inflation target and a

change of 0.5 percentage points in the real interest rate respectively). As it can be

Figure 3.4: Impulse responses to a 1 standard deviation increase in inflation target
and FFR as implied by the model. The dashed lines show the 90% credible intervals
based on the highest posterior density interval (HPDI).
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seen, regarding a monetary policy shock the results are qualitatively quite similar,

though quantitatively weaker, to the findings in Moran and Queralto (2018) and

Bianchi et al. (2019). An exogenous increase in the real interest rate leads to a

long-run decrease in the TFP level of nearly 0.02% after 20 quarters. What is the

intuition behind this? After the monetary policy shock hits the economy, inflation

decreases by over 0.1% on impact and consequently the period gain of being the

incumbent increases by over 3% on impact. However, this is a one time event

and the expected future gain (so here after more than one period) of being the

incumbent is not changing. On the other side, the higher interest rate increases

discounting of the future expected gain of being the incumbent, so the incentive

to participate in the innovation contest is actually decreasing, thus adoption effort

decreases by over 0.6% on impact and the production of new unadopted ideas

decreases by nearly 1%, so overall technological progress slows down.
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On the other side, a temporary inflation target shock leads to a quick decline of

TFP by nearly 0.03% within the first three years. The negative shock effect then

is slowly reverted, but is not fully recovered even after 15 years have passed, when

TFP is still 0.02% lower than without the shock. How is this behavior explained?

As it can be seen, the inflation target shock leads to a nearly 2% higher inflation

within the first three years and the central bank will increase the nominal interest

rate about nearly 2% within the first two years, reverting back to the steady state

level over more than 15 years. The increase in inflation leads to a drop in the

period gain of being the incumbent of nearly 2%, which now in contrast to the

monetary policy shock is persistent and outweighs the lower discounting from the

lower real interest rate. As the markup effect is stronger than the discounting

effect, this leads to a less attractive market entrance, so expenditures on innovation

decrease. Consequently, adoption effort decreases by over 1% and production of new

unadopted ideas decreases by nearly 1.5%. After about 10 quarters, inflation stops

to increase and begins to slowly return to its steady state level. The subsequent

period of slow disinflation leads to a slight recession, where wages are a bit lower, the

price markup increases and the value of being next period’s incumbent is slightly

higher than on the balanced growth path (see the appendix for further details).

As it can be seen, the impulse response of adoption effort and idea production

is slightly above zero after 10 quarters, allowing for the slow return of TFP to

its steady state level, where the shock effect becomes insignificant after about 30

quarters.

It should be noted that the slow recovery of TFP is only possible because the

inflation target returns back to its steady state level and thus allows for a period of

time, where inflation is decreasing. If the inflation target shock is permanent as in

Ireland (2007), inflation does not revert back to the old target level after reaching

the new one, thus there is no recovery period and TFP stays on the lower level.

Figure 3.5 shows the impulse responses of the variables mentioned above if the

inflation target shock of the same size is permanent. As it can be seen, long-run

trend inflation increases about 5%. As the real interest rate is constant on the

long-run balanced growth path, the nominal interest rate is also about 5% higher

than before, allowing the central bank to have more space before hitting the Zero

Lower Bound. In fact, a 5% higher nominal interest rate would have allowed the

FED to decrease the FFR about 5% more than was actually possible during the

Great Recession and might have helped to avoid an encounter with the Zero Lower

Bound (see Blanchard et al. (2010)). But this ”more space” is payed by a long-run

loss in TFP of about 0.05%, so increasing the inflation target permanently also
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Figure 3.5: Impulse responses to a permanent 1 standard deviation increase in the
inflation target as implied by the model. The dashed lines show the 90% credible
intervals based on the highest posterior density interval (HPDI).
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leads to a permanent loss in productivity. Summing up the results, it turns out

that monetary policy shocks induce a slowly increasing long-run negative effect

on TFP, maxing out at almost 0.02% below the TFP level without the shock. A

temporary inflation target shock on the other side has an equally strong effect on

TFP on impact, but compared to the monetary policy shock is recoverable in the

medium run. Permanent inflation target shocks are not recoverable and lead to

a long-run loss in TFP of about 0.05%. In the light of this, it becomes evident

that a higher inflation target in order to reduce the probability of hitting the Zero

Lower Bound induces long-run economic costs, as it leads to permanently lower

productivity. In anticipation of hitting the Zero Lower Bound, the central bank

could temporarily increase its inflation target in order to attain a higher nominal

interest rate and then return back to its old target to avoid the long-run TFP loss,

however the anticipation of a ZLB encounter itself might be difficult.

3.4 Conclusion

The present paper analyzes to what extent inflation target shocks affect long-term

technological progress. A Newkeynesian model featuring endogenous technological
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progress and a central bank with a fluctuating inflation target is proposed and

estimated using Bayesian methods. An inflation target shock incurs an increas-

ing nominal interest rate alongside an increasing inflation rate. Under the assumed

price rigidity, the firm markup decreases in the event of unexpected inflation. Firms

are in Schumpeterian competition for the spot as incumbent in the market and the

decreasing price markups decrease the incentive of the firms to compete in the in-

novation contest for being next period’s incumbent. In consequence, technological

progress declines and long-run TFP decreases. If the inflation target shock is per-

manent, the TFP effect is permanent as well, while productivity recovers in the

long run, if the inflation target shock is only transitory. It turns out that a per-

manent inflation target shock that increases long-run average inflation about 5%,

which would have allowed the U.S. FED to avoid the Zero Lower Bound during the

Great Recession, leads to a permanent loss in TFP about 0.05%. However, if the

inflation target shock is temporary, the negative effect on TFP can be recovered

in the long run. As a secondary finding, the model supports the recent evidence

of increasing nominal interest rates being connected with lower R&D activity and

higher average inflation leading to lower long-run productivity. Inflation target

shocks for this matter allow to bring together the findings of traditional monetary

policy shocks that decrease inflation and have a negative effect on TFP and that

higher inflation is associated with subsequently lower economic growth: Monetary

policy shocks are only short-run events, if the central bank deviates from its policy

rule for a longer period of time, it has to have changed its policy target. An infla-

tion target shock on the other hand induces an increase in the nominal interest rate

like a monetary policy shock, but in contrast leads to persistently higher inflation

and has a negative effect on technological progress.

To sum up, defending against the Zero Lower Bound by permanently increasing

the central bank’s inflation target, thus average inflation and the average nominal

interest rate, leads to long-run economic costs in the form of a permanent loss in

TFP. These costs can only be avoided, if the encounter with the Zero Lower Bound

is predicted and the inflation target can be set higher only temporary. As predicting

an encounter with the Zero Lower Bound is quite hard in practice, it is unlikely

that one can rely on temporary inflation target shocks as a viable instrument,

thus increasing the inflation target permanently and incurring a long-run TFP loss

seems to be inevitable if one wants to hedge against an encounter with the Zero

Lower Bound. In the light of the present paper’s findings, the discussion about the

desirability of a higher average inflation needs to include a long-run perspective

alongside the short-run analysis, if the full economic cost are to be considered.
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Furthermore, the present paper supports the recent evidence concerning longer-run

consequences of monetary policy, which challenges the traditional assumption of

long-run neutrality of monetary policy. The further investigation of the longer-run

effects of monetary policy is something future research definitely needs to address.

3.5 Appendix: Further derivations for section 3.2

3.5.1 Detrended form of the model

The model has a unique and stable steady state in detrended form. The TFP level

can be decomposed into a trend and cyclical component. The trend component

is qtt−1 = λAt−1 and thus trend growth is biven by gqtt−1 ≈ ln(qtt−1) − ln(qtt−2) =

ln(λ)∆A
t−1. The variables growing on the balanced growth path are Xt, p

R
t , p

U
t , Υt,

pAt , Yt, Mt, Wt and Ct, while the remaining variables are stationary. Dividing all

growing variables by the trend component yields the detrended form of the model

(all variables in detrended form are denoted by a tilde):

rt = r̄

(
πt

πT
t

)ωπ (nt

n̄

)ωn

exp(εrt ) (3.64)

πT
t = π̄T exp(ft) (3.65)

ft = ρfft−1 + επt (3.66)

Rt = χ

(
X̃t

exp(et)

)1−κ

Uµx

t−1 (3.67)

p̃Rt

exp(et)
χ(1− κ)Uµx

t−1 =

(
X̃t

exp(et)

)κ

(3.68)

Ut = (1− δU)Ut−1 +Rt −∆A
t (3.69)

p̃Rt = EtΛt,t+1p̃U t+1(1 + gqtt ) (3.70)

∆A
t =

(
Υ̃t

exp(et)

)1−ξ

Ut−1 (3.71)

p̃At

exp(et)
(1− ξ)Ut−1 =

(
Υ̃t

exp(et)

)ξ

(3.72)

p̃At

(
Υ̃t

exp(et)

)1−ξ

= p̃U t (3.73)

Ỹt = exp(et)nt (3.74)

et = ρeet−1 + εqt (3.75)
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M̃t = Ỹt − W̃tnt −
θ

2

[
1 + πt

(1 + πT
t )

ι(1 + πt−1)1−ι
− 1

]2
Ỹt (3.76)

p̃At∆
A
t = EtΛt,t+1M̃t+1(1 + gqtt ) (3.77)

gyt ≈ gqtt−1 + et − et−1 + ln(nt)− ln(nt−1) (3.78)
[

1 + πt

(1 + πT
t )

ι(1 + πt−1)1−ι
− 1

]
1 + πt

(1 + πT
t )

ι(1 + πt−1)1−ι
=

ε− 1

θ

[
ε

ε− 1

W̃t

exp(et)
− 1

]

+ EtΛt,t+1

[
1 + πt+1

(1 + πT
t+1)

ι(1 + πt)1−ι
− 1

]
(1 + gyt+1)

1 + πt+1

(1 + πT
t+1)

ι(1 + πt)1−ι

(3.79)

nφ
t = W̃tC̃

−1
t (3.80)

C̃−1
t = β

exp(dt+1)

exp(dt)

1 + rt

1 + gqtt
C̃−1

t+1 (3.81)

dt = ρβdt−1 + εβt (3.82)

Λt,t+1 =
1

1 + rt
(3.83)

Ỹt = C̃t (3.84)

3.5.2 Steady state of the detrended form model

Dropping the time indices in the detrended form model then yields the steady state

(asterisks denote steady state values), which reads

π∗ = πT∗ (3.85)

πT∗ = π̄T (3.86)

R∗ = χ(X̃∗)1−κ(U∗)µx (3.87)

˜pR∗χ(1− κ)(U∗)µx = (X̃∗)κ (3.88)

δUU∗ = R∗ −∆A∗ (3.89)

˜pR∗ =
1 + gqt∗

1 + r∗
˜pU∗ (3.90)

∆A∗ = (Υ̃∗)1−ξU∗ (3.91)

˜pA∗(1− ξ)U∗ = (Υ̃∗)ξ (3.92)

˜pA∗(Υ̃∗)1−ξ = ˜pU∗ (3.93)

Ỹ ∗ = n∗ (3.94)

M̃∗ = Ỹ ∗ − W̃ ∗n∗ − θ

2

[
1 + π∗

1 + ¯πT∗ − 1

]2
Ỹ ∗ (3.95)
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˜pA∗∆A∗ =
1 + gqt∗

1 + r∗
M̃∗ (3.96)

gy∗ = gqt∗ (3.97)
[
1 + π∗

1 + ¯πT∗ − 1

]
1 + π∗

1 + ¯πT∗ =
ε− 1

θ

[
ε

ε− 1
W̃ ∗ − 1

]

+
1 + gy∗

1 + r∗

[
1 + π∗

1 + ¯πT∗ − 1

]
1 + π∗

1 + ¯πT∗

(3.98)

(n∗)φ = W̃ ∗(C̃∗)−1 (3.99)

β =
1 + gqt∗

1 + r∗
(3.100)

Ỹ ∗ = C̃∗ (3.101)

gqt∗ = ln(λ)∆A∗ (3.102)

Under the calibrated and estimated parameter values from before, the model has

7 forward looking variables and there are 7 eigenvalues larger than 1 in modulus,

so the Blanchard-Khan conditions are fulfilled and there exists a unique and stable

steady state for the detrended form model.

3.5.3 Recalculation of TFP growth in contrast to Fernald (2012-2019)

The TFP growth series calculated by Fernald (2012-2019) is defined as the residual

between output and input growth. He assumes a production function with capital

and labor augmenting technological progress of the form (variable definitions as

before)

Yt = qFernald
t Kα

t−1n
1−α
t (3.103)

and by taking logs and first differences

ln(Yt)−ln(Yt−1) = α (ln(Kt−1)− ln(Kt−2))+(1−α) (ln(nt)− ln(nt−1))+gq,Fernald
t

⇔ gq,Fernald
t = ln(Yt)−ln(Yt−1)−α (ln(Kt−1)− ln(Kt−2))−(1−α) (ln(nt)− ln(nt−1)) .

(3.104)

However, the model in this paper assumes purely labor augmenting technological

progress (as there is no capital), which can be seen by inserting the intermediate

goods production function (3.18) in the final goods production function (3.15)

Yt =

(∫ 1

0

(qi,tni,t)
ε−1
ε di

) ε
ε−1

. (3.105)
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To make the TFP growth rate provided by Fernald (2012-2019) consistent with the

one defined within the model, it has to be adjusted accordingly. Reformulating the

production function of Fernald (2012-2019) such that productivity is purely labor

augmenting yields

Yt = Kα
t−1 (qtnt)

1−α , (3.106)

thus by taking logs and first differences

ln(Yt)− ln(Yt−1) = α (ln(Kt−1)− ln(Kt−2)) + (1− α) (ln(nt)− ln(nt−1) + gqt )

⇔ (1−α)gqt = ln(Yt)−ln(Yt−1)−α (ln(Kt−1)− ln(Kt−2))−(1−α) (ln(nt)− ln(nt−1))

(3.107)

and thus

gqt =
1

1− α
gq,Fernald
t . (3.108)

In order to make the observed TFP series fitting to the model implied TFP series,

the data series of Fernald (2012-2019) is multiplied with 1
1−α

. In fact, Fernald (2012-

2019) also provides data on the capital share αt for each observation period, which

is used to recalculate the TFP series. The results in the main paper, however, are

not sensitive to the recalculation of TFP, thus it is only performed for consistency

between model and data.

3.6 Appendix: Computational details

There exists a closed form solution for the system of steady state equations, which

is passed on to the Dynare steady state file to ease the computational burden and

make the analysis less dependent on initial values for numerical solver routines.

The solution for the steady state is given by

W̃ ∗ =
ε− 1

ε
(3.109)

Ỹ ∗ =

(
ε− 1

ε

) 1
1+φ

(3.110)

n∗ = Ỹ ∗ (3.111)

C̃∗ = Ỹ ∗ (3.112)

M̃∗ =
1

ε
Ỹ ∗ (3.113)

Υ̃∗ = (1− ξ)βM̃∗ (3.114)
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X̃∗ =
(
δU + γ(Υ̃∗)1−ξ

)
β2M̃∗(1− κ) (3.115)

U∗ =

(
(X̃∗)κ

β2M̃∗χ(1− κ)

) 1
µx−1

(3.116)

∆A∗ = γ(Υ̃∗)1−ξU∗ (3.117)

gqt∗ = ln(λ)∆A∗ (3.118)

gy∗ = gqt∗ (3.119)

R∗ = χ(X̃∗)1−κ(U∗)µx (3.120)

r∗ =

(
1 + gqt∗

β

)
− 1 (3.121)

Λ∗ =
1

1 + r∗
(3.122)

˜pU∗ =
Υ̃∗

(1− ξ)U∗ (3.123)

˜pR∗ = β ˜pU∗ (3.124)

˜pA∗ =
(Υ̃∗)ξ

(1− ξ)γU∗ . (3.125)

For the Bayesian estimation the Monte-Carlo based optimization routine (mode compute

= 6 in Adjemian et al. (2011)) is used.

3.7 Appendix: Historical importance of inflation target

shocks concerning technological progress

In this section the historical importance of inflation target shocks concerning tech-

nological progress is analyzed. Table 3.4 summarizes the variance decomposition

for the trend TFP growth gqt, stock of unadopted ideas U , invention of new ideas

R and adoption effort Υ with respect to the four structural shocks. As it can be

Table 3.4: Variance decomposition (in %)

Variable επ εr εq εβ

gqt 50.50 9.21 0.20 40.09
U 22.80 12.31 0.52 64.36
R 45.31 20.44 0.15 34.10

Υ̃ 1.41 0.25 97.78 0.56

seen, inflation target shocks account for about five times more of the variance of

trend TFP growth than monetary policy shocks do. It becomes evident that most
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of the effect on trend TFP growth from inflation target shocks works through the

production and accumulation of unadopted ideas, as it explains over 45% of the

variance in the production of new ideas R and about 20% of the variance of the

stock of unadopted ideas U , but are negligible concerning the technology adoption

effort Υ. Of all the four structural shocks, inflation target shocks explain, with

more than 50%, the most about the variance in trend TFP growth with the runner

up being the consumer preference shock with about 40%. Monetary policy shocks

explain the third most with slightly below 10% of the variance, while the influence

of TFP shocks is negligible concerning the variance in endogenous technological

progress.

Now the question is, if there are periods of time that are main drivers for the

high share of variance in endogenous TFP explained by the inflation target shock.

Figure 3.6 shows the historical shock decomposition of the endogenous part of TFP

growth (ggt in the model) with respect to the 4 structural shocks. As it becomes

Figure 3.6: Historical shock decomposition of the endogenous part of TFP growth
(ggt in the model). The solid line gives the historical simulation of the endogenous
TFP growth series, while the bars show the influence of the individual shocks at
each point in time.

evident there are no outstandingly influential periods of time that drive the results

of the variance decomposition regarding inflation target shocks. Of course there is

a negative influence of the inflation target shock during the two oil price crises in

the 1970s, when the FED did not answer the high inflation during this time with
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an accordingly even higher interest rate, and a positive influence on endogenous

TFP growth after 1980, when the FED performed a strong anti-inflationary policy.

During the onset of the Great Recession, there is a short but strong positive effect

of an inflation target shock, as the central bank encountered the Zero Lower Bound

and was not able to protect its old inflation target. But there is no period of

time that seems to solely drive the simulated inflation target shock and clouds the

results of the above analysis. If there is one shock that is at some times much

more influential than at other times, its the consumer preference shock that had

a huge positive spike during the 1960s and 1990s and a similarly large negative

spike during the two oil price crises and the aftermath of the Great Recession.

But as the business cycle literature often times believes the business cycle to be

mainly demand driven (see Beaudry and Portier (2014)), this might not be a very

surprising result.

3.8 Appendix: Omitting the oil price crises

One could argue that the observations before the 1980s should be omitted from the

estimation, as the two oil price crises during the 1970s might be influential for the

estimation results. Table 3.5 compares the estimated posterior modes concerning

Table 3.5: Comparing the posterior modes for the 1960-2019 and the 1983-2019
observation period

Parameter Mode 1960-2019 Mode 1983-2019
ωπ 0.2922 0.3734
ι 0.2731 0.3242
ε 5.5007 5.6448
θ 124.8911 111.7147
κ 0.2880 0.3443
µx 0.7439 0.7604
ξ 0.0314 0.0479
δU 0.0447 0.0763
ρe 0.9966 0.9904
ρf 0.9706 0.9540
ρβ 0.0249 0.069

s.e. επ 1.2808 1.1708
s.e. εr 1.0928 1.0619
s.e. εq 0.0115 0.0096
s.e. εβ 0.0797 0.056
s.e. γ 0.0022 0.0011
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all parameters for the 1960-2019 and 1983-2019 observation period. As it becomes

evident, the estimation results do not differ much and are robust to the omission

of the 1960-1983 observations.

3.9 Appendix: Business cycle effects of inflation target and

monetary policy shocks

This section is intended to have a look on the classical business cycle effects of

inflation target and monetary policy shocks, in order to evaluate also the short-run

properties of the model proposed in the main body of the paper. In the business

cycle literature, it is common to detrend variables and look at the fluctuations

in the ”cyclical” component, where the term ”cyclical” refers to high frequency

fluctuations. In accordance to this approach, this section looks at the fluctuations

in detrended output Ỹ , detrended consumption C̃, detrended real wages W̃ and the

real interest rate r. This section is intended as a plausibility check for the model

implications.

Table 3.6 summarizes the variance decomposition for the variables mentioned above

regarding the four structural shocks considered in the model. The inflation target

Table 3.6: Variance decomposition (in %)

Variable επ εr εq εβ

Ỹ 0.09 0.14 74.49 25.28

C̃ 0.09 0.14 74.49 25.28

W̃ 0.16 0.24 56.46 43.14
r 7.64 82.50 0.64 9.23

and monetary policy shocks do not seem to play an important role in explaining

high frequency fluctuations in output, consumption and real wages, in fact both

explain much less than 1% of the variance in those three variables. High frequency

fluctuations in output, consumption and real wages can almost single-handedly be

explained by aggregate TFP shocks, which account for about three quarters of

the variance in these variables, and consumer preference shocks, which account for

the remaining quarter of the observed variance in output, consumption and real

wages. However, regarding the real interest rate, it becomes evident that TFP

shocks explain less than 1% of the variance, while consumer preference shocks

explain only about 10%. Concerning the shocks originating from the central bank

sector, it turns out that the majority of fluctuations are accounted for by monetary
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policy shocks, which explain over 80% of the variance in the real interest rate, while

inflation target shocks are relatively unimportant, explaining less than 8% of the

variance in the real interest rate.

Figure 3.7 shows the impulse responses of output, consumption, real wages and

the real interest rate to an inflation target and monetary policy shock of size one

standard deviation (which translates into a change of about 5 percentage points in

the inflation target and a change of 0.5 percentage points in the real interest rate

respectively). As it can be seen, the inflation target shock leads to a decrease in the

Figure 3.7: Impulse responses of detrended output, detrended consumption, de-
trended wages and the real interest rate to a 1 standard deviation inflation tar-
get and monetary policy shock as implied by the estimated model. The dashed
lines give the 90% credible interval based on the highest posterior density interval
(HPDI).
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real interest rate of about 0.5% on impact. In the main body of this paper, it was

shown that the inflation target shock leads to an increase in the nominal interest

rate, but as the simultaneous increase in inflation is even stronger, the real interest

rate declines. The return back to the steady state is relatively quick, as after about

3 years the real interest rate is back at its steady state value. The decline in the real

interest rate leads to an increase in output and consumption, which both increase

about 0.35% on impact. The increase in production at a predetermined productivity

level on impact leads to an increase in employment and, in consequence, to an

increase in the real wage, which increases about 0.5% on impact of the inflation
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target shock. As the real interest rate, also output, consumption and real wages

return back to the steady state in relatively short time, in this case even less than

3 years. Regarding the monetary policy shock, it leads to an increase in the real

interest rate by over 2% on impact. Here, the difference between inflation target

and monetary policy shocks becomes evident again, as both lead to an increase in

the nominal interest rate, but only the monetary policy shock leads to an increase

in the real interest rate as well. The increase in the real interest rate leads to a

decline in consumption and output of about nearly 0.6%, while real wages decline

by about 0.8%. After the initial decline in output, consumption and real wages,

there is a short period of a small positive effect on these variables that hails back to

the higher incentive to save and increase future consumption after the real interest

rate increases. However, by definition the shock effect of the monetary policy shock

has very little persistence and completely vanishes after at least 5 quarters.

