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Abstract

The two-photon absorption is a nonlinear optical process with various properties which

makes it an excellent basis for a wide range of di�erent applications. In this thesis the

non-degenerate two-photon absorption coe�cient β(ω1, ω2) as a function of the frequency

ratio ω1/ω2 of the two driving �elds is experimentally investigated whereby the sum en-

ergy ~ω1+~ω2 is kept constant. The studied materials are the prototypical semiconductors

ZnSe, GaAs and Si. Regardless of the direct or indirect character of the bandgap, the two-

photon absorption strength increases with increasing ratio ω1/ω2 ≥ 1. The experimental

data of ZnSe and GaAs agrees well with corresponding theoretical predictions for direct

semiconductors. Si shows overall smaller absorption strengths. These results also agree

with theoretical predictions for indirect semiconductors. In addition, di�erent crystallo-

graphic orientations of the samples and polarization con�gurations of the two driving �elds

are analyzed. These results make an important contribution to the so far rarely investigated

orientation and polarization anisotropy of the non-degenerate two-photon absorption.

Kurzfassung

Die Zwei-Photonen-Absorption ist ein nichtlinearer optischer Prozess mit diversen Eigen-

schaften, welche sie zu einer ausgezeichneten Grundlage für ein breites Spektrum ver-

schiedener Anwendungen macht. In dieser Arbeit wird der nicht-entartete Zwei-Photonen-

Absorptionskoe�zient β(ω1, ω2) als Funktion des Frequenzverhältnisses ω1/ω2 bei einer

konstanten Übergangsenergie ~ω1+~ω2 experimentell untersucht. Die verwendeten Materi-

alien sind die Halbleiter ZnSe, GaAs und Si. Unabhängig von dem direkten oder indirekten

Charakter der Bandlücke steigt die Zwei-Photonen-Absorptionsstärke mit zunehmendem

Verhältnis ω1/ω2 ≥ 1. Die experimentellen Daten von ZnSe und GaAs stimmen sehr gut

mit den entsprechenden theoretischen Vorhersagen für direkte Halbleiter überein. Bei Si

zeigen sich im Vergleich insgesamt geringere Absorptionsstärken. Auch hier stimmen die

Ergebnisse mit den theoretischen Vorhersagen für indirekte Halbleiter überein. Darüber

hinaus werden verschiedene kristallographische Orientierungen der Proben und unter-

schiedliche Polarisationseinstellungen der beiden anregenden optischen Felder analysiert.

Diese Ergebnisse leisten einen wichtigen Beitrag zu der bisher wenig untersuchten Orien-

tierungs- und Polarisationsanisotropie der nicht-entarteten Zwei-Photonen-Absorption.
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Introduction

Physics would be dull and life most unful�lling if all physical phenomena around

us were linear. Fortunately, we are living in a nonlinear world. While linearization

beauti�es physics, nonlinearity provides excitement in physics.

Y. R. Shen - The Principles of Nonlinear Optics [1]

These exciting nonlinear phenomena, which Y. R. Shen describes so vividly, occur in a

variety of e�ects when high intensity laser light interacts with matter. One of those ef-

fects is the two-photon absorption. In contrast to the linear one-photon absorption, here

two photons simultaneously trigger an optical transition from the ground to an excited

state whereby the energy of each photon alone is not su�cient to compensate for the en-

ergy di�erence in between those states. These two photons can either have the same or

di�erent frequencies, which then will be referred to as degenerate or non-degenerate two-

photon absorption (see Figure 1). Considering a semiconductor this could be a transition

from the valence band to the conduction band, although the energy of each involved photon

is smaller than the bandgap energy and only their sum energy exceeds the bandgap energy.

The �rst theoretical description of the two-photon absorption was already proposed in 1931

by Maria Göppert-Mayer using second-order perturbation theory [2]. However, since the

probability for a two-photon absorption is too small to be triggered with any conventional

light source, the �rst experimental observation lasted until the demonstration of the �rst

running laser device by T. H. Maiman in 1960 � a 694.3 nm pulsed ruby-crystal laser [3, 4].

Shortly after, in the early 1960s, W. Kaiser and C. G. B. Garrett [5] reported a two-photon

induced frequency upconversion �uorescence in a CaF2:Eu2+ crystal excited by the intense

radiation from the recently developed ruby-crystal laser. In fact, the population of the en-

ergy levels of the Eu2+ impurities and the ensuing blue �uorescence could only be induced

by two red ruby-crystal laser photons. In 1964 R. Braunstein and N. Ockman were the �rst

ones observing two-photon absorption in a semiconductor [6]. They triggered a two-photon

excitation of an electron from the valence to the conduction band in a CdS crystal also
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Introduction

using a ruby-crystal laser and investigated di�erent aspects of the radiative recombination

emission. Until the 1980s the two-photon absorption was mainly used as a spectroscopic

tool as it enabled the access to eigenstates of matter that were not accessible with linear,

one-photon optical spectroscopy. But later on, various applications quickly developed that

took advantage of the bene�ts of the two-photon absorption. Today, there is a wide variety

of applications.

A well established example are two-photon absorption based autocorrelators for the tem-

poral characterization of ultra-short laser pulses [7]. They exhibit many advantages in con-

trast to the standard autocorrelation technique using a nonlinear crystal. A two-photon

absorption autocorrelator unites the autocorrelation signal generation and detection in a

single semiconductor device, since the optically correlated signal is directly transformed

into an electrical signal via the two-photon absorption. Expensive nonlinear crystals can

therefore be replaced by commercially available and robust photodiodes for the analysis of

pulses with wavelengths continuously ranging from the ultraviolet to the infrared region [8].

Since a two-photon absorption ends in a transition of a charge carrier at an excited state,

no photon momentum needs to be conserved, which further makes the autocorrelator easier

to use, more sensitive and allows the characterization of extremely short pulses down to a

few femtoseconds. [9]

Further two-photon absorption applications from the �eld of photonics are, for example,

infrared detection [10], optical switching [11] and coherent control of photocurrents [12, 13],

which all bene�t from the various advantages of the two-photon absorption.

The development of new technologies is based on extensive theoretical and experimental

fundamental research. Therefore, various aspects of the two-photon absorption have been

intensively studied and have drawn a comprehensive picture of its properties and charac-

teristics. Even so, there are many unanswered questions which still makes the two-photon

absorption a desirable topic for today's scientists.

This thesis contributes to the fundamental understanding of the two-photon absorption and

experimentally investigates the non-degenerate two-photon absorption coe�cient β(ω1, ω2)

as a function of the frequency ratio ω1/ω2 of the two driving �elds. The investigated ma-

terials are the prototypical bulk semiconductors ZnSe, GaAs and Si, which are well char-

acterized and irreplaceable in up-to-date technologies. The therefore used experimental

setup is designed in a pump-probe scheme. In combination with a tunable laser source,

it is possible to systematically acquire the two-photon absorption strength from degener-
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ħω1 + ħω2

= const.

cb

vb

ħω1 + ħω2

≠ const.

ħω1 ≠ ħω2ħω1 = ħω2

non-degenerate
two-photon absorption

degenerate
two-photon absorption

Figure 1: Schematic representation of a two-photon transition in a direct semiconductor

from the valence band (vb) to the conduction band (cb). The transition can be triggered by

a degenerate photon pair with the same frequencies or a non-degenerate photon pair with dif-

ferent frequencies. Comparing di�erent non-degenerate two-photon absorption con�gurations,

either one photon frequency can be kept constant and the other photon frequency is varied or

the sum frequency is kept constant and both frequencies are varied.

ate con�gurations with ω1/ω2 = 1 up to non-degenerate con�gurations with ω1/ω2 > 1

while keeping the sum energy ~ω1 + ~ω2 of the two photons constant. The experimentally

measured scaling behaviour β(ω1/ω2) is analyzed and compared among the three samples

to stress the di�erences for direct and indirect bandgap semiconductors. The accordance

with corresponding theoretical predictions is evaluated.

Previous experimental studies were mainly related to degenerate con�gurations where the

two-photon absorption strength is often studied in a z-scan experiment [14] with only one

driving laser �eld. Less experimental studies focused on non-degenerate con�gurations. For

direct gap semiconductors various experiments employed driving �elds close to degener-

acy [15], others con�gurations with frequency ratios ω/2ω [16]. Also widely non-degenerate

con�gurations were investigated, in which one driving �eld has a �xed and the other one a

variable frequency [17, 18, 19]. All these studies showed an increasing two-photon absorp-

tion strength for non-degenerate in contrast to degenerate con�gurations. Nevertheless, a

study measuring the two-photon absorption strength for increasing frequency ratios at a

constant sum energy of the two photons is lacking so far. Non-degenerate studies for indi-

rect semiconductors are even less performed. The few available studies mainly concentrate

on non-degenerate 2PA at discrete wavelength con�gurations, especially in Si waveguides

at the telecommunication wavelengths [20, 21, 22]. Only the joint study of Sanaz Faryadras

and Cox et al. [23, 24] investigated the non-degenerate 2PA in bulk Si for di�erent fre-
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quency ratios but with varying sum energy. The studies for indirect semiconductors also

show an enhancement of the 2PA strength with increasing di�erence in between the photon

frequencies but with overall smaller absorption strengths.

Another focus of this thesis is the orientation and polarization anisotropy of the two-photon

absorption coe�cient β(ω1, ω2). For the investigation of the orientation anisotropy each

sample is measured in (100) and (110) crystallographic orientation and the results are

compared. For the polarization anisotropy, measurement con�gurations are used where

the two, both linearly polarized, driving �elds are either parallel or perpendicular aligned

to each other. The results of the orientation and polarization anisotropy measurements

are further analyzed dependent on the frequency ratio ω1/ω2.

Only very few experimental studies have investigated the anisotropy of the two-photon ab-

sorption. Especially, studies for non-degenerate con�gurations at di�erent frequency ratios

are missing so far, although degenerate studies for direct gap semiconductors yield high

anisotropy e�ects [25, 26, 27, 28, 29]. Research on indirect semiconductors is even scarcer.

The few experimental results for Si partially give rise to similar characteristics of the de-

generate two-photon absorption anisotropy [30, 31, 32, 33], but need to be continued for

conclusive results. Experimental data for non-degenerate con�gurations is missing entirely.

In a nutshell, the two-photon absorption shows a variety of interesting characteristics,

leading to diverse applications in fundamental scienti�c research but also industrial areas

as for example medicine and engineering. This wide-ranging interest is a great opportunity

for jointly developed new insights and holds a lot of promise for future research on two-

photon absorption.

The references in this thesis do not claim to be complete. Often, only a selection of the most recent

publications or a selection of publications, in which a technology, a theoretical approach or a speci�c

experiment is mentioned �rst, is given. If the name of an author is given in the continuous text and the

(lead) author is a woman, also the surname is added to enhance the visibility of women in science.
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Chapter 1

Theoretical Background

This chapter introduces the theoretical concepts of nonlinear optical phenomena in general

and describes the process of nonlinear two-photon absorption more precisely. In particular

the two-photon absorption coe�cient, describing the strength of a two-photon absorption,

is introduced and its scaling behavior in semiconductors under the in�uence of certain

parameters is further analyzed. Di�erences for direct and indirect semiconductors are

outlined. In addition, the anisotropy of the two-photon absorption coe�cient is examined.

1.1 Nonlinear optics

The �eld of nonlinear optics comprises a variety of phenomena which occur when high

intensity laser light interacts with matter. Already a few decades after the advent of the

laser, much more nonlinear e�ects have been experimentally investigated as conventional

linear e�ects were explored in the past. The reason for the rapid growth of this new branch

stemmed from the unique characteristics of the laser. In comparison to conventional light

sources, laser light is monochromatic, directional and coherent and can reach high inten-

sities. These properties form the basis for the observation of nonlinear optical phenomena

whose potential is still not exhausted to date, giving rise to undiscovered e�ects and their

applications. [34]

1.1.1 The electric nonlinear polarization

The Maxwell's equations build the theoretical foundation for describing phenomena in

classical electrodynamics. The interaction of an electromagnetic light �eld E1 with a

1Letters printed in bold will subsequently denote vectorial quantities.
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Theoretical Background

dielectric material is comprised in these equations by the electric displacement �eld

D = ε0E+P(E) (1.1)

with the vacuum permittivity ε0. The electric polarization P is de�ned as the dipole

moment per unit volume induced by the spatial displacement of the bound charges in the

solid structure due to the incident electric �eld. If the amplitude of the electric �eld is

small, the electric polarization will be linearly dependent on the electric �eld

PL = ε0χ
(1)E (1.2)

with χ(1) being the linear susceptibility. For small optical �eld strengths this linear approx-

imation is valid since the electrons can be assumed to be bound in a parabolic potential.

However, for high optical �eld strengths the anharmonic part of the potential must also

be considered as the spatial displacement between the atomic nuclei and their electrons

increases. Therefore, the de�nition of the electric polarization has to be generalized by

expressing it as a power series in the driving electrical �eld

P = PL +PNL

= ε0χ
(1)E+ ε0χ

(2)E2 + ε0χ
(3)E3 + . . .

= ε0

∞∑
n=1

χ(n)En (1.3)

where χ(n) denotes the nth-order susceptibility. In order to obtain a su�ciently strong

displacement of the bound charges and thus to access the higher-order terms of the electric

polarization, high optical �eld amplitudes are required. An optical �eld with an intensity

comparable to a conventional light source would have an electric �eld amplitude too small

in comparison to the characteristic atomic Coulomb �eld to enable the access to the non-

linear regime. The intensity of the sun, for example, would result in a �eld amplitude2

of Esolar ≈ 1013V/m whereas the atomic �eld amplitudes3 are in the order of 1011V/m

considering a hydrogen atom. Therefore, intense laser sources with amplitudes of about

107V/m are needed to introduce nonlinearities.

2The laser intensity I in terms of the peak �eld strength E0 is given by I = 1
2
ε0cE

2
0 with c the speed

of light in vacuum. Followingly, the total solar intensity, given by the solar constant of 1361W/m2 [35],

would lead to a maximum �eld strength Esolar ≈ 1013V/m. The solar constant is obtained for a surface

perpendicular to the sun rays in roughly the distance from sun to earth without atmospheric in�uence.
3The atomic �eld amplitude of the hydrogen atom can be calculated by Eatomic = εRyd/a0e whereby

εRyd is the Rydberg energy, a0 the Bohr radius and e the elementary charge.
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1.1. Nonlinear optics

If the nonlinear electric polarization is included in the electric displacement �eld, the wave

equation in nonlinear optical media, with consideration of the Maxwell's equations, can be

obtained as

∇2E− n2

c2
∂2

∂t2
E =

1

ε0c2
∂2

∂t2
PNL (1.4)

whereby c is the speed of light in vacuum. The linear part of the polarization is included

by the quadratic refractive index n2 = 1 + χ(1). The wave equation illustrates that in

nonlinear optics the time-varying nonlinear polarization acts as a driving force for new

components of the electromagnetic �eld, leading to a variety of nonlinear optical phenom-

ena.

These nonlinear optical phenomena can have the most di�erent forms. In the regime of the

second-order polarization, e�ects such as second-harmonic generation, sum- and di�erence-

frequency generation occur. They, for example, exhibit new frequencies next to the driving

�eld frequency after the interaction of the nonlinear medium with the optical light source.

The third-order polarization leads to two-photon absorption which will be described in

detail in Chapter 1.2. Another third-order e�ect among others is self-focusing where the

nonlinear material itself acts as a converging lens due to an optically induced change in

the refractive index. Also higher-order polarizations enable a variety of e�ects, but the

accessibility decreases as the required illumination strengths increase. [36, 37]

1.1.2 The nonlinear susceptibility tensor

In general, the material dependent nth-order susceptibility χ(n) is a tensor of (n + 1)th-

rank with 3n+1 elements, describing the proportionality of the electric polarization and the

applied electric �eld as introduced in Equation (1.3).

In case of a linear light-matter interaction, one optical �eld with frequency ω introduces an

electric polarization which can only induce a secondary optical �eld of the initial frequency

ω. The spatial components of that polarization can generally be described by

P
(1)
i (ω) = ε0

∑
j

χ
(1)
ij (ω; ω)Ej(ω) (1.5)

with i and j denoting the spatial coordinates x, y and z. The linear susceptibility tensor

χ(1) is a 3 × 3-matrix and comprises nine elements. In the matrix formalism the linear

electric polarization can be expressed as
P

(1)
x

P
(1)
y

P
(1)
z

 = ε0


χ
(1)
xx χ

(1)
xy χ

(1)
xz

χ
(1)
yx χ

(1)
yy χ

(1)
yz

χ
(1)
zx χ

(1)
zy χ

(1)
zz

 ·

Ex

Ey

Ez

 . (1.6)
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Theoretical Background

Going to nonlinear light-matter interactions, the number of susceptibility tensor elements

rapidly increases since more optical �elds can interact. In case of a second-order nonlinear

process the applied optical �eld can comprise up to two frequency components ωm and ωn

so that the ith component of the electric polarization can in general be written as

P
(2)
i (ωm + ωn) = ε0

∑
jk

∑
(mn)

χ
(2)
ijk (ωm + ωn; ωm, ωn)Ej(ωm)Ek(ωn) (1.7)

with the indices i, j, k ∈ {x, y, z} denoting the spatial coordinates. The summation over

(mn) takes account of all possible permutations of the frequencies ωm and ωn. Since the

�eld amplitudes Ej(ωm) and Ek(ωn) are associated with the time dependencies exp(−iωmt)
and exp(−iωnt), respectively, their product yields exp(−i(ωm+ωn)t) so that the nonlinear

polarization oscillates at a frequency ωm+ωn as denoted in the notation of Equation (1.7).

The second-order susceptibility tensor χ(2) comprises 27 elements and is given in matrix

notation by


P

(2)
x

P
(2)
y

P
(2)
z

 = ε0


χ
(2)
xxx χ

(2)
xxy χ

(2)
xxz . . . χ

(2)
xzz

χ
(2)
yxx χ

(2)
yxy χ

(2)
yxz . . . χ

(2)
yzz

χ
(2)
zxx χ

(2)
zxy χ

(2)
zxz . . . χ

(2)
zzz

 ·


Ex · Ex
Ex · Ey
Ex · Ez

...

