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ABSTRACT

This thesis presents two different layered character models that are
ready to be used in physics-based simulations, in particular they enable
convincing character animations in real-time. We start by introducing a
two-layered model consisting of rigid bones and an elastic soft tissue layer
that is efficiently constructed from a surface mesh of the character and its
underlying skeleton. Building on this model, we introduce Fast Projective
Skinning, a novel approach for physics-based character skinning. While
maintaining real-time performance it overcomes the well-known artifacts
of commonly used geometric skinning approaches. It further enables
dynamic effects and resolves local and global self-collisions. In particular,
our method neither requires skinning weights, which are often expensive
to compute or tedious to hand-tune, nor a complex volumetric tessellation,
which fails for many real-world input meshes due to self-intersections.
By developing a custom-tailored GPU implementation and a high-quality
upsampling method, our approach is the first skinning method capable
of detecting and handling arbitrary global collisions in real-time.

In the second part of the thesis, we extend the idea of a simplified
two-layered volumetric model by developing an anatomically plausible
three-layered representation of human virtual characters. Starting with an
anatomy model of the male and female body, we show how to generate
a layered body template for both sexes. It is composed of three surfaces
for bones, muscles and skin enclosing the volumetric skeleton, muscles
and fat tissues. Utilizing the simple structure of these templates, we show
how to fit them to the surface scan of a person in just a few seconds.
Our approach includes a data-driven method for estimating the amount
of muscle mass and fat mass from a surface scan, which provides more
accurate fits to the variety of human body shapes compared to previous
approaches. Additionally, we demonstrate how to efficiently embed fine-
scale anatomical details, such as high resolution skeleton and muscle
models, into the layered fit of a person. Our second model can be used
for physical simulation, statistical analysis and anatomical visualization
in computer animation or in medical applications, which we demonstrate
on several examples.
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INTRODUCTION

Virtual characters are ubiquitous in a wide range of graphics applications. In
video games, we spend hundreds of hours with our animated virtual hero and
run through massive virtual worlds full of animals, monsters and humans.
In animated movies, characters are obviously virtually designed and posed,
but even live action movies often use virtual clones for complicated scenes or
special effects, and the audience can hardly detect any difference nowadays.
However, virtual characters are not only found in the entertainment industry.
Enabled by recent advances in 3D-scanning and character generation, realistic
virtual avatars are also increasingly used in virtual reality applications, where
they allow the user to act and interact in the virtual environment. This can be
utilized in medicine (e.g., surgery simulations, psychotherapy) as well as in
enterprises for virtual conferences. In this rapidly growing field of applications,
the steadily improving fidelity of character appearance increases the demand
for realistic character animation - while retaining interactive frame rates. There
exist various approaches for animating a virtual character, however, the most
realistic results are currently achieved by so-called example-based and physics-
based approaches.

Example-based approaches try to learn the complexity of human motion from
a large amount of data, typically consisting of 3D-scans of numerous different
motions taken in small time increments. This is utilized to optimize parameters
of an animation model such that it reproduces the input data. The resulting
model works best if it remains close to the training animations, and can
therefore effectively be used in environments where the set of motions is well
defined (e.g., games). In cases requiring a general model that supports multiple
characters, data-based approaches need to be trained on even more examples
of different moving characters. This data is typically captured through 3D-
photogrammetry scanning, requiring expensive scanning hardware. Using a
pre-trained model can be a cheap alternative, however, it may not be flexible
enough to support the desired target character. For instance, a change in the
skeletal structure or the mesh topology usually requires to retrain the model.

Physics-based approaches build another main category for realistic character
animation. Here, inspired by the real world, energies and forces are defined
to determine the behavior of body compartments like muscles, fat and bones.
These are applied to a volumetric discretization of the character’s body, as
opposed to data-based approaches, which often only model the character’s
surface. Physical simulations are capable of producing very realistic animations
including advanced effects like collision handling, gravity, wobbling of soft
tissue and volume preservation. But this usually comes to the cost of high
computation times (multiple seconds per frame are not unusual). Therefore,
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INTRODUCTION

those approaches are typically applied for offline animation like in movie
production, where quality is more important than performance. Another
disadvantage is the cumbersome construction process of the volumetric model,
prohibiting novice users from using physics-based animation approaches.