In summary, it becomes evident from the analysis above that inflation target shocks

play a minor role in explaining the variance in detrended output, detrended con-

sumption, detrended real wages and the real interest rate and have only an effect

with low persistence on these variables. The finding of the main body of this pa-

per and the appendix section about the historical importance of inflation target

shocks was that inflation target shocks play a much bigger role concerning longer-

run fluctuations in technological progress. So it seems that inflation target shocks

are nothing that really concerns the high frequency business cycle, but rather the

medium-run cycle.
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4 Monetary policy and the stock market - A partly-

recursive SVAR estimator1

4.1 Introduction

Simultaneously identifying monetary policy and stock market shocks in an SVAR

is an ongoing challenge for econometricians. As usual, concluding the structural

shocks from the reduced form errors is not possible without imposing additional

identifying restrictions, so identifying both shocks mentioned above requires to

impose an a priori structure. Most of the literature covers one of two extreme

cases:

I) Identifying all shocks based on ex ante restrictions concerning the short- or

long-run impact of the structural shocks on the observed variables, or

II) data-driven approaches without ex ante restrictions on the short- or long-term

shock effect, but based on heteroskedastic or non-Gaussian shocks, who are

able to provide further information regarding the structural shocks based on

moment conditions that can be used for identification.

We argue that none of the two extreme cases is suited for the application at hand.

In particular, we show that commonly used short- and long-run restrictions on the

interaction of monetary policy and the stock market are questionable and are essen-

tially equivalent with ex ante choosing the model one does believe in without letting

the data decide, which model fits best. However, also purely data-driven estimators

do not yield conclusive insights concerning the interaction of both variables, since

these estimators depend on latent, volatile, or hardly observable features, which

results in a poor small sample performance of the estimator. This problem gets

more and more serious, the more variables are controlled for in the SVAR, which

makes purely data-driven identification approaches less helpful in larger SVARs.

The estimator proposed in this study combines the traditional identification ap-

proach based on short-run zero restrictions in a recursive ordering with the more

recently developed data-driven approach based on non-Gaussianity. Our estimator

allows the researcher to rely on recursiveness restrictions if possible and to be ag-

nostic on the interaction of the variables and rely on data-driven estimates when

1joint work with Sascha A. Keweloh, a slightly different version appeared as Keweloh, S.A. and
Andre Seepe (2020), Monetary policy and the stock market - A partly-recursive SVAR estimator,
SFB 823 Discussion Paper series No. 32/2020, http://dx.doi.org/10.17877/DE290R-21722
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necessary. The estimator is then applied to analyze the interaction of monetary

policy and the stock market. We find no strong evidence for the usage of common

short- and long-run restrictions and demonstrate that a purely data-driven esti-

mator leads to imprecise estimates, which barely allow any conclusions about the

effect of monetary policy shocks on the stock market and stock market shocks on

monetary policy.

In the literature, the interaction of monetary policy and the stock market has been

estimated based on short-run restrictions (see e.g. Laopodis (2013)) and on long-run

restrictions (see Bjørnland and Leitemo (2009) or Kontonikas and Zekaite (2018)).

The estimation based on short-run restrictions in Laopodis (2013) yields evidence

that real stock prices are persistently negative after a tightening of monetary policy,

which is at odds with the long-run restrictions used in Bjørnland and Leitemo

(2009). However, the estimation based on long-run restrictions by Bjørnland and

Leitemo (2009) suggests that any zero restriction on the interaction of monetary

policy and the stock market is incorrect as well and is thus at odds with the short-

run restrictions used in Laopodis (2013). Therefore, the results from the restriction

based approaches contradict each other. We argue that neither the short- nor the

long-run restrictions are plausible and thus an approach that abstains from such

is a better choice for the matter at hand. In particular, stock market shocks can

contain news about future business cycle fluctuations (see e.g. Beaudry and Portier

(2006)) and assuming that the central bank does not react simultaneously, which

means within 3 months for quarterly data, to these shocks is debatable. Moreover,

recent studies (see Moran and Queralto (2018), Bianchi et al. (2019) and Jordà

et al. (2020)) find evidence against the long-run neutrality of monetary policy,

which casts doubt on any long-run restrictions used to identify monetary policy

shocks as in Bjørnland and Leitemo (2009) or Kontonikas and Zekaite (2018).

Due to the unavailability of short- and long-run restrictions, several authors use

data-driven approaches to estimate the interaction of monetary policy and the

stock market (see Lanne et al. (2017) or Lütkepohl and Netšunajev (2017)). These

approaches do not require any ex ante restrictions on the interaction of the vari-

ables, but instead exploit a structure imposed on the statistical properties of the

structural shocks. Lütkepohl and Netšunajev (2017) estimate the interaction of

monetary policy and the stock market based on time-varying volatility and find a

negative impact of a tightening of monetary policy on stock prices. However, the

authors are unable to clearly label a stock market shock. Moreover, a tightening

of monetary policy appears to have an, at least from standard theory, unexpected
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initial positive impact on output and inflation and, therefore, even the labeling of

the monetary policy shock is debatable. Lanne et al. (2017) estimate an SVAR

based on non-Gaussianity of the structural shocks and find that a tightening of

monetary policy has an immediate negative impact on the stock market. However,

they are also unable to label any other shock besides the monetary policy shock

and in particularly are not able to label a stock market shock.

In the present paper, we argue that neither the traditional short- or long-run re-

striction based approaches, nor the more recently developed, purely data-driven

approaches yield conclusive insights into the interaction of monetary policy and

the stock market. The restriction based approaches fail due to the unavailability

of sufficiently many short- or long-run restrictions and the data-driven approaches

fail, since they impose such little structure that finite sample estimates become

highly volatile, up to the point that it becomes difficult to even label the shocks.

From our point of view, the key to gain insight into the interaction of monetary

policy and the stock market is a combination of the traditional restriction based

and the more recently developed data-driven approach. The estimator proposed in

this study allows to divide the variables of the SVAR into a first block of recursively

ordered variables, so we impose short-run zero restrictions on the contemporane-

ous shock effects concerning the variables ordered above the respective row of the

structural shock, and a second block of non-recursive variables, where we impose

no short- or long-run restrictions, but rely only on the information retrieved from

moments beyond the variance of non-Gaussian shocks for identification. Most im-

portantly, here only the non-recursive block relies on data-driven estimates based

on non-Gaussian and independent shocks. The more recursiveness restrictions the

researcher applies, the less the estimator depends on moments beyond the vari-

ance and the better the small sample performance of the SVAR estimator. In a

Monte Carlo simulation, we show how the performance of a purely data-driven es-

timator based on non-Gaussianity deteriorates with a decreasing sample size and

an increasing model size. However, the simulation also shows that exploiting the

partly-recursive order can stop the performance decline. Therefore, the estimator

proposed in this study allows the researcher to rely on an arbitrary number of

recursiveness restrictions, which reduces the dependence of the estimator on mo-

ments beyond the variance and thereby increases the finite sample performance of

the estimator, which allows for more conclusive results and an easier labeling of the

structural shocks.

In our application the variables output, investment and inflation are assumed to
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be rigid in the short run and are restricted such that they cannot respond to stock

market and monetary policy shocks within the same quarter. However, the Fed-

eral Funds Rate and stock returns remain unrestricted and can simultaneously

respond to all shocks. In consequence, we have a block of three variables that are

recursively ordered and two variables that are identified based on moments beyond

the variance. We apply the proposed partly-recursive estimator and find a con-

temporaneous contractionary response of the Federal Funds Rate to positive stock

market shocks and an immediate negative stock return response to contractionary

monetary policy shocks. Moreover, we find no strong evidence against monetary

policy having a long-run effect on stock prices, like in the recent papers of Moran

and Queralto (2018) or Bianchi et al. (2019). Additionally, as a robustness check

we estimate an unrestricted SVAR solely based on independent and non-Gaussian

shocks. Overall, the unrestricted estimation confirms the results of our partly-

recursive estimation, especially the applicability of the short-run zero restrictions

for the recursive block. However, the confidence intervals are larger and it becomes

increasingly difficult to explain the estimated interaction of stock prices and inter-

est rates. The application illustrates that the partly-recursive, partly non-Gaussian

identification scheme introduced in the present study serves as a helpful addition

to the econometrician’s tool box when faced with situations, where only a few

restrictions on the interaction of the variables are available.

The remainder of this article is structured as follows: Section 4.2 shows that com-

monly used identification schemes in the related literature come with caveats that

render them not applicable to analyze the interaction of monetary policy and the

stock market. Section 4.3 derives our estimator for partly-recursive, partly non-

Gaussian SVAR models and contains a Monte-Carlo study illustrating how ex-

ploiting the partly-recursive order increases the finite sample performance of the

estimator. In section 4.4 we use the proposed partly-recursive, partly non-Gaussian

SVAR estimator to analyze the interaction of the stock market and monetary policy.

Section 4.5 concludes.

4.2 Monetary policy and the stock market

4.2.1 The unavailability of common identifying restrictions

In this section, we use a simple macroeconomic asset pricing model to illustrate

that there is no indisputable answer about the short- and long-run effect of stock

market and monetary policy shocks. We keep the model intentionally simple to
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show that only a small deviation in basic assumptions can make a big difference

for the short- and long-run effect of monetary policy and stock market shocks. In

particular, we show that imposing a long-run restriction on the effect of monetary

policy shocks on stock prices, as frequently done by the literature (see Bjørnland

and Leitemo (2009) or Kontonikas and Zekaite (2018)), essentially boils down to

choosing the model one believes in ex ante without letting the data have a say

about which model world fits best.

Consider that households can save by buying firm stocks of firm i at price vi,t,

which yield dividend di,t+1 and can be sold in the next period at price vi,t+1, or by

a non-contingent bond bft yielding a guaranteed real interest at rate rt. The Euler

equations for the households then read

u′(ct)

u′(ct+1)
= β(1 + rt) (4.1)

u′(ct)

u′(ct+1)
= βEt

vi,t+1 + di,t+1

vi,t
, (4.2)

with u′(ct) the marginal utility of consumption with the usual properties u′(ct) >

0, u′′(ct) < 0 and β the household discount factor. Thus, the no-arbitrage condition

is

1 + rt = Et
vi,t+1 + di,t+1

vi,t
. (4.3)

From this, one can acquire the familiar central asset pricing equation of the form

vi,t = Et

∞∑

s=1

di,t+s∏s
j=1(1 + rt+j−1)

, (4.4)

so the current stock price is the expected discounted sum of future dividends.

On the firm side, assume a continuum of infinitely small firms with mass 1 that try

to maximize the dividends they are paying out to the households, where dividends

of firm i are given by

di,t+s = yi,t+s − ji,t+s + bfi,t+1+s − (1 + rt+s−1)b
f
i,t+s − w̄n̄, (4.5)

where yi,t is output, ji,t investment in the physical capital stock, bfi,t is a loan of

the firm (where
∫ 1

0
bfi,tdi = bft ), w̄ the constant real wage and n̄ labor input, also

assumed constant for simplicity. We assume further an accumulation of physical

capital ki,t of the form
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ki,t+1 = (1− δ)ki,t + ji,t, δ ∈ (0, 1), (4.6)

with δ the depreciation rate of physical capital. The production function reads

yi,t = Akα
i,t(Ztn̄)

1−α, α ∈ (0, 1), (4.7)

with A an exogenous scaling factor, n̄ for simplicity constant labor input and Zt

an aggregate productivity factor exogenous to the individual firm, which will be

discussed in detail later on. Consequently, the firm maximization problem reads

max
{ki,t+1+s,b

f
i,t+s}

∞∑

s=0

EtΛt+sdi,t+s, (4.8)

with Λt the firm’s discount factor and subject to (4.6)-(4.7). The optimality con-

ditions yield the common interest rate parity condition of the form

EtAαk
α−1
i,t+1(Zt+1n̄)

1−α + (1− δ) = 1 + rt, (4.9)

which says that in the equilibrium the interest rate on loans and the return on

capital investment will coincide. Now inserting (4.5)-(4.7) into (4.4) yields

vi,t = Et

∞∑

s=1

Akα
i,t+s(Zt+sn̄)

1−α − ki,t+s+1 + (1− δ)ki,t+s + bfi,t+1+s

− (1 + rt+s−1)b
f
i,t+s − w̄n̄∏s

j=1(1 + rt+j−1)
. (4.10)

Imposing the no bubbles limiting condition limT→∞ bT = 0 then leads to the stream

of future loans dropping out from the asset pricing equation, as dividends cannot be

debt-financed indefinitely. As becomes evident, the dynamics of the numerator are

then entirely driven by the evolution of capital. Using equation (4.9) then allows

to find the evolution of capital as

ki,t+1 = Et

[(
αA

rt + δ

) 1
1−α

n̄Zt+1

]
. (4.11)

Now consider that the real interest rate increases once exogenously, which is what

happens in standard macroeconomic models after a monetary policy shock under

price rigidity, such that r′t > r∗t and for the rest of the time r′t+s = r∗t+s,∀s > 0

(primes denote variables after the shock, asterisks variables without the shock).

The resulting response of dividends and thus ultimately stock prices now crucially
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depends on what we assume about the productivity factor Zt:

1.) Exogenous growth: Assume a neoclassical growth model with decreasing

marginal returns to capital, so Zt = exp(gt)Z0 is some variable growing at

the exogenous rate g.

2.) Endogenous growth: Assume an endogenous growth model, for instance a

standard learning-by-doing technology with Zt =
∫ 1

0
ki,t−1di = Kt−1.

Figure 4.1 shows the effect of an exogenous real interest rate increase about 1

percentage point on stock prices for the exogenous and endogenous growth model2.

Assuming sticky prices, thus nominal and real variables move in the same direction

Figure 4.1: Simulated response of real stock prices to a one-time exogenous real
interest rate increase of about one percentage point as induced by a monetary policy
shock under price rigidity. The left-hand side shows the stock price reaction under
exogenous growth (case 1.)), the right hand side under endogenous growth (case
2.))
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in the short run, we can interpret the exogenous real interest rate increase as

equivalent to a monetary policy shock. Both models imply an immediate reaction

2For simplicity we assume n̄ = 1, the initial debt bft = 0, w̄ = 0. As w̄ and n̄ are constant,

while bft is a predetermined initial debt level, their calibration is qualitatively unimportant for the
impulse responses, thus here without loss of generality. We use a standard calibration of α = 1

3 ,
δ = 0.1 and set A = 0.46 to ensure a long-run output growth rate of about 3%.
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of stock prices to the monetary policy shock. However, in the exogenous growth

model with decreasing returns to capital, stock prices revert back to their long-

run level, while under endogenous growth with the learning-by-doing technology,

the decrease in stock prices is permanent. This is because in the first case the

lower capital stock implies a higher marginal return of capital in the future, which

drives back capital to its old steady state, while in the second case it does not,

because the lower aggregate capital stock implies lower aggregate productivity and

thus a lower capital investment return for the individual firm. Moreover, the loss in

aggregate productivity in the second case makes the short-run effect of the monetary

policy shock on stock prices much stronger (in the simplified model it is about 10

times stronger) than under exogenous growth. So any short- or long-run restriction

imposed on the reaction of stock prices to monetary policy shocks essentially boils

down to choosing either model world 1.) or 2.), without letting the data decide

which one fits best. The recent papers of Moran and Queralto (2018) or Bianchi

et al. (2019) find that a positive monetary policy shock decreases medium-run

aggregate TFP, which is a clear hint for the second model world, while Bjørnland

and Leitemo (2009) or Kontonikas and Zekaite (2018), by imposing a zero restriction

on the long-run effect of monetary policy shocks on stock prices, seem to favor the

first model world.

Furthermore, interpret a stock price shock as news about higher future productivity

that, however, has no effect on current productivity like in Beaudry and Portier

(2006). For instance assume that the productivity factor A is no longer a constant,

but time dependent. Assume now that everyone gets the information that in the

next period A′
t+1 > A∗

t+1. From equation (4.10) it becomes evident that an increase

in future dividends leads to an increase in stock prices now. Because the news

lets the households believe to be richer in the future, the Euler equation (4.1)

also implies increasing consumption today c′t > c∗t . From equations (4.6) and

(4.11) it becomes evident that the higher marginal productivity of future capital

increases investment j′t > j∗t . Assume the aggregate resource constraint to be that

output equals the sum of consumption and investment yt = ct + jt, then y′t > y∗t
immediately follows. A central bank aiming to flatten business cycle fluctuations

would immediately increase its policy rate. Indeed, for instance Rigobon and Sack

(2003) find significant policy responses of the FED to fluctuations in the S&P500

index, where a five percent increase in the stock price index increases the likelihood

of a 25 basis point increase in the FFR by about 50%. Consequently, stock prices

will contemporaneously react to monetary policy shocks, as will monetary policy

to stock market shocks.
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Now the econometrician’s task would be to let the data decide, which of the two

theoretical approaches is correct. Of course, we need to make some assumptions to

identify the structural shocks. However, we know that a monetary policy shock will

immediately influence stock prices and vice versa, so we cannot impose a short-run

restriction. Imposing a long-run restriction on the effect of the monetary policy

shock on stock prices means to ex ante decide that the model with decreasing

returns is the right one and not the endogenous growth model, which strips us of

the ability to let the data decide. Thus one is in need of a data-driven identification

approach, which is the objective of the present paper.

4.2.2 SVAR models

As a second step we review the approaches of the related literature to estimate the

interaction of monetary policy and the stock market in an SVAR. We show that

there is a lack of a compelling estimation approach that is feasible, not too restric-

tive for the problem at hand and has a sufficiently good small sample performance

to draw some conclusive evidence about the short- and long-run effects of monetary

policy and stock market shocks.

In an SVAR, a vector of time series is explained by its past values and a linear

combination of structural shocks that forms the reduced form errors

yt = A1yt−1 + ...+ Apyt−p + ut, (4.12)

ut = Bεt, (4.13)

with an n-dimensional vector of macroeconomic variables yt, parameter matrices

A1, ..., Ap, a non-singular matrix B, the n-dimensional vector of structural shocks

εt and the n-dimensional vector of reduced form shocks ut. Here, the vector of

structural shocks will contain a monetary policy and a stock market shock. The

goal is to identify both shocks and estimate their impact on the macroeconomic

variables. The VAR imposes only little a priori structure, however, without further

assumptions the structural shocks are not identified and cannot be retrieved by the

estimation procedure.

In general, the probably most frequently used identifying assumption for an SVAR

is a recursive ordering, meaning zero restrictions on the short-run impact of some

shocks, such that each variable is simultaneously only influenced by shocks ordered

in rows below the variable. However, in the case of monetary policy and the stock

market, zero restrictions on the interaction of both variables are hardly credible.
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On the one hand, stock prices can contain news about future productivity, see

Beaudry and Portier (2006). Therefore, a positive stock price shock might indicate

a future boom accompanied by inflationary pressure and a stabilizing central bank

would respond immediately. Consequently, a zero restriction on the response of

monetary policy to stock market shocks is difficult to defend. On the other hand,

stock prices are generally believed to contain all the information currently available

at the stock market, which leads Beaudry and Portier (2006) to argue that news can

be captured by observing stock prices. As a monetary policy shock induced by the

central bank is a publicly available information, one would assume that stock prices

also immediately react to exogenous changes in the interest rate. Nevertheless,

zero restrictions on the interaction of monetary policy and the stock market have

been used to estimate the interaction of both variables, see e.g. Laopodis (2013).

However, these estimates only reflect the interaction of monetary policy and the

stock market, if the identifying assumption is correct, which is at best questionable.

Furthermore, one could argue that a zero restriction is only a specific short-run

restriction, so knowing the correct short-run effect of a stock market shock on the

nominal interest rate or of a monetary policy shock on stock prices would suffice

to identify the two structural shocks. Unfortunately such knowledge does not exist

and there is a broad band of possible impact effects for both shocks estimated by the

related literature that does not use any short-run restrictions. Consequently, there

is no conclusive evidence that justifies the use of any specific short-run restriction.

Due to the unavailability of credible short-run restrictions on the interaction of

monetary policy and the stock market, several authors identify the shocks based

on restrictions of the long-run interaction of both variables (see e.g. Bjørnland and

Leitemo (2009) or Kontonikas and Zekaite (2018)). In particular, these authors

assume long-run neutrality of monetary policy, meaning the monetary policy shock

has no long-run impact on real stock prices. Bjørnland and Leitemo (2009) find

that monetary policy and the stock market interact simultaneously. In particular,

a tightening of monetary policy leads to an immediate decrease of stock prices

and a positive stock market shock leads to an immediate tightening of monetary

policy. Again, these results only reflect the true interaction of both variables, if the

identifying long-run restriction is correct. In contrast to the short-run restriction

used in Laopodis (2013), the long-run restriction used in Bjørnland and Leitemo

(2009) is based on a widespread underlying theory that argues in favor of long-

run neutrality of monetary policy. However, as shown in section 4.2.1, a slight

modification of the theory from exogenous to endogenous growth already breaks

the long-run neutrality result. In fact, recent studies (see e.g. Moran and Queralto
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(2018), Bianchi et al. (2019) and Jordà et al. (2020)) consistently find that monetary

policy affects real variables much longer than usually assumed3. These results cast

doubt on the validity of the long-run restriction on the effect of monetary policy

shocks on stock prices employed by Bjørnland and Leitemo (2009) or Kontonikas

and Zekaite (2018) and the corresponding estimated interaction of monetary policy

and the stock market.