Ez · Ez


. (1.8)

The tensor element χ(2)
zxy, for example, gives the introduced electric polarization in z-

direction if the driving optical �elds are polarized in x- and y-direction. In a third-order

nonlinear process the applied optical �eld can comprise up to three frequencies ωm, ωn and

ωo. The ith component of the third-order polarization can therefore be described by

P
(3)
i (ωm +ωn +ωo) = ε0

∑
jkl

∑
(mno)

χ
(3)
ijkl(ωm +ωn +ωo; ωm, ωn, ωo)Ej(ωm)Ek(ωn)El(ωo) (1.9)

with the indices i, j, k, l ∈ {x, y, z} and the summation over (mno) again representing all

possible frequency permutations. The third-order susceptibility tensor χ(3) increases to 81

elements and is given in matrix notation by


P

(3)
x

P
(3)
y

P
(3)
z

 = ε0


χ
(3)
xxxx χ

(3)
xxxy χ

(3)
xxxz . . . χ

(3)
xzzz

χ
(3)
yxxx χ

(3)
yxxy χ

(3)
yxxz . . . χ

(3)
yzzz

χ
(3)
zxxx χ

(3)
zxxy χ

(3)
zxxz . . . χ

(3)
zzzz

 ·


Ex · Ex · Ex
Ex · Ex · Ey
Ex · Ex · Ez

...

Ez · Ez · Ez


. (1.10)

For higher-order processes the mathematical description is equally applicable but much

more extensive because of the rising number of tensor elements and interacting �elds as

8



1.1. Nonlinear optics

already described here for only the �rst three polarization orders.

Fortunately, by taking into account various symmetry considerations, the number of tensor

elements can be strongly reduced. One example is the intrinsic permutation symmetry,

which states that the order of the �elds Ej(ωm)Ek(ωn) in Equation (1.7) is physically

irrelevant and thus the according tensor elements

χ
(2)
ijk (ωm + ωn; ωm, ωn) = χ

(2)
ijk (ωm + ωn; ωn, ωm) (1.11)

are equal. This consideration is similarly applicable for every nth-order susceptibility

tensor and reduces the number of independent elements. Another example is the spatial

symmetry of the nonlinear material which also has a strong in�uence on the number of

tensor elements. In particular, for materials with high crystal symmetries many tensor

elements are zero or have the same value. In media showing inversion symmetry all odd-

rank susceptibilities χ(n) (n: even) vanish (as all tensor elements χ(2)
ijk are zero) and the

third-order susceptibility, as �rst nonzero term, dominates the nonlinear response. Further

speci�c reductions can be made with regard to the seven di�erent crystal systems4. The

cubic system is one of them to which many semiconductors belong. Due to the symmetry

properties of cubic materials the linear susceptibility tensor χ(1) only exhibits diagonal

elements of which all are equal. The tensor elements of higher-order susceptibilities of cubic

crystals are also reduced. Considering a third-order nonlinear interaction, its susceptibility

tensor χ(3) is reduced from 81 to 21 nonzero elements. The cubic system can further be

subdivided into �ve point groups. For the point groups 432, 4̄3m and m3̄m only four of

the 21 tensor tensor elements are independent and for the point groups 23 and m3̄ only

seven elements are independent. The corresponding spatial coordinates of the independent

third-order susceptibility tensor elements are

xxxx = yyyy = zzzz

yyzz = zzyy = zzxx = xxzz = xxyy = yyxx

yzyz = zyzy = zxzx = xzxz = xyxy = yxyx

yzzy = zyyz = zxxz = xzzx = xyyx = yxxy


point groups

432, 4̄3m and m3̄m
(1.12)

4An overview of the tensor elements of the �rst-, second- and third-order susceptibility for all crystal

systems can be found in Reference [36].
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Theoretical Background

and
xxxx = yyyy = zzzz

yyzz = zzxx = xxyy

zzyy = xxzz = yyxx

yzyz = zxzx = xyxy

zyzy = xzxz = yxyx

yzzy = zxxz = xyyx

zyyz = xzzx = yxxy



point groups

23 and m3̄
(1.13)

respectively. [34, 36]

1.2 Two-photon absorption

The two-photon absorption (2PA) is a third-order nonlinear e�ect. It can be described in a

simpli�ed way as a quantum transition to an energetically higher level by the simultaneous

absorption of two photons via an intermediate state5. As both, the initial and �nal state,

are real, the energy of the two photons is transferred to the material by the absorption. The

two photons, triggering the absorption, can either have the same or di�erent frequencies,

which then will be referred to as degenerate (D) or non-degenerate (ND) 2PA.

1.2.1 The two-photon absorption coe�cient

In a linear medium the absorption and refraction is described by the complex refractive

index

ñ = n+ iκ . (1.14)

The real part of ñ is identical with the normal refractive index n. The imaginary part of ñ

is directly related to the linear absorption via the extinction coe�cient κ which is in turn

included in the linear absorption coe�cient

α =
2κω

c
=

4πκ

λ
, (1.15)

with angular frequency ω and wavelength λ. The linear absorption coe�cient α directly

quanti�es the strength of a linear (one-photon) absorption. Due to the absorption, the

light intensity exponentially decreases with increasing penetration depth y as described by

the Lambert-Beer's law

I(y) = I0 e
−αy (1.16)

5Higher-order polarizations also lead to three-photon, four-photon and even multi-photon absorptions

where more than two photons simultaneously trigger an electronic transition via several intermediate states.
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1.2. Two-photon absorption

with the initial intensity I0 at y = 0 and α entering the law as the decay constant. [38]

Analogously to the imaginary part of the complex refractive index leading to a linear

one-photon absorption, the imaginary part of the complex third-order susceptibility leads

to a nonlinear absorption with two-photons. The strength of this nonlinear two-photon

absorption can also be described by an absorption coe�cient β, comparable to the linear

absorption coe�cient α. To derive that two-photon absorption coe�cient a plane wave

E(y, t) =
1

2
E(y)e−i(ωt−ky) + c. c. (1.17)

propagating in y-direction with wave number k, electric �eld amplitude E(y) and its com-

plex conjugate (c. c.) is considered. Calculating the third-order electric polarization

P (3)(y, t) = ε0χ
(3)E(y, t)3 and inserting E(y, t) and P (3)(y, t) in the nonlinear wave equa-

tion (1.4) one can obtain an equation describing the evolution of the �eld amplitude as a

function of y given by

dE(y)

dy
e−i(ωt−ky) − c.c. =

3

8

iω

cn
χ(3)|E(y)|2E(y)e−i(ωt−ky) − c. c. . (1.18)

Within that calculation it is assumed that terms containing the second-order derivative

with respect to y can be neglected (slowly-varying envelope approximation [39]) and only

terms oscillating at ω are considered as higher harmonics are not part of a two-photon

absorption process. Also the relations 1
c2

= µ0ε0 with µ0 the vacuum permeability and

k = ωc
n are used. De�ning the electric �eld amplitude as E(y) = A(y) exp(iφ(y)), where

A(y) and φ(y) are real quantities, and splitting the third-order susceptibility in real and

imaginary part χ(3) = χ
(3)
Re + iχ

(3)
Im one obtains the evolution of the nonlinear phase and

�eld amplitude given by

dΦ(y)

dy
=

3

8

ω

cn
χ
(3)
ReA

2(y) (1.19)

and
dA(y)

dy
= −3

8

ω

cn
χ
(3)
ImA

3(y) , (1.20)

respectively. In the following the phase amplitude is disregarded, as an absorption only

causes changes in the �eld amplitude during the propagation through a medium. By

multiplying both sides of the nonlinear �eld amplitude evolution (1.20) with 2A(y) and

using the precise proportionality between intensity I(y) and the electric �eld amplitude

E(y)

I(y) =
1

2
ε0cn|E(y)|2 (1.21)

a di�erential equation

dI(y)

dy
= −βD-2PAI2(y) with βD-2PA =

3πχ
(3)
Im

ε0cn2λ
(1.22)
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Theoretical Background

can be derived. It describes the intensity decrease of an electromagnetic wave during the

propagation in an otherwise transparent medium. Since the derivative of the intensity

is proportional to the square of the intensity, here two photons with same frequency are

simultaneously absorbed. The parameter βD-2PA describes the strength of that process

and is therefore called the degenerate two-photon absorption coe�cient. The solution of

the di�erential equation (1.22) gives the intensity depending on the penetration depth y

I(y) =
I0

1 + βD-2PAI0y
(1.23)

with the intensity I0 at y = 0 comparable to the Lambert-Beer's law (1.16) for a linear

one-photon absorption. [40]

A two-photon absorption can also be triggered by two photons of di�erent frequencies ω1

and ω2. In that case, a pair of di�erential equations, similar to Equation (1.22),

dI1
dy

= −β11I21 − 2β12I1I2 (1.24)

dI2
dy

= −β22I22 − 2β21I1I2 (1.25)

can analogously be derived, which describe the decrease of the intensities I1 and I2 of the

two electromagnetic waves, which are temporally and spatially overlapped in a nonlinear

material. β11 and β22 are again the degenerate 2PA coe�cients describing the absorption

of two-photons of the same beam. β12 and β21 are the non-degenerate 2PA coe�cients

(βND-2PA), giving the strength of an absorption with either one photon of each beam. The

factor of 2 ensures that the non-degenerate 2PA coe�cient approaches the degenerate 2PA

coe�cient in the case of I2 → I1 and ω1 → ω2 [41]. Also in the non-degenerate case,

βND-2PA is directly related to the imaginary part of the third-order susceptibility. [42]

1.2.2 Two-photon absorption in semiconductors

A simultaneous absorption of two photons in a semiconductor usually triggers an electronic

transition across the direct or indirect bandgap via an intermediate state. The two involved

photons need to have at least a sum energy exceeding the bandgap energy. The process

can be referred to as �simultaneous� as the lifetime of the intermediate state is less than

a femtosecond according to the Heisenberg uncertainty principle ∆t ∝ ~/Eg whereby ~ is

the reduced Planck constant and Eg the bandgap energy which ranges between 1 − 3 eV

for typical semiconductors.

12



1.2. Two-photon absorption

1.2.2.1 Scaling rules for direct semiconductors

Theoretical approaches

In semiconductors the behavior of the two-photon absorption coe�cient under variation of

certain parameters is of special interest since, for example, the dispersion of the 2PA coe�-

cient is an important parameter for the optimization of semiconductor devices. Therefore,

theoretical scaling rules for the degenerate and non-degenerate 2PA coe�cient in direct

semiconductors are introduced. Traditionally, these scaling rules have been studied by

2PA transition rate approaches. On the one hand, this is the second-order perturbative

approach, which was �rstly introduced by Maria Göppert-Mayer [2] in 1931; on the other

hand, this is the tunnelling approach of L. V. Keldysh [43] from 1965. The latter uses

�rst-order perturbation theory, taking into account the e�ects of an ac electric light �eld

on the electronic energies and wave functions. The approach is limited to very simple

semiconductor bandstructure models, even so leading to reasonable predictions of the 2PA

scaling rules in direct semiconductors. In contrast, in the second-order perturbative ap-

proach, more sophisticated semiconductor bandstructure models are applicable6. In that

formalism the two-photon absorption coe�cient is related to the two-photon transition

rate W2 according to

βD-2PA(ω) =
2~ωWD

2

I2
(1.26)

for degenerate transitions with one driving optical �eld of angular frequency ω and intensity

I and

βND-2PA(ω1, ω2) =
~ω1W

ND
2

2I1I2
(1.27)

for non-degenerate transitions with two driving optical �elds of angular frequencies ω1 6= ω2

and intensities I1 and I2. The two-photon transition rate W2, known as Fermi's golden

rule, is derived from second-order time-dependent perturbation theory and is in case of a

degenerate 2PA

WD
2 =

2π

~
∑
vc

∣∣∣∣∣∑
i

〈ψc|Ĥopt|ψi〉〈ψi|Ĥopt|ψv〉
Eiv(k)− ~ω

∣∣∣∣∣
2

δ(Ecv(k)− 2~ω) (1.28)

and in case of a non-degenerate 2PA

WND
2 =

2π

~
∑
vc

∣∣∣∣∣∑
i

[
〈ψc|Ĥopt,1|ψi〉〈ψi|Ĥopt,1|ψv〉

Eiv(k)− ~ω1
+
〈ψc|Ĥopt,2|ψi〉〈ψi|Ĥopt,2|ψv〉

Eiv(k)− ~ω2

]∣∣∣∣∣
2

· δ(Ecv(k)− ~ω1 − ~ω2)

.

(1.29)

6For an extensive comparison of both approaches in case of the degenerate 2PA scaling rules in direct

semiconductors see, for example, References [42, 44].
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The optical interaction Hamiltonian Ĥopt describes the perturbation by the coupling of the

respective driving �eld to the semiconductor crystal potential. ψv and ψc denote the Bloch

wave functions for the valence (v) and conduction band (c). Ecv is the energy di�erence

between valence and conduction band and Eiv between valence band and intermediate

state (i). The Bloch wave functions and energies are dependent on the crystal momentum

k. The conservation of energy is given by the δ-function. The summations are performed

over all possible intermediate states and over all possible transitions starting from a �lled

state and ending at an empty state. In case of an intrinsic semiconductor this is usually

a transition from the valence to the conduction band. The second-order perturbative ap-

proach vividly shows that the resulting 2PA coe�cient and its scaling do not solely depend

on the speci�c chosen approach, but in particular on the introduced bandstructure model,

meaning which intermediate states can be addressed and over what transition channels the

summations are performed. [15, 42, 45]

In addition to the transition rate approaches, further theoretical models exist for describing

the nonlinear optical response, especially in case of the non-degenerate 2PA. For example,

one model uses a susceptibility approach [46] while another is based on the semiconductor

Bloch equations [47] to derive the scaling of the non-degenerate 2PA coe�cient. Also these

models are evaluated in the framework of a speci�c chosen bandstructure model.

Bandstructure models7

For a direct semiconductor the simplest approximation for a bandstructure is a two-

band model with one parabolic valence and one parabolic conduction band (see Fig-

ure 1.1) [44, 45, 46, 47, 49, 50]. These bands are separated by the bandgap energy

Eg = Ecv(k = 0) since the maximum of the valence band and the minimum of the con-

duction band are both located at the Γ-point. In this model the intermediate states for

a 2PA lie within the valence or conduction band. Hence, this model enables two possible

degenerate two-photon transitions, more precisely a combination of an interband transi-

tion across the fundamental bandgap and a preceding or succeeding intraband transition

within the valence or conduction band (self-transition)8. According to the conditions for

angular momentum conservation and the parity di�erence between the initial and �nal

state, the interband transition at the Γ-point from the typically p-type valence band states

to the s-type conduction band states is referred to as �allowed� whereas the self-transition

is referred to as �forbidden�. [42, 51]

7The references in this section which are directly given after the �rst mentioning of a speci�c band-

structure model refer to theoretical studies calculating the 2PA coe�cient using this model.
8In case of a non-degenerate 2PA four di�erent transitions are possible as the photons are distinguishable

by their energies.
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1.2. Two-photon absorption
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Figure 1.1: The simplest approximation for a bandstructure of a direct semiconductor is

a two-band model (dark grey) with one parabolic valence (vb) and one parabolic conduc-

tion band (cb) separated by the bandgap energy Eg enabling allowed-forbidden two-photon

transitions with a combination of an interband and a self-transition. The Kane bandstructure

model [48] (dark + light grey) takes the threefold degeneracy of the valence band in heavy-hole

(hh), light-hole (lh) and split-o� (so) band separated by the spin-orbit interaction energy ∆so

into account and enables further transition channels (not shown here).

More realistic band models, as for example the Kane bandstructure model [48] (see also

Figure 1.1), take the threefold degeneracy of the valence band in heavy-hole, light-hole and

split-o� band separated by the spin-orbit interaction energy ∆so at k = 0 into account [42].

Other models for example include higher conduction bands [6, 52]. The integration of fur-

ther bands enables additional transition channels, for example, from either the valence band

or conduction band to higher conduction bands. Next to the already described allowed-

forbidden transition type, allowed-allowed and forbidden-forbidden transitions then have

to be considered. Other re�nements to the bandstructure include, for instance, the con-

sideration of non-parabolic bands [44, 53, 54] and exciton e�ects [44, 52]. Nevertheless,

also models without these re�nements can still give reasonable predictions for the 2PA

coe�cient. Exciton e�ects, for example, only need to be included if the excess energy

∆E = 2~ω −Eg for degenerate transitions and ∆E = ~ω1 + ~ω2 −Eg for non-degenerate

transitions is very small, otherwise the in�uence is negligible [49].

Scaling rules

Although there are numerous theoretical studies using di�erent approaches and applying

diverse bandstructure models, the results are consistent in that the excitation energies

of the two photons and the semiconductor bandgap energy are the two most in�uencing
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parameters on the scaling of the degenerate and non-degenerate 2PA coe�cient. For the

exact spectral dependence minor di�erences exist in literature while the bandgap scaling

is beyond dispute. The absolute values for the 2PA coe�cient deviate stronger between

di�erent studies. Here, an interpretation of the results under consideration of the speci�c

framework is particularly important. Also, the comparison with experimental data has to

be treated with care since the accordance of the experimental and theoretical constraints,

such as the excess energy, has to be taken into account.

In the degenerate case various theoretical studies (see for example References [44, 45,

49]), all using a non-parabolic two-band model, independently derive for the scaling of

degenerate 2PA coe�cient

βD-2PA ∝
1

n2E3
g

F2

(
~ω
Eg

)
with F2(x) =

(2x− 1)3/2

(2x)5
. (1.30)

The dimensionless scaling function F2 models the spectral dependence for allowed-forbidden

transitions. The allowed-allowed and forbidden-forbidden transition type have a similar

dependence only with a di�ering exponent in the numerator [55], but in general have

very little in�uence on the degenerate two-photon absorption coe�cient in direct semicon-

ductors. Only for sum energies 2~ω just above the bandgap energy the allowed-allowed

type and far away from the bandgap energy the forbidden-forbidden type gain slight in-

�uence [56]. Experimental studies validate the dominance over the other transition types

since the experimental data �ts well the scaling function F2 for the allowed-forbidden type

in various materials [57, 58, 59]. In Figure 1.2(a) F2 is shown for various photon energies.

The degenerate 2PA emerges at 2~ω = Eg, when the sum energy of the two photons ex-

ceeds Eg. Going to higher photon energies, βD-2PA rapidly increases up to a maximum

value at ~ω = 5/7Eg, followed by a smooth decrease. At ~ω = Eg (dashed line) linear

absorption sets in and would superimpose the 2PA in experiments. In GaAs, for example,

βD-2PA can be scaled up to maximum values of more than 10 cm/GW [58], βD-2PA of ZnSe

is scalable up to approximately 7 cm/GW [57, 59].

As also seen in Equation (1.30), a scaling of the degenerate 2PA strength can also be

achieved by choosing materials with di�erent bandgaps. The E−3g -scaling is widely vali-

dated in experiments (see for example Reference [60]). Hence, going to very narrow-gap

semiconductors like InSb with a bandgap energy of 0.18 eV [51], βD-2PA can be increased

to a few cm/MW [61]. Nevertheless, the absolute values of βD-2PA for widely-used semi-

conductors, with bandgap energies ranging from 1 to 3 eV, remain in the order of a few

cm/GW (see Figure 1.2(b)).
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Figure 1.2: (a) The dimensionless function F2(~ω/Eg) models the spectral dependence of

βD-2PA. (b) βD-2PA for various direct semiconductors. The solid line represents a �t according

to the E−3g -scaling. The data to the left (right) of the vertical dotted lined is acquired in

degenerate experiments with photons of λ = 1.06µm (λ = 0.53µm). Taken and adapted from

Reference [60].

