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Abstract

This thesis proposes novel approaches for machine learning on irregularly structured
input data such as graphs, point clouds and manifolds. Specifically, we are breaking
up with the regularity restriction of conventional deep learning techniques, and pro-
pose solutions in designing, implementing and scaling up deep end-to-end represen-
tation learning on graph-structured data, known as Graph Neural Networks (GNNS).

Graph Neural Networks capture local graph structure and feature information by fol-
lowing a neural message passing scheme, in which node representations are recursively
updated in a trainable and purely local fashion. We demonstrate the generality of
message passing through a unified framework suitable for a wide range of operators
and learning tasks. Our own specific GNN instantiation, the Spline-Based Convolu-
tional Neural Network (SplineCNN), fits into this message passing scheme by condi-
tioning messages via a continuous B-spline kernel formulation while resembling the
traditional definition of Convolutional Neural Networks for discrete input.

We further analyze the limitations and inherent weaknesses of Graph Neural Net-
works and propose solutions to overcome them, both theoretically and in practice. For
this, we relate the representational power of Graph Neural Networks to their ability
to distinguish non-isomorphic (sub-)graphs, and leverage gained insights to propose
a generalization of GNNs which allow them to reach maximal expressiveness. Addi-
tional solutions aim to enhance the power of Graph Neural Networks in task-specific
scenarios. Specifically, we propose the Dynamic Neighborhood Aggregation (DNA) pro-
cedure, which allows for a selective and node-adaptive aggregation of neighbors from
potentially differing locality, boosting model performance in heterophily graphs. Fur-
thermore, we introduce the Hierarchical Inter-Message Passing (HIMP) architecture for
learning on molecular graphs, in which its junction tree representation is used as a
coarse-grained representation for exchanging messages between different hierarchies,
leading to increased model power. Lastly, we present a two-stage neural Deep Graph
Matching Consensus (DGMC) architecture for learning and refining structural corre-
spondences between graphs. DGMC aims to reach a matching consensus in local
neighborhoods by distributing global positional encodings, overcoming the limita-
tions of locality in traditional GNNS.

In addition, we ensure that our proposed methods scale naturally to large input do-
mains. In particular, we propose novel methods to eliminate the exponentially in-
creasing dependency of nodes over layers inherent to message passing GNNs; a phe-
nomenon framed as neighbor explosion. Specifically, while scalability techniques are
indispensable for applying Graph Neural Networks to large graphs, alternative ap-
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iv ABSTRACT

proaches based on graph sub-sampling weaken the expressive power of message pass-
ing. In order to overcome this restriction, we propose GNNAutoScale (GAS), a frame-
work for scaling arbitrary message passing Graph Neural Networks to large graphs.
GAS prunes entire sub-trees of the computation graph by utilizing historical node
embeddings from prior training iterations. As a result, GAS is provably able to main-
tain the expressive power of the original architecture. Furthermore, we propose the
Open Graph Benchmark (OGB) suite and organized the Open Graph Benchmark Large-
Scale Challenge (OGB-LSC) in order to accelerate Graph Neural Network research on
large-scale graphs. OGB includes a diverse set of challenging, realistic and large-scale
graph benchmark datasets across three different learning tasks.

With the rise of Graph Neural Networks as a state-of-the-art technique for Graph Rep-
resentation Learning, there also exists an urgent demand in both flexible and powerful
libraries for accelerating research and putting existing models into production. How-
ever, meeting both requirements is challenging, as high GPU throughput needs to
be achieved on highly sparse and irregular data of varying size across a wide range
of different model implementations. Here, we introduce PyTorch Geometric (PyG), a
deep learning library for implementing and working with graph-based neural net-
work building blocks, built upon PyTorch. PyG leverages sparse GPU acceleration by
providing dedicated CUDA kernels, and introduces efficient mini-batch handling for
input examples of different size. In addition, PyG provides a general message passing
interface to allow for rapid and clean prototyping of new research ideas. Further, we
present PyGAS, an easy-to-use extension for PyG that converts common and custom
GNN models into their scalable variants by utilizing our GAS framework. In partic-
ular, PyGAS optimizes the access pattern of historical embeddings in order to allow
for both fast and memory-efficient mini-batch training.



Notation

Reference list of the most commonly used notation across this thesis:

Example Explanation
General

NV The N-dimensional space of natural numbers
RN The N-dimensional space of real numbers
x,y, 2 A lowercase italic letter denotes a scalar
T, Y,z A lowercase bold letter denotes a vector
X,Y,Z An uppercase bold letter denotes a matrix
XV, 2 An uppercase calligraphic letter denotes a set
{z,y,2} An unordered set
(z,y,2) An ordered set
{z,y,y} An unordered multiset
T; The i-th element of vector =
X,.or X[i,:] The i-th row of matrix X
X.jor X[:,j| The j-th col of matrix X
X, jor X[i,j] Thei,j-th element of matrix X
Iy The N x N identity matrix

Deep Learning
fo A function f parametrized by 6
L A scalar-valued objective function
‘g—g The partial derivate of a function £ w.r.t. 8

Graph Theory
G=W,¢) A graph given by node set V and edgeset £ CV x V
N (v) The neighborhood set {w: (w,v) € £} of anode v € V
GlB| The subgraph of G induced by the node set B C V
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Introduction

1.1 Motivation and Relevance

Our world is highly rich in structure, composed of objects, their relations and hierar-
chies. Notably, this holds true for even the highest and lowest conceptual levels and
scales in our world: Sentences can be described as sequences of words, maps can be
decomposed into streets and their intersections, the world wide web connects web-
sites via hyperlinks, and even chemical compounds can be described by a set of atoms
and their interactions. A natural way to represent such structured information comes
in the form of a graph, represented by a set of nodes and their pairwise relationships.

Despite the ubiquity of graphs in our world, most modern machine learning methods
fail to properly handle such rich structural representations, as features are expected
to be given by fixed-sized vectors, data points are treated as independent and identi-
cally distributed examples, and their sequence of computation is inherently fixed. As
such, existing models are only able to process a narrow subset of all potential appli-
cations. This observation calls for the development of much more broadly applicable
machine learning methods, which are eventually able to process, understand and rea-
son about the diverse structure in our world by dynamically routing and exchanging
information across entities to derive higher-level decisions (Dean, 2021).

Traditionally, machine learning models were applied on top of a set of features ex-
tracted by pre-defined procedures developed by domain experts. Such so-called fea-
ture engineering is considered to be notoriously difficult, and has been mostly replaced
over recent years by a data-driven representation learning approach via deep learning. In
contrast, deep learning is able to jointly learn the transformation of raw input data and
the predictive model, thus shifting the efforts of manual feature engineering to the ef-
forts of building better machine learning models, e.g., by injecting certain forms of
inductive biases into the model to let it learn better and more generalizable represen-
tations. Thus, a natural question to ask is how we can develop and extend deep neural
networks to be able to learn from structured but highly irregular data, as given in the
form of graphs. Due to the recent successes of deep learning in areas such as com-
puter vision (LeCun et al., 1998; Krizhevsky et al., 2012; He et al., 2016) or natural lan-
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2 CHAPTER 1. INTRODUCTION
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(b) Drug Discovery () Reasoning in KGs

(d) Graph Matching (e) Motion Capture (f) Combinatorial Optimization

Figure 1.1: Exemplary applications for machine learning on graphs (Morris et al.,
2021b), such as (a) recommendation and fake news detection in social
networks (Easley & Kleinberg, 2010), (b) drug discovery via molecular
graph property prediction (Gilmer et al., 2017), protein folding (Jumper
etal.,2021), (c¢) completing and reasoning in knowledge graphs (Hu et al.,
2021b), (d) keypoint matching and network alignment (Yan ef al., 2016),
(e) scene graph and motion capture understanding (Agarwal & Mangal,
2020; Chang et al., 2021), and (f) data-driven combinatorial optimization,
e.g., for routing (Cappart et al., 2021).

guage processing (Hochreiter & Schmidhuber, 1997; Bengio et al., 2010; Vaswani et al.,
2017), such graph-based neural networks have the potential to significantly advance
the state-of-the-art for a wide range of applications (cf. Figure 1.1), e.g., in recommen-
dation, drug discovery and protein folding, completing and reasoning in knowledge
graphs, graph matching, scene and motion capture understanding, or combinatorial
optimization. Irrespective of their broad range of applications, the injection of struc-
tural and compositional inductive biases into deep learning models ultimately man-
ifests our understanding of a structured world, potentially leading to a much more
general and powerful kind of artificial intelligence.

Despite their rich potential, the application of neural networks to graph-structured
data also brings new challenges, in particular due to their underlying complex and
rich topological structure, such as in the form of varying node degrees, arbitrary sizes
or in the absence of fixed node orderings and reference points. As most building
blocks in neural networks take fixed structure for granted (in particular due to the in-
herent grid-like nature of GPU processing), extending and generalizing their concepts
to arbitrary structured data is difficult, both theoretically and implementation-wise.

Recently, a universal class of neural networks emerged that can seamlessly operate
on graph-structured data, summarized under the umbrella term Graph Neural Net-
works (GNNs) (Hamilton, 2020). In its essence, GNNs capture both graph structure
and feature information in a trainable fashion by following a differentiable neural mes-
sage passing scheme (Gilmer et al., 2017). In this thesis, we build upon this general
framework of GNNSs, analyze their capabilities, and design advanced structural and
compositional inductive biases to boost their performances in general as well as in
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task-specific applications. In light of the Collaborative Research Center SFB 876! —
Providing Information by Resource-Constrained Analysis — this thesis, in particular, ar-
gues for the design of efficient and scalable Graph Neural Network architectures and
training strategies to enable their application in resource-constrained environments.

1.2 Research Questions

This thesis is aims to explore the various aspects of deep end-to-end representation
learning on graph-structured data. Due to the ubiquitousness of graphs and its wide
range of applications, we focus on answering the following research questions:

Research Question 1: How can we develop a broadly applicable class of deep neural models
for learning on graph-structured data that inherits from successful principles of traditional
neural network building blocks?

Most of the breakthroughs in deep learning are due to the properties of Convolutional
Neural Networks (CNNs) (LeCun et al., 1998), i.e. local connectivity, weight sharing
and shift invariance. Since those layers are defined on inputs with a grid-like struc-
ture, they are not trivially portable to non-Euclidean domains like graphs or discrete
manifolds. Notably, message passing GNNs utilize highly similar concepts of the con-
volution operator, but can be applied to much more irregularly structured domains.
However, in comparison to CNNs, commonly utilized GNN operators are also more
restrictive in learning meaningful geometric patterns (Huszar, 2016). This observa-
tion gives natural rise to the question on how we can model a general class of GNNs
that can incorporate anisotropy in the form of directional descriptors, while effectively
resembling the traditional definition of CNNs for discrete input data.

Research Question 2: What are the limitations and inherent weaknesses of Graph Neural
Networks and how can we overcome them both theoretically and in practice?

While GNN s are a popular tool for feature aggregation across all kinds of structured
data, it is unclear how well they are actually doing in reasoning about and encoding
structural properties of the underlying graph. Ideally, a maximally powerful GNN is
able to map isomorphic graphs to the same representation in the embedding space,
while it maps non-isomorphic ones to different representations (Xu et al., 2019¢c). Such
an ability, however, requires a GNN to solve the challenging graph isomorphism prob-
lem (Biggs et al., 1986), which directly implies that there exists an upper bound for a
GNN's representational power.

Furthermore, we are interested in how to overcome inherent weaknesses of GNNs by
designing task-specific methods and injecting domain knowledge, i.e. mitigating over-
smoothing effects in deep GNNs (Lief al., 2018a), reasoning about higher-order graph
structures such as cycles (Klicpera et al., 2020b), or distributing global positional node
information (You et al., 2019).

Research Question 3: How can we scale Graph Neural Networks to giant input domains,
in particular, without compromising their theoretical properties?

A major challenge of GNNS is the difficulty to scale them to large graphs. In partic-
ular, there exists a high inter-dependency between nodes that grows exponentially

ISFB 876: https://stb876.tu-dortmund.de (last access: August 25, 2022)
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with respect to the number of layers, since the embedding of a given node depends
recursively on all its neighbor’s embeddings (Frasca et al., 2020). As a result, scala-
bility techniques are indispensable for applying GNNs to large-scale graphs. How-
ever, existing approaches based on graph sub-sampling or non-trainable propagations
weaken the expressive power of message passing in reasoning about structural graph
properties at scale (Wu et al., 2019a). Thus, a natural question to ask is how we can
enable GNNSs to learn structural graph properties while still being able to apply them
to large-scale graphs.

Research Question 4: How can we practically implement Graph Neural Networks in a si-
multaneously flexible and efficient way, and enable scalable, robust and reproducible graph
machine learning research?

With the rise of GNNs as a state-of-the-art technique for Graph Representation Learn-
ing, there exists an urgent demand in both flexible and powerful libraries for accel-
erating research and putting existing models into production. Notably, meeting both
requirements is challenging, as high GPU throughput needs to be achieved on highly
sparse and irregular data of varying size across a wide range of different model im-
plementations. Furthermore, modern deep learning software libraries are heavily de-
signed with regular structures and dense tensor computation in mind (Paszke et al.,
2019), which makes the efficient realization of GNNs even more challenging.

Lastly, most of the frequently-used datasets to evaluate the performance of graph ma-
chine learning models are extremely small compared to graphs found in real appli-
cations, leading to unstable and nearly statistically identical performance across dif-
ferent models (Shchur et al., 2018). Since historically, high-quality and large-scale
datasets have played significant roles in advancing machine learning research, we ask
what is needed to facilitate scalable, robust, and reproducible Graph Representation
Learning research.

1.3 Main Contributions

This thesis is based on several main contributions with the high-level goal to address
and answer the aforementioned research questions. An overview of all the different
main contributions is illustrated in Figure 1.2.

We introduce the unified framework of message passing GNNs and demonstrate its
generality for a wide range of operators and learning tasks. In particular, we show
that GNNs utilize and generalize key concepts such as locality or weight sharing
that are well-known from successful building blocks of traditional neural networks
(Research Question 1). Furthermore, we introduce the SplineCNN model in which
message passing is conditioned based on a continuous B-spline kernel formulation
(Fey et al., 2018). SplineCNNs improve upon earlier work by endowing GNNs with
an anisotropic aggregation scheme, which is able to resemble the traditional definition
of CNN:ss for discrete input data (Research Question 1). Furthermore, SplineCNNs
can be utilized in a variety of diverse domains, such as for learning on graphs, super-
pixels, point clouds and manifolds.

We analyze the representational power of GNNs from a theoretical point of view by
relating them to the Weisfeiler-Lehman (WL) graph isomorphism heuristic (Morris
et al., 2019, 2021a). We show that GNNs have at most the same expressiveness as the
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Figure 1.2: Illustrative overview of the main contributions of this thesis, sitting at
the intersection of machine learning with graphs and deep learning.

WL test in terms of distinguishing non-isomorphic (sub-)graphs, and therefore obey
the same shortcomings (Research Question 2). Based on these findings, we propose
a generalization of GNNSs, the so-called k-dimensional GNNs (k-GNNs), which can
take higher-order graph structures at multiple scales into account, leading to provably
more powerful Graph Neural Networks.

We identify additional inherent shortcomings of GNNs and show how to overcome
them in practice (Research Question 2). In order to mitigate the problem of over-
smoothing in deep GNNs, we propose the Dynamic Neighborhood Aggregation (DNA)
procedure that allows for a selective and node-adaptive aggregation of neighbors of
potentially differing locality, guided by attention (Fey, 2019). To allow for more ex-
pressive Graph Neural Networks in molecular learning, we propose the Hierarchical
Inter-Message Passing (HIMP) model that is able to exchange information between dif-
ferent higher-order substructures in molecules, e.g., between rings or bonds (Fey et al.,
2020b). Furthermore, we present a two-stage neural architecture for the task of graph
matching, in which we learn to refine structural correspondences between nodes in
different graphs. Our Deep Graph Matching Consensus (DGMC) model aims to reach a
matching consensus in local neighborhoods by sparsely distributing global positional
encodings (Fey et al., 2020a).

We propose a general framework named GNNAutoScale (GAS) that is able to scale
arbitrary message passing GNNSs to giant graphs (Fey et al., 2021). GAS prunes entire
sub-trees of the computation graph by utilizing historical embeddings acquired in
prior training iterations, leading to constant GPU memory consumption w.r.t. input
node size. While prior scalability solutions weaken the expressive power of message
passing due to sub-sampling of edges or non-trainable propagations, GAS is provably
able to maintain the expressive power of the original GNN (Research Question 3).
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We develop the PyTorch Geometric (PyG) library (Fey & Lenssen, 2019), a library for ac-
celerating deep learning research on irregularly structured input data such as graphs,
point clouds and manifolds, built upon PyTorch (Paszke et al., 2019). PyG achieves
high data throughput by leveraging sparse GPU acceleration and dedicated CUDA
kernels, while being both easy and flexible to-use via a general message passing in-
terface (Research Question 4). All our findings as well as related research are con-
densed into the PyG library in order to make state-of-the-art graph-based deep learn-
ing architectures broadly applicable. Furthermore, our PyG extension, PyGAS, al-
lows to convert common and custom GNN models from PyG into a scalable, fast and
memory-efficient variant (Fey et al., 2021).

We introduce the Open Graph Benchmark (OGB) suite that bundles diverse, challeng-
ing and realistic graph benchmark datasets (Hu et al., 2020a, 2021b). In contrast to
prior frequently-used graph datasets, OGB datasets are orders of magnitude larger
than existing ones, encompass multiple important graph machine learning tasks, and
cover a diverse range of domains. We show that our datasets present significant chal-
lenges of scalability and out-of-distribution generalization under realistic data splits,
indicating fruitful opportunities for future research (Research Question 4).

1.4 Organization

We start by introducing several background topics in Chapter 2, which will serve as a
basis for the material presented in the rest of this thesis.

Afterwards, this thesis is structured into four main chapters, which are additionally
highlighted in Figure 1.2: Chapter 3 — Representation Learning on Graphs via Neural
Message Passing — will introduce the overarching topic of this thesis. Here, we will
study the central concepts of applying deep learning principles to graph-structured
and highly irregular input data, such as equivariance and locality, leading to the com-
mon definition of Graph Neural Networks via a neural message passing formulation
(Section 3.2). Further, we relate the concepts of GNNs to well-known deep learn-
ing techniques and graph isomorphism heuristics, namely CNNs (Section 3.3) and
the WL heuristic (Section 3.4), respectively. Based on these findings, Chapter 4 —
Task-Specific Design of Graph Neural Networks — will explore the design of graph-based
neural architectures that are suitable for learning on specific tasks or domains, leading
to provably more powerful architectures that are able to overcome the inherent weak-
nesses of GNNSs, such as over-smoothing (Section 4.2), expressivity (Section 4.3) and
locality (Section 4.4). Furthermore, Chapter 5 — Scalable Graph Neural Networks for
Large-Scale Graph Learning — will study the issues of training GNNs on larger scale,
and will explore advanced techniques to overcome this problem (Section 5.3). In or-
der to facilitate GNIN benchmarking and evaluation on larger scale and to advance re-
search, we will further introduce a set of diverse, realistic and large-scale benchmark
datasets (Section 5.4). Finally, Chapter 6 — Efficient Realization of Graph Neural Net-
works — unifies the aforementioned topics and studies how Graph Neural Networks
can be implemented flexibly and trained efficiently, leading to a general framework
for realizing deep learning on graph-structured data (Section 6.3) and its extension
for learning on graphs of larger scale (Section 6.4).

After presenting the main body of our work, we will conclude and outline interesting
directions for future work in Chapter 7.
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1.5 List of Publications

This thesis is based on research initially published by the author in a set of peer-
reviewed publications. In the following, we list each publication and its original ap-
pearance, and outline the authors’ contribution to the respective works. For this, we
briefly divide the set of contributions into concept/idea finding, realization, evalua-
tion and writing:

e Matthias Fey*, Jan Eric Lenssen*, Frank Weichert and Heinrich Miiller (2018).
“SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels.”
In: Computer Vision and Pattern Recognition (CVPR), cf. Chapter 3 (*equal contri-
bution).

Contribution: The author contributed significantly to concept, realization and
evaluation, and assisted in writing.

e Matthias Fey and Jan Eric Lenssen (2019). “Fast Graph Representation Learn-
ing with PyTorch Geometric.” In: ICLR Workshop on Representation Learning on
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2

Foundations of Graphs and
Machine Learning

This chapter establishes notions and definitions, and provides a brief introduction
to several background topics used throughout this thesis. In particular, we formal-
ize graph theory notation in Section 2.1, review graph machine learning techniques
in Section 2.2, and introduce the concepts of deep neural networks in Section 2.3. A
more detailed overview of the state-of-the-art on the various research topics of this
thesis can be found in the individual main chapters.

21 GraphTheory . .. ... ... .. .. .. .. .. .. 9
2.2 GraphMachine Learning . . . . .. .......... ... ... ..... 10
23 Deep Neural Networks . . . .. ...... ... ... ... ... ..... 13

2.1 Graph Theory

Agraph G = (V, ) is defined by a finite nodeset V = {1,... N}, |[V| = N < oo, and a set
of edges £ C V xV, defining the relations among its nodes. We say that G is undirected in
case it holds that (w, v) € & for every (v, w) € €. Otherwise, we call G a directed graph.
A self-loop denotes an edge connecting a node with itself, i.e. (v,v) € £. For a node
v €V, its neighborhood set is denoted by its in-going edges N'(v) = {w : (w,v) € £}
The node degree of v € V is given by [N (v)|. For a subset of nodes B C V, G[B] refers
to its induced subgraph, in which only nodes in B and edges among nodes in B are
maintained, i.e. £[B] = £ N (B x B) (Biggs et al., 1986).

A graph G induces an adjacency matrix A € {0, I}MXW' such that A, ,, = 1 in case
(v,w) € € and A, ,, = 0 otherwise. Importantly, the adjacency matrix A is treated
sparsely such that only non-zero elements are maintained. As most real-world graphs
are sparse by nature (i.e. nodes only connect to a small fraction of other nodes), this
reduces both storage and computation overheads by a wide margin.

9
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Two graphs Gi = (V1,&1) and Gy = (Vs, &) are isomorphic or topologically identical
in case they only differ by permutation, i.e. there exists an edge preserving bijection
m: Vi — Vy such that (v,w) € & if and only if (7(v), 7(w)) € &. Checking whether
two graphs are isomorphic is a challenging problem, and no polynomial-time algo-
rithm is known for it yet (Garey, 1979; Garey & Johnson, 2002; Babai, 2016). Apart
from some corner cases (Arvind et al., 2015), the Weisfeiler-Lehman (WL) algorithm
(Weisfeiler & Lehman, 1968) is an effective and computationally efficient heuristic to
solve the graph isomorphism test for a broad class of graphs, cf. Section 3.4.1.

We further allow the attachment of node-level and edge-level feature vectors to a given
graph G, ie. x:V — R and e : £ — RP represent important characteristics of nodes
and edges, respectively. Feature vectors of all the nodes and edges can be compactly
stored in feature matrices X € RVI*F and E € RI€/XD respectively. We refer to X ;
as the feature map or feature channel at position 1 < ¢ < F. For edge-level features, we
abuse notation and allow indexing via e, ,, if (v, w) € £.

In order to comprehensively characterize real-world applications, graphs may further
incorporate multiple node and edge types, leading to heterogeneous graph informa-
tion. A heterogeneous graph G = (V, €, Ty, Te) holds additional node type and edge type
mapping functions 7y : V — Xy and Tg : £ — X, respectively. The terms edge type
and relation are used interchangeably throughout this thesis. Note that heterogeneous
graphs resemble the classical definition of graphs in case |[Zy| = 1 and |Xg| = 1. Im-
portantly, feature distributions may vary across different node and edge types, lead-
ing to feature vectors of potentially varying dimensionalities, i.e. node-level feature
x, € RFUV(") and edge-level feature e, ,, € RP(72((*:))) dimensionalities depend
on the given type. We refer to the typed neighborhood set of v € V and edge typer € ¥
as N, (v) = {w: (w,v) € EATe((w,v)) =r} (Zhu et al., 2019b).

2.2 Graph Machine Learning

Machine learning on complex networks has become an integral part of research in
both natural and social sciences. In order to learn on such graph-structured data, ma-
chine learning algorithms need to, in particular, exploit its rich structural properties.

In this thesis, we are mostly interested in the task of supervised graph machine learn-
ing, in which either

e each node v € V is associated with a label y,, and the goal is to obtain a repre-
sentation h,, from which y, can be easily predicted (node-level prediction),

e each pair (v,w) € V x V is associated with the existence of a link (i.e. (v,w) € €
or (v,w) ¢ &), and the goal is to obtain representations h, and h,, from which
the existence of a link can be easily predicted (edge-level prediction), or

e eachgraph§ € {G, ..., Gy} is associated with alabel y, and the goal is to obtain
a representation hg from which y can be easily predicted (graph-level prediction).

Importantly, the vectorial representations h, or hg should be able to preserve struc-
tural graph information, either in a local or global fashion, respectively. Representa-
tions can also be obtained in an unsupervised learning scenario, and eventually used
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Graph Machine Learning

Unsupervised

Graph Kernels Message Passing Shallow Embeddings Message Passing
graph-level node/edge/graph-level node/edge-level node/edge/graph-level
inductive transductive/inductive transductive transductive /inductive
Random walk GCN DeepWalk GAE
(Gértner et al., 2003) (Kipf & Welling, 2017) (Perozzi et al., 2014) (Kipf & Welling, 2016)
Shortest path SplineCNN Node2Vec Graphite
(Borgwardt & Kriegel, 2005) (Fey et al., 2018) (Grover & Leskovec, 2016) (Grover et al., 2019)
Subgraph pattern DNA LINE DGI
(Shervashidze et al., 2009) (Fey, 2019) (Tang et al., 2015) (Velickovic et al., 2019)
Weisfeiler-Lehman HIMP HARP Pre-Training
(Shervashidze et al., 2011) (Fey et al., 2020b) (Chen et al., 2018a) (Hu et al., 2020b)

Figure 2.1: Taxonomy of graph machine learning models. We broadly categorize
graph machine learning approaches into four categories: graph kernels
(supervised learning), shallow node embedding techniques (unsupervised
learning), and message passing Graph Neural Networks (supervised learn-
ing and unsupervised learning). Notably, message passing GNNs, which
builds the focus of this thesis, excel in their flexibility: they can handle
node/edge/graph-level tasks, are applicable to either transductive and in-
ductive learning scenarios, and can be trained both in a supervised and
unsupervised fashion.

for a supervised down-stream task (Velickovi¢ et al., 2019; Hu et al., 2020b). Further-
more, graph machine learning tasks can be further divided into transductive and in-
ductive learning scenarios. In the transductive learning task, we are allowed to obverse
the full data, but only use a small subset of ground-truth labels for supervision. This
is the default learning scenario for obtaining node-level predictions on single graphs.
In the inductive case, the model is restricted to observe data in a given training set,
e.g., a set of graphs, and is then applied to unseen examples afterwards.

This thesis focus on graph machine learning based on deep learning via message
passing Graph Neural Networks. The most dominant approaches for graph machine
learning prior to the deep learning era are known as node embedding techniques (Per-
ozzi et al., 2014; Grover & Leskovec, 2016; Tang et al., 2015; Dong et al., 2017a; Abu-
El-Haija et al., 2018; Chami ef al., 2020) and graph kernels (Kriege et al., 2020). Fig-
ure 2.1 proposes a taxonomy of different graph machine learning models and com-
pares their respective properties, e.g., their application to supervised/unsupervised
tasks, node/edge/graph-level tasks and transductive/inductive tasks. Notably, we
see that alternative graph machine learning approaches are limited to specific tasks
and properties, while message passing Graph Neural Networks (GNNs) do not have
such restrictions.
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Specifically, node embedding techniques rely on embedding nodes into low-dimen-
sional vectorial representations h,, via a shallow embedding lookup table such that the
likelihood of preserving neighborhoods is maximized, i.e. nearby nodes should re-
ceive similar embeddings while distant nodes should receive distinct embeddings
(Perozziet al.,2014). These techniques generalize the famous SkiPGram model for ob-
taining low-dimensional word embeddings (Mikolov et al., 2013), in which sequences
of words are now interpreted as sequences of nodes, e.g., given via randomly-generated
walks. Specifically, given a random walk W = (vx(1), ..., Vx()) of length k starting at
node v € V, the objective is to maximize the likelihood of observing node v, ;) given
node v. This objective can be efficiently trained via stochastic gradient descent in a
contrastive learning scenario

L= —log(o(h b))+ Y. —log(1—o(h)hy)), (2.1)

weW w~V\W

in which “non-existent walks” (so called negative examples) are sampled and trained
jointly, and o denotes the sigmoid function. Alternative formulations mostly differ
in the way random walks are drawn, e.g., Grover & Leskovec (2016) allow flexible
control via biased random walk procedures based on breadth-first or depth-first sam-
plers. Importantly, shallow node embeddings are trained in an unsupervised fashion,
and can eventually be used as input for a given down-stream task, e.g., in node-level
tasks h, can directly be used as input to a final classifier. For edge-level tasks, edge-
level representations can be obtained via averaging 1(h, + h,,) or the Hadamard
product (h, ® h,,). Despite the simplicity of node embedding techniques, they are
also subject to certain shortcomings. In particular, they fail to incorporate rich feature
information attached to nodes and edges, and cannot be trivially applied to unseen
graphs as learnable parameters are fixed to the nodes of a particular graph.

Alternative techniques for learning on graph-structured data are known as graph ker-
nels, which finds their application in graph-level prediction tasks. Graph kernels de-
fine functions that measure the similarity between graphs, plugged into a Support-
Vector Machine (SVM) to obtain graph-level predictions (Kriege et al., 2020). A kernel
maps each pair of examples to a real number that corresponds to an inner product be-
tween two vectors in a (usually high-dimensional) Hilbert space, such that they are
linearly separable (Scholkopf & Smola, 2002; Shawe-Taylor & Cristianini, 2004). Over
the last few years, numerous graph kernels have been proposed, which can be broadly
categorized into neighborhood aggregation approaches, assignment- and matching-
based approaches, subgraph pattern approaches, and walk- or path-based approaches
(Kriege et al., 2020). Ultimately, graph kernels rely on hand-crafted features in or-
der to obtain meaningful similarities between graphs, and are thus subject to manual
feature engineering. For example, random walk kernels count the number of walks
that two graphs have in common (Gértner et al., 2003; Kashima et al., 2003). Short-
est path kernels compare the length of shortest paths between all pairs of nodes in
two graphs (Borgwardt & Kriegel, 2005; Hermansson et al., 2015). Subgraph pattern
kernels ignore the global graph structure altogether and represent graphs as bags of
subgraph patterns or graphlets (Shervashidze et al., 2009). Neighborhood aggrega-
tion kernels obtain node-level labels based on the local structure around them, e.g.,
obtained via the WL algorithm, and define similarities via the graph-level histogram
of node labels (Shervashidze et al., 2011; Morris et al., 2017). Finally, assignment- and
matching-based kernels define a measure of similarity based on the optimal assign-
ment between the nodes in two graphs (Frohlich ef al., 2005), e.g., obtained from the
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WL color refinement procedure (Kriege et al., 2016). As the aforementioned graph
kernels are of discrete nature, recent efforts in graph kernel research aim to integrate
continuous feature information as well (Kriege & Mutzel, 2012; Feragen et al., 2013;
Orsini et al., 2015).

Recently, Graph Neural Networks (GNNs) were proposed as an alternative approach
for machine learning on graphs (Gori et al., 2005b; Scarselli et al., 2009; Li et al., 2016b;
Kipf & Welling, 2017; Gilmer et al., 2017; Battaglia et al., 2018), cf. Chapter 3. In contrast
to the aforementioned methods, GNNs are able to jointly capture local graph struc-
ture and feature information in a trainable and fully end-to-end fashion. They do so
by following a simple yet powerful differentiable neighborhood aggregation scheme,
motivated from two major perspectives: The generalization of classical Convolutional
Neural Networks to irregular domains (Section 3.3), and their strong relations to the
WL algorithm (Section 3.4).

2.3 Deep Neural Networks

The availability of massively parallel co-processors opened the door for training large
models and dramatically changed the way we approach machine learning in general.
The increase in computational capabilities was most noticable in the field of deep learn-
ing. In particular, deep neural networks utilize a data-driven approach that jointly
learn representations and predictions of the data. This has led to major improvements
to the state-of-the-art in the fields of computer vision (LeCun et al., 1998; Krizhevsky
et al., 2012; He et al., 2016) and natural language processing (Vaswani et al., 2017).

In its simplest form, deep neural networks can be described as the composition of para-
. . . ® . . . .
metrized linear functions f,~ and element-wise non-linear transformations o

L L—-1
(L) (L-1)

oogo Uo---oaofé2)oao él), (2.2)
where o denotes function composition (Goodfellow ef al., 2016). Deep neural net-
works act as non-linear function approximators that are able to adapt to a given learn-
ing task by adjusting its parameters 8 and by iteratively computing and learning in-
termediate hidden representations h(“) of the raw input data. The most simple neural
network is the Multi-Layer Perceptron (MLP) (Rosenblatt, 1958), which iteratively ap-
plies the parametrized affine linear transformation

féf)(h(f—l)) = wW®pE-1) 4 b (2.3)

for L layers, where W () and b(*) denote the learnable weight matrix and bias vector
of the (-th layer, respectively. We refer to either = or h(*) as the neural network’s in-

put, and to h(¥) as its hidden feature representation obtained from fée). The Rectified
Linear Unit (ReLU) function o(-) = max(0, -) is the non-linearity function of choice in

most modern MLPs. In order to train neural networks, we obtain the gradients %

and % of the differentiable function fy) via backpropagation (Werbos, 1982), and
minimize the objective function £ via variants of stochastic gradient descent optimiza-
tion, e.g., Apam (Kingma & Ba, 2015). Modern deep learning software frameworks
(Abadi et al., 2015; Paszke et al., 2019) utilize automatic differentiation to automatically
backpropagate gradients without any user intervention.
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Although MLPs are known to be universal approximators (Hornik, 1991; Hornik et al.,
1989), they usually fail to generalize well to unseen high-dimensional input data. As
such, numerous neural network variants have been proposed that inject useful induc-
tive biases into their architectures. These variants mostly differ in their elementary

building blocks féé) and how these building blocks are combined as part of a com-
putation graph, such as in Recurrent Neural Networks (Hochreiter & Schmidhuber,
1997), Convolutional Neural Networks (LeCun et al., 1998) and Transformer Net-
works (Vaswani et al., 2017), cf. Goodfellow et al. (2016). Importantly, modern neural
networks are becoming much more complex and eventually assemble networks of a
vast number of functional building blocks that potentially change dynamically depen-
dent on the input fed to them. As a result, deep neural networks are nowadays more
viewed just as regular programs, except that they are parameterized, automatically
differentiated, and optimizable; a concept framed as differentiable programming. This is
also reflected in the design of message passing Graph Neural Networks (Chapter 3)
and their similarities to the dynamic programming paradigm (Xu et al., 2020).



Representation Learning on Graphs via

Neural Message Passing

Graph Neural Networks capture local graph structure and feature information by
following a differentiable neural message passing scheme. We demonstrate the
generality of message passing through a unified framework suitable for a wide
range of operators and learning tasks. In addition, we propose SplineCNNs which
fit into this message passing scheme by conditioning messages via a continuous B-
spline kernel formulation, while resembling the traditional definition of CNNs for
discrete input. We further relate the representational power of Graph Neural Net-
works to their ability to distinguish non-isomorphic (sub-)graphs, and propose
effective solutions to allow them to reach maximal expressiveness.

31 Introduction . ... ... ... ... .. ... .. 15
3.2 Message Passing Graph Neural Networks . . . ... ........... 16
3.3 Edge-Conditioned Message Passing via B-Spline Kernels . . . . .. .. 29
3.4 Maximally Expressive Graph Neural Networks . . . . .. ... .. ... 36
35 Evaluation . .. ... ..... .. ... .. .. o 45

3.1 Introduction

Traditional graph machine learning (Ma & Tang, 2020; Hamilton, 2020) relies on fea-
ture engineering techniques in the form of hand-designed graph statistics in order to
obtain a vectorial graph representation suitable for a given down-stream task, cf. Sec-
tion 2.2. However, the process of manual feature engineering is considered to be no-
toriously difficult, as it requires an immense amount of human efforts, and leads to
solving the problem based on trial and error. After all, manual feature engineering
might even be suboptimal as we often lack the prior knowledge about the essential
features for a given task. Furthermore, graphs may come in many different forms,

15
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sometimes even allowing for multiple types of nodes or edges, which makes iden-
tifying and integrating the essential parts of a graph via engineering efforts rather
challenging (Battaglia et al., 2018).

As a result, over the past few years, there has been made a tremendous amount of
efforts in ultimately learning such a representation of a graph, typically guided by a
application-specific down-stream task (Defferrard et al., 2016; Kipf & Welling, 2016;
Hamilton et al., 2017; Velickovi¢ et al., 2018). In particular, deep learning has been
proven to be a powerful tool for representation learning that led to significant ad-
vancements in domains such as computer vision, speech recognition and natural lan-
guage processing (LeCun ef al., 1998; Hochreiter & Schmidhuber, 1997; He et al., 2016;
Vaswani ef al., 2017). However, the primary challenge in developing complex neural
building blocks for graph-structured data is that our conventional deep learning ar-
chitectures do not apply, as traditional deep learning approaches have been designed
with regular structured data in mind, such as images and sequences. In contrast,
graphs are highly irregular structures, with nodes in a graph being unordered and
having distinct and varying sized neighborhoods. Furthermore, nodes in a graph
are inherently connected, leading to inter-dependency of data, whereas traditional
machine learning techniques often assume that data is independent and identically
distributed.

In this chapter, we will systematically introduce the Graph Neural Network (GNN)) for-
malism (Gilmer et al., 2017) — a general framework for defining deep neural networks
on graphs based upon a neural message passing scheme (Section 3.2). The key idea of
GNN s is that they learn representations of nodes in a graph that actually depend
on the structure of the graph as well as any feature information attached to it. We
start to derive the GNN formalism from the principles of designing invariant and
equivariant function approximators. Notably, they can also be seen as a more general
class of Convolutional Neural Networks (CNNs) (LeCun ef al., 1998), as GNNs are
subject to well-known principles of traditional deep learning techniques, e.g., locality
and weight sharing. In particular, this observation leads to the development of our
specialized anisotropic Graph Neural Network instantiation called Spline-Based Con-
volutional Neural Network (SplineCNN)). SplineCNNSs are introduced in Section 3.3 and
Fey et al. (2018). Notably, they resemble the traditional definition of CNNs for discrete
input data, while directly being applicable on more diverse and general domains as
well, e.g., for learning on either simple or embedded graphs, reaching state-of-the-art
performance on all of these tasks. Furthermore, we motivate Graph Neural Networks
from a graph theoretical point of view by relating them to well-known graph isomor-
phism approximators. Specifically, in Section 3.4, we study the expressive power of
Graph Neural Networks by relating them to the Weisfeiler-Lehman (WL) graph iso-
morphism heuristic (Weisfeiler & Lehman, 1968), and propose effective solutions to
allow them to reach maximal expressiveness.

3.2 Message Passing Graph Neural Networks

We start by introducing the unified framework of message passing GNNs and demon-
strate its generality for a wide range of operators and learning tasks. In particular, we
show that GNNs utilize and generalize key concepts such as locality or weight sharing
that are well-known from successful building blocks of traditional neural networks.
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Figure 3.1: An equivariant function f: X — Y commutes with respect to transforma-
tions Té') for all elements g of a certain group G.

3.2.1 Permutation Invariant and Equivariant Neural Networks

The concepts of invariance and equivariance play a crucial role in designing power-
ful neural building blocks. Invariance and equivariance are typically motivated by
the intuition that incorporating task-relevant symmetries increases sample efficiency
and provides generalization benefits, since a model without said symmetries baked-in
will need to learn to ignore such spurious transformations (Cohen & Welling, 2016).
Instead of relying on heavy data augmentations to let neural networks learn to be
independent of transformations of a certain type, baked-in constraints of invariance
or equivariance let models utilize these symmetries by design. We briefly recap their
definitions and recent applications before we derive powerful graph-based neural net-
works from those concepts:

Let TgX : X — X be a set of transformations on X for an element g of the abstract
group G. A function f: X — Y is said to be invariant to G if (Satorras et al., 2021)

f(TgX(.T)) = f(x) forall geGandz € X. (3.1)

As such, invariance refers to the independence of outcome w.r.t. to any transforma-
tions T;;* of a certain type. Similarly, we can define the concept of equivariance.

A function f: X — Y is said to be equivariant to G if there exists an transformation
Tgy Y= YVto TgX on its output space such that

f(TgX(x)) = Tgy(f(x)) forall geGandxz e X, (3.2)

i.e. the diagram given in Figure 3.1 has to commute (Satorras ef al., 2021). Informally,
the mapping f is equivariant if first transforming the input and then applying the
function f on it will deliver the same result as first running the function f and then
applying a transformation on its output.

Note that T;¥ and T do not necessarily need to be the same. Specifically, invari-
ant functions are a special case of equivariant functions where T is set to be the
identity transformation (Cohen & Welling, 2016; Satorras et al., 2021). Furthermore, a
function composition of equivariant functions preserves the property of equivariance,
ie. g(f(T;¥(x))) = T7(9(f(x))) for any composable equivariant functions f: X — Y
and g: ) — Z. Practically, equivariance aims to preserve transformations and can
be realized in many different ways, such as (Satorras et al., 2021; Maron et al., 2019b;
Keriven & Peyré, 2019):

e Translation equivariance: Translating the input results in an equivalent trans-
lation of the output, i.e. f(x + g) = f(x) + g for all elements g of the translation
group (R, +).
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e Rotation equivariance: Rotating the input results in an equivalent rotation of
the output, e.g. f(Mz) = M f(x) for all elements M of the 3-dimensional rota-
tion group SO(3) (the set of 3 x 3 orthogonal matrices with determinant 1).

e Permutation equivariance: Permuting the input results in an equivalent permu-
tation of the output, i.e. f(wox) = 7o f(x) for all elements 7 of the symmetric
group Sy, i.e. the set of all N! possible bijections from {1,..., N} to itself, with
™o [X1,T2,.. ., TN] = [Tr(1), Tr(2), - - - » Tn(n))- Note that there exists alternative
formulations for representing elements of the symmetric group Sy . For exam-
ple, any permutation w € Sy can also be described by its corresponding permu-
tation matrix P € {0,1}"*" with P, ; = lonlyif n(i) = j Vi € [N]. Utilizing
this notation, permutation equivariance is defined as f(Px) = P(f(x)).

Convolutional Neural Networks (CNNs) (LeCun ef al., 1998) are a designated class
of translation equivariant neural networks, since, intuitively, patterns of objects are
interesting irrespective of where they are located in an image. Recent efforts en-
hance CNNs by allowing them to be equivariant to a wider range of symmetries
(e.g., w.r.t. rotation and reflection), known as Group Equivariant Convolutional Net-
works (GECNSs) (Cohen & Welling, 2016), leading to improved performance on real-
world applications such as digital pathology segmentation (Veeling et al., 2018).

For operating on graph-structured data G = (V, £) we are particularly seeking for in-
variance and equivariance w.r.t. permutations, since nodes of a graph are typically not
assumed to be given in any meaningful order (Satorras et al., 2021; Maron et al., 2019b;
Keriven & Peyré, 2019). Specifically, two graphs are considered to be the same in case
they only differ by permutation of nodes, a concept known as graph isomorphism,
cf. Section 2.1. Naturally, we expect our neural network building blocks to preserve
such isomorphisms, i.e. f(G1) = f(Gz2) or w o f(G1) = f(G2) for any two isomorphic
graphs G; and Gy with G; = wo Gy, ™ € Sn.

For the following explanation, we assume that the graph G does not contain any
edges, i.e. £ = (), which leads to the simplified setting of learning over a set of nodes

V = {v1,v2,...,un}. Here, we additionally associate each node v; € V with a F-
dimensional feature vector &; € R¥. The union of node features can then either be
represented as a multiset X = {x1,x9,...,xzn ]} (allowing potential duplicates) or
as a node feature matrix X = [@1,...,xy] € RV*F. In order to derive any per-

mutation invariant set function, i.e. f(PX) = f(X), we can decompose f into the

form N
f(X)=p (Z q(ﬂ?)) or f(X)=p (Z q(ﬂ%)) , (3.3)

rzeX i=1

as proposed in the DeepSet model (Zaheer et al., 2017). Here, ¢(-) operates locally
over each element in the set, after which all elements are globally aggregated or pooled
into a single representation before finally transformed via p(-). As shown in Zaheer
et al. (2017), this decomposition is in fact known to be universal!, i.e. every permuta-
tion invariant function f operating on sets can be represented by this decomposition.
Training such a permutation invariant set function can be achieved by parametrizing
both p and g, i.e. pg and gg, typically done by realizing them as two separate Multi-
Layer Perceptrons (MLPs) (Zaheer et al., 2017). Notably, permutation invariance is

1Universality generally holds for countable sets and uncountable sets of fixed size.
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achieved via the usage of the permutation invariant summation operator, however,
other options are applicable as well as long as they are differentiable, e.g., taking the
mean or maximum over a multiset of node features (although universality will no
longer hold, cf. Section 3.4.2). For example, Qi et al. (2017a) propose to use fo(X) =
po(maxgcx go(x)) for learning on unordered point clouds X = {1, z2,...,zn},
xT; € R3.

The aforementioned decomposition is a powerful blueprint for obtaining permuta-
tion invariant set-level outputs. However, it is not applicable for obtaining permu-
tation equivariant node-level outputs, i.e. f(PX) = P f(X), due to the aggregation
of element-wise representations into a global representation. Therefore, without as-
suming or inferring any additional structure, equivariance dictates that each node’s
features need to be transformed in isolation, i.e. f(x;) = go(x;), discarding any infor-
mation outside the current element under consideration.

3.2.2 A Recipe for Graph Neural Networks

Building upon the principles of learning on unordered sets in Section 3.2.1, we now
consider the case of learning on graphs G with non-empty edge sets, i.e. £ # (), and
derive a powerful recipe for defining equivariant Graph Neural Networks, framed as
neural message passing (Gilmer et al., 2017). By considering non-empty edge sets &,
our developed model will be able to exploit structural and feature-based information
between distinct elements of V. In particular, the edge (v,w) € £ denotes a rela-
tionship between two nodes v, w € V which can be utilized in order to derive more
accurate predictions. Considering such underlying structural properties in our neural
network is typically referred to as injecting a relational bias into our function approxi-
mator (Battaglia ef al., 2018).

Let once again each node v € V be associated with a multi-dimensional feature repre-
sentation ¢, € R. Our Graph Neural Network model fo(X, A) operates on both
stacked node features X € RIVI*XF as well as (sparse) adjacency matrix informa-
tion A = {0, 1}M “M induced by G, and generates a set of output node embeddings
Z € RVIXF' We will examine how to handle more sophisticated graph represen-

tations (such as additional edge features) in Section 3.3. In particular, we require
fo(X, A) to be permutation equivariant, i.e.

Pfy(X,A) = fo(PX,PAP") forall P c Sy. (3.4)

Here, PAPT permutes both rows and columns of A according to P simultaneously,
ie. (PAP) i = Az (i),x(j), which is a spurious transformation that does not change
the actual topology of G.

The concrete recipe of message passing Graph Neural Networks can be derived from
the DeepSet model (Zaheer et al., 2017) in which the data information flow is further
constrained to operate in a purely local fashion, exploiting the local sub-structure in-
formation around each node in G, cf. Figure 3.2. Specifically, to guarantee permutation
equivariance, fg is applied node-wise according to

fo(xy, {xw : w € N(v)}) = UppATEg (wv, @ MEssaGEg (., ZBv)), (3.5)
weN (v)
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Figure 3.2: Illustration of the neural message passing scheme. For a given node I,
its neighbors M craft individual messages based on their representations
(as indicated by the bar charts), which get then passed along their edges
to the target node . Finally, aggregated messages are used to derive a
new target node representation

decomposed into a MEessaGeg function, an aggregative function €, and an UprpATEg
function (Hamilton, 2020).2 Here, neural message passing refers to the process of
exchanging information between nearby nodes, as each neighbor crafts an individ-
ual message that gets passed along its edge. In particular, MessaGeg and UpPpATEg de-
note arbitrary differentiable and parametrized functions, i.e. neural networks, and
€ defines how the information of each neighbor (as given by MessaGeg) is aggre-
gated into a vectorial representation myr) = @, N (o) MEssaGEg (., «,,). Finally,
UPDATEg (., M zr(v)) Tefines the node’s representation x,, based on m (... For learn-
ing meaningful patterns in the graph, the message passing functions need to be train-
able and differentiable, but each node utilizes the same function for updating its rep-
resentations, i.e. the set of parameters is shared across across all data. This does not
only lead to faster convergence, but also allows the model to be applicable to unseen
nodes or graphs as well, cf. Section 3.2.3.

It is easy to see that fg is permutation equivariant by design as long as P defines a
permutation-invariant aggregative function. However, while fq is permutation equiv-
ariant, the aggregation of messages is constrained to be invariant w.r.t. the ordering of
the underlying multiset of neighborhood features {x,, € w € N'(v)}. Notably, there
exists numerous works (Murphy et al., 2019a,b; Maron et al., 2019b; de Haan et al.,
2020; Satorras et al., 2021) that allow for obtaining less constrained set-level represen-
tations during neighborhood aggregation. However, they are not the main focus of
this dissertation.

In a Graph Neural Network, message passing operators fy are typically stacked and
enhanced by non-linear activation functions, cf. Figure 3.3, just like in a conventional
deep neural network, i.e.

RO = 57 (RY {RGTD  w e N(0) ) (3.6)

with £ € {1,...,L} and L denoting the number of layers. We set hE,O) = z,. Here,
at each iteration, every node aggregates the current information from its local neigh-
borhood. By recursively applying this scheme, the embeddings of a node from sub-
sequent layers contain more and more information from farther nodes in the graph.
For example, in the first layer (¢ = 1), the message passing phase will enrich the fea-
ture representation of each node by the features of its immediate neighbors. After the

2Messack and UPDATE are common notations in literature (Hamilton, 2020).
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Figure 3.3: A Graph Neural Network model architecture. Message passing opera-
tors are stacked and enhanced by non-linear activation functions to obtain

a final embedding hSJL) for all nodes v € V that encodes structural and
feature information of its L-hop neighborhood.

second layer (¢ = 2), each node embedding will therefore contain information about
its 2-hop neighborhood. In general, a node has aggregated its L-hop structural and
feature information after exactly L layers. The final node representation h{" can then
be trained and utilized for a given down-stream task in an end-to-end fashion.

3.2.3 (Un)supervised Deep Learning on Graphs

Graph Neural Networks, as described in Section 3.2.2, can be viewed as a process of
learning node representations by embedding their individual local L-hop subgraphs.
These representations can be either learned via end-to-end (semi-)supervised or un-
supervised training (Kipf & Welling, 2017), and are useful for a variety of tasks. For
node-level tasks, such as node classification, the output embeddings produced by a
GNN can directly be used for deriving node-level predictions. For other tasks, such
as graph-level or edge-level predictions, representation learning of node features is
typically implemented as an intermediate step.

3.2.3.1 (Semi-)Supervised Node Classification. The task of (semi-)supervised node
classification is one of the most popular applications for GNNs (Kipf & Welling, 2017;
Veli¢kovi¢ et al., 2018; Wu et al., 2019a; Chen et al., 2020b), e.g., classifying academic
papers in citation networks (Sen et al., 2008; Yang et al., 2016) or predicting product
categories in co-purchase graphs (Hu et al., 2020a). Here, each node v € V is asso-
ciated with a label y,, and the goal is to learn a representation h,(JL) from which ,
can be easily predicted, i.e. $¢(G,v) = ¢e(hv(1L)) = y,, where ¢g denotes the machine
learning model and 1) represents a final classifier. Typically, the classifier v is either
omitted (utilizing hi" directly as predictions) or modeled as an MLP, such that ¢g
denotes an end-to-end deep neural network pipeline. Algorithm 1 presents the gen-
eral blueprint for training a GNNs for (semi-)supervised node classification tasks, in
which node embeddings are first learned through a GNN (line 1) and inputted into
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Algorithm 1 GNN: Node Classification Training

Require: Graph G = (V, £), Node features X, Training labels Viain

1 {rY, R, R+ GNNG (X, 6)
L
2 L+ —lv:aml 3 —1og1/)9(hg >)yv

v train

3: Update model parameters 8 of GNNg and g w.r.t. 9£/00

a classifier (line 2). Model training is then be performed via negative log-likelihood
(line 2), back-propagation and gradient descent (line 3).

One typically distinguishes between transductive and inductive node property predic-
tion tasks, resulting in a semi-supervised or supervised training scenario, respectively
(Hamilton, 2020). In the transductive learning task, we are only given a small sub-
set of labeled ground-truth nodes as training data Viin € V, while we utilize the full
graph for learning meaningful node representations, i.e. unlabeled nodes are not used
during loss computation, but are still involved in the GNN’s message passing phases.
In the inductive case, the model does not observe any data outside the given training
set. This typically represents the case in which a model is trained in a fully-supervised

manner, and then applied to unseen examples afterwards.

It is of further importance to see that the training procedure given in Algorithm 1
operates on the complete graph in a full-batch fashion, i.e. it computes node embeddings

{{th), th), cee hg\f) B of all nodes v € V, not just for the nodes Virin involved in the
actual loss computation. While not strictly necessary, this procedure is common in
Graph Neural Network training (Kipf & Welling, 2017). In particular, it allows us
access to all hidden node embeddings in all layers which is necessary to resolve the

h(£+1)

inter-dependencies of node embeddings, i.e. with v € Virain may well depend on

node embedding hsf ) where w & Virain. Since such a computation flow is not feasible
in large-scale graphs due to memory limitations and slow convergence (Ma & Tang,
2020), we will take a closer look at mini-batching techniques for GNNs in Chapter 5.

3.2.3.2 Link Prediction. Link prediction describes the process of finding missing or
future links in an incomplete or ever-evolving graph, which has wide practical ap-
plications, e.g., in providing friend recommendations in social networks (Adamic &
Adar, 2003) or in knowledge graph completion (Nickel et al., 2016). One common
practice for tackling the task of link prediction is to first derive node representations
through a GNN, after which source node and target node representations are aggre-
gated to predict the probability of corresponding link, i.e. $g(G, v, w) = g (hg,L)7 hq(UL))
(Kipf & Welling, 2016; Zhang & Chen, 2018; Zhang et al., 2020a). Here, the final pre-
dictor 1)g is typically represented as an MLP operating on the concatenated node rep-
resentations, i.e. wg(hS,L), hE(,L)) = MLP(] 0, hEUL)]) € [0, 1], where its output denotes
the probability of a link between (v,w) € V x V. In case of operating on an undi-
rected graph G, g can be further constrained to be commutative, e.g., via averaging

(h,(JL) +hP )/2 or element-wise multiplication rP ond (Grover & Leskovec, 2016).
In contrast to the aforementioned node classification task, link prediction is usually

framed as a contrastive learning task (Hamilton, 2020) that learns to distinguish be-
tween positive and negative edges, cf. Algorithm 2. In particular, given a distinct sub-
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Algorithm 2 GNN: Link Prediction Training
Require: Graph G = (V, ), Node features X, Training edges Eirain
1: gtrain ~ (V X V) \ (5 U gtrain)
2 {n RSP Y« GNNg(X,G)
3 L iy S -logte (R, h) + g X —log (1 ve (", REY))

('U,w)egtrain ('Uﬂl))eg_t-rain

4: Update model parameters 8 of GNNg and g w.r.t. 0£/00

set of training edges Eirain NE = 0, our model is trained to separate positive edges Eirain
from negative ones (V x V) \ (€ U Ewain) Via a binary cross entropy formulation

L=3 —logwe(hi” h(Y) + 3 —log (1 - ve(hi"”, h()), (37)
(v,w) EEtain (v, W)~ (VX V)\(EUEkain)

(line 3), in which negative edges are uniformly sampled from the complete set of
negative edges (line 1). It is worth noting that, given the standard machine learning
scenario of hold-out validation and test sets, it might well happen that positive vali-
dation edges and test edges appear as negative samples during training. We are not
allowed to acknowledge their existence during training to prevent any data leakage.
Although this seems to be counter-intuitive at first glance, it is to be expected that
such a noise in the learning signal is negligible.

3.2.3.3 Graph Classification. The task of graph classification refers to predicting the
properties of an entire graph. Specifically, molecular learning is one the most popular
real-world applications for graph classification and used to infer certain properties of a
molecule/molecular graph (Hu et al., 2020a). Here, each graph within a set of graphs
G € {G1,Ga,...} is associated with a label yg, and the goal is to learn a graph-level
representation hg € R from which yg can be easily predicted. Similar to the task of
link prediction, GNNSs are utilized as an intermediate step that first learn meaningful

node representations, i.e. $g(G) = g (READOUT({{h(L h(L }})) = yg (Zhang
et al., 2018; Xu et al., 2019¢; Morris et al., 2019), where the READOUT function is used to
derive hg from a set of features in a permutation-invariant fashion, drawing further
analogies to the DeepSet model (Zaheer et al., 2017) introduced in Section 3.2.1. Often,
Reapour is implemented as a simple averaging of node representations (Hamilton,
2020)

hg = Reapour({h{"),h{" ... h{PY) = v Z h(L (3.8)
veEY

although other, more sophisticated operators are applicable as well, e.g. guided by
attention (Li et al., 2016b; Vinyals ef al., 2016; Zhang et al., 2018). We will introduce
alternative Reapout functions in Section 3.2.4. Training a graph-level model ¢y is
done in a supervised, end-to-end fashion via negative log-likelihood, cf. Algorithm 3,
similar to the task of node classification.