Alternatively, Rigobon and Sack (2004) propose an estimator, which does not re-

quire any restrictions on the short- or long-run interaction of the stock market and

monetary policy. Instead, it is based on the assumption of heteroskedastic shocks

and requires to a priori specify periods of different variances of the monetary policy

shocks. The identification is thus based on a stochastic property of the structural

shocks and not on a restriction on the impact of the shocks. Specifying volatility

regimes of monetary policy may be straight-forward on a daily basis (by choos-

ing all days with FOMC announcements), however, with lower frequency data it

becomes increasingly difficult or even impossible if the regime changes cancel out

each other during longer observation periods. Therefore, the estimator becomes

infeasible in typical macroeconomic applications with monthly, quarterly or even

lower frequency data and excludes potential control variables that are not observed

at a high frequency.

In general, identification based on time-varying volatility does not require to a priori

specify volatility periods (see e.g. Rigobon and Sack (2003), Lanne et al. (2010),

Lütkepohl and Netšunajev (2017) or Lewis (2019)). In fact, a latent volatility

process can be used for identification without imposing much structure on the latent

process. However, Lütkepohl and Netšunajev (2017) argue that reliable estimators

based on GARCH or Markov switching processes are only available in small models

with only a few volatility states. The intuition is simple: The more (correct)

structure is imposed on the latent process, the more precise the corresponding

estimate. Therefore, Lütkepohl and Netšunajev (2017) propose an estimator which

imposes a parametric smooth transition function between two states of the variance-

covariance matrix of the reduced form shocks. The estimator is applied to analyze

the interaction of monetary policy and the stock market. The authors find a small

simultaneous negative response of the stock market to a tightening of monetary

3Moran and Queralto (2018) and Bianchi et al. (2019) find that the impulse response of TFP
is significantly positive even 15 years after a negative monetary policy shock has hit the economy.
Again as in the previous section, higher productivity goes hand in hand with higher expected
dividends. Therefore, stock prices should not only decrease immediately, but permanently in
response to an unexpected tightening of monetary policy, as long-run productivity and thus long-
run dividends decline.
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policy. However, a tightening of monetary policy is also found to lead to an initial

increase of inflation and output. Due to the counterintuitive response of output

and inflation to the shock, the authors admit that labeling the shock as a monetary

policy shock in a ”conventional” sense may be misleading. Additionally, the authors

are not able to label a stock market shock and hence it remains unclear, how

monetary policy reacts to a stock market shock.

Another branch of the SVAR literature uses non-Gaussian and independent shocks

for identification (see e.g. Lanne et al. (2017), Gouriéroux et al. (2017), Guay

(2021), Lanne and Luoto (2021) and Keweloh (2019)). Theses approaches are

also data-driven and do not require to impose any short- or long-run restrictions.

Instead, these approaches require that the structural shocks are mutually indepen-

dent and at most one shock is allowed to be Gaussian. Intuitively, non-Gaussian

shocks do contain information in moments beyond the variance, which allow to

identify the simultaneous interaction. In a short application, Lanne et al. (2017)

use a data-driven identification approach imposing non-Gaussian and independent

shocks to estimate the interdependence of monetary policy and the stock mar-

ket. The authors find that an unexpected tightening of monetary policy has an

immediate negative impact on financial conditions. However, they are unable to

label a stock market shock. Therefore, it again remains unclear how stock market

shocks influence monetary policy. We show later on that a major problem with

this approach is that it becomes increasingly less useful in larger applications, as

the precision of the estimates declines tremendously in that case. A completely

unrestricted identification approach is thus possible, but may result in a loss of

insight about the effect the structural shocks have on the observed variables the

more control variables are included in the SVAR. In this paper we want to include

a set of further controls like output, investment and inflation to have a closer look

on the implications of monetary policy and stock market shocks and we show that

in this case an approach completely relying on higher moments yields broad con-

fidence bands, which do not allow to draw insightful conclusions about the shock

effects.

To sum up, the commonly used short- and long-run restrictions regarding the inter-

action of monetary policy and the stock market have implications on the underlying

data generating process. Until now, there is no consensus about which theoretical

model is correct and the estimation should not depend on an a priori restriction

favoring one or another model, but rather the data should be able to decide, which

model fits the data best. On the other side, there are identification approaches
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that do not rely on short- or long-run restrictions, but they are either not able to

be generalized to a broader macroeconomic setup or become less feasible the more

variables are included into the VAR. Ideally, the SVAR estimator should allow to

factor in a priori restrictions that one is certain about, but also allow a data-driven

identification, if one is not certain about the underlying theory. In the following

section we propose an estimator that fulfills these criteria.

4.3 A partly recursive, partly non-Gaussian SVAR estima-

tor

A non-Gaussian SVAR with independent shocks can be estimated based on restric-

tions governing the interaction of the variables or based on information contained

in moments beyond the variance and without any assumptions on the interaction

of the variables. At first glance, in a non-Gaussian SVAR and from an asymptotic

point of view, the traditional identification approach based on restrictions appears

to be unnecessarily restrictive. However, we show that in a small sample the per-

formance of a data-driven estimator based on non-Gaussianity quickly deteriorates

with an increasing model size, while the performance of a restriction based estima-

tor is less affected by the model and sample size. Moreover, the poor small sample

performance then might lead to highly imprecise estimates of the structural impulse

responses that make it difficult to label the resulting structural shocks, as the SVAR

estimator based on the non-Gaussianity of the structural shocks is only identified

up to labeling. Another caveat against the data-driven identification approach is

that there might be more than one Gaussian structural shock, which makes the

solely data-driven approach invalid. However, in macroeconomic applications, one

can oftentimes derive at least some credible short-run zero restrictions based on

economic theory, one just cannot derive sufficiently many restrictions to fully iden-

tify the SVAR based on second moments and the researcher is forced to rely on

additional, less credible restrictions or to use an unreliable data-driven estimator.

The estimator proposed in this section combines the traditional restriction based

approach with the more recently developed data-driven approach based on non-

Gaussianity. Our estimator allows the researcher to rely on recursiveness restric-

tions if possible and to be agnostic on the interaction of the variables and relying

on data-driven identification when necessary. In particular, the proposed estimator

allows to order some, but not all, shocks recursively. While the impact of the recur-

sive shocks is estimated based on second moments, the impact of the non-recursive
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shocks is estimated based on non-Gaussianity. We show that in comparison to

an unrestricted estimator solely based on non-Gaussian and independent shocks,

exploiting the partly-recursive structure

i) improves the finite sample performance of the estimator,

ii) reduces the burden of labeling the shocks and

iii) relaxes the non-Gaussianity and independence assumptions, where they are

not applicable.

For that matter we believe the proposed estimator is dominant to a solely data-

driven or solely restriction based approach and is a useful addition to the econo-

metrician’s toolbox. Additionally it allows us to get a deeper insight regarding the

effect of monetary policy and stock market shocks on the nominal interest rate and

stock prices.

4.3.1 Derivation of the estimator

Consider a partly-recursive SVAR, meaning there exists a subset ofm ∈ N variables

within a full set of observables n in an SVAR, so 0 ≤ m ≤ n, for which the matrix B

that translates structural shocks into the reduced form errors according to equation

(4.13) reads

B =




b11 0 . . . 0
...

. . . . . .
...

bm1 . . . bmm 0 . . . 0

bm+1,1
. . . bm+1,m bm+1,m+1 bm+1,n

...
...

...

bn1 . . . bnm bn,m+1 bnn




. (4.14)

Therefore, the first m variables are ordered recursively, meaning they cannot con-

temporaneously be influenced by structural shocks in rows ordered below. However,

the last n − m variables are not ordered recursively and can contemporaneously

be influenced by all structural shocks. Since the matrix B is only partly-recursive,

it cannot be identified solely by second moments. However, the partly-recursive

structure can be combined with estimators based on independent and non-Gaussian

shocks.
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The partly-recursive SVAR can be estimated in three steps. For simplicity, consider

an SVAR with four variables and the following partly-recursive structure




u1

u2

u3

u4



=




b11 0 0 0

b21 b22 0 0

b31 b32 b33 b34

b41 b42 b43 b44







ε1

ε2

ε3

ε4



. (4.15)

The recursive part can be written as

[
u1

u2

]
=

[
b11 0

b21 b22

][
ε1

ε2

]
, (4.16)

which is a simple recursive SVAR and can be identified and estimated based on

second moments (e.g. by applying the Cholesky decomposition to the variance-

covariance matrix of the reduced form shocks, see Kilian and Lütkepohl (2017)).

The non-recursive part can be written as

[
u3

u4

]
=

[
b31 b32

b41 b42

][
ε1

ε2

]
+

[
ν3

ν4

]
, (4.17)

with

[
ν3

ν4

]
=

[
b33 b34

b43 b44

][
ε3

ε4

]
. (4.18)

Using the estimated structural shocks ε̂1 and ε̂2 from the first step allows to estimate

the lower-left block of B in equation (4.17) by OLS. The residuals ν in equation

(4.17) represent the variation in u3 and u4, which is unexplained by the structural

shocks in the recursive block and can be explained by the shocks in the non-recursive

block with equation (4.18), which yields a non-recursive SVAR. The structural

shocks of the non-recursive block are globally identified up to labeling if the shocks

of the block are mutually independent and at most one shock is Gaussian. The

non-recursive lower-right block of B can then be estimated by an estimator based

on higher moments of non-Gaussian and independent shocks, see e.g. Lanne et al.

(2017), Gouriéroux et al. (2017), Lanne and Luoto (2021) or Keweloh (2019).

If the SVAR is only block recursive, such that there exists a subset of m ∈ N
variables within a full set of observables n in an SVAR, so 0 ≤ m ≤ n, for which the

matrix B that translates structural shocks into the reduced form errors according
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to equation (4.13) reads

B =




b11 ... bm1 0 . . . 0
...

. . . . . .
...

...

bm1 . . . bmm 0 . . . 0

bm+1,1
. . . bm+1,m bm+1,m+1 bm+1,n

...
...

...

bn1 . . . bnm bn,m+1 bnn




, (4.19)

the approach proposed above yields inconsistent estimates for the upper-left and

lower-left block of B, but remains consistent for the lower-right block4.

The partly recursive, partly non-Gaussian estimator can also be calculated in a sin-

gle step. For example, a partly-recursive version of the GMM estimator proposed in

Keweloh (2019) can be obtained by including the second-order moment conditions

of all shocks and the higher-order moment conditions associated with the shocks

in the non-recursive block. Some estimators based on non-Gaussianity rely on an

initial whitening step, see e.g. the PML estimator proposed in Gouriéroux et al.

(2017) or the whitened GMM estimators proposed in Keweloh (2019). In the pre-

liminary whitening step, the reduced form shocks are transformed into uncorrelated

shocks with unit variance and in the second step, the optimization is performed

over orthogonal matrices, which correspond to rotations of the transformed reduced

form shocks5. Whitening is equivalent to an optimization subject to the constraint

that the estimated structural shocks are uncorrelated with unit variance in the

given sample, compare Keweloh (2019). However, in the partly-recursive SVAR

defined in equation (4.14), the first m columns of B are uniquely determined by

the whitening constraint, imposing that the estimated structural shocks have to

4Falsely imposing a recursive order in equation (4.16) yields inconsistent estimates of the
upper-left block of B. Additionally, using the shocks of the first step, here ε̂1 and ε̂2, to estimate
equation (4.17) will also yield inconsistent estimates of the lower-left block of B. However, if the
shocks in the non-recursive block, here ε3 and ε4, have no simultaneous impact on the variables in
the first block, the shocks ε̂1 and ε̂2 obtained from the first step are equal to a linear combination
of the true shocks ε1 and ε2. Therefore, the residuals ν in equation (4.17) still represent the
variation in u3 and u4 which is unexplained by the structural shocks in the recursive block and
hence, the non-recursive SVAR in equation (4.18) remains valid. The proposed estimator thus
allows to identify and consistently estimate the impact of a non-recursive block of variables, as
long as equation (4.19) holds, meaning that all the shocks in the second and non-recursive block
have no simultaneous impact on the variables in the first block of variables.

5Optimizing over orthogonal matrices is computationally simple, since it can be pulled back
to an optimization problem over the euclidean space, see Lezcano-Casado and Mart́ınez-Rubio
(2019). In Appendix 4.6 we propose a similar transformation for the optimization problem over
orthogonal matrices with partly-recursive constraints.
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be uncorrelated with unit variance. Therefore, a whitened estimator with partly-

recursive constraints by definition only relies on second moments to identify and

estimate the impact of the shocks in the recursive block, see Appendix 4.6 for more

details.

Exploiting the partly-recursive structure yields several advantages compared to

an unrestricted estimator solely identified by independence and non-Gaussianity.

First, the Monte Carlo study in section 4.3.2 shows that exploiting the partly-

recursive order and thus decreasing the dependence of the estimator on higher

moments leads to an increase of the small sample performance of the estimator.

Second, every identification approach requires to impose an a priori structure. In

particular, if no restrictions on the interaction of the variables are imposed, the

researcher has to impose that all shocks are independent and at most one shock

is allowed to be Gaussian. Sometimes there is clear evidence in favor of non-

Gaussianity, as for example in the case of financial shocks, but sometimes there

is not. For instance it is unclear if inflation shocks are Gaussian or not. By

moving the inflation shock into the recursive block, we do not need to impose

any non-Gaussianity assumptions on the inflation shock and instead can rely on

the standard argument of rigid prices. Third, a data-driven identification scheme

based only on non-Gaussian and independent shocks only identifies the shocks up

to labeling. Therefore, the researcher has to decide, which impulse response belongs

to which shock. The task of labeling the shocks becomes increasingly difficult the

more shocks are identified by this procedure, especially if the impulse responses

of the variables are quite similar with respect to two or more shocks. Imposing a

partly-recursive structure alleviates this burden on the econometrician, since the

shocks in the recursive block are already labeled by the identifying assumptions of

the partly-recursive order.

In summary, we propose an estimator for partly recursive, partly non-Gaussian

SVAR models. Exploiting the partly-recursive structure allows to relax the inde-

pendence and non-Gaussianity assumptions, it decreases the dependence on higher

moments and it simplifies the task of labeling the estimated shocks. Consequently,

our estimator poses as a compromise between a data-driven and restriction-based

estimator, taking the best from both worlds. It allows to be agnostic about the

interaction between variables, when there is no clear insight about the underlying

mechanisms, but also does not discard useful information, when they are available.

Furthermore, it also reduces the burden on the labeling task and allows for the in-

clusion of a broader set of control variables than standard data-driven approaches.
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4.3.2 Finite sample performance

In the following Monte Carlo study, we show that data-driven estimators based on

non-Gaussianity suffer from a curse of dimensionality, i.e. the bias and variance

increase quickly with an increasing model size and a decreasing sample size. How-

ever, we show that exploiting the partly-recursive structure can stop the curse of

dimensionality.

We simulate a partly-recursive SVAR with n = 2 and n = 4 variables. The struc-

tural shocks are drawn from a t-distribution with seven degrees of freedom6 and

the mixing matrices B are given by

B =

[
1 0

0.5 1

]
and B =




1 0 0 0

0.5 1 0 0

0.5 0.5 1 0

0.5 0.5 0.5 1



. (4.20)

The Monte Carlo study analyzes the impact of imposing a partly-recursive order

on the PML estimator proposed by Gouriéroux et al. (2017), where the shocks have

been correctly specified as t-distributed shocks with seven degrees of freedom. In

the small SVAR with n = 2 we impose no recursive order. In the large SVAR

with n = 4 one estimator is calculated without imposing a recursive order and a

second estimator is estimated, which uses the restriction that the first two shocks

are ordered recursively.

Table 4.1 shows the mean and standard deviation of each estimated element of

B depending on the model size n, the number of observations T and the choice

of the estimator. The simulation shows how the performance of estimates based

entirely on non-Gaussianity decreases with an increasing model size, as in the sec-

ond column the standard deviations of the estimated elements of the B matrix

are comparably high. Moreover, we find that this curse of dimensionality is more

pronounced in smaller samples, as the standard deviations of the estimates declines

with an increasing number of observations. For instance comparing the standard

deviation for the 4 variable case in the second column with 150 and 5000 observa-

tions, one can see that the estimated standard deviations get approximately halved.

Therefore, the simulation illustrates how in a typical macroeconomic application,

which rarely contains more than a few hundred observations, data-driven estimates

6The shocks have been normalized to unit variance by multiplying each shock with
1/
√
(v/(v − 2)) and v = 7.
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Table 4.1: Finite sample performance of the SVAR estimator depending on model
size and number of observations

n = 2 n = 4 n = 4
PML PML partly-recursive PML

T = 150



0.97
(1.37)

0.0
(6.7)

0.48
(7.26)

0.97
(3.0)







0.92
(2.08)

0.01
(6.81)

0.01
(6.79)

−0.0
(7.29)

0.46
(7.55)

0.92
(3.76)

0.01
(8.09)

−0.0
(8.95)

0.46
(9.12)

0.47
(9.66)

0.92
(5.48)

−0.0
(10.1)

0.46
(11.17)

0.47
(12.02)

0.46
(12.1)

0.9
(8.57)







1.0
(0.94)

0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

0.5
(1.28)

0.99
(0.95)

0.0
(0.0)

0.0
(0.0)

0.5
(1.56)

0.5
(1.23)

0.96
(1.35)

−0.01
(6.96)

0.5
(1.78)

0.5
(1.48)

0.49
(7.36)

0.96
(3.15)




T = 500



0.99
(1.1)

0.0
(5.87)

0.5
(6.22)

0.99
(2.46)







0.98
(1.47)

0.0
(6.32)

−0.0
(6.4)

0.0
(6.32)

0.49
(6.65)

0.98
(3.12)

−0.0
(7.83)

0.0
(8.01)

0.49
(8.32)

0.49
(8.12)

0.98
(4.56)

−0.0
(8.91)

0.49
(9.58)

0.49
(10.16)

0.49
(9.43)

0.98
(6.21)







1.0
(0.97)

0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

0.5
(1.23)

1.0
(1.01)

0.0
(0.0)

0.0
(0.0)

0.5
(1.46)

0.5
(1.27)

0.99
(1.12)

−0.0
(5.68)

0.5
(1.72)

0.5
(1.47)

0.5
(5.93)

0.99
(2.61)




T = 5000



1.0
(1.0)

0.0
(4.57)

0.5
(4.8)

1.0
(2.17)







1.0
(0.98)

0.0
(4.68)

0.0
(4.55)

0.0
(4.41)

0.5
(4.98)

1.0
(2.18)

0.0
(5.67)

0.0
(5.65)

0.5
(5.88)

0.5
(5.95)

1.0
(3.34)

0.0
(6.79)

0.5
(6.89)

0.5
(6.9)

0.5
(6.95)

1.0
(4.53)







1.0
(0.96)

0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

0.5
(1.24)

1.0
(0.98)

0.0
(0.0)

0.0
(0.0)

0.5
(1.49)

0.5
(1.21)

1.0
(1.01)

0.0
(4.47)

0.5
(1.68)

0.5
(1.5)

0.5
(4.66)

1.0
(2.17)




Monte Carlo simulation with sample sizes 150, 500, and 5000 each with 5000 iterations. The
simulated SVAR has n = 2 or n = 4 variables and the diagonal of the mixing matrix B is equal to
1, the lower-left triangular of B is equal to 0.5 and the upper-right triangular of B is equal to 0.
The structural shocks are drawn from a t-distribution with v = 7 degrees of freedom and have been
normalized to unit variance shocks by multiplying each shock with 1/

√
(v/(v − 2)). The SVAR

is estimated by the PML estimator proposed by Gouriéroux et al. (2017), where the shocks have
been correctly specified as t-distributed shocks with seven degrees of freedom. The last column
shows the PML estimator with the restriction that the first two shocks are ordered recursively.
The table shows the mean of b̂ij and in parentheses the standard deviation of

√
T (b̂ij − bij) of all

estimated elements b̂ij .

based on non-Gaussianity become less reliable the more variables and thus shocks

the SVAR contains. However, the simulation also shows that exploiting the (cor-

rect) partly-recursive structure stops the deterioration of the performance induced

by a larger model and a smaller sample. We conclude that discarding any avail-

able information comes with the cost of worse small sample performance, which

reduces the usefulness and conclusiveness of the estimation. In the larger SVAR

with n = 4 variables, the first two columns of the partly-recursive PML estimator

for the matrix B are fixed by the whitening step as explained before and are thus
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entirely determined by second moments7 and only the unrestricted elements of the

last two columns depend on higher moments. However, these unrestricted elements

perform very similar to the estimates of the small model with n = 2. Therefore,

the simulation shows that including a priori information on the recursive order

can break the curse of dimensionality of the data-driven estimator based on non-

Gaussianity. For example comparing the standard deviations for the 4 variable case

and 150 observations concerning the fully data-driven and partly-recursive SVAR

estimator (first row, second and third column of table 4.1) shows that exploiting

the partly-recursive structure leads to an increase in accuracy by a factor up to 12

for the freely estimated elements of the matrix B in our simulation.

In macroeconomic applications, one oftentimes faces relatively large models but

only small samples with at best a few hundred observations. In this case, purely

data-driven estimates based on non-Gaussianity become volatile and in a given ap-

plication it can become difficult to draw any conclusions on the interaction of the

variables or to even label the shocks. However, econometricians have put much work

into deriving and defending restrictions on the interaction of macroeconomic vari-

ables and the simulation shows, how including traditional zero restrictions increases

the finite sample performance of a data-driven estimator based on non-Gaussianity.

Therefore, we argue that in a given application, the researcher should include re-

strictions when possible and rely on a data-driven estimation when necessary.

4.4 The interdependence of monetary policy and stock mar-

kets in U.S. data

In this section, we apply the proposed estimator to analyze the effect of monetary

policy and stock market shocks on a set of macroeconomic variables. Our SVAR

contains a first block of recursively ordered variables, in particular output growth,

investment growth and inflation, and a second block consisting of stock returns

and the Federal Funds Rate, where we do not restrict the short- or long-run effect

of the structural monetary policy and stock market shock in any way. We first

apply our partly-recursive SVAR estimator and impose that the first block is or-

dered recursively, however, the second block containing the monetary policy and

7The first two columns of the unrestricted PML estimator depend on higher moments. Com-
paring the first two columns of the unrestricted and partly-recursive estimator shows the possible
performance gains of decreasing the dependence of the estimator on higher moments. However,
note that this difference is driven by the degree of non-Gaussianity of the shocks and more or less
Gaussian shocks would result in a smaller or larger difference.
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stock market shock remains unrestricted. Afterwards, we apply an unrestricted,

purely data-driven estimator, to check on the validity of our recursive ordering for

the first block of variables. Both estimators indicate that a tightening of monetary

policy leads to an immediate and likely permanent decrease in stock prices, while

a positive stock market shock leads to an immediate increase in interest rates. Ad-

ditionally, the unrestricted estimation indicates that the macroeconomic variables

do not simultaneously respond to stock market and monetary policy shocks and

hence it supports the partly-recursive order. However, the unrestricted and purely

data-driven estimation leads to large confidence intervals and the dynamics, which

potentially explain the interaction of monetary policy and the stock market, remain

hidden. In contrast to that, the partly-recursive estimator yields smaller confidence

bands and we find that a tightening of monetary policy is followed by a recession,

which explains the decrease in stock returns, while a stock market shock behaves

equivalent to a news shock and indicates a business cycle expansion with an increase

in output and inflation, which explains the response of monetary policy.