Consequently, in the degenerate case, the scaling of the 2PA strength is very limited if pro-

totypical semiconductors like GaAs or ZnSe are used. Only comparably low nonlinearities

can be achieved. For these materials a further scaling probability can be realized by us-

ing non-degenerate con�gurations with photons of di�erent excitation energies9. Going to

very non-degenerate con�gurations, theoretical scaling functions predict an enhancement

of βND-2PA up to two to three magnitudes in contrast to the degenerate case. The explicit

spectral dependence is slightly varying for di�erent approaches. Three recent studies for

direct semiconductors, which all use a simple two-band approximation, are the model of

Hannes et al. [47] based on the semiconductor Bloch equations with k-independent dipole

matrix elements which reveals

βND-2PA(ω1, ω2) ∝ ω1

(
1

ω2
1

+
1

ω2
2

)2

, (1.31)

the model of Sheik-Bahae et al. [49, 50] which calculates within a transition rate approach

with k-dependent dipole matrix elements

βND-2PA(ω1, ω2) ∝
(ω1 + ω2)

2

ω3
1ω

4
2

(1.32)

9Also for non-degenerate con�gurations βND-2PA(ω1, ω2) ∝ E−3
g holds true (see, for example, Refer-

ence [42]), but this again excludes the use of prototypical semiconductors.
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and the model of Aversa et al. [46] using a susceptibility approach also with k-dependent

dipole matrix elements which results into

βND-2PA(ω1, ω2) ∝
(ω1 + ω2)

3

ω3
1ω

4
2

. (1.33)

In all three studies βND-2PA exponentially increases if either ~ω1 or ~ω2 becomes small or

accordingly if the ratio of the photon energies increases. The di�erence between those three

approaches is especially seen for very non-degenerate con�gurations. Within the pertur-

bative framework using a two-band model this enhancement can be vividly explained by

the smaller energy photon becoming resonant to the forbidden intraband or self-transition

and the larger energy photon to the allowed interband transition across the bandgap. The

enhancement of the non-degenerate 2PA coe�cient is limited by the linear one-photon

absorption, when the larger energy photon approaches the bandgap energy. [19]

Experimentally, these predictions have so far been veri�ed only for photon pairs where one

photon is �xed and the other is varied in energy. For example, Fishman et al. [19] showed

that in ZnSe for a photon energy ratio of 12.5 a 270-fold enhancement of the 2PA strength

could be achieved when comparing to the corresponding degenerate coe�cient at the av-

erage photon energy (~ω1 +~ω2)/2. For GaAs they obtained a 127-fold enhancement for a

photon energy ratio of ten. In their experiments the small energy photon had a �xed energy

at approximately 8% and 10% of the bandgap energy of ZnSe and GaAs, respectively. The

large energy photon was varied in energy within the visible and near-infrared wavelength

range. They compared the experimental data to the above introduced theoretical model

of Sheik-Bahae et al. (see Equation (1.32)) and found good agreement. The results of

Fishman et al. for ZnSe and GaAs are shown in Figure 1.3. Further experimental studies

can be found in References [15, 17] among others. However, a systematic investigation of

the non-degenerate 2PA coe�cient, where the ratio of the photon energies is tuned away

from unity while the sum energy ~ω1 +~ω2 is kept constant so that always the same states

in the conduction band are addressed, is still missing so far.

1.2.2.2 Scaling rules for indirect semiconductors

In an indirect semiconductor the maximum of the valence band and the minimum of the

conduction band occur at di�erent values of the crystal momentum k separated by the

indirect energy gap Egi (see Figure 1.4). Thus, a 2PA additionally needs to be accompa-

nied by a simultaneous absorption or emission of a phonon providing the required crystal

momentum to the electron. The energy to excite the electron from the valence to the
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1.2. Two-photon absorption

require high-speed detection, thick materials including waveguide
geometries could be helpful.

In 2PA detection one preserves the signal linearity while
having direct control of the responsivity via the gating pulse irradi-
ance R¼ A.Ig, where A¼ 7.1 × 10212 cm2 A W22 for the 390 nm
gating pulse (A¼ 6.8 × 10211 cm2 A W22 for the MIR gating
pulse). This offers flexibility for some applications that can outweigh
the necessity of having a gating pulse. One can then measure pulsed
low-energy MIR radiation using room-temperature detectors with a
user-controlled responsivity. Also, even though the results of
these experiments are related to the particular material and wave-
length pair, the same approach can be used to measure any other
pair of wavelengths using a material with appropriate bandgap
energy. The bandwidth is determined by a trade-off with the 2PA
enhancement, as will be seen from the transmittance experiments
described in the next paragraph. One possible concern is the
current created through direct D-2PA. However, the D-2PA is not
enhanced; therefore, for practical applications the irradiance levels
needed for the gate pulse should not lead to saturation effects. For
MIR detection, the D-2PA of the gating pulse appears as a back-
ground signal. In our experiments, amplitude noise on the gating
laser pulse dominates the contributions to noise. Noise from the
gated signal is linear in the gate irradiance, whereas the degenerate
2PA noise is quadratic in the gate irradiance. There is therefore a
trade-off between responsivity, which is linear in the gate irradiance,
and this noise, which can have linear or quadratic contributions
(Fig. 1). This is analogous to having a ‘noisy’ detector electronic
amplifier; however, this ‘noise’ is measurable and could in principle
be calibrated out. For this reason, we do not quote a noise-equivalent
power or D* for this detection scheme. However, the minimum
detectable energy (Fig. 1b) is �20 pJ, whereas for MCT the
minimum detectable energy is �200 pJ (for details of detector par-
ameters, such as pre-amplifier and transimpedance gain, see
Supplementary Information). This difference is in large part due
to the fact that we can use modulation techniques with the
ND-2PA gated detection scheme.

An alternative to this new detection method is frequency upcon-
version using second-order nonlinear optical materials in which IR
and visible/near-IR photons are summed to yield photons of suffi-
cient energy to be used with high-quantum-efficiency detectors
such as silicon21–23. The primary similarity is that both detection
schemes result in photocarrier densities proportional to the
product of gate and signal irradiances. However, upconversion
requires phase-matched second-order nonlinear materials. After
years of development, it has resulted in near-unity detection

quantum efficiencies24–26. The ND-2PA method demonstrated
here is considerably simpler, because the detector element itself is
the nonlinear material and no phase-matching is required;
however, considerable research and development is necessary for
it to reach its ultimate limits.

To provide a quantitative picture we performed detailed trans-
mission studies of the direct-bandgap semiconductors ZnSe and
GaAs using various photon energy ratios and picosecond and fem-
tosecond pulses. In these experiments, the transmittance of weak
visible pulses was monitored in the presence of intense MIR
pulses (see Supplementary Information). 2PA coefficients for
ZnSe and GaAs at different photon energy ratios are presented in
Fig. 2a and b, respectively. Large enhancements of ND-2PA values
versus D-2PA values were obtained, by as much as 270× in ZnSe
(photon energy ratio up to 12.5, Fig. 2a) and 127× in GaAs
(photon energy ratio of 10, Fig. 2b). For these semiconductors, the
experimental results agree with theory, except for deviations observed
when the sum of photon energies is less than the bandgap.
This exception is probably due to absorption in the Urbach tail27.

This greatly enhanced 2PA should enable many new opportu-
nities beyond detection, such as all-optical switching28 using
microring resonators29, and waveguides30 with direct-bandgap semi-
conductors such as GaAs31, where the resonating light is just below
the band edge. Here the cavity Q can be easily spoiled using IR
pulses via ND-2PA. Gated detection has also been suggested for
quantum detectors32,33. The enhancement noted here makes these
much more attractive. Finally, we note that this very large enhance-
ment of 2PA in the case of non-degenerate photons implies that
two-photon gain34 should show a similar enhancement with non-
degeneracy. Experiments have shown two-photon emission of
very non-degenerate photons.

The application to sub-bandgap detection in the commercial
GaN detector studied here is far from optimized for the detection
of extremely non-degenerate photons. For example, the ND-2PA
could be significantly increased by using a thicker detector
element to efficiently absorb the radiation. The intrinsic detector
temporal response is irrelevant, because the speed of detection is
determined by the gating pulsewidth. In addition, an ultralow-
noise optical comb source could be used as the gating source,
which would greatly improve the signal-to-noise ratio35.

Methods
The experimental ND-2PA data presented in this Article were taken in a standard
pump–probe non-collinear geometry with a small angle (�108) between the pump
and probe beams, using either picosecond or femtosecond pulses. A Ti:sapphire
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Figure 1.3: Fishman et al. investigated the non-degenerate 2PA in ZnSe (left) and GaAs

(right) for the small energy photon (~ωgate) �xed in energy and the large energy photon

(~ωsignal) varied in energy. They found a strong enhancement for very non-degenerate con�g-

urations comparing to the degenerate case. The experimentally obtained scaling behaviour �ts

well the theoretical predictions (lines) of Sheik-Bahae et al. [49, 50]. Taken from Reference [19].

conduction band across the indirect bandgap Egi is again provided by the sum energy of

the two photons. The phonon energy Eph contributes only little since it is at best a few

tens of meV [51] and compared to the photon energies almost negligible. At k = 0 the

valence band states are again of p-type and the conduction band states of s-type whereas

the conduction band states at the indirect bandgap at k 6= 0 are a mixture of p- and

s-type [51, 62]. In contrast to the 2PA in direct semiconductors, the 2PA in indirect

semiconductors exhibits a temperature dependence because of the temperature dependent

phonon occupation numbers [63].

Due to the additionally participating phonon, the strength of a 2PA in an indirect semi-

conductor is much lower than in a direct semiconductor. Nevertheless, a comprehensive

understanding of the phonon-assisted 2PA is of special interest as there are various 2PA

based applications using Si, the most prominent representative in the group of indirect

semiconductors. Aside from technologies bene�ting from the 2PA, in Si at 1310 nm and

1550 nm (the most common telecommunication wavelengths) the 2PA itself and the subse-

quently induced free-carrier absorption (see also Chapter 2.1.1) act as an undesirable loss

mechanism at high optical intensities competing with actually desired nonlinearities [64].

Even so, less experimental and theoretical studies have been performed on phonon-assisted

2PA in contrast to studies on direct semiconductors, particularly the research on phonon-

assisted non-degenerate 2PA is scarce. [65]
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cb

vb

Egi

E

k

Eg
photon

interband
transition

photon
interband
transition

phonon
emission

Figure 1.4: Bandstructure model of an indirect semiconductor with one parabolic valence

band and two parabolic conduction bands separated by the indirect bandgap Egi at k 6= 0.

The direct bandgap Eg at k = 0 is larger than Egi. One possible phonon-assisted 2PA out

of many possible transition schemes is shown. It consists of an interband transition from the

valence to the higher conduction band, followed by a phonon emission and �nally an interband

transition to the minimum of the valence band.

Comparable to direct semiconductors theoretical studies try to calculate scaling rules for

the phonon-assisted 2PA coe�cient. Also here, various approaches and bandstructure

models are developed, showing that the excitation energies of the two photons as well

are the most in�uencing parameters on the scaling of the phonon-assisted degenerate and

non-degenerate 2PA coe�cient10.

The most recent theoretical study of Garcia et al. [55] applies a bandstructure model com-

prising one parabolic valence and two parabolic conduction bands. The degeneracy of

the valence band is neglected. In Figure 1.4 the bandstructure model with one two-photon

transition, out of many possible transitions, is shown. It consists of an interband transition

from the valence to a higher conduction band, followed by a phonon emission and �nally

an interband transition from the higher conduction to the lowest conduction band. The

approach of Garcia et al. yields a phonon-assisted degenerate 2PA coe�cient in total con-

sisting of three di�erent dispersion relations depending on the transition type. In contrast

to βD-2PA in direct semiconductors, the allowed-allowed and allowed-forbidden transition

type are here not negligible for the scaling behavior. Nevertheless, the forbidden-forbidden

10Also the indirect bandgap is an in�uencing parameter on the scaling of the phonon-assisted 2PA

coe�cient. The exact dependence di�ers between theoretical studies and has not been experimentally

determined. M. Dinu [63] calculates E−3
gi as in direct semiconductors whereas Garcia et al. [55] proposes

E
−3/2
gi .
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1.2. Two-photon absorption

transition type is much weaker and peaks at excitation energies of ~ω ≈ 5/2Egi when linear

absorption already superimposes the 2PA. According to this, the overall phonon-assisted

degenerate 2PA coe�cient is given by

βD-2PA =
2∑

n=0

β(n) =
2∑

n=0

2CF
(n)
2

(
~ω
Egi

)
(1.34)

with C a material dependent constant (which can function as a �t parameter in comparison

with experimental data) and n = 0, 1, 2 denoting the allowed-allowed, allowed-forbidden

and forbidden-forbidden transition type, respectively. The factor 2 accounts for phonon

absorption and emission. The spectral dependence F2 is given by

F
(n)
2 (x) =

(2x− 1)n+2

(2x)5

∫ 1

0
(1− x)n+

1
2x

1
2 dx (1.35)

assuming Eph � Egi. The integral in F (n)
2 (x) weights the in�uence of the speci�c tran-

sition type. It is π
8 ,

π
16 and 5π

128 for n = 1, 2, 3, respectively. In Figure 1.5 the function

F
(n)
2 (~ω/Egi) for each transition type and the summation

2∑
n=0

F
(n)
2 over all transition

types are shown. The maxima of F (n)
2 (x) for n = 0, 1 lie close-by at ~ω ≈ 5/6Egi and

~ω ≈ 5/4Egi, respectively. The summation models the experimentally observable scaling

behaviour of βD-2PA as all transition types contribute to the 2PA.
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 F(2)

2  (forbidden-forbidden)
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Figure 1.5: Spectral dependence F
(n)
2 (~ω/Egi) of the phonon-assisted degenerate 2PA coef-

�cient for the three di�erent transition types assuming Eph � Egi. The forbidden-forbidden

type contributes only little as the scaling would be experimentally observed.

The theoretical predictions for the scaling of the phonon-assisted degenerate 2PA coe�-

cient are well in line with experimental observations. The measured 2PA coe�cients of
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Theoretical Background

Bristow et al. [66] in Si for excitation wavelengths 850 nm < λ < 2200 nm are compared

with the theoretical results of Garcia et al. and show good agreement. Values for βD-2PA up

to ≈ 2.5 cm
GW were observed. A comparable study of Lin et al. [67], also in Si and using the

same wavelength range, shows a similar trend for βD-2PA, although a de�nite comparison

with theory is missing there. The absolute 2PA coe�cients of Lin et al. are overall smaller

(< 0,6 cm
GW). The theory of Garcia et al. was further con�rmed for indirect transitions in

Ge using the experimental data of Seo et al. [68, 69]. Followingly, also the phonon-assisted

degenerate 2PA coe�cients are scalable by changing the excitation energy, as in case of

direct semiconductors, but also do not exceed a few cm/GW.

These limits can also be extended by using non-degenerate con�gurations. The joint study

of Sanaz Faryadras and Cox et al. [23, 24], so far the only one, theoretically calculates

the scaling of the phonon-assisted non-degenerate 2PA coe�cient. By comparing their

results with experimental data, they �nd the allowed-allowed transition type describing

the scaling behavior best. Assuming Eph � Egi, the phonon-assisted non-degenerate 2PA

coe�cient is accordingly given by

βND-2PA(x1, x2) =
D

n1n2

1

x1x22

 1
Eg
Egi
− x1

+
1

Eg
Egi
− x2

2(
1

x1 + x2

)2

(x1 +x2− 1)2 (1.36)

with x1, 2 =
~ω1, 2

Egi
and D a scaling parameter to be determined by comparison with exper-

imental data. Faryadras and Cox et al. further distinguish between speci�c pathways of

the allowed-allowed type. The dominating pathway, described by Equation (1.36), is an

interband transition across the direct bandgap at k = 0, followed by a downward tran-

sition back to the valence band maximum (both transitions induced by a photon) and

�nally a phonon-assisted interband transition to the minimum of the conduction band.

The measurements for validation were performed with one photon at a �xed wavelength

(1700 nm, 1900 nm, 2400 nm) while the other one varied in wavelength between 1150 nm

and 1500 nm. Since the non-degenerate 2PA coe�cient should also lead to the degenerate

2PA coe�cient with ω1 = ω2 they also used the degenerate data of Bristow et al. [66] for

comparison. Nevertheless, the authors remark that due to the limited experimental data

further examinations could add some more transitions paths, leading to a �nal scaling that

describes the experimental data even better. Therefore, systematic studies with varying

ω1/ω2 at a constant sum energy could be very useful. So far only phonon-assisted non-

degenerate 2PA data at discrete wavelength con�gurations, especially in Si waveguides at

the telecommunication wavelengths [20, 21, 22], is available. However, they do not pursue

to validate the scaling behavior but rather address other questions. Within the study
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1.2. Two-photon absorption

of Faryadras and Cox et al. for the most non-degenerate con�guration at 1150 nm and

2400 nm a 2PA coe�cient of about 1.2 cm/GW was reached.

All in all, the frequency ratio of the two involved photons is the most in�uencing parameter

to enlarge the 2PA strength in direct and indirect semiconductors within one material.

Especially the scaling probability for non-degenerate con�gurations is very large. The

speci�c scaling functions deviate due to the di�erent dominating transition type(s). In

direct semiconductors very high non-degenerate 2PA coe�cients in the range of cm/MW

can be achieved. Because of the additionally participating phonon, the enhancement in

indirect semiconductors still remains in the order of cm/GW due to the overall smaller

2PA absorption strength.

1.2.2.3 Anisotropy

In cubic semiconductors, the linear one-photon absorption strength is equivalent along all

crystal axes. There are no di�erences for linear, circular or elliptical polarized light. In

contrast, the 2PA is dependent on the crystallographic orientation and the polarization of

the driving �elds. It is anisotropic. This anisotropy stems from the third-order suscepti-

bility tensor, more precisely its speci�c tensor elements, since χ(3)
Im is directly proportional

to the (non-)degenerate 2PA coe�cient (see Chapter 1.2.1). χ(3)
Im exhibits o�-diagonal el-

ements which introduce the anisotropy, whereas the linear susceptibility tensor χ(1) is a

scalar quantity and thus isotropic (see Chapter 1.1.2).

Various theoretical and experimental studies have investigated the 2PA anisotropy, mainly

for degenerate driving �elds11. The approaches are versatile and examine di�erent aspects.