One limitation of the global Reapout approach is that it does not explicitly exploit the
global graph structure while predicting a label associated with an entire graph: This
task is solely attached to the preceding GNN, which is, however, only able to detect
patterns in local substructures around each node. As a result, recent works propose to
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Algorithm 3 GNN: Graph Classification Training

Require: Graph G = (V,£), Node features X, Training label y
R RSY R « GNNg (X, G)

. h READOUT({{th), héL), RV h%)}})

- L —logie(hy’),

: Update model parameters 8 of GNNg and g w.r.t. 9£/00

—_
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utilize hierarchical Graph Representation Learning approaches that integrate coarse-
grained graph structures, e.g., meaningful clusters, at intermediate steps in the model
pipeline (Defferrard et al., 2016; Ying et al., 2018b; Cangea et al., 2018; Gao & Ji, 2019).
We will take a closer look at hierarchical graph learning approaches in Section 4.3,
where we will also introduce our own domain-specific solution (Fey et al., 2020b) for
learning on molecular graphs.

3.2.3.4 Unsupervised Graph Representation Learning. The process of discovering
novel or interesting graph structures without any presence of ground-truth labels is
commonly referred to as unsupervised Graph Representation Learning (Veli¢kovi¢
etal.,2019). Since most graphs in the wild are unlabeled, unsupervised graph learning
is essential for many real-world applications, and can be utilized in various different
ways. For example, output node embeddings can be directly used for a given down-
stream task (Grover & Leskovec, 2016, Hamilton et al., 2017; Veli¢kovi¢ et al., 2019), or
pre-trained model parameters are used as weight initializations for further supervised
learning (Hu et al., 2020b). In general, unsupervised learning is especially useful in
cases where we have access to a large amount of data of which only a small subset of
data is actually labeled.

The predominant approaches for unsupervised Graph Representation Learning uti-
lize random walk objectives which aim to learn individual node embeddings such that
nodes that are close in the input graph are also close in the output embedding space,
cf. Section 2.2. However, such methods will over-emphasize proximity information at
the expense of structural information, and can only be applied in transductive learn-
ing tasks (Perozzi et al., 2014; Grover & Leskovec, 2016). These limitations encour-
age the development of unsupervised learning methods via stronger encoder models
based on message passing GNNs (Velickovi¢ et al., 2019).

Training GNNs in an unsupervised fashion revolves around the development of suit-
able objective functions. For example, Hamilton et al. (2017) proposed to utilize the
link prediction objective of Equation (3.7) for pre-training. Velickovi¢ et al. (2019)

maximize the mutual information between node embeddings h{" and graph-level rep-

resentations hg = READOUT({{th), e h%)}}), ie.
L=- log(wg(ht(zL>a hg)) - log(l - ¢9(BSJL)7 hg)), (39)

where 15 denotes a discriminator network and A" represents an embedding of node
v generated via a corrupted version of G, e.g., by shuffling node features or by disturbing
edge connectivity. Alternative pre-training strategies involve node-level and graph-
level self-supervised tasks, such as context prediction, i.e. whether the same node
appears in two different subgraphs, attribute masking, i.e. the prediction of randomly
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masked input features, or based on auxiliary supervised graph-level prediction tasks
(Hu et al., 2020b), e.g., by deriving the graph edit distance between two graphs (Bai
et al., 2018; Bia et al., 2019).

3.24 Design Principles of Graph Neural Networks

So far, we introduced the basic message passing GNN blueprint via three differen-
tiable and parametrized abstract functions, i.e. MEssaGeg, @@ and Urpatkyg, cf. Equa-
tion (3.5). Those functions can be chosen in many different ways, depending on the
task at hand: For example, MEssaGe functions can transform incoming features either
linearly or non-linearly (Gilmer et al., 2017; Qi et al., 2017a; Wang et al., 2019¢), ag-
gregative functions € can model static (Morris ef al., 2019; Xu et al., 2019¢), structure-
dependent (Kipf & Welling, 2017) or data-dependent aggregations (Veli¢kovi¢ et al.,
2018), and Upparte is typically used to preserve central node information via skip-
connections (Hamilton et al., 2017) or residuals (Klicpera et al., 2019a; Chen et al.,
2020b). We briefly review how current state-of-the-art GNN operators fit into the
given neural message passing scheme (Section 3.2.4.1 — 3.2.4.2), and discuss recently
evolving principles in Graph Neural Network design (Section 3.2.4.3 — 3.2.4.6).

3.2.4.1 Concrete Message Passing GNN Instantiations. On of the most popular in-
stance of message passing GNNs (Kipf & Welling, 2017; Hamilton et al., 2017; Veli¢kovi¢
et al., 2018) is defined as

1
WO = =o( 3 —WORED 4b0), (310)
weN (v)ufv} Y

where W) and b¥) represent weight and bias parameters in layer ¢ € {1,...,L},
respectively, Cy, , is a normalization coefficient, and ¢ denotes an element-wise non-
linearity, e.g., ReLU (Glorot et al., 2011). N (v) U {v} denotes a node’s neighborhood
with added self-loop. Notably, this formulation shares strong similarities to a tradi-
tional fully-connected layer (cf. Section 2.3), and is, in fact, equivalent in case N'(v) =
(. Central node features th‘” and neighboring node features hgf -1 are first trans-
formed and combined using linear operations, after which an element-wise non-linearity
is applied. However, in contrast to the fully-connected layer formulation, the output
node representation both depends on its previous as well as its neighboring node
feature representations. Note that each applied transformation will make use of the
same set of parameters, utilizing the concept of shared weights (LeCun et al., 1998).
As such, this Graph Neural Network implementation can be understood as a low-
pass filter, where node feature vectors are smoothed across local neighborhoods (NT
& Maehara, 2019).

We can easily verify that the GNN instantiation of Equation (3.10) fits into the given
neural message passing scheme, i.e.

1
——WOR{Y 4+ b, @ = Z, and UPDATE(;) =o0.

w,v

Messacey) (R~ p{E=1) =

The specific design of C, , has attracted a lot of research and leads to different GNN
capabilities, cf. Section 3.4. For example, aggregations can be modeled to be static,
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ie. Cy, = 1 (Morris et al., 2019; Xu et al., 2019c¢) or structure-dependent, i.e. Cy, , =
IN(v)]or Cyp = v/IN(w)||N(v)| (Hamilton et al., 2017; Kipf & Welling, 2017). The lat-
ter is known as symmetric normalization (motivated by the normalized graph Lapla-
cian matrix (Defferrard et al., 2016)), which weakens the contribution of highly-con-
nected neighbors to the output. Furthermore, C,, , can also be modeled in a data-
dependent fashion, i.e. guided by attention, in which the contribution of a neighbor’s
feature vector is directly determined by its transmitted data (Velickovi¢ et al., 2018;
Vaswani et al., 2017; Shi et al., 2020b; Kim & Oh, 2021).

In contrast to the aforementioned GNN instances, alternative GNN building blocks
introduce concepts such as dropping non-linearities completely (Wu et al., 2019a;
Klicpera et al., 2019a; Frasca et al., 2020), degree-dependent parameter sharing (Du-
venaud et al., 2015; Monti et al., 2017; Fey et al., 2018), or anisotropic and multi-layer
transformations (Gilmer et al., 2017; Simonovsky & Komodakis, 2017; Qi et al., 2017b;
Wang et al., 2019e).

3.2.4.2 Attentional Aggregation. In attention-guided GNNSs, known as Graph At-
tention Networks (GATs), the aforementioned normalization coefficient C,,, ,, is deter-
mined by the feature representations hi ™ and AV rather than by the underlying
graph structure. Here, the basic idea is to derive an edge-level attention score (Bah-
danau et al., 2015) which lets the model directly determine the influence of individual

neighbors for the given learning task, either formulated via

(1) additive (Velickovi¢ et al., 2018) or (2) multiplicative (Shi et al., 2020b)
GO, = w® TR B ¢, = (vvthf‘U)T W ORLY

attention. Attention scores C’wﬂ, are then further normalized across neighborhoods via

C,o = softmax(C. ), = exp(Cw7v)~ . (3.11)

ZuEN(v) eXp(C“v'U)

Since one generally wants to attend to more than just a single neighbor, attentional
GNNs usually employ a multi-head formalism (Vaswani ef al., 2017), utilizing K inde-
pendent attention mechanisms in parallel

hg) = [fal (h5;671))a fez (hgil))v B fOK (hSJE71))] (312)

Notably, attentional GNNSs are closely related to the popular Transformer architecture
(Vaswani et al., 2017) in natural language processing. In fact, attention-guided GNNs
are equivalent to Transformers in case they are operating on a fully-connected graph
(Joshi, 2020), which let them be seen as a sparse variant of the Transformer model.
However, it has been shown that attentional GNNs may fail to attend to meaningful
neighbors (Knyazev et al., 2019b), and auxilary supervision of attention scores can
drastically boost down-stream performance, e.g., via an additional link prediction ob-
jective (Kim & Oh, 2021).

3.2.4.3 Residual Graph Networks. One of the potential disadvantages of the afore-
mentioned GNN instantiation in Equation (3.10) is its low-pass filtering characteristic.
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In particular, since self-loops are directly merged into the underlying graph structure,
the GNN has difficulties to preserve original central node information. This is es-
pecially noticeable in deep GNNSs, where node representations become increasingly
washed out w.r.t. model depth, with node representations becoming gradually more
indistinguishable from each other while converging to a stationary point (Xu et al.,
2018). We will take a closer look at over-smoothing in GNNs in Section 4.2.

A natural way to alleviate this problem is to utilize UppartEg for preserving the already
acquired node information from previous rounds of message passing. The most pop-
ular approach in doing so is to employ a simple (learnable) skip-connection (Hamil-
ton et al., 2017)

UPDATEg)(hfffl), m%)(u)) = o(WORY 4 m%f)(v)). (3.13)

Inspiration has also been drawn from the “gating” mechanism (Cho et al., 2014) em-
ployed in recurrent neural networks, in which Gated Recurrent Units (GRUs) (Cho
et al., 2014) are used
[ - ¢ - ¢
Urpatey (b, m ) = GRUp(h{", m{) ) (3.14)
to gate newly incoming neighborhood information (Li ef al., 2016b). Alternative ideas

involve strategies such as “teleporting” back to (or restarting from) earlier represen-
tations (Klicpera et al., 2019a)

UPDATE(OZ)(hE)O), mﬁ?(v)) =ahV +(1-a) m%)(v), (3.15)

which guarantee that initial representations R are retained with “teleport probabil-
ity” a € [0,1] (Klicpera et al., 2019a; Chen et al., 2020b). Furthermore, Xu et al. (2018)
proposed a complimentary strategy framed as Jumping Knowledge (JK) that utilizes
layer-wise jump connections and selective aggregations of intermediate representa-
tions to allow for node-adaptive neighborhood ranges. Given layer-wise representa-

tions hSJl), hE?’, ey hSJL) of node v, its final output representation is obtained by either
(1) concatenation, (2) pooling  or (3) attention (3.16)
[ ’S)l)a 1(12)7 ceey h'E}L)] max%zl S}Z) Zle al(Je) h’EJZ)7

where attention scores o\ are obtained from a bi-directional Long Short-Term Memory

(LSTM) (Hochreiter & Schmidhuber, 1997).

3.2.4.4 Normalization Techniques. Normalization layers shift and scale intermedi-
ate representations and are known to help optimization of deep neural networks, lead-
ing to more stable and faster convergence. For example, Batch Normalization (loffe &
Szegedy, 2015) can also be applied in the graph domain, where we standardize node
representations via

SO
. —+ B, (3.17)

with o and o denoting the mean and standard deviation of {{ hgé), hg), e h%) B, re-
spectively, and v(*) and B*) are learnable parameters. Lately, there has been inter-
est in developing specific graph normalization layers that take the inter-dependency
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characteristics of nodes into account while maintaining (sub-)graph structural prop-
erties (Cai et al., 2020). For example, Cai et al. (2020) propose to re-scale the mean p
by trainable parameters in order to avoid the loss of structural information present in
the mean statistics. Analogously, Zhou et al. (2020) propose a group-wise normaliza-
tion procedure that utilizes a soft grouping mechanism of nodes into G' groups via
learnable attention weights cv,, € R¢:

G
h{® Z BATCHNORM‘(gg)(SOftl’naX(av)g -h{9). (3.18)

g=1

These techniques not only ensure that GNNs converge faster to a local optimum, but
can also partially negate the effects of over-smoothing (Zhao & Akoglu, 2020; Zhou
et al., 2020).

3.2.4.5 Readout Layers. In graph classification tasks, the Reapour function is used to
aggregate a multiset of features into a single representation in a permutation-invariant
fashion. Simple as well as more sophisticated variants for instantiating Reapout have
been proposed. The most common way is to simply take the sum, the mean or the
maximum over all node embeddings in the graph, cf. Section 3.2.3, which is often
sufficient for graph-level applications involving small graphs. Cangea et al. (2018)
further propose to combine the outputs of such simple set aggregators in order to
facilitate learning. More sophisticated variants integrate the concepts of attention into
Reapour as well. For example, Li et al. (2016b) make use of attention as a gating
mechanism

hg = _ softmax(H"w), h{". (3.19)

veY

In a similar fashion, Vinyals ef al. (2016) leverage attention-based aggregations iter-
atively for fine-grained refinement of the global output vector. As an alternative to
attention, Zhang et al. (2018) propose a Reabour layer based on sorting. Here, the
top-k node feature vectors are stacked in descending order based on their last fea-
ture vector channel, which are further processed via a traditional CNN. Notably, this
procedure still guarantees permutation-invariance in the overall architecture.

3.2.4.6 Heterogeneous Graph Learning. So far, we assumed deep neural networks
operating on simple homogeneous graphs, while in practice, graphs may have much
richer information and semantic structure, e.g., in knowledge graphs. In particular, in
heterogeneous graphs G = (V, €, Ty, Te), nodes and edges belong to disjunct node and
edge types, and, most importantly, representations of different types are potentially
embedded in different feature spaces (Zhu et al., 2019b; Yu et al., 2020), cf. Section 2.1.
One common approach for allowing GNNs to operate on such heterogeneous graph
data is to utilize separate message passing formalisms for each edge type, and com-
bine their individual outputs afterwards (Schlichtkrull et al., 2018)

h") = Z @ MESSAGE(GZT)(hS_l)yhg_l))a (3.20)
reXp weN,(v)

where N, (v) denotes the neighborhood set around node v induced by edges of type
r € Y. Overall, this multi-relational aggregation is analogous to the traditional GNN
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formulation, except that it now aggregates information across different types sepa-
rately. As such, instantiations of this scheme can as well make use of recent advance-
ments in Graph Representation Learning. For example, Hu et al. (2020c) implement
MESSAGEgT) via graph attention. However, one major issue of Equation (3.20) is the
rapid growth in the number of parameters w.r.t. the number of edge types |X g/, lead-
ing to over-fitting on rare relations. Therefore, Schlichtkrull et al. (2018) leverage a

regularization scheme via basis-decomposition

B
K9=3S @ ans-Messacsy) (AL, RED) (3.21)
reXp b=1 weN,(v)

with learnable scalars «,.;, € R for each edge type r € X and basis b € {1,...,B}.
Notably, «,.; are the only relation-specific parameters in this approach.

3.3 [Edge-Conditioned Message Passing via B-Spline
Kernels

Most achievements obtained by deep learning methods over the last years heavily
rely on properties of the convolution operation in Convolutional Neural Networks
(CNNs) (LeCun et al., 1998), i.e. local connectivity, weight sharing and shift invari-
ance. Since those layers are defined on inputs with a grid-like structure, they are not
trivially portable to non-Euclidean domains like graphs or discrete manifolds. How-
ever, learning on grid-like structures can be understood as a special case of graph-
based machine learning, in which the graph is restricted to present sequences, 2D
squares or 3D cube lattices with regular connectivity between neighboring data points.
As a result, transferring and generalizing the high performance of traditional CNNs
to a more general class of data holds the potential for large improvements in several
relevant tasks.

Notably, message passing GNNs as introduced in Section 3.2 already utilize highly
similar concepts of convolution on regular domains. In particular, they share the prin-
ciples of locality — traditional CNNs perform a learnable aggregative transformation
of local patches, while GNNs perform a learnable aggregative transformation of lo-
cal neighborhoods (Shuman et al., 2013). Additionally, both make use of the weight
sharing principle across different patches and neighborhoods, leading to translation
and permutation equivariance in the image and graph domain, respectively.

However, in comparison to CNNs, commonly utilized GNN operators are also more
restrictive and limited, which hurts the potential generality of models we can build
(Huszér, 2016). To illustrate this, consider the GNN operator (Kipf & Welling, 2017)
of Equation (3.10), ie. b\ = YN (0) UL} ﬁmW(Z)h%%), that processes an (in-
finitely large) 2D lattice, cf. Figure 3.4. Such a GNN does not know about the direc-
tions of edges (such as bottom right or top left), which amounts to a CNN containing
only center-surround patterns, e.g.,

WO WO o
Y )

i\
14
Kz'(,j) = Wi(,? Wi(,? Wz‘(,? (3.22)
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(a) CNN filter (b) GNN filter

Figure 3.4: Comparison of CNN and GNN filters on regular grids. In a (a) CNN
each neighbor is transformed via individual weights, while in a (b) GNN
each neighbor is transformed equally.

with K Z(? denoting a 3 x 3 filter matrix for input and output feature map ¢ and j,
respectively (Huszér, 2016).% This is to be expected, as graphs are arbitrary abstract
structures that naturally do not come with directional descriptors. However, in this
application, a GNN inherently fails to learn about any patterns present in the input.

This observation gives rise to the question on how we can model a general class of
Graph Neural Networks that can effectively incorporate anisotropy in the form of di-
rectional descriptors. One solution towards this goal is presented in our Spline-Based
Convolutional Neural Network (SplineCNN) architecture (Fey et al., 2018). SplineCNNs
denote a variant of deep Graph Neural Networks for irregularly structured and geo-
metric input, e.g., graphs or discrete manifolds, which generalize the traditional CNN
convolution operator via a continuous kernel formulation (Section 3.3.1) and fully
resemble CNNs on discrete input (Section 3.3.2).

3.3.1 Graph Convolution via Continuous B-Spline Kernels

While aforementioned GNN operators (Section 3.2) assume that information is solely
encoded in the connectivity, edge weights and node features of the input, our spline-
based convolution operator leverages multi-dimensional edge features to facilitate
the learning of anisotropic kernel functions. For example, for images or meshes, ad-
ditional information such as the relative positions of nodes is present in the input
data, which we consider with our method. Therefore, similar to the work of Monti
et al. (2017), we expect the input of our convolution operator to be a directed graph
G = (V,€, E), where E € [~1,1]¥*? contains D-dimensional edge features or pseudo-
coordinates for each directed edge (v, w) € £. Our convolution operator aggregates
node features in local neighborhoods weighted by a trainable, continuous kernel func-
tion.

The input node features H =1 € RIVIXF" represent features on an irregular geomet-
ric structure, whose spatial relations are locally defined by the pseudo-coordinates
E. Therefore, when locally aggregating feature values in a node’s neighborhood, the

3Normalization coefficients Ciy,,, are omitted as they are constant in regular graphs.
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Figure 3.5: An example of deep mesh data processing (Fey ef al., 2018).

content of E is used to determine how the features are aggregated and the content of
H“=Y defines what is aggregated. We argue that common irregular inputs can be
mapped to this model while preserving relevant information:

e For graphs, V and £ are given and E can contain user-defined edge features or

degree-related information such as e, , = 1/+/|N (w)||N (v)].

e For meshes or discrete manifolds, V contains points of the discrete manifold,
€ represents connectivity in local Euclidean neighborhoods and E can contain
local relational information like polar, spherical or Cartesian coordinates of the
source node in respect to the target point for each edge, cf. Figure 3.5.

e For point clouds, V is given such that each node v is associated with a point
pv € R3, and £ can be obtained synthetically, e.g., via k-nearest neighbor search
& ={(w,v) : w € Nei(py)} with N<i(p,) containing the k nearest points of p,,,
or via ball query search € = {(w, v) : ||pw — Pv|| < 7} based on radius r. Here, E
holds geometric relations, e.g., via Cartesian coordinates e, , = Py — Po-

e Other forms of geometric graphs are scene graphs, in which nodes in V repre-
sent objects or entities in a given scene, and £ describes their geometric as well
as semantic relationships as part of their edge features E.

In general, SplineCNN state no restriction on the values of E, except being element
of a fixed interval range. Therefore, meshes, for example, can be either interpreted
as embedded three-dimensional graphs or as two-dimensional manifolds, using local
Euclidean neighborhood representations like obtained by the work of Boscaini et al.
(2016). Also, either polar/spherical coordinates or Cartesian coordinates can be used,
as shown in Figure 3.6. Independent from the type of coordinates stored in E, our
trainable, continuous kernel function, which we define in the following, maps each
e, to a matrix used for an edge-conditioned transformation of node representations.

3.3.1.1 Spline-based Convolution Operator. Our spline-based convolution opera-

tor utilizes a continuous kernel formulation g‘(ge) : RP — RF*F' conditioned on the
pseudo-coordinates e, , € R” that defines the specific and anisotropic transforma-
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Figure 3.6: Possibilities for pseudo-coordinates e, ,: (a) Two- and (b) three-dim-
ensional Cartesian, (c) polar and (d) spherical coordinates. Values for
scaling and translating e, , to [—1, 1) are omitted (Fey et al., 2018).

tion applied to each individual neighbor hi ™Y € RF:

th) = C;,lv Z MESSAGE(Z)(hq(f 2 Jeww) = Z 9(1) (Z Y. (3.23)
weN (v)U{v} weN( yu{v}

with C, , = |N(v)| denoting the coefficients for averaging. As in traditional CNNs,
we utilize the pseudo-coordinates e, ,, i.e. the relative positions of nodes, to deter-

mine how input features hi Y are aggregated. In particular, this scheme generalizes
traditional CNNs to graph-structured data, as we can sample a transformation ma-

trix via g‘(f) for any given value e, ,, € [—1, 1], not just at discrete stationary points.
Furthermore, averaging messages across neighborhoods allows the model to better
generalize to varying sampling densities that may be present in the underlying graph-
structured data.

The definition of our continuous kernel gy) leverages the concept of B-spline bases
(Piegl & Tiller, 1997), parametrized by a constant number of trainable control values.
In particular, the local support property of B-spline basis function, which states that
basis functions evaluate to zero for all inputs outside of a known interval, proves to be
advantageous for efficient computation and scalability. In the following, we denote
the set of open B-spline basis functions of degree m as {N;" : k <1i < K} based on K
uniform, i.e. equidistant control points with knot vector 7, cf. Piegl & Tiller (1997).

Figure 3.7 visualizes the spline-based kernel formulation for differing B-spline basis
degree. Here, we introduce a trainable weight matrix Wy) € RF*F' for each element
p from the Cartesian product P = {1,2,..., K}”, resulting in K” - F - F’ trainable
parameters. In particular, K© can be interpreted as the kernel size and is dependent
on the dimensionality of pseudo-coordinates. With this, we define our continuous
convolution kernel

=> w H N™(eq) (3.24)

peEP

as a linear combination of weight matrices weighted by the product of basis functions
along pseudo-coordinate dimensions. One way to interpret this kernel is to see the
trainable parameters Wp, ; ; as control values for the height of a (D + 1)-dimensional
B-spline surface, from which a weight is sampled for each neighbor w € N (v), de-
pendent on e,, ,. However, in contrast to traditional (D + 1)-dimensional B-spline
approximation, we only have one-dimensional control points and approximate func-
tions instead of curves. To ensure that the unity property of the B-spline bases holds
(Piegl & Tiller, 1997), we scale their knot vector 7 to exactly match the interval [—1, 1].
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(a) Linear B-spline basis functions (b) Quadratic B-spline basis functions

Figure 3.7: Examples of spline-based continuous kernels for B-spline basis degree
(a) m = 1and (b) m = 2 with pseudo-coordinate dimensionality D = 2.
The heights of the red dots are the trainable parameters W(f)] for a single
input and output feature map ¢ and j, respectively. They are multiplied
by the elements of the B-spline tensor product basis before influencing the
kernel value (Fey et al., 2018).

Depending on the type of pseudo-coordinate vectors e, ,, we can use closed B-spline
approximation in some dimensions. One frequently occurring example of such a sit-
uation is when e, ,, contains angle attributes of polar coordinates. Using closed B-
spline approximation in the angle dimension naturally enforces the angle 0 to be eval-
uated to the same weight as the angle 27 or, for higher m, the kernel function to be
continuously differentiable at those points. The proposed kernels can easily be modi-
fied so that they use closed approximation in an arbitrary subset of the D dimensions
by mapping different p € P to the same trainable parameters, leading to a reduction
of trainable parameters and B-spline basis functions. Referring to Figure 3.7, this ap-
proach can be interpreted as a periodic repetition of the function surface along the
corresponding axis.

Due to the local support property of B-splines, N/"(e;) # 0 holds true for exactly

m + 1 of the K different basis functions. Therefore, gél) only depends on (m +1)”
of the K B-spline bases for each neighbor w, where D and m are constant and usu-
ally small. In addition, for each pair of nodes (w,v) € &, the vectors p € P with
non-zero contribution can be found in constant time, given constant D and m. This
tremendously helps in reducing the time complexity of the given operation due to be-
ing independent of the actual kernel size K. In practice, we achieve independence

|€]x (m~+1)P

from the number of trainable weights by computing matrices P € N and

B € RIEXM+D” of Algorithm 4. P contains the indices of non-zero product bases
(line 3), while B contains their real values (line 4) according to B, ; = Hle NE (eq),
cf. Equation (3.24). We can then use entries in P and B directly to query the corre-
sponding weight matrix W, to re-weight it, and to finally multiply it with the node
feature matrix (line 8). For the evaluation of the basis functions required for B, we
use explicit low-degree polynomial formulations (Piegl & Tiller, 1997). In total, the
forward operation of our convolution operator (as outlined in Algorithm 4) has a time
complexity of O(|€] - (m + 1)P - F - F’). We will see in Chapter 6 how to efficiently
parallelize this scheme on GPUs.
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Algorithm 4 Spline-Based Convolution

Require: Graph G = (V, &, E), Node features H(~1) ¢ RIVIXF,
1: for each (w,v),e € € do
2. foreachie {1,...,(m+1)"}do

3: p < P[e, Z}

4: b+ B[e, Z]

5: foreach f' € {1,...,F'} do
6: <0

7: foreach f € {1,...,F} do
8: rer+b-Wip, f, f']- H Dw, f]
9: end for

10: HOPp, f]+r

11: end for

12:  end for

13: end for

3.3.1.2 Applications. Similar to traditional CNNs, our convolution operator can be
used as a module in a deep neural network architecture, which we call SplineCNN.
SplineCNNS5s can be applied on all kinds of tasks involving irregular structured data,
e.g., arbitrary (embedded) graphs and meshes, and allows for end-to-end training
without using hand-crafted feature descriptors. For example, for learning on discrete
manifolds, we can directly interpret mesh connectivity as graph-structured data and
perform spatial aggregation around local mesh vertices. Notably, SplineCNN can di-
rectly learn geometric features from raw mesh data, while similar approaches (Masci
et al., 2015; Boscaini et al., 2016; Litany ef al., 2017; Monti et al., 2017) rely on hand-
crafted feature descriptors as input node features, like the local histogram of normal
vectors known as SHOT descriptors (Tombari et al., 2010). In SplineCNN, input node
features of meshes are trivially given by 1 € RIV*!, and the network solely learns lo-
cal geometric pattern from the spatial relations encoded in the pseudo-coordinates E.
Due to missing pre-processing, this allows for even faster processing of data. Super-
pixel images denote an alternative domain for learning on embedded graphs (Monti
et al., 2017; Fey et al., 2018; Knyazev et al., 2019a), in which both spatial relations and
node features in the form of RGB values are important for the given down-stream task.

Notably, SplineCNN can be applied for learning on arbitrary graphs as well, and al-
lows, in contrast to related approaches (Kipf & Welling, 2017), for an anisotropic trans-
formation of neighboring node features, conditioned on edge features. Here, neigh-
bors are transformed differently depending on graph characteristics, e.g., node degree.
For example, in citation graphs (Sen ef al., 2008; Yang ef al., 2016), it might be desir-
able to discriminate between highly cited works (such as general books) and less cited
(but more specialized) works to determine the category of a paper more accurately.

3.3.1.3 Alternative Edge-Conditioned GNNs. An alternative strategy for edge-con-
ditioned Graph Representation Learning was proposed in Gilmer et al. (2017); Si-

monovsky & Komodakis (2017), in which the continuous kernel function gg) : RP —
RF*F" is implemented as an MLP, i.e.

Messacey) (R ey) = 05 (ewn) - AL = MLPY (e,,,) - RD,  (3.25)
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rather than via B-spline approximation. In comparison, our scheme provides the fol-
lowing advantages:

e SplineCNN is computationally efficient: A kernel MLP needs to explicitly ma-
terialize an individual weight matrix for each edge, which leads to an overall
memory-consumption of O(|€] - F - F’). SplineCNN naturally enforces a low
memory footprint by only interpolating between a fixed number of weight ma-
trices. Furthermore, the computation complexity of SplineCNN is independent
of the utilized kernel size, which is not the case for MLPs.

e SplineCNN output channels are inter-independent: Following the principles
of traditional CNNs and in contrast to kernel MLPs, SplineCNN defines indi-
vidual filters that do not share parameters between different input and output
channels.

e SplineCNN utilizes a low amount of parameters: The number of parameters
in a kernel MLP drastically increases with MLP width and depth, leading to
over-parametrization. In contrast, the parameters of SplineCNN solely depend
on the chosen kernel size, which usually tends to be small.

However, implementing gél) as an MLP is advantageous in case of high-dimensio-
nal edge features, as our continuous B-spline kernels scale exponentially w.r.t. the
dimensionality of pseudo-coordinates D. As a result, the best choice of implementing

gg) clearly depends on the given task, with SplineCNNs being very efficient to train
on low-dimensional relational input such as Cartesian relations in meshes or point
clouds.

3.3.2 Relation to Traditional CNNs

Our spline-based convolution operator (cf. Section 3.3.1) can be seen as a direct gen-
eralization of the traditional convolutional layer in CNNs for odd filter sizes in each
dimension. In particular, if we assume to have a D-dimensional grid-graph with di-
agonal, horizontal and vertical edges to be the input (cf. Figure 3.4), B-spline degree
m = 1, kernel size 3 x 3, and the vectors e, ,, to contain Cartesian relations between
adjacent nodes, then our convolution operator is equivalent to a discrete convolution
of an image with a kernel of size 3 x 3. Here, each Cartesian relation e € {—1,0, 17
maps to exactly to one distinct weight matrix in the parameter space of SplineCNN,
ie. HdD:1 N}, (ew,w,a) = 1 for exactly one p € P and 0 otherwise. We provide further
proof for two-dimensional grid-graphs in the following:

Let elements of H® and W () be both accessible via one or two-dimensional indices.
Then,

o= 3 >oowi HNl wwd) | LY (3.26)
weN (v)u{v} \pe{1,2,3}?
_ 3 S W<4>HN1 (ea) | RS (3.27)

e=(i,j)e{—1,0,1}*> \pe{1,2,3}?
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With N} ,(eq) = 1fore € {—1,0,1}, it immediately follows that

0 _ () (e-1)
hi) = Z Wiis o hotivgs (3.28)

(i,§)€{—-1,0,1}>

resembling the definition of traditional CNNs (LeCun et al., 1998). Notably, this re-
lation holds for any D-dimensional grid-graph, and we utilized D = 2 simply due
to ease of notation. Interestingly, this relation even holds true on grid-graph borders,
assuming that the CNN is applied with appropriately sized zero-padding. Further-
more, it is important to see that we dropped the normalization coefficients C, , of
SplineCNN in Equation (3.26). Since we operate on fixed-sized graphs, C,, , is con-
stant and therefore only amounts to a negligible global scaling factor.

The generalization capabilities of SplineCNN also hold for larger discrete kernels be-
yond sizes of 3 x 3. However, for this, the neighborhoods of the grid-graph need to
be modified accordingly, e.g., in a kernel size of 5 x 5, a node needs to be connected to
its “original” 2-hop neighborhood.

The equivalence of CNNs and SplineCNNs on discrete input data can also be veri-
fied experimentally, leading to exactly the same outputs across consecutive layers and
identical model performance, given the same parameter initialization. Notably, the
continuous kernel formulation has the potential advantage (1) to account for larger
receptive field sizes in a more parameter efficient manner, (2) to handle partially-
observed data in an elegant fashion, and (3) to be deployed at resolutions other than
those observed during training (Romero et al., 2021).

3.4 Maximally Expressive Graph Neural Networks

The design of novel GNN operators has been largely tackled based on intuition and
empirical justification, as there is little theoretical understanding of the representa-
tional properties and limitations of GNNs. In particular, a neural network model for
graph-structured data should be able to learn representations of nodes in a graph,
taking both the graph structure and feature description of nodes into account. While
it is known that GNNs are a powerful tool for feature aggregation across irregularly
structured data (Kipf & Welling, 2017; Velickovi¢ et al., 2018), it is unclear how well
GNN s are actually doing in reasoning about and encoding structural properties of
the underlying graph. Ideally, a maximally powerful GNN is able to map isomor-
phic graphs to the same representation in the embedding space, while it maps non-
isomorphic ones to different representations. Such an ability, however, implies solving
the challenging graph isomorphism problem, cf. Section 2.1. Here, we offer a theoreti-
cal exploration of a GNN's expressive power in distinguishing non-isomorphic graph
structures by relating their power to the WL algorithm (Weisfeiler & Lehman, 1968),
a powerful heuristic that successfully solves the graph isomorphism test for a broad
class of graphs (Section 3.4.1)%. As a result, we show that there exist GNN architec-
tures and parameter initializations that provably inherit the expressivity of the WL
algorithm.

“In this thesis, we use the more wide-spread “Lehman” spelling, although the less-known “Leman”
is the preferred spelling, cf. https://www.iti.zcu.cz/wl2018/pdf/leman.pdf (last access: August 25,
2022).
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(a) WL color refinement iteration (b) Indistinguishable graphs by WL

Figure 3.8: (a) Illustration of the update rule of the WL algorithm for a single iter-
ation: The Hasn function computes, for each node, an injective new color-
ing based on the current colors of the node itself and its direct neighbors
(Morris et al., 2021a). (b) Two graphs (M and ) that cannot be dis-
tinguished by the WL: Each node will obtain the same coloring since the
node degree is shared across all nodes in both graphs (Morris et al., 2021a).

Since the power of the WL has been completely characterized (Arvind et al., 2015;
Kiefer et al., 2015), we can transfer this results to the case of GNNs, showing that both
approaches share the same benefits and shortcomings. Going further, we leverage
this theoretical relationship to propose a generalization of GNNSs, called k-dimensional
GNNs (k-GNNs) (Morris et al., 2019), which describe neural architectures based on
the k-dimensional Weisfeiler-Lehman (k-WL) algorithm (Cai et al., 1992), that are strictly
more powerful than GNNs in distinguishing graph structures (Section 3.4.2). The
key insight in these higher-dimensional variants is that they perform message passing
directly between subgraph structures rather than between individual nodes. As a
result, this higher-order form of message passing can capture structural information
that is not visible at the node-level.

3.4.1 Relation to the Weisfeiler-Lehman Isomorphism Test

The graph isomorphism problem (Section 2.1) asks whether two graphs are topolog-
ically identical, which is a challenging problem as no polynomial-time algorithm is
known for it yet (Garey, 1979; Garey & Johnson, 2002; Babai, 2016). The Weisfeiler-
Lehman or color refinement algorithm (Weisfeiler & Lehman, 1968) is a well-known
heuristic for deciding whether two graphs are isomorphic: Given an initial coloring
or labeling of the nodes of both graphs, two nodes with the same label get different
labels if the number of identically labeled neighbors is not equal. More formally, for
a graph G = (V,€) and iteration ¢ > 1, the WL algorithm recursively refines a node
coloring ¢{¥): V — ¥ based on the intermediate coloring of its neighbors

{9 = Hasn (c,f)f*l), fel=D e N(v)}}) : (3.29)

where HasH injectively maps the above pair to a unique value in ¥ which has not been
used in previous iterations. That is, in each iteration, the algorithm computes a new
color for a node based on the colors or features of its direct neighbors, cf. Figure 3.8a

for an illustration. We initialize c!" by either assigning the same color to all nodes (in
case of unlabeled graphs) or based on some initially given discrete node labeling (in
case of labeled graphs). After L iterations, the color of a node reflects the structure
of its L-hop neighborhood. To test if two graphs G; = (V1,&1) and Go = (V»,&2)
are non-isomorphic, we run the above algorithm in “parallel” on both graphs until
convergence, i.e. until the number of colors between two iterations does not change.
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Termination is guaranteed after at most max{|V1],|V2|} iterations (Grohe, 2017). If
the two graphs have a different histogram of node colorings, the WL concludes that
the graphs are not isomorphic.

The Weisfeiler-Lehman algorithm constitutes one of the earliest approaches to graph
isomorphism testing (Weisfeiler, 1976; Weisfeiler & Lehman, 1968; Immerman & Lan-
der, 1990), and has been heavily investigated by the graph theory community over the
last few decades (Grohe et al., 2014). Notably, its power has been completely charac-
terized (Arvind et al., 2019; Kiefer et al., 2015). Apart from some corner cases, it has
been shown that this simple algorithm is already an effective and computationally ef-
ficient strategy to decide whether two graphs are non-isomorphic (Babai ef al., 1980),
and has been therefore applied in many different areas (Grohe et al., 2014; Kersting
et al., 2014; Li et al., 2016a; Yao & Holder, 2015; Zhang & Chen, 2017). On the other
hand, it is easy to see that the algorithm cannot distinguish all non-isomorphic graphs
(Caietal., 1992). For example, the WL fails to distinguish all k-regular graphs of same
node size, cf. Figure 3.8b.

Shervashidze et al. (2011) were the first that used the WL algorithm as a graph kernel,
the so-called Weisfeiler-Lehman subtree kernel. The kernel’s idea is to compute the WL
coloring for a fixed number of steps, resulting in a color histogram or feature vector
for each graph. The kernel is then computed by taking the pairwise inner product be-
tween these vectors. Hence, the kernel measures the similarity between two graphs by
counting the number of common colors in all refinement steps, inputted into a linear
SVM. Numerous other graph kernel variants utilize the concepts of WL colors (Kriege
et al., 2016; Nikolentzos et al., 2017; Togninalli et al., 2019). For example, Kriege et al.
(2016) proposes the Weisfeiler-Lehman optimal assignment kernel, where the WL colors
are used as a similarity measure between pairs of nodes. Furthermore, extensions of
the WL subtree kernel have been proposed that can deal with continuous node infor-
mation (Orsini ef al., 2015; Morris et al., 2016). Although already quite powerful, these
kernels are limited by the fact that they cannot effectively adapt their feature repre-
sentations to a given data distribution since they rely on a fixed set of pre-computed
features.

Interestingly, a single iteration of the WL algorithm shares high similarities with the
message passing scheme employed in GNNSs, ¢f. Equation (3.5), where the HasH func-
tion is replaced by differentiable and trainable MEessaceg and UppaTeg functions uti-
lized for neighborhood aggregation (Kipf & Welling, 2017). As the WL is a power-
ful tool for discriminating non-isomorphic graph structures, the tight connection be-
tween WL and GNN:s lets us study to what extend a GNN is actually able to encode
graph structure information into its vectorial node representations from a theoretical
point of view. As such, we will see that Graph Neural Networks can also be well-
motivated as graph isomorphism approximators, making them powerful tools to rea-
son about structural graph properties as well. While prior evaluation and analysis of
GNN s has been largely empirical, our theoretical study in Morris et al. (2019, 2021a)
(and in the concurrent work of Xu ef al. (2019¢)) on the expressive power of GNNSs,
i.e. their ability to distinguish non-isomorphic graphs, leads to major implications of
our understanding of GNNs and gives, as well, rise to solutions for overcoming some
of their shortcomings.
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In the following, we study the expressive power of the specific GNN instantiation

R = o (W“ D43 wih ) (3.30)
weN (v)

which utilizes a simple learnable skip-connection to discriminate between central and
neighboring node features (Hamilton et al., 2017). Input node features can be either

given as Al by the one-hot encoding of initial labels or node degrees. Notably, we
restrict our theoretical analysis on discrete rather than continuous input features.

Our first theoretical result shows that a GNN architecture does not have more power
in terms of distinguishing between non-isomorphic (sub-)graphs than the WL algo-

rithm. More formally, for every feature encoding of input labels to vectors hY", and

for every choice of parametrization via Wl(é) and WQ(Z)

, we have that the coloring of
) of the WL always refines the coloring hY induced by a GNN parametrized by

wi, wib:

Theorem 1. Let G = (V, &) be a graph. Then, for all £ > 1, and for all weights Wl(e) and

Wi, it holds that
o) = o) = B = Y

forall u,v € V, i.e. a GNN is at most as powerful as the WL algorithm in distinguishing
non-isomorphic graph structures.

Proof. We proof by induction, ¢f. (Morris et al., 2019). The induction hypothesis and

e =P imply that the multisets of neighboring node features {{h cw e N(u)}

and {{hgf ViweN (v)}} are identical as well, leading to h{Y =l by design. [

Importantly, this result holds for a broad class of GNN architectures and all possible
choices of parameters for them, not just for the given instantiation of Equation (3.30).
On the positive side, we can further show that given the right parameter initialization,
the given GNN instantiation has the same expressive power as the WL algorithm,
completing the equivalence:

Theorem 2. Let G = (V, £) be a graph. Then, for all £ > 1, there exists a sequence of weights
((Wl(l), W2(1)), . (Wl(g)7 WQ(K))) such that

RO = O s O — o0

for all u,v € V, i.e. a GNN can be as powerful as the WL algorithm in distinguishing
non-isomorphic graph structures.

Proof. The proof in Morris et al. (2019) starts by giving the proof for graphs where all
nodes have the same initial color, and is then extended to the case of labeled graphs. It
involves creating a weight matrix WQ(') € RI*IVI that guarantees an injective mapping
from the multiset of neighboring node features {{h(i ViweN (v) }} toits aggregative
representation 1/ (,,). O
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Xu et al. (2019¢) further showed that any GNN can be as expressive as the WL algo-
rithm as long as it is injective, i.e. it will never map two different multisets to the same
underlying representation. In the light of the above results, GNNs can be viewed as an
extension of the WL algorithm which in principle have the same power but are more
flexible in their ability to adapt to the learning task at hand and are naturally able
to handle continuous node features. Since the node colorings produced by the WL
algorithm are essentially one-hot encodings, they cannot really capture the similarity
between different subgraphs. In contrast, a GNN as expressive as the WL algorithm
learns to embed nodes into a continuous space. This enables the GNN to not only
discriminate different structures, but also to learn to map similar graph structures to
similar embeddings and to capture dependencies between graph structures (Xu et al.,
2019c), improving generalization and strengthen robustness w.r.t. nosiy edges and
node features (Yanardag & Vishwanathan, 2015).

3.4.2 Provably Powerful Graph Neural Networks

One disadvantage of the aforementioned provably powerful GNN instantiation given
in Equation (3.30) is that its parameter matrix needs to scale linearly with the number
of nodes |V| in order to guarantee sufficient expressive power. A different way of
proving Theorem 2 is to rely on the universal approximation theorem of MLPs (Hornik,
1991; Hornik ef al., 1989) in order to show that ZweN(v) MLPg (hgfl)) defines an
injective aggregation on multisets, as described in Zaheer et al. (2017); Xu et al. (2019¢)

and in Section 3.2.1. As aresult, Xu et al. (2019c) derive the Graph Isomorphism Network
(GIN) layer

h(®) = MLPY) ((1 +e) R £ 37 MLPy, (hS,f‘”)), (3:31)
weN (v)

where ¢(¥) € R denotes a trainable scalar that learns to distinguish central node in-
formation from neighboring node information. In case input features are given as
one-hot encodings, the second MLPg, can be dropped as their summation alone is
injective and MLPs can represent the composition of functions, i.e. MLPg, o MLP4,.

One important takeaway is that the applied sum aggregation is necessary to ensure
sufficient model expressivity, opposed to other well defined multiset functions such
as mean or max-pooling aggregators (Xu et al., 2019¢). Such aggregators get confused
by surprisingly simple graphs and are therefore less powerful than the WL algorithm,
cf. Figure 3.9. Nonetheless, aggregative functions such as mean or max can still inject
an effective bias into the learning model, e.g., in cases where distributional information
is more important than exact structure (mean aggregation) or where learning about
distinct elements of a multiset is crucial (max aggregation) (Xu et al., 2019c).

Inspired by this observation, Corso et al. (2020) propose to leverage multiple aggrega-
tive functions within a single GNN layer. In particular, they show that one needs at
least m aggregators in order to discriminate between multisets of size m whose under-
lying set is continuous rather than discrete. As a result, their Principal Neighborhood
Aggregation (PNA) network combines multiple aggregative functions with degree-
scalars to better capture graph structural properties

N Y 5
weN (v)
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VS.

VS. VS.

(a) mean and max fail (b) max fails (¢) mean and max fail

Figure 3.9: Examples of insufficient expressive power regarding mean and max ag-
gregation. Here, node colors represent different node features. Nodes
u and v will aggregate the same representation even though their sur-
rounding graph structures clearly differ. (a) Since all nodes have the same
features, both mean and max aggregation cannot discriminate differently
sized-neighborhoods. (b) Max aggregation collapses to the same repre-
sentation although the number of same-colored neighbors is different. (c)
In case identical features across neighborhoods are evenly distributed, the
same holds true for mean aggregation. In all cases, sum aggregation can
distinguish the different graph structures (Xu et al., 2019c).

where
1 mean
P = | s(deg(v),1) | @ | max (3.33)
s(deg(v), —1) min
—_——— ——
Scalers Aggregators

with ) being the tensor product and

s(d, ) = log(d+ 1) @
e (11) Evev log(deg(v) + 1)) (3.34)

denoting scalers based on node degree deg(v). Here, degree-scalers are used to per-
form either a degree-dependent amplification or an attenuation of incoming mes-
sages. With this, sum aggregation can be well expressed as the composition of mean
aggregation and a degree amplifying scaler. The choice of logarithmic amplifica-
tion has the same expressive power, but may lead to better generalization since small
changes in node degrees will not cause aggregations to be amplified exponentially
w.r.t. model depth.

3.4.2.1 Higher-Order Graph Neural Networks. Since the power of the WL algo-
rithm has been completely characterized (Arvind et al., 2015; Kiefer et al., 2015), GNNs
obey the same shortcomings. For example, both methods will give the same color to
every node in two regular graphs of same node degree, although there exists regular
graphs that are clearly non-isomorphic, cf. Figure 3.8b. Moreover, they are not capa-
ble of capturing simple graph theoretic properties, e.g., triangle counts, which are an
important measure in social network analysis (Milo et al., 2002; Newman, 2003). As
a result, a natural question to ask is whether we can design provably more powerful
GNNs that are able to overcome such shortcomings induced by the WL algorithm.

Here, the k-WL algorithm proposed by Laszl6 Babai (Cai et al., 1992) generalizes the
WL algorithm to higher-order sub-structures. To make the WL algorithm more pow-
erful, it colors k-sized subsets of nodes from V of a graph G = (V, £), k > 2, instead of
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nodes.> By defining a neighborhood between these subsets, we can leverage an update
rule that is similar to the one utilized in the WL algorithm. Formally, the k-WL algo-

rithm computes a coloring cﬁ,‘) € ¥ of a k-sized subset of nodes v = {vy,...,v5} CV
where the neighborhood of v is defined as

Nw)={w:w CV,|w| =k, |v|Nn|w| =k -1} (3.35)

That is, the neighborhood set NV (v) of v is described by all other k-sized subsets of
V that only differ in a single node. In iteration 0, the algorithm labels each k-sized
subset of V by its atomic type, i.e. two subsets v, w C V get the same color if the map
v — w induces an isomorphism between their induced subgraphs G[v] and Glw],
respectively. For iteration ¢ > 1, we define

c{¥) = Hasn (cgf_l), Y we N(v)}}) : (3.36)
Hence, two subsets v and w with cﬁf‘” = c%_l) will receive different colors in itera-

tion £ only if there exist a neighboring subset with a different coloring. The k-WL is
probably more powerful than the originally proposed WL algorithm. For example,
for k = 3, the k-WL can easily reason about triangle counts in the underlying graph
structure. Furthermore, by increasing k, the algorithm gets more powerful in terms
of distinguishing non-isomorphic graphs. In particular, for each k£ > 2, there exists
non-isomorphic graphs which can be distinguished by the (k 4 1)-WL but not by the
k-WL (Cai et al., 1992).

While powerful, the k-WL has the disadvantage of being inherently global, i.. it labels
a k-sized subset of nodes by looking at all other k-sized subsets that only differ in a
certain node, and therefore does not take the sparsity of the underlying graph into
account. In order to capture the local properties of the graph better, we propose to
leverage a local k-WL variant, in which the neighborhood set NV (v) of a k-sized subset
v C V is split into a local neighborhood N'®)(v) and a global neighborhood N'(¢) (v) =
N (v) \ N (v), where the local neighborhood NV *) (v) consists of all w € A (v) such
that (v, w) € & for the unique v € v \ w and the unique w € w \ v.

Given the aforementioned k-WL formulation, we can design a k-GNN operator as in
Equation (3.30) that exchanges messages between k-sized node subsets rather than
between single nodes, i.c.

B = o (WORED 1+ S W), (337)
weN ) (v)UN(D (v)

Similar to the k-WL, we can initialize hS}” to denote the atomic type of v C V as a one-
hot encoding. Moreover, one could split the sum of Equation (3.37) into two sums
ranging over (") (v) and N'(%)(v), using distinct parameters that enable the model
to learn the importance of local and global neighborhoods, respectively. Alternatively,
we can restrict Equation (3.37) to solely operate on the local neighborhood N (%) (v)
in order to scale k-GNNs to larger datasets and to prevent over-fitting. The running
time of k-GNN depends on |V|, k, and the sparsity of the graph, where each iteration
is bounded by the number of subsets of size k times the maximum degree. In order to

SFollowing Morris et al. (2017), we define a variant of the k-WL operating on k-sets instead of k-tuples
due to scalability and ease of notation.
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V0| V| | #

V diln 4
(o]
1-GNN 2-GNN 3-GNN
(a) Hierarchical 1-2-3-GNN architecture (b) Pooling from 2- to 3-GNN

Figure 3.10: Illustration of the hierarchical variant of the £&-GNN architecture. For
each k-sized node subset v C V, a representation hE,L) is learned that is
initialized with the learned representations of all (k — 1)-sized subsets w

of v, w Cw, |v| — |w| =1 (Morris et al., 2019).

scale our method to larger datasets, we can also utilize scalability methods of GNNSs,
which we introduce in detail in Chapter 5.

Importantly, Theorem 2 also applies to the relation of k-WL and k-GNN, i.e. there
exists parameter configurations for k-GNN that are as powerful as the set-based k-WL
variant in distinguishing non-isomorphic graph structures. This result trivially lifts to
the k-dimensional case due to the equivalence of Equation (3.29) and Equation (3.36),
which we prove in detail in Morris et al. (2019).

One key benefit of the end-to-end trainable k-GNN framework compared to the dis-
crete k-WL algorithm is that we can hierarchically combine representations learned
at different granularities, cf. Figure 3.10a. Concretely, rather than simply using one-
hot encoded feature inputs in a k-GNN, we propose to utilize a hierarchical variant of
k-GNN that uses the features learned by a (k — 1)-dimensional GNN (in addition the
its atomic type), i.e.

Y «o([Y, Y hP]- W) (3.38)
wCwv
v]—[w|=1

where w and v represent (k — 1)-sized and k-sized node subsets of V, respectively,

), w C v, obtained by a L-layer

cf. Figure 3.10b. Here, all final representations hir
(k—1)-GNN are pooled into an initial representation for R\ for further processing. We
further propose to learn such pooling mechanism via the trainable parameter matrix
W of appropriate size. Hence, the features are recursively learned from dimensions
1 to k in an end-to-end fashion. This hierarchical model also satisfies Theorem 2,
so its representational capacity is theoretically equivalent to a standard k-GNN (in
terms of its relationship to the k-WL) (Morris et al., 2019). Nonetheless, hierarchy is a
natural inductive bias for graph modeling, since many real-world graphs incorporate
hierarchical structure, so we expect this hierarchical formulation to offer empirical
utility.

3.4.2.2 Alternative Provably More Powerful GNN Variants. The relationship be-
tween Graph Neural Networks and the WL algorithm has attracted a lot of research re-
garding the design of provably more powerful GNN variants over the past few years.
For example, Maron et al. (2019b); Morris et al. (2020b) propose alternative neural
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architectures with the same power as the k-WL. Murphy et al. (2019b); Vignac et al.
(2020) propose to utilize node identifiers as additional initial node features to main-
tain information about which node has contributed which information to the aggre-
gated information, leading to provably more powerful architectures. To ensure invari-
ance w.r.t. permutation, aggregation is either performed across all possible permuta-
tions w € Sjy| (Murphy et al., 2019a,b) (and made tractable via canonical orientations
or sampling), or by passing node feature matrices instead of node feature vectors as
messages (Vignac et al., 2020). A similar idea was utilized in Sato et al. (2020), which
includes the addition of random node features instead of unique node identifiers to
the message passing phase. The latter was refined by Dasoulas et al. (2020); Abboud
et al. (2020), which investigate the connection between random coloring and univer-
sality. Furthermore, Bouritsas et al. (2020) calculate higher-order topology features in
a pre-processing stage, and You ef al. (2019); Li et al. (2020) incorporate distance infor-
mation encodings to the message passing phase. Finally, Zeng et al. (2020a) propose
to utilize deep L-layer GNNSs on shallow k-hop subgraphs around each node (L > k)
in combination with subgraph pooling, leading to provably more power in capturing
graph structural properties compared to the WL.

3.4.3 Trading Expressivity and Generalization

The relation of GNNs to the WL expressivity gave rise to the development of vari-
ous provably powerful GNN architectures, fostering our understanding on theoretical
graph-based model capacity. However, it is important to acknowledge that although
model expressivity is an important property, it might not be the deciding factor for
graph machine learning after all. In the end, we do not need to solve the graph iso-
morphism problem, but are instead interested in representations that are able to cap-
ture structural and feature-based local information in a meaningful and data-driven
way. Strong discriminative power might even backfire due to over-parametrization
and over-fitting, and provably more powerful GNN architectures are known to scale
less-well to bigger datasets and deeper models (Dwivedi et al., 2020).

To confirm this intuition, we have computed the completeness ratio, i.e. the fraction
of graphs that can be perfectly distinguished by the WL algorithm from all other
graphs (Morris et al., 2021a), across a wide-spread set of graph classification bench-
mark datasets (Morris et al., 2020a; Hu et al., 2020a), ¢f. Figure 3.11. The results reveal
that the WL is sufficiently expressive to distinguish most non-isomorphic graphs in
Morris et al. (2021a) after only two iterations. This effect even holds true on our pro-
posed large-scale OGB datasets (Hu et al., 2020a), cf. Table 3.1, which we introduce
in Section 5.4. Thus, although devising provably powerful graph learning architec-
tures is a meaningful theoretical endeavor, the key to improving real-world tasks lies
in improving GNN’s generalization abilities, for which so far only a few notable con-
tributions have been made (Kriege et al., 2018; Garg et al., 2020; Xu et al., 2021). Al-
ternatively, the generalization capabilities of a GNN can be improved by developing
more task-specific architectures that directly inject further domain-knowledge into its
design, which we do in Chapter 4.
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Figure 3.11: The ability of the WL algorithm to distinguish non-isomorphic graphs
(Morris et al., 2021a) over the benchmark datasets in Morris ef al. (2020a).
WL; refers to running the WL algorithm for exactly i iterations. It can
be seen that the WL is already sufficiently expressive to distinguish most
non-isomorphic graphs after only two iterations, and is able to distin-
guish all non-isomorphic graphs after exactly four iterations.

Ratio of WL distinguishable

Dataset . . .
non-isomorphic graph pairs
ogbg-moltox21 > 0.99
ogbg-moltoxcast > 0.99
ogbg-molfreesolv 1.00
ogbg-molesol 1.00
ogbg-mollipo 1.00
ogbg-molhiv > 0.99

Table 3.1: The ratio of distinguished non-isomorphic graph pairs by the WL algo-
rithm (Morris et al., 2021a) over the datasets in Hu et al. (2020a).

3.5 Evaluation

In this section, we showcase the application and power of GNNs across a wide range
of diverse tasks and domains. In detail, we will look into how GNNs enable state-
of-the-art results on tasks such as graph classification and regression (Section 3.5.1),
node classification (Section 3.5.2), superpixel image classification (Section 3.5.3) and
geometric learning (Section 3.5.4). We will, in particular, see how our own proposed
solutions, namely SplineCNN (cf. Section 3.3) and k-GNN (cf. Section 3.4) help to
improve performance in these diverse learning tasks.