We consider an SVAR in five variables and quarterly U.S. data from 1983Q1 to

2019Q1 of the form




yt

It

πt

it

st



= α + γt+

p∑

i=1

Ai




yt−i

It−i

πt−i

it−i

st−i



+


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t

uI
t

uπ
t

ui
t

us
t



, (4.21)

where y denotes output growth, I investment growth, π the inflation rate, i the

federal funds rate and s real stock returns8. Moreover, we set p = 2 as suggested

by the Akaike information criterion. The linear time trend t is added to catch an

eventual long-term decline in the interest rate as discussed by Carvalho et al. (2016).

We choose a specification in growth rates to remain close to Bjørnland and Leitemo

(2009) or Kontonikas and Zekaite (2018) in order to have a better comparability

between their results and ours and to check on the validity of a potential long-run

8The inflation rate is defined as the quarter to quarter growth rate in the quarterly chain-type
GDP price index retrieved from the FRED. The GDP growth rate is given by the quarterly log-
difference of real GDP retrieved from the FRED. Real investment growth is given by the quarterly
growth rate of real gross private domestic investment obtained from the FRED. The nominal
interest rate is defined as the Federal Funds Rate (FFR), where the effective FFR (retrieved
from FRED) is replaced by the shadow FFR provided by Wu and Xia (2016) for the Zero Lower
Bound observations during the Great Recession. Stock returns are defined as the quarterly log-
difference in real stock prices, where real stock prices are given by the S&P 500 index (retrieved
from macrotrends.net) divided by the chain-type GDP price index.
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constraint on the effect of monetary policy shocks on stock prices, as the validity

of a long-run restriction requires the cumulative growth effect to equal zero.

Appendix 4.7 contains multiple robustness checks covering the exclusion of the time

trend, inclusion of further variables, exclusion of the financial crisis starting in 2008,

different lag structures, estimating a specification using an industrial production

index for output as in Bjørnland and Leitemo (2009) or using a different non-

Gaussian estimator. Our main results remain unchanged: Stock prices and the

nominal interest rate both react immediately to monetary policy and stock market

shocks, indicating that these variables cannot be ordered recursively. However,

across specifications we cannot fully reject the long-run neutrality assumption, but

also do not find much evidence for its validity. In consequence, we deem our new

estimator as a more reliable tool to analyze the interrelationship between stock

markets and monetary policy.

4.4.1 Partly-recursive estimation

We first assume that real investment growth, real output growth and inflation are

ordered recursively in a first block of variables and behave sluggishly, meaning they

cannot react to shocks to variables ordered below and especially not to monetary

policy or stock market shocks within the same quarter. For instance the seminal

paper of Stock and Watson (2001) assumes that inflation is contemporaneously

unaffected by surprise changes in the nominal interest rate based on a Granger

causality analysis. With a rigid labor market as discussed in Mortensen and Pis-

sarides (1994), employment is unaffected by monetary policy and capital as well

as productivity are predetermined stock variables, so in consequence also output

should not be affected contemporaneously. Furthermore, economic theory has come

up with ideas like habit formation in consumption, varying capital utilization and

investment adjustment costs that induce sluggish responses of consumption and

investment. Regarding shocks to the stock market, Beaudry and Portier (2006)

assume investment and output to respond only with a one quarter lag, as news

shocks show up immediately in stock prices, but need time to manifest in other

economic variables. Given this empirical evidence and theoretic deliberations, we

feel confident to in a first step put output growth, investment growth and inflation

into the recursive block. But, again, we check on the validity of these assumptions

afterwards. Interest rates and stock returns are, however, unrestricted and can

contemporaneously respond to all shocks. Therefore, the simultaneous relationship
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between reduced form errors and structural shocks is given by




uy
t

uI
t

uπ
t

ui
t

us
t



=




b11 0 0 0 0

b21 b22 0 0 0

b31 b32 b33 0 0

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55





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εyt

εIt

επt

εst

εit



. (4.22)

Again, note that the zero restrictions on the elements b12, b13 and b23 are not

necessary for the identification of the non-recursive block. We still impose them

here, as in the appendix we check on the properties of the remaining shock impulse

responses and we find that also the recursively identified output, investment and

inflation shocks have the expected impact on the observed variables, for a further

discussion see the appendix. The estimator proposed in section 4.3 allows to identify

the impact of the monetary policy shock εit and the stock market shock εst without

committing to any further restrictions, if the monetary policy and stock market

shocks are independent and at least one of the two shocks is non-Gaussian. Non-

Gaussianity is a commonly found feature of financial variables, see e.g. Mittnik

et al. (2000) or Kim and White (2004), so there is evidence that stock market

shocks are likely to be non-Gaussian, which would be sufficient for our identification

approach here. Table 4.2 shows the skewness, kurtosis and the Jarque-Bera test

(H0: shocks are normally distributed) for normality of the reduced form shocks.

As becomes evident, we find 3 of the 5 reduced form errors to be non-Gaussian at

Table 4.2: Non-Gaussianity reduced form

uy uI uπ ui us

Skewness −0.73 0.10 −0.03 −0.58 −1.13
Kurtosis 5.13 3.75 2.84 4.33 11.09
JB-Test 0.00 0.16 0.92 0.00 0.00

Skewness, kurtosis and the p-value of the Jarque-Bera test for normality (H0: shock is normally
distributed) of the reduced form shocks.

standard significance levels, which indicates that there has to be at least some non-

Gaussianity in the structural shocks, as a combination of only Gaussian structural

shocks would result in Gaussian reduced form errors. In many applications, the

researcher is only interested in some structural shocks. In this case, our proposed

partly-recursive identification approach is robust to various misspecifications, in

fact one only needs a block-recursive structure, where the variables in a first block

are not influenced by shocks in a second block. For simplicity, consider the following
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SVAR with two blocks

[
up1

up2

]
=

[
B11 0

B21 B22

][
εp1

εp2

]
, ε̃(X) = X−1u, and X =

[
X11 0

X21 X22

]
, (4.23)

where up1 and up2 contain the reduced form shocks of the first and second block,

εp1 and εp2 contain the structural shocks of the first and second block, and B11,

B21, B22, X11, X21, and X22 are the corresponding blocks of the matrices B and

X. For any invertible X satisfying the block-recursive structure and the covariance

conditions 0 = E [ε̃p2(X)ε̃p1(X)′], which ensure that the unmixed innovations of

block one and two are uncorrelated, it holds that the unmixed innovations of the

second block satisfy

ε̃p2(X) = X−1
22 B22εp2 , (4.24)

meaning they are only a mixture of structural shocks from the second block.9 There-

fore, if the covariance conditions 0 = E [ε̃p2(X)ε̃p1(X)′] are satisfied, the moment

conditions containing only unmixed innovations of the second block identify the

shocks in the second block and their impact X22 = B22. Consequently, identifica-

tion of the shocks in a given block does not depend on whether the shocks in the

previous block are identified, as long as the shocks are uncorrelated with the shocks

in the previous block. Table 4.3 shows the skewness, kurtosis and the Jarque-Bera

test for normality of the estimated structural shocks εs and εi: We find strong

Table 4.3: Non-Gaussianity of estimated structural shocks

εs εi

Skewness −0.547 −0.612
Kurtosis 4.023 14.692
JB-Test 0.001 0.00

Skewness, kurtosis and the p-value of the Jarque-Bera test for normality of the estimated struc-
tural shocks.

evidence that both of the estimated structural shocks in the second block are non-

Gaussian, which is sufficient for an identification of the second block shocks solely

based on moments beyond the variance. We conclude that our estimator is able

to consistently estimate at least the structural monetary policy and stock market

9To verify this, note that with the block-recursive structure and the partitioned inverse it
holds that ε̃p1(X) = X−1

11 B11εp1 and ε̃p2(X) = −X−1
22 X21X

−1
11 B11εp1 + X−1

22 (B21εp1 +B22εp2).
With E

[
εp1

ε′p1

]
= I and E[εp2

ε′p1
] = 0, the condition 0 = E [ε̃p2

(X)ε̃p1
(X)′] implies 0 =

−X−1
22

(
B21 −X21X

−1
11 B11

)
B′

11(X
−1
11 )′, which only holds if X21 = B21B

−1
11 X11. Plugging in the

condition for X21 yields ε̃p2(X) = X−1
22 B22εp2 .
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shock. Furthermore, if the assumption of a partly-recursive order in equation (4.22)

is correct, the non-Gaussianity of the structural monetary policy and stock market

shock does not affect the reduced form shocks in the first block, which is consistent

with the result reported in table 4.2 that there is less evidenced non-Gaussianity

in the first three reduced form errors. The results here cast some doubt on a fully

data-driven identification approach, as we cannot exclude for sure that more than

one structural shock in the first block is Gaussian. However, our partly-recursive

identification scheme is able to deal with this situation, as the block with less ev-

idenced non-Gaussianity is put into the recursive block that does not depend on

the non-Gaussianity assumption.

The simultaneous interaction of the non-recursive block containing the monetary

policy and stock market shock is then estimated by the fast SVAR-GMM estimator

proposed in Keweloh (2019). The estimated B-matrix is given by

B̂ =




0.49 0 0 0 0

1.74 1.82 0 0 0

0 0 0.05 0 0

1.44 0.51 −0.34 5.51 −1.99

0.1 0.01 0.07 0.09 0.36




. (4.25)

Figure 4.2 shows the corresponding impulse response functions (IRF), where the

stock market shock refers to a one standard deviation shock, which implies a 5.51%

increase in stock returns and the monetary policy shock refers to a one standard

deviation shock, which induces a 0.36% increase of the nominal interest rate. The

responses of stock returns and real GDP growth are integrated to show the as-

sociated level effects. Exploiting the partly-recursive order makes labeling of the

two structural shocks identified by the data-driven approach trivial. There is only

one of the last two shocks, which leads to an increase of the interest rate together

with a decrease of output and investment as well as a medium-run decrease of in-

flation, which is what one would expect from a classical contractionary monetary

policy shock. The other shock in the non-recursive block is accordingly labeled as

the stock market shock. Again the behavior of the associated impulse responses

fits the theoretical expectations regarding a stock market shock: The boom at the

stock market induces a positive reaction of output, investment and inflation, which

fits the finding of Beaudry and Portier (2006) that a shock to the stock market

induces business cycle comovement. The central bank reacts with an increase in

the FFR, which fits the assumption of the central bank aiming to reduce business
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Figure 4.2: Impulse responses to shocks (in this case a one standard deviation
shock) in stock returns (s) and monetary policy (i). I denotes investment growth,
y output growth and π the inflation rate. Confidence bands are 68% and 80%
bootstrap bands. 5000 replications are used in the bootstrap algorithm. The
columns y, I and s show the cumulative responses.

cycle fluctuations.

We find that both, stock returns and the nominal interest rate, react contempo-

raneously to the monetary policy and stock market shocks. In particular, a one

standard deviation stock market shock leads to an interest rate increase of about

nearly 0.15 percentage points within the first five quarters. On the other side, a

one standard deviation monetary policy shock leads to an immediate decrease of

stock prices by about 2% on impact. Consistent with the news literature around

Beaudry and Portier (2006), we find that a positive stock market shock is followed

by a future business cycle expansion with an increase in the real output and invest-

ment growth rate and a positive inflation rate. Therefore, even if the central bank

is not interested in stock prices in the first place, a stock market shock can indicate

a future business cycle expansion with inflationary pressure, which explains the

estimated positive response of the interest rate to the stock market shock. Addi-

tionally, we find that a contractionary monetary policy shock induces a recession

with a decrease in real output and investment growth, as well as a negative in-

flation reaction at least in the medium run. The future recession and an efficient

stock market, which immediately incorporates all available information, then ex-

plains the initial negative response of stock prices to the monetary policy shock.

We find that the inflation rate has a short, insignificant and small, but still unex-
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pectedly positive reaction to a contractionary monetary policy shock on impact.

This price puzzle, however, is not unique to our approach, but commonly known

to the VAR literature, where it also appears in Bjørnland and Leitemo (2009) or

Moran and Queralto (2018). Therefore, we do not consider the occurrence of a

small insignificant price puzzle to be strong evidence against our case.

Unlike Bjørnland and Leitemo (2009) we do not impose long-run neutrality of

monetary policy with respect to stock prices. Based on the point estimate we

do not find long-run neutrality of monetary policy concerning stock prices, but

cannot reject it considering the 80% and 68% confidence bands retrieved from

bootstrap resampling. However, a long-run zero effect just lies at the edge of a broad

confidence band, so there is no strong evidence for its validity either. Furthermore,

we find that a contractionary monetary policy shock leads to a permanently lower

real output and real investment level. Thus, according to our simple model from

section 4.2, our data-driven approach would actually favor the endogenous growth

and not the neoclassical model. This is in line with the recent evidence provided by

Moran and Queralto (2018) or Bianchi et al. (2019), who find that monetary policy

might be non-neutral in the long run. In the appendix, we show that we are not

able to find any robust and clear evidence that would support long-run neutrality

in any of our robustness checks.

4.4.2 Unrestricted estimation

We now check on the recursiveness assumption for the variables in the first block.

Therefore, we use no restrictions on the simultaneous interaction in the first block

and allow all variables to interact simultaneously. The estimation of the simultane-

ous interaction is purely data-driven and based on the fast SVAR-GMM estimator

proposed in Keweloh (2019). We focus on the interaction of monetary policy and

the stock market. The shocks have been labeled such that the monetary policy

shock εi is the shock with the highest correlation with the reduced form shock ui,

and the stock market shock εs is the shock with the highest correlation with the

reduced form shock us. The IRF shows that the shock labeled as the monetary

policy shock is the only shock that leads to an increase in the interest rate accom-

panied by a decrease in GDP, investment and a medium-run decrease in inflation,

which reinforces our labeling. We determine the labeling of a demand shock εd, an

investment specific shock εI and an inflation shock επ also based on the highest cor-

relation between reduced form errors and structural shocks (the correlation matrix

between reduced form errors and structural shocks can be found in the appendix).
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However, this labeling is to be taken with a grain of salt, as the conclusiveness

of an approach only relying on higher moments for identification with 5 variables

visibly deteriorates compared to the last section. For instance the first and fourth

row of the impulse responses show similar qualitative results, which are associated

with high uncertainty. So convincingly labeling a stock market shock and telling it

apart from a demand shock becomes difficult here, which is the same problem other

solely data-driven approaches face (see, e.g., Lanne et al. (2017)). This shows the

benefits of including additional restrictions on the short-run interaction between

variables from theory, if available, as it allows for more conclusive insights.

The estimated B-matrix is given by

B̂ =




0.44 0.19 −0.08 −0.04 −0.05

1.3 1.84 0.53 0.94 −0.32

0.01 −0.02 0.05 −0.01 0

2.48 −2.12 −1.38 4.38 −2.23

0.16 −0.01 0.06 0.07 0.34




. (4.26)

Figure 4.3 shows the IRFs (again to shocks of size one standard deviation on the

main diagonal). The unrestricted estimation confirms our finding on the interaction

Figure 4.3: Impulse responses to shocks to all variables in the unrestricted case.
Confidence bands are 68% and 80% bootstrap bands. 5000 replications are used in
the bootstrap algorithm. The columns I, y and s show the cumulative responses.

of monetary policy and the stock market:

I) A tightening of monetary policy induces a recession with a decrease in output,
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investment, inflation, and stock prices and

II) a positive stock market shock is accompanied by an immediate increase in

interest rates.

Turning to the validity of the recursivness assumption used in the partly-recursive

estimation, we find that investment, GDP and inflation do not have a significant si-

multaneous response to monetary policy and stock market shocks (only the response

of investment to stock market shocks is farther away from zero, but insignificant

considering the 80% and 68% confidence band). As also the qualitative and quan-

titative findings are very similar to the partly-recursive case, we do not see any

evidence against the correctness of our chosen identification approach.

Consistent with the finding in the Monte Carlo simulation in section 4.3.2, we find

that the confidence intervals are larger compared to the partly-recursive estimation

in section 4.4.1. In particular, a stock market shock appears to have almost no

significant impact on investment, GDP or inflation, thus making it difficult to

explain the response of the interest rate. The application illustrates, how a data-

driven approach can be combined with traditional zero restrictions to impose more

structure on the SVAR and thereby decrease the variance of the estimator and gain

deeper insights into the transmission of stock market and monetary policy shocks.

4.5 Conclusion

The present paper proposes an SVAR estimator that is partly recursive and partly

based on higher moments of non-Gaussian structural shocks, which generalizes be-

tween the traditional short- or long-run restriction based approaches and the more

recently developed data-driven identification based on non-Gaussianity. We show

that purely data-driven estimators based on non-Gaussian structural shocks suf-

fer from a curse of dimensionality in small samples and large models. Exploiting a

partly-recursive order for at least some variables, where it appears to be reasonable,

can break the curse of dimensionality and improve the finite sample performance.

The higher accuracy of the estimator yields narrower confidence bands that in turn

allow for more conclusive insights about the effects of monetary policy and stock

market shocks on stock returns and the nominal interest rate and an easier labeling

of the structural shocks identified by the data-driven identification. Furthermore,

as a fully data-driven identification approach becomes less and less useful the higher

the number of variables included in the SVAR, exploiting at least some ex ante re-
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strictions allows for larger VAR specifications and thus more controls that might

increase the validity of the results. In summary, our proposed estimator enables

the econometrician to drop ex ante restrictions on the shock effects where they are

questionable, but to increase precision by using short-run zero restrictions where

possible.

The estimator is then applied to analyze the impact of monetary policy shocks

on stock prices and of stock market shocks on monetary policy. We find that

contractionary monetary policy shocks have a contemporaneous negative impact

on stock prices, while stock market shocks have an on impact positive effect on the

nominal interest rate. Additionally, we find no strong evidence for the validity of the

long-run neutrality of monetary policy with respect to stock prices, which is used for

identification by the literature such as Bjørnland and Leitemo (2009) or Kontonikas

and Zekaite (2018), and is in line with recent findings of Moran and Queralto (2018)

and Bianchi et al. (2019), who find that monetary policy shocks are non-neutral in

the long run. We are, furthermore, able to reliably introduce more control variables

than fully data-driven approaches. We find that a monetary policy shock negatively

affects output and investment in the longer run and that they comove with stock

prices in the short and long run like predicted in standard theory, which further

increases our distrust concerning a long-run zero restriction. In this setup, where

both short- and long-run restrictions are questionable for the block of variables

consisting of stock returns and the nominal interest rate, the proposed estimator

allows to estimate the interaction of the stock market and monetary policy without

imposing any restrictions on the interaction of both variables. Furthermore, we

find that the effect of monetary policy and stock market shocks is reasonable and

in line with standard theory concerning the remaining variables, namely output,

investment and inflation. In a robustness check, we perform a fully data-driven

identification and find no evidence for the inappropriateness of the short-run zero

restrictions in the recursive block. However, the estimates are much less precise and

do not allow to draw many conclusions concerning the effects of monetary policy

and stock market shocks on the observed variables, our estimator of choice is thus

the partly-recursive one proposed in the present paper.

In summary, we conclude that finding a compromise between a restriction-based

and data-driven identification approach yields an estimator that neither relies on

too questionable assumptions nor has a too poor small sample performance. Thus,

we can perform a thorough analysis regarding the interdependence between stock

prices and monetary policy and support more recent findings that the longer-run
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implications of monetary policy should not be disregarded.

4.6 Appendix: White SVAR estimators with partly-recursive

constraints

Let Q(B, u) be the objective function of a non-Gaussian SVAR estimator. More-

over, define the unmixed innovation e(B) = B−1u. A whitened SVAR estimator

then requires that 1
T

∑T
t=1 et(B)e′t(B) = I, such that in a given sample the unmixed

innovations are mutually uncorrelated with unit variance.

Estimating a n dimensional SVAR with m partly-recursive constraints and T ob-

servations yields the following optimization problem

B̂ := argmin
B∈Rn×n

Q(B, u) (4.27)

s.t. bi,j = 0, for i < j and i ≤ m.

A whitened SVAR estimator has an additional constraint

B̂ := argmin
B∈Rn×n

Q(B, u) (4.28)

s.t. bi,j = 0, for i < j and i ≤ m (4.29)

1

T

T∑

t=1

et(B)e′t(B) = I. (4.30)

However, due to the whitening constraint (4.30) the optimization problem (4.28)

is difficult to solve numerically.

First, we ignore the partly-recursive constraint (4.29) and consider a white SVAR

estimator with the corresponding optimization problem

B̂ := argmin
B∈Rn×n

Q(B, u) (4.31)

s.t.
1

T

T∑

t=1

et(B)e′t(B) = I

The constrained optimization problem (4.31) can be transformed into an uncon-

strained optimization problem over orthogonal matrices. Let V V ′ = 1
T

∑T
t=1 utu

′
t

be the Cholesky decomposition of the sample variance-covariance matrix of the

reduced form shocks. For simplicity, we ignore the indeterminacy of sign and per-
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mutation. It holds that B̂ = V Ô with

Ô := argmin
O∈On×n

Q(V O, u), (4.32)

where On×n denotes the set of n × n dimensional orthogonal matrices. The opti-

mization problem over orthogonal matrices in equation (4.32) has no constraints

and can be pulled back to an optimization problem over the euclidean space, see

Lezcano-Casado and Mart́ınez-Rubio (2019). Therefore, let exp(·) denote the ma-

trix exponential function. Let s(·) be the function, which maps a vector into a

lower skew-symmetric matrix. It then holds that

Ô := argmin

θ∈R
n(n−1)

2

Q(VO(θ), u), (4.33)

where O(θ) = exp(s(θ)) maps the n(n−1)
2

dimensional vector θ into an orthogonal

matrix.