The main results for direct semiconductors are:

(i) Varying the (linear) polarization of the two driving �elds with respect to a speci�c

crystal axis most often leads to a periodically modulated 2PA coe�cient. [26, 27, 28,

29] (orientation anisotropy)

(ii) The speci�c polarization of the driving �elds (linear, circular, elliptical) and their

relative orientation with respect to each other highly in�uences the degenerate 2PA

strength. [25, 26, 42, 70, 71] (polarization anisotropy)

(iii) The ratio of the 2PA coe�cient in di�erent states of polarization, for example

βlinear/βcircular, is dependent on the speci�c excitation energies. [70, 71, 72]

11In the context of anisotropy the term �non-degenerate� sometimes refers to a con�guration where the

two driving �elds have the same wavelengths but di�erent polarizations. Here, the term is used for di�erent

wavelengths only.
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Theoretical Background

(iv) The 2PA anisotropy e�ects are less signi�cant in semiconductors with smaller bandgap

energies. [26, 70, 71]

Theoretical studies have further shown that calculations using a two-band model are not

able predict the 2PA anisotropy, although this model can successfully describe the scaling

of the 2PA coe�cient as introduced in Chapters 1.2.2.1 and 1.2.2.2. Only the extension

to a model with at least the next higher conduction band can account for 2PA anisotropy

e�ects. The in�uence of this higher conduction band is threefold: �First, the mixing of the

upper conduction states with the lower conduction and valence bands perturbs the energies

leading to anisotropic bands and spin splitting. Second, the upper conduction-band wave

functions [...] mix with the lower states and so modify the optical coupling between the

lower states. Third, the upper conduction-band states appear as additional intermediate

levels in the two-photon absorption.� [71]. For very narrow gap semiconductors the in-

�uence of the additionally considered conduction band vanishes as the energy gap to the

lowest conduction band increases. In that case, the band structure approaches the isotropic

limit which underlines the less signi�cant anisotropy for small bandgap semiconductors like

InSb. [70, 71, 72]

Few experimental studies, especially for Si, partially give rise to similar characteristics of

the 2PA anisotropy in indirect semiconductors [30, 31, 32, 33]. Anyhow, for a reliable vali-

dation further experimental data needs to be accumulated. Theoretical studies are entirely

lacking so far.

Due to the anisotropy e�ects it is absolutely essential in every 2PA study to precisely

describe the specimen orientation and the polarization of the driving �elds. In many

studies this information is missing so that a comparison of absolute values of the 2PA

coe�cient is hardly possible. For example, Dvorak et al. showed that the degenerate

2PA coe�cient of GaAs at 950 nm varies between 19.5 cm/GW and 27 cm/GW if the two

incident beams are either polarized along the [001] or the [110] crystallographic axis12,

respectively. Comparing two con�gurations where the two incident beams were either

polarized parallel or perpendicular to each other gave values of 19.5 cm/GW and 8 cm/GW,

respectively. [26]

12The notation [uvw], according to the Miller indices [73], refers to a speci�c direction vector u~x1 +

v~x2 +w~x3 with the basis vectors ~xi of the real or reciprocal lattice, depending on which lattice is referred

to.
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Chapter 2

Experimental Setup and Sample

Characterization

This chapter gives a comprehensive overview on the experimental setup and the speci�cally

used main experimental methods in detail. The characteristics are described, advantages

and challenges are elucidated. The chapter completes with a thorough presentation of the

three investigated semiconductors ZnSe, GaAs and Si.

2.1 Experimental methods

The three main experimental concepts are the measurement of the non-degenerate two-

photon absorption strength, the knife-edge method which is used for measuring the spot

size of a laser beam and the 2PA based autocorrelation technique to determine the pulse

lengths. The spot sizes and pulse lengths are required for the analysis of the two-photon

absorption strength measurements, thus the determination of the 2PA coe�cients. The

operating principle of the 2PA autocorrelator is of further interest since it is an application

based on 2PA.

2.1.1 Non-degenerate two-photon absorption measurement

The non-degenerate two-photon absorption strength is measured in a pump-probe scheme

where two pulsed laser beams with photon energies ~ωprobe and ~ωpump are spatially and

temporally overlapped at the sample location under a variably adjustable time delay τd.

After the sample the transmittance of the probe beam is detected and the pump beam is

blocked. Within the sample the two beams can be assumed to be parallel, since refraction

further decreases the anyway small angle between the two beams in front of the sample.
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Experimental Setup and Sample Characterization

With this concept the 2PA strength can be directly measured from the attenuation of the

signal beam. Figure 2.1 shows a schematic representation of the experimental setup.

delay

ħω
probe

ħωpump

sample

detectord

Figure 2.1: Schematic representation of a non-degenerate 2PA experimental setup in pump-

probe fashion with a weak probe pulse ~ωprobe and strong pump pulse ~ωpump.

In order to induce the non-degenerate 2PA with one photon from each beam and to sup-

press the degenerate 2PA with two photons from the same beam, the photon energies are

preferably chosen to be

Eg(i)
2 < ~ωprobe < Eg(i) and ~ωpump <

Eg(i)
2 .

With this choice, the strong pump beam alone cannot trigger an interband transition with

two of its photons. Additionally, a low intensity is set for the probe beam that itself alone

does not induce signi�cant degenerate 2PA.

Figure 2.2 shows simulated 2PA pump-probe traces for a 70µm thick ZnSe specimen as a

function of the time delay τd. The traces are given for frequency ratios ωprobe/ωpump =

{1.00, 1.14, 1.33, 1.6, 2.0, 2.67, 4.00} with a constant sum energy of 3.10 eV. The simula-

tions are based on an analytical model for the pump-probe traces of Raluca A. Negres

et al. [74], which will be further explained in Chapter 3.1.1. The involved photons both

have pulse lengths of 100 fs (FWHM)1 and the pump intensity is 0.06GW/cm2. Since

the 2PA coe�cient scales with the frequency ratio ωprobe/ωpump, the respective values are

β [cm/GW] = {3.8, 4.2, 4.9, 6.5, 10.2, 20.1, 67.3}2. The linear absorption is assumed to be

zero. The refractive indices are taken from Reference [75]. These 2PA pump-probe traces

exemplify their characteristic appearance in general and can be adopted to other materials,

1Subsequently, the pulse lengths will be either given as full width at half maximum (FWHM) or half

width at 1/e maximum (HW1/eM). The more current term is the FWHM even so the HW1/eM is used for

the analysis of the pump-probe traces in Chapter 3.1.1. The two lengths can be converted into each other

by FWHM = 2
√

ln 2 ·HW1/eM ≈ 1.665 ·HW1/eM.
2The 2PA coe�cients are based on the measurement results of the (100)-oriented ZnSe sample described

in Chapter 3.2.
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sample thicknesses or photon pair characteristics such as pulse lengths. In the following

the pump-probe traces are described in detail.
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Figure 2.2: Simulated 2PA pump-probe traces in ZnSe for frequency ratios ωprobe/ωpump =

{1.00, 1.14, 1.33, 1.60, 2.00, 2.67, 4.00} with a constant sum energy of 3.10 eV. The related val-

ues for the 2PA coe�cient are β [cm/GW] = {3.8, 4.2, 4.9, 6.5, 10.2, 20.1, 67.3}. The red colored
graph represents the degenerate and the dark green colored graph the most non-degenerate

con�guration.

Independent from the degree of non-degeneracy the rising and falling slope of the pump-

probe traces correspond to the convolution of the involved pulses. The exemplary pump-

probe traces in Figure 2.2 exhibit Gaussian shapes because the involved pulses also have

Gaussian pro�les. In the degenerate case at ωprobe/ωpump = 1 the transmission is minimal

at τd = 0. The probe and pump pulse spatially and temporally overlap over the whole

sample length. In the non-degenerate case the two pulses propagate through the sample

at di�erent velocities since the group velocity of a pulse is strongly dependent on its wave-

length. Thus, at τd = 0 the faster pump pulse outruns the slower probe pulse so that only

a very small 2PA signal can be detected. For this reason, the minimum of the transmission

curve is shifted to delay times τd > 0 where the pump pulse overtakes the probe pulse

within the sample length and thus a maximal 2PA signal is observable. Additionally, the

group velocity mismatch shortens the overlap distance relatively to the sample thickness

so that the measured amplitude of the transmission curve decreases. Nevertheless, this

e�ect cannot be observed in the transmission curves, since the 2PA absorption strength

increases with increasing ratio of ωprobe/ωpump. Summarizing both e�ects this still leads
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to an overall increase of the amplitude. Further on, several initial delay times occur where

probe and pump pulse walk through each other within the sample thickness, so that the

2PA signal broadens and a plateau at the maximum amplitude is formed. This emerging

e�ective overlap distance can also be observed if the frequency ratio ωprobe/ωpump is kept

constant and the sample thickness is increased. In this case, an overlap of the two pulses

is even possible for larger delay times, which also results in the formation of a plateau.

The broadening of the individual pulses as they pass through the sample, due to the group

velocity dispersion (GVD), is particularly important for very short pulses with a broad

frequency spectrum or very thick samples. [18, 74, 76]

The 2PA measurements can be accompanied by free-carrier absorption (FCA). The free-

carrier absorption is a subsequent intraband absorption process of already two-photon

excited �free� carriers (electrons or holes) to another unoccupied state in the same band.

Especially early studies on degenerate 2PA, with relatively long pulses in the picosecond-

range, were in�uenced by a signi�cant high FCA which had to be included in the calculation

of the 2PA coe�cients as otherwise misleading results occurred. Therefore, Bechtel et

al. [77] introduced a critical intensity when the attenuation due to free-carrier absorption

is comparable to the attenuation by degenerate 2PA given by

Icr =
2~ω

σhτ(1−R)
(2.1)

with τ the pulse length (HW1/eM), σh the free hole absorption cross section3 and R the

re�ectivity. In more recent studies the contribution of FCA has diminished since the use

of shorter pulses in the femtosecond-range has increased the critical intensity Icr to a level

which goes far beyond the actual intensities used in experiments.

In non-degenerate 2PA measurements the FCA of probe and pump photons can be intro-

duced by carriers preliminary excited due to non-degenerate or (if it is not energetically

excluded) degenerate 2PA. Signi�cant FCA of probe photons introduced by carriers pre-

liminary excited due to degenerate 2PA of the pump pulse would result into a slower rising

slope after the temporal overlap and thus to unsymmetrical pump-probe traces. For this

reason, the appearance of the pump-probe traces allows to directly monitor if there is

degenerate 2PA of pump photons and subsequent FCA of probe photons. FCA of probe

photons introduced by non-degenerate two-photon excited carriers would result into a fur-

ther transmission decrease when probe and pump pulse temporally overlap but which is

3Usually the dominant secondary absorption is by free holes. σh is in the order of 10−17 cm2 for typical

semiconductors like GaAs. [77]
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unlikely since pulse lengths in the femtosecond-range are used4. The FCA of pump photons

is not captured in the pump-probe traces but can equally be estimated as non-relevant due

to the idler pulse lengths also in the femtosecond-range. Of course, the critical intensity

Icr can also be used to estimate the signi�cance of the FCA.

2.1.2 Knife-edge method

The knife-edge method is used to determine the diameter of a laser beam [78]. The main

advantages of this method are its simplicity and usability over a wide wavelength range,

which depends solely on the choice of a suitable detector. To acquire a knife-edge mea-

surement, an optically opaque material with a sharp edge, for example a razor blade, is

translated across the beam perpendicular to the propagation direction. After the blade,

the mean power dependent on the blade position is detected. The recorded characteristic

power pro�le provides the information about the beam diameter. A representation of the

experimental setup can be seen in Figure 2.3.

Gaussian beam

detector

linear
movable

blade

propagation
direction

Figure 2.3: Schematic representation of the experimental setup for the determination of the

laser beam diameter via knife-edge method.

The power pro�le is evaluated assuming a Gaussian intensity pro�le according to the

Gaussian beam optics [79]

I(x, y) = I0 exp

[
−4(x+ y)2

d2

]
(2.2)

in the xy−plane perpendicular to the propagation direction (see Figure 2.4), where I0

describes the maximum intensity and d the diameter of the beam at which the maximum

4Here, the same probe pulse on the one hand excites the carriers via non-degenerate 2PA and on the

other hand provides photons for the FCA. This is why this e�ect can only be observed at the temporal

overlap.
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intensity has decreased to I0/e (FW1/eM). If the blade is translated into the beam in the

positive x′-direction, the power is calculated as a function of the blade position x in the

beam given by

P (x) =

∫ ∞
−∞

∫ ∞
x
I(x′, y) dx′dy

=
1

2
Pmax

(
1− erf

(
2x

d

))
, (2.3)

with the Gaussian error function erf(x) = 2√
π

∫ x
0 e
−τ2dτ [80]. In this case, the beam is not

covered by the blade at the beginning of the measurement (see Figure 2.4). Otherwise,

with the beam completely covered, the sign in front of the error function changes. The

maximum power Pmax without the blade is

Pmax =

∫ ∞
−∞

∫ ∞
−∞

I(x′, y) dx′dy =
π

4
I0d

2 . (2.4)

I /0 e
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blocked transmitted
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x‘ xx
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blade

dd
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(a) (b)

Figure 2.4: (a) Radial intensity pro�le I(x′) and (b) characteristic power pro�le P (x) de-

pendent on the blade position with d the diameter of the beam at which the intensity has

decreased to I0/e.

2.1.3 Two-photon absorption based autocorrelator

The optical autocorrelation is a method to determine the temporal width of ultrashort

laser pulses as shortly described in the Introduction. In general, to measure a time interval

it needs to be scanned with an even shorter time interval. In case of laser pulses down to

a few femtoseconds there are no suitable standard electronics available, since the response

times of, for example, photodiodes and oscilloscopes are too slow. The optical autocor-

relation technique solves this problem by splitting the femtosecond pulses into two parts,

30



2.1. Experimental methods

so that the pulse can be scanned with a duplicate of itself to reach the required time scales.

The experimental setup of an interferometric autocorrelator is based on a Michelson inter-

ferometer (see Figure 2.5). The input beam is split into the two arms of the interferometer

by a centrally arranged beamsplitter. One part of the pulse train is temporally delayed,

in the simplest case, for example, via a movable mirror. Afterwards, the two parts pass

the beamsplitter again, are thus recombined and collinear superimposed. The recombined

pulse trains are multiplied via a nonlinear process and the autocorrelation signal generated

in this way is detected and analyzed as a function of the delay time between the two pulse

trains.

laser source

beam-
splitter

fixed mirror

movable
mirror

detection

multiplication

E(t)

E(t)

E(t-t)

E(t)+E(t-t)

Figure 2.5: Schematic representation of an interferometric autocorrelator

The interferometric autocorrelation intensity pro�le IIAC(τ) for a pulse with the electric

�eld E(t) is given by

IIAC(τ) =

∫ ∞
−∞

∣∣[E(t) + E(t− τ)]2
∣∣2 dt . (2.5)

Expanding the term in the bracket yields to an intensity pro�le consisting of four contri-

butions

IIAC(τ) =

∫ ∞
−∞

I2(t)I2(t− τ) dt (constant background) (2.6)

+ 4

∫ ∞
−∞

I(t)I(t− τ) dt (intensity autocorrelation) (2.7)

+ 2

∫ ∞
−∞

(I(t) + I(t− τ))Re[E(t)E∗(t− τ)] dt (ω-interference term) (2.8)
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+

∫ ∞
−∞

Re[E2(t)E∗2(t− τ)] dt (2ω-interference term) (2.9)

with I(t) = |E(t)|2 and ∗ denoting the complex conjugate. The background term gives a

constant o�set corresponding to the self-multiplication of each individual pulse indepen-

dent from the time delay. The convolution integral in the second term determines the

intensity autocorrelation IAC =
∫∞
−∞ I(t)I(t − τ) dt from which the temporal pulse width

can be deduced. The two interference terms appear as the electric �elds of the two pulse

trains can be superimposed constructively or destructively depending on the mutual phase

position, adding interference fringes oscillating at ω and 2ω to the interferometric auto-

correlation pro�le. [81, 82]

To determine the temporal width of the initial pulse, its speci�c pulse pro�le needs to be

known. Assuming, for example, an initial pulse with a Gaussian intensity pro�le

I(t) = e−t
2

(2.10)

the intensity autocorrelation signal also has a Gaussian pro�le given by

IAC(τ) =

√
π

2
e−

τ2

2 . (2.11)

Evaluating I(t) and IAC(τ) at half of their amplitudes gives the time value at half width

(HWHM) and accordingly by doubling the value at full width at half maximum (FWHM)

I(tHWHM) =
1

2
⇒ tFWHM = 2

√
ln(2) and (2.12)

IAC(τHWHM,AC) =
1

2
·
√
π

2
⇒ τFWHM,AC = 2

√
2 ln(2) . (2.13)

Hence, the transformation factor between the FWHM of the initial pulse and its autocor-

relation signal is given by tFWHM
τFWHM,AC

= 0.71.

The most commonly used method to nonlinearly multiply the two pulse trains is the

second-harmonic generation. Here, the two pulse trains are superimposed in a nonlinear

crystal and an autocorrelation signal at twice the initial frequency is generated which is

then passed on to a detector. To achieve su�cient signal strengths interaction distances,

longer than hundreds of the incident wavelength, are required which makes the nonlinear

crystal relatively bulky. To further enlarge the autocorrelation signal, phasematching con-

ditions, to conserve the photon momentum between the input waves and the output wave,

need to be ful�lled. An alternative to second-harmonic generation based autocorrelators

are autocorrelators based on 2PA. Here, the nonlinear crystal and the detector can be
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2.1. Experimental methods

replaced by a single semiconductor detection unit, since the 2PA transforms an optical

signal directly into an electrical signal through the transition of charge carriers. As long

interaction distances and phasematching are not required, the 2PA detectors are compar-

atively thin so that also undesirable broadening of the pulses due to GVD is negligible.

Furthermore, inexpensive standard devices such as photodiodes can be utilized. The 2PA

based autocorrelators are additionally easier in handling and adjustment. Detector mate-

rials for a wide wavelength range of operation are available as the 2PA is not limited by

the narrow phasematching bandwidth. [8, 9]
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Figure 2.6: Interferometric autocorrelation signal IIAC(τ) detected with a commercial inter-

ferometric autocorrelator based on 2PA. The red line represents a Gaussian �t to the low-pass

�ltered signal representing the intensity autocorrelation term IAC with τFWHM,AC = 101.1 fs.

Accordingly, the temporal width of the initial pulse is tFWHM = 71.8 fs. The detailed view

shows the interference fringes with a peak to peak distance of ∆τ = 3.1 fs corresponding to a

wavelength of 940 nm as determined with a spectrometer.