3.5.1 Graph Classification and Regression

We perform an extensive set of experiments to evaluate the performance of GNNs and
its higher-order k-GNN variants on the task of graph classification and regression.
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3.5.1.1 Datasets. To compare GNN architectures to graph kernel approaches, we use
well-established small-scale benchmark datasets from the kernel literature (Morris
et al.,2020a). In particular, we make use of bioinformatic datasets (PROTEINS, PTC-
FM, MUTAG) and social network datasets (IMDB-BINARY, IMDB-MULTI). IMDB-
BINARY and IMDB-MULTI are movie collaboration datasets, where each graph cor-
responds to an ego-network of actors/actresses. An edge is drawn between two ac-
tors/actresses if they appear in the same movie, and the task is to infer the genre of
the given movie. PROTEINS contains graphs representing proteins according to the
graph model of Borgwardt ef al. (2005). Nodes represent secondary structure ele-
ments (SSEs) which are connected whenever there are neighbors either in the amino
acid sequence or in 3D space. The task is to perform protein function prediction. PTC-
FM is a dataset from the Predicte Toxicology Challenge (PTC) (Helma et al., 2001),
containing chemical compounds labeled according to carcinogenicity on female mice
(FM). MUTAG is a dataset consisting of mutagenetic aromatic and heteroaromatic
nitro compounds, divided into two classes according to their mutagenic effect on a
bacterium (Debnath et al., 1991; Kriege & Mutzel, 2012). The nodes of each graph in
these dataset are annotated with (discrete) labels or no labels. For datasets without
pre-defined node features, we use one-hot encodings of node degrees as inputs.

To demonstrate that GNNS, especially £-GNNSs, are able scale to larger datasets and
offer benefits on real-world applications, we further conduct experiments on the chal-
lenging and publicly available molecular QM9 dataset (Ramakrishnan ef al., 2014).
Molecules in the dataset consist of Hydrogen (H), Carbon (C), Oxygen (O), Nitro-
gen (N), and Flourine (F) atoms and contain up to 9 heavy (non-Hydrogen) atoms.
This results in about 134k drug-like organic molecules that span a wide range of chem-
istry. Additionally, a wide range of interesting and fundamental chemical properties
are pre-computed via expensive density functional theory. The aim here is to per-
form regression on twelve different targets, representing energetic (Uy, U, H, G, Cy),
electronic (enomo, eLumo, Ae), geometric ((R?), i, ), and thermodynamic (ZPVE)
properties. Sufficiently successful models on this dataset could help to automate chal-
lenging chemical search problems in drug discovery (Gilmer et al., 2017). For this, we
represent molecules as graphs, in which nodes represent atoms and edges represent
chemical bonds. This raw graph-based representation naturally avoids the need for
designing hand-crafted molecular fingerprints.

3.5.1.2 Experimental Setup. We evaluate the performance of a simple GNN (Hamil-
tonetal.,2017) (1-GNN) as defined in Equation (3.30), and compare against its higher-
order model, namely 1-2-3-GNN, cf. Section 3.4.2. On the QM9 dataset, we conduct
further studies on other higher-order variants, i.e. 1-2-GNN and 1-3-GNN. We always
use three layers for 1-GNN, and two layers for 2-GNN and 3-GNN, all with a hidden
feature dimensionality of 64. For the final classification and regression steps, we use
a three-layer MLP with binary cross entropy and mean squared error as loss criterion,
respectively. For classification, we use a dropout layer after the first layer of the MLP
with dropout probability p = 0.5 (Srivastava et al., 2014). We apply global mean pool-
ing to generate a vector representation of the graph from the computed node features.
For the higher-order variants, we utilize global pooling for each k, and concatenate the
resulting graph-wise vectors before feeding them into the MLP. Moreover, we use the
Apam optimizer (Kingma & Ba, 2015) with an initial learning rate of 10~2 and leverage
an adaptive learning rate decay based on validation results to a minimum of 10~°. We
train the classification networks for 100 epochs and the regression networks for 200
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Method Dataset
etho PROTEINS IMDB-BINARY IMDB-MULTI PTC-FM MUTAG

#graphs 1,113 1,000 1,500 349 188
Avg. #Nodes 39.06 19.77 13.00 14.11 17.93
Avg. #Edges 72.82 96.53 65.94 14.48 19.79
1-WL 73.8 72.5 51.5 62.9 78.3
2-WL 75.2 72.6 50.6 64.7 77.0
3-WL 74.7 73.5 49.7 61.5 83.2
WL-OA 75.3 73.1 50.4 62.7 84.5
1-GNN 72.2 71.2 47.7 59.3 82.2
1-2-3-GNN 75.5 74.2 49.5 62.8 86.1

Table 3.2: Mean classification accuracies [ % ] using 10-fold cross validation on var-
ious graph benchmark datasets from Morris et al. (2020a).

epochs. Notably, we train a separate model for predicting each of the twelve chemical
properties of the QM9 dataset.

For the graph classification experiments, we additionally compare against related
graph kernel approaches. In detail, we utilize the Weisfeiler-Lehman subtree kernel
(1-WL) (Shervashidze et al., 2011), the global-local k-WL kernel (k € {2,3}) (Morris
etal.,2017), and the Weisfeiler-Lehman Optimal Assignment kernel (WL-OA) (Kriege
etal.,2016). For each kernel, we first compute the normalized Gram matrix and obtain
classification accuracies using the C-SVM implementation of LiBSVM (Chang & Lin,
2011) afterwards. We select the C parameter from {1073,1072,...,102,10%} and the
number of WL iterations from {0, 1,...,5}.

For the smaller graph classification datasets (Morris ef al., 2020a), which we use for
comparison against the graph kernel methods, we perform 10-fold cross validation
and randomly sample 10% of each training fold to act as a validation set. For the QM9
dataset, we follow the dataset splits decribed in (Wu et al., 2018): We randomly sam-
ple 10% of the examples for validation, another 10% for testing, and use the remaining
examples for training. We use the same initial node features as described in Gilmer
et al. (2017). The code for reproducing all results utilizes the PyTorch Geometric li-
brary (Fey & Lenssen, 2019) and is available on GitHub.®

3.5.1.3 Results and Discussion. Table 3.2 shows the results for comparison with the
graph kernel methods on the graph classification benchmark datasets. Interestingly,
our hierarchical k&-GNN model performs on par or slightly better than the kernel
methods despite the small dataset sizes. We also find that the 1-2-3-GNN signifi-
cantly outperforms the standard GNN model on all five datasets, with the GNN be-
ing the overall weakest method across all tasks. We contribute this to the simplicity
of the utilized GNN, as recent works have shown superior results over kernels when
using more advanced pooling techniques (Ying et al., 2018b). We take a closer look
into advanced pooling techniques in Section 4.3. Here, we opted to use a standard
global pooling approach in order to compare simple GNN and k-GNN implementa-
tions with standard off-the-shelf kernels.

Code for k-GNN: https://github.com/chrsmrrs/k-gnn (last access: August 25, 2022)
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Method

Target | GNN 1-2-GNN 1-3GNN  1-2-3-GNN  °@n
B 0.493 0.493 0.473 0476 1.0%
a 0.78 0.27 0.46 0.27 65.3%
como 000321 0.00331 0.00328 0.00337 —
cumo 000355 0.00350  0.00354 0.00351 1.4%
Ae 0.0049 0.0047 0.0046 0.0048 6.1%
(R2) 341 215 2538 229 37.0%
ZPVE 000124  0.00018  0.00064 000019 855%
U 232 0.0357 0.6855 0.0427 98.5%
U 2.08 0.107 0.686 0.111 94.9%
o 223 0.070 0.794 0.0419 98.1%
G 1.94 0.140 0.587 0.0469 97.6%
C, 0.27 0.0989 0.158 0.0944 65.0%

Table 3.3: Mean absolute errors on the QM9 dataset (Ramakrishnan et al., 2014) of
k-GNN variants (Morris et al., 2019). The far-right column shows the im-
provement of the best .-GNN model in comparison to the 1-GNN baseline.

Table 3.3 shows the results for the QM9 dataset. On eleven out of twelve targets,
all our hierarchical variants beat the classical node-wise GNN model. For example,
on the target H, we achieve a 98.1% improvement in mean absolute error compared
to 1-GNN. However, the additional structural information extracted by the k-GNN
layers does not serve all tasks equally, leading to huge differences in gains across the
targets. It should be further noted that our £-GNN models have more parameters than
the 1-GNN model, since we stack two additional GNN layers for each k. However,
extending the 1-GNN model by additional layers to match the number of parameters
of the k-GNN did not lead to better results in any experiment.

3.5.2 Node Classification

Next, we address the problem of (semi-supervised) node classification, and see how
GNNSs and SplineCNNSs in particular enable state-of-the-art performance.

3.5.2.1 Datasets. We utilize the three citation graph datasets Cora, CiteSeer and Pub-
Med (Sen et al., 2008; Yang et al., 2016). Here, nodes are scientific publications and
edges represent citation links between these documents. The datasets contain sparse
bag-of-words feature vectors for each document (Kipf & Welling, 2017). Citation links
are treated as undirected edges from which we obain a binary, symmetric adjacency
matrix. The task is to predict the categories of documents based on known categories
from a subet of nodes Viain C V.

3.5.2.2 Experimental Setup. Following the experimental setup of Levie et al. (2017),
we randomly split the dataset into 500 nodes used for validation and testing each,
and utilize the remaining nodes as training nodes. We repeat experiments for 100
times with different parameter initialization and varying random splits. We evaluate
the performance of three different GNNs models: GCN (Kipf & Welling, 2017), GAT
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Dataset

Method Cora CiteSeer PubMed
#Nodes 2,708 3,327 19,717
#Edges 5,278 4,552 44,324
MLP 74.924+1.19 73.3941.69 87.06+1.38
Label Propagation 83.72+1.49 69.80+1.95 83.76+1.71
GCN 89.15+1.17 77.37+1.45 87.73-+1.24
GAT 89.11+1.19 77.28-+1.79 88.13+1.29
SplineCNN 89.51+1.21 78.34-+1.60 88.58-£1.39

Table 3.4: Mean classification accuracies with standard deviation [%] on the three
citation graphs from Sen et al. (2008); Yang et al. (2016), computed across
100 different runs.

(Velickovi¢ et al., 2018) and SplineCNN (Fey et al., 2018) as described in Section 3.2.4
and Section 3.3. We utilize two-layer GNNs with a hidden feature dimensionality of
16 (64 across 8 heads for GAT), and use ReLU as our non-linear activation function
(Glorot et al., 2011). While GCN and GAT will transform neighboring node features
via the same weight matrix, SplineCNN learns an anisotropic aggregation based on
pre-defined pseudo-coordinate representations. For pseudo-coordinates, we choose
the globally normalized degree of source nodes, i.ce. e, , = deg(w)/ max,cy deg(v),
mapped into the fixed interval [—1, 1], which allows the network to discrimate be-
tween highly cited works and less cited works to determine the category of a docu-
ment more accurately. We use a B-spline basis degree of m = 1 and a kernel size of 2
to train SplineCNN.

We further compare against a graph-agnostic MLP as well as a (non-trainable) Label
Propagation (Zhu et al., 2003) baseline. The MLP will only make use of feature infor-
mation for prediction, while the Label Propagation algorithm solely relies on graph-
structure and ground-truth label information. In contrast, GNNs are able to incorpo-
rate both feature and structural information into their final prediction.

Training was done using the Apam optimization method (Kingma & Ba, 2015) for
200 epochs with learning rate of 1072, dropout probability p = 0.5 (Srivastava et al.,
2014) and L, regularization of 5 - 1072. As loss function, the cross entropy between
the network’s softmax output and a one-hot target distribution was used. The code
for reproducing all results is directly incorporated into the PyTorch Geometric library
(Fey & Lenssen, 2019).”

3.5.2.3 Results and Discussion. Results of our and related methods are given in Ta-
ble 3.4, which reports the mean classification accuracy with standard deviation over
100 different runs across all three citation networks. Notably, all GNNs variants out-
perform the MLP and Label Propagation baselines by a significant margin, highlight-
ing the benefits in fusing both feature and structural information into a unified model.
Furthermore, it can be seen that SplineCNN consistently improves the state-of-the-art
over all datasets. We contribute this improvement to the filtering based on pseudo-

"https://github.com/rustyls/pytorch_geometric (last access: August 25, 2022)
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(a) Superpixels graph example (b) Classification accuracy

Figure 3.12: MNIST superpixels (a) example and (b) classification accuracy of
SplineCNN (Fey et al., 2018), using different pseudo-coordinate variants
(Cartesian, polar) and B-spline basis degrees (linear, quadratic, cubic).

coordinates, which contains node degrees as additional information to learn more
complex kernel functions. This indicates that SplineCNNs can be successfully ap-
plied to irregular but non-geometric data as well by being able to improve previous
results in this domain.

3.5.3 Superpixels Graph Classification

In image recognition, input data fed to models tend to be very high-dimensional, re-
quiring a lot of labelled data (Knyazev et al., 2019a). Here, we consider an alternative
approach that reduces the input dimensionality by converting images into superpixels
graph representations (Radhakrishna et al., 2012), which group redundant pixel-wise
information into clusters that represent nodes. Despite a certain fine-grained loss of
information, framing image recognition as a graph-based image classification prob-
lem has the advantage to reduce the model size by a significant amount of parameters,
as far fewer GNN iterations are necessary to capture long-range information.

3.5.3.1 Dataset. Here, we make use of the MNIST dataset (LeCun et al., 1998) which
consists of 70k greyscale 28 x 28-sized images of handwritten digits (60k for training
and 10k for testing). Following Monti ef al. (2017), we represent each image as an
embedded graph of 75 nodes that define the centroids of superpixels, cf. Figure 3.12a
for an example. This amounts to a reduction in input dimensionality of around 90%.
Superpixels are obtained using the SLIC algorithm (Radhakrishna et al., 2012), after
which we obtain the edge connectivity via k-nearest neighbor search. Notably, each
graph utilizes different node positions and connectivities, so that traditional CNNs
cannot be applied anymore.

3.5.3.2 Experimental Setup. We utilize SplineCNN (Section 3.3) for learning on the
given two-dimensional embedded graphs, and evaluate all configurations of B-spline
basis degree m (linear, quadratic, cubic) and possible pseudo-coordinate representa-
tions (Cartesian, polar). We make use of a two-layer SplineCNN architecture with
intermediate hidden feature dimensionality of 32 and 64, after which we perform a
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Figure 3.13: Visualization of the 32 kernels from the first SplineCNN layer (Fey
etal.,2018) with kernel size 5 x 5 and B-spline basis degree m = 1, trained
on the MNIST superpixels dataset (Monti et al., 2017).

global mean pooling and a two-layer MLP. We use the Exponential Linear Unit (ELU)
as non-linearity after each spline-based convolutional layer. For Cartesian coordi-
nates, we choose the kernel size to be (4 + m) x (4 + m) and for polar coordinates
(14 m) x 8. Notably, our SplineCNN architecture use intermediate pooling operators
based on the Gracrus method (Dhillon et al., 2007) after each convolution, as pro-
posed by Defferrard et al. (2016). The pooling operation is able to obtain a coarsened
graph by deriving a clustering on the graph nodes, aggregating nodes in one cluster
and computing new pseudo-coordinates and new edge-connectivity for each of the
new nodes, cf. Section 4.3. Training was done for 20 epochs with a batch size of 64,
initial learning rate 10~2 and dropout probability p = 0.5 (Srivastava ef al., 2014). All
networks were trained for 30 epochs using the Apam optimizer (Kingma & Ba, 2015).

3.5.3.3 Results and Discussion. All results of the MNIST superpixels experiment
are shown in Figure 3.12b. The best model is able to reach a final accuracy of 95.22%,
which improves upon previous results from MoNet by 4.11 percentage points (Monti
et al., 2017). While we are using a similar architecture and the same input data as
MoNet, the better results are an indication that our operator is able to capture more
relevant information in the structure of the input. This can be explained by the fact
that, in contrast to the MoNet kernels, our SplineCNN kernel function leverages indi-
vidual trainable weights for each combination of input and output feature maps, just
like the filters in traditional CNNSs. In contrast, MoNet leverages pseudo-coordinates
to compute attention coefficients to guide aggregation. Furthermore, we only no-
tice small differences in accuracy for varying B-spline basis degree m and pseudo-
coordinate representations. However, lower m and using Cartesian coordinates per-
forms slightly better than the other configurations.

In addition, we visualize the 32 learned input kernels of the first spline-based convo-
lutional layer, cf. Figure 3.13. It can be observed that edge detecting patterns are still
visible despite being training on irregularly structured and compressed data. How-
ever, it is worth noting that there is still room for improvement, as a traditional CNN
has no problem with reaching 99% accuracy on the image-based MNIST dataset.

3.5.4 Shape Correspondence

As our last and largest experiment, we validate SplineCNN on a collection of three-
dimensional meshes solving the task of shape correspondence similar to Masci et al.
(2015); Boscaini et al. (2016); Monti et al. (2017); Litany et al. (2017). Shape correspon-
dence refers to the task of labeling each node of a given shape to the corresponding
node of a reference shape (Masci et al., 2015).
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Figure 3.14: Node-wise geodesic errors of SplineCNN predictions (Fey et al., 2018)
on all 20 meshes of the FAUST test dataset (Bogo et al., 2014).

3.5.4.1 Dataset. We use the FAUST dataset (Bogo et al., 2014), containing 10 scanned
human shapes in 10 different poses, resulting in a total of 100 non-watertight meshes
with 6,890 nodes each, cf. Figure 3.14 for mesh examples. The first 80 subjects in
FAUST were used for training and the remaining 20 subjects for testing, following
the datasets splits introduced in Monti et al. (2017). Ground-truth correspondence of
FAUST meshes are given implicitly, since nodes are sorted in the exact same order for
every example. Correspondence quality is then measured according to the Princeton
benchmark protocol (Kim et al., 2011), counting the percentage of derived correspon-
dences that lie within a geodesic radius r around the correct node.

3.5.4.2 Experimental Setup. We apply a SplineCNN architecture with 6 convolu-
tional layers, using a hidden feature dimensionality of 64 for each. As non-linear
activation function, ELU is used after each layer. We further cast the shape corre-
spondence experiment to a node classification task, in which a final linear layer maps
to exactly 6,890 different outputs, denoting the probability that a node corresponds to
a specific node in the reference shape. However, other loss criterion formulations are
applicable as well, cf. Section 4.4. For Cartesian coordinates, we choose the kernel size
tobe (44 m) x (44 m) x (44 m) and for spherical coordinates (4 +m) x 8 x (4 +m).
We evaluate our method on multiple choices of B-spline basis degree m € {1,2,3}.
Training was done for 100 epochs with a batch size of 1, initial learning rate 10~2
and dropout probability p = 0.5 (Srivastava et al., 2014), using the Abam optimizer
(Kingma & Ba, 2015) and cross entropy loss.

In contrast to related approaches (Masci et al., 2015; Boscaini et al., 2016; Monti et al.,
2017; Litany et al., 2017), we go without hand-crafted feature descriptors as inputs,
e.g., SHOT descriptors (Tombari ef al., 2010), and force the network to learn from the
geometry, i.e. the spatial relations, itself. Therefore, input features are trivially given
by 1 € RIVI*1. These simplifications reduce the computation time and memory con-
sumption that are required to pre-process the data by a wide margin, making training
and inference completely end-to-end and very efficient.
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Figure 3.15: Geodesic error plots of the shape correspondence experiments with
(a) SplineCNN and related approaches and (b) different SplineCNN
configurations (Fey et al., 2018). The z-axis displays the geodesic dis-
tance in % of diameter and the y-axis displays the percentage of corre-
spondences that lie within a given geodesic radius around the correct
node. Our SplineCNN achieves high accuracy for low geodesic error
compared to FMNet (Litany ef al., 2017) and significantly outperforms
other approaches like MoNet (Monti et al., 2017), GCNN (Masci et al.,
2015) and ACNN (Boscaini ef al., 2016).

3.5.4.3 Results and Discussion. Obtained accuracies for different geodesic errors are
plotted in Figure 3.15. The results for different SplineCNN configurations match the
observations from the MNIST superpixels experiments, where only small differences
could be seen but using Cartesian coordinates and small B-spline degrees perform
slightly better. Our SplineCNN outperforms all other approaches with 99.20% of pre-
dictions on the test set having zero geodesic error. However, the global behavior over
larger geodesic error bounds is slightly worse in comparison to FMNet (Litany et al.,
2017). In Figure 3.14, it can be seen that most nodes are classified correctly but that
the few false classifications have a high geodesic error. We contribute this differences
to the varying loss formulations. While we train against a one-hot binary vector us-
ing the cross entropy loss, FMNet trains using a specialized soft error loss, which is a
more geometrically meaningful criterion that punishes geodesically far-away predic-
tions stronger than predictions near the correct node (Litany et al., 2017). However,
it is worth highlighting that we do not use SHOT descriptors as input features, like
all other approaches do we compare against. Instead, we train only on the geometric
structure of the meshes.

We conduct runtime experiments to highlight this benefit even further. In particular,
we report an average forward step runtime of 0.043 seconds for a single FAUST ex-
ample processed by the best performing SplineCNN architecture on a single NVIDIA
GTX 1080 Ti. We train this network in approximately 40 minutes. Regarding scal-
ability, we are able to stack up to 160 spline-based convolutional layers before run-
ning out-of-memory, while the runtime only scales linearly with the number of layers.
However, for this task, we do not observe significant improvements in accuracy when
using deeper networks.
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4

Task-Specific Design of
Graph Neural Networks

Although Graph Neural Networks are a powerful class of neural networks for op-
erating on graph-structured data, they are also subject to various weaknesses that
require task-specific solutions in order to reach desirable performance. One such
weakness is their inability to propagate local information between distant nodes.
In order to overcome this restriction, we propose the Dynamic Neighborhood Ag-
gregation, which allows for a selective and node-adaptive aggregation of neighbors
of potentially differing locality. Furthermore, Graph Neural Networks are limited
by their incapability to detect certain sub-structures, e.g., circles, which is an im-
portant property in molecular learning. To circumvent, we propose the Hierarchi-
cal Inter-Message Passing architecture that leverages message-passing in higher-
order substructures while still being very efficient. Furthermore, Graph Neural
Networks are inherently local, which limits their applicability in tasks in which
node-level predictions require global information, e.g., in the problem of graph
matching. Here, we present a neural architecture named Deep Graph Matching
Consensus that resolves ambiguities induced by locality via distributing global
encodings in local neighborhoods.

41 Introduction . . ... ... .. .. ... .. 55
4.2 Locality-Adaptive Neighborhood Aggregation . . ... ... ... ... 57
4.3 Hierarchical Learning in Molecular Graphs . . . . . ... ... ..... 63
4.4 Graph Matching via Differentiable Neighborhood Consensus . . . . . . 72

4.1 Introduction

Graph Neural Networks (GNNs) are able to learn from graph-structured data in a
flexible manner and end-to-end fashion, and can be applied to a wide range of ap-
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plications, domains and learning tasks, c¢f. Chapter 3. In particular, they are able to
reason about graph structure and feature information simultaneously without the ne-
cessity of manual feature engineering, which quickly led to major breakthroughs on
a variety of benchmark datasets (Kipf & Welling, 2017; Gilmer et al., 2017; Veli¢kovi¢
et al., 2018).

Despite their flexibility and expressivity, they are nonetheless subject to inherent weak-
nesses that prevent them from solving certain tasks with high precision, induced by
the purely local and iteratively applied message passing formulation. In this chapter,
we will present those weaknesses in detail, and propose solutions to overcome them
in an efficient manner.

Specifically, in Section 4.2, we introduce the over-squashing or over-smoothing problem
induced by the exponentially growing information pushed into fixed-sized vectors.
In particular, such over-smoothing of node representations over layers limits a GNN'’s
capability to propagate local information between distant nodes in the graph. Here,
we propose the Dynamic Neighborhood Aggregation (DNA) approach, a procedure to
allow a GNN to perform a selective and node-adaptive aggregation of neighbors of
potentially differing locality. DNA exploits a highly adaptive neighborhood aggrega-
tion procedure based on attention, which is able to aggregate local information from
neighbors far away, avoiding the over-smoothing problem in return.

Although GNNs are powerful in capturing a broad class of (sub-)graph structures,
they are nonetheless unable to maintain information about which node in a recep-
tive field has contributed what to the aggregated output, limiting their capabilities in,
e.g., detecting cycles. Such loss of information can have crucial impact on the final
model performance in tasks in which cycles denote special meaning, e.g., in molec-
ular graphs. In Section 4.3, we present the Hierarchical Inter-Message Passing (HIMP)
network, which can naturally overcome the aforementioned restriction of GNNs by
jointly operating on two complementary graph representations: the original graph
representation and its coarsened higher-order variant obtained via tree decomposi-
tion. Such higher-order information is then exchanged via inter-message passing in
an efficient manner, which lets a GNN reason about hierarchies and cluster assign-
ments, and strengthens its expressive power in return.

Since GNNs operate in a purely local fashion, they are unable to capture locations of
nodes within the broader context of the graph structure. For example, if two nodes
reside in very different parts of the graph but share topologically identical neighbor-
hoods, they will be embedded to the same point in the embedding space. This creates
ambiguities in learning tasks in which both topological and positional information
is important, e.g., in link prediction or graph matching. In Section 4.4, we present
the Deep Graph Matching Consensus (DGMC) architecture to tackle the task of graph
matching by incorporating both positional and topological information in a two-stage
pipeline. In particular, ambiguities in matchings induced by locality are resolved by
sparsely distributing global encodings in local neighborhoods around each node in
order to reach a data-driven neighborhood consensus.
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4.2 Locality-Adaptive Neighborhood Aggregation

Many different Graph Neural Network variants have been proposed and significantly
advanced the state-of-the-art in Graph Representation Learning (Defferrard et al.,
2016; Kipf & Welling, 2017; Monti et al., 2017; Gilmer et al., 2017; Hamilton et al., 2017;
Veli¢kovié et al., 2018; Fey et al., 2018). However, while most of these approaches fo-
cus on novel instantiations of the neural message passing framework, deeply stacking
those layers usually result in gradually decreasing performance despite having, in
principal, access to a wider range of information (Kipf & Welling, 2017; Fey, 2019).
This is, in particular, in high contrast to the application of deep learning in other do-
mains, e.g., image data, where deeply stacked neural networks allow to learn highly
non-linear function approximators based on large receptive field sizes (Krizhevsky
et al., 2012; Simonyan & Zisserman, 2014; He et al., 2016).

Such decreased performance is usually framed as the over-smoothing or over-squashing
phenomenon of GNNs (Xu et al., 2018; NT & Maehara, 2019; Zhao & Akoglu, 2020; Yan
etal.,2021; Zhu et al., 2021a; Alon & Yahav, 2021), and explained by the exponentially
growing neighborhood information pushed into fixed-sized vectors. In particular, it
has been shown that there even exist some GNNs that produce node representations
that become increasingly washed out and gradually more indistinguishable from each
other w.r.t. model depth, while converging to a stationary point in case the number of
layers goes to infinity (Li et al., 2018a). Hence, most GNN formulations are implicitly
designed under homophily assumptions, in which the required information for a given
down-stream task is accessible from the direct local neighborhood (Zhu et al., 2021a).
As a result, GNNs based on homophily assumptions have difficulties to propagate
local information between distant nodes in the graph, and are therefore limited to at
most two or three layers. We give a detailed overview of the over-smoothing problem
in GNNs and review related methods in Section 4.2.1.

In order to overcome the weakness of over-smoothing induced by deep Graph Neural
Networks, we present the Dynamic Neighborhood Aggregation (DNA) in Section 4.2.2,
a procedure that allows for a selective and node-adaptive aggregation of neighbors
of potentially differing locality. Based on the so-called Jumping Knowledge networks
(Xu et al., 2018), DNA exploits a highly adaptive neighborhood aggregation proce-
dure based on scaled dot-product attention (Vaswani ef al., 2017), which is able to
aggregate local information from neighbors far away, avoiding the over-smoothing
problem in return. In our experimental evaluation (Section 4.2.3), we show that our
DNA approach is able to outperform traditional stacking of GNN layers, and does not
result in decreasing performance the deeper our GNN gets.

4.2.1 State-of-the-Art

The over-smoothing phenomenon of GNNs has been analyzed by connecting the in-
fluence distribution of neighborhoods (Xu et al., 2018), i.e. the range of nodes whose
features affect a given node’s representation, to the spread of random walks. Overall,
they observe that the over-smoothing problem is well related to the given graph struc-
ture. For example, random walk distributions inside expander-like graph structures,
e.g., social networks, collapse rapidly in O(log [V|) steps to an almost-uniform distribu-
tion (Hoory et al., 2006), thus leading to node representations that are almost equally
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influenced by all other nodes in the graph and carry limited information about indi-
vidual nodes. In contrast, random walks starting in trees with bounded width con-
verge more slowly, letting GNNSs be able to retain more local information (Xu et al.,
2018).

By analyzing GNNs from the graph signal processing perspective (Shuman et al.,
2013), it has been further shown that GNN instantiations that apply Laplacian-style
propagation are subject to low-pass filter characteristics (Li et al., 2018a; NT & Mae-
hara, 2019). Thus, the graph structure only provides a mean to denoise initially given
node representations, leading to more and more uninformative node representations
w.r.t. model depth. Repeatedly applying smoothing too many times drives node rep-
resentations to a stationary point, washing away all the information from these fea-
tures (NT & Maehara, 2019). Notably, not all GNN instantiations are necessarily lim-
ited to perform low-pass filtering (Xu et al., 2019c; Wang et al., 2019¢; Fey et al., 2018).

Alon & Yahav (2021) explain the phenomenon of over-smoothing by relating the
GNN computation graph to a bottleneck, in which exponentially growing information
over layers is squashed into fixed-length vectors. This bottleneck hinders GNNs from
fitting long-range signals in the training data. Notably, they find that GNNs that ab-
sorb incoming edges equally, such as GCN and Graph Isomorphism Network (GIN),
are more susceptible to over-smoothing than attention-based variants such as Graph
Attention Network (GAT) (Alon & Yahav, 2021).

Zhao & Akoglu (2020) propose two measures to quantify over-smoothing in GNNs:
a row-diff measure that computes the average of all pair-wise distances between node
features (node-wise over-smoothing), and a col-diff measure that computes the average
of all pair-wise distances between the individual feature values of all nodes (feature-
wise over-smoothing). As a result, they propose a graph-specific normalization tech-
nique that aims to maximize both measures.

Recent efforts in GNN model design also propose the usage of skip and residual con-
nections or jumping knowledge to limit the effects of over-smoothing, cf. Section 3.2.4.
For example, Hamilton et al. (2017) and Li et al. (2016b) propose to employ learnable
skip-connections and Gated Recurrent Units (GRUs) to be able to preserve localized
central node information, respectively. Alternative ideas utilize the concepts of resid-
ual connections to be able to teleport back to earlier representations (Klicpera et al.,
2019a; Chen et al., 2020b). Jumping Knowledge networks (Xu et al., 2018) aggregate
layer-wise representations to obtain the final output representation, e.g., via concate-
nation, pooling or attention.

Furthermore, Yan et al. (2021) relate over-smoothing to the homophily assumption
in common GNNSs via a unified theoretical framework. Formally, the homophily of a
graph can be determined by the fraction of edges whose nodes share the same class la-
bel (intra-class edges). In particular, Yan ef al. (2021) analyze the capabilities of GNNs
to linearly separate node representations that belong to different classes w.r.t. the
number of layers. As a result, allowing GNN s to effectively operate in heterophily
graphs (which requires the aggregation of informative representations from distant
nodes) weakens the effects of over-smoothing and vice versa.

This observation has motiviated a tremendous amount of research regarding the ef-
fective application of GNNSs in a heterophily graph setting. Zhu et al. (2020) identify
a set of key design principles to boost graph learning in heterophily, e.g., ego- and
neighbor-embedding separation, higher-order neighborhoods, and intermediate rep-
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resentation re-use. Our DNA approach extends these insights by using intermediate
representations to guide propagation in a novel fashion. Zhu et al. (2021a) propose a
two-stage architecture, which first estimates the class of a node in isolation, and uses
the obtained estimation to guide the propagation process in a second stage. Yan et al.
(2021) propose signed message passing, e.g., via negative attention weights. Similarly,
DNA extends the attention procedure to be able to discard uninformative information.

4.2.2 Attentional Jumping Knowledge Neighborhood Aggregation

Closely related to the Jumping Knowledge (JK) networks (Xu et al., 2018), we are
seeking for a way to let a GNN node-adaptively craft receptive-fields for a specific
task at hand, cf. Section 3.2.4. JK nets achieve this by dynamically jumping to the
most representative layer-wise embedding after a fixed range of node representations
were obtained. As a result, Jumping Knowledge can not guarantee that higher-order
features will not become washed out in later layers, but instead will fall back to more
localized information preserved from earlier representations (Fey, 2019). Further-
more, fine-grained details may still get lost very early on in expander-like subgraph
structures despite the use of Jumping Knowledge (Hoory ef al., 2006; Xu et al., 2018).

In contrast, we propose to allow jumps to earlier knowledge immediately while aggre-
gating information from neigbors. This results in a highly-dynamic receptive-field
in which neighborhood information is potentially gathered from representations of
differing locality. Each node’s representation controls its own spread-out, possibly
aggregating more global information in one branch, and falling back to more local
information in others (Fey, 2019).

Formally, we allow each node-neighborhood pair (w,v) € £ to attend to all its for-

mer representations h$j ), ceey hgf _1), and use its most informative representation for
neighborhood aggregation (Fey, 2019):
RO = 1 (B, B, s we N} (4.1)
where
Y . = ATTENTION(BZ) (hgf_l), {hg), ceey hff_l)D , (4.2)

in which ATTENTION(;) (+,-) computes a neighboring node embedding for w based on
all its previous representations [h&,} ). hY 71)], dependent on v. In practice, we im-

plement ATTENTION(;) (+,-) via scaled dot-product attention (Vaswani et al., 2017). That
is,

(4.3)

TW, . T
ArtenTIONg (g, K) = softmax <q Wi - (KW;) ) K

VD

with Wi and W, € RP*P denoting trainable symmetric projection matrices (Vaswani
et al., 2017; Fey, 2019). Dot-product attention weights a set of keys K € RIVIXD ac-
cording to a given query g € R” by using the softmax-normalized results as weight-

ing coefficients. As such, the usage of ATTENTION(;) as part of a GNN pipeline will
compute the most informative representation of node w for aggregation to node v,
e.g., more global information from later layers or more local information from earlier
ones. Importantly, attended information is both dependent on both node v and w,
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self-preserving state
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Figure 4.1: Overview of the computation flow of our DNA procedure. Given cur-

rent node representation hq(f) as query, a node-adaptive embedding hq(lew
gets computed for all neighbors w € N (v) based on their former repre-

sentations hg,,l) and hg,?), either preserving current state, previous state, or
no state at all. In addition, self-attention is applied to retain central node
information as well, .., when applied within a GCN (Fey et al., 2020b).

leading to a node-adaptive aggregation that is different for every node in the graph
(while still being able to generalize to unseen nodes). By ensuring that earlier infor-
mation can be preserved, our operator can be stacked deep by design, in particular
without the need of JK nets (Fey, 2019).

In practice, we replace the single attention module by multi-head attention with a user-
defined number of heads while maintaining the same number of parameters. We

implemented féz) as the Graph Convolutional Network (GCN) operator from Kipf
& Welling (2017), although any other GNN layer is applicable as well. For example,
using the GAT operator (Velitkovi¢ et al., 2018) allows us to perform both attention-
based message passing across the number of layers and the number of neighbors.

Importantly, we also incorporate an additional parameter to the softmax distribution
of the ATTENTION(BZ) module to allow the model to refuse the aggregation from individ-
ual neighbors, as illustrated in Figure 4.1. Instead of actually over-parametrizing the
resulting distribution, we restrict this parameter to be fixed (Goodfellow et al., 2016),

leading to a softmax function of the form (Fey, 2019)

softmax(x), = %. (44)

In case all attention scores of previous layers are pushed to large negative values, no
information will be received from this particular neighbor. As such, the model can
learn to avoid aggregation from neighbors that might be irrelevant for a given down-
stream task.

Our proposed operator does scale linearly in the number of previously seen node rep-
resentations for each edge, i.e. O(L - |£]). Importantly, the slight increase in runtime
complexity does not effect memory consumption of GNN training at all, as node rep-
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resentations for all layers need to be kept in memory anyways in order to apply back
propagation. Notably, in order to leverage the attention module, input and output
feature dimensionalities are forced to remain equal across all layers. We found this to
be only a weak constraint as it is common practice in most GNN architectures (Gilmer
etal.,2017; Xu et al., 2018).

Lastly, our attention module introduces additional parameters to a GNN pipeline. In
order to avoid over-fitting on small-scale graphs, we apply dropout (Srivastava et al.,
2014) to the softmax-normalized attention weights and make use of grouped linear

projections (Krizhevsky et al., 2012) for weights Wl(e) and Wéz). Grouped linear pro-
jections control the channel-wise connections between an input z € R” and an output
y € RP by reducing the number of parameters by G, the number of groups. G must
be chosen so that D is divisible by G. If G = D, the operation is performed inde-
pendently over every channel in D (Chollet, 2017). The grouped projections regulate
the attention heads by forcing them to only have a local influence on other attention
heads (or even restricting them to have no influence at all). We observed that these
adjustments greatly help the model to avoid over-fitting while still maintaining large
hidden feature dimensionalities (Fey, 2019).

4.2.3 Evaluation

We evaluate our DNA approach on eight transductive benchmark datasets: the tasks
of classifying academic papers (Cora, CiteSeer, PubMed, Cora Full) (Sen et al., 2008;
Bojchevski & Gilinnemann, 2018), active research fields of authors in co-author graphs
(Coauthor CS, Coauthor Physics) (Shchur ef al., 2018) and classifying product cate-
gories in co-purchase graphs (Amazon Computers, Amazon Photo) (Shchur et al.,
2018). We randomly split nodes into 20% nodes for training, 20% for validation, and
60% for testing. The code of DNA and all its training scripts is integrated into the
PyTorch Geometric! (Fey & Lenssen, 2019) library.

We compare our DNA approach to GCN (Kipf & Welling, 2017) and GAT (Veli¢kovi¢
et al., 2018) with and without Jumping Knowledge, closely following the network ar-
chitectures as described in Xu et al. (2018): We first project node features separately
into a lower-dimensional space, apply a number of GNN layers L € {1,2,3,4,5}
with hidden feature dimensionality F' € {16, 32,64,128} and ReLU non-linearity,
and perform the final prediction via a fully-connected layer. All models were imple-
mented using grouped linear projections and evaluated with the number of groups
G € {1,8,16}.

We use the Abam optimizer (Kingma & Ba, 2015) with a learning rate of 0.005 and stop
training early with a patience value of 10. We apply a fixed dropout rate of 0.5 before
and after GNN layer execution and apply L regularization of 5 - 10~ to all model
parameters. For our proposed model and GAT, we additionally tune the number of
heads H € {8,16} and set the dropout rate of attention weights to 0.8. Hyperparam-
eter configurations of the best performing models with respect to the validation set
are reported in Fey (2019).

Table 4.1 shows the average classification accuracy over 10 random data splits and
initializations. Our DNA approach outperforms traditional stacking of GNN layers

ICode for DNA: https://github.com/rustyls/pytorch_geometric (last access: August 25, 2022)
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Model Cora CiteSeer PubMed Cora Full
JK-None  83.20+0.98 73.87+0.81 86.93+0.25 62.55+0.60
Z JK-Concat 83.99+0.72 73.77+0.89 87.52+0.25 65.62+0.49
QO JK-Pool 84.36-+0.62 73.86+0.97 87.61+0.27 65.14-+0.81
JK-LSTM  80.46-+0.88 72.92+0.69 87.38+0.29 55.39-+0.40
JK-None  86.35-0.74 73.70+0.53 86.76+0.25 65.70-+0.32
z JK-Concat 84.70-+0.57 73.97+0.46 88.73-:0.30 66.18-+£0.47
O JK-Pool 83.91+0.87 73.42+0.71 88.44+0.33 61.52+1.17
JK-LSTM  78.08+1.53 71.84+1.20 87.85+0.26 55.41+0.35
« G=1 83.88-£0.50 73.37+0.83 87.80-£0.25 63.72+0.44
% G=38 85.86--0.45 74.19+0.66 88.04+0.17 66.50-+-0.42
G =16 86.15-+0.57 74.50-+0.62 88.04-+0.22 66.64-+0.47
Model Coauthor CS Coauthor Physics Amazon Computers Amazon Photo
JK-None ~ 92.90-+0.14 95.90-+0.16 89.32-+0.20 93.11+0.27
Z JK-Concat 95.44+0.32 96.71+0.15 90.27+0.28 94.74-+0.29
QO JK-Pool 95.47+0.21 96.74+0.17 90.30-+0.37 94.64+0.24
JK-LSTM  94.40-+0.28 96.55-0.08 90.06-+0.23 94.54-+0.30
JK-None  93.54+0.17 96.21-+0.08 88.02+£1.39 93.00-+0.42
z JK-Concat 95.12-+0.18 96.66-0.09 89.67+0.59 94.93-+0.31
O JK-Pool 94.84-+0.16 96.62-0.06 89.42+0.47 94.80-£0.24
JK-LSTM  94.09-+0.23 96.45-+0.05 87.26+1.82 94.47+0.33
< G= 94.02-+0.17 96.49-0.10 90.52-£0.40 94.89-0.26
% G=38 94.46-+0.15 96.58-0.09 90.99-:0.40 94.96-:0.24
G =16 94.64-+0.15 96.53-0.10 90.81+0.38 95.00-0.19

Table 4.1: Results of our DNA approach in comparison to GCN and GAT with and
without Jumping Knowledge. Mean accuracy and standard deviations are
computed across 10 random data splits and initializations (Fey, 2019).

(JK-None) and even exceeds the performance of using Jumping Knowledge in most
cases. Noticeably, the use of grouped linear projections greatly improves attention-
based approaches, especially when combined with large hidden feature dimension-
alities. We noticed gains in accuracy up to 3 percentage points when comparing the
best results of G = 1 to G > 1, both for GAT and DNA. Best hyperparameter config-
urations in Fey (2019) show advantages in using increased feature dimensionalities
across all datasets. However, for vanilla GCN, we found those gains to be negligible.
Similar to JK nets, our approach benefits from an increased amount of stacked lay-
ers, and most importantly, the performance does not decrease when increasing the
number of layers (Fey, 2019).

Furthermore, we perform a qualitative analysis of DNA on the Cora dataset by ana-
lyzing the influence score. The influence score I,,(w) measures the sensitivity of a node
w to a node v, i.e. the influence a node w has on the prediction for node v (Xu et al.,
2018). Formally, it is given by

1, (4.5)

oniH
4T v
Lfw) =1 [8h(0)]
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Figure 4.2: Qualitative analysis of DNA. (a) The influence distribution of a node
which is correctly classified by DNA, but is incorrectly classified by
GCN+]JK-Pool. While the node in GCN+]JK-Pool is purely influenced
from a node nearby, DNA is able to aggregate local information from dis-
tant nodes. (b) The attention score distribution of a 5-layer DNA-GNN
model. DNA attends to both nearby as well as distant nodes (Fey, 2019).

where 1 denotes the all-ones vector, i.e. it denotes the sum of the absolute values of the
(L)
entries of the Jacobian matrix {%} (Xuet al., 2018). We visualize the differences in

aggregation by looking at the influence scores for a node which is correctly classified
by DNA, but is incorrectly classified by GCN+JK-Pool, cf. Figure 4.2a. While the node
embedding produced by GCN+ JK-Pool is nearly exclusively influenced by its central
node and a node nearby, DNA is able to aggregate localized information even from
nodes far away (Fey, 2019). Figure 4.2b visualizes the attention score distribution of
a 5-layer DNA-GNN. It signals that aggregations typically attend to earlier repre-
sentations on the Cora dataset, which verifies that nearby information is indeed often
sufficient to classify most nodes in homophily graphs. However, there are some nodes
that do make heavy usage of information retrieved from latter representations, indi-
cating the merits of a Dynamic Neighborhood Aggregation procedure (Fey, 2019).

4.3 Hierarchical Learning in Molecular Graphs

Next, we look into the incapability of GNNs to detect certain sub-structures (cf. Sec-
tion 3.4) which play an important role in certain documents, e.g., detecting circles in
molecular graphs.

Machine learning algorithms offer great potentials in reducing the computation time
required for predicting molecular properties from several hours to just a few millisec-
onds (Wu et al., 2018), leading to many fruitful opportunities in chemistry, drug dis-
covery, and materials science (Gilmer et al., 2017). To date, most applied machine
learning in chemistry tasks resolves around manual feature engineering (Rupp et al.,
2012; Rogers & Hahn, 2010; Montavon et al., 2012; Behler & Parrinello, 2007; Schoen-
holz et al., 2016; Gilmer et al., 2017). However, with the rise of large-scale quantum
chemistry calculations and molecular dynamic simulations that generate data at an
unprecedented rate, these approaches generally struggle to make effective use of the
large amount of data available nowadays (Gilmer et al., 2017).
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With the advent of Graph Neural Networks, machine learning in chemistry has ex-
perienced a small revolution, exceeding the previously predominated approach of
manual feature engineering by a large margin (Gilmer et al., 2017; Schiitt et al., 2017;
Klicpera et al., 2020b). Here, molecules are represented as graphs G = (V, £), in which
nodes V denote atoms and edges £ C V x V denote connections between them, e.g.,
given by a pre-defined structure such as in the form of atomic bonds, or by connecting
atoms that lie within a certain cutoff distance. Such natural and raw molecular graph
representations allow GNNss to learn high-dimensional embeddings of atoms that are
able to represent their complex interactions by exchanging and aggregating messages
between them (Klicpera et al., 2020b; Fey et al., 2020b).

However, it has been shown that GNNs are unable to distinguish certain molecular
graphs, e.g., Cyclohexane and two Cyclopropane molecules (Xu et al., 2019¢; Klicpera
etal.,2020b). These restrictions mostly stem from the fact that GNNs are not capable of
detecting cycles (Loukas, 2020) since they are unable to maintain information about
which node in a receptive field has contributed what to the aggregated information
(Hy et al., 2018). These limitations of GNNs have encouraged lots of research to allow
for more expressive GNN, either in the form of GNN design (Murphy et al., 2019b;
Klicpera et al., 2020b) or by injecting such information as part of an additional hand-
crafted input feature set, e.g., whether an atom is part of a ring (Hu et al., 2020a,b).
However, the former leads to overly complex models with high inference runtime
requirements (Murphy et al., 2019b; Hy et al., 2018; Albooyeh et al., 2019) or to models
that require information about 3D equilibrium structures (Schiitt et al., 2017; Gilmer
et al., 2017; Jergensen et al., 2018; Unke & Meuwly, 2019; Chen et al., 2019a; Klicpera
et al., 2020b), which is in itself expensive to compute via Density Functional Theory
(Helgaker et al., 2014) (may take up to several hours per small molecule (Hu et al.,
2021b)). The latter contradicts with the desire of hand-crafted feature independence.
Adding such additional structural features to the input set again limits the model’s
capabilities to the choice of input features.

Here, we present the Hierarchical Inter-Message Passing (HIMP) network, a new ap-
proach for learning on molecular graph structures. HIMP is both efficient to train
and can naturally overcome the restrictions of traditional GNNSs, strengthening their
performance with minimal computational overhead in return. Our model utilizes
two separate Graph Neural Networks that operate on two complementary graph rep-
resentations: the raw molecular graph representation and its associated junction tree
(Section 4.3.2), in which nodes represent meaningful clusters in the original graphs,
e.g., rings or bridged compounds. We then proceed to learn a molecule’s represen-
tation by passing messages inside each graph, and exchange messages between the
two representations using a coarse-to-fine and fine-to-coarse information flow (Sec-
tion 4.3.3). This allows the network to reason about hierarchy in molecules in a natural
fashion. We show that this simple scheme can drastically increase the performance
of a GNN, reaching state-of-the-art performance on a variety of different molecular
graph datasets (Section 4.3.4). Despite its higher-order nature, our HIMP network
architecture is still very efficient to train and causes only marginal additional costs in
terms of memory and execution time (Fey et al., 2020b).
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4.3.1 State-of-the-Art

We briefly review state-of-the-art learning on molecular graphs, and discuss the re-
lated work and their relation to our proposed HIMP approach.

4.3.1.1 Learning on Molecular Graphs. Instead of using hand-crafted representa-
tions (Bartok et al., 2013), recent advancements in deep graph learning rely on an
end-to-end learning of representations which has quickly led to major breakthroughs
in machine learning on molecular graphs (Duvenaud et al., 2015; Gilmer et al., 2017;
Schiitt et al., 2017; Jergensen et al., 2018; Unke & Meuwly, 2019; Chen et al., 2019a).
Most of these works are especially designed for learning on the 3D equilibrium molec-
ular structure obtained from Density Functional Theory (Helgaker et al., 2014). Here,
earlier models (Schiitt ef al., 2017; Gilmer et al., 2017; Jorgensen et al., 2018; Unke &
Meuwly, 2019; Chen et al., 2019a) fulfill rotational invariance constraints by relying on
inter-atomic distances, while recent models employ more expressive variants. For ex-
ample, DIMENET (Klicpera et al., 2020b) deploys directional message passing between
node triplets to also model angular potentials. It was further extended in Klicpera et al.
(2020a) to a faster variant that can also handle non-equilibrium molecules. Another
line of work breaks symmetries by taking permutations of nodes into account (Mur-
phy et al., 2019b; Hy et al., 2018; Albooyeh et al., 2019). Recently, it has been shown
that strategies for pre-training models on molecular graphs can effectively increase
their performance for certain down-stream tasks (Hu et al., 2020b). Our approach fits
nicely into these lines of work since it also increases the expressiveness of GNNs while
being orthogonal to further advancements in this field (Fey et al., 2020b).

4.3.1.2 Junction Trees. So far, junction trees have solely been used for molecule gen-
eration based on a coarse-to-fine generation procedure (Jin et al., 2018, 2019). In
contrast to the generation of SMILES strings (Gémez-Bombarelli et al., 2018), this al-
lows the model to enforce chemical validity while generating molecules significantly
faster than the node-per-node generation procedure applied in autoregressive meth-
ods (You et al., 2018; Fey et al., 2020b).

4.3.1.3 Inter-Message Passing. The idea of inter-message passing between graphs
has been already heavily investigated in practice, mostly in the fields of deep graph
matching (Wang ef al., 2018a; Liet al., 2019a; Fey et al., 2020a) and graph pooling (Ying
et al., 2018b; Cangea ef al., 2018; Gao & Ji, 2019). For graph pooling, most works focus
on learning a coarsened version of the input graph. However, due to being learned,
the coarsened graphs are unable to strengthen the expressiveness of GNNs by design,
cf. Section 4.3.2. For example, DirrPooL (Ying et al., 2018b) always maps the atoms of
two disconnected rings to the same cluster, while attention-based pooling approaches
(Cangea et al., 2018; Gao & Ji, 2019) either keep or remove all atoms inside those rings
(since their attention scores are shared). The approach that comes closest to ours in-
volves inter-message passing to a “virtual” node that is connected to all atoms (Gilmer
etal., 2017; Hu et al., 2020a). Our approach can be seen as a simple yet effective exten-
sion to this procedure (Fey et al., 2020b). Furthermore, inter-message passing is also
closely related to learning in hypergraphs, in which messages from nodes are passed
to intermediate arbitrary node-clusters (rather than pairs of nodes) and vice versa
(Feng et al., 2019; Zhang et al., 2020b; Bai et al., 2021).
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4.3.2 Higher-Order Graph Coarsening via Tree Decompositions

It has been shown that GNNs are unable to distinguish certain molecular graphs (Xu
et al., 2019¢; Klicpera et al., 2020b). These restrictions mostly stem from the fact that
GNN s are not capable of detecting cycles (Loukas, 2020) since they are unable to
maintain information about which node in its receptive field has contributed what to
the aggregated information (Hy et al., 2018). However, this ultimately limits the ca-
pabilities of GNNSs for learning on molecular graphs, since information about rings in
molecular graphs provide crucial information.

As a result, we propose a simple yet effective method named HIMP to overcome the
shortcomings of existing GNNs (Fey et al., 2020b). In particular, our method involves
learning on two molecular graph representations simultaneously in an end-to-end
fashion: the original graph representation and its associated junction tree. The junc-
tion tree representation encodes the tree structure of molecules and defines how clus-
ters (singletons, bonds, rings, bridged compounds) are mutually connected, while the
original graph structure of the molecular graph captures its more fine-grained connec-
tivity (Jin ef al., 2018). The addition of such coarse-grained information of molecular
graphs provides two major benefits: (1) It provides task-specific information about
meaningful clusters in the graph that a GNN cannot detect on its own, (2) the us-
age of a tree structure helps to avoid the GNN's shortcomings on the coarse-grained
representation (Fey ef al., 2020b).

A junction tree of a graph G can be obtained via tree decomposition such that certain
nodes are contracted into single nodes so that G becomes cycle-free (Fey et al., 2020b).
Formally, given a graph G, a tree decomposition maps G into a junction tree 7 = (C,R)
withnodesetC = {Cy,...,Cn},C; C Vioralli € {1,...,m},and edgeset R CC x C
so that (Jin et al., 2018):

e Allnodes and edges are included in the coarsened junction tree, i.e. it holds that
U,;Ci = Vand |, £[C;] = € with £[C;] C C; x C; denoting the edge set of the
induced subgraph G[C;].

e T is cycle-free, i.e. it holds that C; N C; C Cy, for all clusters C;, Ci, C; with con-
nections (C;,Cx) € R and (Ci,C;) € R (running intersection).

Notably, there exists a dedicated tree decomposition algorithm tailored for molecules,
which finds its root in chemistry (Rarey & Dixon, 1998), and which was recently used
for generating chemically valid molecules in a deep learning pipeline (Jin et al., 2018).
We closely follow this tree decomposition algorithm in our work as well (Fey et al.,
2020b):

Given a molecular graph G, we first group all its simple cycles and all edges that do
not belong to any cycle into distinct clusters in C. Two rings are merged together if
they share more than two overlapping atoms, since they constitute a specific struc-
ture called bridged compounds (Clayden et al., 2001; Jin et al., 2018). Each of those
cycles and edges is considered as a cluster. As a result of ring merging, any two clus-
ters have at most two atoms in common (Jin et al., 2018). For atoms lying inside more
than three clusters, we add the intersecting atom as a singleton cluster. A cluster
graph is constructed by adding edges between all intersecting clusters, and the final
junction tree 7 is then given as one its spanning trees. Figure 4.3 visualizes how clus-
ters are formed on an exemplary molecule. For each cluster, we additionally hold its
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Figure 4.3: A molecular graph and the cluster assignment of its junction tree. Clus-
ter colors refer to M singletons, M bonds and I rings (Fey et al., 2020b).

respective category (singleton, bond, ring, bridged compound) as a one-hot encoding
feature vector z;, i.e. z; € {0,1}*, withi € {1,...,|C|} (Fey et al., 2020b).

It is important to note that the junction tree representation of a molecule is comple-
mentary to its original molecular graph representation. As such, when used in a deep
learning pipeline, it provides additional and important higher-order information that
cannot be captured by a GNN on the molecular graph alone. In contrast, other related
graph coarsening approaches rely on learning to find meaningful clusters in a graph
(Ying et al., 2018b; Cangea et al., 2018; Gao & Ji, 2019). This is contradictory in case
a GNN does not have the power to find such clusters in the first place, e.g., a GNN
will never be able to group rings into a single cluster. Figure 4.4 visualizes how differ-
ent differentiable pooling algorithms cluster certain graph structures in comparison
to using a pre-processed higher-order coarsening scheme in the form of a junction
tree. Here, we compare DirrPooL (Ying et al., 2018b) and the attention-based pooling
approaches (Cangea et al., 2018; Gao & Ji, 2019) with the clustering procedure based
on junction tree decomposition. Since the node representations obtained by a GNN
will be identical in these two graphs, DirrPoor will assign all nodes to the same clus-
ter. An attention-based pooling approach computes an attention score to determine
which nodes will be kept for coarsening. As scores will be identical for all nodes, all
nodes and their original graph structure will be kept. Notably, for both pooling ap-
proaches it holds that both graphs are still indistinguishable after graph coarsening is
performed. Hence, learned graph coarsening approaches are limited by the expres-
sive power of the underlying GNN. In contrast, the higher-order information induced
by the junction tree decomposition approach is able to distinguish both graphs after
coarsening takes place, as the two cycles in th egraph G, in Figure 4.4 will be assigned
to two different clusters instead of one.

4.3.3 Inter-Message Passing with Junction Trees

We now present our HIMP architecture (Fey et al., 2020b) for learning on molecular
graphs, based on the previous definition of junction trees in Section 4.3.2. A high-level
overview of our method is visualized in Figure 4.5. Our method is able to extend any
GNN model for molecular property prediction by making use of intra-message pass-
ing in and inter-message passing to and from a complementary junction tree represen-
tation. Here, instead of using a single GNN operating on the molecular graph, we
make use of two GNN models: one operating on the original graph G and one operat-
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Figure 4.4: The output graphs after coarsening two graphs (* and M) using differ-
ent graph coarsening procedures, as indicated by the B arrows. Each
graph coarsening technique will coarsen the two input graphs differently.
(a) Since node representations obtained by a GNN will be identical, Dirr-
Poot assigns all nodes to the same cluster. (b) Attention-based pooling
approaches keep all original nodes, as attention scores are shared across
all nodes. (c¢) The junction tree decomposition procedure injects higher-
order information into the cluster assignment decision, and is therefore
able to coarsen the two graphs G; and G, differently.

ing on its associated junction tree 7, each passing intra-messages to their respective
neighbors, i.e.