Similar to the case without the partly-recursive constraints, the optimization prob-

lem (4.28) with the partly-recursive constraints (4.29) can be transformed into an

optimization problem over orthogonal matrices such that B̂ = V Ô with

Ô := argmin
O∈On×n

Q(V O, u), (4.34)

s.t. (V O)i,j = 0, , for i < j and i ≤ m (4.35)

Let d = (n−m)(n−m−1)
2

and define the mapping between a d dimensional vector into

an orthogonal matrix, which preserves the partly-recursive constraint (4.35)

Om : Rd → On×n, θ 7−→
[
Im 0

0 exp(s(θ))

]
, (4.36)

where Im denotes and m dimensional identity matrix. The optimization problem

(4.34) can now be pulled back to an unconstrained optimization problem over the

euclidean space

Ô := argmin
θ∈Rd

Q(VOm(θ), u), (4.37)

which simplifies the numerical optimization problem.

We now show that in an SVAR with a whitening constraint, the first m columns of
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the B matrix and therefore the first m recursively ordered shocks are determined by

second moments due to the whitening constraint. Put differently, no information in

moments beyond the variance can affect the estimated impact of the first m recur-

sively ordered shocks, since it is entirely determined by the whitening constraint.

For simplicity, consider the four dimensional example with m = 2




u1

u2

u3

u4



=




b11 0 0 0

b21 b22 0 0

b31 b32 b33 b34

b41 b42 b43 b44







ε1

ε2

ε3

ε4



, (4.38)

which can be written as

[
u1

u2

]
=

[
b11 0

b21 b22

][
ε1

ε2

]
(4.39)

[
u3

u4

]
=

[
b31 b32

b41 b42

][
ε1

ε2

]
+

[
ν3

ν4

]
(4.40)

[
ν3

ν4

]
=

[
b33 b34

b43 b44

][
ε3

ε4

]
. (4.41)

In a whitened SVAR, the unmixed innovations have to satisfy the condition

1

T

T∑

t=1

et(B)e′t(B) = I. (4.42)

In particular, the matrix B has to satisfy

1

T

T∑

t=1

e1,t(B)e1,t(B) = 1 (4.43)

1

T

T∑

t=1

e2,t(B)e2,t(B) = 1 (4.44)

1

T

T∑

t=1

e1,t(B)e2,t(B) = 0. (4.45)

However, equation (4.39) is a recursive SVAR, which is uniquely determined by the

variance and covariance conditions (4.43)-(4.45). Therefore, in a whitened SVAR

the parameters b11, b21, and b22 and hence the first m estimated structural shocks,

here ê1 and ê2, are uniquely determined by second moments. Note that this solution
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is equal to the solution obtained by applying the Cholesky decomposition to the

variance covariance matrix of the reduced form shocks. Moreover, the whitening

constraint implies

1

T

T∑

t=1

ê1,tv3,t(B) = 0 (4.46)

1

T

T∑

t=1

ê2,tv3,t(B) = 0 (4.47)

1

T

T∑

t=1

ê1,tv4,t(B) = 0 (4.48)

1

T

T∑

t=1

ê2,tv4,t(B) = 0. (4.49)

Replacing ε1 and ε2 with ê1 and ê2 in equation (4.40) and exploiting the four

conditions (4.46)-(4.49) implies that the parameters b31, b32, b41, and b42 are again

uniquely determined by second moments. Therefore, the estimated impact of the

first m recursively ordered shocks is uniquely determined by second-order moment

conditions derived from the whitening constraint.

4.7 Appendix: Supplementary material and further robust-

ness checks

This section contains supplementary material and robustness checks for the ap-

plication presented in section 4.4. The estimated effect of the stock market and

monetary policy shock is found to be robust to all applied robustness checks.

Table 4.4 shows some descriptive statistics of the variables used in the SVAR.

Table 4.4: Descriptive statistics

Mean Median Mode Std. deviation Variance Skewness Kurtosis
y 0.71 0.74 −2.19 0.61 0.37 −0.83 3.46
I 1.1 0.96 −11.56 3.16 9.97 −0.28 2.3
π 2.28 2.09 0.27 0.87 0.76 0.36 −0.28
i 1.56 2.11 −26.45 6.5 42.25 −1.08 2.88
s 3.69 4.02 5.25 3.44 11.84 −0.03 −0.93

Table 4.5 shows the skewness, kurtosis and p-value of the Jarque-Bera test of all

estimated structural shocks in the non-recursive SVAR in section 4.4.2. Judging
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Table 4.5: Moments of estimated structural shocks (non-recursive SVAR)

εy εI επ εs εi

Skewness −1.0395 0.6256 −0.0878 −0.7813 −0.3616
Kurtosis 7.1174 4.0654 3.0879 5.2690 15.0522
JB-Test 0.00 0.01 0.891 0.00 0.00

Skewness, kurtosis and p-value of the Jarque-Bera test of all estimated structural shocks in the
non-recursive SVAR estimation in section 4.4.2.

by the p-values of the Jarque-Bera test, only for the structural inflation shock

επ Gaussianity cannot be rejected. Of course the results here depend on the as-

sumption that the structural shocks are correctly identified, thus that sufficient

non-Gaussianity is present within the true structural shocks. Hence, the results

here can only serve as a first hint, if the underlying assumptions hold and should

only be taken with a grain of salt. However, as at most one Gaussian shock is

allowed for the data-driven identification approach to work, there is no evidence

against taking the results of the fully data-driven approach serious and using it as

a check for the recursiveness assumption concerning the first block of variables.

Table 4.6 shows the correlation between the estimated structural shocks from the

non-recursive SVAR in section 4.4.2 and the reduced form shocks that we use to

label the structural shocks retrieved from the fully data-driven approach. As it

Table 4.6: Correlation of reduced form and estimated structural shocks

uy uI uπ us ui

εy 0.9 0.52 0.25 0.41 0.42
εI 0.39 0.73 −0.32 −0.35 −0.02
επ −0.16 0.21 0.9 −0.23 0.15
εs −0.09 0.37 −0.12 0.72 0.18
εi −0.09 −0.13 −0.07 −0.37 0.88

Correlation of estimated structural shocks and reduced form shocks from section 4.4.2 .

becomes evident, the strongest correlation between reduced form errors and struc-

tural shocks is found on the main diagonal, thus we label the fourth structural

shock as the stock market shock and the fifth one as the monetary policy shock.

Figure 4.4 shows the remaining set (the recursive block) of impulse responses es-

timated by the partly-recursive SVAR in section 4.4.2. As it becomes evident the

qualitative results of the point estimates are similar to the ones regularly found in

the literature. Judging by the point estimates, the qualitative results seem to be

reasonable: A shock on output growth in the first row increases output and invest-

ment as well as inflation and stock prices, while the central bank will react with

contractionary policy. An investment shock has no clear cut effect on output and
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Figure 4.4: Remaining impulse responses estimated by the partly-recursive SVAR
estimator. Responses are to structural shocks in output growth, investment growth
and inflation. Confidence bands are 68% and 80% bootstrap bands. 5000 repli-
cations are used in the bootstrap algorithm. The columns y, I and s show the
cumulative responses.

stock prices, leads to increasing investment an inflation, while the nominal interest

rate decreases. At last, an inflationary shock induces stagflation with decreasing

output, investment and stock prices, while inflation increases and the central bank

pursues contractionary policy to reduce inflation. None of this seems to be un-

reasonable, thus we see no evidence to have doubts concerning the results found

here.

We proceed by further checking on the robustness of the results presented in section

4.4. All robustness checks exploit the partly-recursive order described in equation

(4.22). First we replace output growth by the growth rate in the industrial pro-

duction index, which is used by Bjørnland and Leitemo (2009) due to its monthly

availability, in order to see if this affects our results in any way. Table 4.7 shows

the skewness, kurtosis and Jarque-Bera test results for the estimated structural

shocks concerning this specification. Again, we find no evidence against at least

one non-Gaussian shock in the non-recursive block. The estimated B-matrix is

given by

B̂ =




3.26 0 0 0 0

1.25 1.96 0 0 0

0 0 0.05 0 0

2.6 0.16 −0.29 5.32 −1.68

0.04 0.05 0.07 0.09 0.37




. (4.50)
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Table 4.7: Moments of estimated structural shocks (partly-recursive SVAR includ-
ing the industrial production index)

εs εi

Skewness −0.626 −1.102
Kurtosis 4.05 12.901
JB-Test 0.00 0.00

Skewness, kurtosis and p-value of the Jarque-Bera test of the estimated structural shocks in the
second block for the specification including the industrial production index.

As it can be seen from figure 4.5, the qualitative results from our main paper are

robust to this change of specification. However, now the confidence bands are a little

Figure 4.5: Impulse responses to shocks in stock returns and monetary policy with
the industrial production index instead of GDPs. The columns y, I and s show the
cumulative responses. Confidence bands are 68% and 80% bootstrap bands.

bit larger and the quantitative effects of monetary policy and stock market shocks

a bit weaker. Nevertheless, the long-run response of stock prices to a monetary

policy shock is associated with a high uncertainty. Therefore, even if the long-

run neutrality of monetary policy w.r.t. stock prices holds, estimates based on

long-run restrictions might be unreliable due to the volatile long-run response. In

consequence, we would still favor to not be reliant on long-run restrictions.

We now check if our results are dependent on our estimation technique for the non-

recursive block. Thus, we employ the PML10 estimator proposed by Gouriéroux

et al. (2017) to estimate the non-recursive block. Table 4.8 shows the estimated

10In contrast to our GMM based estimator that exploits the higher shock moments to construct
additional moment conditions, the PML estimator relies on constructing a pseudo maximum
likelihood function in order to estimate the elements of the B matrix.
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higher moments for the structural stock market and monetary policy shocks. As it

Table 4.8: Moments of estimated structural shocks (partly-recursive SVAR using
the PML estimator)

εs εi

Skewness −0.626 −0.494
Kurtosis 4.116 14.448
JB-Test 0.00 0.00

Skewness, kurtosis and p-value of the Jarque-Bera test of the estimated structural shocks in the
second block for the specification using the PML estimator.

can be seen, we find evidence for both structural shocks in the non-recursive block

to be non-Gaussian. The estimated B-matrix is given by

B̂ =




0.49 0 0 0 0

1.74 1.82 0 0 0

0 0 0.05 0 0

1.44 0.51 −0.34 5.28 −2.53

0.1 0.01 0.07 0.12 0.35




. (4.51)

Figure 4.6 shows the results. As it becomes evident, the change of the estimation

Figure 4.6: Impulse responses to shocks in stock returns and monetary policy
using the PML estimator (see Gouriéroux et al. (2017)) for the non-recursive part.
Confidence bands are 68% and 80% bootstrap bands. The columns y, I and s show
the cumulative responses.

technique does not change our results from section 4.4: The interest rate increases

in response to a stock market shock and stock prices immediately decrease after
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a monetary policy shock and stay permanently below the level without the shock,

though this finding is associated with high uncertainty.

Third, we increase the number of lags to p = 4. The information criterion used in

the main body of the paper relies on a normality assumption for the reduced form

residuals, while we need non-Gaussian shocks for the validity of our estimates, which

results in also the reduced form errors to be non-Gaussian. In consequence, the

assumption needed for identification meddles with the underlying assumptions of

the AIC. In order to check if there is any misspecification regarding our lag structure

that might possibly influence our results, we use a different lag specification as a

robustness check. Table 4.9 shows the skewness, kurtosis and Jarque-Bera test

results concerning the estimated structural shocks for this specification. Again,

Table 4.9: Moments of estimated structural shocks (partly-recursive SVAR includ-
ing 4 lags)

εs εi

Skewness −0.824 −0.396
Kurtosis 4.744 11.965
JB-Test 0.00 0.00

Skewness, kurtosis and p-value of the Jarque-Bera test of the estimated structural shocks from
the second block for the specification including 4 lags.

we find evidence that both of the structural shocks in the non-recursive block are

non-Gaussian, so the inclusion of more lags seems to not influence our identifying

assumption of non-Gaussianity in the second block of variables. The estimated

B-matrix is given by

B̂ =




0.47 0 0 0 0

1.77 1.64 0 0 0

0 0.01 0.05 0 0

1.22 0.66 −0.43 5.27 −2.13

0.09 0.04 0.04 0.09 0.33




. (4.52)

As becomes evident from Figure 4.7, the estimated simultaneous interaction is again

similar to our baseline specification. However, the confidence bands in this case are

quite broad and there is not much to conclude from the impulse response of stock

prices to a monetary policy shock regarding the long-run behavior. Consequently,

we cannot reject the long-run neutrality of monetary policy with respect to stock

prices, but on the other side there is not much evidence for it either, as due to the

broad confidence bands many other long-run outcomes are possible. As mentioned
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Figure 4.7: Impulse responses to shocks in stock returns and monetary policy with
a lag order of p = 4. Confidence bands are 68% and 80% bootstrap bands. The
columns y, I and s show the cumulative responses.

above, we still would rather like to be not reliant on the correctness of a long-run

zero restriction.

Fourth, we consider the inclusion of commodity price inflation (named πc), de-

fined as the logarithmic difference in the producer price index (also taken from

the FRED). For instance, Bjørnland and Leitemo (2009) argue that the inclusion

of commodity price inflation helps to reduce the price puzzle and thus should be

included into the SVAR specification. We assume that commodity price inflation

shocks can be identified recursively and are ordered third in the recursive block,

so commodity price inflation can react immediately to real output growth and in-

vestment growth, but not to inflation, stock market and monetary policy shocks.

Table 4.10 shows the skewness, kurtosis and Jarque-Bera test results for the es-

timated structural shocks in this specification, where we find strong evidence for

both structural shocks in the non-recursive block to be non-Gaussian. The esti-

Table 4.10: Moments of estimated structural shocks (partly-recursive SVAR in-
cluding commodity prices)

εs εi

Skewness −0.573 −0.755
Kurtosis 3.982 13.75
JB-Test 0.001 0.00

Skewness, kurtosis and p-value of the Jarque-Bera test of the estimated structural shocks from
the second block for the specification including commodity prices.
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mated B-matrix is given by

B̂ =




0.48 0 0 0 0 0

1.71 1.8 0 0 0 0

−0.02 0 0.09 0 0 0

0 0.01 0.01 0.05 0 0

1.48 0.48 −0.33 −0.29 5.47 −2.05

0.11 0.02 0 0.06 0.08 0.35




. (4.53)

Figure 4.8 shows the resulting IRFs. As it can be seen, the inclusion of commodity

Figure 4.8: Impulse responses to shocks in stock returns and monetary policy. Con-
fidence bands are 68% and 80% bootstrap bands. In addition to the price level,
real output growth rate, stock returns and nominal interest rate, the commodity
price inflation is included. The commodity price inflation shock is identified recur-
sively, where commodity price inflation is ordered third in the recursive block. The
columns y, I and s show the cumulative responses.

price inflation has no impact on the estimated interaction of monetary policy and

stock markets compared to section 4.4 and thus we omit commodity price inflation

from the main paper’s specification. The long-run neutrality of monetary policy

shocks with respect to real stock prices cannot be rejected based on the confidence

bands, but is only at the outer boundary of it, so we again conclude that we cannot

for sure reject it and the evidence in favor of it is quite weak.

Fifth, we exclude all observation from 2007Q4 onward from the sample to have a

similar observation period as Bjørnland and Leitemo (2009) and Kontonikas and

Zekaite (2018). They exclude the observations from 2007Q4 onward in order to
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exclude the observations during the Great Recession, as it might potentially med-

dle with the underlying mechanism between monetary policy and stock markets.

On the other side one could argue that the Great Recession observations might

include additional information about this relationship that should not be disre-

garded, which is why we include also the more recent observations in our main

application. Table 4.11 shows the skewness, kurtosis and Jarque-Bera test results

concerning the estimated structural shocks for this specification. We find strong

Table 4.11: Moments of estimated structural shocks (partly-recursive SVAR ex-
cluding the Great Recession)

εs εi

Skewness −0.67 −2.061
Kurtosis 4.478 12.97
JB-Test 0.00 0.00

Skewness, kurtosis and p-value of the Jarque-Bera test of the estimated structural shocks from
the second block for the specification excluding the Great Recession.

evidence for both structural shock in the non-recursive block to be non-Gaussian.

The estimated B-matrix is given by

B̂ =




0.44 0 0 0 0

1.54 1.74 0 0 0

−0.01 0 0.04 0 0

1.25 0.18 −0.82 5.71 −1.06

0.09 0.05 0.06 0.08 0.34




. (4.54)

Figure 4.9 shows the resulting IRFs. As it can be seen from Figure 4.9, our main

results remain unchanged. The only difference is that now the response of stock

prices to a monetary policy shock is not negative in the long run, but turns out to

be slightly positive after about 10 quarters. In the time period that Bjørnland and

Leitemo (2009) and Kontonikas and Zekaite (2018) use, the estimation hints that

long-run neutrality of monetary policy with respect to stock prices seem to be more

valid than in our extended sample. So for specific time frames, maybe especially

during the great moderation period, monetary policy might be estimated to be

neutral in the long run. However, choosing a suitable time-frame that justifies the

usage of a long-run restriction seems not to be the best solution for the problem

at hand, if an estimator is available that does not need the commitment to such

a restriction and allows for more flexibility concerning the observation period of

interest. Furthermore, the finding above again is associated with a large confidence

band making the response insignificant in total judging by the 68% and 80% con-
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Figure 4.9: Impulse responses to shocks in stock returns and monetary policy.
Confidence bands are 68% and 80% bootstrap bands. In contrast to section 4.4 the
observation period is restricted to 1983Q1-2007Q3. The columns y, I and s show
the cumulative responses.

fidence bands. Long-run neutrality is part of the confidence band, but only one of

several outcomes, so its validity remains unclear.

At last, we check on the relevance of the time trend included in our specification.

We included a linear time trend to account for a potential drift in the nominal

interest rate as noted by Carvalho et al. (2016). Here we exclude the linear time

trend from the estimation procedure and assume that the nominal interest rate is

stationary like in standard economic theory. Table 4.12 shows the skewness, kurto-

sis and Jarque-Bera test results concerning the estimated structural shocks for the

specification excluding the linear time trend, where we again find strong evidence

for non-Gaussianity in both estimated structural shocks in the non-recursive block.

Table 4.12: Moments of estimated structural shocks (partly-recursive SVAR ex-
cluding the time trend)

εs εi

Skewness −0.548 −0.591
Kurtosis 4.025 14.851
JB-Test 0.001 0.00

Skewness, kurtosis and p-value of the Jarque-Bera test of the estimated structural shocks from
the second block for the specification excluding the time trend.

The estimated B-matrix is given by
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B̂ =




0.5 0 0 0 0

1.81 1.83 0 0 0

0 0 0.05 0 0

1.44 0.5 −0.35 5.51 −2

0.1 0.01 0.07 0.09 0.36




. (4.55)

Figure 4.10 shows the impulse responses of the stock price and FFR to a stock mar-

ket and monetary policy shock under the specification without a linear time trend.

As it turns out, the main qualitative and quantitative insights remain unchanged.

Figure 4.10: Impulse responses to shocks in stock returns and monetary policy.
Confidence bands are 68% and 80% bootstrap bands. In contrast to section 4.4 the
linear time trend is omitted from the specification. The columns y, I and s show
the cumulative responses.

However, the confidence band of the stock price response to a monetary policy

shock is a bit broader, thus the response becomes insignificant earlier and there is

no conclusive answer about the long-run behavior. Furthermore, the output answer

becomes positive in the long run, which is something one would not expect after a

contractionary monetary policy shock. As the time trend seems to contribute to a

more precise and theoretically sensible estimate, we choose to leave it in our base

specification.

To summarize the results from our robustness checks, we find that no matter what

we do

i) the on impact effect of a monetary policy shock on stock returns is robustly

negative and
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ii) the on impact effect of a stock market shock on the FFR is robustly positive.

Regarding the long-run effect of monetary policy shocks w.r.t. stock prices, we find

mixed evidence. In most cases the response is persistently negative, but a long-run

zero effect is oftentimes just within the confidence bands. In one case, we even find

a long-run positive effect, which however is small and insignificant, depending on a

particular observation period and associated with a broad confidence band. Thus,

we conclude that our robustness checks solidify our distrust against short- or long-

run restrictions for the matter at hand and let us favor our approach compared to

such restrictions.
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5 How news and noise affect technological progress

5.1 Introduction

In the macroeconomic literature there has been a long-lasting interest in expectation

driven business cycles, especially after the seminal paper of Beaudry and Portier

(2006), who argue that information concerning news shocks to expectations about

the future are incorporated within stock prices. Moreover, Lorenzoni (2009), Barsky

and Sims (2012), Blanchard et al. (2013) or L’Huillier and Yoo (2017) find that even

if the news later turns out to be just noise, there is a contemporaneous effect on

the short-run business cycle. However, for example Blanchard et al. (2013) point to

the problem that traditional SVAR techniques are not suitable to simultaneously

identify news and noise shocks, as the theory predicts a singularity problem, if

only one signal containing both news and noise is observed and thus the number of

structural shocks exceeds the number of linearly independent variables observed by

the economic agents. In particular, this means a variable is missing that contains

at least partial information about the truth of the news. Consequently, the related

literature mentioned above avoids SVAR approaches and mainly relies on structural

models to simultaneously explore the effect of news and noise shocks. Employing

fully-fledged DSGE models for the analysis, however, means that one needs to

commit to the assumptions of the model. Thus, there is a lack of a more agnostic

approach to empirically test the theoretical implications without imposing them on

the data.

The present paper argues that the singularity problem of the SVAR can be solved, if

research spending is considered as an additional variable, which is argued to provide

just the necessary information to simultaneously identify news and noise shocks in

an SVAR. As in Comin et al. (2009) and Kung and Schmid (2015), news shocks

are interpreted as the expectation that the size of the future productivity increase

in consequence of research spending today is higher than usual, thus expected

productivity and stock prices increase. To additionally identify noise shocks apart

from news and solve the singularity problem discussed by Blanchard et al. (2013),

it is here assumed that firms directly engaging in research and in consequence being

closer to the source of news, have at least a partial insight about the truth of the

news and thus have an informational advantage, while firms farther away from the

innovation process do not. Consequently, research spending should contain less

noise than other forward looking variables like for instance stock prices. If this

holds true, there are two linearly independent observables containing information

133



about news and noise, there is no singularity problem and SVARs are a viable

instrument for the analysis of news and noise shocks. The testable implication

is that research spending should respond more cautiously to a noise shock than

stock prices do. Later on, an SVAR containing stock prices and research spending

is estimated using a recently developed data-driven identification approach, which

allows to abstain from the usage of theoretical restrictions to identify the SVAR,

and indeed it turns out that research spending has a, in comparison to a true news

shock, much weaker response to a noise shock that induces the same stock price

boom as a news shock.