In Figure 2.6 an interferometric autocorrelation signal IIAC(τ) for a 940 nm pulse with

Gaussian pro�le is shown. It was detected with the commercial interferometric autocorre-

lator APE Mini TPA based on 2PA. The interferometric autocorrelation signal IIAC(τ) is

low-pass �ltered and �tted with a Gaussian pro�le, representing the intensity autocorrela-

tion term IAC(τ) with a width of τFWHM,AC = 101.1 fs. Accordingly, the initial pulse width

is tFWHM = 71.8 fs. The detailed view shows the interference fringes with a peak to peak

distance of ∆τ = 3.1 fs corresponding to a wavelength of λ = c∆τ = 940 nm, consistent
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Experimental Setup and Sample Characterization

with a spectrometer measurement. The constant o�set corresponds to the self-induced

2PA of each pulse train in the two interferometer arms.

2.2 Experimental setup

The experimental setup for the two-photon absorption measurements is based on a laser

system consisting of a titanium:sapphire mode-locked oscillator (Coherent Micra), a ti-

tanium:sapphire regenerative ampli�er (Coherent RegA) and a pump laser (Coherent

Verdi). The RegA system emits ultrashort laser pulses with a central wavelength of

λRegA = (790 − 800) nm, a pulse length of τRegA ≈ 60 fs (FWHM) and a pulse energy of

ERegA = 8000 nJ at a repetition rate of fRegA = 250 kHz.

The pulses provided by the RegA system are coupled into an optical parametric ampli�er

(OPA) and used on the one hand as a pump pulse with the frequency ωOPApump and on the

other hand to generate a white light continuum. The white light continuum is overlaid

with the intense pump pulse in a nonlinear crystal. Depending on the phase matching

conditions, meaning practically the adjustment of the phase matching angle, a speci�c

frequency ωsig of the white light continuum is ampli�ed through the pump pulse. Addi-

tionally, a further pulse at the di�erence frequency ωidl = ωOPApump−ωsig is generated. After
the �rst pass of the pump and signal pulse through the nonlinear crystal, the pulses pass

through the crystal a second time for further ampli�cation. Then, the signal, idler and

residual pump pulse exit the OPA.

Consequently, the sum frequency ωsum of the signal and idler photon is equal to the pump

frequency, i.e. constant for all adjustable frequency combinations of signal and idler pho-

ton. Thus, an OPA o�ers the possibility to systematically scan through di�erent ratios

ωsig/ωidl with a constant sum frequency and is therefore well suited for the investigation

of the 2PA coe�cient depending on that ratio. [83]

Since for the stimulation of the 2PA the sum energy Esum of the involved photons has to be

at least as large as the bandgap of the respective material, two OPAs with di�erent sum en-

ergies and accordingly di�erent output wavelengths of the signal pulse in the visible (VIS)

and in the infrared (IR) range are used. The VIS-OPA (Coherent model 9400/9450)

is pumped with photons at a wavelength of 400 nm (3.10 eV), making it tunable in a wave-

length range5 of λsig = (510−800) nm and λidl = (1855−800) nm. Here, the output pulses

5The degenerate photon pair at λsig = λidl = 800 nm is directly provided by the RegA system, but is

listed in the tuning range for clarity.
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Table 2.1: Tuning ranges of the VIS- and IR-OPA

VIS-OPA IR-OPA

λsum 400 nm 790 nm

Esum 3.10 eV 1.57 eV

λsig (510− 800) nm (1210− 1550) nm

Esig (2.43− 1.55) eV (1.02− 0.80) eV

λidl (1855− 800) nm (2276− 1611) nm

Eidl (0.67− 1.55) eV (0.54− 0.77) eV

of the RegA system are �rstly frequency-doubled to achieve the desired pump wavelength.

The IR-OPA (Coherent model 9800/9850) is directly pumped with photons provided

by the RegA system at a wavelength of 790 nm (1.57 eV), the corresponding tuning ranges

are λsig = (1210 − 1550) nm and λidl = (2276 − 1611) nm. Hence, systematical investiga-

tions of frequency ratios ωsig/ωidl from 1.0 to 3.6 with the VIS-OPA and from 1.1 to 1.9

with the IR-OPA are possible. An overview of the tuning ranges of the VIS- and IR-OPA

can be found in Table 2.1. The lengths and energies of signal and idler pulses are strongly

dependent on their frequency ratio and the individual RegA system and OPA adjustment.

The pulse lengths range from (τsig, τidl) = (50− 500) fs (FWHM) with generally a decrease

in τsig and an increase in τidl observed with increasing frequency ratio ωsig/ωidl. The pulse

energies are Esig ≤ 140 nJ and Eidl ≤ 40 nJ. For both OPAs, the signal and idler beams

are linearly polarized at the output. The two beams are separated by di�erent dichroic

beamsplitters in case of the VIS-OPA and by a broadband Wollaston prism in case of the

IR-OPA.

The complete experimental setup for the non-degenerate two-photon absorption measure-

ments, as described in Chapter 2.1.1, is shown in Figure 2.7. The idler beam initially

travels over a variable delay path x to achieve a time o�set

τd =
xnair
c

(2.14)

in between signal and idler pulse with nair ≈ 1 the refractive index of air for measurements

under ambient conditions. For that purpose the motorized linear stage Newport XMS50-

S Ultra-Performance is used which features minimal incremental steps of 1 nm length

corresponding to time intervals of a few attoseconds and hence satis�es the requirement

to resolve pulses with several femtoseconds length. After the delay, the signal and idler

beam are superimposed on the sample. A small angle ϕ between the two beams allows

to easily separate them after the sample but still ensures the spatial overlap of the two
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pulses in the sample since the angle is even smaller in the sample due to refraction. A

λ/2-waveplate, placed in front of the sample in the idler beam, further allows the linear

polarization of the idler pulse to be rotated by 90◦. In this way 2PA measurements can

be realized where the signal and idler pulses are either polarized parallel or perpendicular

to each other. In the following, these two con�gurations will be referred to as co-polarized

(‖) and cross-polarized (⊥), respectively. Furthermore, the idler beam is modulated with

a mechanical chopper at a frequency fmod.

delay
stage

auto-
correlator

diode

sample/
blades

λ/2-
plate

spectrometer

chopper

lock-in-
amplifier

signal

idler

power
meter

x

y

φ

Figure 2.7: Schematic representation of the 2PA experimental setup.

In the overlap plane of the two pulses a sample holder is mounted perpendicular to the

signal beam propagation direction which can be moved horizontally (x-direction) and ver-

tically (y-direction) via two further motorized linear stages so that switching between

di�erent samples and recording knife-edge measurements is easily possible. For the knife-

edge measurements a power meter can additionally be installed behind the sample holder

in the signal or idler beam. The samples and the blades for the knife-edge measurements

are glued side by side on a glass carrier and can be picked up by the holder (see Figure 2.8).

The blades are non-transparent, titanium-vaporized glass plates with sharp edges compa-

rable to razorblades. These are mechanically ground to the respective sample thickness, so
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2.2. Experimental setup

that the beam diameter is measured in the sample plane. Additionally, the lenses focusing

the beams on the sample are chosen so that the minimum signal and idler beam waist 2w0

does not diverge signi�cantly over a few tens of millimeters corresponding to the Raleigh

length zR = πw2
0/λ [79]. Also, by the choice of these lenses, the idler spot size in plane of

the sample is adjusted to be bigger than the signal spot size for all frequency con�gurations

to ensure that the signal pulse is located in area of approximately uniform idler intensity.

The idler beam is blocked behind the sample and the transmission of the signal beam is

detected using a photodiode. Since the idler beam is modulated, a lock-in ampli�er can

be used to compare the transmission signal with the reference signal from the chopper and

�lter out any components that do not originate from the interaction of the signal and idler

beam to enhance the signal-to-noise-ratio of the measurement.

Si (100)
249 mμ

Si (100)
454 mμ

Si (110)
253 mμ

Si (100)
455 mμ

GaAs (100)
450 mμ

razorblades

titanium-vaporized
glass plates

250 m, 450 mμ μ

Figure 2.8: Sample holder with glass carrier on which the di�erent Si samples are glued. The

additional GaAs sample is used for adjusting the spatial and temporal overlap since Si has

overall smaller 2PA strengths. The titanium-vaporized glass plates have a similar thickness

as the samples and are used to perform knife-edge measurements in the sample plane. The

razorblades are used to validate the quality of the titanium-vaporized glass plates. The sample

holder can be electronically translated in x- and y-direction to switch between the samples

and blades. The sample holder can likewise pick up glass carriers with other samples.

For the quantitative analysis of the two-photon absorption coe�cient a precise knowledge

of the idler pulse lengths and the signal and idler wavelengths is required. The idler pulse

lengths are measured with the commercial autocorrelator APE Mini TPA, which opera-

tion principle is described in Chapter 2.1.3. The autocorrelator can be equipped with di�er-
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ent detector units depending on the actual wavelength of the pulse. The signal pulses could

also be characterized in that way. But as the signal pulse has overall shorter pulse lengths

with higher refractive indices compared to the idler pulse due to its shorter wavelengths,

the length of the signal is more reliably determined by the data analysis described in Chap-

ter 3.1.1. With that the signal pulse length is �measured� in the sample plane independent

from dispersion e�ects of the experimental setup. For measuring the wavelengths of signal

and idler pulse di�erent commercial spectrometers are used. The visible wavelength range

is covered by the Avantes AvaSpec-2048-SPU spectrometer suitable for wavelengths

λ = (327− 1100) nm. The near-infrared wavelength range is covered by the StellarNet

EPP-2000-NIR-InGaAs spectrometer suitable for wavelengths λ = (900− 1700) nm and

the APE waveScan spectrometer suitable for wavelengths λ = (800− 2600) nm.

2.3 Sample characterization

The semiconductors studied in this thesis are ZnSe, GaAs and Si. ZnSe and GaAs be-

long to the group of II-VI- and III-V compound semiconductors, respectively, and exhibit

Zincblende structure (space group 216, point group 4̄3m). Both crystals are direct semicon-

ductors with bandgaps of Eg, ZnSe = 2.7 eV and Eg, GaAs = 1.42 eV at room temperature.

Si, on the other hand, belongs to the group of element semiconductors and has diamond

structure (space group 227, point group m3̄m). It is an indirect semiconductor with the

smallest energy gap Egi, Si = 1.12 eV close to the X-point in [100]-direction. At the Γ-point,

the direct bandgap Eg, Si = 3.4 eV is much larger. Also, both of these bandgaps refer to

room temperature. [51]

Since for the 2PA the sum energy of the involved photons needs to exceed the bandgap, the

VIS-OPA (Esum = 3.10 eV) is used for the ZnSe sample and the IR-OPA (Esum = 1.57 eV)

for the GaAs and Si samples. Consequently, the excess energies above the bandgaps are

∆EZnSe ≈ 400meV for ZnSe, ∆EGaAs ≈ 150meV for GaAs and ∆ESi (indirect) ≈ 450meV

for Si. Note that the sum energy of the VIS-OPA does not exceed the direct bandgap of

Si, hence there is no direct bandgap transition through a 2PA process possible.

Each sample is investigated in (100) and (110) crystallographic orientation6. In the ex-

periment, these planes are perpendicular to the signal beam propagation direction. The

angle ϕ between signal and idler beam is 20◦, 27◦ and 30◦ for ZnSe, GaAs and Si, respec-

tively. Due to refraction the angle in the sample is with approximately 8◦, for all three

6The notation (hkl) refers to a plane in the real lattice with the normal vector ~n = h~a1 + k~a2 + l~a3 and

the basis vectors ~ai of the real lattice according to the Miller indices [73].
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Figure 2.9: Crystallographic orientations and cutting edges of the ZnSe, GaAs and Si samples

compared to the polarizations of the signal and idler beam, schematic representation of the

Zincblende and diamond structure.

materials and for each idler wavelength, even smaller. Thus, the spatial walk-o� in the

sample is negligible and the signal and idler beams can be assumed to be parallel. The

crystallographic axes with respect to the signal and idler polarizations are individual for

each sample and are shown in Figure 2.9.

The ZnSe and GaAs samples have a thickness of approximately 50µm, thick enough to

ensure a su�cient signal strength but even so keeping the group velocity mismatch small.

For Si the expected 2PA strengths are overall smaller than for ZnSe and GaAs, hence

thicker samples for Si are chosen. Furthermore, Si is measured in two di�erent thicknesses,

approximately 250µm and 450µm, to exemplarily show that the sample thickness does

not a�ect the 2PA strength, i. e. the group velocity mismatch is well described by the

measurement analysis. The thicknesses are achieved by mechanical grinding of commercial

wafers. All samples are undoped. An overview of the bandgaps, orientations, and exact

thicknesses of all samples and the assigned laser system for each sample can be found in

Table 2.2.

.

.

.
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Table 2.2: Bandgaps at room temperature and experimental parameters of the ZnSe, GaAs

and Si samples. Additionally, the laser system used for the respective sample is given.

bandgap orientation and thickness laser system

(100): d = 42µm
ZnSe Eg, ZnSe = 2.7 eV

(110): d = 37µm
RegA + VIS-OPA

(100): d = 51µm
GaAs Eg,GaAs = 1.42 eV

(110): d = 52µm
RegA + IR-OPA

Egi, Si = 1.12 eV (100): d = 249µm, 454µm
Si

Eg, Si = 3.4 eV (110): d = 253µm, 455µm
RegA + IR-OPA
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Chapter 3

Experimental Results

In the following chapter the experimental results of the non-degenerate two-photon absorp-

tion measurements are presented. The scaling of the non-degenerate two-photon absorption

coe�cient as well as its orientation and polarization anisotropy for ZnSe, GaAs and Si are

analyzed. The results of the speci�c samples are compared among each other and with

previous experimental results. The accordance with theoretical predictions is evaluated.

3.1 Procedure for experimental data analysis

The analysis of the non-degenerate 2PA pump-probe traces and the knife-edge measure-

ment data follows general procedures which can be independently applied to each individ-

ual measurement. These procedures and representative examples for all measurements are

illustrated in the following.

3.1.1 Analysis of the two-photon absorption measurements

For the determination of the 2PA coe�cient the theoretical approach of Negres et al. [74]

is used. The authors provide an analytical model to �t the 2PA pump-probe traces (see

Chapter 2.1.1) with the possibility to extract the 2PA coe�cient β as a �tting parameter.

The approach considers an interaction of two optical pulses centered at wavelengths λsig

and λidl in a nonlinear medium whereby the signal and idler pulse refer to the weak

probe and the strong pump pulse as introduced in Chapter 2.1.1, respectively1. The idler

wavelength is chosen so that linear absorption or degenerate 2PA is suppressed and the

so called undeleted pump approximation is applicable. Due to its wavelength and weak

1For better readability the notation used in the study of Negres et al. is adapted to the notation

introduced in this thesis.
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intensity also the signal pulse does not exhibit linear absorption or degenerate 2PA. The

broadening of the signal pulse due to the GVD is assumed to be zero. This holds true for

many materials if the introduced GVD parameter

µsig =
λ3sigd

4πc2τ2sig

∂2n

∂λ2

∣∣∣∣
λsig

, (3.1)

with the signal pulse length τsig given as HW1/eM, does not exceed the critical value of

µcr = 0.45. In general, this is valid for measurements with signal pulse lengths in the

100 fs-range and in samples not thicker than a few millimeters. The broadening of the

idler pulse can also be neglected since its GVD is even smaller due to its longer wave-

lengths2. Taking into account the idler parameters, Equation (3.1) can of course also be

used for veri�cation. Both pulses are assumed to have Gaussian temporal envelopes.

Within this framework the normalized nonlinear transmittance of the signal pulse can be

modeled by

T

T0
=

exp(−2σ)

W
√
π

∫ ∞
−∞

exp

{
−
(
τ + τd/τidl − ρ

W

)2

− Γ
√
π

ρ
(erf(τ)− erf(τ − ρ))

}
dτ (3.2)

with the Gaussian error function erf(x) = 2√
π

∫ x
0 e
−τ2dτ [80], the ratio W = τsig/τidl of

signal and idler pulse length given as HW1/eM and the time delay τd between the pulses.

The temporal walk-o� between the two pulses when passing through the sample due to

the group velocity mismatch is captured by the walk-o� parameter

ρ =
d

τidlc
∆ngr (3.3)

with the group index di�erence ∆ngr = ngr, sig − ngr, idl of the two pulses. The linear and

nonlinear absorption of the signal pulse is covered by the linear absorption parameter

σ =
αd

2
(3.4)

and the nonlinear absorption parameter

Γ = d
nsig
nidl

I0idlβ , (3.5)

with the initial idler intensity I0idl before impinging on the sample. By excluding the non-

linearity via setting Γ = 0, the model can be traced back to only linear absorption as

described by the Lambert-Beer's law (1.16). The model also holds true for degenerate and

2This is true at least for wavelengths in the near-IR range due to the shape of n(λ) in that wavelength

region.
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non-degenerate 2PA, so that β either gives βD-2PA for λsig = λidl or βND-2PA for λsig 6= λidl.

To obtain reliable �tting results an accurate determination of all contributing parameters

to the model (3.2) is necessary. As described in the experimental setup (see Chapter 2.2)

many of these values are experimentally determined. These are the wavelengths of both

pulses λsig and λidl, the idler pulse width τidl, the incident idler power Pidl and the signal

and idler spot sizes Asig and Aidl in the sample plane3. Based on these parameters an

average initial idler intensity

I0idl = (1−Ridl)
Pidl

fRegAτidlAidl
(3.6)

can be derived, whereby the values for the idler re�ectance Ridl are taken from Refer-

ence [84], which uses References [75, 85, 86] as primary sources for ZnSe, GaAs and Si.

Ridl is dependent on the idler wavelength, on the polarization of the idler beam with re-

spect to the incident plane (p- or s-polarized re�ectance) and on the angle of incidence

ϕ. The idler pulse length and spot size enter the calculation of I0idl as FW1/eM (see also

Chapter 3.1.2). The remaining parameters are calculated by using literature values. The

refractive index for each wavelength is given by �tting the Sellmeier equation [87]

n(λ) =

√
1 +

Aλ2

λ2 −B
+

Cλ2

λ2 −D
+

Eλ2

λ2 − F
. (3.7)

to literature values of the refractive index measured for a wide wavelength range. These

data sets are also taken from Reference [84] with the above mentioned primary sources for

the three samples. The calculated Sellmeier coe�cients A � F for the speci�c sample can

be found in Table 3.1. Using the Selllmeier equation and the relation ω = 2π cλ , the group

refractive index can further be calculated by

ngr(ω) =
c

vgr(ω)
= c

dk(ω)

dω
=

d
dω

(n(ω)ω) = n(ω) + ω
dn(ω)

dω
. (3.8)

Table 3.1: Sellmeier coe�cients for ZnSe, GaAs and Si

A B C D E F

ZnSe 4.713 0.03741 0.13085 0.20464 0.96186 1059.53848

GaAs 9.41804 0.09315 0.44502 0.50385 1.93379 1350.49124

Si 9.64011 0.04846 4.24633 0.04903 -3.23475 -0.11019

3The signal spot size is monitored for comparison with the idler spot size and does not directly enter

the analysis of the pump-probe traces.
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Figure 3.1: Wavelength spectra for the representative measurement examples. The pulses

have central wavelengths of λsig = 570nm and λsig = 1341nm for the ZnSe sample and

λsig = 1350 nm and λsig = 1904nm for the GaAs and Si samples. The bandgap energies at

the corresponding wavelengths are also shown for each sample.