WO = ) (hSD (R ew) : (w,0) € ER) (4.6)

and
A =gy (R RV L (cj,0) € R, (47)

where b and sz(.e) represent node and cluster representations obtained from G and

T using distinct GNN operators féé) and g((f), respectively (Fey et al., 2020b). We
further enhance this scheme by making use of an inter-message passing flow. That is,
after each round of message passing, we enhance ng

information flow from G to T

h{Y B! < Y h“)) (4.8)

veC;

) by an additional fine-to-coarse

and th’) by an additional coarse-to-fine information flow from 7 to G

WO b0 4o | W S RO |, (4.9)

c;ecC,
veC;
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Figure 4.5: Overview of the computation flow of our HIMP network architecture.
Two separate GNNs are operating on the distinct graph representations G
and 7, and receive coarse-to-fine and fine-to-coarse information before
another round of message passing starts. Finally, both node-level and
cluster-level representations are aggregated into a unified graph-level rep-
resentation, used as input to a given down-stream task (Fey et al., 2020b).

with Wl(e), WQ(Z) denoting trainable weight matrices, and o being a non-linearity (Fey
etal.,2020b). After L rounds of message passing, the readout function (Section 3.2.3) of
the model aggregates both node-level and cluster-level representations into a unified
graph-level representation, i.e.

hg = [Z Y BE“] . (4.10)

veY c;eC

The final graph-level representation can then be used as input to a given down-stream
task.

Overall, our HIMP architecture leads to a hierarchical-variant of message passing for
learning on molecular graphs, similar to the ones applied in computer vision (Ron-
neberger et al.,2015; Newell et al., 2016; Lin et al., 2017). Furthermore, each atom is able
to know about its cluster assignment, and, more importantly, which other nodes are
part of the same cluster (Fey ef al., 2020b). Specifically, this leads to an increased ex-
pressivity of the underlying GNN. For example, the popular example of a Cyclohex-
ane molecule and two Cyclopropane molecules (a single ring and two disconnected
rings) (Klicpera et al., 2020b) are now distinguishable by our scheme since its junction
tree representations are distinguishable, cf. Figure 4.4.

While our HIMP architecture is provably more expressive by incorporating higher-
order information into its message passing scheme, it is still very efficient to train. In
particular, the computational complexity of HIMP is given by O(|&| + |R|) = O(|€])
with |R| < |€|, and is therefore equivalent to performing message passing solely on
the molecular graph. This is in high contrast to alternative higher-order variants such
as k-dimensional GNNs (k-GNNs) (Morris et al., 2019) with computational complex-
ities of O(|V|"), ¢f. Section 3.4.2. Obtaining junction trees from molecular graphs is
done in a pre-processing step, which only leads to a minor and negligible overhead
in the training stage.
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4.3.4 Evaluation

We evaluate our proposed HIMP architecture on the ZINC dataset (Kusner et al., 2017;
Dwivedi ef al., 2020), and a subset of datasets stemming from the MoleculeNet and
OGB benchmark dataset collections (Wu et al., 2018; Hu et al., 2020a). For all experi-
ments, we make use of the GIN-E operator for learning on the molecular graph (Hu
et al., 2020b) and the GIN operator (Xu et al., 2019¢) for learning on the associated
junction tree (since no edge features are available there). GIN-E is a variant of GIN
(Section 3.4.2) that includes edge features (e.g., bond type, bond stereochemistry) by
simply adding them to the incoming node features

(9 = MLPY ((1 +e®) R £ 3R ¢ W“)ewﬂv). (4.11)
weN (v)

All models were trained with the Abam optimizer (Kingma & Ba, 2015) using a learn-
ing rate of 10~*, while other hyperparameters (#epochs, #layers, hidden size, batch
size, dropout ratio) are tuned via an additional validation set. Our method is imple-
mented in PyTorch (Paszke ef al., 2019) and utilizes the PyTorch Geometric (Fey &
Lenssen, 2019) library. The code for reproducing all results is available on GitHub.?

4.3.4.1 ZINC Dataset. The ZINC dataset (Kusner et al., 2017) contains about 250, 000
molecular graphs and was introduced in Dwivedi et al. (2020) as a benchmark for eval-
uating GNN performances (using a subset of 10, 000 training graphs). Here, the task
is to regress the constrained solubility of a molecule. While this is a fairly simple task
that can be exactly computed in a short amount of time, it can nonetheless reveal the
capabilities across different neural architectures (Fey et al., 2020b). We compare our-
selves to all the baselines presented in Dwivedi et al. (2020) and Morris et al. (2020b),
and additionally report results of a GIN-E baseline that does not make use of any
additional junction tree information. Following upon Morris et al. (2020b), we also
perform experiments on the full dataset.

As shown in Table 4.2, our method is able to significantly outperform all compet-
ing methods. In comparison to GIN-E, its best performing competitor, the additional
junction tree extension is able to reduce the error rate by about 40-60% (Fey ef al.,
2020b).

4.3.4.2 MoleculeNet Datasets. Following upon Murphy et al. (2019b), we evaluate
our model on the HIV, MUV and Tox21 datasets from the MoleculeNet benchmark
collection (Wu et al., 2018), using a 80%/10%/10% random split. Here, the task is to
predict certain molecular properties (cast as binary labels), e.g., whether a molecule
inhibits HIV virus replication or not. We use the ROC-AUC metric to compare our-
selves to the neural graph fingerprint (NGF) operator (Duvenaud et al., 2015), and its
relational pooling variant RP-NGF (Murphy et al., 2019b), as well as our own GIN-E
baseline.

As the results in Table 4.3 indicate, our method advances performance compared to
NGF and GIN-E significantly. Although RP-NGF is able to distinguish any graph

2Code for HIMP: https://github.com/rustyls/himp-gnn (last access: August 25, 2022)
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Mean Absolute Error (MAE)

Method ZINC (10k)  ZINC (Full)
GCN (Kipf & Welling, 2017) 0.367+0.011 —
GrAPHSAGE (Hamilton et al., 2017) 0.398-+0.002 —
GIN (Xu et al., 2019¢) 0.408-+0.008 —
GAT (Veli¢kovic et al., 2018) 0.384-£0.007 —
MoNEer (Monti et al., 2017) 0.292-£0.006 —

GatepGCN (Bresson & Laurent, 2017)  0.435+0.011 —
GatepGCN-E (Dwivedi et al., 2020) 0.282+0.015 —

GIN-E (Hu et al., 2020b) 0.252+0.014  0.088-0.002
6-2-GNN (Morris et al., 2020b) — 0.042-0.003
§-2-LGNN (Morris et al., 2020b) — 0.045-0.006
HIMP 0.151+0.006 0.036-+-0.002

Table 4.2: Performance of HIMP on the ZINC datasets (Kusner ef al., 2017; Dwivedi
et al., 2020). HIMP performs favourable in comparison to traditional
GNNSs, GNN s that incorporate edge/bond information, as well as alterna-
tive higher-order GNN variants (Fey et al., 2020b).

ROC-AUC (%)
HIV MUV Tox21
NGF (Duvenaud et al., 2015) 81.20+1.40 79.80+2.50  79.441.00

RP-NGF (Murphy et al., 2019b)  83.20+1.30  79.40+0.50  79.9+0.60
GIN-E (Hu et al., 2020b) 83.83+£0.67 79.57+1.14 86.68-+0.77

HIMP 84.81+0.42 81.80+2.02 87.36+0.50

Method

Table 4.3: Performance of HIMP on a subset of MoleculeNet datasets (Wu et al.,
2018; Fey et al., 2020b).

structure by considering all permutations of nodes (Murphy et al., 2019b), our ap-
proach leads to overall better generalization despite its simplicity, and is also orders
of magnitude faster to train (Fey et al., 2020b).

4.3.4.3 OGB Datasets. We also test the performance of our model on the datasets
molhiv and molpcba from the OGB benchmark dataset suite (cf. Section 5.4), which
are adopted from MoLecuLENET and enhanced by a more challenging and standard-
ized scaffold splitting procedure (Hu et al., 2020a). We closely follow the experimen-
tal protocol of Hu et al. (2020b) and report ROC-AUC and PRC-AUC for molhiv and
molpcba, respectively. We compare ourselves to three variants that do not make use of
additional junction tree information, namely GCN-E, GatebGCN-E and GIN-E (Kipf
& Welling, 2017; Bresson & Laurent, 2017; Dwivedi et al., 2020; Hu et al., 2020a,b).

Results are presented in Table 4.4. As one can see, our approach is able to outperform
all its competitors. Interestingly, our model achieves its best results in combination
with a small amount of layers (2 or 3), making its runtime and memory requirements
on par with the other baselines (which make use of 5 layers). This can be explained
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ROC-AUC (%) PRC-AUC (%)

Method molhiv molpcba
GCN-E (Hu et al., 2020a) 76.07-+0.97 19.83-£0.16
GatepGCN-E (Dwivedi et al., 2020) 77.65+0.50 20.77+0.27
GIN-E (Hu et al., 2020b) 75.58+1.40 22.17+0.23
HIMP 78.80+0.82 27.39+0.17

Table 4.4: Performance of HIMP on the molhiv and molpcba datasets of OGB (Hu
et al., 2020a; Fey et al., 2020b).

by the fact that the additional coarse-to-fine information flow enhances the receptive
field size of a GNN, and therefore omits the need to stack a multitude of layers (Fey
et al., 2020b).

4.4 Graph Matching via Differentiable Neighborhood
Consensus

Finally, we identify inherent limitations of the local message passing scheme of GNNs
in task that require global information, e.g., in the problem of graph matching, and
propose efficient solutions to overcome these shortcomings.

The problem of graph matching refers to the task of establishing meaningful structural
correspondences of nodes between two or more graphs by taking both node similari-
ties and pairwise edge similarities into account (Wang et al., 2019¢). Since graphs are
natural representations for encoding relational data, the problem of graph matching
lies at the heart of many real-world applications. For example, comparing molecules
in cheminformatics (Kriege ef al., 2019b), matching protein networks in bioinformat-
ics (Sharan & Ideker, 2006; Singh et al., 2008), linking user accounts in social network
analysis (Zhang & Philip, 2015), and tracking objects, matching 2D /3D shapes or rec-
ognizing actions in computer vision (Vento & Foggia, 2012) can all be formulated as
a graph matching problem (Fey et al., 2020a).

Formally, we are given two graphs, a source graph G, = (V,,&;) and a target graph
G = Vi, &), wlo.g. |Vs| < |V, and are interested in finding a correspondence matrix
S € {0, 1}W3 Vel which minimizes a given objective while being subject to the one-to-
one mapping constraints 3, S; j = 1foralli € Vsand 37, S;; < 1forall j € V.
In particular, we require S to infer an injective mapping 7: V, — V; that maps each
node in G; to its corresponding node in G; (Fey et al., 2020a), cf. Figure 4.6.

While graph matching has been traditionally tackled via combinatorial optimization,
machine learning models, in particular Graph Neural Networks, are a promising ap-
proach to solve the graph matching problem in a data-dependent fashion, cf. Sec-
tion 4.4.1. Specifically, real-world graphs such as social networks are often noisy, and
therefore exact solutions are often not needed or even desirable. Furthermore, ma-
chine learning models are able to adapt to the given data distribution, leading to fast
inference time on unseen graphs once the model is fully trained. Lastly, combinatorial
approaches often do not consider continuous node or edge embeddings that naturally
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Figure 4.6: An example solution of establishing meaningful structural correspon-
dences between two graphs. Every node in the source graph §, is mapped
to exactly one node in the target graph G;, as denoted by the M connections.

arise in real-world applications, while GNN have no problem in incorporating them
(Fey et al., 2020a).

However, GNNSs are subject to inherent weaknesses solving this task with high pre-
cision, as their local message passing formulation limits their applicability to resolve
ambiguities in node embeddings, cf. Section 4.4.2. Here, we propose a fully-differentiable
two-stage neural architecture named Deep Graph Matching Consensus (DGMC) that
circumvents this weakness by sparsely distributing global positional encodings in the
two graphs, cf. Section 4.4.3. Intuitively, our graph matching procedure is trained in
an end-to-end fashion to reach a data-driven neighborhood consensus between matched
node pairs without the need to solve any optimization problem during inference. In
addition, our approach is purely local, i.e. it operates on fixed-sized neighborhoods
around nodes, and is sparsity-aware, i.e. it takes the sparsity of the underlying struc-
tures into account. Hence, our approach scales well to large, real-world input domains
while still being able to recover global correspondences consistently (Fey et al., 2020a).
In our evaluation (Section 4.4.4), we demonstrate the practical effectiveness of DGMC
on the real-world tasks of keypoint matching in computer vision and entity alignment
between knowledge graphs.

4.4.1 State-of-the-Art

Identifying correspondences between the nodes in different graphs has been studied
in various domains. Closely related problems are summarized under the terms max-
imum common subgraph (Kriege et al., 2019b), network alignment (Zhang, 2016), graph
edit distance (Chen et al., 2019b) and graph matching (Yan et al., 2016). Recently, Graph
Neural Networks have been used to tackle the task of graph matching in a learnable
fashion (Wang et al., 2019c; Zhang & Lee, 2019; Xu et al., 2019d; Derr et al., 2019).

4.4.1.1 Graph Matching via Graph Theory. In graph theory, the combinatorial max-
imum common subgraph isomorphism problem is studied, which asks for the largest
graph that is contained as a subgraph in two given graphs. The problem is NP-hard
in general and remains so even in trees (Garey & Johnson, 1979) unless the common
subgraph is required to be connected (Matula, 1978). Moreover, most variants of the
problem are difficult to approximate with theoretical guarantees (Kann, 1992).
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Fundamentally different techniques have been developed in bioinformatics and com-
puter vision, where the problem is commonly referred to as graph matching. In graph
matching, for two graphs with adjacency matrices A, and A, of order |V|, the term

2 s t
1A — STAS|p = A} + 1Ad; —2 Y ADAY S ;S0 5 (4.12)

IR
i, €V
3.3 €V

is to be minimized, where S € P with P denoting the set of |V| x |V| permutation ma-
trices, and || A7, = > i.ey A7 denotes the squared Frobenius norm. There is a long

line of research trying to minimize Equation (4.12) for S € [0, I]MXM by a Frank-
Wolfe type algorithm (Jaggi, 2013) and finally projecting the fractional solution to P
(Gold & Rangarajan, 1996; Zaslavskiy ef al., 2009; Leordeanu et al., 2009; Egozi et al.,
2013; Zhou & De la Torre, 2016). However, the applicability of relaxation and projec-
tion is still poorly understood and only few theoretical results exist (Aflalo et al., 2015;
Lyzinski et al., 2016). A classical result by Tinhofer (1991) states that the Weisfeiler-
Lehman (WL) heuristic distinguishes two graphs G, and G, if and only if there is no
fractional S such that the objective function in Equation (4.12) becomes zero. Kerst-
ing et al. (2014) showed how the Frank-Wolfe algorithm can be modified to obtain the
WL partition. Aflalo et al. (2015) proved that the standard relaxation yields a correct
solution for a particular class of asymmetric graphs, which can be characterized by
the spectral properties of their adjacency matrix. Finally, Bento & Ioannidis (2018)
studied various relaxations, their complexity and properties. Other approaches to
graph matching exist, e.g., based on spectral relaxations (Umeyama, 1988; Leordeanu
& Hebert, 2005) or random walks (Gori et al., 2005a; Fey et al., 2020a).

Furthermore, the problem of graph matching is closely related to the Quadratic Assign-
ment Problem (QAP) (Zhou & De la Torre, 2016), e.g., Equation (4.12) can be directly
interpreted as Koopmans-Beckmann’s QAP. The more recent literature on graph match-
ing typically considers a weighted version, where node and edge similarities are taken
into account. This leads to the formulation as Lawler’s QAP, which involves an affinity
matrix of size [V|? x |V|? and is computational demanding. Zhou & De la Torre (2016)
propose to factorize the affinity matrix into smaller matrices and incorporate global
geometric constraints. Zhang et al. (2019d) studied kernelized graph matching, where
the node and edge similarities are kernels, which allows to express the graph match-
ing problem again as Koopmans-Beckmann’'s QAP in the associated Hilbert space.
Inspired by established methods for Maximum-A-Posteriori (MAP) inference in con-
ditional random fields, Swoboda et al. (2017) studied several Lagrangean decompo-
sitions of the graph matching problem, which are solved by dual ascent algorithms.
Recently, functional representations for graph matching have been proposed as a gener-
alizing concept with the additional goal to avoid the construction of the affinity matrix
(Wang et al., 2019a; Fey et al., 2020a).

The problem of network alignment is typically defined analogously to Equation (4.12),
where a similarity function between pairs of nodes is given in addition. Most algo-
rithms follow a two step approach: First, an |V| x |V| node-to-node similarity matrix
M is computed from the given similarity function and the topology of the two graphs.
Then, in the second step, an alignment is computed by solving the assignment prob-
lem for M. Singh et al. (2008) proposed IsoRank, which is based on the adjacency
matrix of the product graph K = A; ® A; of G, and G;, where ® denotes the Kro-
necker product. The matrix M is then obtained by applying PaceRank (Page et al.,
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1999), using a normalized version of K as the GooGLE matrix and the node similarities
as the personalization vector. Kollias ef al. (2012) proposed an efficient approxima-
tion of IsoRank by decomposition techniques to avoid generating the product graph of
quadratic size. Zhang (2016) present an extension supporting node and edge similar-
ities and propose its computation using non-exact techniques. Klau (2009) proposed
to solve network alignment by linearizing the quadratic optimization problem to ob-
tain an integer linear program, which is then approached via Lagrangian relaxation.
Bayati et al. (2013) developed a message passing algorithm for sparse network align-
ment, where only a small number of matches between the nodes of the two graphs
are allowed (Fey et al., 2020a).

A related conceptis the graph edit distance, which measures the minimum cost required
to transform a graph into another graph by adding, deleting and substituting nodes
and edges (Sanfeliu & Fu, 1983). However, its computation is NP-hard, since it gener-
alizes the maximum common subgraph problem (Bunke, 1997). Moreover, it is also
closely related to the Quadratic Assignment Problem (Bougleuxet al., 2017). Recently,
several elaborated exact algorithms for computing the graph edit distance have been
proposed (Gouda & Hassaan, 2016; Lerouge et al., 2017; Chen et al., 2019b), but are
still limited to small graphs. Therefore, heuristics based on the assignment problem
have been proposed (Riesen & Bunke, 2009) and are widely used in practice (Stauffer
etal.,2017). The original approach requires cubic running time, which can be reduced
to quadratic time using greedy strategies (Riesen ef al., 2015a,b), and even linear time
for restricted cost functions (Kriege et al., 2019a; Fey et al., 2020a).

The techniques briefly summarized above aim to find an optimal correspondence ac-
cording to a clearly defined objective function. However, it is often difficult to specify
node and edge similarity functions in practical applications. As a result, it has been
also proposed to learn domain-dependent graph matching models (Fey et al., 2020a).

4.4.1.2 Deep Graph Matching. The problem of graph matching has been recently
investigated using deep neural networks as well. For example, Wang et al. (2019c¢)
and Zhang & Lee (2019) developed supervised deep graph matching networks based
on displacement and combinatorial objectives, respectively. Zanfir & Sminchisescu
(2018) model the graph matching affinity via a differentiable, but unlearnable spec-
tral graph matching solver (Leordeanu & Hebert, 2005). Wang et al. (2019¢) use
node-wise features in combination with dense node-to-node cross-graph affinities,
distribute them in a local fashion, and adopt sinkhorn normalization for the final task
of linear assignment. Zhang & Lee (2019) propose a compositional message pass-
ing algorithm that maps point coordinates into a high-dimensional space. The final
matching procedure is done by computing the pairwise inner product between point
embeddings. However, neither of these approaches can naturally resolve violations
of inconsistent neighborhood assignments as we do in our work (Fey et al., 2020a).

Xu et al. (2019b) tackles the problem of graph matching by relating it to the Gromov-
Wasserstein discrepancy (Peyré et al., 2016). In addition, the optimal transport objec-
tive is enhanced by simultaneously learning node embeddings which shall account for
the noise in both graphs. In a follow-up work, Xu et al. (2019a) extend this concept to
the tasks of multi-graph partitioning and matching by learning a Gromov-Wasserstein
barycenter. Our approach also resembles the optimal transport between nodes, but
works in a supervised fashion for sets of graphs and is therefore able to generalize to
unseen graph instances (Fey ef al., 2020a).
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In addition, the task of network alignment has been recently investigated from mul-
tiple perspectives. Derr et al. (2019) leverage CycLeEGANs (Zhu et al., 2017) to align
Nobe2Vec embeddings (Grover & Leskovec, 2016) and find matchings based on the
nearest neighbor in the embedding space. Zhang et al. (2019b) design a deep graph
model based on global and local network topology preservation as auxiliary tasks.
Heimann et al. (2018) utilize a fast, but purely local and greedy matching procedure
based on local node embedding similarity.

Furthermore, Bia ef al. (2019) use shared Graph Neural Networks to approximate the
graph edit distance between two graphs. Here, a (non-differentiable) histogram of
correspondence scores is used to fine-tune the output of the network. In a follow-up
work, Bai et al. (2018) proposed to order the correspondence matrix in a breadth-first-
search fashion and process it further with the help of traditional Convolutional Neural
Networks (CNNs). Both approaches only operate on local node embeddings, and are
hence prone to match correspondences inconsistently (Fey et al., 2020a).

The concept of enhancing intra-graph node embeddings by inter-graph node embed-
dings has been already heavily investigated in practice (Li et al., 2019b; Wang et al.,
2019¢; Xu et al., 2019d). Liet al. (2019b) and Wang et al. (2019¢) enhance the GNN op-
erator by not only aggregating information from local neighbors, but also from sim-
ilar embeddings in the other graph by utilizing a cross-graph matching procedure.
Xu et al. (2019d) leverage alternating GNN’s to propagate local features of one graph
throughout the second graph. Wang & Solomon (2019) tackle the problem of find-
ing an unknown rigid motion between point clouds by relating it to a point cloud
matching problem followed by a differentiable Singular Value Decomposition (SVD)
module. However, neither of these approaches is designed to achieve a consistent
matching, due to only operating on localized node embeddings which are alone not
sufficient to resolve ambiguities in the matchings. Nonetheless, we argue that these
methods can be used to strengthen the initial feature matching procedure, making
our approach orthogonal to improvements in this field (Fey et al., 2020a).

Methods to obtain consistency of correspondences in local neighborhoods have a rich
history in computer vision, dating back several years (Sattler et al., 2009; Sivic & Zis-
serman, 2003; Schmid & Mohr, 1997). They are known to heavily improve results of
local feature matching procedures. Recently, a deep neural network for neighborhood
consensus using 4D convolution was proposed in Rocco et al. (2018). However, the
4D convolution can not be efficiently transferred to the graph domain, since it would
lead to applying a GNN on the product graph with O(|V|?) nodes and O(V|*) edges
(Fey et al., 2020a).

4.4.2 Local Feature Matching

We consider the problem of supervised and semi-supervised matching of graphs
(Zanfir & Sminchisescu, 2018; Wang et al., 2018b). Specifically, in the supervised set-
ting, we are given pair-wise ground-truth correspondences for a set of graphs and
want our machine learning model to generalize well to unseen graph pairs. In the
semi-supervised setting, source and target graphs are fixed, and ground-truth corre-
spondences are only given for a small subset of nodes. However, we are allowed to
make use of the complete graph structures and all the features attached to their nodes
and edges (Fey et al., 2020a).
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In the following, we describe our proposed end-to-end deep graph matching architec-
ture in detail. Our method consists of two stages: a local feature matching procedure fol-
lowed by an iterative refinement strategy using synchronous message passing networks.
The aim of the feature matching step is to compute initial correspondence scores based
on the similarity of local node embeddings. The iterative refinement strategy then
takes these initial correspondences as input and iteratively refines them by aiming to
reach a neighborhood consensus for correspondences using a differentiable validator
for graph isomorphism. Here, we first describe the local feature matching procedure
before introducing our novel iterative refinement strategy in Section 4.4.3.

Our local feature matching procedure is modelled in close analogy to related ap-
proaches (Bai et al., 2018; Bia et al., 2019; Wang et al., 2019c; Zhang & Lee, 2019; Wang
& Solomon, 2019) by computing similarities between nodes in the source graph G,
and the target graph G; based on the node embeddings obtained by a GNN (Feyetal.,
2020a) That is, we first obtain latent node embeddings h(s = fo(z; (©) ) fori € Vg and

f@( ) for j € V, for source and target graphs G, and G, respectively, using a

siamese Graph Neural Network fg with shared weights (Fey et al., 2020a). Here, 5 ?)

represents the initially given node features of node i € V; in the source graph, while
a:§-t) denotes the initially given node features of node j € V; in the target graph. Given
those latent node embeddings, we obtain soft correspondences as

S = sinkhorn(8) € [0,1]V**M! with  $;; = A{PRlY (4.13)

based on the dot-product between source and target node embeddings (Fey et al.,
2020a). Here, sinkhorn normalization is applied to obtain rectangular doubly-stochastic
correspondence matrices that fulfill the constraints }_,.,, S;; = 1 forall i € V; and
> ey, Sij <1 for all j € V; (Sinkhorn & Knopp, 1967; Adams & Zemel, 2011; Cour
et al., 2006). Formally, the sinkhorn operator applies row-wise and column-wise soft-
max normalization iteratively until convergence, i.e.

S; S
—;fp( ) and 5 e o2
PRy 1eXP( k) > k=1 €Xp(Sk.5)
and is therefore well differentiable. However, due to its iterative nature, it quickly

runs the risk of vanishing gradients 98/9S (Zhang et al., 2019¢c), which we take a
closer look into in Section 4.4.3.

(4.14)

ij S

We can interpret the i-th row vector S;. € [0,1] Vel as a discrete distribution over
potential correspondences in G; for each node i € V,. As such, we can train our GNN
fo ina discriminative, supervised fashion against ground truth correspondences g (-)
by minimizing the negative log-likelihood of correct correspondence scores

= log( Sf(;)t( ))- (4.15)
1€V,

By utilizing a GNN fp for feature encoding, we obtain localized and permutation
equivariant vectorial node representations that encode both feature information and
structural properties of the local neighborhood around each node, ¢f. Chapter 3. As a
result, obtained correspondence scores denote the similarity of local neighborhoods
around nodes in the source and target graph. In addition, the wide range of avail-
able GNN operators (Kipf & Welling, 2017; Gilmer ef al., 2017; Veli¢kovi¢ et al., 2018;
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Schlichtkrull et al., 2018; Xu et al., 2019c) makes such local feature matching proce-
dure very flexible, as we have precise control over the properties of extracted features
(Fey et al., 2020a), cf. Section 3.2. However, due to the purely local nature of the node
embeddings, such local feature matching procedure alone cannot resolve any ambi-
guities in matching, and is therefore prone to find false correspondences which are
locally similar but spatially different to the correct one (Fey ef al., 2020a).

4.4.3 Iterative Message Passing for Neighborhood Consensus

Since the local feature matching stage is not sufficient to accurately obtain consis-
tent correspondences, the DGMC approach utilizes a second stage to refine its initial
matchings. Our key idea to overcome the aforementioned weaknesses of local fea-
ture matching is to utilize a second message passing network that has the capability
to resolve ambiguities and false matchings made in the first phase. In particular, we
propose to inject an inductive bias into our model that aims to reach a neighborhood
consensus for predicted matches. Such intuition has a long history in graph matching
theory (Anstreicher, 2003; Gold & Rangarajan, 1996; Caetano et al., 2009; Cho et al.,
2013). For example, solving the graph matching problem has been originally formu-
lated as an edge-preserving, quadratic assignment problem, i.e.

argmax E AE“;),AgtJ)-/Si,jSi/,j' (4.16)
s 4 T
1,1 €V
3.3 €V

where A(®) and A®) denote the adjacency matrices of G, and G;, respectively, and S
is subject to one-to-one mapping constraints. This formulation is based on the intu-
ition of finding correspondences based on neighborhood consensus (Rocco et al., 2018),
which shall prevent adjacent nodes in the source graph from being mapped to differ-
ent regions in the target graph. Formally, a neighborhood consensus is reached if, for
all node pairs (4, j) € Vs x Vy with S; ; = 1, itholds that for every node i’ € N (i) there
exists anode j' € N (j) such that S;» j; = 1 as well (Fey et al., 2020a).

Our local feature matching procedure (Section 4.4.2) has no way to detect such vi-
olations of the neighborhood consensus criteria employed in Equation (4.16). Since
finding a global optimum is NP-hard, we aim to detect violations of the criteria in local
neighborhoods and resolve them in an iterative fashion (Fey et al., 2020a). In particu-
lar, we utilize Graph Neural Networks to detect such violations in a neighborhood con-
sensus step and iteratively refine correspondences S(¥), ¢ € {0,..., L}, starting from
the initial soft correspondences S given by our local feature matching procedure.
Key to the proposed algorithm is the following observation: The soft correspondence
matrix S € [0, 1] ValxVil jg map from the node function space L(G;) = L(R!V:!) to the
node function space L(G;) = L(RI:l). Therefore, we can use S to pass node functions
x) € L(G,), V) € L(G;) along the soft correspondences by

0 —8T2® and 2 — §z® (4.17)

to obtain functions £ € L(G;), #*) € L(G,) in the other domain, respectively (Fey
et al., 2020a).

Then, our consensus method works as follows and is further illustrated as part of the
two-stage architecture of DGMC in Figure 4.7: We first generate unique node color-

ings cgs) for every node i € V; in the source graph, e.g., given by V; — {0, 1}|V5‘ in the
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Figure 4.7: High-level illustration of our two-stage neighborhood consensus archi-

tecture. Node features hz(-s) and hg-t) obtained from a GNN fg are first
locally matched based on their dot-product, before their correspondence
scores get iteratively refined based on neighborhood consensus. Here, in-

jective node colorings ¢!

FEE F

F’

on G, are transferred to G; via S, and distributed

by a second GNN gg on both graphs to obtain individual outputs ol(-s) and

o;t), respectively. Updates on S are performed by a neural network ¢

based on the pair-wise color differences OES) - og-t) (Fey et al., 2020a).

form of an identity matrix Iy, |. Using S(*), we then map those unique node colorings
from the source graph G, to the target graph G,. Then, we distribute these colorings in
corresponding neighborhoods by performing synchronous message passing on both
graphs via a second shared Graph Neural Network gy (Fey et al., 2020a), i.e.

(8) = go ( (s)) and og-t) =ge ((S&)C(S))j) . (4.18)

We can then compare the results of both GNNs to recover a vector d; ; = o(s) o(»t)
which measures the neighborhood consensus between node pairs (i,5) € Vs X Vt
This measure can be used to perform trainable updates of the correspondence scores

{41 . & . &L &L
Si(’; ) = smkhorn(S(“l))iJ with SZ-(J-JFI) = Sz'(,j) + vo(d;,;) (4.19)

based on an Multi-Layer Perceptron (MLP) 9. The process can be applied L times
to iteratively improve the consensus in neighborhoods (Fey et al., 2020a). The final
objective

— > log(S{% ) +log(S) ) (4.20)
i€Vs

[ (initial) [ (refined)

combines both the feature matching error introduced in Section 4.4.2 and the newly
introduced neighborhood consensus error (Fey et al., 2020a). Notably, this objec-
tive is fully-differentiable and can hence be optimized in an end-to-end fashion us-
ing stochastic gradient descent. Overall, the consensus stage distributes global node
colorings to resolve ambiguities and false matchings made in the first stage of our ar-
chitecture by only using purely local operators. Since an initial matching is needed
to test for neighborhood consensus, this task cannot be fulfilled by g¢ alone, which
stresses the importance of our two-stage approach (Fey et al., 2020a).
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4.4.3.1 Theoretical Guarantees. The following two theorems show that the differ-
ence in color distributions d; ; is a good measure of how well local neighborhoods
around ¢ € V, and j € V; are matched by the soft correspondence between G, and G;.

Theorem 3. Let G, and G, be two isomorphic graphs and let gg be a permutation equivariant
GNN. If S € {0, I}M Vel encodes an isomorphism between G, and Gy, then d; ;) = 0 for
all i € V.

Proof. Since gg is permutation equivariant, for any node feature matrix X, € RIVslx-
it holds that g (ST X, ST A.S) = ST ge(Xs, As). Since S encodes an isomorphism
between G, and G;, it immediately follows that

Ot = gB(Xt7At) = gG(STXsa STASS) = STQB(XsyAs) = STOS~

Hence, oz(-s) = ofrt)i) for any node i € V;, resulting in d; ;) = 0. O
Theorem 4. Let G, and G, be two graphs and let gg be a permutation equivariant, maxi-
mally expressive L-layer GNN. Let N, (i) describe the L-hop neighborhood around node i.
Ifd;; = 0, then Sy, ;)N (5) € [0, I]WL(i)‘XWL Dl s a permutation matrix describing an
isomorphism between the L-hop subgraph Gs[N,(i)] around i € Vs and the L-hop subgraph
Gi|NL(5)] around j € V,.

%

around node i € V,; and node j € V; to the same vectorial representation:

Proof. Since ol*) = o;t), the L-layer GNN gg has mapped both L-hop neighborhoods

ol = go () = g0 ((STC),) =oll". (4.21)

Since gg is maximally expressive, i.e. it is as powerful as the WL heuristic in distin-
guishing graph structures (Xu et al., 2019¢; Morris et al., 2019), and is operating on
injective node colorings, it has the power to distinguish any graph structure, cf. Mur-
phy et al. (2019b). Hence, S € [0,1]V*@WVLU)l heeds to be a permutation matrix
describing an isomorphism between G, [N7,(7)] and G,[NL(j)]. O

A GNN gp that satisfies both criteria in Theorem 3 and Theorem 4 provides equal
node embeddings oz(-s) and og-t) if and only if nodes in a local neighborhood are cor-
rectly matched to each other. A value d; ; # 0 indicates the existence of inconsistent
matchings in the local neighborhoods around ¢ and j, and can hence be used to refine

the correspondence score S; ; (Fey et al., 2020a).

Note that both requirements, permutation equivariance and injectivity, are easily ful-
filled: (1) All common Graph Neural Network architectures following the message
passing scheme of Equation (3.5) are equivariant due to the use of permutation in-
variant neighborhood aggregators. (2) There provenly exists maximally expressive
GNN architectures that are as powerful as the WL heuristic (Weisfeiler & Lehman,
1968) in distinguishing graph structures, e.g., by using sum aggregation in combina-
tion with MLPs on the multiset of neighboring node features (Xu et al., 2019¢; Morris
et al., 2019), cf. Section 3.4.

While the expressive power and limitations of the WL heuristic are well understood
(Arvind et al., 2015), it is important to note that our DGMC architecture generally
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inherits its capabilities and limitations. Hence, one possible limitation of our approach
is that whenever two nodes are assigned the same color by WL, our approach may
fail to converge to one of the possible solutions, e.g., in case there exists two nodes
i,j € V, with equal neighborhood sets N/ (i) = N (j). In this case, the initial feature

matching procedure will generate equal initial correspondence distributions S ; o

S:(O) leading to both nodes receiving the same color distributions c(t) = cgt) from gs.
Since both nodes share the same neighborhood, ge also produces the same distributed

functions o( ) = ( . As a result, both column vectors S, (L]) and S. S ]) receive the same
update, leadmg to non-convergence. In theory, one mlght resolve these ambiguities
by adding a small amount of noise to §(°), which helps the model to randomly decide
between one of the two options. However, the general amount of feature noise present

in real-world datasets already ensures that this scenario is unlikely to occur (Fey et al.,
2020a).

4.4.3.2 Relation to the Graduated Assignment Algorithm. Theoretically, we can re-
late our proposed approach to classical graph matching techniques that consider a
doubly-stochastic relaxation of the problem defined in Equation (4.16), cf. Lyzinski
et al. (2016) and Section 4.4.1. A seminal work following this method is the graduated
assignment algorithm (Gold & Rangarajan, 1996). By starting from an initial feasible so-
lution S(°), a new solution S+1) is iteratively computed from S by approximately
solving a linear assignment problem according to

S o softa551gn Z Z Qi ;S ” with @Q;; =2 Z Z AE?,A(t) Z, j/

i€EVs JEV: VEVs JEV,

(4.22)
where Q denotes the gradient of Equation (4.16) at S) (Fey et al., 2020a).> Here, the
softassign operator is implemented by applying sinkhorn normalization on rescaled
inputs, where the scaling factor grows in every iteration to increasingly encourage
integer solutions. Our approach also resembles the approximation of the linear as-
signment problem via sinkhorn normalization (Fey et al., 2020a).

Moreover, the gradient Q is closely related to our neighborhood consensus scheme
for the particular simple, non-trainable GNN instantiation ¢(X, A) = AT X. Given
O, =AlIy, ) =A] and O, = A/ STI, | = A]S", we obtain Q = 20,0/ by
substitution. However, instead of updating S!) based on the similarity between O

and O; obtained from a fixed-function GNN g, we choose to update correspondence

scores V1a trainable neural networks gg and 19 based on the difference between o( s)

and 0\". This allows us to interpret our model as a deep parameterized generaliza-
tion of the graduated assignment algorithm (Fey et al., 2020a). In addition, specifying
node and edge attribute similarities in graph matching is often difficult and compli-
cates its computation (Zhou & De la Torre, 2016; Zhang et al., 2019d), whereas our
approach naturally supports continuous node and edge features via established GNN
models.

3For clarity of presentation, we closely follow the original formulation of the method for simple graphs
but ignore the edge similarities and adapt the constant factor of the gradient according to our objective
function.
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4.4.3.3 Scaling to Large Input. We further propose a number of optimizations to let
DGMC scale to large input domains (Fey ef al., 2020a):

e Inorder to scale to larger input, we propose to sparsify initial correspondences
by filtering out low score correspondences before neighborhood consensus takes
place. That is, we sparsify S(*) by computing top k correspondences with the
help of the KeOps library (Feydy et al., 2020) without ever storing its dense ver-
sion, reducing its required memory footprint from O(|V,|[V;|) to O(k|Vs|) (Fey
et al.,, 2020a). In addition, the time complexity of the refinement phase is re-
duced from O(|Vs||Vy| + |Es| + |€:]) to O(k|Vs| + |Es| + |&]), where |E5| and |€;]
denote the number of edges in G and G;, respectively. Note that sparsifying
initial correspondences assumes that the feature matching procedure ranks the
correct correspondence within the top & elements for each node i € V,. Hence,
also optimizing the initial feature matching loss is crucial, and can be further
accelerated by training only against sparsified correspondences with ground-

truth entries topk(Si(f)) U {SZ.(’O;gt(i)} (Fey et al., 2020a).
e Although applying the GNN gg on unique node colorings is computationally ef-
ficient due to their sparse nature, it nonetheless requires a parameter complexity
of O(|Vs]). Hence, we propose to replace unique node colorings with randomly

drawn node functions 7*) ~ A/(0, 1), where r*) € R® with R < [V,|. By sam-

i
pling from a continuous distribution, these node colorings are still guaranteed
to be injective (DeGroot & Schervish, 2012). Note that Theorem 3 still holds be-
cause it does not impose any restrictions on the function space L(gs). However,

Theorem 4 does not necessarily hold anymore, but we expect our refinement
(s)

i

strategy to resolve any ambiguities by re-sampling r
et al., 2020a).

in every iteration / (Fey

e The sinkhorn normalization fulfills the requirements of obtaining rectangular
doubly-stochastic solutions (Sinkhorn & Knopp, 1967, Adams & Zemel, 2011;
Cour et al., 2006). However, it may eventually push correspondences to incon-
sistent integer solutions very early on from which the neighborhood consen-
sus method cannot effectively recover. Furthermore, it is inherently inefficient
to compute and runs the risk of vanishing gradients 9S“) /08() (Zhang et al.,
2019c). Here, we propose to relax this constraint by only applying row-wise
softmax normalization on §(), and expect our supervised refinement proce-
dure to naturally resolve violations of ), ,, Sffj) < 1 on its own by re-ranking

false correspondences via neighborhood consensus (Fey et al., 2020a).

e Instead of holding the number of refinement iterations L fixed, we propose to
differ the number of iterations L("") and L(test), [(tain) < [ (test) for training
and testing, respectively. This does not only speed up training runtime, but
it also encourages the refinement procedure to reach convergence with as few
steps as necessary while we can run the refinement procedure until convergence
during testing (Fey et al., 2020a).

The final algorithm of DGMC is given in Algorithm 5. Specifically, DGMC first com-
putes initial correspondences based on local feature matching (line 1 — line 3), and
picks the top k correspondences for further refinement (line 4). Iteratively, DGMC
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Algorithm 5 Optimized Deep Graph Matching Consensus Algorithm
Require: Graphs G, = (Vs, &), G = Vi, &), Node features X, X,

1. Hy + fo(Xs, As) Compute node embeddings H, € RIV:Ix:
2 H; + fo(Xy, Ay) Compute node embeddings H; € RIV:Ix:
3 8O « H.H Local feature matching
4 S’i(?) — topk(gg?)) Sparsify to top k candidates for all ¢ € V,
5 for /in {1,...,L} do

6: Si(ffl) — softmax(gi(ffl)) Normalize scores for all ¢ € V,
7. Rs~N(0,1) Sample random node colorings R € RIVsI*1
8 R, STR, Map random node colorings R, from G to G,
9: O, <+ go(Rs, Ay) Distribute colorings R on G,
10: Oy < go(Ry, Ay) Distribute colorings R, on G,
11: d;j + ol(-s) - og-t) Compute neighborhood consensus measure
12: S‘f? — S*i(’ljfl) +e(d; ;) Perform trainable correspondence update
13: end for

14: Si(f) — softmax(gi(f)) Normalize scores for all i € V;

samples unique node colorings on the source graph from a continuous distribution
(line 7), maps them to the target graph (line 8), and performs updates to the cor-
respondence matrix by measuring the neighborhood consensus error given by the
distributed colorings in both graphs (line 9 — line 12).

44.4 Evaluation

We verify the performance of our DGMC model on three different tasks. We first
show the benefits of our approach in various ablation studies on synthetic graphs
(Section 4.4.4.1), and apply it to the real-world tasks of supervised keypoint match-
ing (Section 4.4.4.2) and semi-supervised cross-lingual knowledge graph alignment
(Section 4.4.4.3) afterwards.

Our method is implemented in PyTorch (Paszke et al., 2019) and utilizes the PyTorch
Geometric (Fey & Lenssen, 2019) and the KeOrs (Feydy et al., 2020) libraries. Our
implementation can process sparse mini-batches with parallel GPU acceleration and
minimal memory footprint in all algorithm steps. The code is publicly available on
GitHub*.

For all experiments, optimization is done via the Apam optimizer (Kingma & Ba, 2015)
with a fixed learning rate of 10~3. We use similar architectures for initial and refine-
ment GNN architectures fg and gg, respectively, except that we omit dropout (Srivas-
tava et al., 2014) in the latter. For all experiments, we report Hits@k to evaluate and
compare our model to previous lines of work, where Hits@k measures the proportion
of correctly matched entities ranked in the top & (Fey et al., 2020a).

4.4.4.1 Ablation Studies on Synthetic Graphs. In our first experiment, we evalu-
ate our method on synthetic graphs where we aim to learn a matching for pairs of

“https://github.com/rustyls/deep-graph-matching-consensus (last access: August 25, 2022)
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Figure 4.8: The performance of our method on synthetic data with structural noise.
While a purely local matching approach fails to find the correct structural
correspondences with increasing noise ps, DGMC recovers all correspon-
dences consistently. Furthermore, DGMC is robust towards both struc-
tural noise induced in the edge- and node-level (Fey et al., 2020a).

graphs in a supervised fashion. Each pair of graphs consists of an undirected Erd&s-
Rényi graph G, (Erdés & Rényi, 1959) with |V,| € {50,100} nodes and edge proba-
bility p € {0.1,0.2}, and a target graph G, which is constructed from G by removing
edges with probability ps without disconnecting any nodes (Heimann et al., 2018).
Training and evaluation is done on 1000 graphs each for different configurations
ps € {0.0,0.1,0.2,0.3,0.4,0.5} (Fey et al., 2020a).

We implement the Graph Neural Network operators fg and gg by stacking three layers
of the GIN operator (Xu et al., 2019¢c)

h£]e+1) — MLP¢HD <(1 + 6(t+1)) ~hff) + Z hgf)) (4.23)
weN (v)

due to its expressiveness in distinguishing raw graph structures, cf. Section 3.4. The
number of layers and hidden dimensionality of all MLPs is set to 2 and 32, respectively,
and we apply ReLU activation (Glorot et al., 2011) and Batch Normalization (Ioffe
& Szegedy, 2015) after each of its layers. Input features are initialized with one-hot
encodings of node degrees. We employ a Jumping Knowledge style concatenation
h, = W[hg,l)7 e hl(,L)} (Xuet al., 2018) to compute final node representations h,,. We
train and test our procedure with (") = 10 and L(*Y) = 20 refinement iterations,
respectively (Fey et al., 2020a).

Figure 4.8a and Figure 4.8b show the matching accuracy Hits@1 for different choices
of |V,| and p. We observe that the purely local matching approach via softmax(S(®)
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starts decreasing in performance with the structural noise p; increasing. Notably, this
also holds when applying global sinkhorn normalization on $(°). However, our pro-
posed two-stage architecture can recover all correspondences, independent of the ap-
plied structural noise p,. This applies to both variants discussed in the previous sec-
tions, i.e., our initial formulation sinkhorn(S’ (L) ), and our optimized architecture using
random node indicator sampling and row-wise normalization softmax(S(X)). This
highlights the overall benefits of applying matching consensus and justifies the usage
of the enhancements made towards scalability in Section 4.4.3.3 (Fey et al., 2020a).

In addition, Figure 4.8c visualizes the test error £ ¢fined) for varying number of itera-
tions Lt We observe that even when training to non-convergence, our procedure
is still able to converge by increasing the number of iterations L") during testing
(Fey et al., 2020a).

Moreover, Figure 4.8d shows the performance of our refinement strategy when oper-
ating on sparsified top k correspondences. In contrast to its dense version, it cannot
match all nodes correctly due to the poor initial feature matching quality. However,
it consistently converges to the perfect solution of Hits@1 ~ Hits@k in case the cor-
rect match is included in the initial top k ranking of correspondences. Hence, with
increasing k, we can recover most of the correct correspondences, making it an excel-
lent option to scale our algorithm to large graphs, cf. Section 4.4.4.3 (Fey et al., 2020a).

Furthermore, to experimentally validate the robustness of DGMC towards node ad-
dition (or removal), we conduct additional synthetic experiments in a similar fashion
to Xu et al. (2019b). In particular, the target graph G, is constructed by first adding ¢%
noisy nodes to the source graph, i.e., |V;| = (1 + q)|Vs|, and generating edges between
these nodes and all other nodes based on the edge probability p afterwards (Fey et al.,
2020a). Figure 4.8e and Figure 4.8f visualize the Hits@1 for different choices of |Vy|,
pand ¢ € {0.0,0.1,...,0.5}. Notably, our consensus stage is extremely robust to the
addition or removal of nodes while the first stage alone has major difficulties in find-
ing the right matching. This can be explained by the fact that unmatched nodes do
not have any influence on the neighborhood consensus error since those nodes do not
obtain a color from the functional map given by S. Our neural architecture is able
to detect and gradually decrease any false positive influence of these nodes in the
refinement stage (Fey et al., 2020a).

4.4.4.2 Supervised Keypoint Matching. We now apply our DGMC architecture to
the real-world task of supervised keypoint matching in natural images. For this, we
perform experiments on the PascalVOC (Everingham et al., 2010) with Berkeley an-
notations (Bourdev & Malik, 2009) dataset and the WILLOW-ObjectClass (Cho et al.,
2013) dataset, which contain sets of image categories with labeled keypoint locations.
For PascalVOC, we follow the experimental setups of Zanfir & Sminchisescu (2018)
and Wang et al. (2019¢) and use the training and test splits provided by Choy et al.
(2016). We pre-filter the dataset to exclude difficult, occluded and truncated objects,
and require examples to have at least one keypoint, resulting in 6,953 and 1,671 an-
notated images for training and testing, respectively. The PascalVOC dataset contains
instances of varying scale, pose and illumination, and the number of keypoints ranges
from 1 to 19. In contrast, the WILLOW-ObjectClass dataset contains at least 40 images
with consistent orientations for each of its five categories, and each image consists of
exactly 10 keypoints. Following the experimental setup of peer methods (Cho et al.,
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Method v fBdIRFadghmMuwoad i o™ I 0 Men

GMN 31.1 46.2 58.2 45.9 70.6 76.5 61.2 61.7 35.5 53.7 58.9 57.5 56.9 49.3 34.1 77.5 57.1 53.6 83.2 88.6 57.9

PCA-GM 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 66.5 63.6 61.3 58.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9 63.8

fo = MLP L=0 34.7 42.6 41.5 50.4 50.3 72.2 60.1 59.4 24.6 38.1 86.2 47.7 56.3 37.6 35.4 58.0 45.8 74.8 64.1 75.3 52.8
0 = N

L =10 45.8 58.2 45.5 57.6 68.2 82.1 75.3 60.2 31.7 52.9 88.2 56.2 68.2 50.7 46.5 66.3 58.8 89.0 85.1 79.9 63.3
L =20 453 57.1 54.9 54.7 71.7 82.6 75.3 65.9 31.6 50.8 86.1 56.9 67.1 53.1 49.2 77.3 59.2 91.7 82.0 84.2 64.8

L=0 443 62.0 48.4 53.9 73.3 80.4 72.2 64.2 30.3 52.7 79.4 56.6 62.3 56.2 47.5 74.0 59.8 79.9 81.9 83.0 63.1
L =10 45.9 60.5 49.0 59.7 72.8 80.9 77.4 67.2 34.1 56.3 80.4 59.5 68.6 53.9 48.6 75.5 60.8 91.5 84.8 80.3 65.4
L =20 447 61.5 53.0 63.1 73.6 81.2 75.2 68.1 33.9 57.1 80.5 59.7 66.5 54.4 51.6 74.9 63.6 85.4 79.6 82.3 65.5

L=0 443 62.0 48.4 53.9 73.3 80.4 72.2 64.2 30.3 52.7 79.4 56.6 62.3 56.2 47.5 74.0 59.8 79.9 81.9 83.0 63.1
L =10 46.5 63.7 54.9 60.9 79.4 84.1 76.4 68.3 38.5 61.5 80.6 59.7 69.8 58.4 54.3 76.4 64.5 95.7 87.9 81.3 68.1
L =20 50.1 65.4 55.7 65.3 80.0 83.5 78.3 69.7 34.7 60.7 70.4 59.9 70.0 62.2 56.1 80.2 70.3 88.8 81.1 84.3 68.3

L =0 343459 37.3 47.7 53.3 75.2 64.5 61.7 27.7 40.5 85.9 46.6 50.2 39.0 37.3 58.0 49.2 82.9 65.0 74.2 53.8
L =10 44.6 51.2 50.7 58.5 72.3 83.3 76.6 65.6 31.0 57.5 91.7 55.4 69.5 56.2 47.5 85.1 57.9 92.3 86.7 85.9 66.0
L =20 48.7 57.2 47.0 65.3 73.9 87.6 76.7 70.0 30.0 55.5 92.8 59.5 67.9 56.9 48.7 87.2 58.3 94.9 87.9 86.0 67.6

Jo— GNN L=0 421575496 594 838 840 784 67.5 37.3 604 850 58.0 6.0 54.1 526 939 60.2 85.6 878 825 67.3
( . ) L=10455 67.6 56.5 6.8 86.9 852 842 73.0 43.6 6.0 92.3 6.0 79.8 56.6 56.1 95.4 64.4 95.0 91.3 863 72.8
ANSOUOPIC) I — 20 47.0 65.7 56.8 67.6 86.9 87.7 85.3 72.6 42.9 69.1 84.5 63.8 78.1 55.6 58.4 98.0 68.4 92.2 94.5 855 73.0

(isotropic)

go=A"TX
(isotropic)

fo = GNN

(isotropic)

fo = MLP

(anisotropic)

Table 4.5: Hits@1 (%) performance of DGMC on the PascalVOC dataset with
Berkeley keypoint annotations (Fey et al., 2020a).

2013; Wang et al., 2019¢), we pre-train our model on Pascal VOC and fine-tune it over 20
random splits with 20 per-class images used for training. We construct graphs via the
Delaunay triangulation of keypoints. For fair comparison with Zanfir & Sminchisescu
(2018) and Wang et al. (2019¢), input features of keypoints are given by the concate-
nated output of relu4_2 and relu5_1 of a pre-trained VGG16 model (Simonyan &
Zisserman, 2014) on the ImageNet dataset (Deng et al., 2009; Fey et al., 2020a).

We adopt SplineCNN as our Graph Neural Network operator (Fey et al., 2018)

hgf+1>:a<w<t+1)h5f>+ > gg“”(ew,,,)-hﬁj)) (4.24)
weN (v)

whose trainable B-spline based kernel function gg is conditioned on edge features
e,,» between node-pairs, cf. Section 3.3. To align our results with the related work,
we evaluate both isotropic and anisotropic edge features which are given as relative
distances and 2D Cartesian coordinates, respectively. For SplineCNN, we use a kernel
size of 5 in each dimension, a hidden dimensionality of 256, and apply ReLU as our
non-linearity function o (Glorot et al., 2011). Our network architecture consists of
two graph convolutional layers, followed by dropout with probability 0.5 (Srivastava
et al., 2014), and a final linear layer. During training, we form pairs between any two
training examples of the same category, and evaluate our model by sampling a fixed
number of test graph pairs belonging to the same category (Fey et al., 2020a).

We follow the experimental setup of Wang et al. (2019¢) and train our models us-
ing negative log-likelihood due to its superior performance in contrast to the displace-
ment loss used in Zanfir & Sminchisescu (2018), and compare our DGMC approach
against the GMN (Zanfir & Sminchisescu, 2018) and PCA-GM (Wang et al., 2019c¢)
graph matching models. We evaluate our complete architecture using isotropic and
anisotropic GNNSs for L € {0, 10,20}, and include ablation results obtained from us-
ing fo = MLP for the local node matching procedure (Fey ef al., 2020a). Furthermore,
as stated in Section 4.4.3.2, our DGMC algorithm can be viewed as a generalization
of the graduated assignment algorithm (Gold & Rangarajan, 1996), extending it by
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Method Face Motorbike  Car Duck Winebottle
GMN (Zanfir & Sminchisescu, 2018) 99.3 714 74.3 82.8 76.7
PCA-GM (Wang et al., 2019¢) 100.0 76.7 84.0 93.5 96.9
L=0 98.07+0.79 48.97+4.62 65.30+3.16 66.02+2.51 77.72+3.32
fo = MLP isotropic L = 10 100.00-£0.00 67.28-+4.93 85.07+3.93 83.10+3.61 92.30+2.11
L =20 100.00+0.00 68.57+3.94 82.75+5.77 84.18+4.15 90.36+2.42
L=0 99.62+0.28 73.47+3.32 77.47+4.9277.10+3.25 88.04+1.38
fo = GNN isotropic L = 10 100.00-:0.00 92.05+3.49 90.05-:5.10 88.98+2.75 97.14-+1.41
L =20 100.00-+0.00 92.05+3.24 90.28-+4.67 88.97+3.49 97.14+1.83
L=0 98.47+0.61 49.28+4.31 64.95+3.5266.17+4.08 78.08+2.61
feo = MLP anisotropic L = 10 100.00-+0.00 76.28+4.77 86.70+3.25 83.224+3.52 93.65+-1.64
L =20 100.00-+0.00 76.57+5.28 89.00+3.88 84.78-+2.73 95.29+4-2.22
L=0 99.96+0.06 91.90+2.30 91.28+4.89 86.58+2.99 98.25+0.71
fg = GNN anisotropic L =10 100.00-+-0.00 98.80+1.58 96.53+1.5593.22+3.77 99.87+0.31
L =20 100.00-+-0.00 99.40+0.80 95.53+2.9393.00+2.71 99.39+0.70

Table 4.6: Hits@1 (%) performance with standard deviations of DGMC on the
WILLOW-ObjectClass dataset (Fey et al., 2020a).

trainable parameters. To evaluate the impact of a trainable refinement procedure,
we perform additional ablation studies on PascalVOC by implementing ge via a non-
trainable, one-layer GNN instantiation go(X, A) = A" X, and employing a trainable
and isotropic fy for the first stage.

Results of Hits@1 are shown in Table 4.5 and Table 4.6 for the PascalVOC and WILLOW-
ObjectClass datasets, respectively. We observe that the refinement strategy of DGMC
is able to significantly outperform competing methods as well as our non-refined base-
lines. On the WILLOW-ObjectClass dataset, our refinement stage at least reduces the
error of the initial model (L = 0) by half across all categories. The benefits of the
second stage are even more crucial when starting from a weaker initial feature match-
ing baseline (fo = MLP), with overall improvements of up to 14 percentage points
on PascalVOC. However, good initial matchings do help our consensus stage to im-
prove its performance further, as indicated by the usage of task-specific isotropic or
anisotropic GNNSs for the initial GNN fy (Fey et al., 2020a). Furthermore, using train-
able neural networks gg consistently improves upon the results of using non-trainable
fixed-function message passing operators. While it is difficult to encode meaningful
similarities between node and edge features in a fixed-function pipeline, our train-
able DGMC approach is able to learn how to make use of those features to guide the
refinement procedure further (Fey et al., 2020a).