This paper provides a stylized model to show the deeper reasoning, why research

spending includes the information that enables the econometrician to tell apart

news from noise shocks in the SVAR. In particular, it is assumed that intermediate

firms are the ones to engage in research. Every period they can decide how much

they want to spend on innovation and after they acquire newly researched ideas,

these have to be adopted before they actually increase productivity. In each period,

the intermediates receive a signal about the quality of the new ideas, where better

ideas increase future productivity after adoption more than worse ones such that

research investment has a higher payoff. Ex ante, the signal can contain true news

and noise. However, the technology adoption is modeled as a diffusion process,

where at least a small part of the ideas becomes accessible immediately to the

intermediate firms. A part of the quality of the ideas is thereby revealed to the

early adopting intermediaries and they get at least partial information about the

truth of the news they received. If the partial information that intermediate firms

get support the truth of the news, intermediate firms will invest more into the new

technologies, otherwise they will act more cautiously and reduce their innovation

spending. Intermediate firms sell their products to wholesalers, who sell their

products to stock corporations. Thus, the stock corporations are assumed to be

farther away from the research process than the intermediate firms. In consequence,

they get the partial information reveal about the truth of the news slower, so on

impact they have less information than researchers do.

Consequently, a noise shock that leads to the same stock price boom as a news

shock should induce a more cautious response in research spending compared to

a true news shock, as researchers do not fully share the optimism at the stock

market. Furthermore, if the news is true, the exogenous effect on R&D productivity

materializes and the effect on TFP should be stronger than after a noise shock

without the direct effect, which is in line with the findings of Hirose and Kurozumi
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(2021). These two theoretical results provide testable implications that can be used

to evaluate if the results from the SVAR estimation are fitting. Additionally, it is

assumed that neither news nor noise shocks should have an immediate influence

on TFP, but that both are likely to show up immediately in stock prices and

R&D spending. If the news is true, expectations are met and there is a longer-run

positive increase in research spending and stock prices. If the news turns out to be

just noise, the economic agents were overconfident in the new technologies and the

effect on stock prices and TFP is similar, but weaker in comparison.

In order to check if the SVAR containing TFP, stock prices and research spending is

able to identify news and noise shocks, a most recently developed data-driven SVAR

identification method that does not rely on any theoretical restrictions is used to

identify these two shocks. Thus, the model implications can be checked without

imposing them on the data. Lanne et al. (2017), Gouriéroux et al. (2017), Guay

(2021), Lanne and Luoto (2021) or Keweloh (2019) propose that shock identification

within SVARs can be based on moments beyond the variance, if at least n − 1 of

the n structural shocks identified this way are independent and non-Gaussian. The

finance literature provides much evidence that financial shocks are likely to be non-

Gaussian (see for instance Mittnik et al. (2000) or Kim and White (2004)), so if

Beaudry and Portier (2006) are right and stock prices do contain information about

news shocks, there is a case for using the data-driven identification approach for the

issue at hand. Indeed the resulting impulse responses to the news and noise shock

identified by the identification approach depending on higher moments match the

theoretical assumptions: Both shocks show an increase in stock prices and research

spending, while the noise shock shows a comparably weaker effect on TFP and

stock prices. The identified news shock has the same properties as in Beaudry and

Portier (2006), so it has an immediate and persistent longer-run positive effect on

stock prices and TFP, which shows that the proposed approach is able to identify

a news shocks similar to the related literature. Moreover, for the noise shock the

response of research spending is much weaker if the shocks are normalized to feature

the same impact on stock prices like the news shock, supporting the assumption

that researchers might have additional information about the truth of the news

compared to the stock market. Interestingly, both shocks lead to an increase in

TFP, at least in the short run. As noise shocks have no actual exogenous effect

on research productivity, the observed response of TFP has to be an endogenous

reaction to the expectation of higher productivity. The literature about news and

noise shocks commonly assumes TFP to be entirely exogenous, the findings in the

present paper, however, indicate that this assumption might not be reasonable in
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this case and shrouds important dynamics in productivity.

The present paper is closely related to Comin et al. (2009) and Kung and Schmid

(2015), who interpret research related shocks as news shocks, due to their effect

only falling into place in the medium run due to necessary technology adoption

beforehand. Furthermore, it is close to Beaudry et al. (2011), Pavlov (2016) and

Fan et al. (2016), who argue that news shocks lead to more endogenous innovation

due to the firms expecting higher future productivity and, thus, having a higher

incentive to invest in new technologies today. In addition to the aforementioned

literature, the present paper also studies noise shocks alongside news shocks. As

in Kurmann and Sims (2021) the revelation of noise is assumed to be only possible

after at least some of the newly researched ideas are adopted and thus actually

implemented. The present paper is also loosely related to the broader literature

about technology adoption, see for example Comin and Gertler (2006), Benigno and

Fornaro (2017) or Anzoategui et al. (2019), who acknowledge that short-run shocks

can have longer-run implications on productivity due to only gradual technology

adoption.

The remainder of the paper is organized as follows: Section 2 develops the theo-

retical background that is used to reason, why stock prices and R&D contain the

necessary information about news and noise shocks and to find the conditions under

which the impulse responses resulting from the data-driven identification approach

can be interpreted as stemming from news or noise shocks. Section 3 then gives

an overview about the data used in the present paper, the specification employed

and the details of the identification approach that is followed here. Then section 4

summarizes the estimation results and discusses some robustness checks. Section 5

concludes.

5.2 Theoretical background

This section lays out a theoretical model featuring endogenous TFP growth under

technology adoption and news and noise shocks. The model is intended to show,

which variables need to be considered to identify news and noise shocks, especially

that besides the previously used stock prices (see Beaudry and Portier (2006))

also research spending contains information regarding news about the future. This

additional information from research spending about news and noise turns out to be

crucial to simultaneously identify news and noise shocks in SVARs. Furthermore,

a theoretical background is necessary if news and noise shocks are identified using

136



a data-driven approach, as the labeling of the resulting impulse responses is non-

trivial and relies on theory. The simple model proposed in this section consists of

intermediate firms that engage in Schumpeterian competition for the firm with the

highest productivity and stock corporations that benefit from higher productivity

in the intermediate goods sector. News shocks are interpreted as information about

higher productivity gains in the future in consequence of R&D today (news shocks

are thus research related as in Comin et al. (2009) or Kung and Schmid (2015)).

The prospect of higher productivity in the future due to positive news increases

the competitive pressure on the intermediaries such that their research spending

increases. Intermediate firms sell their products to wholesalers and wholesalers sell

their products to stock corporations. Increasing productivity yields lower marginal

production costs for intermediate firms and thus a lower price for the inputs of

wholesalers and stock corporations, thus news about the future productivity in the

intermediate goods sector ultimately affect the stock market as well. For instance

a positive news shock increases expected dividends for the stock corporations such

that stock prices increase. However, if the positive news shock turns out to be

wrong and just noise, there is no direct exogenous effect on productivity growth

and the increase in TFP is lower than after a true news shock. Furthermore, in

order to solve the singularity problem discussed by Blanchard et al. (2013)1, it is

assumed that in contrast to other economic agents, researchers have at least partial

information if the news is true or not. Thus, researchers will be more cautious

after a noise shock than after a news shock. This information asymmetry between

economic agents arises, because news shocks are like in Kurmann and Sims (2021)

assumed to be revealed successively during technology adoption and firms actually

performing technology adoption get these information first hand, thus they have

an initial informational advantage compared to stock corporations, who are farther

away from the research process and receive this information slower.

5.2.1 Intermediate firms

There is a continuum of infinitely many monopolistically competitive intermediate

firms with mass one. Each intermediate firm i employs labor Ni,t at real wage Wt

and can spend Ri,t units on the purchase of newly researched ideas with a fixed price

of one (so research spending Ri,t also coincides with the purchased number of newly

researched unadopted ideas). The intermediate firms produce intermediate goods

1For further details on the argument in Blanchard et al. (2013) and how research spending can
help to solve the singularity problem see the appendix.
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yIi,t and sell them at price pIi,t to the wholesale sector. Consequently, intermediate

firm profits read

Πi,t = pIi,ty
I
i,t −WtNi,t −Ri,t. (5.1)

Assume a simple production function linear in labor of the form

yIi,t = qi,tNi,t, (5.2)

where qi,t is the current TFP level of firm i.

The TFP level has two components: First, the endogenous innovation component

follows a quality ladder as in Grossman and Helpman (1991), where each newly

adopted technology lets the firm climb on the ladder. Second, there is an exogenous

component exp(eqt ) and eqt is given by

eqt = ρqeqt−1 + εqt , ρq ∈ (0, 1), (5.3)

where εqt is a transitory i.i.d. aggregate TFP shock. So TFP reads

qi,t = λAi,t︸︷︷︸
innovation

· exp(eqt )︸ ︷︷ ︸
exogenous

, λ > 1, (5.4)

with λ the technology hazard rate and Ai,t the stock of adopted technologies.

Spending more on research translates into exp(χt) unadopted ideas, with χt a news

component following the law of motion

χt = ρχχt−1 + εχt , ρχ ∈ (0, 1), (5.5)

and εχt an i.i.d. news shock. So like in Comin et al. (2009) the news shock is a

shock to the arrival of new ideas:

Ui,t = exp(χt)
Ri,t

qt
, (5.6)

where Ui,t denotes new unadopted ideas. As in Comin and Gertler (2006), Be-

nigno and Fornaro (2017) or Anzoategui et al. (2019), unadopted technologies then

gradually diffuse to adopted technologies following

Ai,t+1 =
∞∑

s=1

(1− ϕs)Ut−s+1 − δAAi,t, ϕ ∈ (0, 1), δA ∈ (0, 1), (5.7)

with δA ∈ (0, 1) an exogenous obsolescence rate of ideas. However, it is assumed
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that incoming news shocks are noisy and intermediate firms like in Blanchard et al.

(2013) or L’Huillier and Yoo (2017) do not directly observe the news, but rather a

signal ξIt

ξIt = χt + θt, (5.8)

with

θt = ρθθt−1 + εθt , ρθ ∈ (0, 1) (5.9)

and εθt an i.i.d. noise shock. As in Kurmann and Sims (2021) the veracity of the

news indicated by the signal ξIt is gradually revealed during technology adoption,

because some of the new technologies get adopted and the productivity increase

can directly be observed. In contrast to the actual stock of adopted technologies

tomorrow (5.7), the expectation about it reads (with inserting the definition for

unadopted ideas (5.6))

EI
tAi,t+1 =

∞∑

s=1

(1− ϕs)exp((1− ωs)χt−s+1 + ωsξIt−s+1)
Rt−s+1

qt−s+1

− δAAi,t, ω ∈ (0, 1),

(5.10)

where EI
t denotes expectations of the intermediate firms, as an informational ad-

vantage about the truth of the news is assumed to be exclusive to them on impact,

so they have a different information set concerning their expectations than other

economic agents (the information about the truth of news arrives slower in the rest

of the economy than for the intermediaries, as all other sectors are farther away

from the adoption process), and ω determines the speed of the information reveal.

Intermediate firms are in Schumpeterian competition for their position in the mar-

ket. Every period, they can decide to invest in new technologies or leave the market.

Competitors that want to overtake firm i’s position can costlessly imitate the cur-

rent technological state, but have to acquire a higher productivity level than firm i

through innovation. Consequently, in order to stay in the market, firm i has to at

least invest the expected discounted future gain of being the incumbent in research

to fend off the competitors’ attempts to overtake its market position. At this point,

competitors have zero incentive to overtake i’s market position. Will firm i invest

more in future productivity at this point? The answer is no. Both, competitors

and firm i, will choose research spending equal to the discounted future gain of

being the incumbent. If the existence of a unique interior optimum is assumed, in-

creasing research spending at this point leads to the discounted value of being the

incumbent in the future to be lower than research spending (otherwise incumbent

and competitors would keep on increasing research spending). In consequence, the
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condition for research spending can be written as

Ri,t
!
= EI

tΛt,t+1

(
pIi,t+1y

I
i,t+1 −Wt+1Ni,t+1

)
, (5.11)

so optimal research spending equals the expected discounted future sales revenue

of the incumbents. On the balanced growth path, the identity of the winning

firm is not affecting the optimal research decision and both, incumbents and their

competitors, would choose research spending to be equal to the discounted future

value of being the incumbent.

For example, figure 5.1 schematically shows what happens to research spending

under positive news and noise. The solid blue line shows the expected future value

Figure 5.1: Schematic depiction of the innovation decision with and without positive
news. At point A is the intersection point between research spending and expected
future value of staying in the market for the intermediaries without a news shock,
at point B the intersection point under a positive news shock. The intersection
points mark the research spending decision for both cases. If the news turn out to
be just noise, the red line between points B and C depicts the intertemporal loss
due to overconfidence in the new technologies.
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of winning the innovation contest in dependence of today’s research spending. The

black 45° line depicts the respective costs of participating in the innovation contest.

The intersection point A between the two lines marks the steady state research

spending without any shocks. The dashed blue line shows the expected future value
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of competing in the innovation contest with respect to today’s research spending

under positive news. Positive news is the belief that research spending leads to

higher productivity gains in the future, so the dashed blue line has a higher slope

than the solid one. Consequently, the intersection point B between the dashed blue

line and black line is farther to the right and research spending increases. However,

if the news turns out to be just noise, there is a gap between research spending

and the actual future value of being in the market, as the gain curve never truly

changed, and the red line between points B and C depicts the intertemporal loss

incurred by the overconfidence in the new technologies. So in contrast to a positive

news shock that induces a positive increase in the exogenous research productivity

and thus TFP, the lack of an increase in exogenous research productivity after a

noise shock leads to a lower effect on TFP than after a news shock.

Profit maximization with respect to the pricing choice of the intermediate goods

firms then yields the usual result that the intermediate goods price will be a markup

on the marginal production costs

pIi,t = µIWt

qi,t
, µI > 1, (5.12)

where µI is the markup parameter.

5.2.2 Wholesaler and stock corporations

It is assumed that all other economic agents have, contemporaneously, less infor-

mation about eventual noise shocks, as they are farther away from the innovation

process, thus their expectation about future adopted technologies in contrast to

(5.10) reads

EtAi,t+1 =
∞∑

s=1

(1− ϕs)exp((1− ω̂s)χt−s+1 + ω̂sξIt−s+1)
Rt−s+1

qt−s+1

− δAAi,t, ω̂ ∈ (0, 1]

(5.13)

The important assumption is that ω̂ > ω, so the fraction of noise in the information

set of intermediate firms is lower than in the information set of the rest of the

economy. This informational advantage of intermediaries allows to discriminate

news and noise shocks in an SVAR. Blanchard et al. (2013) assume ω̂ = 1, so news

and noise do have the exact same effect on stock prices and cannot be discerned

from each other. Even if that holds true, an SVAR is applicable if ω < ω̂ and both

shocks have a different effect at least on research spending.
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Wholesale output ywt is a CES aggregate of intermediate goods

ywt =

[∫ 1

0

(
yIi,t
) 1

µI di

]µI

(5.14)

and is used by stock corporations to produce final output goods. The wholesale

price pwt is defined as

pwt =

[∫ 1

0

(
pIi,t
)− 1

µI−1 di

]−(µI−1)

. (5.15)

There are infinitely many monopolistically competitive stock corporations with

mass one, who buy wholesale output, costlessly differentiate it (so ySj,t = ywj,t) and

sell resulting stock corporation output ySj,t to final output users. As usual the price

for the output of each stock corporation pSj,t is a markup on the marginal production

costs

pSj,t = µSpwt , µS > 1, (5.16)

where µS is the markup parameter for the stock corporations. Consequently, divi-

dends for each stock corporation read

dj,t = pSj,ty
S
j,t − pwt y

w
j,t = (µS − 1)ywj,t. (5.17)

Final output then is a CES aggregate of stock corporation output:

Yt =

[∫ 1

0

(
ySj,t
) 1

µS dj

]µs

. (5.18)

5.2.3 Labor supply and stock price

To close the model and derive some key equations in the next section, assume a

standard CES utility function for the households. Assume further a constant labor

supply Nt = N̄ and that the real wage is a constant fraction of output

Wt = αYt, α ∈ (0, 1). (5.19)

The households can invest in stocks emitted by stock corporations. The respective

real stock price for each stock corporation j is denoted as υj,t and the dividend

as dj,t. As usual, the no arbitrage condition between saving in stocks or a riskless

asset with for simplicity constant interest rate rf yields that the real stock prices
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are determined as the expected discounted sum of future dividends

υj,t = Et

∞∑

s=1

Λt,t+sdj,t+s, (5.20)

where Λt,t+s is the stochastic discount factor between periods t and t + s, which

under the assumptions above simplifies to Λt,t+s =
1

1+rf
.

5.2.4 The effect of news and noise on stock prices and research spending

From the model above, one can conclude two equations that determine aggregate

equilibrium real stock prices and research spending and are only dependent on

future productivity and (constant) labor input: Assume that all intermediate firms

and stock corporations are identical, then ex post by symmetry the firm indices can

be dropped and using equations (5.2), (5.4), (5.11), (5.12), (5.16), (5.17), (5.19)

and (5.20) the following equations result:

υt = Et

∞∑

s=1

Λt,t+sdt+s = Et

∞∑

s=1

Λt,t+s(µ
S − 1)Yt+s

= Et

∞∑

s=1

Λt,t+s(µ
S − 1)N̄qt+s

=
∞∑

s=1

1

(1 + rf )s
(µS − 1)N̄λAt+sexp(eqt+s)

(5.21)

Rt = EI
t

(
Λt,t+1(µ

I − 1)
Wt+1

qt+1

Yt+1

)

= EI
t

(
Λt,t+1(µ

I − 1)α

(
Yt+1

qt+1

)
Yt+1

)

= EI
t

(
Λt,t+1(µ

I − 1)αN̄qt+1

)

= EI
t

(
1

1 + rf
(µI − 1)αN̄λAt+1exp(eqt+1)

)

(5.22)

Referring to the expectations about At of intermediate firms (5.10), the research

spending equation (5.22) depends only on current and past research spending and

the exogenous shocks, while the stock price equation (5.21) depends on current,

past and future research spending and the exogenous shocks. So for a given starting

value of the TFP level q0 one can calculate the sum of past research spending that

has diffused into adopted technologies and than solve for the optimal current and

future research spending. From this point on, the effect of news and noise shocks
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can be simulated. Figure 5.2 shows the simulation2 of the stock price and research

spending reactions to a news and noise shock of size 1 for ω̂ = 1 and ω̂ = 0.9, as

well as different values for ω.

Figure 5.2: Model simulation of stock price and research spending responses to
news and noise shocks of size 1 under different values for ω and ω̂
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As it can be seen, for ω̂ = 1, as assumed in Blanchard et al. (2013), news and

noise have the same effect on stock prices and cannot be discerned from each other

without the additional information provided by research spending. Even for ω̂ = 0.9

the difference in the impact effect of news and noise shocks on stock prices is small,

while, depending on the given ω, the impact effect of a noise shock on research

spending can be lower by a factor of up to 8 for ω = 0.25 compared to a news

shock. This visualizes, how under the assumptions of the model above research

spending provides the necessary variation between the effects of news and noise

shocks that allows to tell both shocks apart in an SVAR approach. What can be

learned from the simulation concerning the behavior of research spending, TFP and

stock prices after a news or noise shock? First, arriving news lead to an immediate

increase in research spending and stock prices. Second, as news and noise both lead

2For the model simulation the parameters are calibrated as follows: A mean growth rate of
2% is assumed, so with household discounting β = 0.998 the interest rate rf = 0.022 obtains,
intermediate and stock corporation markups are set to 20%, so µS = µI = 1.2, the starting value
for q0 is set to 1.01, then N̄ = 6.2148 ensures a steady state growth rate of 2%, the labor income
share α = 2

3 , λ = 1.03 as in Basu and Fernald (1997), the adoption rate ϕ = 0.1 as in Comin and
Gertler (2006) and the technology obsolescence rate δA = 0.1 as in Moran and Queralto (2018).
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to more research spending, TFP should increase over time in both cases. However,

due to the missing direct effect on exogenous research productivity and the more

cautious response in research spending, the TFP effect should be lower after a noise

shock than after a news shock. Third, because intermediaries are more cautious,

the increase in research spending should be lower after a noise shock than after a

news shock.

5.3 The empirical model

5.3.1 Data and specification

The stock price equation (5.21) and research spending equation (5.22) depend on

the four variables stock prices, research spending, TFP and labor input. Thus, the

baseline specification of the VAR studied here should include representatives for

these four variables, specifications including additional controls are studied after-

wards. This paper uses U.S. time series data between 1980q1 and 2020q1. Data on

utilization adjusted TFP growth gTFP is obtained from Fernald (2012-2019). The

TFP level index for each date t is then calculated by imposing a starting value of 100

and multiplying it for each observation period with
∏t

0(1 + gTFP
t ). The logarithm

of the TFP level is subsequently simply denoted as TFP . The rest of the data is

obtained from the FRED (2021): The real stock price is defined as the Wilshire

5000 index3 divided by the seasonally adjusted implicit GDP price deflator, the

logarithm of the real stock price is subsequently denoted as SP . Real R&D expen-

ditures are measured as the seasonally adjusted part of GDP used for research and

development divided by the GDP deflator as defined before. The logarithm of real

R&D expenditures is later on simply denoted as R&D. Hours worked are defined

as the seasonally adjusted weekly hours worked in the manufacturing sector. The

logarithm of hours worked is subsequently just called hours. Further variables used

for robustness checks are the logarithm of seasonally adjusted gross private nonres-

idential intellectual property products investment divided by the GDP deflator as

an alternative measure for research effort (subsequently denoted as IPI) and the

logarithm of seasonally adjusted gross private domestic investment divided by the

3Most applications regarding news shocks use the S&P 500 index as the relevant stock price
index, which includes the 500 biggest stock corporations for the United States. The Wilshire 5000,
however, includes all listed stock corporations for the United States. The reasoning for favoring
the Wilshire 5000 index in this paper is that news is understood as research related news and not
some unspecific shock to future productivity. As research in reality most of the time affects only
certain sectors and not all firms equally, a broader stock price index is more likely to catch the
entirety of research related news than a narrower one.
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GDP deflator as a further control variable (subsequently denoted as Inv.).

The baseline specification contains a constant, a linear time trend and the loga-

rithms of TFP, hours, real stock prices and real R&D spending. A lag order of 44 is

chosen, but different lag orders are employed in the appendix as robustness checks.