The evaluation of the 2PA data sets is performed with Wolfram Mathematica devel-

oped by Wolfram Research. The source code with detailed comments can be found in

the Appendix. In the following, for each sample one representative measurement example

and its analysis are illustrated. These are the co- and cross-polarized measurements at

wavelength combinations λsig = 570 nm and λsig = 1341 nm for the (100)-oriented ZnSe

sample and λsig = 1350 nm and λsig = 1904 nm for the (100)-oriented GaAs and Si sam-

ples. The wavelength spectra of the individual pulses are shown in Figure 3.1 with the

bandgap energies of ZnSe, GaAs and Si at the corresponding wavelengths. The following

assumptions are not only applicable to the given measurement examples but are also valid

for all measurements at each signal and idler wavelength combination. They are consis-

tent with the assumptions required for the evaluation of the data sets within the model of

Negres et al. as given above.

The linear absorption of signal and idler photons across the fundamental bandgap Eg(i) is

assumed to be zero since Esig < Eg(i) and Eidl < Eg(i). The linear absorption of signal and

idler photons due to FCA can also be excluded since the pump-probe traces are symmetric

and the critical intensities Icr (see Equation (2.1)), calculated for signal and idler pulse,

are in the order of a few hundreds of GW/cm2 exceeding the actually used intensities
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3.1. Procedure for experimental data analysis

(< 1GW/cm2)4. The degenerate 2PA of the signal pulse is suppressed due to its weak

intensity. Degenerate 2PA of the idler pulse would be energetically possible for some of

the shorter idler wavelengths in ZnSe and GaAs and all idler wavelengths in Si but can

also be neglected because the pump-probe traces do not show transient absorption beyond

the temporal overlap of signal and idler pulse. The temporal broadening of the signal

and idler pulses while propagating through the sample due to GVD is negligible as for all

samples the GVD parameter (3.1) for signal and idler pulse does not exceed the critical

GVD parameter of µcr = 0.45. The spot sizes of signal and idler pulse are adjusted so

that the idler spot is at least 2.5-times for ZnSe, 4.4-times for GaAs, 2.5-times for Si with

d = 249µm and 2.6-times for Si with d = 454µm larger than the signal spot. As a result,

the intensity of the idler across the signal spot is practically identical to its peak intensity.

Therefore the average idler intensity I0idl in Equation (3.6) is scaled with e/(e− 1) ≈ 1.582

to convert the assumed �at-top to a Gaussian intensity pro�le with the peak intensity Ipeakidl .

Table 3.2: Signal and idler pulse parameters

ZnSe GaAs Si Si

249µm 454µm

λsig [nm] 570 1350 1350 1350

λidl [nm] 1341 1904 1904 1904

τidl [fs] 59.0 61.9 96.1 96.1

µsig 0.004 0.003 0.057 0.104

µidl 0.003 0.007 0.011 0.020

Psig [mW] 0.2 0.1 0.1 0.1

Pidl [mW] 0.45 0.7 0.6 0.6

Asig [µm2] 2100 1000 1500 3200

Aidl [µm2] 30100 17300 12000 13900

Ipeakidl,‖ [GW/cm2] 0.067 0.155 0.122 0.106

Ipeakidl,⊥ [GW/cm2] 0.064 0.138 0.105 0.092

Note: τidl is given as HW1/eM while Asig and Aidl are given as FW1/eM

A detailed overview of the signal and idler pulse parameters, the calculated non-degenerate

2PA coe�cients β‖ and β⊥ and the related signal pulse widths τsig can be found in Ta-

4Strictly speaking, the estimation via Icr is only valid for FCA whereby the carriers are originally

excited by degenerate 2PA. The critical intensity for FCA arising from carriers excited by non-degenerate

2PA will however be in the same order, since signal and idler pulse have on that note comparable energies,

pulse lengths and re�ectivities.
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Figure 3.2: Exemplary pump-probe traces for a co- and cross-polarized non-degenerate 2PA

measurement for the (a) ZnSe sample at λsig = 570nm and λidl = 1341nm and (b) GaAs

sample, (c) Si sample with d = 249µm, (d) Si sample with d = 454µm all at λsig = 1350 nm

and λidl = 1904 nm. All samples exhibit (100) crystallographic orientation. The blue (red)

data corresponds to the co-(cross-)polarized con�guration. Solid lines represent a �t according

to the model by Negres et al. [74].
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Table 3.3: Fitting results

β‖ τsig,‖ β⊥ τsig,⊥

[cm/GW] [fs] [cm/GW] [fs]

ZnSe 12.93 +1.59
−1.36 120.7± 0.9 4.77 +0.60

−0.51 120.1± 1.7

GaAs 22.25 +1.85
−1.66 122.5± 1.4 7.19 +0.61

−0.55 123.5± 1.9

Si (249µm) 0.69 +0.06
−0.05 96.7± 0.8 0.34 +0.03

−0.03 98.2± 1.3

Si (454µm) 0.98 +0.07
−0.07 153.2± 1.7 0.46 +0.04

−0.03 156.6± 1.8

Note: τsig,‖ and τsig,⊥ are given as HW1/eM

bles 3.2 and 3.3. Figure 3.2 shows the measurement data and the corresponding �ts. To

estimate the error ±∆β of the 2PA coe�cient, the most error-prone parameters are var-

ied within the following inaccuracies. For the signal pulse length and the idler spot size

these are the wavelength dependent �tting errors ∆τsig and ∆Aidl. The idler pulse length,

the sample thickness and the incident idler power exhibit systematic errors independently

applicable to all measurements and samples. These are ∆τidl = ±3 fs, ∆d = ±1µm and

Pidl = ±0.03mW. By including the error-prone parameters in the analysis and running

once again the �tting procedure, +∆β and −∆β are individually determined.

For all samples the measurement data is in excellent agreement with the �ts. All non-

degenerate pump-probe traces show the characteristic shift of the transmittance minimum

to delay times τd > 0 due to the group velocity mismatch between signal and idler pulse.

This also leads to the broadening of the pump-probe traces of the thicker Si sample in

comparison with the thinner sample. The formation of a plateau at the minimum amplitude

cannot be observed here since the sample is not su�ciently thick in this respect. There is

no signi�cant degenerate 2PA by the idler beam or free-carrier absorption of probe photons

because the pump-probe traces all exhibit a symmetrical shape so that the assumptions

made before can be con�rmed.

3.1.2 Analysis of the knife-edge measurements

The knife-edge measurements were repeated for each sample at every individual wave-

length combination as the signal and idler spot sizes vary with the wavelength tuning of

the VIS- and IR-OPA. The idler spot size directly enters the 2PA coe�cient calculation

(see Section 3.1.1) as a parameter of the idler power intensity. The signal spot size is moni-

tored for comparison with the idler spot size. The individual measurement data sets are in

principle the same so that their analysis follows the same procedure analogously. For that
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reason only one data set is exemplarily described in the following. For the data analysis

the software program Orgin, which is developed by the OrginLab Corporation, is

used.
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Figure 3.3: Exemplary knife-edge measurement for the idler beam at 1736 nm in the mea-

surement series of the GaAs sample for the (a) x- and (b) y-direction. The data reveals beam

diameters of dx = 137.4µm and dy = 121.6µm.

From Equation 2.4, which describes the power pro�le of the knife-edge measurement, a

�tting function f(x) can be derived. f(x) is equipped with the o�sets x0 and y0 in x- and

y-direction, respectively, since the power pro�le in the experiment could not be symmetric

around the origin. With |B| = Pmax the �tting function dependent on the travel range x

of the blade is given by

f(x) = y0 +
B

2
erf

(
2(x− x0)

d

)
, (3.9)

where B can be positive or negative depending on whether the beam is covered by the

blade at the beginning of the measurement or not. The �tting parameter d gives the spot

diameter at which the maximum power has decreased to Pmax/e (FW1/eM). Figure 3.3

shows an example of a knife-edge measurement. The measurement was taken for the idler

beam at a wavelength of λ = 1736 nm in the measurement series of the GaAs sample. The

blade was moved three times in total over the complete beam diameter in 4µm steps. The

following results

B = (−2.766± 0.013)mW, x0 = (24.2012± 0.0010)µm,

y0 = (1.407± 0.008)mW and dx = (137.4± 2.1)µm

are obtained from �tting the averaged measurement points for the x-direction. The beam
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3.2. Evaluation of the two-photon absorption coe�cients

was also measured in y-direction to calculate the spot size A = π
4dxdy as an ellipse to

achieve a higher accuracy. For the given exemplarily measurement, the results for the

y-direction are

B = (−2.778± 0.007)mW, x0 = (13.1949± 0.0004)µm,

y0 = (1.398± 0.004)mW and dy = (121.6± 1.3)µm,

so that the beam has a spot size of Aidl = (13100 ± 200)µm2. The error is calculated by

∆A = π
4

√
(dy∆dx)2 + (dx∆dy)2 according to the Gaussian error propagation [88]. The

�ts are in accurate accordance with the measurement data.

3.2 Evaluation of the two-photon absorption coe�cients

In the following, the calculated 2PA coe�cients are plotted as a function of the frequency

ratio ωsig/ωidl for the co- and cross-polarized measurements as well as for the di�erent sam-

ples to analyze the scaling behavior of the 2PA strength. Additionally, the orientation and

polarization anisotropy and its dependence on the frequency ratio ωsig/ωidl is evaluated.

In Figure 3.4 the extracted 2PA coe�cients β‖ and β⊥ for both the (100)- and (110)-

oriented ZnSe samples are summarized. Some data points at certain frequency ratios

appear twice as part of the measurements are repeated at a later stage as test for con-

sistency. For both crystallographic orientations of the ZnSe samples the values for the

co- and cross-polarized 2PA coe�cient β‖ and β⊥ increase with increasing frequency ratio

ωsig/ωidl, whereby the values of β⊥ are overall smaller than the values for β‖. In case of

the (100)-oriented sample β‖ and β⊥ show an approximately eightfold increase compar-

ing con�gurations with ωsig/ωidl = 1 and ωsig/ωidl = 3.35. The 2PA coe�cient in the

(110)-oriented sample increases slightly stronger with a factor of ≈ 10 for the co-polarized

and ≈ 13 for the cross-polarized con�guration. Comparing the two crystallographic ori-

entations, similar magnitudes for β‖ are found at the same frequency ratios. In contrast,

the values for β⊥ for the (110)-oriented sample are consistently higher than for the (100)-

oriented sample.

The scattering of the data occurs due to various reasons. The two most relevant ones are

(i) the unstable signal and idler intensities for di�erent frequency ratios ωsig/ωidl mainly

due to varying pulse lengths and spot sizes as a consequence of tuning the OPA to di�erent

5The 2PA coe�cient at ωsig/ωidl = 3.6 is not used for the estimation of the increase as it shows higher

deviations than the other measurements points.
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wavelengths and (ii) the challenging adjustment of spatial and temporal overlap of signal

and idler pulse. Especially the increasing noise of the VIS- and IR-OPA for widely non-

degenerate con�gurations diminish the exact positioning of mirrors and delay stage at the

maximum 2PA signal strength so that the scatter of the experimental data also increases

with higher degrees of non-degeneracy.
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Figure 3.4: ZnSe 2PA coe�cients β for co- (blue) and cross-polarized (red) measurements

as a function of the frequency ratio ωsig/ωidl for (a) (100) and (b) (110) crystallographic

orientation. The solid lines represent the corresponding �ts according to the model by Hannes

et al. [47].

In comparison with literature the average values6 for the degenerate 2PA coe�cient at

λsig = λidl = 800 nm, β̄‖ = 3.9 cm/GW for the (100)-oriented sample and β̄‖ = 4.9 cm/GW

for the (110)-oriented sample are in good accordance with previous studies. Mihaela Balu

et al. [59] and Fishman et al. [19] independently report a co-polarized 2PA coe�cient of

≈ 3.5 cm/GW for excitation with 800 nm pulses. Balu et al. used a polycrystalline ZnSe

specimen and Fishman et al. do not give particular speci�cations of the crystal and polar-

ization orientation at all. The 2PA anisotropy may account for the slightly lower literature

values of the 2PA coe�cients. Studies giving more detailed speci�cations are not available

for ZnSe. Diverging results for the 2PA coe�cient despite same experimental conditions

6The given values for β̄ are the average degenerate 2PA coe�cients out of two independent measure-

ments at λsig = λidl = 800 nm.
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3.2. Evaluation of the two-photon absorption coe�cients

may also stem from di�erent quantity de�nitions used in the analysis. For example, it has

an in�uence on the overall magnitude of β whether the idler pulse length τidl is included in

the intensity I0idl (see Equation (3.6)) as FWHM, FW1/eM or FW1/e2M, since the model to

�t the pump-probe traces directly comprises I0idl (see Equation (3.2))7. This also applies to

the signal spot size Aidl since the spot size diameters can likewise be de�ned di�erently. In

addition, the choice of a speci�c data set among others used for the determination of, for

example, the (group) refractive indices and re�ectivities may also account for di�erences

between experimental studies despite same experimental conditions. The comparison of

non-degenerate 2PA coe�cients is even more di�cult since studies need to be found that

examine the 2PA coe�cient at the same frequency ratio and sum energy. In case of ZnSe

there is no comparable non-degenerate data available.
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Figure 3.5: GaAs 2PA coe�cients β for co- (blue) and cross-polarized (red) measurements

as a function of the frequency ratio ωsig/ωidl for (a) (100) and (b) (110) crystallographic

orientation. The solid lines represent the corresponding �ts according to the model by Hannes

et al. [47].

In Figure 3.5 the extracted 2PA coe�cients β‖ and β⊥ for the (100)- and (110)-oriented

GaAs samples are summarized. Also for GaAs some data points at certain frequency ratios

appear twice as part of the measurements are repeated. Similar to ZnSe, for both crystallo-

7This is also valid for the analysis of z-scan measurements where the model to �t the z-scan traces also

comprises I0 [14, 30].
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graphic orientations of the GaAs samples the values for the co- and cross-polarized 2PA co-

e�cients β‖ and β⊥ increase with increasing frequency ratio ωsig/ωidl. Also, the values of β⊥

are overall smaller than the values for β‖. For GaAs an approximately twofold increase over

the whole measurement range from ωsig/ωidl = 1.04 to ωsig/ωidl = 1.88 can be observed for

both polarization con�gurations and crystallographic orientations. When comparing the

two crystallographic orientations the values of β‖ are generally higher for the (100)-oriented

than for the (110)-oriented sample, for β⊥ it is reversed. In comparison with ZnSe, GaAs

reveals overall higher 2PA coe�cients β‖ and β⊥ for the same frequency ratios. This is con-

sistent with the general E−3g -scaling of the degenerate and non-degenerate 2PA coe�cient

in direct semiconductors by which smaller bandgap semiconductors (Eg,GaAs < Eg, ZnSe)

generally exhibit higher 2PA strengths (see Chapter 1.2.2.1).

Also for GaAs a comparison with previous experimental data is only possible for co-

polarized degenerate 2PA coe�cients as no data is available for non-degenerate con�g-

urations at similar frequency ratios and sum energies. Since the IR-OPA cannot pro-

vide degenerate photon pairs, the data points closest to degeneracy at ωsig/ωidl = 1.04

(λsig = 1550 nm, λidl = 1611 nm ⇒ λ̄ = 1580 nm) are used for comparison. The corre-

sponding average 2PA coe�cients are β̄‖ = 18.1 cm/GW for the (100)-oriented sample and

β̄‖ = 12.9 cm/GW for the (110)-oriented sample. Fishman et al. [19] report a degenerate co-

polarized 2PA coe�cient of ≈ 2.5 cm/GW and Cirloganu et al. [18] of ≈ 12.0 cm/GW both

at λsig = λidl = 1580 nm whereby no further crystal or polarization speci�cations are given.

In case of GaAs, few studies have been published which further specify the crystallographic

orientation and beam polarization. Dvorak et al. [26] performed a study using a (001)-

oriented GaAs sample with signal and idler beam polarization parallel to the [100]-direction

and extracted a 2PA coe�cient of ≈ 20.0 cm/GW at λsig = λidl = 950 nm. DeSalvo et

al. [27] report di�erences in the degenerate 2PA coe�cients at λsig = λidl = 1064 nm for

(100)-, (110)- and (111)-oriented GaAs specimens with the beam polarization parallel to

the [001]-direction, varying between 18 cm/GW and 25 cm/GW. Taking into account the

deviating experimental conditions and possible di�erences in the analysis, as explained

above for ZnSe, the measurement results agree well with the reported literature values.

Further on, the experimental results of ZnSe and GaAs are in good accordance with the

theoretically predicted scaling functions βND-2PA(ω1, ω2) for direct semiconductors intro-

duced in Chapter 1.2.2.1. In Figures 3.4 and 3.5 the solid lines represent �ts to the co- and

cross-polarized measurement data according to the scaling function of Hannes et al. [47]

(see Equation (1.31)). A prefactor A has been chosen for best �t with the experimental
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Figure 3.6: Comparison of the theoretical scaling functions of Hannes et al. [47] (red), Sheik-

Bahae et al. [16] (blue) and Aversa et al. [46] (green). The solid lines represent the �ts to the

co-polarized 2PA coe�cients β‖ in the (100)-oriented GaAs sample. In each case, a prefactor

has been chosen for best �t with the experimental data. The di�erence in between those

models is particularly seen for very high degrees of non-degeneracy beyond the accessible

measurement range.

data so that the �tting function is given by

βND-2PA(Esig) = A · Esig

(
1

E2
sig

+
1

(Esum − Esig)2

)2

. (3.10)

Regardless of the speci�c polarization con�guration and sample orientation, the measure-

ment data for ZnSe and GaAs agrees very well with the theoretical scaling. The scaling

functions of Sheik-Bahae et al. [16] (see Equation (1.32)) and Aversa et al. [46] (see Equa-

tion (1.33)) are also consistent with the experimental results. These �ts deviate only little

from the �t according to Hannes et al. in the measurement range. To further distinguish

between those models, measurement points at higher degrees of non-degeneracy would

be required which are inaccessible with the VIS- and IR-OPA described in Chapter 2.2.