We further visualize examples of our method for the task of keypoint matching on
the WILLOW-ObjectClass dataset in Figure 4.9, in which examples were selected as
follows: Figure 4.9a, b and ¢ show examples where the initial feature matching proce-
dure fails, but where our refinement procedure is able to recover all correspondences
successfully. Figure 4.9d visualizes a rare failure case. However, while the initial fea-
ture matching procedure maps most of the keypoints to the same target keypoint, our
refinement strategy is still able to successfully resolve this violation. In addition, note
that the target image contains wrong labels in this example, e.g., the eye of the duck,
so that some keypoint mappings are mistakenly considered to be wrong.
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(¢) Duck (d) A rare failure case

Figure 4.9: Qualitative examples from the WILLOW-ObjectClass dataset. Images
on the left represent the source, whereas images on the right represent the
target. For each example, we visualize both the result of the initial feature
matching procedure S(°) (top) and the result obtained after refinement
S(L) (bottom) (Fey et al., 2020a).

Lastly, we also evaluate our anisotropic DGMC architecture by tackling the task of
geometric keypoint matching, where we only make use of point coordinates and no ad-
ditional visual features are available. Here, we follow the experimental training setup
of Zhang & Lee (2019), and test the generalization capabilities of our model on the
PascalPF dataset (Ham et al., 2016). For training, we generate a synthetic set of graph
pairs: We first randomly sample 30-60 source points uniformly from [—1,1]*, and add
Gaussian noise from A/(0, 0.05?) to these points to obtain the target points. Further-
more, we add 0-20 outliers from [—1.5, 1.5] to each point cloud. Finally, we construct
graphs by connecting each node with its k-nearest neighbors (k = 8). We train our
anisotropic keypoint architecture with input z, = 1 € R! for all v € V, U V; until
it has seen exactly 32,000 synthetic examples. We then evaluate our trained model
on the PascalPF dataset (Ham ef al., 2016) which consists of 1, 351 image pairs within
20 classes, with the number of keypoints ranging from 4 to 17. Results of Hits@1 are
shown in Table 4.7. Overall, our consensus architecture improves upon the state-of-
the-art results of Zhang & Lee (2019) on almost all categories while our L = 0 baseline
is weaker than the results reported in Zhang & Lee (2019), showing the benefits of
applying our consensus stage. In addition, it shows that our method works also well
even when not taking any visual information into account (Fey et al., 2020a).



4.4. GRAPH MATCHING VIA NEIGHBORHOOD CONSENSUS 89

Method > 4 & RO mM A 3 & & = @ O Men
Zhang & Lee (2019) 76.1 89.8 93.4 96.4 96.2 97.1 94.6 82.8 89.3 96.7 89.7 79.5 82.6 83.572.8 76.7 77.1 97.3 982 99.5 885

fy— GNN L=0 692877773 904 987983 925 916 947 794 958 90.1 80.0 795 725 980 765 896 934 978 876
é ot ) L=10 813922942 988 9.3 99.1 98.6 98.2 99.6 94.1 100.0 99.4 86.6 86.6 88.7 100.0 100.0 100.0 100.0 993 95.8
AMSOOPIC) 1 90 81.1 92.0 94.7 100.0 99.3 99.3 98.9 97.3 99.4 93.4 100.0 99.1 86.3 86.2 87.7 100.0 100.0 100.0 100.0 99.3 95.7

Table 4.7: Hits@1 (%) performance of DGMC on the PascalPF dataset, using a syn-
thetic training setup (Fey et al., 2020a).

ZH—EN EN—ZH JA—EN EN—JA FR—EN EN—FR
@ @0 @ @0 @ @0 @ @0 @ @10 @ @10

GCN (Wang et al., 2018b) 41.25 74.38 36.49 69.94 39.91 74.46 38.42 71.81 37.29 74.49 36.77 73.06
BootEA (Sunetal., 2018) 6294 8475 — — 62238539 — — 65308744 — —
MuGNN (Cao et al., 2019) 4940 8440 — — 50108570 — — 49.6087.00 — —
NAEA (Zhuetal.,, 2019a) 65.01 86.73 — — 64148727 — — 67328943 — —
RDGCN (Wuet al., 2019b) 70.75 8455 — — 76748954 — — 88649572 — —
GMNN (Xu et al.,2019d) 67.93 78.48 65.28 79.64 73.97 87.15 71.29 84.63 89.38 95.25 88.18 94.75

fo=MLP L=0 58.53 78.04 54.99 74.25 59.18 79.16 55.40 75.53 76.07 91.54 74.89 90.57

L=0 67.59 87.47 64.38 83.56 71.95 89.74 68.88 86.84 83.36 96.03 82.16 95.28
L =10 71.61 87.47 68.52 83.56 77.18 89.74 76.53 86.84 85.69 96.03 85.96 95.28

L=0 67.59 87.47 64.38 83.56 71.95 89.74 68.88 86.84 83.36 96.03 82.16 95.28
L =10 80.12 87.47 76.77 83.56 84.80 89.74 81.09 86.84 93.34 96.03 91.95 95.28

Method

go = ATX

fo = GNN

Table 4.8: Hits@1 (%) and Hits@10 (%) performance of DGMC on the DBP15K
datasets (Fey et al., 2020a).

4.4.4.3 Semi-Supervised Cross-Lingual Knowledge Graph Alignment. We further
evaluate our model on the DBP15K datasets (Sun et al., 2017), which link entities of
the Chinese, Japanese and French knowledge graphs of DBrepIA into their English
version and vice versa. Each dataset contains of exactly 15,000 ground-truth links be-
tween equivalent entities in different languages, and we split those links into training
and testing following upon previous works. For obtaining entity input features, we
follow the experimental setup of Xu et al. (2019d): We retrieve monolingual rasTTEXT
embeddings (Bojanowski ef al., 2017) for each language separately, and align those
into the same vector space afterwards (Lample ef al., 2018). We use the sum of word
embeddings as the final entity input representation (although more sophisticated ap-
proaches are just as conceivable) (Fey et al., 2020a).

Our utilized Graph Neural Network operator mostly matches the one proposed in Xu
et al. (2019d) where the direction of edges is retained, but not their specific relation

type:

£+1 £41) 4 (£ £41) 4 (£ 041)4 (¢
K >:g<wf O+ ST witR Y w )h§)>. (4.25)
(Gi)e€ (i.4)€€

We use ReLU followed by dropout with probability 0.5 as our non-linearity ¢, and

obtain final node representations via h; = Wy [h;l), ce h,Z(-L)}. We use a three-layer
GNN both for obtaining initial similarities and for refining alignments with dimen-
sionality 256 and 32, respectively. Training is performed using negative log-likelihood
in a semi-supervised fashion: For each training node 7 in V,, we train [ (initial) sparsely
by using the corresponding ground-truth node in V, the top & = 10 entries in S; . and
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k randomly sampled entities in V;. For the refinement phase, we update the sparse
top k correspondence matrix 10 times. For efficiency reasons, we train £ and
£(refined) gequentially for 100 epochs each (Fey et al., 2020a).

We report Hits@1 and Hits@10 to evaluate and compare our model to previous lines of
work, see Table 4.8. In addition, we report results of a simple three-layer MLP which
matches nodes purely based on initial word embeddings, a variant of our model
without refinement (L = 0), as well as a variant modeling the graduated assign-
ment algorithm via fixed-function refinement networks go(X, A) = AT X. Notably,
our approach improves upon the state-of-the-art on all categories with gains of up
to 9.38 percentage points. In addition, our trainable refinement strategy consistently
improves upon the Hits@1 obtained from initial correspondences and fixed-function
refinement by a significant margin, while results of Hits@10 are shared due to the
refinement operating only on sparsified top 10 initial correspondences. Due to the
scalability of our approach, we can easily apply a multitude of refinement iterations
while still retaining large hidden feature dimensionalities (Fey et al., 2020a).



Scalable Graph Neural Networks
for Large-Scale Graph Learning

A major challenge of Graph Neural Networks is the difficulty to scale them to large
graphs due to the exponentially increasing dependency of nodes over layers. While
scalability techniques are indispensable for applying GNNs to large graphs, exist-
ing approaches based on graph sub-sampling weaken the expressive power of mes-
sage passing. In order to overcome this restriction, we propose GNNAutoScale, a
framework for scaling arbitrary message passing neural networks to large graphs
that is provably able to maintain the expressive power of the original GNN. Fur-
thermore, in order to accelerate GNN research on large-scale graphs, we propose
the Open Graph Benchmark, which includes a diverse set of challenging, realis-
tic and large-scale graph benchmark datasets across three different learning tasks.
Our experiments suggest that our datasets present significant challenges regard-
ing scalability and out-of-distribution generalization under realistic data splits.

51 Introduction . . ... .. ... .. ... ... .. 91
52 State-of-the-Art . . ... ... ... ... ... 93
5.3 Scaling Up Graph Neural Networks via Historical Embeddings . . . . 100

5.4 The Open Graph Benchmark Datasets for Large-Scale Graph Learning 110
55 Evaluation . . ... ... ... ... ... L oo 116

5.1 Introduction

One of the challenges that have precluded the wide adoption of Graph Neural Net-
works (GNNs) in industrial and social applications is the difficulty to scale them to
large graphs (Frasca et al., 2020). While most of the research in this field has focused
on boosting model performance on small-scale datasets, relatively little effort has been
devoted to scaling these methods to gigantic web-scale graphs (Hamilton ef al., 2017).

91
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Mini-batch B C V

(a) Mini-batch selection (b) GNN computation graph

Figure 5.1: Illustration of the neighbor explosion phenomenon in mini-batch pro-
cessed GNNs. Figure (a) shows the underlying graph and the subset of
mini-batch nodes M. For simplicity, we assume |B| = 1 with B = {v1}.
Figure (b) illustrates the computation flow of a three-layer GNN in order
to derive the final representation hq(f)]’) of node vy. After only three layers,
all nodes of the graph contribute to its representation.

However, as GNNs become more well understood (Chapter 3) and their model instan-
tiations become more sophisticated and data-demanding (Chapter 4), advancements
in this field should be especially noticeable with access to an increasing amount of
data, as it has been the case for other domains as well (Krizhevsky et al., 2012; Devlin
et al., 2018; Brock et al., 2019).

Traditional deep neural networks are known to scale well to large amounts of data
by decomposing the training loss into individual samples (called a mini-batch) and
approximating exact gradients stochastically (Goodfellow et al., 2016). Somewhat
surprisingly, the variance induced by such stochastic optimization is even known to
improve generalization (Bottoue & Bousquet, 2007). In contrast, applying stochastic
mini-batch training in GNNSs is challenging since the embedding of a given node de-
pends recursively on all its neighbor’s embeddings, leading to high inter-dependency
between nodes that grows exponentially with respect to the number of layers, cf. Fig-
ure 5.1. As a simple workaround, GNNs are typically executed in a full-batch fashion,
with access to all hidden node representations of all layers, cf. Section 3.2.3. However,
this is not feasible in large-scale graphs due to memory limitations and slow conver-
gence (Ma & Tang, 2020). Therefore, it is desirable to approximate its full-batch gradi-
ent stochastically as well. For example, given a suitable loss function ¢ for tackling the
task of node classification, the gradients of model parameters 8 can be approximated
via

VL) = |%,| S Voh, y,) ~ ﬁ S VohE),u), (5.1)

veV veEBCY

in which only a mini-batch B C V of nodes is considered for loss computation. How-
ever, this stochastic gradient is still expensive to compute due to exponentially in-
creasing dependencies of node representations over layers, a phenomenon framed
as neighbor explosion. Specifically, the representation of a given node depends recur-
sively on all its neighbor’s representations, and the number of dependencies grows
exponentially with respect to the number of layers. To be more precise, receiving the
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final node embedding hi" of a single node v € V requires access to d(G )L additional

nodes on average, where d(G) denotes the average node degree of G.

As a result, scalability techniques are indispensable for applying GNNs to large-scale
graphs in order to alleviate the neighbor explosion problem induced by mini-batch
training. Here, we introduce our GNNAutoScale (GAS) framework in Section 5.3,
which tackles the scalability problem of GNNs by building upon the idea of utiliz-
ing historical node embeddings acquired in prior training iterations as affordable ap-
proximations (Chen et al., 2018c). As a significant advantage, GAS is provably able
to maintain the expressive power of the utilized GNN model (Section 3.4), which is
not the case for existing solutions that sub-sample edges or perform non-trainable
propagations (Section 5.2.1).

An additional barrier for applying and evaluating GNNs on large-scale graphs (within
their respective scalability technique) is the absence of realistic and large-scale graph
benchmark datasets (Section 5.2.2). Historically, high-quality and large-scale data-
sets have played significant roles in advancing machine learning research in several
domains, such as in computer vision, natural language processing or speech recog-
nition (Deng et al., 2009; Lin et al., 2014; Wang ef al., 2018a; Rajpurkar et al., 2016;
Panayotov et al., 2015; Barker et al., 2015). In order to overcome the lack of large-scale
graph benchmark datasets, we introduce the Open Graph Benchmark (OGB) in Sec-
tion 5.4, which includes a diverse set of challenging and realistic benchmark datasets
to facilitate scalable, robust, and reproducible graph machine learning research. OGB
datasets are orders of magnitude larger than existing ones, encompass multiple im-
portant tasks, and cover a diverse range of domains, ranging from social and infor-
mation networks to biological networks, molecular graphs, source code represented
by Abstract Syntax Trees (ASTs), and Knowledge Graphs (KGs). We further show
that our datasets present significant challenges of scalability and out-of-distribution
generalization under realistic data splits, indicating fruitful opportunities for future
research.

5.2 State-of-the-Art

We briefly review recently proposed state-of-the-art scalability techniques for GNNs
(Section 5.2.1) as well as existing graph benchmark datasets (Section 5.2.2).

5.2.1 Scalable Graph Neural Networks

In order to alleviate and overcome the neighbor explosion problem induced by mini-
batch GNN training, several works propose different sampling techniques (Hamil-
ton et al., 2017; Chen et al., 2018b; Chiang et al., 2019), i.e. node-wise, layer-wise or
subgraph-wise sampling, or to decouple propagations from predictions (Wu et al.,
2019a; Bojchevski et al., 2020; Chen et al., 2020a).

5.2.1.1 Node-wise Sampling. Node-wise sampling approaches (Hamilton ef al., 2017;
Chen et al., 2018c; Zeng et al., 2020a; Markowitz et al., 2021) recursively sample a fixed
number k of neighbors, i.e. N' C N (v) with [N¥) (v)| = k, for anode v € V, leading to
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Mini-batch B C V

(a) Mini-batch selection (b) GNN computation graph

Figure 5.2: Node-wise sampling: In each layer and for each node in the previous
layer, a fixed number of neighbors & is sampled, leading to a pruned ver-
sion of the original computation graph. For simplicity, we show examples
for |B| =1 and k = 1 here.

an overall bounded L-hop neighborhood of O(k¥) for each node, cf. Figure 5.2. With
this, the original computation graph is pruned to contain at most k¥ connections be-
tween neurons in different layers. Notably, node-wise sampling approaches can only
mitigate the neighbor explosion problem to some extend, as the overall neighborhood
size still increases exponentially with the number of layers. As such, in order to allow
for scalable and deep GNNs, constant neighborhood sizes in respect to the input node
size are required (Fey et al., 2021). Furthermore, the sample size k needs to be large in
order to reduce bias in sampling and to keep the predictive performance comparable
to the exact algorithm (Chen et al., 2018c). As a result, sampling for more than two
iterations is generally not applicable (Hamilton et al., 2017). Chen et al. (2018c) try to
mitigate this problem by allowing for smaller sample sizes via a control variate based
estimator. Alternative solutions (Markowitz et al., 2021; Addanki et al., 2021) still sam-
ple a shallow neighborhood patch but make all edges bidirectional, which naturally
allows to run GNNs that are deeper than the actual number of sampled hops. In a
similar fashion, Zeng et al. (2020a) propose to use deep GNNs to pass messages only
in shallow, localized subgraphs around individual nodes in the mini-batch.

5.2.1.2 Layer-wise Sampling. In contrast to tracking down inter-layer connections,
layer-wise sampling techniques (Chen ef al., 2018b; Zou et al., 2019; Huang et al., 2018;
Hu et al., 2020c) independently sample nodes for each layer, leading to a constant
sampled size in each layer (Chen et al., 2018b), cf. Figure 5.3. For example FastGCN
(Chen et al., 2018b) samples the receptive field for each layer via importance sampling
based on node degree. While this layer-wise importance sampling method discards
the neighbor-dependent constraints, nodes sampled across layers now suffer from a
sparse connection problem (Zou et al., 2019). To counteract, LADIES (Zou et al., 2019)
and Huang et al. (2018) propose layer-dependent and adaptive samplers, respectively,
to constrain neighborhood dependencies, in which nodes are more likely to be sam-
pled if they are connected to already sampled nodes. This guarantees the connectivity
of the sampled adjacency matrix (Chen et al., 2020a), and reduces variance in return.
In a similar fashion, Hu et al. (2020c) extends this technique to heterogeneous graphs.
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Mini-batch B C V

(a) Mini-batch selection (b) GNN computation graph

Figure 5.3: Layer-wise sampling: In each layer, a distinct set of nodes is sampled and
involved in the computation, leading to constant sample sizes.

One major disadvantage of layer-wise sampling approaches is that layer-wise connec-
tions between nodes in the computation graph may be too sparse, and intermediate
representations may not be learned well in return (Ma & Tang, 2020). Hence, it is
required to sample a reasonable amount of nodes per layer in order to obtain accurate
embeddings.

5.2.1.3 Subgraph-wise Sampling. Insubgraph-wisesampling (Chiangetal.,2019; Zeng
et al., 2020b), a GNN is applied on the isolated subgraph G[B] induced by a sampled
mini-batch of nodes B C V, cf. Figure 5.4. With this, subgraph-wise sampling ap-
proaches only need to sample a subgraph at the beginning of each training iteration
and propagation is performed on the same subgraph across all layers (Chen ef al.,
2020a). In particular, all sampled nodes of the current mini-batch 3 are being used
for loss computation, making its formulation and implementation similar to full-batch
training. As a result, this technique gets rid of the neighbor explosion problem and is
therefore well suitable for the application of deep GNNSs in large-scale graphs. How-
ever, in contrast to node-wise and layer-wise sampling techniques, subgraph-wise
sampling approaches do not allow access to nodes and neighbors outside the current
mini-batch, which may contain crucial information for the given down-stream task
and therefore may fail to preserve the edges that represent a meaningful topological
structure (Fey et al., 2021). As a result, inference still needs to be performed on the
full graph in order to achieve reasonable performance (Zeng et al., 2020b). While the
application of deep GNNSs is possible in subgraph-wise sampling approaches, their
receptive field is bounded by the size of the induced subgraph. This prevents the
capturing of long-range dependencies despite utilizing deep GNNs.

Various subgraph-wise sampling methods have been proposed (Chiang et al., 2019;
Zeng et al., 2020b) which mainly differ in how mini-batches of nodes are acquired:
Cruster-GCN (Chiang et al., 2019) uses graph clustering techniques (Karypis & Ku-
mar, 1998; Dhillon et al., 2007) to partition the original graph into several subgraphs,
and uses these individual subgraphs to perform feature propagation. With this, mini-
batches of nodes are formed based on maximizing their intra-connectivity, in which
edges within clusters appear much more frequently than edges between different clus-
ters. Intuitively, a node and its neighbors have a high change to be located in the same
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Mini-batch B C V

(a) Mini-batch selection (b) GNN computation graph

Figure 5.4: Subgraph-wise sampling: Subgraph-wise sampling approaches perform
feature propagation on the induced subgraph of sampled mini-batch
nodes M across all layers.

cluster (Chianget al., 2019), leading to the maintenance of most of the original edges in
the induced subgraph G[B]. However, the usage of deterministic clustering algorithms
to partition the graph in a pre-processing step inherently biases the GNN model. A
GNN can no longer infer by itself which neighbors are important for the given down-
stream task. GRAPHSAINT (Zeng et al., 2020b) tries to eliminate the bias of CLUSTER-
GCN by stochastically sampling the mini-batch of nodes B. Bias and variance are
reduced via normalization techniques and specialized sampling algorithms, respec-
tively. Besides random node and edge samplers, GRapHSAINT proposes to make use
of a random walk based sampler in order to strengthen the intra-connectivity of mini-
batches (Zeng et al., 2020b). However, due to the normalization technique require-
ment, GRAPHSAINT can only be applied in inductive learning scenarios.

In Section 5.3, we introduce our own general scalability framework named GNNAu-
toScale (GAS). Notably, GAS can also be seen as a subgraph-wise sampling strat-
egy, but overcomes the downsides of the aforementioned methods, e.g., the restrictive
learning from shallow subgraphs, by incorporating out-of-mini-batch information via
historical embeddings. It was further extended in Ding ef al. (2021) to mitigate the
overhead of historical embedding storage via vector quantization.

5.2.1.4 Decoupling Predictions from Propagations. Another line of work is based
on the idea of decoupling propagations from predictions (Klicpera et al., 2019a) by
computing L-hop subgraph representations of a node in a pre-processing step (Wu
et al., 2019a; Frasca et al., 2020; Yu et al., 2020; Chen et al., 2020a). The idea is simple yet
powerful: Instead of obtaining node representations by learning proper parameters
of a GNN in a data-dependent fashion, these approaches utilize non-trainable GNN
variants, i.e. both MEessaGe and Upparte denote fixed-functions. As such, the represen-

tation k" of each node v € V can be computed in a pre-processing step that only
needs to be conducted once before the actual training procedure starts. The train-
ing procedure then involves learning the parameters 6 of an MLPg that performs the

final prediction, taking the pre-computed representations hi" as input rather than

the raw input features h"). This scheme easily scales to a large number of nodes via
stochastic gradient descent, as the training loss can be decomposed into individual
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Technique Pre-Processing Training Inference
Runtime Memory Runtime Memory Runtime  Memory
Full-batch — — O(L-|&]) OL-V)) oOL-&) o(v)
Node-wise — — OE"-|B)) OF"-|B)) 0" -|B]) 0@d"-|8))
Layer-wise — . OL-k-|B]) O(L-k-|B|) OL-|E]) O(V])
Subgraph-wise — — O(L-|€[B]) O(L-|B|) O(L-1&) o(V])
Decoupling  O(L-[€]) O(]V])  O(B]) o(s)) ogs) o(s))

Table 5.1: Summary of time and memory complexities for pre-processing, training
and inference across different GNN scalability techniques. We set the
dimensionality of node embeddings to be constant. Here, |£[B]| denotes
the number of edges in the induced subgraph G[B].

samples that do not longer share inter-dependencies with each other (just like in tra-
ditional deep neural networks). Different instantiations of fixed Messace and UpDATE
functions for performing the initial feature propagation have been proposed, e.g., via
the normalized Laplacian matrix (Wu et al., 2019a; Frasca et al., 2020) or the person-
alized PageRank matrix (Bojchevski et al., 2020; Chen et al., 2020a). In contrast to the
aforementioned pre-processing approaches, Huang et al. (2021) utilize the idea of de-
coupling predictions from propagations in a post-processing step. Here, an Multi-Layer
Perceptron (MLP) first learns to predict node-wise labels in a graph-agnostic fashion,
after which the predictions are then smoothed and adjusted across the given graph
via a fixed-function GNN pipeline.

The major disadvantage of such an approach is that the utilized fixed-function GNN
is no longer trainable, and as such, the obtained feature representations do not nec-
essarily need to align with the given task at hand and are provably less expressive,
cf. Section 3.4. In addition, powerful GNNs that utilize, e.g., attention for feature ag-
gregation are no longer applicable. However, it is worth noting that the performance
of such simplified models is usually quite competitive w.r.t. more sophisticated GNN
instantiations, in particular due to their significant advantages regarding time and
memory complexities.

5.2.1.5 Comparison. Table 5.1 gives a high-level overview over the individual run-
time and memory complexities of the aforementioned GNN scalability techniques.
For node-wise sampling approaches, the exponentially increasing neighborhood size
over layers k¥ dominates both the runtime and memory complexity of training. Dur-
ing inference, predictions needs to be made on the full neighborhood without any
stochasticity, further increasing complexities to d*, with d denoting the average node
degree. In contrast, both layer-wise and subgraph-wise sampling techniques achieve
linear runtime and memory complexities during training. However, for inference,
computation still needs to be applied on the full graph. In addition, the larger the
input graph is, the more challenging it becomes for layer-wise and subgraph-wise ap-
proaches to construct meaningful neighborhoods. Approaches that decouple predic-
tions from propagations achieve the best runtime and memory complexities both for
the training and inference phase since heavy computations are pre-processed. How-
ever, they miss out on the benefits of differentiable message passing.
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Our proposed scalability approach as introduced Section 5.3 can be seen as a subgraph-
wise technique that scales linearly with the number of layers L. However, in contrast
to existing approaches, it is able to incorporate all available information into its mes-
sage passing formulation. As such, it is not subject to the problem of finding mean-
ingful neighborhoods in the first place. In addition, it can be used for accelerating the
inference stage of a GNN as well.

Furthermore, all existing approaches are still restricted to shallow graph-structures
and non-exchangeable GNN operators. In particular, all techniques consider only spe-
cific GNN operators and it is an open question whether these techniques can be suc-
cessfully applied to the wide range of GNN architectures available (Veli¢kovi¢ ef al.,
2018; Xu et al., 2019¢; Corso et al., 2020; Chen et al., 2020b). Notably, our scalability
framework can be applied to any message passing GNN backbone.

5.2.2 Shortcomings of Existing Graph Benchmark Datasets

In order to track progress in graph machine learning, there is an urgent need for stan-
dardized and realistic graph datasets in which model performances are reproducible
and statistically significant. In particular, small datasets make it hard to rigorously
evaluate data-hungry models such as GNNs (Li et al., 2016b; Duvenaud et al., 2015;
Gilmer et al., 2017; Xu et al., 2019c), leading to unstable performances. Furthermore,
most studies adopt their own dataset splits, evaluation metrics, and cross-validation
protocols, making it challenging to compare performance reported across various
studies (Shchur et al., 2018; Errica et al., 2020; Dwivedi et al., 2020). In addition, many
studies follow the convention of using random splits to generate training and test sets
(Kipf & Welling, 2017; Xu et al., 2019¢; Bordes et al., 2013), which is not realistic or use-
ful for real-world applications and generally leads to overly optimistic performance
results (Lohr, 2009). As such, both fixed and realistic data splits as well as standard-
ized evaluation metrics are important so that progress can be measured in a consistent
and reproducible way.

We now review commonly-used graph benchmark datasets, and organize the discus-
sion around the three main categories of graph machine learning tasks: predictions
at the level of nodes, links, and graphs.

5.2.2.1 Node Property Prediction. Currently, the three citation graphs Cora, Cite-
Seer and PubMed (Sen et al., 2008; Yang et al., 2016) have been widely used as semi-
supervised node classification datasets, particularly for evaluating GNN performance
(Section 3.2.3). However, the sizes of these graphs are rather small, ranging from 2,700
to 20,000 nodes. Recent studies suggest that datasets at this small scale can be solved
quite well with simple GNN architectures (Shchur et al., 2018; Wu et al., 2019a), and
the performance of different GNNs on these datasets is nearly statistically identical
(Dwivedi et al., 2020). Furthermore, there is no consensus on the splitting proce-
dures for these datasets, which makes it hard to fairly compare different model de-
signs (Shchur ef al., 2018). Finally, a recent study (Zou et al., 2020) shows that these
datasets have some fundamental data quality issues. For example, in Cora, 42% of
the nodes leak information between their features and labels, and 1% of the nodes are
duplicated. The situation for CiteSeer is even worse, with leakage rates of 62% and
duplication rates of 5%.
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Some recent works in Graph Representation Learning have proposed relatively large
datasets, such as PPI (56,944 nodes), Reddit (334,863 nodes) (Hamilton et al., 2017)
and Amazon (2,449,029 nodes) (Chiang et al., 2019). However, there exist some inher-
ent issues with the proposed data splits. Specifically, 83%, 65% and 90% of the nodes
are used for training in the PPI, Reddit and Amazon datasets, respectively, which re-
sults in an artificially small distribution shift across the training/validation/test sets.
Consequently, as may be expected, the performance improvements on these bench-
marks have quickly saturated. For example, recent GNN models (Chiang et al., 2019;
Zeng et al., 2020b) can already yield F1 scores of 99.5 for PPI and 97.0 for Reddit,
and 90.4% accuracy for Amazon, with extremely small generalization gaps between
training and test accuracy. Finally, it is also practically required for GNNs to handle
web-scale graphs (e.g., beyond 100 million nodes and 1 billion edges) in industrial ap-
plications (Ying et al., 2018a). However, there have been no publicly available graph
datasets of such scale with sufficient label information.

In summary, several factors (e.g., size, leakage, splits, ...) associated with the cur-
rent use of existing datasets make them unsuitable as benchmark datasets for graph
machine learning.

5.2.2.2 Link Property Prediction. Broadly, there are two lines of efforts for the link-
level task: link prediction in homogeneous networks (Liben-Nowell & Kleinberg,
2007; Zhang & Chen, 2018) and relation completion in (heterogeneous) Knowledge
Graphs (KGs) (Bordeset al., 2013; Nickel et al., 2015; Hu et al., 2020c). There are several
problems with the current benchmark datasets in these areas:

First, representative datasets are either extremely small or do not come with input
node features. For example, while the well-known recommender system datasets
used in van den Berg ef al. (2017) include node features, their sizes are very small,
with the largest having only 6,000 nodes. On the other hand, although the Open Aca-
demic Graph used in Qiu et al. (2019) comprises tens of millions of nodes, there are
no associated node features. Regarding the KG completion, the widely-used dataset
FB15k is very small, containing only 14,951 entities, which is a tiny subset of the orig-
inal Freebase KG with more than 50 million entities (Bollacker ef al., 2008).

Second, similar to the node-level task, random splits are predominantly used in link-
level prediction (Bordes et al., 2013; Grover & Leskovec, 2016). The random splits are
not realistic in many practical applications such as friend recommendation in social
networks, in which test edges (friend relations after a certain timestamp) naturally
follow a different distribution from training edges (friend relations before a certain
timestamp).

Finally, the existing datasets are mostly oriented to applications in recommender sys-
tems, social media and KGs, in which the graphs are typically very sparse. This may
result in techniques specialized for sparse link inference that are not generalizable to
domains with dense graphs, such as the protein-protein association graphs and drug-
drug interaction networks typically found in biology and medicine (Szklarczyk et al.,
2019; Wishart et al., 2018; Davis et al., 2019; Szklarczyk et al., 2016; Pifiero et al., 2020).
Very recently, Sinha et al. (2020) proposed a synthetic link prediction benchmark to
diagnose the logical generalization capability of the model. Their focus is on synthetic
tasks, which is complementary to OGB that focuses on realistic tasks.
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5.2.2.3 Graph Property Prediction. Graph-level prediction tasks are found in impor-
tant applications in natural sciences, such as predicting molecular properties in chem-
istry (Duvenaud et al., 2015; Gilmer et al., 2017; Hu et al., 2020b), where molecules are
naturally represented as molecular graphs.

In graph classification, the most widely-used graph-level datasets from the TU col-
lection (Morris et al., 2020a) are known to have many issues, such as small sizes (i.e.,
most of the datasets only contain less than 1,000 graphs),! unrealistic settings (e.g., no
bond features for molecules), random data splits, inconsistent evaluation protocols,
and isomorphism bias (Ivanov et al., 2019). A very recent attempt (Dwivedi et al.,
2020) to address these issues mainly focuses on benchmarking the building blocks of
GNNs rather than developing application-oriented realistic datasets. In fact, five out
of the six proposed datasets are purely synthetic.

Recent works in Graph Representation Learning (Hu ef al., 2020b; Ishiguro et al., 2019)
have started to adopt MoleculeNet (Wu ef al., 2018) which contains a set of realis-
tic and large-scale molecular property prediction datasets. However, there is limited
consensus in the dataset splitting and molecular graph features, making it hard to
compare different models in a fair manner.

5.3 Scaling Up Graph Neural Networks via Historical
Embeddings

Scalability techniques are indispensable for applying GNNs to large-scale graphs. Al-
though empirical results suggest that existing solutions as described in Section 5.2.1
can scale the training of GNNSs to large-scale graphs (Section 5.5), they actually weaken
the expressive power of message passing due to sub-sampling of edges or non-trainable
propagations. In particular, it is well known that the most powerful GNNs adhere to
the same representational power as the Weisfeiler-Lehman (WL) test (Weisfeiler &
Lehman, 1968) in distinguishing non-isomorphic subgraph structures, i.e. hi? £ i
in case cq()L) + cg,,L) (Xuet al.,2019¢; Morris et al., 2019), where cq(}L) denotes a node’s col-
oring after L rounds of color refinement, cf. Section 3.4. However, in order to leverage
such expressiveness, a GNN needs to be able to reason about structural differences
across neighborhoods directly during training. We now show that GNNSs that scale by
sampling edges are not capable of doing so (Fey et al., 2021):

Proposition 5. Let féL) : V — R% be an L-layer GNN that is as expressive as the WL test
in distinguishing the L-hop neighborhood around each node v € V. Then, there exists a graph

A € {0,137V and a sampled variant A € RIVXIVI of it, where
N (v . /
o {8 s

0, otherwise

with N'(v) C N (v) denoting the sampled neighborhood around v € V, such that féL) oper-

ating on A produces a non-equivalent coloring, i.e. fLSJL) #* ﬁ&f) while cE,L) = ch) for nodes

v,w € V.

IRecently, some progress has been made to increase the dataset sizes: http://graphlearning.io (last
access: August 25, 2022). Nevertheless, most of them are still small compared to the OGB datasets, and
evaluation protocols are not standardized.
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Figure 5.5: Example of a graph A and its sampled variant A for which a max-
imally powerful GNN produces non-equivalent node embeddings,
ie. fo(A), = fo(A),, while fe(fi)vl #* fg(A)U4. As such, operating on
sampled graph variants will lose out on graph structural information (Fey
et al., 2021).

Proof. Consider the colored graph A and its sampled variant A as shown in Figure 5.5.
In this counter-example, there exists nodes v; and v, that receive a different color-
ing due to sampling of edges despite being indistinguishable by the WL test, cf. Sec-
tion 3.4.1. In particular, it holds that fo(A), = fo(A),, while fg(fi)vl * fg(z&)m. O

By only considering a subset of connections of the actual computation graph, GNNs
that utilize sampling strategies will lose expressive power in reasoning about graph
structures. Although they will encounter every edge at least once during the whole
training procedure with high probability, this does not hold in the case of a single
optimization step, leading to decreased model power in return. As long as a GNN
does not have access to its full graph structure, it cannot learn about discriminating
structural graph properties at full capacity. This can be seen as a major limitation of
existing scalability solutions, in particular w.r.t. recent lines of work that design GNNs
that are as equally powerful as the WL test (Xu et al., 2019¢; Corso et al., 2020), as well
as higher-order variants to increase their representational power even further (Morris
et al., 2019; Murphy et al., 2019b; Maron et al., 2019a; Bouritsas et al., 2020; Morris et al.,
2020a; Fey et al., 2020b).

Thus, a natural question to ask is whether there exists a scalable GNN technique that
is provably able to maintain the expressive power of the original GNN. Such a so-
lution is condensed in our GNNAutoScale (GAS) framework (Fey et al., 2021), which
scales arbitrary message-passing GNNs to large-scale graphs without the necessity of
dropping any edges or neighborhood information. As a result, GAS is provably able
reason about graph structural properties at scale. GAS achieves this by pruning entire
sub-trees of the computation graph while approximating the missing neighborhood
information via the usage of historical embeddings from prior training iterations, and
tightening proven approximation error bounds in practice. Here, we first derive the
foundations of our GAS framework (Section 5.3.1) before analyzing its theoretical
properties in detail (Sections 5.3.2 and 5.3.3).

5.3.1 Historical-based Sub-Tree Pruning

Let b denote the node embedding in layer / € {1,...,L} of anode v € Bina
mini-batch B C V. Then, for the general message scheme given in Equation (3.5), the
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Mini-batch B C V
@ 1-hop neighborhood |J N (v) \ B
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(a) Mini-batch selection (b) GAS computation graph

Figure 5.6: Mini-batch processing of GNNs with historical embeddings. M denotes
the nodes in the current mini-batch and M represents their direct 1-hop
neighbors. For a given mini-batch (a), the usage of historical embeddings
avoids the neighbor explosion problem by pruning entire sub-trees of the
computation graph, leading to constant GPU memory consumption in re-
spect to input node size (c). Here, nodes in the current mini-batch push
their updated embeddings to the history H ), while direct neighbors pull
their most recent historical embeddings from H*) (Fey et al., 2021).

0+1)

execution of fé can be formulated as:

AUHD = pl+D (hg@, {h? we J\/(v)}}) (5.2)
= £V (RO Y s w e Ny NBR U LR sw e NW)\BY)  (53)
~ fé“l) (hq(f), {{hq(f) cw e NN B}} U {{i_zq(f) cw e N(w)\ B}}) (5.4)

Historical embeddings

Here, we separate the neighborhood information of the multiset into two parts: (1) the
local information of neighbors N(v) which are part of the current mini-batch B, and
(2) the information of neighbors which are not included in the current mini-batch
(Fey et al., 2021). For out-of-mini-batch nodes, we approximate their embeddings
via historical embeddings, which are defined as node embeddings acquired in previous

training iterations (Chen et al., 2018c), denoted by R\ Historical embeddings act as
an offline storage and are used to accurately fill in the inter-dependency information
of out-of-mini-batch nodes. After each step of training, the newly computed embed-

dings RYTY are pushed to the history and serve as historical embeddings RYTY in fu-
ture iterations. The separation of in-mini-batch nodes and out-of-mini-batch nodes,
and their approximation via historical embeddings represent the foundation of our
GAS framework.

A high-level illustration of its computation flow is visualized in Figure 5.6. For a given
mini-batch of nodes, GAS prunes the GNN computation graph so that only nodes in-
side the current mini-batch and their direct 1-hop neighbors are retained, independent
of GNN depth. The required historical embeddings are pulled from an offline storage,
instead of being re-computed in each iteration, which keeps the required information
for each batch local while still accounting for all available neighborhood information.
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Algorithm 6 GAS mini-batch execution

Input: G = (V, ), node features H), number of batches B, number of layers L
{Bi,...,Bp} « Spur(G, B)
Vo = Upep, N(v) U{v} vbe{l,...,B}
Gy — GV] we{l. B}
for B, € {B1,...,B5} do

forte{l,...,L—1}do

B F (AL 0 e N ) e
PUSH(Z)(hq()E)) o
hg) . PULL(Z)(U)) Yw € Vy \ By
end for
R fP R R s w e N(o)h) ek
end for

In particular, this avoids the neighbor explosion problem and leads to constant GPU
memory consumption in respect to input node size. For a single batch B C V, the
GPU memory footprint for one training step is given by O(| U,z N (v) U {v}| - L)
and thus only scales linearly with the number of layers L. The vast majority of data
(the histories) can be stored in RAM or hard drive storage rather than GPU memory,
which is usually available in larger scale.

In the following, we are going to use " to denote embeddings estimated via GAS

(Equation (5.4)) to differentiate them from the exact embeddings obtained without
historical approximation (Equation (5.2)). In contrast to existing scalability solutions
based on sub-sampling edges, the usage of historical embeddings as utilized in GAS
provides the following additional advantages (Fey et al., 2021):

e GAS trains over all data: In GAS, a GNN will make use of all available graph
information, i.e. no edges are dropped, which results in low variance and more
accurate estimations (since |\55f) - hq(f)H < ||h£)€)H) Importantly, for a single
epoch and layer, each edge is still only processed once, putting its time com-
plexity O(|€]) on par with its full-batch counterpart. Notably, more accurate es-
timations will further strengthen gradient estimation during backpropagation.
Specifically, the model parameters will be updated based on the node embed-

dings of all neighbors since 877,,(,“1)/80 also depends on {{ES{;’ ViweN (v)\ B}.

e GAS enables constant inference time complexity: The time complexity of mo-
del inference is reduced to a constant factor, since we can directly use the his-
torical embeddings of the last layer to derive predictions for test nodes. This is
a major advantage compared to sampling approaches, as they rely on full-batch
inference in order to derive accurate predictions (Zeng et al., 2020b).

e GAS is simple to implement: Our scheme does not need to maintain recur-
sive layer-wise computation graphs, which makes GAS straightforward to im-
plement comparable to full-batch execution. Only minor modifications are re-
quired to pull information from and push information to the histories after each
application of a GNN layer, cf. Algorithm 6. Furthermore, this easily allows
us to utilize advanced techniques of GNNs as well, such as applying Jumping
Knowledge networks (Xu et al., 2018).
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e GAS provides theoretical guarantees: In particular, if the model weights are
kept fixed, the estimated node embeddings R eventually equal the exact node
embeddings h!Y after a fixed amount of iterations (Chen et al., 2018c).

Notably, the usage of historical embeddings was originally introduced by Chen et al.
(2018c¢) in the Variance Reduction Graph Convolutional Networks (VR-GCNs). VR-GCN
aims to reduce the variance in estimation during node-wise sampling (Hamilton et al.,
2017), which avoids the need to sample a large amount of neighbors in return. Here,
we generalize the idea of utilizing historical embeddings by simplifying it into a one-
shot sampling scenario, where nodes no longer need to recursively explore neighbor-
hoods in each layer. Furthermore, we do not restrict our framework and analysis
(Sections 5.3.2 and 5.3.3) to specific GNN operators, allowing application to the wide
range of GNN architectures available (Velickovi¢ et al., 2018; Xu et al., 2019¢; Corso
et al., 2020; Chen et al., 2020b), cf. Section 5.5.

5.3.2 Analysis of Historical-caused Approximation Errors

The advantages of utilizing historical embeddings R to compute an approximation
FLS,“ of the exact embedding th’, as described in Section 5.3.1, come at the cost of

an approximation error Hfu(f) —h{Y || on the output, which can be decomposed into
two sources of variance: (1) The closeness of estimated inputs to their exact values,

ie. \|ﬁ$f‘1) —n{Y || > 0, and (2) the staleness of historical embeddings to their esti-

mated values, i.e. ||i_z§,€_1) —AiY || > 0. In the following, we show concrete bounds
for this error, which we then tighten using specific procedures (Fey et al., 2021). No-

tably, our analysis focuses on arbitrary message-passing GNN layers féé) as described

in Equation (3.5) in Section 3.2.2, but we restrict both MESSAGE(;) and UPDATEEf) to
model k-Lipschitz continuous functions due to their potentially highly non-linear na-
ture. In particular, a function f: R™ — R™ is Lipschitz continuous if it satisfies

[f(®) = f(y)| <kllz -yl forall z,yecR" (5.5)

for some real-valued Lipschitz constant k > 0. Furthermore, we call f d-locally Lip-
schitz continuous in x if f is Lipschitz continuous in the closed ball Bs(x) with ra-
dius § centered around z, i.e. Bs(x) = {y € R": ||z — y|| < 6}. In case f can be
modeled as a series of function compositions f = f&) o fE=D o . o f(, then
k < TI+_, k¢ denotes an upper bound on its Lipschitz constant (Szegedy et al., 2014).
However, it is possible that a tighter bound exists by considering the entire compo-
sition as a whole rather than each function in isolation. For a fully-connected layer
WOz 4 b with weight matrix W) and bias b*), its smallest Lipschitz constant
is given by the operator norm |[W®)||. For || - ||, this can be efficiently computed
by the maximum absolute row sum. In practice, AutoLir and SeqLir are two effec-
tive methods to estimate the Lipschitz constant of any automatically differentiable
function (Scaman & Virmuax, 2018). Furthermore, training a neural network with a
bounded Lipschitz constant k can, e.g., either be done by projected gradient descent

via W < min (1, W) W) (Gouket al., 2018), or by regularizing the change of
(z)—

outcome Lreg = max (O, % - k) for small input perturbations € (Usama
& Chang, 2018).
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With this, we can now show that the output error of a single historical-based GNN

layer f(ge) has an upper bound that is solely dependent on the Lipschitz constants of
the utilized message passing functions MESSAGE(GZ) and UPDATEg), as well as on the
closeness of estimated inputs and the staleness of historical embeddings (Fey et al.,

2021):

Lemma6. Let fée) bea GNN layer, containing Lipschitz continuous MESSAGE(:) and UPDATEff)

functions with Lipschitz constants ky and ko, respectively. If, for all v € V), the inputs are close
RED
RU-D

to the exact input, i.e. R || < 4§, and the historical embeddings do not run too

stale, i.e. ||I_7,1(,Z*1) || < ¢, then the output error is bounded by

1B — hO|| < 6 ks + (5 + €) k1 b [N (v)]-

(t-1)

Proof. By triangular inequality, it holds that ||k, 2 || <6 + e. Furthermore,

||MESSAGE£,Z) (x) — MESSAGE(E)(y)” <k|z—y|| forallz,ycR” and
|Uppatey’ (z) — Uppately (y)|| < ksllz — y|| forall z,y € R”.

Lipschitz constants for sum aggregation ) __ . , &, mean aggregation ﬁ > zcx Tand
max aggregation max,c x « are given by |X'|, 1 and 1, respectively. Then,

1fs” (R0, R w e N@)R) — £3” (BD, {RED 1w e N(v)})
:”UPDATE(;)( (=1 @MESSAGE([)(th 2 ))—UPDATE(BZ)( (=0 @MESSAGEG)(hq(f 1)))H
wGN(U) u)e./\/'(v)
ko (0 + N ()| (k1 (6 +€))) = ko + (0 + €) k1 k2 [N (v)]. O

Due to the behavior of Lipschitz constants in a series of function compositions, we
obtain an upper bound that is dependent on k1, k2 and |N (v)|, as well as dependent
on the errors § and € of the inputs. Interestingly, sum aggregation, the most expres-
sive aggregation function (Xu et al., 2019¢), introduces a factor of |V (v)| to the upper
bound, while we can obtain a much tighter upper bound for mean or max aggrega-
tion. Next, we take a look at the final output error produced by a L-layer GNN (Fey
etal., 2021):

Theorem 7. Let féL) be an L-layer GNN, containing only Lipschitz continuous MESSAGEE)Z)

and UPDATE(;) functions with Lipschitz constants ki and ks, respectively. If, forallv € V and
all ¢ € {1,..., L—1}, the historical embeddings do not run too stale, i.e. HESP —RlY | <€,
then the final output error is bounded by
L-1
1A = < D7 €O Ry gy N (o)
=1

Proof. Forlayer ¢ = 1, the inputs are exact, i.e. 0) = |\ﬁ£,°> — hg,o) || = 0, and, as a result,
the output is exact as well, i.e. () = ||il,$,1) — hg,l)” = 0. With ||I_7,£,1) - fzS})\\ < e, it
directly follows via Lemma 6 that the approximation error of layer ¢ = 2 is bounded
by ||i1,£,2) A | < €M ky ko N (v)] = 63). Recursively replacing

5O = 5D fy 4+ (5€D 4 D) ey Ey [N ()]
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in [R5 — R < 6D iy 4+ (8D 4 2D ky ky [N (v)] (of. Lemma 6) yields

L—1

z 0, L— L—¢

RS — R <> O RE Ry N (v)] 7 O
=1

Notably, the obtained upper bound of the approximation error of the final output
does not longer depend on the closeness of estimations ||f1,$,e) — i | <6, and is

instead solely conditioned on the staleness of histories ||I_7,,(,Z) — A | < €. However,
it depends exponentially on the Lipschitz constants k; and ks as well as [NV (v)| w.r.t. to
GNN depth (Fey et al., 2021). In particular, each additional layer introduces a less
restrictive bound since the errors made in the first layers get immediately propagated
to later ones, leading to potentially high inaccuracies for histories in deeper GNNSs.
Furthermore, Theorem 7 lets us immediately derive an upper error bound of gradients
as well, i.e.

IVoL(h{") = VoL(RiP)I| < A[R{Y — AP

(5.6)

in case the loss criterion £ is A-Lipschitz continuous. As such, assuming low approx-
imation errors, GAS encourages low variance and bias in the learning signal as well.
However, parameters are not guaranteed to converge to the same optimum since we
explicitly consider arbitrary GNNs solving non-convex problems (Cong ef al., 2020).

Although the exponential error bound given in Theorem 7 seems to be a negative
result at first glance for the application of deep and highly non-linear GNNSs, our the-
oretical analysis gives clear guidance for tightening. In practice, we have two degrees
of freedom to tighten the upper bounds, leading to a lower approximation error in
return: (1) Minimizing the staleness of historical embeddings, and (2) maximizing
the closeness of estimated inputs to their exact values by controlling the Lipschitz
constants of Uppate and MEssack functions. In what follows, we derive a list of pro-
cedures to achieve these goals (Fey et al., 2021).

5.3.2.1 Minimizing Inter-Connectivity between Mini-Batches. As formulated in

Equation (5.4), the output embeddings of éeﬂ) are exactif ||J, .z N (v) U{v}| = |B],
i.e. all neighbors of nodes in B are as well part of 3. However, in practice, this can only
be guaranteed for full-batch GNNs. Motivated by this observation, we aim to mini-
mize the inter-connectivity between sampled mini-batches, i.e. min ||,z NV (v) \ B,
which minimizes the amount of history accesses, and increases closeness and reduces
staleness in return.

In order to minimize the inter-connectivity between mini-batches, we make use of
graph clustering techniques, e.g., Metis (Karypis & Kumar, 1998; Dhillon et al., 2007).
Graph clustering algorithms aim to construct partitions over the nodes in a graph such
that intra-links within clusters occur much more frequently than inter-links between
different clusters. Intuitively, this results in a high chance that neighbors of a node are
located in the same cluster. Notably, modern graph clustering methods are both fast
and scalable with time complexities given by O(|£]), and only need to be applied once,
which leads to an unremarkable computational overhead in the pre-processing stage.
In particular, we argue that the Metis clustering technique is highly scalable, as it is
in the heart of many large-scale distributed graph storage layers such as (Zhu et al.,
2019b; Zheng et al., 2020a) that are known scale to billion-sized graphs. Furthermore,
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the additional overhead in the pre-processing stage is quickly compensated by an ac-
celeration of training, since the number of neighbors outside of B is heavily reduced,
and pushing information to the histories now leads to contiguous memory transfers.

Notably, utilizing graph clustering techniques for mini-batch selection was first intro-
duced in the subgraph-wise sampling approach CLuster-GCN (Chiang et al., 2019).
Cruster-GCN leverages clustering in order to infer meaningful isolated subgraphs,
while GAS aims to minimize the amount of history accesses. Furthermore, CLUSTER-
GCN limits message passing to intra-connected nodes, and therefore ignores poten-
tially useful information outside the current mini-batch. This inherently limits the
model to learn from nodes nearby. In contrast, our GAS framework makes use of all
available neighborhood data for aggregation, and therefore avoids this downside.

5.3.2.2 Enforcing Local Lipschitz Continuity. To guide our neural network in learn-
ing a function with controllable error, we can enforce its intermediate output layers

féz) to be invariant to small input perturbations. In particular, following upon Usama
& Chang (2018), we found it useful to apply the auxiliary loss
£l = 116" (RED) = [V (R + @)l e~ B (0), (57)

reg

in highly non-linear message passing phases, e.g., as utilized in GIN (Xu et al., 2019c).
Such regularization enforces equal outputs for small perturbations e inside closed
balls of radius §. Notably, we do not restrict UPDATE(HZ) and MESSAGE(BE) to separately

model global k-Lipschitz continuous functions, but rather aim for local Lipschitz con-

tinuity at each R Y for f(ge) as a whole. For other message passing GNNs, e.g., for
GCN (Kipf & Welling, 2017), L, regularization is usually sufficient to ensure close-
ness of historical embeddings. Further, we found gradient clipping to be an effective
method to restrict the parameters from changing too fast, regularizing history changes
in return.

We evaluate GAS and the benefits of its individual techniques in Section 5.5.

5.3.3 Expressiveness of Historical-based Graph Neural Networks

The most powerful GNNs adhere to the same representational power as the WL test in

distinguishing non-isomorphic structures, i.e. " # h{" if the L-hop rooted subtrees
around the nodes v, w € V are distinguishable by the WL test (Xu et al., 2019¢c; Morris
et al., 2019), cf. Section 3.4. In order to leverage such expressiveness, a GNN needs
to be able to reason about structural differences across neighborhoods during train-
ing. However, as shown in Section 5.3, scalability techniques based on sub-sampling
of edges (Section 5.2.1) will weaken such expressive power of message passing. In
contrast, our GAS framework based on historical embeddings (Fey et al., 2021) is
leveraging all edges during neighborhood aggregation. Thus, a special interest lies in
the question if historical-based GNNs can be as expressive as their full-batch equiva-
lent. For this, a maximally powerful and scalable GNN needs to fulfill the following
two requirements: (1) It needs to be as expressive as the WL test in distinguishing
non-isomorphic structures, and (2) it needs to account for the approximation error

||l_z$,e) N || induced by the usage of historical embeddings, cf. Section 5.3.2. Since it
is known that there exists a wide range of maximally powerful GNNs (Xu et al., 2019¢;
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Morris et al., 2019; Corso et al., 2020), we can restrict our analysis to the latter question.
Following upon Xu et al. (2019¢), we focus on the case where input node features are
from a countable set P C R of bounded size. We first show that a single GNN layer
utilizing historical embeddings can still distinguish non-equal inputs, given that they
are sufficiently far apart from each other (Fey et al., 2021).

Lemma 8. Let fé@ be a GNN layer and {{hq(f*l) : v € V}} be a countable multiset such that
[RED — D > 206 +¢€) forallv,w eV where hY™Y £ D,

If the inputs are close to the exact input, i.e. ||ﬁ£,£_1) — hg,é_l) || <6, and the historical em-
beddings do not run too stale, i.e. ||I_15,€_1) — Ry || <€, then there exist MESSAGE(;) and
UPDATE(QZ) functions, such that

767 (RS) = fo” (D) < 6+ ¢

and
16" (AYD) = £57 (RG> 20 + e 4+ 4)

w

forall v,w € V where hy—l) + hg,f_l), and all A > 0.

Proof. Define ¢: RP — RP as the Voronoi tessellation induced by the given multiset:
() =hV if |le—hV| <[z —hlY| forallw € V where A/~ £ {1,
Such Voronoi tessellation is guaranteed to exist. Therefore, it holds that

152 (s(RLD)) = £ (¢(RL D)) | =0 <6 +€ forallve V.

Furthermore, we know that there exists MESSAGE(;) and UPDATEE,Z) functions such that

fée) is injective for all countable multisets (Zaheer et al., 2017; Xu et al., 2019¢; Morris
et al., 2019; Maron et al., 2019a). Since {{h (= v 6 V} is countable and fée) is in-
jective, there exists a x > 0 such that || f{" (qb(h )) £ (¢(h§,f*1))) | > & for all

v,w € V where b ™" # bV, Due to the homogeneity of || - ||, it directly follows
that there exists o > 0 such that

la- £57(p(RE)) —a- £ (S(REIN | > a- k> 2(6 + €+ )

for all v, w € V where hgffl) + hg,ffl), and all A > 0. O

Informally, Lemma 8 tells us that if (1) exact input embeddings are sufficiently far
apart from each other and (2) historical embeddings are sufficiently close to the exact
embeddings, there exist historical-based GNN operators which can distinguish equal
from non-equal inputs, cf. Figure 5.7. Key to the proof is that (6 +¢)-balls around exact

inputs do not intersect each other and are therefore well separated. Furthermore, f, 2
needs to be able to ensure that exact outputs do not intersect each other as well, which
is a necessary condition to mitigate the approximation effects of Hl_zg,e) — A | < e®

induced in the upcoming layer, e.g., by setting A = ¢*). Notably, we do not require

( ) to model strict injectivity since it is sufficient for fé ) to be 2(6 + e)-injective, in
Wthh 2(d + ¢) is used to denote the accuracy of discrimination (Seo et al., 2019).
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Layer £ — 1 Layer ¢

Figure 5.7: Requirements to obtain maximally expressive historical-based GNNs.
Exact inputs need to be well separated while accounting for the approxi-
mation errors ¢ and e caused by historical embeddings. Furthermore, ex-
act outputs (denoted by aggregating along the M connections) need to be
able to mitigate the approximation effects induced in the upcoming layer
as well (Fey et al., 2021).

Following Xu et al. (2019c), one can leverage MLPs to model and learn such MEssaGE
and Uppark functions due to the universal approximation theorem (Hornik et al., 1989;
Hornik, 1991). However, the theory behind Lemma 8 holds for any maximally pow-
erful GNN operator. Finally, we can use this insight to relate the expressiveness of
scalable GNNs to the WL test color refinement procedure (Fey et al., 2021):

Theorem 9. Let féL) be an L-layer GNN in which all MESSAGE(;) and UPDATE;E) functions

fulfill the conditions of Lemma 8. Then, there exists a map ¢: RP — ¥ so that qb(fzSJL)) =P
forallveV.