So the baseline VAR specification reads




TFPt

Hourst

SPt

R&Dt




= δ + γt+
4∑

1

Ai




TFPt−i

Hourst−i

SPt−i

R&Dt−i




+




u1,t

u2,t

u3,t

u4,t




. (5.23)

The relationship between reduced form errors ui and structural shocks εi is denoted

as

ut =




u1,t

u2,t

u3,t

u4,t




=




b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44







ε1,t

ε2,t

ε3,t

ε4,t




= Bεt. (5.24)

The B-matrix contains 16 elements and there are 10 conditions for identification

provided by the second moments, while at least 6 further identifying restrictions

have to be found in order to identify the SVAR.

5.3.2 Identification

The seminal paper by Beaudry and Portier (2006) suggests that news shocks can

be identified in a 2 variable setup with TFP and stock prices by imposing a zero

restriction on the contemporaneous effect of news on TFP. So while the effect of

news on TFP lies in the future by definition, it shows up contemporaneously in

stock prices, as the stock market incorporates news about the future immediately.

However, in the present paper noise shocks, which have no direct effect on en-

dogenous productivity, are studied in addition to news shocks. Following Comin

et al. (2009), true news can be interpreted as shocks to the idea production from

R&D, which affect TFP only in the future because ideas need to be adopted before

they increase actual productivity, while noise only affects the expectation about

4The lag order is chosen ad hoc here, as traditional information criteria assume normally
distributed structural shocks, which collides with the identifying assumption of non-Gaussianity
for at least a subset of structural shocks. However, the lag order of 3 determined by the Akaike
information criterion (AIC) is used in the appendix as a robustness check.
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the future productivity gain due to R&D. Consistent with the previous theoretical

insights, one would thus assume that both news and noise shocks have no contem-

poraneous impact on TFP, but both can have a contemporaneous effect on stock

prices and R&D expenditures. Because of this, the recursive identification scheme

employed by Beaudry and Portier (2006) fails here, as it falls short of one iden-

tifying restriction. If the assumption of at least partial signal extraction by the

intermediate firms is true, the singularity problem discussed in Blanchard et al.

(2013) is solved5, as now with research spending there is one variable observed,

which provides the necessary information to discern news from noise shocks and

the SVAR approach is applicable.

The missing identifying assumption in this paper is replaced by an identification

scheme relying on higher moments following Lanne et al. (2017), Gouriéroux et al.

(2017), Guay (2021), Lanne and Luoto (2021) or Keweloh (2019), which assumes

that at most one structural shock is Gaussian, which enables to use moments beyond

the variance to estimate the remaining elements of the B-matrix using GMM.

As Keweloh and Seepe (2020) (the previous chapter of this dissertation) show,

a major problem of fully data-driven identification approaches is that they get

more imprecise the more variables are included in the SVAR and the lower the

number of observations. As explained in Keweloh and Seepe (2020) (the previous

chapter of this dissertation), exploiting a partly-recursive ordering can substantially

improve the performance of the estimator. As the fully data-driven estimation

cannot reject that news and noise shocks do not contemporaneously affect TFP and

hours, the partly-recursive SVAR estimator is applied afterwards. For that matter,

TFP and hours are added recursively and ordered first and second respectively, so

it is assumed that TFP and hours do not contemporaneously react to news and

noise shocks. As imposing the short-run restrictions for the effect of news and

noise on hours and TFP improves the precision of the estimates by reducing the

number of moment conditions that need to be fulfilled and makes the shock-labeling

more easy. Moreover, as Keweloh and Seepe (2020) (the previous chapter of this

dissertation) note, wrongly assigning zero restrictions on the interaction between

the variables in the recursive block of variables does not affect the identification

of the shocks in the non-recursive block, as long as the zero restrictions between

both blocks hold. The approach using a partly-recursive identification is favored in

the subsequent analysis regarding the robustness checks. So regarding the baseline

specification mentioned above, the elements b12, b13, b14, b23 and b24 are restricted

5For further details why this helps to solve the singularity problem see the appendix.
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to zero, while b34 remains unrestricted and is estimated based on moments beyond

the variance, so no further recursiveness assumption is necessary here:




u1

u2

u3

u4




=




b11 0 0 0

b21 b22 0 0

b31 b32 b33 b34

b41 b42 b43 b44







ε1

ε2

ε3

ε4




. (5.25)

Later on, investment is also added recursively and ordered first as a robustness

check.

There is strong empirical evidence for excess kurtosis in the residual of estimations

containing financial series such as stock prices (see for instance Mittnik et al. (2000)

or Kim and White (2004)). So at least one of the structural shocks has to be non-

Gaussian, as a combination of only Gaussian shocks within the residuals would lead

to Gaussian residuals. To check on this assumption, the distributional properties

and Jarque-Bera test results are given for every specification below. Moreover, in

the appendix the PML estimator (see for instance Gouriéroux et al. (2017)) is used

alternatively to check on the robustness of the results to a change of the estimator

for the non-recursive block. One drawback of using the data-driven identification

scheme is that the shock labeling is not trivially given by the identifying assump-

tions like for instance in a fully recursive identification scheme. Especially, it is ex

ante unclear, which of the resulting structural shocks refers to a news and which to

a noise shocks if they do at all. So it is necessary to conclude from the behavior of

the impulse responses and some theoretical background, which shock is suiting re-

spectively. From the previous theoretical deliberations, the following assumptions

are used to label news and noise shocks:

(i) Both, news and noise shocks, have a positive impact on stock prices and

R&D.

(ii) As noise shocks have no direct effect on TFP, the effect on TFP and stock

prices should be weaker compared to the effect of a news shock.

(iii) On the other hand, as true news is directly boosting longer-run TFP, there

should be a positive longer-run effect on TFP and stock prices.

(iv) The research spending response should be weaker after a noise shock com-

pared to the response after a news shock.
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So in a first step the structural shocks that are correlated the strongest with the

reduced form errors u1 and u2, in this case ε1 and ε2, are considered as a labor

market and TFP shock, as the structural labor market and TFP shocks should still

be the main contributors to the residual in the first and second line of the reduced

form VAR. For the remaining structural shocks, in this case ε3 and ε4, the above

assumptions are used to label the news and noise shock. In the partly-recursive

identification scheme, the labeling regarding the recursive block is following directly

from the identifying assumptions and the criteria above suffice to label news and

noise shocks in the non-recursive block.

5.4 Results

5.4.1 Fully data-driven identification

At first, this section employs an estimation of the SVAR fully relying on higher

moments in order to rely on as few theoretical restrictions as possible concerning

the results. This requires to have at most one Gaussian shock among the structural

shocks. Table 5.1 shows the skewness, kurtosis and Jarque-Bera test results for the

reduced form errors and structural shocks. As it can be seen, normality can be

Table 5.1: Skewness, kurtosis and Jarque-Bera-test results for the fully data-driven
approach

Reduced form errors u1 u2 u3 u4

Skewness 0.2951 0.0368 -0.9949 -0.2876
Kurtosis 3.4862 4.7979 6.4683 3.8206

JB-Test p-Value 0.1079 0.0025 0.0010 0.0368

Structural shocks ε1 ε2 ε3 ε4
Skewness 0.1595 0.3029 -1.1272 -0.2266
Kurtosis 3.4789 4.8547 6.9950 3.9941

JB-Test p-Value 0.2753 0.0016 0.0010 0.0261

rejected for the reduced form errors u2 and u3 at the 1% level and for u4 at the

5% level. Thus, there is evidence that there is at least one non-Gaussian structural

shock. Looking at the p-values of the Jarque-Bera test for the identified structural

shocks, it shows that for ε2 and ε3 normality can be rejected at the 1% level and for

ε4 at least at the 5% level. There is no evidence that ε1 is non-Gaussian, however,

the requirement of at most one Gaussian structural shock seems to be fulfilled.

Table 5.2 shows the correlation matrix between reduced form errors and the esti-

mated structural shocks from the fully data-driven identification approach. As it
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Table 5.2: Correlation matrix concerning structural shocks and reduced form errors
for the fully data-driven approach concerning news and noise shocks

ε1 ε2 ε3 ε4
u1 0.8957 -0.1214 -0.1047 -0.2271
u2 -0.2975 0.9038 -0.2081 -0.0366
u3 0.1423 0.4012 0.9636 0.0345
u4 0.2983 0.0863 0.1313 0.9726

can be seen, from the argument in the previous section the structural errors ε3 and

ε4 seem to be the candidates for the news and noise shock, as ε1 has the highest

correlation with u1 (so likely a labor market shock), while ε2 has the highest corre-

lation with u2 of the reduced form VAR (so likely a TFP shock). Figure 5.3 shows

the resulting impulse responses for the fully data-driven identification. The first

and second row show the responses to structural shocks ε3 and ε4. As becomes

evident, the peak stock price effect is weaker by a factor of about two and the TFP

effect by a factor about ten in the first row. Furthermore, the response of research

spending is much weaker in the first row compared to the second row. Conse-

quently, ε3 fulfills all the conditions from the previous section to be interpreted as

the noise shock and ε4 all the conditions to be labeled as the news shock, according

to the labeling assumptions. Both shocks are normalized to have an impact effect

of one on stock prices, which allows for an easier interpretation of the effect of news

and noise shocks.

As becomes evident, the news shock leads to no clear effect in hours and an increase

in TFP and stock prices, which coincides with the findings of Beaudry and Portier

(2006), Barsky and Sims (2011) or Barsky et al. (2015), and also an increase in

R&D spending, which is consistent with the theoretical deliberations in Comin

et al. (2009) and this paper’s modeling section. Furthermore and in line with

the testable implication about news shocks, the effect on TFP and stock prices is

much stronger compared to the noise shock effect. In consequence of a noise shock

hours, stock prices and R&D spending increase in the short run, because firms

expect a productivity boost in the future. There is an initial short-lived decrease

in TFP after the noise shock hits the economy, which is not predicted by the

simple model in the previous section, but might be reasoned by the overinvestment

in research leading to a congestion effect (as discussed in Comin and Gertler (2006)

or Anzoategui et al. (2019)) in technology adoption that initially outweighs the

positive effect of more research. In the medium run TFP increases, because the

overinvestment in research spending leads to a higher quantity of ideas getting
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Figure 5.3: Fully data-driven identification with no contemporaneous zero restric-
tions imposed to identify the shocks. Impulse responses are normalized to an impact
effect of one on stock prices for both, news and noise shocks. Confidence bands are
68% (darker shade) and 90% (lighter shade) bootstrap confidence bands resulting
from 5000 resamplings.

adopted. As it can be seen, a noise shock that induces the same stock price reaction

as a news shock only leads to a small and insignificant increase in R&D spending

on impact. As the positive expectations about the future induce a business cycle

boom, firms endogenously increase their research efforts afterwards, but still the

effect is much weaker than after a news shock, as there is no exogenous increase

in the research productivity like after a news shock and thus the marginal effect of

more research is lower.

The drawback of using a fully data-driven identification approach is that, with

an increasing number of variables, the precision of the estimates gets increasingly

worse, so it becomes increasingly difficult to conclude any insights from the results,

which makes including more control variables problematic. As becomes evident,

zero is part of the confidence band for hours and TFP concerning news and noise

shocks, thus there is no strong evidence that a recursiveness assumption here is

wrong and imposing zero restrictions on the effect of news and noise shocks on

TFP and hours is viable. As the zero impact restriction for the recursive block of

variables cannot be rejected, the partly recursive, partly data-driven identification

is favored for the subsequent analysis and the robustness checks.
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5.4.2 Partly-recursive specification

This section examines the effect of news and noise shocks estimated by the partly-

recursive SVAR estimator as proposed in Keweloh and Seepe (2020) (the previous

chapter of this dissertation). Additionally, the impulse responses to a TFP shock

are shown, to compare the results to the traditional approach of Beaudry and

Portier (2006), who identify a news and TFP shock in a 2 variable VAR by assuming

a recursive ordering of TFP and stock prices. The following figures only show the

impulse responses for TFP, noise and news shocks, the full set of impulse responses

for the partly-recursive specification can be found in the appendix. For the recursive

block, the impact responses are normalized to one on the main diagonal, while for

the non-recursive block it is assumed that both shocks have an impact effect of one

on stock prices, which allows for an easier interpretation of the effect of news and

noise shocks. Table 5.3 shows the skewness, kurtosis and Jarque-Bera test results

for the partly-recursive specification. As it can be seen, a normal distribution can

Table 5.3: Skewness, kurtosis and Jarque-Bera-test results for the partly-recursive
specification

Reduced form errors u1 u2 u3 u4

Skewness 0.2915 0.0368 -0.9949 -0.2876
Kurtosis 3.4862 4.7979 6.4683 3.8206

JB-Test p-Value 0.1079 0.0025 0.0010 0.0368

Structural shocks ε1 ε2 ε3 ε4
Skewness 0.2915 -0.0324 -0.8252 -0.2943
Kurtosis 3.4862 4.6213 5.6978 3.4791

JB-Test p-Value 0.1079 0.0042 0.0010 0.1080

be rejected for two of the reduced form errors at the 1% level and for one at least at

the 5% level. Thus, there is strong evidence that there is at least one non-Gaussian

structural shock. Looking at the structural shocks identified by the SVAR, it shows

that normality can be rejected for ε3 at the 1% significance level and for ε4 almost

at the 10% level, so there is evidence that the requirement defined in Keweloh and

Seepe (2020) (the previous chapter of this dissertation) of at least one structural

shock in the non-recursive block being non-Gaussian is fulfilled.

Figure 5.4 shows the resulting impulse responses from the partly-recursive ap-

proach. The second and third row show the responses to structural shocks ε3

and ε4. Again, the peak effect on positive TFP and stock prices is much weaker

in the second row than in the third row. Furthermore, the response of research

spending is weaker in the second row compared to the third row. Consequently, ε3
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is interpreted as the noise shock and ε4 is labeled as the news shock. The labeling

of the TFP shock follows directly from the recursiveness assumption. As it can be

Figure 5.4: Partly-recursive specification including hours, utilization adjusted TFP,
real stock prices and real R&D spending. Impulse responses are normalized to an
impact effect of one on the main diagonal for the recursive variables and to an
impact effect of one on stock prices for both news and noise shocks. Confidence
bands are 68% (darker shade) and 90% (lighter shade) bootstrap confidence bands
resulting from 5000 resamplings.

seen, the results are qualitatively and quantitatively similar to the fully data-driven

approach, however the confidence bands are narrower and the impact effects are

estimated with higher precision due to exploiting the recursiveness assumption and

reducing the ”curse of dimensionality” explained in Keweloh and Seepe (2020)(the

previous chapter of this dissertation). Furthermore, the labeling of the shocks in

the recursive block is now not only dependent on the correlation between reduced

form errors and structural shocks, but follows from the recursiveness assumptions.

This and the lower dependency on non-Gaussianity, as now there has to be at most

one Gaussian structural shock only in the non-recursive block, allows for more flex-

ibility and more precise results when introducing further control variables, which is

why the partly-recursive, partly data-driven approach is favored for the subsequent

analysis.

One remarkable finding in both the fully data-driven and partly-recursive estima-

tion is that the impact effect of research spending in consequence to a noise shock is
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close to zero. This is not imposed as a restriction, but freely estimated. An impact

effect of zero means that in terms of the model in the modeling section ω ≈ 0 and

intermediate firms have nearly perfect information about the truth of news. This

means that research spending seems to be a nearly perfect indicator for if a stock

price boom is justified by true news or not. The subsequent small positive reaction

of research spending is due to the increase in demand induced by the boom on the

stock market, but not because researchers have faith in a future increase in research

productivity.

Another interesting finding from both approaches is that the results above confirm

the theoretical outcome that noise shocks, besides having no direct effect on TFP,

lead to a medium-run increase in TFP. As the effect only works through expected

changes that never materialize, the observed TFP effect has to come from a response

in the endogenous part of TFP. The firms expect new ideas to be more productive

and thus expect a higher future value of the firm. According to the model in the

previous section, they respond by higher investment in new ideas to stay in the

market. Thus noise shocks, despite being without any direct real effect, can affect

TFP in the short to medium run. Moreover, the results confirm the assumption

that research spending contains at least partial information about the truth of

the news, as a noise shock that leads to the same stock price boom like the news

shock, leads to a much weaker (about a factor between 10 to 20 in both the fully

data-driven and partly-recursive case) response in research spending. Thus, there

is evidence that the singularity problem pointed out in Blanchard et al. (2013) can

be solved by using research spending as an additional variable within the SVAR.

5.4.3 Robustness checks

The main idea that allows to incorporate TFP, news and noise shocks at the same

time is that, besides stock prices, also research spending incorporates information

about news and noise. As research spending is notoriously hard to measure, the

question stands, if the results are robust to alternative measures for it. As a robust-

ness check, research spending is now measured as intellectual property investment

of private firms. Table 5.4 shows the skewness, kurtosis and Jarque-Bera test re-

sults for the specification including IPI instead of R&D spending. As it becomes

evident, in contrast to the previous specification, the reduced form error u4 is no

longer significantly non-Gaussian at the 10% level and the p-value of the Jarque-

Bera-test indicates that normality cannot be rejected for the structural shock ε4.

However, there are still two reduced form errors, where normality can be rejected
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Table 5.4: Skewness, kurtosis and Jarque-Bera-test results for the specification with
IPI as an alternative R&D measure

Reduced form errors u1 u2 u3 u4

Skewness 0.2208 -0.0165 -1.1169 -0.0034
Kurtosis 3.3558 4.9136 7.0567 3.5288

JB-Test p-Value 0.2864 0.0018 0.0010 0.3373

Structural shocks ε1 ε2 ε3 ε4
Skewness 0.2208 -0.0884 -0.9204 -0.0082
Kurtosis 3.3558 4.7584 6.0335 3.3449

JB-Test p-Value 0.2864 0.0027 0.0010 0.5000

at the 1% level, so there has to be at least one non-Gaussian structural shock. The

Jarque-Bera-test for the estimated structural shock ε3 shows that normality can be

rejected at the 1% level, thus the requirement for the feasibility of the identification

scheme based on higher moments for the non-recursive block seems to be fulfilled.

Figure 5.5 shows the resulting impulse responses for the specification containing

IPI. The labeling of the news and noise shock is analogous to before. As it turns

Figure 5.5: Robustness check with private intellectual property investment (IPI) as
an alternative R&D measure. Impulse responses are normalized to an impact effect
of one on the main diagonal for the recursive variables and to an impact effect of
one on stock prices for both news and noise shocks. Confidence bands are 68%
(darker shade) and 90% (lighter shade) bootstrap confidence bands resulting from
5000 resamplings.
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out, the results remain mainly unchanged: News shocks lead to a significant long-

run increase in TFP, stock prices and R&D spending, while a noise shock has a

similar, but much weaker, effect on the aforementioned variables. The main findings

remain robust to the change in the R&D variable, especially that the reaction of

research spending in consequence to a noise shock is much more cautious than after

a news shock. Even the estimated impact effect of nearly zero is the same, which

reinforces the notion of research related variables as good indicators for the truth

of news.

As a further robustness check, private investment is added to check if the business

cycle properties of the news and noise shock are consistent with the findings of

the related literature. Investment is added recursively and ordered first. Table

5.5 shows the skewness, kurtosis and Jarque-Bera-test results of the specification

including private investment. As it becomes evident, all reduced form errors are

Table 5.5: Skewness, kurtosis and Jarque-Bera-test results for the specification
including investment

Reduced form errors u1 u2 u3 u4 u5

Skewness 0.2130 0.2895 0.1210 -1.0434 -0.3712
Kurtosis 3.7496 3.6253 4.6458 6.5580 4.1832

JB-Test p-Value 0.0664 0.0696 0.0037 0.0010 0.0089

Structural shocks ε1 ε2 ε3 ε4 ε5
Skewness 0.2130 0.2911 0.2457 -0.7145 -0.3703
Kurtosis 3.7496 3.9726 3.9146 5.3110 3.9165

JB-Test p-Value 0.0664 0.0223 0.0320 0.0010 0.0191

non-Gaussian at standard significance levels. The Jarque-Bera-test for the struc-

tural errors shows that normality can be rejected at the 1% level for ε4 and at least

at the 5% level for ε5. Consequently, the requirements for the feasibility of the

data-driven identification scheme for the non-recursive block seem to be fulfilled.

Figure 5.6 shows the resulting impulse responses of the specification including real

private investment. The labeling of news and noise shocks is analogous to before,

so ε4 is interpreted as the noise shock, while ε5 is labeled as the news shock. As it

turns out, the inclusion of investment does not fundamentally change the results

from before, a news shock still leads to a significant positive and persistent increase

in TFP, stock prices and R&D spending, while the effect of the noise shock is

comparably weak. As evidenced by Beaudry and Portier (2006), Barsky and Sims

(2011) or Barsky et al. (2015), news shocks lead to business cycle comovement also

in investment, as investment increases together with hours and TFP. A noise shock
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Figure 5.6: Robustness check including real private investment as an additional
control variable. Impulse responses are normalized to an impact effect of one on
the main diagonal for the recursive variables and to an impact effect of one on
stock prices for both news and noise shocks. Confidence bands are 68% (darker
shade) and 90% (lighter shade) bootstrap confidence bands resulting from 5000
resamplings.

also leads to an increase in investment in the short run, but again the effect is much

weaker than after a news shock.

To sum up, the present paper’s identification approach is able to identify a news

shock with standard properties found in the related literature: News shocks lead

to business cycle comovement in investment, hours and TFP, while stock prices

and R&D expenditures increase in anticipation of higher future productivity in the

economy. In the case of noise, the short-run effects go into the same direction as

after a news shock: Hours, investment, stock prices and R&D spending increase.

However, as there is no direct effect of a noise shock on TFP, but only one through

expectations, the medium-run effects on the aforementioned variables are weaker

compared to the true news shock. The R&D spending being much more cautious

after a noise shock compared to a news shock is robust throughout all specifications,

thus there is strong evidence for the crucial assumption to avoid singularity, namely

that research spending contains at least partial information about the truth of the

news.
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5.5 Conclusion

The present paper tries to simultaneously identify news and noise shocks in an

SVAR. To solve the singularity issue hailing from a signal extraction problem that

is acknowledged in the related literature, it is argued that research spending con-

tains at least partial information about the truth of the news. News is hereby in-

terpreted as information about how much research spending today increases future

productivity. As intermediate firms, who are closer to the research and technology

adoption process, might have a better insight about the truth of the news com-

pared to other economic agents, their research spending reacts differently to news

and noise shocks, providing the missing variation that enables the econometrician

to solve the singularity problem. To check the testable implications from the the-

oretical deliberations, a recently developed identification approach depending on

moments beyond the variance is employed that allows to identify news and noise

shocks without imposing theoretical restricitions, but by using moment conditions

from non-Gaussian structural shocks. The main insight is that both, stock prices

and research spending, are forward looking and contain information about news

and noise. Consequently, news and noise shocks should lead to a short-run increase

in stock prices and research spending, while the news shock should have a stronger

effect on the aforementioned variables and TFP compared to a noise shock, because

it is the only one that has a direct effect on TFP. In particular, this approach is

able to test the assumption of researchers having some information concerning the

truth of the news, as the response of research spending should then be weaker after

a noise shock compared to a news shock that induces a stock price boom of the

same size.