An exemplary comparison of the �ts according to the three di�erent theoretical scalings

is shown in Figure 3.6 for the experimental data of the (100)-oriented GaAs sample and

co-polarized con�guration, representative for all measurements in ZnSe and GaAs. Also

for the scaling functions of Sheik-Bahae et al. and Aversa et al., a prefactor A has been

chosen for best �t with the experimental data. The �tting functions are given by

βND-2PA(Esig) = A · Easum
E3
sig(Esum − Esig)4

(3.11)
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whereby the exponent of the numerator is a = 2, 3 for the scaling function of Sheik-Bahae

et al. and Aversa et al., respectively.

L. KRAUSS-KODYTEK et al. PHYSICAL REVIEW B 104, 085201 (2021)
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FIG. 3. Exemplary pump-probe transients for a co- and cross-
polarized 2PA measurement at λsig = 570 and λidl = 1341 nm for
the (100)-oriented ZnSe sample. The blue (red) data correspond to
the co- (cross-) polarized configuration. Solid lines represent a fit
according to the model by Negres et al. [30].

and idler photons. Our experiment and the detection scheme
is designed to measure 2PA whereby one photon from each
beam triggers 2PA. In order to suppress degenerate 2PA with
two photons from the same beam, the energies of the signal
and idler photons are chosen to be εg/2 < h̄ωsig < εg and
h̄ωidl < εg/2. With this choice the idler alone cannot trigger
2PA. The idler is chosen as the pump beam in our pump-probe
approach. The signal acts as the probe beam. Its intensity is
much weaker than the idler such that also the signal alone
does not induce significant 2PA. The spot sizes of the pulses
are adjusted that the idler spot is, at least, 2.5 times larger than
the signal spot. As a result, the intensity of the idler across the
signal spot is practically identical to its peak intensity such
that spatial averaging is not necessary for the extraction of β.

FIG. 4. The 2PA coefficients of ZnSe as a function of the nonde-
generacy parameter. The corresponding polarization settings for co-
and cross-polarized cases and each crystallographic orientation are
shown in Fig. 2. The curves labeled theory are obtained from simu-
lations with τ = 50-fs pulses. The curves labeled 2-band correspond
to β‖ ∼ n−1

sig n−1
idl ω

−3
sig ω−4

idl where the prefactor has been chosen for best
fit with the numerical results.

Figure 3 shows an exemplary pump-probe transient for
a co- and cross-polarized measurement at a wavelength
combination of λsig = 570 and λidl = 1341 nm for the (100)-
oriented ZnSe sample. The signal and idler pulses have
Gaussian temporal pulse shapes and the measured idler pulse
length is τidl = 98.2 fs (full width at half maximum). Al-
though our pulse durations are somewhat longer than the ones
in the simulation, we do not expect an impact for the resulting
2PA coefficients. In fact, by using different alignments of the
OPA, we have repeated the experiment with different pulse
durations for one wavelength combination. After incorporat-
ing the actual pulse durations into the data analysis, we found
practically identical 2PA coefficients

To evaluate the 2PA coefficient β we use the theoretical
approach for the normalized signal transmittance of Negres
et al. [30]. In short, the results of Negres et al. establish
an analytical formula for the shape of the pump-probe tran-
sients for our experimental configuration. It assumes pulses
with a Gaussian temporal envelope. It takes into account
the well-known group-velocity mismatch of signal and idler
pulses. Although the approach of Negres et al., in princi-
ple, takes linear absorption into account as well, we set this
linear absorption to zero. This assumption is valid because
the linear absorption across the band gap is supressed by the
chosen photon energies (<εg). Free-carrier absorption can
be excluded as the pump-probe traces do not show transient
absorption beyond the temporal overlap of pump and probe
pulse. A fit of this model to the experimental transients re-
veals the co- and cross-polarized 2PA absorption coefficients
β‖, β⊥ and the duration of the signal pulse. Two examples for
such a fit are displayed in Fig. 3 and show excellent agreement
between the model and the measurement.

For the specific wavelength combination presented in
Fig. 3, the fit represents curves with β‖ = 12.93+1.6

−1.4 cm/GW
with τsig = (120.7 ± 0.9) fs and β⊥ = 4.77+0.6

−0.5 cm/GW with
τsig = (120.1 ± 1.7) fs. The pulse lengths are given as the full
width at half maximum. The spot sizes for this example are
Asig = 2100 and Aidl = 30100 μm3. We estimate the errors
for β by varying the input parameters within the measurement
inaccuracies. Since all the pump-probe data sets look rather
comparable and the analysis follows analogously to the above
procedure, we now restrict the presentation to the values for
the two-photon absorption coefficient β and its dependence on
the nondegeneracy, polarization, and crystal orientation.

We now turn to the comparison of the experimentally
observed 2PA coefficients for various nondegeneracy param-
eters ωsig/ωidl and the two crystallographic orientations. As
seen in Fig. 4, the values for β‖(ωsig/ωidl ) and β⊥(ωsig/ωidl )
increase with the nondegeneracy parameter. Specifically, we
find an approximately fivefold increase in β when compar-
ing configurations with ωsig/ωidl = 3.6 to the degenerate case
ωsig/ωidl = 1. Note that the scatter of the experimental data
also increases with ωsig/ωidl because the noise of the optical
parametric amplifier increases for widely nondegenerate op-
eration. The increase in the two-photon absorption strength
with higher degrees of nondegeneracy has been theoretically
predicted in several studies [11–13]. When comparing the
two crystallographic orientations, we find very similar mag-
nitudes for β‖(ωsig/ωidl ) at the same frequency combinations.
In contrast, the values for β⊥(ωsig/ωidl ) for the (110)-oriented

085201-4

Figure 3.7: ZnSe 2PA coe�cients β for co- (red) and cross-polarized (blue) measurements

as a function of the frequency ratio ωsig/ωidl for (100) (left) and (110) (right) crystallographic

orientation as in Figure 3.4. The solid lines represent tailored numerical calculations done by

W.-R. Hannes (Paderborn University) within the multiband model of Hannes et al. [89]. The

dashed lines correspond to the two-band model of Hannes et al. [47] but with k-dependent

dipole matrix elements (for further details see Reference [89]). Taken from Reference [89].

The two-band models of Hannes et al., Sheik-Bahae et al. and Aversa et al. do not capture

the anisotropy of the 2PA coe�cient and are restricted to evaluate the scaling behavior

(and the magnitude in case of β‖) so that only by using a prefactor in the �tting functions

the scaling can be adjusted to the di�erent polarization con�gurations and sample orienta-

tions. For a theoretical description of the 2PA coe�cient taking anisotropy into account,

calculations which incorporate higher conduction bands are required since these mainly

in�uence the 2PA anisotropy as described in Chapter 1.2.2.3. Therefore, Hannes et al.

have proposed a more comprehensive model including higher conduction bands based on

multiband semiconductor Bloch equations [89]. To the experimental data of ZnSe tailored

numerical calculations done by W.-R. Hannes (Paderborn University) within this model

show surprisingly good agreement without using any �tting parameter (see Figure 3.7).

The theory well reproduces the magnitude and scaling behavior of β(ωsig/ωidl) as well as

the orientation and polarization anisotropy of the 2PA coe�cient. In comparison with the
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3.2. Evaluation of the two-photon absorption coe�cients

two-band model �t in Figure 3.4 the 2PA strength shows a slightly weaker increase with

increasing frequency ratio ωsig/ωidl so that the slope of the �t more closely approaches

the slopes of the �ts according to the models of Sheik-Bahae et al. and Aversa et al. as

depicted in Figure 3.6.

Figure 3.8 summarizes the experimental results for the ≈ 250µm and ≈ 450µm thick Si

samples for both β‖ and β⊥, again comparing the (100) and (110) crystallographic orien-

tations. The 2PA coe�cients increase with higher degrees of non-degeneracy as in case of

ZnSe and GaAs. The values of β⊥ are also overall smaller than the values for β‖. As ex-

pected, the overall absorption strength in comparison with ZnSe and GaAs is smaller due

to the additionally participating phonon in indirect semiconductors. In the measurement

range of ωsig/ωidl = 1.04−1.86 the 2PA coe�cients show an approximately twofold increase

independent of the sample thickness, polarization con�guration and crystallographic ori-

entation. Comparing the 2PA coe�cients of one crystallographic orientation at the same

frequency ratio between the thin and thick Si sample, the values are, as expected, rather

similar since the sample thickness should not a�ect the 2PA coe�cient. Only the measure-

ment points at ωsig/ωidl = 1.1 and ωsig/ωidl = 1.2 of the (110)-oriented thinner Si sample

show higher deviations. These are most likely due to exceptional measurement inaccu-

racies since such high deviations only occur for these two points and are mostly absent

in the other samples. In general, the β‖ values of the (100)-oriented sample are smaller

than for the (110) crystallographic orientation, for β⊥ the values are largely independent

of the orientation. The generally larger scatter of the Si data, in contrast to the ZnSe and

GaAs data, is due to the overall smaller 2PA signal strengths. Here, the scatter of the

experimental data also increases with higher degrees of non-degeneracy, again, because the

noise of the VIS-OPA increases for widely non-degenerate con�gurations.

The experimentally obtained 2PA coe�cients, β̄‖ = 0.9 cm/GW for the (100)-oriented

sample and β̄‖ = 1.1 cm/GW for the (110)-oriented sample8, closest to degeneracy (λsig =

1550 nm, λidl = 1611 nm ⇒ λ̄ = 1580 nm) are in good agreement with previous experi-

mental studies. Bristow et al. [66] report a degenerate 2PA coe�cient of ≈ 0.75 cm/GW

at λsig = λidl ≈ 1600 nm for a (001)-oriented sample and Mihaela Dinu et al. [30] ≈
0.79 cm/GW at λsig = λidl ≈ 1540 nm for a (110)-oriented sample. In both cases, the

relative orientation of the crystallographic axes with respect to the beam polarization

is not speci�ed. Lin et al. [67] report a degenerate 2PA coe�cient of ≈ 0.5 cm/GW

8In the following comparison with literature β̄ is given as the average 2PA coe�cient obtained from the

thin and thick Si sample.
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Figure 3.8: Si 2PA coe�cients β for co- (blue) and cross-polarized (red) measurements as a

function of the frequency ratio ωsig/ωidl for (a), (b) (100) and (c), (d) (110) crystallographic

orientation. Note the di�erent sample thicknesses as indicated. The solid lines represent the

corresponding �ts according to the model by Faryadras et al. [23].
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at λsig = λidl ≈ 1600 nm for a (100)-oriented Si sample with signal and idler polariza-

tion parallel to the [010]-direction. All these studies focus on co-polarized con�gurations.

For Si also a comparison with non-degenerate data is possible. Faryadras et al. [23] re-

port non-degenerate 2PA coe�cients of ≈ 0.7 cm/GW and ≈ 1.0 cm/GW for wavelength

con�gurations of λsig = 1450 nm, λidl = 1700 nm and λsig = 1350 nm, λidl = 1900 nm,

respectively. Taking into account the measurement inaccuracies a good agreement can

be found with β̄‖ = 1.1 cm/GW at ωsig/ωidl = 1.20 (λsig = 1450 nm, λidl = 1736 nm) and

β̄‖ = 0.8 cm/GW at ωsig/ωidl = 1.41 (λsig = 1350 nm, λidl = 1904 nm) of the (100)-oriented

sample. Faryadras et al. also used pulses in the femtosecond-range and investigated a

(100)-oriented sample in a co-polarized con�guration whereby the relative orientation of

the beam polarization with respect to the crystallographic directions is no further given.

The experimental results of Si are in good accordance with the theoretically predicted

scaling function βND-2PA(ω1, ω2) of Faryadras et al. [23] for indirect semiconductors (see

Equation (1.36)) as introduced in Chapter 1.2.2.2. The solid lines in Figure 3.8 represent

those �ts for each sample and each polarization con�guration. Again, a prefactor A has

been chosen for best �t with the experimental data so that the �tting function is given by

βND-2PA(Esig) = A ·
E3
gi

Esig(Esum − Esig)3

(
Egi

Eg − Esig
+

Egi

Eg − Esum + Esig

)2

. (3.12)

Comparing the �ts of the two di�erent sample thicknesses reveals similar prefactors which

also indicate the independence of the 2PA coe�cient from the sample thickness. In case

of the (100) crystallographic orientation the thin sample deviates from the thick sample

by approximately +6.5% for the co- and −6.3% for the cross-polarized con�guration. In

case of the (110)-oriented sample the deviation is approximately −11.1% for the co- and

−6.7% for the cross-polarized con�guration. The slightly higher deviation of −11.1% is

due to the inaccurate measurement points at ωsig/ωidl = 1.1 and ωsig/ωidl = 1.2.

As already described, the 2PA coe�cient for ZnSe, GaAs and Si is dependent on the

crystallographic orientation and the polarization con�guration of signal and idler pulse.

To further elaborate on the anisotropy more in detail, the ratio β⊥/β‖ as a function of

ωsig/ωidl is analyzed. The results for all three samples are summarized in Figure 3.9. The

error is calculated by

∆
β⊥
β‖

=

√√√√(∆β⊥
β‖

)2

+

(
β⊥∆β‖

β2‖

)2

(3.13)

according to the Gaussian error propagation [88]. Most likely the error for β⊥/β‖ is over-

estimated as part of the inaccuracies cancel out, when computing the ratio. This can be
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Figure 3.9: Ratio β⊥/β‖ for (a) ZnSe, (b) GaAs, (c) Si with d ≈ 250µm and (d) Si with

≈ 450µm as a function of the frequency ratio ωsig/ωidl. The color indicates the (100) (blue)

and (110) (red) crystallographic orientation. The corresponding lines are guides to the eye.

Note the di�erent scalings of the y-axis between the ZnSe and GaAs/Si graphs.
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3.2. Evaluation of the two-photon absorption coe�cients

seen in the fairly low scatter of β⊥/β‖, especially for GaAs and Si whose measurements

were both acquired with the IR-OPA. The slightly higher scatter of the ZnSe data could

depend on using the VIS-OPA.

For ZnSe and GaAs the (100)-oriented crystal shows a more pronounced anisotropy than

the (110)-oriented crystal since the values of β⊥/β‖ for the (100)-oriented sample are over-

all smaller than for the (110) crystallographic orientation. In case of Si it is reversed. This

contrary behavior is at �rst surprising since ZnSe and GaAs (point group: 4̄3m) and Si

(point group: m3̄m) belong to point groups resulting into the same nonzero third-order

susceptibility tensor elements which in turn substantially in�uence the anisotropy (see

Chapter 1.2.2.3). However, there must be other decisive factors, for example the character

of the bandgap or the space group, which also in�uence the anisotropy. These factors can

only be speci�ed by more precisely comparing the experimental results with theoretical

studies which are not yet available.

In contrast to this, β⊥/β‖ shows a slight increase with increasing ωsig/ωidl independent

of the speci�c material and crystallographic orientation so that not only the 2PA coef-

�cient is scalable by the degree of non-degeneracy but also the anisotropy. The speci�c

slope is rather comparable for the two crystallographic orientations in one sample with

slightly higher values for the (100)-oriented samples. GaAs shows the less pronounced and

Si the most pronounced increase. Comparing the (100)-oriented Si samples with di�er-

ent thicknesses reveals similar values of β⊥/β‖ at same frequency ratios. In case of the

(110)-oriented Si sample there are small deviations in the magnitude of β⊥/β‖ for the two

di�erent thicknesses again due to the 2PA values at ωsig/ωidl = 1.1 and ωsig/ωidl = 1.2 in

the thinner sample. The value at degeneracy is dependent on the material and its orien-

tation and ranges for all samples between 0.3 and 0.6.

Only for the (100)-oriented GaAs sample the average value β̄⊥/β̄‖ ≈ 0.31 (⇔ β̄‖ − β̄⊥ =

12.5 cm/GW) closest to degeneracy at ωsig/ωidl = 1.04 can be compared to other ex-

perimental results. Dvorak et al. [26] report a degenerate value of β⊥/β‖ ≈ 0.41 at

λsig = λidl = 950 nm for a (001)-oriented crystal whereby in the co-polarized con�gu-

ration the signal and idler polarization are parallel to the [100]-direction and in the cross-

polarized con�guration the idler polarization is rotated by 90◦. Schroeder et al. [25] also

use a (001)-oriented GaAs specimen at λsig = λidl = 950 nm with the same co- and cross-

polarized con�guration as Dvorak et al. but a di�erent measurement scheme which reveals

β‖−β⊥ = (12±3) cm/GW. The results agree very well taking into account the di�erences
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between those measurements as for example the excitation energies (References [25, 26]

use 2~ω ≈ 2.6 eV compared to ~ωsig + ~ωidl = 1.57 eV of the IR-OPA).

The decreasing anisotropy of the 2PA coe�cient with higher degrees of non-degeneracy

has not been described by other experimental studies before. However, the results can

again be compared with the theoretical model of Hannes et al. [89] based on multiband

semiconductor Bloch equations as already shown in Figure 3.7. The tailored simulations

well capture the increasing trend of β̄⊥/β‖ within the experimental uncertainties (see Fig-

ure 3.10). The slight increase in the vicinity of degeneracy might be an artifact of the

simulations since this cannot be observed in any experimental data (also not in GaAs and

Si). NONDEGENERATE TWO-PHOTON ABSORPTION IN ZNSE: … PHYSICAL REVIEW B 104, 085201 (2021)

FIG. 5. Ratio between cross- and co-polarized 2PA. The same
data (experiment and theory) as in Fig. 4.

sample are consistently higher than for the (100)-oriented
sample. We will elaborate further on this fact below.

It is also instructive to compare our results to previous
studies of 2PA in bulk ZnSe. So far, comparable results are
only available for degenerate co-polarized configurations and
800-nm pulses. In this case, we find average β values of
3.9 cm/GW for the (100) sample and 4.9 cm/GW for the
(110) sample. Our experimental results agree well with the
value of 3.5 cm/GW independently reported in literature by
Balu et al. [31] and Fishman et al. [5]. Balu et al. used a
polycrystalline ZnSe specimen. Fishman et al. do not give
particular specifications of their sample.

Figure 4 also contains the theoretical results for the same
crystallographic orientations and polarization configurations.
Given the uncertainties in both experiment and theory, the
agreement for all four settings is surprisingly good. Without
using any fitting parameter, the theory yields a very similar
behavior of β as a function of the nondegeneracy parame-
ter, and even its absolute magnitudes are very close to the
measured ones.

We finally elaborate on the anisotropy of β in terms of
the different polarization configurations and its dependence
on the nondegeneracy. A useful parameter to characterize
the polarization anisotropy is the ratio β⊥/β‖ for co- and
cross-polarized signal and idler beams. These results are sum-
marized in Fig. 5. The first observation is that the values of
β⊥/β‖ for the (100)-oriented sample are clearly smaller than
for the (110) sample. More surprisingly, we find a significant
increase in β⊥/β‖ with increasing ωsig/ωidl. An advantage of
inspecting this ratio is its lower noise due to canceling out of
certain error sources in the original quantities.