Proof. Define ¢: RP — ¥ as the Voronoi tessellation induced by the exact output set:
¢(x) =l if |o—hlP| <|o—hl)| forallw eV where h{") # h{.

Since fée) can be maximally expressive, such Voronoi tessellation is guaranteed to exist
(Xu et al., 2019¢c; Morris et al., 2019). Therefore, it is sufficient to show that there exists

a 61 > 0such that ||hSY — b)) < 6@ and A — B > 26@) forall v,w € V,
h,(,L) =+ hSUL). For layer ¢ = 1, the inputs are exact, and as a result HES}) - hg,l) | = 0.
Due to Lemma 8, there exists message passing functions such that Hfsz) —h{? | < e,
The next layer introduces an increased error, i.e. Hl_h(?) ~ h | < e +€?), and to
compensate, we set A = ¢ such that [|h{?) — || > 2 (e®) + ¢®) forall v, w € V,
hi £ n. By recursively applying Lemma 8 with A(¥) = ¢(¥), it immediately follows
that RS — AP < L e®, and R — AP > SE 260 forall v,w € V),
hi" #hiy). =



110 CHAPTER 5. SCALABLE GRAPH NEURAL NETWORKS

Theorem 9 extends the insights of Lemma 8 to multi-layer GNNSs, and indicates that
scalable GNNs using historical embeddings are still able to distinguish non-isomorphic
structures (that are distinguishable by the WL test) directly during training, which is
what makes reasoning about structural properties possible. As such, our GAS frame-
work is the first scalable solution that can provably maintain the expressive power of
the underlying GNN (Fey et al., 2021).

Notably, recent proposals such as DroPEDGE (Rong et al., 2020b) are still applicable
for data augmentation and message reduction. However, through the given theoret-
ical analysis, we disentangle scalability and expressiveness from regularization via
edge dropping. Furthermore, our approach is orthogonal to many methodological ad-
vancements in the field of Graph Representation Learning, such as unifying GNNs
and label propagation (Shi et al., 2020b), graph diffusion (Klicpera et al., 2019b), or
random wiring (Valsesia et al., 2020). Although our method is focused around node-
level tasks, our work is technically able to scale GNNs for edge-level and graph-level
tasks as well. Furthermore, while our method tackles the task of scaling the training
and inference phase of GNNs on large-scale graphs by utilizing only a single GPU,
only minor modifications are necessary to fuse GAS into a distributed training algo-
rithm (Jia et al., 2020; Ma et al., 2019; Zhu et al., 2016; Tripathy et al., 2020; Wan et al.,
2020; Angerd et al., 2020; Zheng et al., 2020a). We evaluate the benefits of applying
our GAS framework on large-scale graphs in Section 5.5.

5.4 The Open Graph Benchmark Datasets for Large-Scale
Graph Learning

Enabling effective and efficient machine learning algorithms over large-scale graph
data, e.g., graphs with billions of edges, can have a huge impact on both industrial and
scientific applications (Hu et al., 2021b). However, applying and evaluating GNNs on
large-scale graphs (within their respective scalability technique such as within our
GAS framework, cf. Section 5.3) requires the presence of realistic and large-scale graph
benchmark datasets. Historically, high-quality and large-scale datasets have played
significant roles in advancing machine learning research, as exemplified by ImageNet
(Deng et al., 2009) and MS COCO (Lin et al., 2014) in computer vision, the GLUE
Benchmark (Wang et al., 2018a) and SQuAD (Rajpurkar ef al., 2016) in natural lan-
guage processing, and LibriSpeech (Panayotov et al., 2015) and CHiME (Barker et al.,
2015) in speech processing. However, most of the frequently-used graph datasets in
research (Sen et al., 2008; Yang et al., 2016; Yanardag & Vishwanathan, 2015; Morris
et al., 2020a; Bordes et al., 2013) are extremely small compared to graphs found in
real applications (Wang et al., 2020; Ying ef al., 2018a; Wu et al., 2018; Husain et al.,
2019; Bhatia et al., 2016; Vrandeci¢ & Krotzsch, 2014b), leading to non-scalable solu-
tions, and unstable and nearly statistically identical performance (Dwivedi et al., 2020;
Shchur et al., 2018; Errica et al., 2020), cf. Section 5.2.2.

In order to overcome the lack of large-scale graph benchmark datasets, we propose
the Open Graph Benchmark (OGB) (Hu et al., 2020a, 2021b), which includes a diverse
set of challenging and realistic benchmark datasets to facilitate scalable, robust, and
reproducible Graph Representation Learning research. OGB datasets are orders of
magnitude larger than existing ones, encompass multiple important tasks, and cover a
diverse range of domains, ranging from social and information networks to biological
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Figure 5.8: OGB provides datasets that are diverse in scale (small, medium, large),
domains (nature, society, information) and tasks (nodes, links, graphs)
(Hu et al., 2020a).

networks, molecular graphs, source code ASTs, and KGs. Here, we first present the
design principles of OGB in Section 5.4.1 before introducing our set of benchmark
datasets in Section 5.4.2 in detail.

5.4.1 Benchmark Design Principles

The premise of OGB is to support and catalyze research in Graph Representation
Learning by developing a diverse set of challenging and realistic benchmark datasets
that cover a variety of real-world applications and span several important domains
(Hu et al., 2020a, 2021b). As illustrated in Figure 5.8, OGB datasets are designed to
have the following three characteristics:

e Large-scale: OGB datasets are orders of magnitude larger than existing bench-
marks (Sen et al., 2008; Yang et al., 2016; Yanardag & Vishwanathan, 2015; Mor-
ris et al., 2020a; Bordes et al., 2013) and can be categorized into three different
scales: small, medium, and large. Even the “small” OGB graphs are designed
to have more than 100 thousand nodes or more than 1 million edges, but are
still small enough to fit into the memory of a single GPU, making them suit-
able for testing computationally intensive algorithms. Additionally, OGB intro-
duces “medium” (more than 1 million nodes or more than 10 million edges) and
“large” (on the order of 100 million nodes or 1 billion edges) datasets, which can
facilitate the development of scalable models based on mini-batching and dis-
tributed training (Hu ef al., 2020a).

e Diverse domains: OGB datasets aim to include graphs that are representative of
a wide range of domains. The broad coverage of domains in OGB empowers the
development and demonstration of general-purpose models, and can be used
to distinguish them from domain-specific techniques. Furthermore, for each
dataset, OGB adopts domain-specific data splits (e.g., based on time, species,
molecular structure, GitHub project, . ..) that are more realistic and meaning-
ful than conventional random splits which may lead to overly optimistic per-
formance results (Lohr, 2009). In particular, such realistic domain-specific data
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OGB Graph OGB Data OGB
Model Leader-
Datasets Loader Evaluator
boards

Figure 5.9: Overview of the OGB pipeline: (a) OGB provides realistic graph bench-
mark datasets that cover different prediction tasks (node, link, graph), are
from diverse application domains, and are at different scales. (b) OGB
fully automates dataset processing and splitting. That is, the OGB data
loaders automatically download and process graphs, and provide graph
objects that are compatible with PyTorch (Paszke et al., 2019) and its as-
sociated graph libraries such as our PyTorch Geometric library (Fey &
Lenssen, 2019) or the Deep Graph Library (Wang et al., 2019b). (c) After
an machine learning model is developed, (d) OGB evaluates the model in
a dataset-dependent manner, and outputs the model performance appro-
priate for the task at hand. Finally, (e) OGB provides public leaderboards
to keep track of recent advances (Hu ef al., 2020a).

splits help to stress test the out-of-distribution generalization performance of
the underlying machine learning model (Hu et al., 2020a).

e Multiple task categories: Besides data diversity, OGB supports three categories
of fundamental graph machine learning tasks, i.e. node, link, and graph prop-
erty predictions, each of which requires the models to make predictions at differ-
entlevels of graphs, i.e., at the level of a node, link, and entire graph, respectively
(Hu et al., 2020a).

Finally, OGB presents an auomated end-to-end graph machine learning pipeline that
simplifies and standardizes the process of graph data loading, experimental setup,
and model evaluation, in a similar spirit to OpenML (Vanschoren et al., 2013; Feurer
et al., 2019), cf. Figure 5.9 (Hu et al., 2020a). Specifically, given an OGB dataset (a),
the end-user can focus on developing their graph machine learning model (c) by us-
ing the OGB data loaders (b) and evaluators (d), both of which are provided in our
OGB Python package.? In particular, the OGB data loaders automatically download
and process graphs, provide graph objects that are compatible with PyTorch (Paszke
et al., 2019) and its associated graph libraries such as our PyTorch Geometric library
(Fey & Lenssen, 2019) or the Deep Graph Library (Wang et al., 2019b). In addition,
OGB also hosts a public leaderboard (e) for publicizing state-of-the-art, reproducible
graph machine learning research. For this, individual experiments should be repeated
10 times using different random seeds, for which the mean and standard deviation
of test results corresponding to the best validation results should be reported. The
documentation, example scripts and public leaderboards are condensed on our OGB
website® (Hu et al., 2020a).

20GB Python package: https://github. com/snap-stanford/ogb (last access: August 25, 2022)
30OGB website: https://ogb.stanford.edu (last access: August 25, 2022)
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Node property prediction

Domain Nature Society Information
Small arxiv
Medium proteins products mag
Large papers100M mag240M
Link property prediction
Domain Nature Society Information
Small ddi collab biokg
Medium ppa citation wikikg
Large wikikg9OM
Graph property prediction
Domain Nature Society Information
Small molhiv
Medium ' molpcba / ppa code
Large pcqméM

Table 5.2: Overview of available OGB datasets (denoted by ). The nature domain
includes biological networks and molecular graphs, the society domain in-
cludes academic graphs and e-commerce networks, and the information
domain includes knowledge graphs. More datasets will be added in the
future to increase the coverage (denoted by ) (Hu et al., 2020a, 2021b).

5.4.2 Realistic Datasets for Diverse Task Categories

OGB aims to provide meaningful datasets that try to help solving real-world problems
in a standardized and reproducible manner. The available datasets in OGB are cate-
gorized in Table 5.2 according to their task categories, application domains and scales.
Currently, OGB includes 18 diverse graph datasets, with at least five datasets for each
task category. All the datasets are constructed by ourselves, except for products,
molpcba and molhiv, whose graphs are adopted from Chiang et al. (2019); Wu et al.
(2018). For these datasets, we resolve critical issues of the existing data splits by pro-
viding more meaningful and standardized splitting schemes (Hu et al., 2020a).

Further, we highlight the diversity of our graph datasets in Table 5.3. Importantly, we
obverse a diversity in graph structure beyond the diversity in dataset scale. For exam-
ple, we see that biology-related graphs, e.g., proteins, ddi or ppa, are typically much
denser than the social and information networks. These differences in graph struc-
ture result in inherent differences in how information propagates in graphs, which
can significantly affect the behavior of graph machine learning models (Xu et al.,
2018). Datasets are also diverse in respect to the initially given input feature rep-
resentations, i.e. datasets may include no initial features at all, either node features or
edge features, or even both, and may also include both homogeneous and heteroge-
neous graph information. Furthermore, it is noteworthy to highlight the diversity of
graph sizes for the graph property prediction datasets, ranging from small molecular
graphs (molhiv, molpcba and pcqmdM), to medium-sized source code ASTs (code),
up to large and dense protein-protein association subgraphs (ppa), which directly
originates from the diverse utilized application domains (Hu ef al., 2020a).
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Name #Graphs Average Average Node Edge Split
#Nodes #Edges Features Features  Scheme
proteins 1 132534 39561252 @ — v Species
arxiv 1 169343  1,166243 v — Time
2 products 1 2,449,029 61,859,140 v — Sales rank
S mag 1 1,939,743 21,111,007 ¢ v Time
papers100M 1 111,059,956 1,615,685872 ¢ — Time
mag240M 1 244,160,499 1,728,364232 4 Time
ddi 1 4,267 1,334,889 — — Protein target
biokg 1 93,773 5088434  — v Random
collab 1 235868 1285465 ¢ v Time
‘é ppa 1 576,289 30,326,273 v — Throughput
= wikikg 1 2500604 17,137,181 — v Time
citation 1 2927963 30,561,187 ¢ — Time
wikikg90M 1 87,143,637 502220369 v v Time
molhiv 41,127 25.5 275 4 Scaffold
. ppa 158,100 243.4 22661  — v Species
& molpcba 437,929 26.0 281 v v Scaffold
O code 452,741 125.2 1242 v v Project
pcqmdM 3,803,453 26.5 291 4 Scaffold

Table 5.3: Statistics of available OGB datasets (Hu et al., 2020a, 2021b).

In the subsequent sections, we briefly introduce the available OGB datasets, while
more detailed information about each dataset is available in Appendix A.1.

5.4.2.1 Node Property Prediction Datasets. OGB provides six datasets for predicting
the properties of individiual nodes. Specifically, products is an Amazon products co-
purchasing network Chiang et al. (2019), and the task is to predict the category of a
given product. Notably, we use the sales ranking to split nodes into training, validation
and test sets, which closely matches the real-world application where manual labeling
is prioritized to important nodes, and machine learning models are subsequently used
to make predictions on less important ones (Hu et al., 2020a).

The arxiv, papers100M, mag and mag240M datasets are extracted from the Microsoft
Academic Graph (MAG) (Wang et al., 2020), utilizing different scales, tasks, and in-
clude both homogeneous and heterogeneous graph information. Specifically, arxiv
and papers100M denote homogeneous paper citation networks. In contrast, mag and
mag240M represent the MAG as a heterogeneous network (e.g., with additional author
or institution information), either as a subset or as its full set, respectively. The tasks
are to predict the subject areas of ArRX1v papers (manually labeled by the paper’s au-
thors and ArRX1v moderators) and their venues (conference or journal).

Lastly, the proteins dataset denotes a protein-protein association network in which
nodes represent proteins, and edges indicate different types of biologically meaning-
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ful associations between proteins, e.g., physical interactions, co-expression or homol-
ogy (Szklarczyk et al., 2019; Consortium, 2018; Hu et al., 2020a). The task is to predict
the presence of certain protein functions.

5.4.2.2 Link Property Prediction Datasets. OGB provides seven link property pre-
diction datasets, adopted from diverse application domains, including biological, aca-
demic datasets as well as Knowledge Graphs (KGs). In particular, we provide the
two biological datasets ppa and ddi, which represent protein-protein association and
drug-drug interaction networks, respectively (Szklarczyk et al., 2019; Wishart et al.,
2018). In ppa, the task is to predict new association edges given existing associa-
tions. In the ddi dataset, each node represents an FDA-approved or experimental
drug. Edges represent interactions between drugs and can be interpreted as a phe-
nomenon where the joint effect of taking the two drugs together is considerably dif-
ferent from the expected effect in which drugs act independently of each other (Hu
et al., 2020a). The task is to predict unknown drug-drug interactions.

Furthermore, the two academic datasets collab and citation describe author col-
laboration and paper citation networks, extracted from MAG (Wang et al., 2020). The
tasks are to predict author collaboration relationships given past collaborations and
to infer missing citations given existing citations.

In addition, OGB provides three KGs named biokg, wikikg and wikikg90M, utilizing
different tasks and scales (Hu et al., 2020a, 2021b). As large KGs are known to be far
from complete (Min et al., 2013), the general task is to impute missing triplets (head,
relation, tail). The biokg dataset represents a KG curated from a large number of
biomedical data repositories with five types of entities and 51 types of relations. The
wikikg and wikikg90M datasets describe KGs extracted from the Wikidata knowledge
base (Vrandeti¢ & Krotzsch, 2014a), and contain sets of triplets capturing the different

citizen of

types of relations between entities in the world, e.g., “Hinton ————— Canada”.

5.4.2.3 Graph Property Prediction Datasets. OGB provides five datasets for predict-
ing the properties of entire graphs or subgraphs, adopted from three distinct appli-
cation domains. In particular, we provide the three molecular graph datasets molhiv,
molpcba and pcqm4M for tackling the task of molecular property prediction (Hu et al.,
2020a, 2021b), e.g., whether a molecule inhibits HIV virus replication or not. We adapt
the scaffold splitting procedure for all molecular graph learning tasks, which splits
the molecules based on their two-dimensional structural frameworks (Wu et al., 2018;
Yang et al., 2019; Hu et al., 2020b; Ishiguro et al., 2019; Rong et al., 2020a).

The ppa dataset contains a set of protein association neighborhoods extracted from
the protein-protein association networks of 1,581 different species (Szklarczyk et al.,
2019; Hu et al., 2020a) that cover 37 broad taxonomic groups, e.g., mammals, bacterial
families and archaeans (Hug et al., 2016). The task is to predict the taxonomic group
from which the graph originates from.

Lastly, the code dataset is a collection of ASTs obtained from approximately 450K
Python functions extracted from a total of 13,587 different GitHub repositories (Hu-
sain et al., 2019; Hu ef al., 2020a). Given the input arguments and body of a Python
method represented by an AST, the task is to predict its method name as a set of sub-
tokens (“code summarization”) (Allamanis et al., 2016, 2017; Alon et al., 2018, 2019).
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5.5 Evaluation

In this section, we perform an extensive benchmark analysis for each dataset in the
Open Graph Benchmark suite, using representative graph-based machine learning
models that utilize a diverse range of GNN scalability techniques (Section 5.5.1). We
are further interested in how our GAS framework compares empirically against re-
lated scalable methods, and achieves favorable performance with deep and expressive
GNNs on large-scale graphs (Section 5.5.2).

5.5.1 Open Graph Benchmark Analysis

We present an initial benchmark analysis for each task category and each dataset in-
cluded in OGB (Hu et al., 2020a, 2021b). For this, we are using representative node
embedding models, GNNSs, as well as scalable mini-batch-based GNNs (whenever
applicable). We discuss our findings and highlight research challenges and opportu-
nities in scaling models to large graphs, and improving the out-of-distribution gen-
eralization under realistic data split scenarios. We repeat each experiment 10 times
using different random seeds, and report the mean and standard deviation of all train-
ing and test results corresponding to the best validation results (except for the exper-
iments on the Open Graph Benchmark Large-Scale Challenge (OGB-LSC) datasets
(Hu et al., 2021b)). All experiments utilize the PyTorch Geometric library (Fey &
Lenssen, 2019). The code for reproducing all results is available on GitHub* and is
meant as a starting point to accelerate further research on the proposed datasets. The
code further contains all specific details regarding model architectures and hyperpa-
rameter configurations.

5.5.1.1 Node Property Prediction. For the node-level datasets in OGB, we consider
the following representative models as baselines (Hu et al., 2020a, 2021b):

e MLP: A graph-agnostic MLP that uses raw node features directly as input.

e Nobe2VEec: An MLP that uses the concatenation of raw node features and the
embeddings from a Nope2Vec model (Grover & Leskovec, 2016) as input.

e SGC: The simplified Graph Neural Network (Wu et al., 2019a) that decouples
predictions from propagations.

e GNN: A full-batch Graph Neural Network (Kipf & Welling, 2017; Hamilton
et al., 2017; Veli¢kovié et al., 2018).

e GrRAPHSAGE: A GNN utilizing a node-wise sampling method (Hamilton et al.,
2017) that samples neighborhoods recursively.

e CrLusTer-GCN: A GNN utilizing a subgraph-wise sampling method (Chiang
et al., 2019) that pre-partitions the graph via graph clustering.

e GrRAPHSAINT: A GNN utilizing a subgraph-wise sampling method (Zenget al.,
2020b) that samples subgraphs via a random walk sampler.

4Code for OGB: https://github.com/snap-stanford/ogb (last access: August 25, 2022)
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Method . Dataset .
products arxiv  papers100M mag mag240M proteins
#Nodes 2.4M 169K 111M 1.9M 244M 132K
#Edges 62M 1.2M 1.6B 21M 1.7B 40M
Metric Accuracy Accuracy Accuracy Accuracy Accuracy ROC-AUC
MLP 61.06+0.08 55.50+0.23 47.24+0.31 26.92+0.26  52.73 72.04-+0.48
NobEe2VEc 72.49+0.10 70.07+0.13 — 35.44+0.36 — 68.81+0.65
SGC — — 63.29+0.19 — 65.29 —
GNN 78.50+0.14 71.74+0.29 — 39.77+0.46 — 77.68-+0.20
GraPHSAGE  78.70+0.36 — — 46.78+0.67  69.42 —
Cruster-GCN 78.97+0.33 — — 37.32+0.37 — —
GraPHSAINT 79.08-0.24 — — 46.51+0.22 — —

Table 5.4: Model performance on all node-level OGB datasets, using a diverse set
of representative graph-based machine learning models.

For training the full-batch GNN models even on slightly larger graphs, we utilize a
NVIDIA Quadro RTX 8000 with 48GB of memory. All other models fit into common
GPU memory sizes of 11 GB. All models are trained with a fixed hidden dimensional-
ity of 256, a tuned number of two or three layers, and a tuned dropout ratio € {0.0,0.5}
(Srivastava et al., 2014). For learning in the heterogeneous graph datasets mag and
mag240M, we make use of heterogeneous GNNs that learn distinct weights for each
individual relation type (Schlichtkrull et al., 2018). We obtain the input features of
featureless node types by averaging features from their direct neighbor types. Fur-
thermore, for the node embedding model Nobe2Vec, we adopt the MeraraTH2VEC
algorithm as it is specifically designed for heterogeneous graphs. For each relation,
e.g., an author “writes” a paper, the reverse relation is added as well, e.g., a paper “is
written by” an author, in order to allow for a bidirectional message passing flow in
GNNE.

Test performance on all node-level datasets included in OGB are presented in Ta-
ble 5.4. Overall, all GNN-based models outperform the graph-agnostic MLP as well
as the Nope2VEc baselines. Notably, mini-batch processed GNNs via GRaPHSAGE,
Cruster-GCN or GrRaPHSAINT sampling techniques mostly outperform the full-batch
processed GNNSs, indicating that stochastic optimization indeed may improve gener-
alization (Bottoue & Bousquet, 2007).

For example, on products, we see that the highest test performances are attained by
GNNSs, while the MLP baseline that solely relies on a product’s description is not suf-
ficient for accurately predicting the category of a product. Notably, even with GNNSs,
we observe a huge generalization gap between training and test performance (~ 16
percentage points), which can be explained by the differing node distributions across
splits, cf. Figure A.1. This is in stark contrast to a conventional random split. Even with
the same split ratio, we find GNNSs to be able to achieve 88.20+0.08% test accuracy
(only ~ 1 percentage point of generalization gap). This result indicates that the real-
istic split is indeed more challenging and offers important opportunities to improve
out-of-distribution generalization (Hu et al., 2020a).
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Our initial benchmark analysis on papers100M focuses on the two simple models MLP
and SGC (Wu et al., 2019a), as most existing models have difficulty handling such a
gigantic graph. In particular, we observe severe under-fitting of SGC (67.54-+0.43 train-
ing accuracy), indicating that using more expressive GNN:ss is likely to improve both
training and test accuracy, going beyond the simple pre-processing of node features
(Hu et al., 2020a).

On the heterogeneous graphs mag and mag240M, we observe that all models that do
not utilize heterogeneous graph information perform much worse than their hetero-
geneous counterparts. Notably, the scalability techniques utilized in mag give surpris-
ingly promising results, outperforming the full-batch GNN by a large margin. This is
likely due to the regularization effect of the noise induced by mini-batch sampling and
edge dropout (Ronget al., 2020b). In contrast, CLuster-GCN (Chiang et al., 2019) gives
worse performance than its full-batch variant, indicating that the bias introduced by
the pre-computed partitioning has a negative effect on the model’s performance. This
can be also observed by its highly over-fitting training performance (79.65+4.12%).
On mag240M, we additionally evaluate the node-wise sampling approach GRaPHSAGE
(Hamilton et al., 2017) using a heterogeneous Graph Attention Network (GAT) vari-
ant (Veli¢kovi¢ et al., 2018; Schlichtkrull et al., 2018), which yields significant improve-
ments over the remaining baselines. In particular, the advanced attention-guided ag-
gregation is favorable over alternative GNNs that perform mean aggregation (Hu
et al., 2021b). Overall, the mag240M experiments highlight the benefits of develop-
ing and evaluating advanced expressive models on larger scale. However, due to the
exponential neighbor expansion in node-wise sampling, we were only able to train
GNNis up to two layers. In contrast, the winning solutions of the OGB-LSC> utilize
much deeper GNNSs, pushing the final test performance to 75.49% (Hu et al., 2021b).

On the proteins dataset, a simple graph-agnostic MLP performs surprisingly well.
As aresult, this dataset presents an interesting research question of how to utilize edge
features in a more sophisticated way than just via naive averaging, e.g., by the usage of
attention or by treating the graph as a multi-relational graph (as there are 8 different
association types between proteins). The challenge is to handle the huge number
of edge features efficiently on GPUs, which might require clever graph partitioning
based on the edge weights (Hu et al., 2020a).

5.5.1.2 Link Property Prediction. For the link-level datasets in OGB, we consider the
following representative models as baselines (Hu et al., 2020a, 2021b):

e MLP: A graph-agnostic MLP that uses raw node features directly as input.

e Nobpe2VEec: An MLP that uses the concatenation of raw node features and the
embeddings from a Nobe2VEc model (Grover & Leskovec, 2016) as input.

e MartrixFacrorizarion: Random node embeddings are assigned to nodes and
learned in an end-to-end manner.

e GNN: A full-batch Graph Neural Network (Kipf & Welling, 2017; Hamilton
etal., 2017).

e GrRAPHSAGE: A GNN utilizing a node-wise sampling method (Hamilton et al.,
2017) that samples neighborhoods recursively.

Shttps://ogb.stanford.edu/kddcup2021/results (last access: August 25, 2022)


https://ogb.stanford.edu/kddcup2021/results

5.5. EVALUATION 119

Dataset

Method ddi ppa collab citation
#Nodes 4.3K 576K 254K 2.9M
#Edges 1.3M 30M 1.3M 30.6M
Metric Hits@20 Hits@100 Hits@50 MRR
MLP — 0.46+0.00 19.27+1.29 0.2895-0.0014
Nobpe2VEc 23.26+1.35 22.26+0.83 48.88+0.54 0.6141-+0.0011
MartrixFactorization  13.68+4.75 32.29+0.94 38.86+0.29 0.5186+0.0443
GNN 53.90+4.74 18.67+1.32 54.63+1.12 0.8474--0.0021
GRAPHSAGE — — — 0.8044+-0.0010
CrLustEr-GCN — — — 0.8004+-0.0025
GRrRAPHSAINT — — — 0.79854-0.0040

Table 5.5: Model performance on all link-level OGB datasets (excluding KGs), us-
ing a diverse set of representative graph-based machine learning models.

e CLusTER-GCN: A GNN utilizing a subgraph-wise sampling method (Chiang
et al., 2019) that pre-partitions the graph via graph clustering.

e GrRAPHSAINT: A GNN utilizing a subgraph-wise sampling method (Zenget al.,
2020b) that samples subgraphs via a random walk sampler.

Similar to the node property prediction experiments, mini-batch training of GNNs
is only applied for graph datasets where full-batch GNN training is not feasible. All
other models fit into common GPU memory sizes of 11 GB. We nonetheless report full-
batch GNN performance utilizing a NVIDIA Quadro RTX 8000 with 48GB of memory.
All models are trained with a fixed hidden dimensionality of 256, a tuned number of
two or three layers, and a tuned dropout ratio € {0.0,0.5} (Srivastava et al., 2014).
After computing node embeddings through a GNN, edge features are obtained by
using the Hadamard operator ® between pair-wise node embeddings, which are then
inputted into an MLP for the final prediction. During training, we randomly sample
edges and use them as negative examples. We use the same number of negative edges
as there are positive edges (Hu et al., 2020a).

The obtained test performance on the OGB link-level datasets (excluding KGs) are
given in Table 5.5. Overall, the GNN-based models outperform related methods such
as Nobpe2VEc or MatrixFactorization, while there also exist datasets where GNN's
perform poorly, .., on the ppa dataset (Hu ef al., 2020a).

As ddi does not contain any node features, we omit the graph-agnostic MLP baseline
for this experiment. For the GNN model, node features are represented as distinct em-
beddings and learned in an end-to-end manner together with the GNN parameters,
similar to the MatrixFacTorization approach. Interestingly, both the GNN model and
the MatrixFacTorizaTiON approach achieve significantly higher training results than
Nobe2Vec. However, only the GNN model is able to transfer this performance to the
test set, suggesting that relational information is crucial to allow the model to gen-
eralize to unseen interactions. Notably, most of the models show high performance
variance, which can be partly attributed to the dense nature of the graph and the chal-
lenging data split (Hu et al., 2020a). We further perform a conventional random split
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of edges, where we find the GNN to be able to achieve 80.88+2.42% test Hits@20. This
indicates that the protein-target split is indeed more challenging than the conventional
random split (Hu et al., 2020a).

On the ppa dataset, both the Nobe2VEc and MatrixFactorization approaches heavily
outperform the GNN baseline. The poor training performance of GNNs suggests that
positional information, which cannot be captured by GNNs alone (You ef al., 2019),
might be crucial to obtain meaningful node embeddings. On the other hand, we see
that MaTrixFacTorizaTioN, which learns a distinct embedding for each node and hence
can express positional information of nodes as well, is indeed able to achieve promis-
ing performance. However, it heavily over-fits on the training data (81.65+9.15% train-
ing Hits@100) which encourages the development of new research ideas to close this
gap, e.g., by injecting positional information into GNNSs or by developing more so-
phisticated negative sampling techniques (Hu et al., 2020a).

On collab, most methods perform reasonable well, with the GNN being the winner
since it can handle the dynamic multi-graph scenario better than the remaining ap-
proaches. In particular, for the GNN model, we additionally incorporate the most re-
cent edges (i.e. validation edges) as input to the models at test time (which is not pos-
sible for the remaining models). This increases test performance of the GNN model
significantly, in comparison to the 48.10+0.81% test Hits@50 obtained when not incor-
porating validation edges during inference time. However, a promising direction to
further increase the performance is to treat edges at different timestamps differently,
as recent collaborations may be more indicative about the future collaborations than
the past ones (Hu et al., 2020a). Furthermore, as indicated by the good performance
of the Nope2VEec model, it is also fruitful to incorporate positional information into
the GNN model. This can be explained by the fact that positional information, i.e. past
collaborations, is typically a much more indicative feature for predicting future col-
laboration than what GNNs are able to capture, i.e. the same research interests (Hu
et al., 2020a).

Furthermore, on the citation dataset, the GNN model achieves the best results, fol-
lowed by MatrixFactorization and nope2Vec. However, the GNN uses full-batch
training; thus, it is not scalable and requires more than 40GB of GPU memory to
train, which is intractable on most of the GPUs available today. Hence, we also experi-
ment with the scalable mini-batch training techniques GRaPHSAGE, CLustER-GCN and
GraPHSAINT. Interestingly, we see that these techniques give worse performance than
their full-batch counterpart, which is in contrast to the node classification datasets
(e.., products and mag), where the mini-batch-based models give stronger general-
ization performances. This limitation presents a unique challenge for applying the
mini-batch techniques to link prediction, differently from those pertaining to node
prediction (Hu et al., 2020a).

For our experiments on the KG datasets, we consider the following KG embedding
models (Hu et al., 2020a, 2021b):

TrANSE: The translation-based KG embedding model (Bordes ef al., 2013).

DistMutt: The multiplication-based KG embedding model (Yang et al., 2015).

ComrLEx: The complex-valued KG embedding model (Trouillon et al., 2016).

RoTtaTtE: The rotation-based KG embedding model (Sun et al., 2019).



5.5. EVALUATION 121

Dataset
Method biokg wikikg wikigk9OM
#Nodes 94K 2.5M 87.1M
#Edges 5.1M 17.1M 502.2M
Metric MRR MRR MRR

TraNsE 0.7452-+0.0004  0.4256-+0.0030 0.8548
DistMurr  0.8043+0.0003  0.3729-0.0045 0.8637
ComrLEx 0.8095+0.0007  0.4027-+0.0027 —_
RortatE 0.7989+0.0004  0.4332-+0.0025 —

Table 5.6: Model performance on all KG datasets in OGB, using a diverse set of
representative KG embedding models.

For KGs with many entities and relations, the embedding dimensionality can be lim-
ited by the available GPU memory, as the embeddings need to be loaded into GPU all
at once. We therefore choose the dimensionality such that training can be performed
on a fixed-budget of GPU memory. Our training procedure follows the one from Sun
et al. (2019), where we perform negative sampling and use the margin-based logistic
loss as our loss function (Hu ef al., 2020a). Final test performance of these embedding
models on the KGs in OGB is given in Table 5.6.

Among the four models, CompLEx achieves the best test MRR on biokg, while TRaANSE
gives significantly worse performance compared to the other models. The worse per-
formance of TraNsE can be explained by the fact that it cannot model symmetric rela-
tions (Trouillon et al., 2016) that are prevalent in this dataset, e.g., protein-protein and
drug-drug relations are all symmetric. A promising direction is to develop more spe-
cialized methods to handle this heterogeneous knowledge graph, in which multiple
node types exist (Hu et al., 2020a).

On wikikg, all four models show similar performance. Nevertheless, the extremely
low test MRR suggests that our realistic KG completion dataset is highly non-trivial.
It presents a realistic generalization challenge of discovering new triplets based on
existing ones, which necessitates the development of KG models with more robust
and generalizable reasoning capability. Furthermore, this dataset presents an impor-
tant challenge of effectively scaling embedding models to large KGs. Naively train-
ing the KG embedding models with reasonable dimensionality requires a high-end
GPU, which is extremely costly and not scalable to even larger KGs. A promising
approach to improve scalability is to distribute training across multiple commodity
GPUs (Zheng et al., 2020b; Zhu et al., 2019¢; Lerer et al., 2019). A different approach is
to share parameters across entities and relations, so that a smaller number of embed-
ding parameters need to be put onto the GPU memory at once (Hu et al., 2020a).

On wikikg90M, we only consider the two KG embedding models TransE and Cowm-
PLEX due to the enormous size of the KG (Hu et al., 2021b). In order to enhance the
expressive power of the KG model, we further make use of the additional RoOBERTA
encodings of entities and relations by concatenating them to the distinct embeddings
of the KG model. This way, the encoders can adaptively utilize the RoBERTA encod-
ings as well as the distinct embeddings in order to derive a prediction. In an ablation
study, we see that using only distinct embeddings or RoBERTA encodings gives way
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Method Virtual Dataset
Node molhiv molpcba pcqmé4M ppa code
#Graphs 41K 438K 3.8M 158K 453K
Avg. #Nodes 27.5 26.0 26.5 243.4 125.2
Avg. #Edges 27.5 28.1 29.1 2,266.1 124.2
Metric ROC-AUC AP MAE  Accuracy F1 Score
MLP-FINGERPRINT — 80.60--1.00 22.26+0.02 0.2068 — —
GCN — 76.06+0.97 20.204+0.24 0.1838 68.39-+0.84 15.07+0.18
4 75.99+1.19 24.2440.34 0.1579 68.57+0.61 15.95+0.18
CIN — 75.58+1.40 22.66+0.28 0.1678 68.92+1.00 14.95+0.23
v 77.07+1.49 27.03+0.23 0.1487 70.37+1.07 15.81+0.26

Table 5.7: Model performance on all graph-level OGB datasets, using a diverse set
of representative graph-based machine learning models.

weaker test performance (up to a difference of 0.28 in MRR). This suggests that com-
bining both textual information and structural information gives the most promising
performance (Hu et al., 2021b). In the OGB-LSC?, the winning solutions pushed the
performance further up to an MRR of 0.9727.

5.5.1.3 Graph Property Prediction. For the graph-level datasets in OGB, we consider
the following representative models as baselines (Hu et al., 2020a, 2021b):

e MLP-FINGerPRINT: An MLP over the Morgan fingerprint (Morgan, 1965).
e GCN: A Graph Convolutional Network (Kipf & Welling, 2017).
e GIN: A Graph Isomorphism Network (Xu ef al., 2019¢).

e GCN+Virtual: A GCN that performs additional message passing over virtual
nodes, i.e. nodes that are connected to all other nodes in the original graph
(Gilmer et al., 2017; Li et al., 2017; Ishiguro et al., 2019).

e GIN+Virtual: A GIN that performs additional message passing over virtual
nodes.

In the GNN models, node embeddings are further pooled into graph-level represen-
tations to obtain an embedding of the entire graph. Finally, a linear model is applied
to the graph embedding in order to make predictions. To include edge features (such
as the bond type in molecular graphs), we follow Hu ef al. (2020b) and add trans-
formed edge features into source node features. For all GNN experiments, we make
use of 5-layer GNNs, global average pooling, a hidden dimensionality of 300, and a
tuned dropout ratio € {0.0,0.5} (Srivastava et al., 2014; Hu ef al., 2020a).

Benchmarking results on all graph-level datasets included in OGB are shown in Ta-
ble 5.7. Overall, we see that GNN models with message passing over virtual nodes
perform the best across the different datasets, consistently improving generalization

Shttps://ogb.stanford.edu/kddcup2021/results (last access: August 25, 2022)
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performance. Furthermore, expressive GNNs (GIN and GIN+Virtual) typically out-
perform less expressive ones (GCN and GCN+ Virtual).

In particular, on the molecular graph datasets molhiv, molpcba and pcqm4M, GNNs
achieve promising performance. While the MLP-FINGERPRINT variant achieves the
overall best test performance on molhiv, this is not the case on the larger datasets
which showcases the ability of GNNs to make well use of larger amount of data. Fur-
thermore, we find the conventional random split to be much easier than our scaffold
splitting strategy. For example, using random splits with the same split ratio, we
achieve a ROC-AUC of 82.73+2.02% (5.66 percentage points higher than scaffold) and
an AP of 34.40+0.90% (7.37 percentage points higher than scaffold) on the molhiv
and molpcba datasets, respectively, using the best performing GNN model. These
results highlight the challenges of the scaffold split compared to traditional random
splits, and opens up fruitful research opportunities to increase the out-of-distribution
generalization capabilities of GNNs. On the large-scale pcqm4M dataset, GIN+ Virtual
significantly outperforms the other graph-based machine learning models. Nonethe-
less, the current performance is still much worse than the desired chemical accuracy
of 0.043eV — an indicator of practical usefulness established by the chemistry com-
munity (Hu et al., 2021b). We further perform ablation studies regarding model size
and validation performance on pqmé4M. In particular, we see that the largest models
always achieve the best performance, e.g., 0.1410eV MAE using a GNN model with 5
layers and hidden dimensionality of 600 vs 0.1512eV MAE using a GNN model with
3 layers and hidden dimensionality of 300 (Hu ef al., 2021b). The winning solutions
of the OGB-LSC” utilize even deeper GNNs with sophisticated self-supervision aux-
iliary tasks. The final test performance of the winning solution is 0.1200eV MAE.

On the ppa dataset, the GIN model with message passing over virtual nodes provides
once again the best performance. Nevertheless, the generalization gap between train-
ing and test performance is huge (almost 30 percentage points). For reference, the
same model in a random splitting scenario achieves a final test accuracy of 92.91+0.27%,
which is more than 20 percentage points higher than the utilized species split. This
again encourages future research to improve the out-of-distribution generalization on
the more challenging and meaningful split procedure.

Our benchmark analysis on the code dataset utilizes “next-token edges” on top of the
AST to better capture the semantics of code graphs (Dinella et al., 2020). For the de-
coder, we use independent linear classifiers to predict sub-tokens at each position of
the sub-token sequence. We find that this order-sensitive decoder performs slightly
better than an order-insensitive decoder that simply predicts whether each vocabu-
lary is included in the target sequence (Hu et al., 2020a). On the random split, the
test F1 score is 21.64+0.26% (approximately 6 percentage points higher than that of
the project split), indicating that the project split is indeed harder than the random
split. Nonetheless, the obtained performance is far from being of practical usefulness.
As such, this dataset presents an interesting research opportunity to improve out-of-
distribution generalization under the meaningful project split, with a number of fruit-
ful future directions: how to leverage the fact that the original graphs are actually trees
with well-defined root nodes, how to pre-train GNNSs to improve generalization, and
how to design better encoder-decoder architectures (Hu et al., 2020a).

"https://ogb.stanford.edu/kddcup2021/results (last access: August 25,2022)
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Full-batch === Historical-based Baseline === GAS
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(a) 2-GCN on Cora (b) 64-GCNII on Cora (c) 4-GIN on CLUSTER

Figure 5.10: Model performance comparison between full-batch, an unoptimized
history-based baseline and our GAS approach. In contrast to the
historical-based baseline, GAS reaches the quality of full-batch training,
especially for (b) deep and (c) expressive models (Fey ef al., 2021).

5.5.2 Deep and Expressive GNNs on Large-Scale Graphs

Our GAS framework proposes a new method for scaling up the training and inference
phase of GNNSs on large-scale graphs (Fey et al., 2021). GAS prunes entire sub-trees
of the computation graph by utilizing historical embeddings from prior training itera-
tions. As described in Section 5.3, it allows to scale up deep GNNs due to its constant
GPU memory consumption in respect to input node size. Furthermore, it allows the
application of expressive GNNs since GAS is provably able to maintain the expressive
power of the underlying GNN. Here, we showcase these benefits of GAS empirically
while comparing to related scalability techniques. Specifically, we show that GAS
allows for deep and expressive GNNs while resembling full-batch performance (Sec-
tion 5.5.2.1), is very memory-efficient (Section 5.5.2.2), and scales well to large graphs
(Section 5.5.2.3). In our experiments, we utilize a total of 6 different GNN operators
on 15 different datasets. The code for reproducing all experiments utilizes the Py-
Torch Geometric library (Fey & Lenssen, 2019) and is available on GitHub.® Please
refer to the code base for a detailed description of hyperparameter configurations. All
models were trained on a single GeForce RTX 2080 Ti (11 GB). In our experiments,
we hold all histories in RAM, using a machine with 64GB of CPU memory (Fey et al.,
2021).

5.5.2.1 GAS allows for deep and expressive GNNs. We compare GAS against two
different baselines: a regular full-batch variant and a history baseline, which naively
integrates history-based mini-batch training without any of the additional GAS tech-
niques (Section 5.3.2). To evaluate, we make use of a shallow 2-layer GCN (Kipf &
Welling, 2017) and two recently introduced state-of-the-art models: a deep GCNII
network with 64 layers (Chen et al., 2020b), and a maximally expressive GIN net-
work with 4 layers (Xu et al., 2019¢). We evaluate those models on tasks for which
they are well suitable: classifying academic papers in a citation network (Cora), and
identifying community clusters in Stochastic Block Models (CLUSTER) (Sen et al.,
2008; Yang et al., 2016; Dwivedi et al., 2020), cf. Figure 5.10. Since CLUSTER is a node
classification task containing multiple graphs, we first convert it into a super graph
(holding all the nodes of all graphs), and partition this super graph using twice as

8Code for GAS: https://github.com/rustyls/pyg_autoscale (last access: August 25, 2022)
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Dataset GCN GAT APPNP GCNII

Full GAS Full GAS Full GAS Full GAS
Cora 81.88 8229 82.80 8332 8328 83.19 85.04 8552
CiteSeer 7098 7118 71.72 7186 7213 72.63 73.06 73.89
PubMed 7873 7923 78.03 7842 80.21 79.82 79.72 80.19
Coauthor-CS 91.08 91.22 9031 90.38 9251 9244 9245 92.52
Coauthor-Physics 93.10 9298 9232 9280 9340 93.68 9343 93.61
Amazon-Computer 81.17 80.84 —f  —T 8179 81.66 83.04 83.05
Amazon-Photo 90.25 90.53 —f —F 9127 9123 9142 91.60
Wiki-CS 79.08 79.00 7944 7956 79.88 79.75 79.94 80.02
A Mean Acc. +0.13 +0.29 -0.01 +0.29

T Results omitted due to unstable performance, cf. Shchur et al. (2018).

Table 5.8: Full-batch vs GAS performance on small transductive graph benchmark
datasets across 20 different initializations. Predictive performance of
models trained via GAS closely matches those of full-batch gradient de-
scent on all models for all datasets (Fey et al., 2021).

many partitions as there are initial graphs. It can be seen that especially for deep (64-
GCNII, ¢f. Figure 5.10b) and expressive (4-GIN, cf. Figure 5.10c) architectures, the
naive historical-based baseline fails to reach the desired full-batch performance. This
can be contributed to the high approximation error induced by deep and expressive
models. In contrast, GAS shows far superior performance, reaching the quality of
full-batch training in both cases (Fey et al., 2021).

In general, we expect the model performances of our GAS mini-batch training to
closely resemble the performances of their full-batch counterparts, except for the vari-
ance introduced by stochastic optimization (Bottoue & Bousquet, 2007). To validate,
we compare GAS against full-batch performances on small transductive benchmark
datasets for which full-batch training is easily feasible, namely the three citation da-
tasets Cora, CiteSeer and PubMed (Sen et al., 2008; Yang et al., 2016), the two co-
authorship graphs Coauthor-CS and Coauthor-Physics (Shchur et al., 2018), the two
co-purchase graphs Amazon-Computer and Amazon-Photo (Shchur et al., 2018) as
well as the Wikipedia graph Wiki-CS (Mernyei & Cangea, 2020) containing computer
science articles. We evaluate on four GNN models that significantly advanced the
field of Graph Representation Learning: GCN (Kipf & Welling, 2017), GAT (Veli¢kovi¢
et al., 2018), APPNP (Klicpera et al., 2019a) and GCNII (Chen et al., 2020b). For all
experiments, we tried to follow the hyperparameter setup of the respective papers as
closely as possible and perform an in-depth grid search on datasets for which best
performing configurations are not known. We then apply GAS mini-batch training
on the same set of hyperparameters. As shown in Table 5.8, all models that utilize
GAS training perform as well as their full-batch equivalents (with slight gains over-
all), confirming the practical effectiveness of our approach. Notably, even for deep
GNNSs such as APPNP and GCNII, our approach is able to closely resemble the de-
sired performance (Fey et al., 2021).

We further conduct ablation studies to highlight the individual performance improve-
ments of our GAS techniques within a deep GCNII model, i.e. minimizing inter-con-
nectivity and applying regularization techniques such that enforcing Lipschitz con-
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Coauthor- Amazon-

Method Cora CiteSeer PubMed CS  Physics Computer Photo Wiki-CS
Baseline -3.26 -5.66 -3.20 -0.79 -0.50 -5.76 -4.16 -3.19
Regularization -2.12 -1.03 -1.24 -0.46 -0.24 -3.02 -1.19 -0.74
METtis -1.57 -3.12 -1.50 -0.47 +0.13 -2.75 -1.02 -0.24
GAS +0.48 +0.83 +0.47 +0.07 +0.18 +0.01 +0.18 +0.08

Table 5.9: Relative performance improvements of individual GAS techniques
within a GCNII model. The performance improvement is measured in
percentage points in relation to the corresponding model performance ob-
tained by full-batch training (Fey et al., 2021).

Accuracy
Method Training Validation  Test
Full-batch 60.49 58.17 58.49
Regularization ~ 55.66 54.86 55.15
METis 58.97 57.79 57.82
GAS 60.67 58.21 58.51

Table 5.10: Ablation study for a 4-layer GIN model on the CLUSTER dataset. Com-
bining both GAS techniques help in resembling full-batch performance
for expressive GNN models (Fey et al., 2021).

tinuity. Table 5.9 shows the relative performance improvements of individual GAS
techniques in percentage points, compared to the corresponding model performance
obtained by full-batch training. Notably, it can be seen that both techniques contribute
to resembling full-batch performance, reaching their full strength when used in com-
bination. The same trend holds true for expressive GNN variants, i.e. for a 4 layer
GIN model on the CLUSTER dataset, cf. Table 5.10. Notably, both solutions achieve
significant gains in training, validation and test performance, and together, they are
able to closely resemble the performance of full-batch training (Fey et al., 2021).

5.5.2.2 GAS is memory-efficient. For training large-scale GNNs, GPU memory con-
sumption will directly dictate the scalability of the given approach. Here, we show
how GAS maintains a low GPU memory footprint while, in contrast to other scalabil-
ity approaches, accounts for all available information inside a GNN's receptive field
in a single optimization step. We compare the memory usage of GCN+GAS training
with the memory usage of full-batch GCN (Kipf & Welling, 2017), and mini-batch
GraPHSAGE (Hamilton et al., 2017) and Cruster-GCN (Chiang et al., 2019) training,
cf. Table 5.11. For datasets, we utilize the Yelp dataset containing customers and their
friendship relations (Zeng et al., 2020b) as well as the two node-level datasets arxiv
and products from OGB (Hu et al., 2020a), cf. Section 5.4. Notably, GAS is easily able
to fit the required data on the GPU, while memory consumption only increases lin-
early with the number of layers. Although Cruster-GCN maintains an overall lower
memory footprint than GAS, it will only utilize a fraction of available information
inside its receptive field, i.e. 23% on average (Fey et al., 2021).
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Method Yelp arxiv products
#Nodes 717K 169K 2.4M
#Edges 79M 1.2M 62M
. Full-batch 6.64GB/ 100% 1.44GB/100% 21.96GB/ 100%
% GrarHSAGE 0.76GB/ 9% 0.40GB/ 27%  0.92GB/ 2%
% Cruster-GCN 0.17GB/ 13% 0.15GB/ 40%  0.16GB/ 16%
GAS 0.51GB/100% 0.22GB/100%  0.36GB/ 100%
. Full-batch 9.44GB/100% 2.11GB/ 100% 31.53GB/ 100%
% GrarHSAGE  2.19GB/ 14% 0.93GB/ 33%  4.34GB/ 5%
% Cruster-GCN 0.23GB/ 13% 0.22GB/ 40%  0.23GB/ 16%
GAS 0.79GB/ 100% 0.34GB/ 100%  0.59GB/ 100%
. Full-batch  12.24GB/100% 2.77GB/100% 41.10GB/ 100%
% GrarHSAGE  4.31GB/ 19% 1.55GB/ 37% 11.23GB/ 8%
5 Cruster-GCN 0.30GB/ 13% 0.29GB/ 40%  0.29GB/ 16%
GAS 1.07GB/ 100% 0.46GB/100%  0.82GB/ 100%
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Table 5.11: GPU memory consumption (in GB) and the amount of data used (%)
across different GNN execution techniques. GAS consumes low mem-
ory while making use of all available neighborhood information during a
single optimization step (Fey et al., 2021).

Method Reddit PPI  Flickr Yelp arxiv products
#Nodes 230K 57K 89K 717K 169K 2.4M
#Edges 11.eM 794K 450K 7.9M 1.2M 62M
GraruSAGE 95.40 61.20 50.10 63.40 71.49 78.70
FastGCN 93.70 — 50.40 — — —
LADIES 92.80 — — — — —
VR-GCN 94.50 85.60 — 61.50 — —
MVS-GNN 94.90 89.20 — 62.00 — —
Cruster-GCN  96.60 99.36 48.10 60.90 — 78.97
GraPHSAINT  97.00 99.50 51.10 65.30 — 79.08
SGC 96.40 9630 48.20 64.00 — —
SIGN 96.80 97.00 51.40 63.10 — 77.60
GBP — 99.30 — 65.40 — —
_ GCN 9543 9758 5373 OOM 7164 OOM
E GCNII OOM OOM 5528 OOM 7283 OoOM
PNA OOM OOM 5623 OOM 7217 OoOM
»n GCN 95.45 98.92 54.00 6294 71.68 76.66
5 GCNII 96.77 99.50 5620 65.14  73.00 77.24
PNA 97.17 9944 56.67 6440 72.50 79.91

Table 5.12: Performance on large graph datasets. GAS is both scalable and general
while achieving state-of-the-art performance (Fey ef al., 2021).
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5.5.2.3 GAS scales to large-graphs. In order to demonstrate the scalability and gen-
erality of our GAS approach, we scale various GNN operators to common large-scale
graph benchmark datasets. We evaluate on 6 datasets for diverse tasks: Predicting
communities of online posts based on user comments (Reddit) (Hamilton et al., 2017),
classifying protein functions based on the interactions of human tissue proteins (PPI)
(Hamilton et al., 2017), categorizing types of images based on their descriptions and
properties (Flickr) (Zeng et al., 2020b), classifying business types based on customers
and friendship relations (Yelp) (Zeng et al., 2020b), predicting subject areas of ARX1v
Computer Science papers (arxiv) (Hu et al., 2020a), and predicting product cate-
gories in an Amazon product co-purchasing network (ogbn-products) (Hu et al.,
2020a). Here, we focus our analysis on GNNs that are notorious hard to scale-up but
have the potential to leverage the increased amount of available data to make more
accurate predictions. In particular, we benchmark deep GNNSs, i.e. GCNII (Chenet al.,
2020b), and expressive GNNSs, i.e. PNA (Corso ef al., 2020). Note that it is not possible
to run those models in full-batch mode on most of these datasets as they will run out
of memory on common GPUs. We compare with 10 scalable GNN baselines: GRaPH-
SAGE (Hamilton et al., 2017), FaAstGCN (Chen et al., 2018b), LADIES (Zou et al., 2019),
VR-GCN (Chen et al., 2018c), MVS-GNN (Cong et al., 2020), CLuster-GCN (Chiang
et al., 2019), GRaPHSAINT (Zeng et al., 2020b), SGC (Wu et al., 2019a), SIGN (Frasca
etal.,2020) and GBP (Chen et al., 2020a). Since results are hard to compare across dif-
ferent approaches due to differences in frameworks, model implementations, weight
initializations and optimizers, we additionally report a shallow GCN+GAS baseline.
GAS is able to train all models on all datasets on a single GPU, while holding cor-
responding histories in CPU memory. On the largest dataset, i.e. products, this will
consume approximately L- 2GB of storage for L layers, which easily fits in RAM on
most modern workstations (Fey et al., 2021).

As can be seen from Table 5.12, the usage of deep and expressive models within
our framework advances the state-of-the-art on Reddit and Flickr, while it performs
equally well for others, e.g., PPI. Notably, our approach outperforms the two historical-
based variants VR-GCN and MVS-GNN by a wide margin. Interestingly, our deep
and expressive variants reach superior performance than our GCN baseline on all
datasets, which highlights the benefits of evaluating larger models on larger scale.
Furthermore, our scalable GCNII variant is up to this date the top contender on the
OGB arxiv leaderboard’ across the models which do not make use of ground-truth
labels during forward execution (Fey et al., 2021).

9Leaderboard: https://ogb.stanford.edu/docs/leader_nodeprop (last access: January 11,2022)
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Efficient Realization of
Graph Neural Networks

With the rise of Graph Neural Networks as a state-of-the-art technique for Graph
Representation Learning, there is an urgent demand in both flexible and powerful
libraries for accelerating research and putting existing models into production.
Here, we introduce PyTorch Geometric, a well-known deep learning library for
implementing and working with graph-based neural network building blocks. Py-
Torch Geometric leverages sparse GPU acceleration by providing dedicated CUDA
kernels, and introduces efficient mini-batch handling for input examples of differ-
ent size. Furthermore, we present PyGAS, an easy-to-use extension for PyTorch
Geometric that converts common and custom Graph Neural Network models into
their scalable variants by utilizing our GNNAutoScale framework. In particular,
PyGAS optimizes the access pattern of historical embeddings in order to allow for
both fast and memory-efficient mini-batch training on large-scale graphs.

6.1 Introduction . ... .... ... ... .. ... oo 129
6.2 State-of-the-Art . . ... ....... ... ... .. . .. o . 130
6.3 Graph Neural Networks within PyTorch Geometric . .. ... ... .. 131
6.4 PyGAS: Auto-Scaling Graph Neural Networks . . . ... ... ... .. 152
6.5 Evaluation . . ... ..... ... ... .. .. o 154

6.1 Introduction

Graph Neural Networks (GNNs) emerged as a powerful approach for representation
learning on graphs that unify and generalize the concepts of Convolutional Neural
Networks (CNNs) (cf. Section 3.3) and Transformers (cf. Section 3.2.4) to arbitrarily
structured data. As a result, the computation graph is no longer tied to its underlying
model, but is instead given dynamically as part of its input in the form of a sparsely
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given structure. However, modern deep learning software libraries are heavily de-
signed with regular structures and dense tensor computation in mind, e.g., in the form
of efficient batch-wise dense matrix multiplications. This makes the efficient realiza-
tion of GNNs challenging, as high GPU throughput needs to be achieved on highly
sparse and irregular data of varying size (Gale et al., 2020).

As such, there is an urgent demand in both flexible and efficient libraries to effectively
realize the theoretical and methodological contributions of this thesis. Here, flexibil-
ity guarantees that the underlying tools and their design principles do not limit the
realization of the proposed methods (and are able to accelerate future research as
well). At the same time, efficiency and scalability via thoughtful computation and
memory-access patterns ensure the practical use in real-world applications.

In order to accomplish these goals, we propose the PyTorch Geometric (PyG) library
in Section 6.3, a library built upon PyTorch (Paszke et al., 2019) to easily write and
train Graph Neural Networks for a wide range of applications related to structured
data. PyG elegantly marries the tensor-centric perspective of deep learning frame-
works with the sparse and irregular design paradigm of GNNs. In particular, PyG
achieves high data throughput by leveraging sparse GPU acceleration, by providing
dedicated CUDA kernels and by introducing efficient mini-batch handling for input
examples of different size. In addition to general graph data structures and processing
methods, PyG further bundles a variety of state-of-the-art methods from the domains
of relational learning and 3D data processing based on unified interfaces, which al-
lows for rapid and clean prototyping of new research ideas.