It turns out that the proposed estimation procedure yields a news shock that in-

duces standard business cycle comovement and has a longer-run impact on TFP,

stock prices and R&D. The resulting noise shock also yields short-run business cy-

cle comovement, but in contrast to the news shock, the effect on TFP, stock prices

and R&D is comparably weak. Furthermore, the data supports the assumption

of researchers having partial information about the truth of the news, as under

a noise shock that induces the same stock price reaction as the news shock, the

research spending response is much weaker. Another interesting observation not

recognized by the related literature, which usually does not include an endogenous

part of TFP, is that a noise shock leads to a significant increase in TFP in the

short run. As noise shocks have no inherent impact on productivity, this effect has

to come from the endogenous part of TFP rather than from the exogenous. Firms
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expect the new ideas to be more productive than usual and invest more into them,

thus even though in reality the ideas are not more productive than usual on the

balanced growth path, firms overinvest and a short-lived increase in TFP results.

Consequently, taking TFP as entirely exogenous, as usually done in the literature

regarding news and noise shocks, hides an important transmission channel between

news/noise and technological progress: Endogenous innovation decisions largely

depend on expectations about the future and thus expected higher productivity

leads to more productivity investment today.

5.6 Appendix: How the singularity problem concerning

news and noise is solved by an additional signal

This section is intended to show, why including research spending as an additional

information source about news and noise shocks solves the singularity problem laid

out in Blanchard et al. (2013). As a first step, their argument for a singularity

problem is repeated and then the important difference in this paper that solves the

problem is explained. In particular, Blanchard et al. (2013) show that there have

to be at least as many linearly independent observables for the economic agents

as there are structural shocks to be identified. Furthermore, the econometrician

cannot generate additional information that are not accessible to the economic

agents to solve the singularity problem. The important contribution of the present

paper is to argue that research spending provides the necessary additional informa-

tion concerning news and noise shocks, thus its inclusion in the SVAR solves the

singularity problem.

Blanchard et al. (2013) assume a simple illustrative model where productivity at

has a transitory component zt and a permanent component xt and

at = xt + zt. (5.26)

The transitory component follows a standard autoregressive law of motion

zt = ρzzt−1 + ηt, ρz ∈ (0, 1) (5.27)

and the permanent component follows a unit root process of the form

∆xt = ρx∆xt−1 + εt, ρx ∈ (0, 1), (5.28)
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where ∆ denotes first differences. However, households do not directly observe the

permanent component xt, but only a noisy signal st and

st = xt + νt (5.29)

holds. The variables ηt, εt and νt are i.i.d. shocks, where ηt is interpreted as a tran-

sitory TFP shock, εt a news shock and νt a noise shock. Furthermore, Blanchard

et al. (2013) assume that the logarithm of consumption ct equals the household’s

long-run productivity expectations

ct = lim
j→∞

Et(at+j) (5.30)

and that there is a simple aggregate resource constraint, where output yt equals

consumption

yt = ct. (5.31)

As Blanchard et al. (2013) argue, an SVAR in this case is not able to simultaneously

identify all three structural shocks. Observing consumption, productivity and the

signal does not suffice to identify three structural shocks, as consumption here is

given as a function of productivity and the signal, so does not provide any additional

information that can be used to recover the structural shocks. The econometrician

is left with two independent reduced form errors but 3 structural shocks, so the

SVAR is subject to a singularity problem.

In a next step, Blanchard et al. (2013) show that singularity commonly arises in

models with a signal extraction problem: Assume a linear or linearized model and

let yt be the vector of endogenous state variables, st the m-dimensional vector of

observables for representative agents and xt|t the vector of agents’ expectations.

Assume there exists a unique stable solution, then the vector of endogenous states

can be expressed as a linear function of the information set of the economic agents,

which consists of the past realization of yt−1, the observables st and the agents’

expectations xt|t

yt = Pyt−1 +Qst +Rxt|t, (5.32)

where P , Q and R are matrices containing the undetermined coefficients of the

solution. Furthermore, the observables for the econometrician sEt are a linear

combination of endogenous states yt and agent observables st

sEt = T [yt st], (5.33)
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where T is a matrix that translates yt and st into the econometrician’s observables.

Solving (5.32) backwards and inserting into (5.33), the econometrician’s observables

can be formulated in terms of the distributed lags of the agents’ observables and

expectations

sEt = Ξ(L)[st xt|t]
′, (5.34)

with Ξ(L) the matrices containing the distributed lag parameters (L here refers to

the lag operator). The vector of reduced form errors ut in a VAR are therefore

given by

ut = sEt − E(sEt|sEt−1, s
E
t−2, ...). (5.35)

Let the n-dimensional vector of structural errors be vt. If n > m, so the number

of shocks is greater than the number of observed variables by the economic agents,

the VAR suffers from a singularity problem. Expectations of the agents xt|t can

be expressed as depending on current and past values of the agents’ observables st

by employing the Kalman filter, so by (5.34) and (5.35) also the econometrician’s

observables sEt and the reduced form errors ut can be expressed depending on

current and past values of st, thus it follows for the conditional variances

V ar(vt|ut,ut−1, ...) ≥ V ar(vt|st, st−1, ...). (5.36)

Analogous to (5.35), the residual between the agents’ actual and expected obser-

vations is given by distributed lags of the structural shocks

st − E(st|st−1, st−2, ...) = Ψ(L)vt. (5.37)

In consequence, Ψ(L) has to be invertible to recover the structural shocks from the

agents’ observations. However, as Ψ(L) is m×n and m < n, Ψ(L) is not invertible

and thus

V ar(vt|st, st−1, ...) > 0 (5.38)

and from (5.36) it necessary follows that

V ar(vt|ut,ut−1, ...) > 0, (5.39)

so the structural shocks cannot be recovered from the information set of the econo-

metrician, if they cannot be recovered from the information set of the economic

agents.

So the singularity problem laid out by Blanchard et al. (2013) comes from the fact
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that news and noise shocks turn up together in one signal and affect all the other

variables only through this one signal. In consequence, the number of structural

shocks is by construction greater than the number of observations by the agents.

To solve the singularity issue and make SVARs a feasible instrument to simulta-

neously investigate news and noise shocks, one has to find an additional, linearly

independent observable of the agents that contains information about the news and

noise shocks. In that case m = n holds and Ψ(L) is invertible. Concerning the

simple model example of Blanchard et al. (2013), think of a second signal

s2t = ϕνt, ϕ ∈ (0, 1] (5.40)

that at least partly reveals the noise component. The system of equations (5.26),

(5.29) and (5.40) is then a system of three linearly independent observables (pro-

ductivity and the two signals) and three structural shocks (TFP, news and noise

shock). Intuitively, the economic agents have one more linearly independent ob-

servation and, thus, also the econometrician has the necessary variation available

that allows to clearly tell apart news shocks from noise shocks. Consequently, the

singularity problem is solved and SVARs are a valid instrument for the analysis.

In the main paper research spending and stock prices are argued to be the two

independent signals that allow to simultaneously identify news and noise shocks.

Research spending is a second signal that analogously to equation (5.40) provides

additional information about the veracity of the news that can be exploited in the

estimation.

5.7 Appendix: Full set of IRFs for the partly-recursive

specification

For completeness, figure 5.7 shows the full set of impulse responses (so also the

shock to hours) for the partly-recursive specification. The shock to hours leads to

a short-run decrease in TFP, as firms replace quality of labor with quantity. As

it becomes easier to employ labor, the expected future value of the firm increases,

which can be seen by the immediate and persistent increase in stock prices. As it

becomes more attractive to stay in the market, competition in innovation increases

and R&D expenditures increase immediately. The increase in innovation then leads

to an increase in TFP in the medium run after about 20 quarters. The finding of

shocks to the labor market having longer-run effects on technological progress is

consistent with the findings of Mortensen (2005), Wheeler (2007) or Martellini and

162



Figure 5.7: Full set of IRFs from the partly-recursive specification (so additionally
including the hours shock). Impulse responses are normalized to an impact effect
of one on the main diagonal for the recursive variables and to an impact effect of
one on stock prices for both news and noise shocks. Confidence bands are 68%
(darker shade) and 90% (lighter shade) bootstrap confidence bands resulting from
5000 resamplings.

Menzio (2020), as well as the second chapter of this dissertation.

5.8 Appendix: Further robustness checks

5.8.1 Changing the number of lags

In the main body of the paper, the lag order was chosen ad hoc as traditional infor-

mation criteria are based on a normality assumption for the structural shocks and

thus collide with the identifying assumption of at least some non-Gaussian struc-

tural shocks. However, changing the number of lags can sometimes have a serious

impact on the distributional properties of the estimated shocks. In order to check

on the sensitivity of the results in the main paper, a smaller and larger lag order

is tried out in this section. At first consider a specification with 3 lags included, as

indicated by the Akaike information criterion. Sticking to the AIC, table 5.6 shows

the skewness, kurtosis and Jarque-Bera test results under the smaller lag order. As

it can be seen, there is still evidence that three of the four reduced form errors are
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Table 5.6: Skewness, kurtosis and Jarque-Bera-test results for the specification with
3 lags as implied by the AIC

Reduced form errors u1 u2 u3 u4

Skewness 0.2595 -0.1156 -1.3157 -0.2650
Kurtosis 3.5463 4.7978 8.3599 4.1139

JB-Test p-Value 0.1097 0.0023 0.0010 0.0155

Structural shocks ε1 ε2 ε3 ε4
Skewness 0.2595 -0.1965 -1.1086 -0.2496
Kurtosis 3.5463 4.8255 7.5171 3.8022

JB-Test p-Value 0.1097 0.0020 0.0010 0.0457

non-Gaussian, indicating that there has to be at least one non-Gaussian structural

shock. Looking at the Jarque-Bera test for the structural shocks, normality can be

rejected at the 1% level for ε3 and at the 5% level for ε4, thus there is still evidence

for the feasibility of the identification approach relying on moments beyond the

variance.

Figure 5.8 shows the resulting impulse responses for the specification containing

only 3 lags. The basic properties of the results in the main paper remain unchanged:

A news shock leads to a persistent increase in stock prices, R&D and TFP, while the

effect of a noise shock on the previous variables is weaker in comparison. The crucial

findings of the present paper remain untouched and are robust to the reduction of

lags compared to the partly-recursive specification.

On the other side, the number of four lags used in the main paper might be too low

to capture all the important dynamics, so as a further robustness check a larger

lag order of six is chosen. Table 5.7 shows the respective skewness, kurtosis and

Jarque-Bera test results. Again three of the reduced form errors are significantly

Table 5.7: Skewness, kurtosis and JarqueBera-test results for the specification with
6 lags

Reduced form errors u1 u2 u3 u4

Skewness 0.2646 -0.0492 -0.9582 -0.3232
Kurtosis 3.0760 4.3367 6.3117 3.6101

JB-Test p-Value 0.3335 0.0111 0.0010 0.0599

Structural shocks ε1 ε2 ε3 ε4
Skewness 0.2646 -0.0933 -0.8065 -0.2020
Kurtosis 3.0760 3.9645 5.5889 3.4004

JB-Test p-Value 0.3335 0.0407 0.0010 0.2883

non-Gaussian at usual significance levels. Looking at the Jarque-Bera test results
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Figure 5.8: Robustness check with 3 lags as implied by the Akaike information
criterion instead of 4 lags. Impulse responses are normalized to an impact effect
of one on the main diagonal for the recursive variables and to an impact effect of
one on stock prices for both news and noise shocks. Confidence bands are 68%
(darker shade) and 90% (lighter shade) bootstrap confidence bands resulting from
5000 resamplings.

for the identified structural shocks, it shows that normality can be rejected for

ε3 at the 1% level. Consequently, there is evidence that the requirements for the

data-driven identification scheme are fulfilled.

Figure 5.9 shows the resulting impulse responses. It turns out that the main impli-

cations of the paper are robust to adding more lags to the specification: The news

shock leads to an immediate and persistent increase in stock prices and real R&D

expenditures, while TFP increases with a small lag and stays at a higher value than

without the shock in the medium run. On the other hand, a noise shock also leads

to an increase in TFP, stock prices and R&D spending, but the shock effect on TFP

is weaker than compared to after a news shock. Furthermore, news and noise shocks

both lead to an increase in hours, thus the business cycle comovement property is

robust to the change in specification as well. While the qualitative results remain

unchanged, the inclusion of more lags increases the width of the confidence bands,

making the response of research spending to a noise shock entirely insignificant, the

same holds for the stock price reaction to a news shock. So the inclusion of more

lags decreases precision without changing the qualitative results, thus the smaller
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Figure 5.9: Robustness check with 6 lags instead of 4 lags. Impulse responses are
normalized to an impact effect of one on the main diagonal for the recursive vari-
ables and to an impact effect of one on stock prices for both news and noise shocks.
Confidence bands are 68% (darker shade) and 90% (lighter shade) bootstrap con-
fidence bands resulting from 5000 resamplings.

lag order is preferred in the main body of the paper. Summing up, the results from

the paper are robust to alternating the lag order.

5.8.2 Using a different estimator for the non-recursive block

The estimator following Keweloh (2019) used in the main section of the present

paper is a GMM estimator using the higher shock moments as moment conditions.

A different way to estimate the non-recursive block is using a pseudo maximum

likelihood (PML) approach (see Gouriéroux et al. (2017)). To see if the estimator

used before and/or its computational implementation are driving the results from

the main body of the paper, the PML estimator is used instead for the non-recursive

block as a robustness check. The labeling assumptions are analogous to before.

Figure 5.10 shows the resulting impulse responses. As it can be seen, the results

from the main part of the paper are robust to the change of the estimator. A news

shock still leads to an immediate and persistent increase in stock prices and R&D

spending and with a short lag to a persistent increase in TFP. Analogously, the

noise shock induces an increase in stock prices, R&D spending and TFP as well,
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Figure 5.10: Robustness check using the PML estimator following Gouriéroux et al.
(2017) for the non-recursive block. Impulse responses are normalized to an impact
effect of one on the main diagonal for the recursive variables and to an impact effect
of one on stock prices for both news and noise shocks. Confidence bands are 68%
(darker shade) and 90% (lighter shade) bootstrap confidence bands resulting from
5000 resamplings.

but the effect is comparably weak. Furthermore, for a noise shock that induces the

same stock price reaction as a news shock, the reaction in research spending is much

weaker, hinting that researchers are likely to have additional information about the

veracity of the news. Both shocks robustly lead to business cycle comovement

in hours. Consequently, the results found in the main part of the paper are not

sensitive to the choice of the estimator.
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6 Concluding remarks

The present dissertation complements the recent stream of literature that tries to

integrate short-run business cycle fluctuations and long-run technological progress.

It therefore adds endogenous technological progress to otherwise standard real busi-

ness cycle (RBC) models and takes a look on the longer-run implications of classi-

cal business cycle shocks like matching efficiency, inflation target, monetary policy,

news and noise shocks.

After the introductory first chapter, the second chapter analyses, how matching

efficiency shocks affect the firm’s innovation decision. It is noted that the slowdown

in TFP growth during the Great Recession was accompanied by an outward shift in

the Beveridge Curve, which is typically thought to be induced by a strong decline

in matching efficiency during this time. It is argued that this outward shift in

the Beveridge Curve was a major contributor to the slowdown in endogenous TFP

growth. Lower matching efficiency implies higher hiring costs for firms, thus a

higher entry barrier for potential market entrants. As in Schumpeterian growth

models the competition for higher productivity due to new ideas between incumbent

firms and entrants is vital for technological progress, higher entry costs reduce the

incentive to innovate for all firms and thus long-run technological progress. The

empirical assessment of the model shows that, even though quite irrelevant during

other times, the decline in matching efficiency was the driving force behind the

slowdown in endogenous TFP growth during the Great Recession, even before

demand and TFP shocks.

The third chapter deals with the observation that, even though higher inflation is

linked with lower long-run growth, expansive monetary policy is typically found to

be beneficial for technological progress. It is argued that longer-run deviations of

the inflation rate are associated with inflation target shocks rather than monetary

policy shocks, who are assumed to be only short-lived. Thus decisions about the

longer-run technological progress are not concerned by traditional monetary policy

shocks, but only by inflation target shocks. If the inflation target is increased, the

economy experiences a period of adjustment to the new long-run inflation rate.

In a Newkeynesian model, price markups decrease during this period and thus

the gain of being market incumbent. As argued before, in Schumpeterian models

technological progress depends on the incentive of firms to engage in innovative

competition, thus if this incentive is reduced, technological progress will be reduced.

The empirical assessment of the model shows that expansive monetary policy has
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the commonly observed feature of increasing TFP growth, while longer-run changes

in the inflation target due to inflation target shocks reduce technological progress.

The fourth chapter takes a look at monetary policy and stock market shocks from

a more econometric point of view. Both, monetary policy and stock markets, are

likely to instantaneously react to shocks originating from the respective other agent,

which makes short-run restrictions not viable for identifying SVARs containing the

nominal interest rate and stock returns. The previous chapter already discussed

the matter of monetary policy affecting long-run technological progress, thus even

a long-run restriction might be problematic. A partly recursive, partly data-driven

identification scheme to solve this identification problem is proposed and monetary

policy shocks are found to have an instantaneous and long-run negative effect on

stock prices and output, supporting the results from the previous chapter.

The fifth chapter examines the effect of true news and noise on technological

progress in an SVAR. In line with the other chapters, news is interpreted as shocks

to the idea production, which can only have a lagged effect on TFP due to neces-

sary technology adoption beforehand. It is assumed that stock prices and research

spending contain information regarding news, while researchers have an informa-

tional advantage concerning the truth of research related news compared to all

other economic agents, which allows to estimate the SVAR without running into a

singularity problem. The main result is that true news shocks lead to an immediate

increase in research spending and stock prices, which is comparably strong, while

noise shocks that induce the same stock price reaction are associated with a much

more cautious response in research spending and a weaker effect on TFP and stock

prices. The difference in the response of research spending confirms the assumption

that researchers might have at least partial information about the truth of research

related news.

Summing up, the present dissertation discusses longer-run effects of traditional

business cycle shocks that are not recognized so far. Knowing about the long-run

implications of short-run events is not only of academic value, but is also important

for political decisions or strategic planning of private firms and households. Further

research will shed more light on the matter and likely render the classical dichotomy

between short- and long-run obsolete.
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Diamond, P. A. and Şahin, A. (2015). Shifts in the Beveridge Curve, Research in

Economics 69(1): 18–25.

Fan, H., Gao, X., Xu, J. and Xu, Z. (2016). News shock, firm dynamics and busi-

ness cycles: Evidence and theory, Journal of Economic Dynamics and Control

73: 159–180.

173



Fatas, A. (2000). Do business cycles cast long shadows? Short-run persistence and

economic growth, Journal of Economic Growth 5(2): 147–162.

Fernald, J. (2012-2019). A quarterly, utilization-adjusted series on total factor

productivity, FRBSF Working Paper .

Francois, P. and Lloyd-Ellis, H. (2003). Animal spirits through creative destruction,

American Economic Review 93(3): 530–550.

FRED (2019). Federal Reserve Economic Data, https://fred.stlouisfed.org/ .

FRED (2020). Federal Reserve Economic Data, https://fred.stlouisfed.org/ .

FRED (2021). Federal Reserve Economic Data, https://fred.stlouisfed.org/ .

Furlanetto, F. and Groshenny, N. (2016). Mismatch shocks and unemployment

during the great recession, Journal of Applied Econometrics 31(7): 1197–1214.

Garga, V. and Singh, S. R. (2021). Output hysteresis and optimal monetary policy,

Journal of Monetary Economics 117: 871–886.

Gouriéroux, C., Monfort, A. and Renne, J.-P. (2017). Statistical inference for

independent component analysis: Application to structural VAR models, Journal

of Econometrics 196(1): 111–126.

Griliches, Z. (1990). Patent statistics as economic indicators: A survey, Journal of

Economic Literature 28(4): 1661–1707.

Grossman, G. M. and Helpman, E. (1991). Quality ladders in the theory of growth,

The Review of Economic Studies 58(1): 43–61.

Guay, A. (2021). Identification of structural vector autoregressions through higher

unconditional moments, Journal of Econometrics 225(1): 27–46.

Guerron-Quintana, P. A. and Jinnai, R. (2019). Financial frictions, trends, and the

great recession, Quantitative Economics 10(2): 735–773.

Hirose, Y. and Kurozumi, T. (2021). Identifying news shocks with forecast data,

Macroeconomic Dynamics 25(6): 1442–1471.
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Sedláček, P. (2014). Match efficiency and firms’ hiring standards, Journal of Mon-

etary Economics 62: 123–133.

177



Smets, F. and Wouters, R. (2003). An estimated dynamic stochastic general equi-

librium model of the euro area, Journal of the European Economic Association

1(5): 1123–1175.

Sprague, S. (2017). Below trend: The U.S. productivity slowdown since the Great

Recession, Bureau of Labor Statistics: Beyond the Numbers 6(2).

Stock, J. H. and Watson, M. W. (2001). Vector autoregressions, Journal of Eco-

nomic Perspectives 15(4): 101–115.

U.S. Bureau of Labor Statistics (2020a). Current Population Survey,

https://www.bls.gov/cps/ .

U.S. Bureau of Labor Statistics (2020b). Job Openings and Labor Turnover Survey,

https://www.bls.gov/jlt/ .

Vaona, A. and Schiavo, S. (2007). Nonparametric and semiparametric evidence on

the long-run effects of inflation on growth, Economics Letters 94(3): 452–458.

Wheeler, C. H. (2007). Job flows and productivity dynamics: Evidence from US

manufacturing, Macroeconomic Dynamics 11(2): 175–201.

Wu, J. C. and Xia, F. D. (2016). Measuring the macroeconomic impact of monetary

policy at the zero lower bound, Journal of Money, Credit and Banking 48(2-

3): 253–291.

Zagler, M. (2009). Economic growth, structural change and search unemployment,

Journal of Economics 96(1): 63–78.

178