The numerical results from the eight-band Kane model
lie within the experimental uncertainties. The experimental
result for β⊥/β‖ might be slightly overestimated due to the

oblique idler propagation in the nominally co-polarized case.
As discussed above, the numerical results come with their
own uncertainty—in particular, the slight decrease in β⊥/β‖
in the vicinity of the degenerate case might result from the
finite resolution in k space. Otherwise, the properties of β⊥/β‖
found in the experiment as described above are well captured
by our simulations.

To explain the microscopic origin of this behavior is
complicated in the considered model since the 8 × 8-Kane
Hamiltonian with remote-band contributions cannot be diag-
onalized analytically. However, we have evaluated a simpler
model, in particular, a anisotropic two-band model with
complex k-independent transition dipoles, obtained from
zone-center wave functions [32]. In this model, β⊥ is given by
β‖ with two out of four excitation paths dropped for symmetry
reasons. This results in a different frequency dependence for
both cases and in the following dependence of the ratio on the
nondegeneracy parameter,

β⊥
β‖

= 1 + (ω1/ω2)4

[1 + (ω1/ω2)2]2
, (7)

which equals 1/2 for the degenerate case and increases
towards unity for the strongly nondegenerate case. In com-
parison with the realistic model, this increase is too strong
as a consequence of the neglected k dependence of transition
dipoles.

V. CONCLUSIONS

To summarize, we have carefully investigated the nonde-
generate two-photon absorption coefficient β(ω1, ω2) in the
prototypical semiconductor ZnSe for a fixed sum frequency
ω1 + ω2. We find a substantial increase in the two-photon
absorption strength with increasing ω1/ω2 as predicted by
different theoretical approaches. Specifically, we find an about
fivefold increase in β(ω1, ω2) for ω1/ω2 = 3.5 when com-
pared to the degenerate case. A numerical model based
on eight-band k·p calculations and semiconductor Bloch
equations including inter- and intraband excitations agrees
quantitatively with the experiment in terms of the disper-
sion of β(ω1, ω2) as well as the crystalline and polarization
anisotropies. The results are important for a more detailed
understanding of nonlinear two-color interactions in semicon-
ductors and their applications in nonlinear photonics.
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Figure 3.10: Ratio β⊥/β‖ for ZnSe as as function of the frequency ratio ωsig/ωidl. The solid

lines represent tailored numerical calculations done by W.-R. Hannes (Paderborn University)

within the multiband model of Hannes et al. [89]. Experimental and theoretical data is

comparable to Figure 3.7. Taken from Reference [89].
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Chapter 4

Summary

The non-degenerate 2PA coe�cient β as a function of the frequency ratio ω1/ω2 was suc-

cessfully measured for the semiconductors ZnSe, GaAs and Si while keeping the sum energy

~ω1 +~ω2 of the two involved photons constant. All three materials show an enhancement

of the 2PA strength with increasing frequency ratio ω1/ω2 > 1 regardless of the direct or

indirect character of the bandgap. The overall 2PA strength is higher for ZnSe and GaAs

than for Si since an interband two-photon transition from the valence to the conduction

band can only occur phonon-assisted in an indirect semiconductor. Comparing the 2PA

strengths of ZnSe and GaAs at same frequency ratios ω1/ω2, the latter reveals overall

higher 2PA coe�cients due to its smaller bandgap. The experimentally observed scaling of

the 2PA coe�cient in each material is in good accordance with corresponding theoretical

predictions for direct and indirect semiconductors. For ZnSe, not only the scaling but also

the absolute magnitudes of the 2PA coe�cients agree with tailored numerical calculations.

Future experiments on the scaling of the non-degenerate 2PA coe�cient would preferably

involve an expansion of the measurement range to even higher degrees of non-degeneracy

to better distinguish between di�erent theoretical models since these show signi�cant devi-

ations only very far from degeneracy. In the experimental realization, however, the limits

are already reached when using only one OPA for generating both the signal and idler pulse

since phase matching conditions for very non-degenerate pulse pairs cannot su�ciently be

ful�lled which in turn leads to a destabilization of the OPA. Instead, it would be conceiv-

able to split the signal and idler generation to two OPAs to avoid the phase matching issues

as then each OPA only needs to be working at signal or idler wavelength. However, the

wavelength tuning is still limited since the nonlinear crystals used in conventional OPAs

have strongly reduced transparencies for wavelengths beyond ≈ 2.5µm [90]. Non-collinear

optical parametric ampli�ers (NOPAs) could be a promising alternative. These use a
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two-stage ampli�cation with non-collinear propagating signal and pump pulses as well as

nonlinear crystals with enlarged transparency regions to the mid-IR [91].

In addition to the scaling of the 2PA coe�cient, the polarization and orientation anisotropy

was investigated. Therefore, co- and cross-polarized con�gurations are used where the

two, both linearly polarized, driving �elds are either aligned parallel or perpendicular to

each other. Additionally, the ZnSe, GaAs and Si samples are each studied in (100) and

(110) crystallographic orientation. For all three materials the magnitude of β⊥ is gener-

ally smaller than for β‖ at same frequency ratios. When characterizing the polarization

anisotropy in terms of the ratio β⊥/β‖, the (100)-oriented ZnSe and GaAs samples show

a more pronounced anisotropy than the (110)-oriented samples. For Si it is reversed. This

contrary behavior leaves open questions for future research since the classi�cation of all

three materials to point groups resulting in the same nonzero third-order susceptibility

tensor elements would, according to expectations, lead to similar anisotropy. Independent

of the speci�c material and its orientation, β⊥/β‖ is also slightly increasing with increasing

frequency ratio ω1/ω2 so that not only the 2PA coe�cient is scalable by the degree of non-

degeneracy but also its anisotropy. For each material the scaling of the 2PA anisotropy

is rather comparable for the two crystallographic orientations. Since the 2PA anisotropy

is mainly in�uenced by the higher conduction bands, the use of an OPA is particularly

advantageous as it provides photon pairs of constant sum energy. Thus, always the same

conduction bands are involved in the transition which allows the independent investigation

of β⊥/β‖(ω1/ω2).

In summary, the non-degenerate 2PA strength can in particular be in�uenced by the de-

gree of non-degeneracy but also by its polarization and orientation anisotropy. The scaling

of the 2PA coe�cient is interesting in two respects. As already addressed in the Intro-

duction, an enhancement of the 2PA absorption coe�cient can optimize the performance

of 2PA based applications as autocorrelators or infrared detectors. On the contrary, the

2PA can also act as a loss mechanism. Especially in applications that are based on other

nonlinear phenomena such as the Kerr or Raman e�ect, the 2PA leads to undesired energy

dissipation [64]. Here, a minimization of the 2PA strength is desirable. Considering the

2PA as an essential element of current and future applications and its great potential for

properties yet to be explored emphasizes the importance of ongoing fundamental research

on two-photon absorption.
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A.1 Mathematica source code

The following Wolfram Mathematica source code is used for the analysis of the two-

photon absorption measurement data. The mathematical basic concept is based on the

theoretical model of Negres et al. [74]. It is generally applicable to di�erent samples

and to co- and cross-polarized con�gurations. Here, it is exemplarily executed for the

(100)-oriented ZnSe sample in co-polarized con�guration at a wavelength combination of

λsig = 570 nm and λidler = 1341 nm (see also Chapter 3.1.1 for detailed information about

this speci�c measurement). Note that the signal and idler pulses are referred to as probe

and pump pulse.

ClearAll["Global`*"]

(* import experimental data *)

expdata01100pa570 = Import["C:/.../(100)_570nm_parallel.txt", "Table"];

(* print experimental data, converting format: x-axis from ps to fs, y-axis shift + 1,

define x-axis shift from zero *)

expdata01100pa570conv = Partition[Riffle[expdata01100pa570[[1 ;; Length[expdata01100pa570], 1]]

*1000 + 42, expdata01100pa570[[1 ;; Length[expdata01100pa570], 2]] + 1], 2];

expdata01100pa570plot = ListPlot[expdata01100pa570conv, PlotRange -> All]

-500 500 1000
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(* select data set *)

expdataconv = expdata01100pa570conv;

expdataplot = expdata01100pa570plot;

(* constants *)

c0 = 3*10^-5; (* velocity of light [cm/fs] *)

(* experimental parameters *)

L = 42*10^(-4); (* sample length [cm] *)

lpr = 570; (* probe wavelength [nm] *)

lpu = 1341; (* pump wavelength [nm] *)

tpu = 98.2; (* pump pulse length [fs] (FWHM) *)

wpr = 2. Pi c0/(lpr 10^-7); (* probe frequency [1/fs] with wavelength in cm *)

wpu = 2. Pi c0/(lpu 10^-7);(* pump frequency [1/fs] with wavelength in cm *)

R = 0.15948; (* pump reflectivity @ 1341nm, p-polarized, angle of incidence: 20degree *)

freplaser = 250000; (* laser repetition frequency [Hz] *)

Ppu = 0.45; (* pump power [mW] *)

Apu = 0.000301271; (* idler cross section [cm^2] (FW1/eM) *)

Apuerror = 4.83517*10^(-6); (* idler cross section error [cm^2] (FW1/eM) *)

(* calculation of pump peak intensity *)

scale1 = 1./Sqrt[Log[2]]; (* tpu: FWHM -> FW1/eM *)

scale2 = E/(E - 1.); (* average intensity -> peak intensity *)

Ipuaverage = (1 - R)*(Ppu*10^(-12))/(freplaser*tpu*scale1*10^(-15)*Apu); (* pump average

intensity [GW/cm^2] *)

Ipu = Ipuaverage*scale2; (* pump peak intensity [GW/cm^2] *)

(* calculation of refractive and group refractive index *)

(* Sellmeier equation with wavelength in cm *)

ngeneric[l_, B1_, C1_, B2_, C2_, B3_, C3_] := Sqrt[1 + (B1*(l*10^4)^2/((l*10^4)^2 - C1)) +

(B2*(l*10^4)^2/((l*10^4)^2 - C2)) + (B3*(l*10^4)^2/((l*10^4)^2 - C3))]

(* Sellmeier coefficients for ZnSe calculated with wavelength in [10^(-6)m] *)

B11 = 4.713; C11 = 0.03741;

B21 = 0.13085; C21 = 0.20464;

B31 = 0.96186; C31 = 1059.53848;

n[l_] := ngeneric[l, B11, C11, B21, C21, B31, C31] (* refractive index *)

k[w_] := n[2. Pi c0/w] (w)/c0; (* wave vector [1/cm] *)

inversevgr[w_] = D[k[w], w]; (* group velocity [cm/fs] *)

GVD[w_] = D[k[w], {w, 2}]; (* group velocity dispersion [fs^2/mm] *)

ngr[w_] = c0*inversevgr[w]; (* group refractive index *)

npr = n[lpr*10^(-7)]; (* probe refractive index *)

ngrpr = ngr[wpr]; (* probe group refractive index *)

npu = n[lpu*10^(-7)]; (* pump refractive index *)

ngrpu = ngr[wpu]; (* pump group refractive index *)

deltangr = ngrpr - ngrpu; (* group velocity mismatch *)

(* conversion of pulse lenghts *)

convpar = 1/(2 Sqrt[Log[2]])*1.; (* pulse length: FWHM -> HW1/eM *)

tpuconv = convpar*tpu; (* pump pulse length [fs] (HW1/eM), notation in Negres et al.: omegap *)

64



Appendix

(* parameters for fit *)

sigmafit = 0; (* linear absorption parameter set as zero: sigma=1/2*alpha*L *)

gammafit = L*npr/npu*Ipu*beta; (* nonlinear absorption parameter with beta [GW/cm] *)

rhofit = L/(tpuconv*c0)*deltangr; (* walk-off parameter *)

(* nonlinear transmittance (see Equation (14) in Negres et al.) *)

Q[sigma_, tau_, W_, rho_, gamma_] := Exp[-2*sigma]/(W*Sqrt[Pi])*NIntegrate[Exp[(-1)*((t

+ tau/tpuconv - rho)/(W))^2 - (gamma*Sqrt[Pi])/(rho)*(Erf[t] - Erf[t - rho])], {t, -Infinity,

Infinity}]; (* tau is the variable real delay time *)

(* test calculation fot fit to estimate start values for beta and trprconv *)

beta = 12.5;

tprconvtest = 120;

Wtest = tprconvtest/tpuconv;

testtable = Table[{taurange, Q[sigmafit, taurange, Wtest, rhofit, gammafit]}, {taurange,

-600, 600, 25}];

plottesttable = ListLinePlot[testtable, PlotRange -> {All, {0.98, 1.00009}}, PlotStyle ->

Directive[Green, Thick]];

Show[{plottesttable, expdataplot}, PlotRange -> {{-600, 600}, {1.001, 0.996}}]
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0.998

0.999

1.000
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(* fit of dataset *)

fitfunctionQnon[tprconvfitnon_?NumericQ, betafitnon_?NumericQ, taufitnon_?NumericQ] :=

Exp[-2*sigmafit]/(tprconvfitnon/tpuconv*Sqrt[Pi])*NIntegrate[Exp[(-1)*((tnon +

taufitnon/tpuconv - rhofit)/(tprconvfitnon/tpuconv))^2 - (L*npr/npu* Ipu*betafitnon*

Sqrt[Pi])/(rhofit)*(Erf[tnon] - Erf[tnon - rhofit])], {tnon, -Infinity, Infinity}];

fitQnon = NonlinearModelFit[expdataconv, fitfunctionQnon[tprconvfitnon, betafitnon, taufitnon],

{{tprconvfitnon, 120.0}, { betafitnon, 10.0}}, taufitnon] (* insert start values *)

Qnonfit = Plot[fitQnon[taufitnon], {taufitnon, -500, 500}, PlotRange -> { {-500, 500}, All} ,

PlotStyle -> Directive[Green, Thick]];

tableQnonfit = Table[{taufitnon, fitQnon[taufitnon]}, {taufitnon, -500, 500, 10}];

Export[NotebookDirectory[] <> "TPA-fits_(100)_pa_570nm_fit.dat", tableQnonfit];

Export[NotebookDirectory[] <> "TPA-fits_(100)_pa_570nm_data.dat", fitQnon["ParameterTable"]];

Export[NotebookDirectory[] <> "TPA-fits_(100)_pa_570nm_plot.pdf", Qnonfit];

Show[Qnonfit, expdataplot]

fitQnon["ParameterTable"]
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(* calculate error of beta *)

(* errors dependent on wavelength: tprconv [fs], Apu [cm^2] *)

mytprconvfitnon = tprconvfitnon /. fitQnon["BestFitParameters"];

mytprconfitnonerror = fitQnon["ParameterErrors"][[1]];

tprconverrorplus = mytprconvfitnon + mytprconfitnonerror;

tprconverrorminus = mytprconvfitnon - mytprconfitnonerror;

Apuerrorplus = (Apu + Apuerror);

Apuerrorminus = (Apu - Apuerror);

(* fixed errors independendent on wavelength: tpuconv [fs] (tpu [fs]), L [cm], Ppu [GW] *)

tpuerrorplus = tpu + 5;

tpuerrorminus = tpu - 5;

tpuconverrorplus = tpuerrorplus*convpar;

tpuconverrorminus = tpuerrorminus*convpar;

Lerrorplus = L + 1*10^(-4);

Lerrorminus = L - 1*10^(-4);

Ppuerrorplus = (Ppu + 0.03) *10^(-12);

Ppuerrorminus = (Ppu - 0.03) *10^(-12);

(* calculation of betaplus *)

Ipuerrorplus = (1 - R)*Ppuerrorminus/(tpuerrorplus*scale1*250000*10^(-15)*Apuerrorplus)*(scale2);

mybetafitnon = betafitnon /. fitQnon["BestFitParameters"];

fitfunctionQerrorplus[betaerrorplus_?NumericQ, tauerrorplus_?NumericQ] :=

1/(tprconverrorplus/tpuconverrorplus*Sqrt[Pi])*NIntegrate[Exp[(-1)*((terrorplus

+ tauerrorplus/tpuconverrorplus - Lerrorminus/(tpuconverrorplus*c0)*deltangr )/

(tprconverrorplus/tpuconverrorplus))^2 - (Lerrorminus*npr/npu* Ipuerrorplus* betaerrorplus

*Sqrt[Pi])/(Lerrorminus/(tpuconverrorplus*c0)*deltangr )*(Erf[terrorplus] - Erf[terrorplus -

Lerrorminus/(tpuconverrorplus*c0)*deltangr ])], {terrorplus, -Infinity, Infinity}];

fitQerrorplus = NonlinearModelFit[expdataconv, fitfunctionQerrorplus[betaerrorplus, tauerrorplus],

{{ betaerrorplus, mybetafitnon}}, tauerrorplus];

Deltabetaplus = Abs[mybetafitnon - betaerrorplus /. fitQerrorplus["BestFitParameters"]];

(* calculation of betaminus *)

Ipuerrorminus = (1 - R)*Ppuerrorplus/(tpuerrorminus*scale1*250000*10^(-15)*Apuerrorminus)*(scale2);

mybetafitnon = betafitnon /. fitQnon["BestFitParameters"];
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fitfunctionQerrorminus[betaerrorminus_?NumericQ, tauerrorminus_?NumericQ] :=

1/(tprconverrorminus/tpuconverrorminus*Sqrt[Pi])*NIntegrate[Exp[(-1)*((terrorminus

+ tauerrorminus/tpuconverrorminus - Lerrorplus/(tpuconverrorminus*c0)*deltangr )/

(tprconverrorminus/tpuconverrorminus))^2 - (Lerrorplus*npr/npu* Ipuerrorminus*betaerrorminus

*Sqrt[Pi])/(Lerrorplus/(tpuconverrorminus*c0)*deltangr )*(Erf[terrorminus] - Erf[terrorminus -

Lerrorplus/(tpuconverrorminus*c0)*deltangr ])], {terrorminus, -Infinity, Infinity}];

fitQerrorminus = NonlinearModelFit[expdataconv, fitfunctionQerrorminus[betaerrorminus, tauerrorminus],

{{ betaerrorminus, mybetafitnon - 20}}, tauerrorminus];

Deltabetaminus = mybetafitnon - betaerrorminus /. fitQerrorminus["BestFitParameters"];

(* summary of results *)

Print["fitting results:"]

Grid[{

{"`beta [cm/GW]", mybetafitnon},

{"+ deltabeta [cm/GW]", Deltabetaplus},

{"- deltabeta [cm/GW]", Deltabetaminus},

{"taupr [fs] (HW1/eM)", mytprconvfitnon},

{"deltataupr [fs]", mytprconfitnonerror }

}, Alignment -> {{Left, Left}}]

fitting results:

beta [cm/GW] 12.9326

+ deltabeta [cm/GW] 1.58708

- deltabeta [cm/GW] 1.35929

taupr [fs] (HW1/eM) 120.743

deltataupr [fs] 0.94858
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