Furthermore, we present the PyTorch Geometric AutoScale (PyGAS) extension in Sec-
tion 6.4, the practical realization of of our GNNAutoScale framework, cf. Section 5.3.
PyGAS is an easy-to-use extension for PyG to auto-scale any GNN to large-scale graphs
while maintaining the properties of the original GNN. PyGAS makes it easy to con-
vert common and custom GNN models into their scalable variants while requiring
orders of magnitude less GPU memory, and provides a fully deterministic test bed
for evaluating models on larger scale. In particular, PyGAS optimizes pulling and
pushing to histories via non-blocking device transfers, such that no overhead occurs at
all when accessing historical embeddings.

6.2 State-of-the-Art

Since PyG started to bundle and make state-of-the-art Graph Representation Learn-
ing available in a unified and efficient package, various additional graph-based ma-
chine learning libraries have been developed, mostly differing in scope, functional-
ity and practical application. The Deep Graph Library (DGL) (Wang et al., 2019b) al-
lows the implementation of GNNs in a framework-agnostic fashion, and mostly dif-
fers from PyG in how graph data is represented internally: DGL utilizes a dedicated
C++/CUDA graph storage layer, while PyG represents graphs as pure tensors. De-
spite divergent APIs, both libraries have emerged to a similar feature set over the
years. GraphNet (Battaglia et al., 2018), Spektral (Grattarola & Alippi, 2020), Stel-
larGraph (CSIRO-Data61, 2018), Jraph (Godwin et al., 2020), ptgnn (Microsoft, 2019)
and tf2-gnn (Jackson-Flux et al., 2019) provide alternative message passing imple-
mentations based on similar principles for all kinds of deep learning frameworks such
as TensorFlow (Abadi et al., 2015), Keras (Chollet et al., 2015) and Jax (Bradbury et al.,
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2018), but lack crucial functionality for large-scale graph learning support. In con-
trast, AliGraph (Zhu et al., 2019b), Euler (Alibaba, 2019), Neugraph (Ma et al., 2019)
and PGL (Baidu, 2019) provide dedicated and optimized libraries for GNN train-
ing and deployment in industrial applications, e.g., via fast samplers or multi-GPU
support through partitioning. As a compromise, they lack the flexibility and com-
prehensiveness of libraries targeted towards research. TorchDrug (Zhu et al., 2021b)
focuses on integrating recent GNN advances in drug discovery to accelerate further
development.

Recently, various high-level libraries emerged on top of PyG: PyTorch Geometric Tem-
poral (Rozemberczki et al., 2021b) provides support for temporal graphs in PyG. DIG
(Liu et al., 2021) provides a unified and PyG-based testbed for various graph-based
deep learning tasks. Quiver (Quiver, 2021) enables distributed graph learning for
scaling PyG models across many nodes and many GPUs. Furthermore, recent efforts
bring a subset of PyG’s functionality to other frameworks as well, e.g., tf_geometric
(Hu et al., 2021a) to TensorFlow, and GeometricFlux (FluxML, 2020) to Julia (Bezan-
son et al., 2017).

Efficient graph-based processing is highly related to the design and innovation of
sparse matrix formats and GPU-based parallel computation strategies for sparse ma-
trix multiplication within each format (Bell & Garland, 2008, 2009; Dalton et al., 2015;
Filippone et al., 2017; Shiet al.,2020a). These techniques introduce advanced coalesced
memory access patterns (Yang et al., 2018), tiling and reordering strategies (Yanget al.,
2011; Baskaran & Bordawekar, 2009), adaptive re-purposing of GPU threads (Winter
et al., 2019), and distributed computation at large scale (Hussain et al., 2020) Fur-
thermore, dedicated sparse matrix algorithms have been proposed in the context of
graph analytics (Ashari et al., 2014; Wang et al., 2016), scientific computing applica-
tions (LeVeque, 2007) and deep learning (Gale ef al., 2020).

The rise of new “Al accelerator types” such as Google’s Tensor Processing Units (TPUs)
or NVIDIA’s Volta architecture have also motivated the design of novel computation
algorithms for sparse matrices and GNNSs in particular (Zachariadis et al., 2020). For
example, (Balog et al., 2019) utilize block sparse matrices obtained from bandwidth
minimization to accelerate GNN performance on TPUs. Furthermore, there is a long
line of research regarding effective distributed GNN execution (Jia et al., 2020; Maet al.,
2019; Zhu et al., 2016; Tripathy et al., 2020; Wan et al., 2020; Angerd et al., 2020; Zheng
et al., 2020a), which utilize various forms of graph partitioning strategies and mem-
ory management optimizations to allow for the efficient exchange of graph data in
distributed environments.

6.3 Graph Neural Networks within PyTorch Geometric

Here, we introduce PyTorch Geometric (PyG) (Fey & Lenssen, 2019), a framework-
specific Graph Neural Network library built upon PyTorch (Paszke ef al., 2019) that
provides the necessary tools for processing and learning from irregularly structured
data, and achieves high performance by leveraging dedicated CUDA kernels. Fol-
lowing a simple message passing AP]I, it bundles most of the recently proposed con-
volutional and pooling layers into a single and unified framework. All implemented
methods support both CPU and GPU computations and follow an immutable data
flow paradigm that enables dynamic changes in graph structures through time. PyG
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is fully open-sourced on GitHub.! It is thoroughly documented and provides accom-
panying tutorials, videos, notebooks and examples as a first starting point.? Up to this
date, approximately 800 research papers were written using PyG, it has established
an active Slack community with around 1,400 participants, and its future develop-
ment involves a team of core developers extended by a community of more than 230
contributors across the world.

We first give an overview of the library (Section 6.3.1) and its general interfaces (Sec-
tion 6.3.2), before presenting lower-level sparse tensor arithmetic details (Section 6.3.3)
and additional but advanced features of PyG such as heterogeneous graph learning
(Sections 6.3.4 and 6.3.5).

6.3.1 Overview of the Library

PyG provides a fast and flexible framework to simplify implementing and working
with GNNs. Overall, it aims to help users to apply relational learning to specific do-
mains and tasks, to help researchers to invent novel methods and compare themselves
to related work, and to help to make research more reproducible. It is generally built
upon the following design principles:

e Easy-to-use and unified API: Users can directly start training a GNN model
with just a few lines of code. In particular, PyG aims to be PyTorch-on-the-rocks:
It utilizes a tensor-centric API and keeps design principles close to vanilla Py-
Torch. For example, all user facing APIs, e.g., data loading routines, multi-GPU
support, data transformations and augmentations, or model instantiations are
heavily inspired by PyTorch to keep them as familiar as possible.

e Comprehensive and flexible: PyG aims to bundle the state-of-the-art in Graph
Representation Learning into a comprehensive and well maintained GNN li-
brary. As such, most of the GNN operators and architectures proposed in re-
search have been integrated into the library, and existing graph-based neural
network building blocks can either be extended, or combined and applied to
various parts of a GNN model, ensuring rich flexibility in GNN design. PyG
further provides an abundant set of over 300 common benchmark datasets.

o Efficient and scalable: PyG achieves high data throughput by leveraging sparse
GPU acceleration, by providing dedicated CUDA kernels and by introducing
efficient mini-batch handling for input examples of different size. PyG further
supports the implementation of GNNs that can scale to large-scale graphs, con-
taining millions of nodes. Many state-of-the-art scalability approaches have
been integrated into PyG, and can benefit from the rich set of GNN operators
and models available in PyG.

6.3.1.1 Components. PyG provides a multi-layer framework that enables users to
build Graph Neural Network solutions on both low and high levels. It comprises of
the following components, cf. Figure 6.1:

IPyG repository: https://github.com/rustyls/pytorch_geometric (last access: August 25, 2022)
2PyG documentation: https://pytorch-geometric.readthedocs.io (last access: August 25, 2022)
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Figure 6.1: Illustrative architecture of the PyTorch Geometric library. GNN op-
erators and graph storage capabilities utilize the PyTorch deep learning
framework and in-house additions of efficient CUDA libraries, and can be
combined to build and train GNN models with rich flexibility.

e The PyG engine utilizes the powerful PyTorch deep learning framework (Paszke
et al., 2019), as well as in-house additions of efficient CUDA libraries for operat-
ing on sparse data, e.g., torch-scatter,® torch-sparse,* and torch-cluster.’

e The PyG storage handles data processing, transformation and loading pipelines.
It is capable of handling and processing large-scale graph datasets, and pro-
vides effective solutions for heterogeneous graphs. It further provides a variety
of sampling solutions, which enable training of GNNs on large-scale graphs.

e The PyG operators bundle essential functionalities for implementing Graph Neu-
ral Networks. PyG supports important GNN building blocks that can be com-
bined and applied to various parts of a GNN model, ensuring rich flexibility of
GNN design and fast design space exploration.

e Finally, PyG provides an abundant set of GNN models, and examples that
showcase the application of GNNs on standard graph benchmark datasets. Due
to its flexibility, users can easily build and modify custom GNN models to fit
their specific needs.

Table 6.1 lists currently supported PyG operators and models according to category.

In total, PyG supports nearly 50 different GNN message passing layers, which are
ready to be deployed upon installation. These layers are implemented based a uni-
fied differentiable MessagePassing interface that decomposes MEessaGg, Urpate and
aggregative functions € into customizable user defined functions, cf. Sections 3.2.2

3torch-scatter: https://github.com/rustyls/pytorch_scatter (last access: August 25, 2022)
“torch-sparse: https://github.com/rustyls/pytorch_sparse (last access: August 25, 2022)
Storch-cluster: https://github.com/rustyls/pytorch_cluster (last access: August 25, 2022)
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https://github.com/rusty1s/pytorch_cluster
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Category

Supported Methods

Message
Passing

Cheby (Defferrard et al., 2016), GraphSAGE (Hamilton et al., 2017),
GCN (Kipf & Welling, 2017), GAT (Veli¢kovi¢ et al., 2018), GCNII
(Chen et al., 2020b), SplineCNN (Fey et al., 2018), MPNN (Gilmer
et al., 2017), PointNet (Qi et al., 2017a,b), MoNet (Monti et al., 2017),
EdgeCNN (Wang et al., 2019e), S-GCN (Wu et al., 2019a), R-GCN
(Schlichtkrull et al., 2018), GIN (Xu et al., 2019c), GIN-E (Hu et al.,
2020b), NMF (Duvenaud et al., 2015), DNA (Fey, 2019), Hyper-
GCN (Bai et al., 2021), GraphNet (Battaglia et al., 2018), PNA (Corso
et al., 2020), Cluster-GCN (Chiang et al., 2019), k-GNN (Morris et al.,
2019), SuperGAT (Kim & Oh, 2021), PointCNN (Li et al., 2018b),
SparseTransformer (Shi et al., 2020b), GatedGCN (Li ef al., 2016b),
ResGatedGCN (Bresson & Laurent, 2017), ARMA (Bianchi et al.,
2019), EC (Simonovsky & Komodakis, 2017), Signed-GCN (Derr et al.,
2018), AGNN (Thekumparampil et al., 2018), CG (Xie & Grossman,
2018), TAG (Duet al., 2017), HGT (Hu et al., 2020c), FeaStNet (Verma
et al., 2018), PPFNet (Deng et al., 2018), GravNet (Qasim et al., 2019),
PDN (Rozemberczki et al., 2021a), EG (Tailor ef al., 2021), LeCNN
(Ranjan et al., 2020), PAN (Maet al.,2021), DeepGCN (Liet al., 2019a),
FLM (Brockschmidt, 2020), GATII (Brody et al., 2021), FA (Bo et al.,
2021), GeneralGNN (You et al., 2020), PointTransformer (Zhao et al.,
2020), AttentiveFP (Xiong ef al., 2021), GeniePath (Liu et al., 2019b)

Pooling

Top-k (Cangea et al., 2018), DiffPool (Ying et al., 2018b), MinCUT
(Bianchi et al., 2020), Graclus (Dhillon et al., 2007), VoxelGrid (Si-
monovsky & Komodakis, 2017), SAG (Lee et al., 2019), EdgePool
(Diehl et al., 2019), ASAP (Ranjan et al., 2020), PAN (Ma et al., 2021),
MemPool (Khasahmadi et al., 2020), GMT (Baek et al., 2021), Glob-
alAttention (Li et al., 2016b), Set2Set (Vinyals et al., 2016), SortPool
(Zhang et al., 2018), FPS (Qi et al., 2017b)

Models

DeepWalk (Perozzi et al., 2014), Node2Vec (Grover & Leskovec, 2016),
MetaPath2Vec (Dong et al., 2017a), JK (Xu et al., 2018), APPNP
(Klicpera et al., 2019a), (V)GAE (Kipf & Welling, 2016), ARG(V)A
(Panetal., 2018),S-GAE (Salha et al., 2020), WL (Weisfeiler & Lehman,
1968), LP (Zhu et al., 2003), ReNet (Jin et al., 2020), TGN (Rossi et al.,
2020), RECT (Wang et al., 2021), SEAL (Zhang & Chen, 2018), SchNet
(Schiitt et al., 2017), DimeNet (Klicpera et al., 2020b), DGI (Veli¢ckovié
et al., 2019), Graph U-Net (Gao & Ji, 2019)

Utilities

GNNEXxplainer (Ying et al.,2019), DropEdge (Rong et al., 2020b), GDC
(Klicpera et al., 2019b), GraphNorm (Cai et al., 2020), GraphSizeNorm
(Dwivedi et al., 2020), PairNorm (Zhao & Akoglu, 2020), DiffGroup-
Norm (Zhou et al., 2020), TreeDecomp (Jin et al., 2018), LDP (Cai &
Wang, 2018), C&S (Huang et al., 2021), Gini (Henderson et al., 2021)

Scalability

GraphSAGE (Hamilton et al., 2017), Cluster-GCN (Chiang et al., 2019),
GraphSAINT (Zeng et al., 2020b), S-GCN (Wu et al., 2019a), SIGN
(Frasca et al., 2020), ShaDow (Zeng et al., 2020a), HGT (Hu et al,,
2020c), GAS (Fey et al., 2021)

Table 6.1: Overview of all currently supported methods in PyTorch Geometric.
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and 6.3.2. The provided operators mostly differ in the input they expect or the way
the MEssaGe computation is performed. For example, some operators utilize attention
or can incorporate one-dimensional or multi-dimensional edge features, while others
are especially designed for learning expressive node representations that are able to
distinguish structural graph properties. In addition, some operators are designed for
operating on geometric input data, such as point clouds or meshes.

PyG also supports graph-level outputs as opposed to node-level outputs by provid-
ing a variety of Reapourt functions such as global add, mean or max pooling, cf. Sec-
tion 3.2.3. It additionally offers more sophisticated methods as well, such as, e.g.,
set-to-set pooling (Vinyals et al., 2016) or sort-based pooling (Zhang et al., 2018). To
further extract hierarchical information and to allow for deeper GNN models, various
hierarchical pooling approaches can be applied in a spatial or data-dependent man-
ner, either being non-trainable or trainable. In general, pooling operators follow a
unified and modular framework as well, in which (1) nodes are first selected to map
to one (or more) “supernodes”, (2) supernodes are reduced to singletons, (3) and
reduced nodes are then newly connected to each other (Grattarola et al., 2021).

In addition to these low-level operators, we provide high-level implementations and
models of, .., maximizing mutual information (Velickovi¢ et al., 2019), auto-encoding
graphs (Kipf & Welling, 2016; Pan et al., 2018), aggregating Jumping Knowledge (Xu
et al., 2018), or predicting temporal events in knowledge graphs (Jin et al., 2020). Ad-
ditional examples are provided for unsupervised and self-supervised learning on
graphs, few/zero-shot learning, pre-training, and explainability. Overall, our pre-
defined GNN models incorporate multiple message passing layers, and are ready-
to-be-used to make accurate predictions on graphs. Unlike simple stacking of GNN
layers, these models may provide dedicated solutions for specific tasks, such as for
the task of learning on molecular graphs, and may involve important pre-processing
steps, additional learnable parameters, or graph coarsening procedures.

PyG further provides a rich set of neural network operators that are commonly used
in many GNN models. They follow an extensible design: It is easy to apply these
operators and graph utilities to existing GNN layers to further enhance model per-
formance. Lastly, PyG has integrated a diverse set of scalability techniques stemming
from the fields of node-wise, layer-wise and subgraph-wise sampling, cf. Section 5.2.
In general, these techniques follow a unified interface, and can be thus directly used
as plug-and-play to scale any PyG model to larger graphs. All scalability techniques
are implemented via low-level C++ routines to make them as efficient as possible.

We provide a consistent data format and an easy-to-use interface for the creation and
processing of datasets, both for large datasets and for datasets that can be kept in
memory during training. In order to create new datasets, users just need to read or
download their given raw data and convert it to the PyG data format in the respective
process method. In addition, datasets can be modified by the usage of transforms,
which take in individual graphs and return a transformed version, e.g., for data aug-
mentation, for enhancing node features with synthetic structural graph properties
(Cai & Wang, 2018), to automatically generate graphs from point clouds or to sample
point clouds from meshes (Fey & Lenssen, 2019).

Notably, PyG already integrates a rich set of over 300 common benchmark datasets of-
ten found in literature. All datasets are automatically downloaded and processed on
first instantiation. For example, we provide the complete set of graphs from the TU-
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import torch
from torch_geometric.nn import GCNConv
from torch_geometric.datasets import Planetoid

class GCN(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super () .__init__Q)
self.convl = GCNConv(in_channels, hidden_channels)
self.conv2 = GCNConv(hidden_channels, out_channels)

def forward(self, x, edge_index):
# x: Node feature matriz of shape [num_nodes, %n_channels]
# edge_indez: Graph connectivity matriz of shape [2, num_edges]
hl = self.convl(x, edge_index).relu()
h2 = self.conv2(hl, edge_index)
return h2

model = GCN(dataset.num_features, 16, dataset.num_classes).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

dataset = Planetoid(name="Cora", transform=T.NormalizeFeatures())
data = dataset[0].cuda()

pred = model(data.x, data.edge_index)
loss = F.cross_entropy(pred[data.train_mask], data.y[data.train_mask])

loss.backward ()
optimizer.step()

Listing 1: High-level creation of a GCN model within PyG. The model is trained in
a semi-supervised fashion to classify academic papers in a citation graph.

Dataset, Open Graph Benchmark (OGB) and MoleculeNet benchmark suites (Morris
et al., 2020a; Hu et al., 2020a; Wu ef al., 2018), commonly used citation graphs (Sen
et al., 2008; Yang et al., 2016; Bojchevski & Gilinnemann, 2018), or various mesh and
point cloud datasets (Bogo et al., 2014; Wu et al., 2015; Chang et al., 2015; Ranjan et al.,
2018; Guerrero et al., 2018).

6.3.1.2 High-level Usage. We highlight the ease of creating a GNN model in PyG
and training it in a semi-supervised fashion in order to classify academic papers in a
citation graph, cf. Listing 1. For this, we create a simple two-layer GCN model (Kipf &
Welling, 2017) by making use of the pre-defined GCNConv, and instantiate it by specify-
ing the number of input, hidden and output features. Here, the GCN model’s forward
computation expects a node feature matrix and a graph connectivity matrix as input,
cf. Section 6.3.2. We further move all model state to the GPU and pass its parameters to
the Apam optimizer (Kingma & Ba, 2015). Afterwards, we load the Cora dataset from
the Planetoid benchmark suite (Yang et al., 2016), normalize its node features via a
custom transformation (NormalizeFeatures), and move its data to the GPU as well.
We now optimize model parameters using standard PyTorch training: (1) We run
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Figure 6.2: Computation scheme of a GNN layer in PyG. PyG leverages gather and
scatter methods based on edge indices I for performing alternating com-
putations in node-parallel and edge-parallel space (Fey & Lenssen, 2019).

the forward computation on the full graph, (2) compute the negative log-likelihood
loss based on the ground-truth training node labels, (3) accumulate the gradients of
model parameters via backpropagation, and (4) update parameters via a variant of
stochastic gradient descent.

6.3.2 A Unified Interface for Graph Neural Networks

PyG represents a graph G = (X, (I, E)) by a node feature matrix X € RV*F of N
nodes holding F-dimensional node features, and a sparse adjacency tuple (I, E) of
E edges, where I € N>*¥ encodes edge indices in COOrdinate (COO) format and
E € RFXP (optionally) holds D-dimensional edge features.

6.3.2.1 Message Passing. PyG provides the user with a general MessagePassing in-
terface to allow for rapid and clean prototyping of new research ideas. In particular,
the MessagePassing interface allows to define arbitrary message passing GNN lay-
ers as defined in Equation (3.5) by decomposing MessaGe, UpDATE and aggregative
functions @ into customizable user defined functions. In order to use, users only
need to define the methods message, and update, as well as choosing an appropriate
aggregation scheme @@ C {add,mean,min, max, mul, std}.

Although working on irregular structured input, this scheme can be heavily acceler-
ated by the GPU, cf. Figure 6.2. In general, the message passing GNN framework of
Equation (3.5) provides two dimensions of parallelization: the edge-parallel space for
computing the MEessaGe function, i.e. computing a message per edge, and the node-
parallel space to compute the Upparte function, i.e. updating the representation per
node, which are performed alternating in a general GNN pipeline. We can easily
switch between both spaces via efficient pseudo-parallel scatter_€ and gather op-
erations. In particular, a gather operation performs a parallel read using E processing
cores on the GPU, where each core operates on a singleedge e € {1,..., E'} thatreads
the features of source and destination nodes X [I[1,€],:] and X [I[2,€],:] from mem-
ory, respectively. Similarly, a scatter_€P operation performs a parallel aggregation
using E processing cores based on an atomic reduce operation €, e.g., taking the sum
or the maximum. Given edge-level messages M € RF*¥ and a neutrally initialized
output matrix X’ € R¥*¥ as input, each core e € {1,..., E} combines the message
M{j,:] with the value at X'[I[2,j],:], thus performing a parallel neighborhood ag-
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gregation. Notably, multiple cores can access the same node-level index concurrently,
which requires that the aggregation is performed using atomic operations. We refer
to scatter_add or scatter_max to denote scatter operations using sum or maximum
atomic operations, respectively. For scatter_mean, we decompose computation into
two scatter_add aggregations, which sum up and count all values pointing to the
same destination index, respectively, followed by a node-level normalization. In to-
tal, the full computation scheme has a parallel time complexity of O(1) using O(E)
processing cores, assuming that scatter_ has constant time complexity (Fey et al.,
2018). Noteworthy, scatter_€P is a non-deterministic operation, since the order of
parallel operations to the same index is undetermined. For floating-point values, this
results in a source of variance in the result. More sophisticated GPU aggregation pro-
cedures counteract non-determinism by requiring sorted inputs, i.e. indices pointing
to the same destination are grouped contiguously in memory;, cf. Section 6.3.3. How-
ever, we argue that such induced non-determinism is negligible (and may potentially
even boost performance), as the order of neighbors is already undetermined to begin
with. Our implementation of parallel scatter operations using custom reductions is
open-sourced on GitHub®, comes pre-build for all major OS/Python/PyTorch/CUDA
combinations, and supports broadcasting capabilities, varying data types, traceability,
and both CPU/GPU computation with corresponding backward implementations.

In contrast to alternative implementations via sparse matrix multiplications, the usage
of gather and scatter operations proves to be advantageous for low-degree graphs and
non-contiguous indices (Fey & Lenssen, 2019). Furthermore, it results in the most
general implementation of message passing since it easily allows for the integration
of central node and multi-dimensional edge features during edge-parallel message
computation. However, it will necessarily materialize all messages in the edge-parallel
space, leading to a total memory consumption of O(E), which might be impractical
for some applications. We will look into advanced optimizations in order to reduce
the memory footprint of message passing in Section 6.3.3.

The PyG MessagePassing interface provides an intuitive way to write generic GNN
layer implementations by abstracting away the low-level details of internal scatter and
gather usages. As an example, Listing 2 illustrates the implementation of the edge-
convolutional layer (Wang ef al., 2019¢)

R = max MLPY ([A{"D, AU — R(VT). (6.1)
weN (5)

Here, we first specify which aggregation scheme to use (aggr="max"). In the for-

ward computation graph of the layer, we then start to perform message passing via

propagate (), which takes care of automatically gathering node-level features to the

edge-parallel space, computing edge-level messages in parallel inside message (), and

automatically scattering them back to the node-parallel space via scatter max.

6.3.2.2 Mini-batch Handling. The PyG framework supports mini-batch creation for
operating both on many small and single giant graphs. When operating on a dataset
that holds multiple graph instances, the creation of mini-batches is crucial for letting
the training of a deep learning model scale to huge amounts of data. Instead of pro-
cessing examples one-by-one, a mini-batch groups a set of examples into a unified rep-
resentation where it can efficiently be processed in parallel. In the image or language

6torch-scatter: https://github.com/rustyls/pytorch_scatter (last access: August 25, 2022)
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import torch
from torch.nn import Sequential, Linear, ReLU, BatchNormld
from torch_geometric.nn import MessagePassing

class EdgeConv(MessagePassing) :
def __init__(self, in_channels, out_channels):
super().__init__(aggr="max") # "Maz" aggregation.

self .MLP = Sequential(
Linear(2 * in_channels, out_channels),
BatchNormid(out_channels),
ReLUQ),
Linear (out_channels, out_channels),

)

def forward(self, h, edge_index):
# h: Node feature matriz of shape [num_nodes, in_channels]
# edge_index: Graph connectivity matriz of shape [2, num_edges]
h = self.propagate(edge_index, h=h)
return h # shape [num_nodes, out_channels]

def message(self, h_v, h_w):
# h_v: Destination node features of shape [num_edges, tin_channels]
# h_w: Source node features of shape [num_edges, in_channels]
msg = torch.cat([h_v, h_w - h_v], dim=1)
msg = self .MLP(msg)
return msg # shape [num_edges, out_channels]

Listing 2: PyG message passing implementation of the edge-convolutional layer
(Wang et al., 2019e) via custom message and aggregation definitions.
Node-level features are automatically gathered to edge-parallel space by
appending *_v and *_w suffices to the original attribute name, denoting des-
tination and source node features, respectively.

domain, this procedure is typically achieved by rescaling or padding each example
to equally-sized shapes, and group them in a dedicated batch dimension afterwards.
However, in the graph domain, these two approaches are either not feasible or waste
huge amounts of GPU memory, as graphs may highly vary in their number of nodes
and edges across examples. PyG opts for another approach to achieve parallelization
across a number of examples. In general, our mini-batching strategy behaves simi-
lar to a nested tensor implementation’ with off-the-shelf support for sparse matrices,
which is, however, not yet available in any deep learning framework up to this date.
Here, adjacency matrices are grouped by merging them into a single (sparse) block-
diagonal adjacency matrix (representing a giant graph that holds multiple isolated
subgraphs), and concatenating node-level feature matrices and labels in the node di-
mension, cf. Figure 6.3. This procedure provides crucial advantages over alternative
batching formulations:

"nestedtensor: https://github.com/pytorch/nestedtensor (last access: August 25, 2022)
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Figure 6.3: Illustrative mini-batch creation of multiple graphs in PyG. Adjacency
matrices are merged into a single (sparse) block-diagonal adjacency ma-
trix, and node-level features are concatenated in the node dimension.
Message passing GNNs can then be applied without modification, since
no messages will be exchanged between disconnected subgraphs.

GNNg

e Message passing GNN operators can be applied without modification, since no
messages will be exchanged between disconnected subgraphs.

e There is no memory or computational overhead since adjacency matrices are
saved in a sparse fashion holding only non-zero enries.

e It naturally supports examples of varying size.

PyG takes care of batching multiple graph instances into a single giant graph within
the DataLoader class such that edge indices are automatically incremented by the
cumulated number of nodes of all previously processed graphs in the mini-batch. In
addition, it will generate a node-level assignment vector

b=1[0,...,0,1,...,1,...,B—1,...,B—1] e NV (6.2)

that maps each node to its respective graph in the mini-batch, with B denoting the
batch size. This assignment vector ensures that nodes in different graphs are well
distinguishable from each other, and finds its use-cases in, e.g., global readout opera-
tors or hierarchical pooling models. Pooling operators can then again make usage of
scatter_€D operations to aggregate node features according to b.

PyG further provides unified interfaces to scale GNN training to single giant graphs,
such that GNN models can be easily validated on small-scale graphs, and then applied
to large-scale graphs with minimal requirements of user intervention. In particular,
PyG aims to disentangle the underlying GNN implementation from the utilized scal-
ability technique (following the design principles of our GAS framework (Fey et al.,
2021)), which is not the case in alternative deep graph libraries (Wang et al., 2019b).
Listing 3 illustrates the process of scaling arbitrary GNN models via PyG. Here, com-
monly encountered CUDA out-of-memory errors on large-scale graphs are avoided
by sampling or partitioning the graph into mini-batches, and optimizing model pa-
rameters in a training loop. The large number of scalability techniques available in
PyG (Hamilton ef al., 2017; Chiang et al., 2019; Zeng et al., 2020b) lets the user easily
detect the most suitable technique for the given down-stream task.
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def train(data): # Full-batch training
pred = model(data.x, data.edge_index)
loss = F.cross_entropy(pred, data.y)
# >>> RuntimeError: CUDA out-of-memory

# Choose a scalability technique:

loader = NeighborLoader(data, num_neighbors=[10, 10], batch_size=128)
loader = ClusterLoader(data, num_parts=1280, batch_size=128)

loader = GraphSAINTLoader(data, batch_size=128)

def train(loader): # Minti-batch training
for data in loader:
pred = model(data.x, data.edge_index)
loss = F.cross_entropy(pred, data.y)

Listing 3: Illustration of applying scalability techniques to any PyG GNN model,
requiring only minimal user intervention. CUDA out-of-memory errors
of full-batch training are avoided by sampling or partitioning the graph into
mini-batches, and optimizing model parameters in a training loop.

6.3.3 Efficient Sparse Tensor Arithmetic

PyG leverages custom sparse tensor arithmetics (both on CPU and GPU) whenever
such functionality can not be achieved by a sequence of vectorized operations in an
efficient and high-throughput manner. This usually relates to many things in a given
Graph Neural Network pipeline, ranging from breadth-first sampling (neighborhood
sampling) and depth-first sampling (random walk sampling), to general sparse ag-
gregation procedures such as scatter, segment or general sparse matrix multiplications
(G-SpMMs), to efficient pooling and grouping algorithms. For all these use-cases,
PyG has out-sourced their respective implementations to one of its three extension
packages (cf. Section 6.3.1), and follows best-practices regarding broadcasting capa-
bilities and varying data type support (e.g., half-precision), and implements both for-
ward and backward implementations whenever applicable.

In this chapter, we will take a closer look at how PyG achieves high GPU throughput
via the CUDA parallel computing architecture (Lindholm et al., 2008; Nickolls et al.,
2008). A CUDA program consists of a host program that runs on the CPU, sets up the
data and transfers it to and from the GPU, and a kernel that executes the main process-
ing task on the GPU itself (Filippone et al., 2017). In particular, GPUs utilize a Single
Instruction Multiple Data (SIMD) architecture, such that the same set of instructions is
scheduled across a massive collection of parallel threads. These threads are organized
into blocks, in which they can share on-chip low-latency memory and synchronize
with hardware barrier instructions (Bell & Garland, 2009). Each thread in a block is
also assigned to a warp (32 threads per warp), in which a single instruction is exe-
cuted at a time across all its threads. Although execution divergence of threads inside
the same warp is possible, it is substantially more efficient for threads in a warp to
follow the same execution path (Bell & Garland, 2009). Furthermore, threads inside
a warp can heavily benefit from coalesced memory accesses, such that each thread
reads from or writes to the same region in GPU memory, thus avoiding memory di-
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Figure 6.4: Various sparse matrix representations for a simple example matrix.

vergence. Non-coalesced memory accesses reduces bandwidth efficiency and lead to
memory-bound kernel execution, and hence should be avoided at all costs (Bell &
Garland, 2009). As a result, the main challenge for sparse tensor arithmetic on GPUs
stems from the mismatch between its SIMD architecture and the irregular data access
pattern of sparse matrices, requiring effective solutions that successfully prevent both
execution and memory divergence. While most of the techniques presented in the fol-
lowing are inherited from previous works, they have been successfully implemented
in a general and unified way to fit into the context of Graph Representation Learning
within the PyTorch Geometric library.

6.3.3.1 Sparse Matrix Storage Formats. A sparse matrix denotes a matrix with a suf-
ficient number of zero valued entries that it pays to take advantage of them (Davis,
2007), i.e. E < N x N, e.g., by avoiding explicit storage and faster processing. In
fact, adjacency matrices of graphs are typically sparse by nature, and hence require
sparse compute processing as well. While dense matrices are ultimately stored in a
one-dimensional array (using column-major or row-major ordering) and use a linear
mapping to efficiently map index pairs to unique memory locations, such a mapping
is destroyed in sparse matrices at the cost of minimizing storage requirements (Filip-
poneetal.,, 2017). Hence, many sparse matrix storage formats have been invented over
the years, each one with its own trade-off regarding storage requirements, usability
and processing capabilities, cf. Figure 6.4.

The COOrdinate (COO) format utilizes the most simple storage scheme, defined by
three distinct vectors holding the row indices, column indices and the explicit values
of non-zero valued entries, respectively. As such, it is able to reduce storage costs from
N x N to 3E. The COO format is typically used to construct sparse matrices, as there
is no underlying assumption on its data layout, e.g., new non-zero entries can simply
be added by appending them to each of the three vectors. However, such missing
assumption limits its applicability for sparse matrix processing, e.g., finding one of its
elements requires O(E) look-ups at worst. Notably, full-matrix GPU processing with
COO format can still be performed efficiently via atomic operations (cf. Section 6.3.2),
and is as such the default format in the PyG library, especially due to its ease-of-use.
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Algorithm 7 scatter_p kernel (COO reduction)

Require: Messages M € R¥*¥, Column indices ¢ € N¥, Output X’ € RNV*F
1: e < threadldx / F
2: f < threadIdx ’% F
3: atomic_P(X'[c[e], f], Me, f]) Coalesced read and write

Algorithm 8 segment_€P kernel (CSC/CSR reduction)

Require: Messages M € RP*F Boundary indices p € NV*!, Output X’ € RV*F
1: n < threadIdx / F

2: f <+ threadIdx % F

3 v+id Initialize with the identity of
4: for e + p[n] to p[n + 1] do

5 wv<«v P Mlef] Coalesced read
6: end for

7. X'[n, f] < v Coalesced write

The Compressed Sparse Row (CSR) and Compressed Sparse Column (CSC) storages mit-
igate slow indexing by relying on row-major and column-major ordering of indices,
respectively. Their names are based on the fact that index information is compressed
in such a way that only boundary indices of rows and columns are stored, respectively,
which reduces storage costs further to 2E + N + 1. The fast access to boundary offsets
and row-major/column-major ordering requirements yield the advantage of constant
time look-ups of direct neighbors, which makes them the most popular formats for
sparse matrix processing. However, modifying CSR or CSC matrices in a later stage
can get expensive, as elements need to be inserted at dedicated indices, and bound-
aries have to be modified accordingly.

COOQO, CSR and CSC denote “general-purpose” data formats, while more specialized
formats for dedicated sparse matrix layouts are available as well, i.e. the diagonal (DIA),
ELLPACK, Jagged Diagonals (JAD) or block-based (BSR) formats (Filippone et al., 2017).
However, they are only applicable in certain scenarios, e.g., they require nearly uni-
form degree distributions or dense sub-matrix separation. Therefore, they are not
further considered in the remainder of this section.

6.3.3.2 Parallel Reductions. Different reduction schemes of edge-level messages are
applicable in a GNN pipeline, dependent on the given sparse matrix storage layout.
For COO matrices, an edge-level message matrix M € R*F can be reduced to a
node-level output matrix by utilizing the scatter_€D kernel, c¢f. Section 6.3.2. Here,
scatter_@P leverages E x F threads and performs reduction via atomic operations
as illustrated in the pseudo CUDA kernel implementation in Algorithm 7. Notably,
in case the number of features F' is divisible by 32 (the number of threads in a warp),
scatter_€p utilizes coalesced memory accesses both for M and the output matrix
X', thus completely avoiding memory divergence.

To counteract the non-determinism of scatter_&, parallel reductions can also be per-
formed via the CSC/CSR format, leading to the formulation of a segment_P kernel,
cf. Algorithm 8. segment_€D can leverage the fact that the elements to reduce are
grouped contiguously in memory, as denoted by the boundary vector p € NV*1,



144 CHAPTER 6. REALIZATION OF GRAPH NEURAL NETWORKS

N F F
D — A — D e——
War
P D N = N o —
Thread A X X/

Figure 6.5: Memory access pattern of G-SpMM. Threads inside a warp operate on a
single row in A and a feature chunk in X to write a chunk of a single row
in X'. All accesses are performed in a coalesced manner.

While there exists a broad range of literature on performing segment reductions of
vectors by utilizing efficient intra-warp communication (Blelloch ef al., 1993, 1994; Sen-
gupta et al., 2007; Bell & Garland, 2009), these kernels are not applicable in a multi-
dimensional reduction scenario due to the row-major storage format of the edge-
level message matrix M. Furthermore, we found the usage of shared memory/syn-
chronization barriers unnecessary and overly complicated to implement an efficient
segment_EP kernel. As such, our kernel simply leverages IV x F’ threads such that each
thread processes exactly one row. Due to the deterministic ordering of column indices,
global determinism is achieved as well. Importantly, both execution and memory di-
vergence is fully eliminated in case the number of features F' is divisible by 32, as each
thread inside a warp will operate on the same row and therefore takes the same exe-
cution path. We can utilize the segment_¢p kernel on either CSC and CSR formats to
denote source node aggregations and destination node aggregations, respectively.

6.3.3.3 Memory-Efficient Aggregations via G-SpMM. While the unified gather-
scatter formulation of PyG generalizes to a lot of useful GNN instantiations (Sec-
tion 6.3.2), it has the disadvantage of explicitly materializing edge-level message vec-
tors. Overall, this results in a total memory footprint of O(E), which might be im-
practical for applications on large or dense graphs. Luckily, not all GNNs need to
necessarily materialize edge-level tensors, but can instead be implemented by kernel
fusion, reducing memory requirements to O(N). For example, when MEssace simply
returns the source node’s features and € is defined to be the sum operator, the over-
all computation is equivalent to a sparse matrix multiplication (Kipf & Welling, 2017;
Hamilton et al., 2017; Veli¢kovié et al., 2018; Xu et al., 2019c; Wang et al., 2019b). As a
general rule of thumb, this holds true for GNNs that do not make use of central node
features or multi-dimensional edge features during message propagation, resulting
in a simplification of message passing that makes small trades in accuracy for a large
boost in efficiency (Wu et al., 2019a; Tailor et al., 2021).

PyG allows for fused message passing computation in a memory-efficient manner via
its SparseTensor class and its message_and_aggregate directive. The SparseTensor
class can represent sparse matrices seamlessly in either COO/CSR/CSC storage for-
mat by utilizing caching mechanics, and integrates a simple interface for general sparse
matrix multiplications (G-SpMMs) of the form AX (Huang et al., 2020), in which ma-
trix multiplications are generalized such that they allow for customizable reduction
operators @ C {add,mean,min,max,mul}. Our G-SpMM kernel is implemented by
following the design principles of Yang et al. (2018), since the vendor-shipped cuS-
PARSE library (Naumov et al., 2010) does not provide support for general sparse ma-
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Algorithm 9 G-SpMM kernel (Yang et al., 2018)

Require: Row boundary indices p € NV*1, Column indices ¢ € N¥, Weights w € R”,
Matrix X € RV*F, Output X’ € RV*F

1: n < threadIdx.x / 32 The row index
2: { 4+ threadIdx.x % 32 The lane index inside the thread’s warp
3: f + threadIdx.y * 32 The column offset of the feature chunk
4: v +id Initialize with the identity of

5. cols[32],weights[32] « 0
6: for e < p[n] to p[n + 1] by 32 do

7. c+cle+ /] Coalesced read
8  w<+ wle+/] Coalesced read
9: fori< 1to32do Broadcast columns/weights to each thread in the warp
10: colsli] < shuffle(c,i)
11: weightsli] « shuffle(w,1i)

12: end for
13:  fori <« 1to32do

14: v v P (weights[i] * X [cols[i], f + £]) Coalesced read
15:  end for

16: end for

17: X'[n, f+ 4] v Coalesced write

trix multiplications. It expects CSR sparse matrices and row-major ordering of dense
matrices as input. For backpropagation, we simply transpose the sparse matrix (using
its cached CSC representation), and perform G-SpMM once again.

Here, each row in A is assigned to a warp, which processes a row-wise chunk of 32 fea-
tures in X, cf. Figure 6.5 and Algorithm 9. This leads to a total of 32N - [ F//32] threads,
executed in two dimensions: the row dimension (32N), and the feature dimension
([F/32]). For a given row in A and a feature chunk in X, a warp first accesses its col-
umn indices and values in A in a coalesced manner, which are then shared across all
threads in a warp via intra-warp communication. Afterwards, each warp iterates over
its locally shared column indices, and performs a row-major coalesced read into the
feature chunk in X. Each thread aggregates its intermediate values according to P,
and finally writes its output to X’ in a coalesced manner. Notably, this memory access
pattern achieves coalesced accesses for both input matrices and output matrices, and
is crucial for reaching excellent performance (Yang et al., 2018). Its key component is
a round of 32 broadcasts (using the shuffle warp intrinsic) by each thread to inform
all other threads in the warp. This is required as otherwise each thread would be re-
sponsible for loading its own row, which would result in uncoalesced accesses in A
(Yang et al., 2018).

6.3.3.4 Random Walk Sampling. Node embedding techniques (Perozzi et al., 2014;
Grover & Leskovec, 2016) rely on fast random walk samplers to embed nodes into low-
dimensional vectorial representations, cf. Section 2.2. In case the full graph structure
fits into GPU memory, we can leverage a dedicated CUDA kernel to achieve maximal
parallelism. Given a mini-batch of nodes b € N? as starting nodes, we parallelize
across band achieve full coalesced memory accesses by sequentially writing randomly
sampled neighbors into an output matrix W € NXXP where L denotes the length



146 CHAPTER 6. REALIZATION OF GRAPH NEURAL NETWORKS

Algorithm 10 Random walk kernel

Require: Row boundary indices p € NV*1, Column indices ¢ € N¥, Starting nodes
b € NB, Output W € NExB
n < b[threadIdx] Coalesced read
: for{ < 1to L do

r~Uu(0,1)

n < clp[n] + |- (p[n + 1] — p[n])]]

W ¢, threadldx] < n Coalesced write
end for

ARSI

of the random walk, cf. Algorithm 10. Notably, CSR format is required to allow for
random sampling of neighbors in O(1).

In the same spirit, we have integrated a biased breadth-first or depth-first sampler via
a rejection sampling strategy (Abraham, 2020) for implementing the Nope2Vec model
(Grover & Leskovec, 2016). However, while the general parallel computation scheme
across a mini-batch of nodes still holds, it might lead to unavoidable execution diver-
gence due to the nature of rejection sampling.

6.3.3.5 Parallel Graph Clustering. Efficient graph clustering and coarsening strate-
gies are required to allow GNNs to learn multi-scale representations, cf. Section 4.3.
Defferrard et al. (2016) propose to utilize the GracLus coarsening strategy (Karypis &
Kumar, 1998; Dhillon et al., 2007), which reduces the size of a graph by a factor of two
at each level, and therefore offers precise control on the coarsening and pooling sizes.
GracLus is a greedy clustering algorithm, which matches every unmatched node v
with one of its unmatched neighbors w such that an objective is maximized, e.g., the
local normalized cut A, ., (1/|N (v)| + 1/|N (w)|) (Defferrard et al., 2016). The match-
ing phase is repeated until all nodes have been successfully matched or until there
no longer exists an unmatched neighbor for any node. While Defferrard et al. (2016)
propose to compute the clustering phase in a CPU pre-processing step, we found this
to be undesirable as the neural network will only be able to explore a single matching,
although the GracLus strategy is inherently random, e.g., it depends on the process-
ing order of nodes. However, performing Gracrus clustering in an end-to-end fashion
requires an efficient GPU implementation, which is challenging, in particular due to
the serial nature of the algorithm.

PyG offers a dedicated CUDA kernel to perform Gracrus clustering based on the de-
sign principles introduced by Fagginger Auer & Bisseling (2011), which explicitly
avoids the need to consider nodes one-by-one. The CUDA kernel is based on a “pro-
pose” and “respond” strategy, which are run in an alternating fashion until all nodes
have been matched successfully, cf. Algorithms 11 and 12. For this, it keeps track
of node colorings (M, M) for unmatched nodes, which are used to propose to un-
matched neighbors of different color as potential matches. Nodes to which a proposal
has been made can then accept the proposal of a single neighbor in a second stage. At
the beginning, all nodes are initialized as either M or M nodes at random. The “pro-
pose” kernel parallelizes over all unmatched M nodes and propose to an unmatched

neighbor with the highest edge weight. If all neighbors have already been success-
fully matched, it will denote itself as a singleton cluster. The “respond” kernel then
responds to the proposal by parallelizing over all unmatched M nodes and matches
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Algorithm 11 Gracrus propose kernel (Fagginger Auer & Bisseling, 2011)

Require: Row boundary indices p € N¥*1, Column indices ¢ € N¥, Weights w € R?,
Proposal o € NV, Output 7 € ({M,m} UN)"
1: n < threadIdx
2: if w[n] = M then M nodes propose to M neighbors
3: Wmax < 0

4: dead < true

5. fore <+ p[n] to p[n+ 1] do

6: m <+ cle]

7: if w[m] = M and wle] > wmax then

8: on] < m Propose to M neighbor with highest weight
9: Wnax = We]

10: end if

11: if w[m] € {M, W} then dead + false end if

12 end for

13:  if dead then w[n] = n end if All neighbors are matched — singleton
14: end if

Algorithm 12 Gracrus respond kernel (Fagginger Auer & Bisseling, 2011)

Require: Row boundary indices p € NV¥*1, Column indices ¢ € N¥, Weights w € R?,
Proposal o € NV, Output = € ({M,m} UN)"
1: n < threadIdx

2: if w[n] = M then nodes respond to M neighbors
3 Mpest < 0

4: Wax < 0

5. dead < true

6: fore <+ p|n]top[n+1]do

7: m < cle]

8: if w[m] = M and o[m| = n and wle] > wpyax then

9: Mpest <— M Select best M neighbor that proposed to node n
10: Winax = We]

11: end if

12: if w[m] € {M, W} then dead + false end if

13:  end for
14:  if mpes; # () then

15: 7t [n] = min(n, Mpest)

16: T [Mpest] = mMin(n, Mpest)

17 end if

18:  if dead then w[n] = n end if All neighbors are matched — singleton
19: end if

itself to a M neighbor that has previously proposed to this specific node, based on the
highest edge weight among all proposals. After each iteration, all unmatched nodes
will once again receive a M or M color at random, and the kernel finishes computa-
tion if it can no longer assign any colors. As such, this kernel can naturally parallelize
greedy GracLus matching, in which conflicts in matching are resolved by only allow-
ing matches between nodes of different color.
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6.3.4 Heterogeneous Graph Learning

A large set of real-world datasets are stored as heterogeneous graphs (Section 2.1),
motivating the introduction of specialized functionality for them in PyTorch Geomet-
ric. For example, most graphs in the area of recommendation, such as social graphs,
are heterogeneous, as they store information about different types of entities and their
different types of relations.

Heterogeneous graphs G = (V, &, Ty, Tg) come with different types of information
attached to nodes and edges. Thus, a single node or edge feature tensor can not hold
all node or edge features of the whole graph, due to differences in type and dimen-
sionality. Instead, a set of types ¥y and X is specified for nodes and edges, respec-
tively, each holding its own data tensors. Specifically, PyTorch Geometric identifies
node types Xy via single strings and edge types X g via a triplet (source_node_type,
edge_type, destination node_type) of strings: the edge type identifier and the two
node types between which the edge type exists.

As a consequence of the different data structure, the message passing formulation
changes accordingly, allowing the computation of MEssaGe and Urpatke functions con-
ditioned on node and edge type (Schlichtkrull et al., 2018). To let a GNN learn node
and edge type dependent representations, one can utilize the same GNN operator

fy) such that only its parametrization 6 changes according to type, cf. Section 3.2.4
and Equation (3.20):

RO = 37 Jo) (ARG sw e Mo @)]). (63)

re€EXgE

Hence, heterogeneous graph learning partitions GNN execution into individual (but
potentially parallelizable) message passing flows in bipartite graphs, followed by a des-
tination node type-wise aggregation.

In contrast to the application of GNN layers in homogeneous graphs (Section 6.3.1),
heterogeneous graph learning involves keeping track of individual feature dimension-
alities and storing node-level /edge-level data for different types in temporary dictio-
naries. This makes heterogeneous GNN implementations messy and overly compli-
cated. PyG offers two major features to circumvent the aforementioned problems:

e Lazy initialization: Since the number of input features and thus the size of ten-
sors varies between different types, PyG provides lazy initialization function-
ality for all its supported GNN operators, in which model parameters are ini-
tialized only after the first call of forward propagation, dependent on the given
shapes it has encountered. This allows us to avoid calculating and keeping track
of all tensor sizes of the computation graph. Parameters are initialized lazily by
passing -1 to its expected input sizes.

e Model transformation: PyG provides the functionality to automatically convert
any PyG homogeneous GNN model to a model that now expects a heteroge-
neous graph as input. Specifically, the process takes an existing GNN model
and duplicates its MEessaGge and UppaTte functions to work on each edge type and
node type individually, respectively. As such, recent advances in Graph Rep-
resentation Learning can quickly be applied to heterogeneous graphs as well,
e.g., utilizing skip-connections, Jumping Knowledge or specialized normaliza-
tion techniques.
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import torch
from torch_geometric.nn import SAGEConv, to_hetero

class GNN(torch.nn.Module):
def __init__(self, hidden_channels, out_channels):
super () .__init__Q)
# Bipartite message passing with lazy initialization:
self.convl = SAGEConv((-1, -1), hidden_channels)
self.conv2 = SAGEConv((-1, -1), out_channels)

def forward(self, x, edge_index):
x = self.convl(x, edge_index).relu()
x = self.conv2(x, edge_index).relu()
return x

model = GNN(hidden_channels=64, out_channels=dataset.num_classes)

# Automatic conversion to a heterogeneous GNN:
model = to_hetero(model, data.metadata(), aggr="sum"

# The heterogeneous model now expects dictionaries
# of node features and graph structure as input:
pred = model(data.x_dict, data.edge_index_dict)

Listing 4: Automatic conversion of a homogeneous PyG GNN model to a heteroge-
neous one via the to_hetero routine. Message passing layers are expected
to perform message passing in bipartite graphs, and use lazy initialization
to account for varying input feature dimensionalities across node types.

Internally, the process of model transformation makes use of the torch. £x® package, a
toolkit for transforming PyTorch module instances, consisting of a symbolic tracer, an
intermediate and customizable computation graph representation, and a Python code
generator. Our heterogeneous model transformation routine then takes in a homoge-
neous GNN model and a metadata description (v, £ ) of the heterogeneous graph,
traces its original computation, and transforms it such that it now expects heteroge-
neous graphs in the form of node type and edge type dictionaries as input, cf. List-
ing 4. Figure 6.6 further illustrates an example of an original homogeneous GNN
computation graph and its newly obtained heterogeneous computation graph after
transformation. Overall, model transformation involves the following steps:

1. It first tracks for each module and operator in the computation graph whether
it performs node-parallel or edge-parallel computations.

2. It transforms and duplicates calls to modules and operators such that they op-
erate on single node type or edge type instances. Special treatment is neces-
sary for calls to MessagePassing modules, since they expect both node-level
and edge-level data as input, and produce node-level outputs. Here, the inputs
to a MessagePassing module are modified to take a tuple of source node and

8torch.fx: https://pytorch.org/docs/stable/fx.html (last access: August 25, 2022)
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Figure 6.6: Comparison between a computation graph of ahomogeneous GNN and
its heterogeneous computation graph after model transformation, ex-
pecting two node types and three edge types as input. All modules and
operators are first categorized into node-parallel or edge-parallel compu-
tation blocks, and replicated for each node type and edge type, respec-
tively. For MessagePassing modules, computation is modified to perform
bipartite message passing via disjunct source and destination node feature
representations. Afterwards, intermediate outputs pointing to the same
destination node type are aggregated.

destination node features for node-level data as input, and are called for each
edge type. Afterwards, an aggregation is performed to transform edge type-
wise outputs to node-level ones based on destination node type.

3. It erases all unused nodes in the computation graph.

4. Ititerates over each children module and duplicates it for each node type or edge
type, dependent on whether the given module performs node type-parallel or
edge-parallel computation. Parameters for each new module are reset.

Similar functionality is available for creating heterogeneous Graph Neural Networks
that utilize basis decomposition, cf. Section 3.2.4. Here, outputs of MEssAGE are re-
weighted based on learnable basis and relation-specific parameters, implemented via
a MEssacGke post-hook in the MessagePassing interface. Notably, with this scheme,
any PyG GNN model can be converted into a heterogeneous graph learning scenario,
independent of its original complexity.
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6.3.5 Additional Features

Besides its general support for efficient and flexible homogeneous and heterogeneous
graph learning, PyG provides further features to ease and enhance the training and
inference stages of a general GNN pipeline:

e TorchScript support: TorchScript is a way to create serializable and optimizable
models from PyTorch code, i.e. any TorchScript program can be saved from a
Python process and loaded in a process where there is no Python dependency,
such as in a standalone C++ program (Paszke et al., 2019). This makes it pos-
sible to train models in an experimentation-centric setting directly in Python,
while exporting trained models to a production environment where Python pro-
grams may be disadvantageous, e.g., for performance and multi-threading rea-
sons. TorchScript achieves this by statically analyzing a given Python module,
and converting it into an intermediate representation in which it can be further
optimized (e.g., via kernel fusion) and deployed at scale, without the necessity
of switching frameworks and without the risk of model divergence.

Since PyG follows a Pythonic and experimentation-centric interface to allow for
the definition of almost any GNN operator, it exploits a number of features that
are not available in a regular TorchScript program. As such, PyG achieves Torch-
Script serialization by dynamically re-building user-specified MessagePassing
implementations, in which it will statically infer all variable types of MEssAGE
and Uppate functions ahead of time, and turn it into a specialized implemen-
tation that makes use of those definitions by default instead of inferring them
during execution only.

Specifically, we used PyG’s TorchScript support to deploy GNN models at scale
at CERN for the task of high energy particle reconstruction (presented at the Py-
Torch Developer Day 2020”). Here, PyG’s TorchScript integration avoids system
inefficencies and helps to keep up with the compute demand of processing ex-
abytes of highly structured data per year, with thousands of particles per event
to identify.

e GraphGym manager: PyG integrates the GraphGym manager (You ef al., 2020),
a platform for designing and evaluating GNNs with ease. Specifically, Graph-
Gym lets users reproduce GNN experiments, is able to launch and analyze thou-
sands of different GNN configurations, and is customizable by registering new
modules to a GNN learning pipeline. It provides a highly modularized pipeline
for data loading and splitting routines, GNN implementations, tasks (node-
level, edge-level or graph-level) and evaluation protocols, fully described by a
configuration file. On top of it, it provides a scalable experiment management,
i.e. to launch thousands of GNN experiments in parallel and to auto-generate ex-
periment analyses across random seeds and different hyperparameter settings.

e PyTorch ecosystem integration: The framework specificity of PyG allows it to fit
nicely into the PyTorch ecosystem!’. For example, PyG provides out-of-the-box
integration with PyTorch Lightning (Falcon et al., 2019) for distributed train-
ing or mixed-precision training. In particular, the seamless combination of both

Lindsey Gray and Matthias Fey: Graph Convolutional Operators in the PyTorch JIT: https://wuw.
youtube . com/watch?v=4swsvOLzL_A (last access: August 25, 2022)
10PyTorch ecosystem: https://pytorch.org/ecosystem (latest access: August 25, 2022)
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libraries heavily simplifies the tasks of scaling GNN models up, i.e. only the
number of GPUs and the accelerator type have to be defined to go from single-
GPU to multi-GPU training. Furthermore, PyG provides seamless integration
with Captum (Kokhlikyan et al., 2019), a library for interpreting and explaining
PyTorch models, to expand explainability analysis to GNN models as well.

o Inference optimizations: Furthermore, PyG has started to adopt specialized
GNN inference optimization strategies, e.g., via a feature decomposition strategy
(Zhou et al., 2021). Here, message and aggregation computation is performed
on column-major feature chunks by decomposing the dimension of feature vec-
tors. This scheme leads to improved data re-use of feature vectors through better
cache statistics while not harming model performance of common GNNs.

Utilizing these advanced features can greatly accelerate training and inference stages
of a GNN pipeline, both for academic and industry use-cases.

6.4 PyGAS: Auto-Scaling Graph Neural Networks

The PyTorch Geometric AutoScale (PyGAS) framework denotes the practical realization
of our GNNAutoScale (GAS) approach and allows to auto-scale any GNN model to
large-scale graphs while maintaining the properties and power of the original GNN
(Fey et al., 2021), i.e. it can naturally operate on all edges included in the local neigh-
borhood around each node without the necessity of sub-sampling or non-trainable
propagations, cf. Section 5.3. PyGAS condenses GAS and its theoretical findings into
a unified tool, making it easy to convert common and custom GNN models into their
scalable variants while requiring orders of magnitude less GPU memory. It is build
upon PyTorch (Paszke et al., 2019) and the PyTorch Geometric library (Fey & Lenssen,
2019), and therefore immediately inherits the application of recent advancements
in Graph Representation Learning and makes them applicable for large-scale graph
learning, cf. Section 6.3.

PyGAS scales the training and inference stages of a GNN by pruning its original com-
putation graph, and substituting out-of-mini-batch information from a detached his-
tory storage located in CPU memory. Overall, PyGAS provides an easy-to-use inter-
face to convert common and custom GNN models from PyTorch Geometric into their
scalable variants. In addition, it provides a fully deterministic test bed for evaluating
custom GNN models on larger graphs. PyGAS and its complete benchmark suite are
fully open-sourced on GitHub!!.

To highlight its ease-of-use, we showcase the necessary changes to convert a com-
mon GCN architecture (Kipf & Welling, 2017) implemented in PyG to its correspond-
ing scalable version, cf. Figure 6.7. In particular, the GCN model now inherits from
ScalableGNN, which takes care of creating all historical embeddings of all layers (ac-
cessible via self.histories) and provides an efficient history access pattern via the
push_and_pull () routine. The additional n_id input argument is used to map the local
node indices of a mini-batch to the global node indices, which allows for pushing and
pulling local node embeddings to and from the global history storage. Notably, model

PyGAS: https://github.com/rustyls/pyg_autoscale (last access: August 25, 2022)
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class GCN(Module) : class GCN(ScalableGNN) :
def __init__(self, dim, num_layers) : def __init__(self, num_nodes, dim, num_layers):
super () .__init__Q) super().__init__(num_nodes, dim, num_layers)
self.convs = ModuleList() self.convs = ModuleList()
for _ in range(num_layers): for _ in range(num_layers):
conv = GCNConv(dim, dim) conv = GCNConv(dim, dim)
self.convs.append(conv) self.convs.append(conv)
def forward(self, x, edge_index): def forward(self, x, edge_index, n_id):
for conv in self.convs[:-1]: for i, conv, in enumerate(self.convs[:-1]):
x = conv(x, edge_index).relu() x = conv(x, edge_index).relu()

history = self.histories[il]
x = self.push_and_pull (history, x, n_id)
return self.convs[-1] (x, edge_index) return self.convs[-1](x, edge_index)

(a) PyG implementation (b) PyGAS implementation

Figure 6.7: Comparison between a (a) PyG full-batch GCN and (b) a PyGAS mini-
batch GCN implementation. Only minimal changes are required to auto-
scale GCN (or any other GNN model) to large graphs (Fey et al., 2021).

transformation into ScalableGNN variants and support for heterogeneous graphs is
applicable as well, but is left for future work.

Our GAS framework accesses histories frequently to account for any data outside of
the current mini-batch, i.e. in every GNN layer. As such, naively reading from and
writing to histories can quickly cause a major I/O bottleneck, as actual GPU work has
to wait until memory transfers from and to the GPU are complete, leading to the GPU
being idle most of the time. PyGAS identifies two major causes of this phenomenon:
(1) the serial execution of memory transfers and GNN computation, and (2) the fre-
quent random accesses of node features in the global CPU history storage.

PyGAS resolves the first issue by optimizing pulling from and pushing to histories via
non-blocking device transfers, cf. Figure 6.8. Specifically, it immediately starts pulling
historical embeddings for each layer asynchronously at the beginning of each opti-
mization step, which ensures that GPUs do not run idle while waiting for memory
transfers to complete. In particular, a separate worker thread gathers historical infor-
mation into one of multiple pinned CPU memory buffers (denoted by PuLr), from
where it can be transfered to the GPU via the usage of CUDA streams without block-
ing any CPU or GPU execution. Synchronization is then performed by synchronizing
the respective CUDA stream just before inputting the transferred data into the respec-
tive GNN layer. The same strategy is applied for pushing information to the history.
Considering that the device transfer of a set of historical features H “~1) is faster than

the execution of the GNN layer féz), this scheme does notlead to any runtime overhead
when leveraging historical embeddings and can approximately be twice as fast as its
serial non-overlapping counterpart. Notably, PyGAS implements this non-blocking
transfer scheme with custom C++/CUDA code to avoid Python’s global interpreter
lock (Fey et al., 2021).

In order to minimize the inter-connectivity between mini-batches, our GAS frame-
work makes use of graph clustering techniques, e.g., Metis (Karypis & Kumar, 1998;
Dhillon et al., 2007), to partition the graph into clusters in a pre-processing step. No-
tably, this technique does not only reduce the number of out-of-mini-batch nodes
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Figure 6.8: Illustrative runtime performances of a serial and concurrent mini-batch
execution in comparison to a full-batch GNN execution. In the full-
batch approach (a), all necessary data is first transferred to the device
via the Host2Device (H2D) engine, before GNN layers are executed in
serial inside the kernel engine. As depicted in (b), a serial mini-batch
execution suffers from an I/0 bottleneck, in particular because each ker-
nel engine has to wait for memory transfers to complete. The concurrent
mini-batch execution (c) avoids this problem by leveraging an additional
worker thread and overlapping data transfers, leading to two times per-
formance improvements in comparison to a serial execution, which is on
par with the standard full-batch approach (Fey et al., 2021).

(which reduces memory transfer costs in return), but also guarantees that nodes of
the same mini-batch are hold in a contiguous range in the CPU history storage. As a
result, pushing newly estimated information of mini-batch nodes now leads to coa-
lesced memory transfers, which significantly speeds up updates of historical embed-
dings and mitigates the second issue to some extend.

6.5 Evaluation

In this section, we perform an extensive benchmark analysis across a wide range of
GNN operators and datasets to showcase the generality and reproducibility of the
PyG framework (Section 6.5.1). We further evaluate the efficiency of GNN imple-
mentations, both for varying sparse tensor storage formats provided by PyG, as well
as regarding mini-batch processing within our PyGAS extension (Section 6.5.2).
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Cora CiteSeer PubMed
Fixed Random Fixed Random Fixed Random

Cheby 81.4+0.7 77.8+22 702+1.0 67.7+17 78.4+04 75.8+22
GCN 81.5+0.6 79.4+19 71.1+0.7 681+1.7 79.0+0.6 77.4+24
GAT 83.1+04 81.0+14 70.8+05 69.2+19 79.0+03 77.5+23
SGC 81.7+0.1 80.2+1.6 71.3+02 68.7+1.6 789+0.1 76.5+2.4
ARMA  82.8+0.6 80.7+1.4 723+1.1 689+1.6 788+03 77.7+26
APPNP 83.3+05 82.2+15 71.8+05 70.0+14 80.1+02 79.4+2.2

Method

Table 6.2: Mean accuracy and standard deviations of node classification within
PyG for both fixed and random splits (Fey & Lenssen, 2019).

6.5.1 A Uniform GNN Benchmark Analysis

We evaluate the correctness of a subset of the implemented methods in PyG by per-
forming a comprehensive comparative study in uniform evaluation scenarios (Fey
& Lenssen, 2019). For all experiments, we tried to follow the hyperparameter setup
of the respective papers as closely as possible. The individual experimental setups
can be derived and all experiments can be replicated from the code provided at our
GitHub repository.!?> Notably, new GNNs can be easily plugged into the benchmark,
allowing for a fair comparison across a wide range of common benchmark datasets.

6.5.1.1 Semi-supervised Node Classification. We start by performing semi-super-
vised node classification (cf. Table 6.2) on the small-scale citation graphs Cora, Cite-
Seer and PubMed (Sen et al., 2008; Yang et al., 2016) by reporting average accuracies
of (a) 100 runs for the fixed training/validation/test split from Kipf & Welling (2017),
and (b) 100 runs of randomly initialized training/validation/test splits as suggested
by Shchur et al. (2018), in which we additionally ensure uniform class distribution
on the training split. We evaluate on six GNN models that significantly advanced the
field of Graph Representation Learning: Cheby (Defferrard et al., 2016), GCN (Kipf &
Welling, 2017), GAT (Velickovié et al., 2018), SGC (Wu et al., 2019a), ARMA (Bianchi
et al., 2019) and APPNP (Klicpera ef al., 2019a). Nearly all experiments show a high
reproducibility of the results reported in the respective papers. However, test perfor-
mance is worse for all models when using random data splits. Among all experiments,
the APPNP operator generally performs best, while the ARMA, SGC, GCN and GAT
operators follow closely behind (Fey & Lenssen, 2019).

6.5.1.2 Graph Classification. Next, we report the average accuracy of 10-fold cross
validation for the task of graph classification on a number of common benchmark
datasets (Morris et al., 2020a) (cf. Table 6.3), in which we randomly sample a training
fold to serve as a validation set. This in contrast to the evaluation procedure of related
works, which only report validation performance. However, this leads to overly opti-
mistic performances of model predictions and does not represent a fair and realistic
evaluation scenario. We evaluate the performances of (a) flat GNN architectures (via
GCN (Kipf & Welling, 2017), SAGE (Hamilton et al., 2017), GIN-0 and GIN-¢ (Xuet al.,

12PyG  benchmark:  https://github.com/rustyls/pytorch_geometric/tree/master/benchmark
(last access: August 25, 2022)
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IMDB- REDDIT-

Method MUTAG PROTEINS COLLAB BINARY BINARY
GCN 74.6+7.7 73.1+3.8 80.6+2.1 72.6+45 89.3+33
E SAGE 74.9+8.7 73.8+3.6 79.7+1.7 724436  89.1+1.9
= GIN-0 85.7+7.7 72.1+5.1 79.3+27  72.8+45  89.6+2.6
GIN-¢ 83.4+7.5 72.6+4.9 79.84+2.4 721451 90.3+3.0
« GracLus 77.1+7.2 73.0+4.1 79.6+2.0 722442  88.8+3.2
é topy 763+75  72.7+41 797422 725446  87.6+24
DiffPool 85.0+103  75.1+35 789423 72.6+39 921426
~ SAGE w/o JK 73.7+7.8 72.74+3.6 79.6+24  721+44  879+19
2 GlobalAttention  74.64-8.0 72.54+4.5 79.6+22 723438 87.4425
T Set2Set 73.7+69  73.6437  79.6+423 722442  89.642.4
SortPool 77.3+89  724+41 777431 724438 749467

Table 6.3: Accuracy of graph classification within PyG (Fey & Lenssen, 2019).

2019¢)), (b) hierarchical GNN architectures (via Gracrus (Dhillon et al., 2007), top,,
(Cangea et al., 2018) and DiffPool (Ying et al., 2018b)), as well as the performance of
(¢) more sophisticated global readout strategies (via global attention (Li et al., 2016b),
Set2Set (Vinyals et al., 2016) and SortPool (Zhang et al., 2018)). For all datasets, we
only make use of discrete node features. In case they are not given, we use one-hot
encodings of node degrees as feature input. For all experiments on flat GNN architec-
tures, we use the global mean operator to obtain graph-level outputs. Inspired by the
Jumping Knowledge framework (Xu ef al., 2018), we compute graph-level outputs af-
ter each convolutional layer and combine them via concatenation. For evaluating the
(global) pooling operators, we use the GraphSAGE operator as our baseline. We omit
Jumping Knowledge when comparing global pooling operators, and hence report an
additional baseline based on global mean pooling without JK (SAGE w/o JK). For
each dataset, we tune (a) the number of hidden units € {16, 32,64, 128} and (2) the
number of layers € {2, 3,4, 5} with respect to the validation set (Fey & Lenssen, 2019).

Due to standardized evaluations and network architectures, not all results are aligned
with their official reported values. For example, except for DiffPool (Ying et al., 2018b),
(global) pooling operators do not perform as beneficially as expected to their respec-
tive (flat) counterparts, especially when baselines are enhanced by Jumping Knowl-
edge. This was further verified in an independent subsequent study by Mesquita
et al. (2020). However, the potential of more sophisticated approaches may not be
well-reflected on these simple benchmark tasks (Cai & Wang, 2018). Among the flat
GNN approaches, the GIN layer generally achieves the best results, in particular due
to its expressivity in reasoning about graph structures, cf. Section 3.4.

6.5.1.3 Point Cloud Classification. We further evaluate various point cloud meth-
ods on the ModelNet10 dataset (Wu et al., 2015) where we uniformly sample 1,024
points from mesh surfaces based on face area (cf. Table 6.4). Specifically, we evaluate
MPNN (Simonovsky & Komodakis, 2017), PointNet++ (Qi et al., 2017b), EdgeCNN
(Wang et al., 2019¢), SplineCNN (Fey et al., 2018) and PointCNN (Li et al., 2018b).
As hierarchical pooling layers, we use the iterative farthest point sampling algorithm
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Method ModelNet10
MPNN (Simonovsky & Komodakis, 2017) 92.07
PointNet++ (Qi et al., 2017b) 92.51
EdgeCNN (Wang et al., 2019¢) 92.62
SplineCNN (Fey et al., 2018) 92.65
PointCNN (Li et al., 2018b) 93.28

Table 6.4: Accuracy of point cloud classification within PyG (Fey & Lenssen, 2019).

DGL v0.2 DGL v0.3

Dataset  Method Degree Bucketing gather&scatter PyG
Cora GCN 4.19 0.32 0.25
GAT 6.31 5.36 0.80

CiteSeer  OCN 3.78 0.34 0.30
eoee GAT 5.61 491 0.88
GCN 12.91 0.36 0.32

PubMed -\ 1 18.69 13.76 2.42
MUTAG R-GCN 18.81 2.40 2.14

Table 6.5: Training runtimes in seconds on small-scale benchmark datasets. The
gather&scatter approach of PyG outperforms the degree bucketing ap-
proach of DGL by a wide margin, and is slightly faster given similar im-
plementations due to the higher Python overhead costs in DGL's wrapper
codes (Fey & Lenssen, 2019).

followed by a new graph generation procedure based on a larger query ball (Point-
Net++, MPNN and SplineCNN) or based on a fixed number of k-nearest neighbors
(EdgeCNN and PointCNN). We took care of using approximately the same num-
ber of parameters for each model. Notably, all approaches perform nearly identically
with PointCNN taking a slight lead. We attribute this to the fact that all operators are
based on similar principles and might have the same expressive power for the given
task (Fey & Lenssen, 2019).

6.5.2 Efficiency of GNN Design

We now evaluate the efficiency of GNN implementations across different models and
datasets, as well as for varying sparse tensor storage formats provided by PyG. Fur-
thermore, we evaluate the efficiency of mini-batch processing within our PyGAS ex-
tension.

6.5.2.1 Training runtimes. We conduct several experiments on a number of dataset-
model pairs to report the runtime of a whole training procedure for 200 epochs ob-
tained on a single NVIDIA GTX 1080 Ti (cf. Table 6.5). In particular, we evaluate the
efficiency of GCN (Kipf & Welling, 2017), GAT (Veli¢kovié et al., 2018) and a relational
GCN variant (R-GCN) (Schlichtkrull et al., 2018). As it shows, PyG is very fast despite
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working on sparse data. Compared to the degree bucketing approach of DGL (Wang
etal., 2019b), PyG trains models up to 40 times faster. The degree bucketing approach
of DGL decomposes the neighbor aggregation phase of GNNs into buckets of same
node degree. This makes the aggregation procedure @ of GNNs fully customizable
due to its dense nature, e.g., it can easily utilize Long Short-Term Memorys (LSTMs)
as aggregators, but has the disadvantage that it needs to process buckets of differ-
ent node degree sequentially rather than in parallel. In practice, we found that the
generality of degree bucketing does not outweigh the cost of non-parallel processing.
Although runtimes are much more comparable in later releases of DGL that inherit
the gather&scatter approach of PyG, PyG is still slightly faster due to the higher
Python overhead costs in DGL's wrapper codes (Wang et al., 2019b; Fey & Lenssen,
2019). Additional speed ups could be achieved for GAT by providing our own opti-
mized sparse softmax CUDA kernel, which further improve runtimes by up to 7 times.
An independent study in Wu et al. (2021) has confirmed the slightly superior runtime
statistics of PyG on graph-level tasks as well.

6.5.2.2 Sparse Storage Format Analysis. We now evaluate the efficiency of message
aggregation using the scatter, segment or G-SpMM algorithms on two different
datasets stemming from the SuiteSparse Matrix Collection (Kolodziej et al., 2019),
namely SNAP/web-Stanford and Janna/StocF-1465. The SNAP/web-Stanford graph
is a web network with around 282K nodes and an average node degree of ~ 8.2.
The Janna/StocF-1465 graph is obtained from a fluid-dynamical problem, and con-
tains around 1.5M nodes with an average node degree of ~ 14.3. For scatter and
segment algorithms, we benchmark both the gathering of node features into edge-
parallel space and performing the final reduction, while our G-SpMM algorithm fuses
both gathering and aggregation into a single step. Evaluation is performed by varying
the sizes € {32, 64,128} of node features and selecting different aggregation operators
P € {sum,mean,max}. Runtimes are obtained on a single NVIDIA TITAN RTX with
24GB of GPU memory, cf. Figure 6.9.

Notably, the G-SpMM algorithm outperforms both scatter and segment algorithms
by a wide margin on all combinations of feature sizes, aggregation procedures and
datasets. In addition, the segment algorithm is consistently faster than scatter as
well, which can be explained by the fact that destination nodes indices are grouped
contiguously in memory, and as a result, reduction can be performed inside each
thread rather than outside of it (via atomic operations). The difference in observed
runtimes between segment and G-SpMM denote the overhead in creating intermedi-
ate edge-level tensors, which is not necessary for g-SpMM. As a result, fusing message
and aggregation computation proves to be highly beneficial in practice, and can lead
to huge efficiency improvements whenever the underlying GNN allows to do so.

Furthermore, we observe large differences in efficiency for scatter across different re-
duction operators, in particular when using “max” aggregation. This can be explained
by the fact that atomic_add is available as a dedicated function on most modern GPUs
with reasonably high compute capability, while atomic_max is self-implemented via
the usage of atomic_cas (compare and swap).!3

Bnttps://docs.nvidia.com/cuda/cuda-c-programming-guide (last access: August 25, 2022)
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Figure 6.9: GPU runtime comparison of different message aggregation algorithms,
namely scatter, segment and G-SpMM. Benchmarking is performed for
various feature dimensionalities, reduction operators, and datasets. No-
tably, fused message aggregation via G-SpMM outperforms both scatter
and segment by a wide margin. scatter_max performs the worst due to
lack of dedicated hardware support in its atomic operation.

6.5.2.3 Mini-batch Efficiency within PyGAS. We now analyze how our PyGAS ex-
tension enables large-scale GNN training due to fast mini-batch execution (Fey et al.,
2021). Specifically, we are interested in how our concurrent memory transfer scheme
(¢f. Section 6.4) reduces the overhead induced by accessing historical embeddings
from the global CPU storage. For this, we evaluate runtimes of a 4-layer GIN model on
synthetic graph data, which allows fine-grained control over the ratio between inter-
and intra-connected nodes, cf. Figure 6.10. Here, a given mini-batch consists of ex-
actly 4,000 nodes which are randomly intra-connected to 60 other nodes. We vary the
number of inter-connections (connections to nodes outside of the batch) by adding
out-of-batch nodes that are randomly inter-connected to 60 nodes inside the batch.
Notably, the naive serial memory transfer increases runtimes up to 350%, which indi-
cates that frequent history accesses can cause major I/O bottlenecks. In contrast, our
concurrent access pattern incurs almost no 1/O overhead at all, and the overhead in
execution time is solely explained by the computational overhead of aggregating far
more messages during message propagation. Note that in most real-world scenarios,
the additional aggregation of history data may only increase runtimes up to 25%, since
most real-world datasets contain inter-/intra-connectivity ratios between 0.1 and 2.5
(Fey et al., 2021). Further, the additional overhead of computing MeTis partitions in
the pre-processing stage is negligible and is quickly mitigated by faster training times:
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Figure 6.10: The runtime overhead of PyGAS in relation to the inter-/intra-
connectivity ratio of mini-batches, both for serial and concurrent his-
tory access patterns. The overall runtime overhead is further separated
into computational overhead (overhead of aggregating additional mes-
sages) and I/O overhead (overhead of pulling from and pushing to his-
tories). The concurrent memory transfer scheme of PyGAS reduces I/O
overhead caused by histories by a wide margin (Fey et al., 2021).

Runtime [s] Memory [MB]

Dataset  GrTE PyGAS GTTE PyGAS
Cora 0077 0006 1801 2.3
PubMed 0071 0006 2879 219
PPI 0976  0.007 13486 1237

Flickr 1.178 0.007 325.97 16.32

Table 6.6: Runtime and memory consumption for processing a mini-batch in a 4-
layer GCN model with GTTF and PyGAS. PyGAS is both faster and con-
sumes less memory than GTTF (Fey et al., 2021).

Computing the partitioning of a graph with 2M nodes takes only about 20-50 seconds
(depending on the number of clusters) (Fey et al., 2021).

Next, we compare runtimes and memory consumption of PyGAS to the recent GTTF
proposal (Markowitz et al., 2021), which utilizes a fast neighbor sampling strategy
based on tensor functionals. For this, we make use of a 4-layer GCN model with
equal mini-batch and receptive field sizes. As shown in Table 6.6, PyGAS is both
faster and consumes less memory than GTTFE. Although GTTF utilizes a fast vectorized
sampling procedure, its underlying recursive neighborhood construction still scales
exponentially with GNN depth, which explains the observable differences in runtime
and memory consumption (Fey et al., 2021).



Conclusion and Future Work

This thesis proposed approaches for applying deep learning techniques to graph-
structured data based on the recently emerging framework of neural message pass-
ing, and investigated their applicability both from a theoretical and practical point of
view. Overall, we introduced solutions by generalizing concepts of traditional neural
building blocks as well as by aiming to overcome existing shortcomings and inherent
weaknesses of traditional message passing Graph Neural Networks. Furthermore,
we looked into ways to eliminate scalability issues inherent to message passing, and
proposed effective solutions regarding their efficient and flexible realization.

Importantly, Graph Neural Networks (GNNs) play a crucial role both for the future
of graph machine learning in particular and for the future of Al in general. For ex-
ample, they advance graph machine learning by no longer being forced to rely on
hand-crafted features for graph-based predictive tasks. Instead, GNNSs can naturally
integrate rich feature information attached to nodes and edges for reasoning about
structural graph properties as part of an end-to-end representation learning pipeline.
They also advance the state of Al in general, as GNNs provide a general and broadly
applicable framework for reasoning about the structures and compositions in a highly
inter-connected world. Importantly, deep learning models no longer need to take
fixed computation graphs for granted, but can actually define computation dynami-
cally as part of the input, given in the form of a graph. On one hand, this allows us
to view GNNs as a general and much more broadly applicable class of deep learn-
ing models that elegantly group and generalize concepts on fixed-sized domains, e.g.,
Convolutional Neural Networks, Recurrent Neural Networks or Transformers. On the
other hand, GNNs have the capability to act as a router between specialized models
trained on individual tasks in isolation, i.e. they are inherently able to route and prop-
agate low-level information in order to make higher-level decisions — a key concept
for achieving a much more general and powerful kind of artificial intelligence.

In what follows, we summarize our contributions towards these goals in Section 7.1
and outline interesting directions for future work in Section 7.2.
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7.1 Conclusion

This thesis was structured into four major components, tackling upon the relationship,
methodological development, scalability and realization aspects of the overarching
topic of this thesis — Graph Neural Networks via neural message passing.

We introduced and studied the central blueprint of GNNs in the form of a trainable
and differentiable message passing scheme. Contributions were made in relating the
general concepts of GNNs to well-known deep learning techniques and graph isomor-
phism heuristics. In particular, we have introduced the Spline-Based Convolutional
Neural Networks (SplineCNNs), a novel GNN architecture based on an anisotropic
Messace formulation via a continuous B-spline kernel definition, which allow for a
fast execution due to the local support property of B-spline basis functions. Impor-
tantly, SplineCNNs resemble the traditional definition of Convolutional Neural Net-
works for discrete data, while directly being applicable on more diverse and general
domains as well, e.g., for learning on either simple or embedded graphs. As such, we
showed that the concepts and properties of traditional neural network building blocks
can be successfully transferred applied to graph-structured data as well (answering
Research Question 1). In particular, we evaluated SplineCNNs on the task of node
classification, superpixels graph classification and shape correspondence, in which it
reached state-of-the-art performance on all of these.

Furthermore, we have related the expressive power of Graph Neural Networks to the
Weisfeiler-Lehman (WL) graph isomorphism heuristic, and showed their equivalent
power in reasoning about and distinguishing non-isomorphic (sub-)graphs. Based
on our findings, we proposed a generalization of GNNs named k-GNNs, which can
take higher-order graph structures at multiple scales into account, leading to prov-
ably more powerful Graph Neural Networks. Empirically we showed that k~-GNNs
provide a general blueprint that consistently strengthen the performance of GNNs on
graph-level tasks. In addition, we identified additional shortcomings and inherent
weaknesses of general message passing GNNs, and proposed several novel method-
ological advancements w.r.t. GNN design (answering Research Question 2). Contri-
butions to these problems were three-fold, depending on the given task and domain:

e Specifically, we introduced the Dynamic Neighborhood Aggregation (DNA)
procedure, a novel and specialized neighborhood aggregation scheme to over-
come the over-smoothing problem in deep GNNs. As a result, DNA is able
to capture localized representations stemming from long-range dependencies.
Our solution utilizes a selective and node-adaptive aggregation formulation of
neighbors of potentially differing locality, guided by attention. In contrast to re-
lated approaches, DNA allows a GNN to control its own spread-out, possibly
aggregating more global information in one branch, and falling back to more
local information in others. Overall, integrating DNA into GNN model design
is generally able to boost model performance, especially in heterophily graphs.

e Furthermore, we introduced the Hierarchical Inter-Message Passing (HIMP) ar-
chitecture to allow for more expressive GNNs in the task of molecular graph
learning. HIMP is able to exchange information between different hierarchies
and higher-order sub-structures of molecules, e.g., between rings or bonds. In
particular, we argued that related graph coarsening strategies are not sufficient
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to accurately capture meaningful cluster assignments due to their potentially
higher-order nature. As such, HIMP can naturally overcome the restrictions
of traditional GNNS, strengthening their performance with minimal computa-
tional overhead in return. In our evaluation, we showed that HIMP can improve
traditional GNN model performance up to approximately 60%.

e Lastly, significant contributions were made to advance the state-of-the-art in
data-driven deep graph matching algorithms. Here, our proposed Deep Graph
Matching Consensus (DGMC) framework utilizes a two-stage neural architec-
ture, whose second stage is able to resolve the ambiguities and adjust any false
matchings made in the first stage, induced by the locality of message passing.
For this, DGMC aims to reach a data-driven neighborhood consensus in lo-
cal neighborhoods by injecting global node colorings to the message passing
formulation in a purely local and sparsity-aware fashion. As we have shown,
such a refinement of initial correspondences is crucial to tackle the task of deep
graph matching with high precision, leading to significant improvements across
a wide range of tasks and GNN instantiations.

Furthermore, we proposed methodological advancements regarding the scalability
aspect of GNNs, motivated by the shortcomings of related scalability approaches that
are either restricted to (1) shallow GNNSs, (2) shallow subgraphs, or (3) provably
less powerful GNN variants. Our GNNAutoScale (GAS) framework prunes entire
sub-trees of the computation graph by utilizing historical node embeddings acquired
from prior training iterations, leading to constant GPU memory consumption in re-
spect to input node size. In particular, this allows for deeply stacked GNNs while
accounting for all available neighborhood information in every layer. We have shown
both theoretically and practically that GAS is able to maintain the expressive power
of the original GNN (answering Research Question 3). Importantly, the GAS mini-
batch training technique can be applied to any GNN backbone, ultimately allowing
the application of deep and expressive GNNSs on large-scale graphs. Empirically, we
have shown the efficiency of our GAS approach and the practical benefits of evaluat-
ing larger models on larger scale. Furthermore, significant contributions were made
to the availability of large-scale graph benchmark datasets and standardized GNN
evaluation techniques, as condensed in the Open Graph Benchmark (OGB) suite.
OGB overcomes the shortcomings of existing graph benchmark datasets (e.g., small-
scale, data leakage, non-standardized splitting strategies and evaluation protocols)
by providing a rich set of diverse and realistic graph datasets, grouped into different
task categories, application domains and scales. In particular, OGB aims to provide
meaningful splitting schemes, e.g., based on temporal information or scaffolds. Em-
pirically, we have identified major challenges on all available datasets in an extensive
benchmark analysis, using representative graph-based machine learning models that
utilize a diverse range of GNN scalability techniques.

Finally, we introduced important concepts to efficiently realize GNNs in a unified and
flexible way. Our main contribution towards this goal is the development of PyTorch
Geometric (PyG), a well-known Graph Neural Network library, built upon PyTorch.
PyG bundles the state-of-the-art in Graph Representation Learning in a unified and
comprehensive package, and achieves flexibility in GNN design on both low levels,
e.g., via a general MessagePassing interface, and high levels, e.g., by composing GNN
models via pre-defined and ready-to-use layers and operators. As we have shown,
PyG achieves high data throughput by leveraging sparse GPU acceleration, dedi-
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cated CUDA kernels, and by introducing effective mini-batching techniques. Fur-
thermore, it provides a general testbed for evaluating GNN variants in a fair and
comparable fashion, achieving high reproducibility of officially reported model per-
formances (answering Research Question 4). In addition, we introduced the PyGAS
extension, which allows to convert common and custom GNN models from PyG into
their scalable variants by following our GAS framework. Importantly, PyGAS is able
to efficiently access and transfer historical embeddings from CPU storage via a novel
asynchronous memory transfer strategy. We have shown that this technique heav-
ily improves upon the runtimes of our GAS approach. In fact, we have been able to
completely eliminate the overhead induced by frequent history accesses and device
transfers, making GAS one the fastest scalability approaches for mini-batch processed
GNNS5s up to this date.

7.2 Future Work

The area of designing novel architectures and inventing novel optimization strategies
for graph-based machine learning is very broad, leaving rich potential for future re-
search. This section will outline potential directions for most of the tools described in
this thesis.

The theoretical understanding of the capabilities of GNNs has been mainly inves-
tigated from the perspective of classifying their expressive power in distinguishing
certain (sub-)graph structures, but the mechanisms of the underlying learning pro-
cess are still largely unexplored. In particular, the theoretical expressiveness of GNNs
might actually not be the deciding factor for GNN performance, especially since the
WL is already well able to distinguish all non-isomorphic graphs on most of the bench-
mark datasets available today (Morris et al., 2021a). As such, arguing that provably
more powerful GNN architectures will automatically result in better model perfor-
mance need to be taken with a grain of salt. In complete contrast, there exist GNN
variants that mostly ignore graph structure completely and only care about local fea-
ture propagation, which nonetheless perform well in practice. As such, it is desirable
to understand the concrete interplay between model generalization capabilities, the
underlying expressive power of the utilized GNN and the overall importance of fea-
ture propagation mechanisms. One potential fruitful future direction is to explore the
difference in learned representations arising from different expressive GNN variants
through the lens of explainable Al, in which we would expect higher order variants
to be able to explore rich subgraph patterns that cannot be detected by vanilla GNNs
alone, but otherwise lead to similar explanations.

Furthermore, various enhancements to our task-specific models are feasible, ¢e.g., by
extending them or applying them in different domains. For example, as shown in re-
lated work (Stark et al., 2021), working on and learning from the 3D molecular struc-
ture is generally preferable for the task of molecular property prediction. However,
this information is often infeasible to compute as it requires expensive DFT-based ge-
ometry optimization. As such, one possible direction to explore is how our HIMP
approach can be utilized to learn the 3D molecular structure directly from their 2D
molecular graphs, e.g., by using methods from self-supervised learning. Notably, spe-
cial care must be taken in designing rotation-invariant loss formulations. Further-
more, our DGMC approach for the task of graph matching can be extended in order
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to relax the one-to-one mapping constraint, as it currently expects that every node in
the source graph can be exactly matched to one node in the target graph. It may be
possible to bypass the matching of certain nodes, e.g., by introducing dummy nodes
to the target graph. In addition, DGMC can also be extended to the task of multiple
object tracking, in which we would like to find correspondences between objects over
time. Here, the refinement stage needs to be modified in order to reach a neighbor-
hood consensus across potentially multiple timestamps.

Our GAS framework provides a crucial starting point in maintaining the properties
of the underlying GNN while being able to scale GNNs up to giant graphs, which
we like to extend further in future works. In particular, extensions to multi-GPU
or distributed training scenarios are desirable, in which synchronization of histori-
cal accesses need to be performed on a per GPU/machine basis. Training GAS in a
distributed fashion requires the distribution of histories as well, in which the most ef-
fective memory management strategy remains to be explored, i.e. histories can either
be distributed across machines per layer or per mini-batch. In both cases, remote pro-
cess communication of historical embeddings needs to be achieved concurrently. Fur-
thermore, we would like to extend GAS to support both temporal and heterogeneous
graphs as well. In particular, for learning on temporal graphs, historical embeddings
need to be obtained per layer and timestamp, in which storage capacities can become
a major bottleneck depending on the chosen temporal window size. As such, quan-
tization (Ding et al., 2021), auto-encoding procedures or disk-accessible histories are
necessary to avoid CPU memory requirements from becoming too large.

Lastly, our PyTorch Geometric library will continuously expand its scope to provide
immediate access to recent advancements in Graph Representation Learning, aim-
ing to accelerate future research progress and to make latest GNN trends instanta-
neously deployable in industrial applications. On low levels, future work will resolve
around the design of more memory-efficient edge-level message passing computa-
tions through a general kernel fusion interface, similar to the design of the KeOrs
library (Feydy et al., 2020). On high levels, we aim to achieve a scalability-agnostic
GNN interface, building upon the initial work of our GAS framework. That is, users
should be able to write their GNN models and training procedures as if they are ex-
pecting full-batch graphs as input, and PyG will automatically take care of applying
the appropriate changes to scale GNN execution to any graph size. To accelerate the
immediate integration of new features, we also plan to integrate a Model Hub. With
this, users can simply register their customized and pre-trained GNN models to make
them directly accessible within PyG. Lastly, besides the support of homogeneous
graphs and heterogeneous graphs, we aim to extend the scope of PyG to temporal
graphs (Rozemberczki et al., 2021b) and knowledge graphs (Ren et al., 2021) as well.

Overall, Graph Neural Networks also yield the potential to revolutionize machine
learning on (relational) tabular data. While the majority of data scientists and ma-
chine learning practitioners use relational data in their work, there is still signifi-
cant data extraction and feature engineering efforts required to “flatten” data points
into independent and identically distributed examples (Cvitkovic, 2020). In contrast,
GNN s can reason about the relational nature of the underlying data entirely on their
own. As such, they may well be able to rapidly pioneer a new era of machine learning
models that data scientists will frequently rely on in their day-to-day work.
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AST Abstract Syntax Tree

CNN Convolutional Neural Network

CPU Central Processing Unit

CUDA Compute Unified Device Architecture
DFT Density Functional Theory

DGMC Deep Graph Matching Consensus
DNA Dynamic Neighborhood Aggregation
GAS GNNAutoScale

GAT Graph Attention Network

GCN Graph Convolutional Network
GECN Group Equivariant Convolutional Network
GIN Graph Isomorphism Network

GNN Graph Neural Network

GPU Graphics Processing Unit

GRL Graph Representation Learning

GRU Gated Recurrent Unit

HIMP Hierarchical Inter-Message Passing
JK Jumping Knowledge

KG Knowledge Graph

k-GNN k-dimensional GNN

k-WL k-dimensional Weisfeiler-Lehman

LSTM Long Short-Term Memory
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MAG Microsoft Academic Graph

MLP Multi-Layer Perceptron
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RNN Recurrent Neural Network

SplineCNN Spline-Based Convolutional Neural Network
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VR-GCN Variance Reduction Graph Convolutional Network
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Appendix

A.1 OGB Datasets

We introduced the Open Graph Benchmark (OGB) suite (Hu et al., 2020a, 2021b) in
Section 5.4. Here, we provide more details of each available dataset in OGB according
to task category.

A.1.1 Node Property Prediction Datasets

We provide six datasets in OGB, adopted from diverse application domains, for pre-
dicting the properties of individual nodes:

Specifically, products is an Amazon products co-purchasing network originally de-
veloped by Chiang et al. (2019), in which nodes represent products sold on Amazon,
and edges between two products indicate that the products were purchased together.
The task is to predict the category of a given product. The graph, target labels, and
node features are generated by following Chiang et al. (2019), where node features
are dimensionality-reduced bag-of-words of product descriptions. While we inherit
the original graph representation introduced in Chiang et al. (2019), we introduce a
more challenging and realistic dataset split than conventional random splitting. In
particular, we use the sales ranking to split nodes into training, validation and test sets.
That is, we sort the products according to their sales ranking and use the top 8% for
training, next top 2% for validation, and the rest for testing. This split closely matches
the real-world application where manual labeling is prioritized to important nodes
in the network, and machine learning models are subsequently used to make predic-
tions on less important ones (Hu et al., 2020a). In particular, the sales ranking split
emphasizes the importance of out-of-distribution generalization in real-world graph
machine learning tasks, as indicated by the -SNE visualization (van der Maaten &
Hinton, 2008) of training, validation and test nodes in Figure A.1. Here, we can ob-
serve that test node representations may be inherently different from training node
representations, which is not the case in conventional random splits (Hu ef al., 2020a).
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Figure A.1: ~SNE visualization of M training, M validation and ¥ test nodes in the
products dataset. It can be seen that test node representations may be
inherently different from training node representations (Hu ef al., 2020a).

The arxiv, papers100M, mag and mag240M datasets are extracted from the Microsoft
Academic Graph (MAG) (Wang et al., 2020), utilizing different scales, tasks, and in-
clude both homogeneous and heterogeneous graph information. Specifically, arxiv
is a paper citation network between all Computer Science ArRX1v papers indexed by
MAG. Each node is an arRX1v paper and each edge indicates that one paper cites
another one. Each paper comes with a 128-dimensional feature vector obtained by
averaging their worb2vec embeddings (Mikolov et al., 2013) of words in its title and
abstract. The task is to predict the subject areas of ARX1v papers, which were manually
labeled by the paper’s authors and aArRX1v moderators. The papers100M dataset is cre-
ated in a similar fashion, but contains all of the 111 million papers indexed by MAG
(Wang et al., 2020). Among its node set, approximately 1.5 million of them are ARX1v
papers, each of which is manually labeled with one of ARX1v’s subject areas. With the
volume of scientific publications doubling every 12 years over the past century (Dong
etal.,2017b), itis practically important to automatically classify each paper’s areas and
topics. In contrast to previously-used small-scale citation networks that are split ran-
domly (Sen et al., 2008; Yang et al., 2016), we consider a realistic data split based on the
publication dates of papers. This amounts to the general real-world setting in which
machine learning models are trained on existing papers which are then used to pre-
dict the subject areas of newly-published papers. An accurate automatic predictor of
papers’ subject categories not only reduces the significant burden of manual labeling,
but can also be used to classify the vast number of non-arX1v papers, thereby allowing
better search and organization of academic papers. Specifically, we propose to train
on papers published until 2017, validate on those published in 2018, and test on those
published since 2019 (Hu et al., 2020a).

On the other hand, both the mag and mag240M datasets represent the MAG as a hetero-
geneous rather than homogeneous network, either as a subset or as its full set, respec-
tively. These networks contain additional information than what is solely provided
in a homogeneous paper citation network (Hu ef al., 2020a, 2021b). In particular, it
contains three node types (“paper”, “author” and “institution”) with different con-
nections between nodes of different type, e.g., an author “writes” a paper or a paper
“cites” a paper. This accounts to the real-world setting in which graphs are typically

heterogeneous, and emphasizes the development of novel heterogeneous Graph Neu-
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Paper cites
121,751,666 nodes 1,297,748,926 edges

writes
386,022,720 edges
Author ] [ Institution
122,383,112 nodes J affiliated with L 25,721 nodes
44,592,586 edges

Figure A.2: The schema diagram of the heterogeneous mag240M dataset. mag240M
is a large-scale graph network, consisting of three different node types

(“paper”, “author”, “institution”) and three different edge types (“cites”,
“writes”, “affiliated with”) (Hu et al., 2021b).

ral Networks (Schlichtkrull et al., 2018; Zhang et al., 2019a; Wang et al., 2019d; Yu et al.,
2020; Hu et al., 2020c). For mag, the task is to predict the venue (conference or journal)
of each paper. This is of practical interest as some manuscript’s venue information is
unknown or missing in MAG (Hu et al., 2020a). For mag240M, the task is once again
to automatically annotate a paper’s topic, i.e. predicting the primary subject area of
each arX1v paper. Up to this date, mag240M is the largest publicly available dataset,
containing around 121M academic papers written by 122M authors who are affiliated
with 26K institutions. Among these papers, there exists 1.3B citation links captured
by MAG (Hu et al., 2021b). An illustrative overview of this dataset is provided in Fig-
ure A.2. In order to learn more fine-grained embeddings, mag240M represents titles
and abstracts of papers as a 768-dimensional vector generated by a RoBERTA sen-
tence encoder (Liu et al., 2019a; Reimers & Gurevych, 2019). With this, input node
features and graph structure occupy around 349GB and 26GB of disk space, respec-
tively. The mag240M dataset was part of the Open Graph Benchmark Large-Scale Chal-
lenge (OGB-LSC) (Hu et al., 2021b).!

The proteins dataset denotes a protein-protein association network in which nodes
represent proteins, and edges indicate different types of biologically meaningful as-
sociations between proteins, e.g., physical interactions, co-expression or homology
(Szklarczyk et al., 2019; Consortium, 2018; Hu et al., 2020a). All edges come with 8-
dimensional features, where each dimension represents the approximate confidence
of a single association type. The task is to predict the presence of protein functions,
leading to 112 kinds of labels to predict. For data splitting, we split the protein nodes
into training, validation and tests according to the species which the proteins come
from. This enables the evaluation of the generalization performance of the model
across different species. Notably, proteins does not provide any input node features,
but has edge features on more than 30 million edges. This emphasizes the develop-
ment of sophisticated Graph Neural Network (GNN) solutions that can utilize edge
features rather than node features in a sophisticated way (Hu et al., 2020a).

LOGB-LSC website: https://ogb.stanford.edu/kddcup2021 (last access: August 25, 2022)
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A.1.2 Link Property Prediction Datasets

We provide seven link property prediction datasets in OGB, adopted from diverse
application domains, including biological, academic datasets as well as Knowledge
Graphs (KGs). The different datasets are highly diverse in their graph structure,
cf. Table 5.3. For example, the biological networks are much denser than the academic
networks and the KGs (Hu et al., 2020a).

In particular, we provide the two biological datasets ppa and ddi, which represent
protein-protein association and drug-drug interaction networks, respectively (Szk-
larczyk et al., 2019; Wishart et al., 2018). The ppa dataset is an undirected, unweighted
graph, in which nodes represent proteins from 58 different species, and edges indi-
cate biologically meaningful associations between proteins, e.g., physical interactions,
co-expression, homology or genomic neighborhood (Szklarczyk et al., 2019; Hu et al.,
2020a). Each node contains a 58-dimensional one-hot encoded feature vector that in-
dicates the species that the corresponding protein comes from. The task is to predict
new association edges given existing associations. We provide a biological through-
put split of the edges into training/validation/test edges. Training edges are pro-
tein associations that are measured experimentally by a high-throughput technology
(e.g., cost-effective, automated experiments that make large scale repetition feasible
(Macarron et al., 2011; Bajorath, 2002; Younger et al., 2017)) or are obtained computa-
tionally (e.g., via text-mining). In contrast, validation and test edges contain protein
associations that can only be measured by low-throughput, resource-intensive exper-
iments performed in laboratories. In particular, the goal is to predict a particular type
of protein association, e.g., physical protein-protein interaction, from other types of
protein associations (e.g., co-expression, homology, or genomic neighborhood) that
can be more easily measured and are known to correlate with associations that we are
interested in. Similarly, the ddi dataset also describes an undirected and unweighted
graph, representing drug-drug interactions (Wishart et al., 2018). Each node repre-
sents an FDA-approved or experimental drug. Edges represent interactions between
drugs and can be interpreted as a phenomenon where the joint effect of taking the two
drugs together is considerably different from the expected effect in which drugs act
independently of each other. The task is to predict unknown drug-drug interactions
given information on already known drug-drug interactions, in which true drug in-
teractions should be ranked higher than non-interacting drug pairs (Hu et al., 2020a).
We develop a protein-target split, meaning that we split drug edges according to what
proteins those drugs target in the body. As a result, the test set consists of drugs that
predominantly bind to different proteins from drugs in the train and validation sets.
This means that drugs in the test set work differently in the body, and have a rather
different biological mechanism of action than drugs in the train and validation sets.
The protein-target split thus enables us to evaluate to what extent the models can
generate practically useful predictions (Guney, 2017), i.e. non-trivial predictions that
are not hindered by the assumption that there exist already known and very similar
medications available for training (Hu et al., 2020a).

Furthermore, the two academic datasets collab and citation describe author col-
laboration and paper citation networks, extracted from MAG (Wang et al., 2020). The
collab dataset is an undirected graph, representing a subset of the collaboration net-
work between authors. Each node represents an author and edges indicate the col-
laboration between authors. All nodes come with 128-dimensional features, obtained
by averaging the word embeddings of papers that are published by the authors. All
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edges are associated with two types of meta-information: the year and the number
of collaborations in that year. As such, the graph can be viewed as a dynamic multi-
graph as there exists multiple edges between two authors in case they have collab-
orated in more than one year (Hu et al., 2020a). The task is to predict the author
collaboration relationships in a particular year given past collaborations. As the task
is inherently temporal, it is natural for models to incorporate the most recent edge
information to make prediction. Similarly, citation represents a citation network in-
dexed by MAG, where an edge indicates that one paper cites another. The task is to
predict missing citations given existing citations. Specifically, for each source paper,
two of its references are randomly dropped, and we would like the model to rank the
missing two references higher than negative reference candidates. This simulates the
practical use-case of where a user is writing a new paper and has already cited sev-
eral existing papers, but wants to be recommended additional references (Hu et al.,
2020a). Both datasets are splitted according to time, in order to simulate a realistic
application in collaboration and citation recommendation, respectively. Specifically,
we use the relations until 2017 as training edges, those in 2018 as validation edges,
and those in 2019 as test edges (Hu et al., 2020a).

In addition, we provide three KGs named biokg, wikikg and wikikg90M, utilizing dif-
ferent tasks and scales (Hu et al., 2020a, 2021b). Knowledge Graphs are known to pro-
vide rich structured information about many entities, aiding a variety of knowledge-
intensive down-stream applications such as information retrieval, question answering
(Singhal, 2012), and recommender systems (Guo et al., 2020). However, these large
KGs are known to be far from complete (Min et al., 2013), missing many relational
information between entities. Using machine learning methods to automatically im-
pute missing triplets (head, relation, tail) significantly reduces the manual curation
of knowledge and provides a more comprehensive KG, which in turn improves the
aforementioned down-stream applications. As such, the general task in KGs is to pre-
dict new triplets given the already existing triplets.

In particular, the biokg dataset represents a KG curated from a large number of biomed-
ical data repositories, containing 5 types of entities: diseases (10,687 nodes), pro-
teins (17,499), drugs (10,533 nodes), side effects (9,969 nodes), and protein functions
(45,085 nodes). There are 51 types of directed relations connecting two types of enti-
ties, including 39 kinds of drug-drug interactions, 8 kinds of protein-protein interac-
tions, as well as drug-protein, drug-side effect, drug-protein, function-function rela-
tions (Hu et al., 2020a). All relations are modeled as directed edges, among which the
relations connecting the same entity types (e.g., protein-protein, drug-drug, function-
function) are always symmetric, i.e. the edges are bi-directional. This dataset is rele-
vant to both biomedical and fundamental machine learning research. On the biomed-
ical side, the dataset allows us to get better insights into human biology and generate
predictions that can guide down-stream biomedical research. On the fundamental
machine learning side, the dataset presents challenges in handling a noisy, incom-
plete KG with possible contradictory observations. This is because the biokg dataset
involves heterogeneous interactions that span from the molecular scale (e.g., protein-
protein interactions within a cell) to whole populations (e.g., reports of unwanted side
effects experienced by patients in a particular country). Further, triplets in the KG
come from sources with a variety of confidence levels, including experimental read-
outs, human-curated annotations, and automatically extracted metadata. Note that
this dataset is the only dataset for which we adapt a random split. While splitting
the triplets according to time is an attractive alternative, we note that it is incredibly
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challenging to obtain accurate information as to when individual experiments and
observations underlying the triplets were made (Hu et al., 2020a).

Furthermore, the wikikg and wikikg90M datasets describe KGs extracted from the
Wikidata knowledge base (Vrandeci¢ & Krotzsch, 2014a), and contain sets of triplets
capturing the different types of relations between entities in the world, e.g., “Hinton

citizen of, Canada”. Each triplet (head, relation, tail) in these datasets represent an
Wikidata claim, where the head and tail denote Wikidata items, and the relation repre-
sents the Wikidata predicate. Specifically, we downloaded Wikidata at three different
timestamps for training, validation, and testing, respectively. This temporal split sim-
ulates the task automatically impute missing triplets that are not yet present in the cur-
rent KG. Accurate imputation models can then be readily deployed on the Wikidata
to improve its coverage (Hu et al., 2021b). While wikikg and wikikg90M are curated
from the same data source, they highly differ in scale. In particular, wikikg90M bun-
dles the entire Wikidata knowledge base, leading to 87,143,637 entities, 1,315 relations,
and 504,220,369 triplets in total. Furthermore, wikikg90M additionally contains rich
feature information for both entities and relations (Hu et al., 2021b). Specifically, each
entity /relation in Wikidata is associated with a title and a short description, e.g., one
entity is associated with the title “Geoffrey Hinton” and the description “computer
scientist and psychologist”. We provide those text representations via embeddings
obtained from a RoBERTA sentence encoder (Liu et al., 2019a; Reimers & Gurevych,
2019). With this, wikikg90M is by far the largest KG available, and the only one con-
taining rich feature information in addition. As such, this requests not only new ma-
chine learning models that can make use of rich feature information, but also provides
huge challenges in terms of scalability. This has made wikikg90M an excellent candi-
date to be part of the OGB-LSC (Hu et al., 2021b).

A.1.3 Graph Property Prediction Datasets

We provide five datasets in OGB for predicting the properties of entire graphs or sub-
graphs, adopted from three distinct application domains.

In particular, we provide the three datasets molhiv, molpcba and pcqméM for tackling
the task of molecular property prediction (Hu et al., 2020a, 2021b). As those datasets
are provided as pure SMILES strings (Weininger, 1988), we pre-process them via RD-
Kir (Landrum, 2016) into a unified graph representation. Specifically, each graph
represents a molecule, in which nodes denote atoms, and edges describe chemical
bonds. Input node features are given as a nine-dimensional vector, containing its
atomic number, as well as other useful features such as chirality, formal charge, or
whether the atom is part of a ring. Input edge features are three-dimensional, contain-
ing its bond type, bond stereochemistry as well as the information whether the bond is
conjugated. While the above features are not necessarily needed to uniquely identify
molecules, they have been shown to boost the performance of graph-based machine
learning models (Hu et al., 2020a,b). Furthermore, this standardized feature repre-
sentation encourages a fair comparison of different models in homogeneous evalu-
ation scenarios. Besides the standardized graph representation, we also propose to
leverage a standardized and consistent splitting procedure. In particular, we propose
to adapt the scaffold splitting procedure for all molecular graph learning tasks, which
splits the molecules based on their two-dimensional structural frameworks (Wu et al.,
2018; Yang et al., 2019; Hu et al., 2020b; Ishiguro et al., 2019; Rong et al., 2020a). The
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scaffold splitting attempts to separate structurally different molecules into different
subsets, which provides a more realistic estimate of model performance in prospec-
tive experimental settings than conventional random splitting (Hu et al., 2020a).

The molhiv and molpcba are adopted from MoleculeNet (Wu et al., 2018), which are
among the largest ones of the 12 totally provided datasets, i.e. containing 41,127 and
437,929 graphs, respectively. Here, the task is to predict certain molecular properties
as accurately as possible. Specifically, inmolhiv, the task is to infer whether a molecule
inhibits HIV virus replication or not. The molpcba dataset has collected a variety of bi-
ological activities of small molecules generated by high-throughput screening (Wang
et al.,2018a).

In contrast, the pcqm4M molecular graph dataset was constructed by ourselves (Hu
et al., 2021b). The pcqm4M dataset is a quantum chemistry dataset based on the Pub-
ChemQC project (Nakata, 2015; Nakata & Shimazaki, 2017), for which we define
the meaningful task of predicting the Density Functional Theory (DFT)-calculated
HOMO-LUMO energy gap of molecules, given their molecular graph representation.
The HOMO-LUMO gap is one of the most practically-relevant quantum chemical
properties of molecules since it is related to reactivity, photoexcitation and charge
transport (Griffith & Orgel, 1957). While DFT is a powerful and widely-used quan-
tum physics calculation that can accurately predict various molecular properties (Hel-
gaker et al., 2014), it is very time-consuming to compute. Even for small molecules,
it can take up to several hours to obtain. Therefore, using fast and accurate machine
learning models to approximate DFT-calculations enables diverse down-stream ap-
plications, such as property prediction for organic photovoltaic devices (Cao & Xue,
2014) and structure-based virtual screening for drug discovery (Ferreira et al., 2015).
Furthermore, predicting the quantum chemical property only from molecular graphs
without their 3D equilibrium structures is practically favorable and more challenging
(Ramakrishnan et al., 2014; Gilmer et al., 2017; Schiitt et al., 2017; Klicpera et al., 2020b).
This is because obtaining 3D equilibrium structures requires DFT-based geometry op-
timization as well. Besides its novelty, the pcqm4M dataset is one of the largest molecu-
lar graph learning datasets created. Specifically, it contains 3,803,453 molecules, with
80% of them available to train data-hungry machine learning models. This has made
the pcqm4M dataset the perfect fit to be part of the OGB-LSC (Hu et al., 2021b).

The ppa dataset contains a set of undirected protein association neighborhoods ex-
tracted from the protein-protein association networks of 1,581 different species (Szk-
larczyk et al., 2019; Hu et al., 2020a) that cover 37 broad taxonomic groups, e.g., mam-
mals, bacterial families and archaeans (Hug et al., 2016). Each graph represents the
protein association neighborhood of a protein, containing up to 100 proteins from
each species. Similar to the proteins dataset (Appendix A.1.1), nodes in each pro-
tein association graph represent proteins, and edges indicate biologically meaningful
associations between proteins. In comparison to the other graph datasets, the bio-
logical subgraphs in ppa have a much larger number of nodes per graph, as well as
much denser and clustered graph structures, resulting in a large average node degree,
large average clustering coefficient and large graph diameter (Hu ef al., 2020a). The
edges are associated with a 7-dimensional feature vector, where each value represents
the approximate confidence of a particular type of protein-protein association. The
task of ppa is to predict the taxonomic group from which the graph originates from.
The ability to successfully tackle this problem has implications for understanding the
evolution of protein complexes across species (De Juan et al., 2013), the rewiring of
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def run model(model):
model.run() Arguments ] [ Call ]_l
Name Attribute Name
model run model
(a) Source code (b) Abstract Syntax Tree

Figure A.3: An example input graph (b) in the code dataset, obtained from Python
source code (a). In our AST, the root node always defines the main func-
tion definition, and the goal is to predict its tokenized function name, e.g.,
{run,model}. Its children contain the input arguments, as well as its in-
dividual commands (Hu et al., 2020a).

protein interactions over time (Sharan et al., 2005; Zitnik et al., 2019), the discovery
of functional associations between genes even for otherwise rarely-studied organisms
(Cowen et al., 2017), and can give us insights into key bioinformatics tasks such as
biological network alignment (Malod-Dognin et al., 2017; Hu et al., 2020a).

The code dataset is a collection of Abstract Syntax Trees (ASTs) obtained from approx-
imately 450K Python functions, which were extracted from a total of 13,587 different
repositories across the most popular projects on GitHub according to the number of
stars and forks (Husain et al., 2019; Hu et al., 2020a). Given the input arguments and
body of a Python method represented by an AST, the task is to predict its method
name as a set of sub-tokens. This task is often referred to as “code summarization”
(Allamanis et al., 2016, 2017; Alon et al., 2018, 2019), because the model is trained to
find a succinct and precise description (i.e. the method name chosen by the devel-
oper) for a complete logical unit (i.e. the method body). Code summarization is a
representative task in the field of machine learning for code not only because of its
straightforward adoption in developer tools, but also because it is a proxy measure
for assessing how well a model captures code semantics (Allamanis ef al., 2018). The
graph of a method is directly given by its AST representation, cf. Figure A.3. In our
AST representation, the root node always corresponds to the main function defini-
tion. Its children contain the input arguments, as well as its individual commands.
Commands are further associated with meaningful node features that denote their
types (from a pool of 97 types) and attributes (such as its variable name given by a
fixed-sized vocabulary, or the current depth in the AST). We also mask out attributes
of recursive function definitions to avoid data leakage (Hu ef al., 2020a). As splitting
procedure, we split the dataset by project, where the ASTs for the train sets are ob-
tained from GitHub projects that do not appear in the validation and test sets. This
split respects the practical scenario of training a model on a large collection of source
code, which is then used to predict method names in a separate codebase. The project
split stress-tests the model’s ability to capture code semantics, and avoids the effects
of memorization of specific idiosyncrasies in the training projects (such as the naming
conventions and the coding style of a specific developer) (Allamanis, 2019; Hu et al.,
2020a).
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