The goal of this thesis is to extend the range of applications for physics-
based character simulation by overcoming its two downsides. Our Fast Pro-
jective Skinning (FPS) approach allows to construct an easy-to-use volumetric
model for virtual characters from minimal input. The model consists of two
layers, a rigid bone and a soft flesh layer that are ready to be used in a physical
simulation. Moreover, our method is able to animate this model in real-time
while supporting dynamic jiggling effects and handling arbitrary contact cases
(e.g., hand touches belly).

Although our FPS approach can be applied to a wide range of input
models like humans, animals or even imaginary creatures, its two simple
volumetric layers are just a rough approximation compared to the inside of a
real living organism. For some applications, like medical surgery simulations,
a detailed and accurate representation of the bodies” anatomy is inevitable,
and determining the shape of anatomical structures usually requires expensive
volumetric imaging techniques. For the second half of this thesis, we therefore
sacrifice some generality of our FPS models by focusing on human virtual
characters. Exploiting the knowledge we have about human skeletal and
muscular structures enables us to develop a more accurate three-layered
volumetric model (bones, muscles, fat). While the anatomy of different people
is similar but not identical, one main challenge is to transfer the layers of a
base (template) human to a specific subject. Especially the amount of fat and
muscles can vary drastically between different people and must be taken into
account. Our approach takes a surface scan of the target model as input and
requires no volumetric imaging technique to create anatomically plausible,
personalized models. Moreover, it is fast and fully automatic, and can thereby
reduce hours of manual work to a few seconds of computation time.



The main contributions of this thesis are:

* An approach for creating a two-layered, simple volumetric model that
allows fast physics-based animations.

* A novel skinning method based on this model that is the first real-time
skinning approach supporting arbitrary collision handling.

* A three-layered, anatomically plausible model that can efficiently be
transferred to various human shapes and is ready for physical simulations.

More detailed lists of contributions can be found in each chapter.

This thesis is based on the following publications:
Komaritzan, M. and Botsch, M. (2018). “Projective Skinning.” Proceedings of
the ACM on Computer Graphics and Interactive Techniques, 1.

Komaritzan, M. and Botsch, M. (2019). “Fast Projective Skinning.” In Proceed-
ings of ACM Motion, Interaction and Games, 22:1-22:10.

Komaritzan, M., Wenninger, S. and Botsch, M. (2021). “Inside Humans:
Creating a Simple Layered Anatomical Model from Human Surface Scans.”
Frontiers in Virtual Reality, 2.

The implementation of our skinning approach and the full accompanying
video, which will be referenced throughout the thesis can be found here:

® https://github.com/mbotsch/FastProjectiveSkinning
® https://youtu.be/_oxBTxTngN8


https://github.com/mbotsch/FastProjectiveSkinning
https://youtu.be/_oxBTxTngN8




FUNDAMENTALS

In this chapter, we describe some fundamentals that will be used throughout
the thesis. To aid the reader to understand our Fast Projective Skinning (FPS)
method (Chapter 3), we first start by introducing the basic concept of skinning.
Second, we explain Projective Dynamics, a position-based solver for simulat-
ing both static and dynamic systems, which we will deploy and extend to
animate our FPS models as well as to build and simulate the anatomical model
(Chapter 4). Third, we give an introduction to GPU computing with CUDA
concluding with a short list of optimization guidelines that will be applied to
develop a custom-tailored GPU-version of our Fast Projective Skinning.

2.1 SKINNING BASICS

Virtual characters are usually discretized by surface meshes composed of
thousands of vertices. To animate a character, we need to find new vertex
positions for each animation frame, and defining these by hand would be an
overly cumbersome process. If one pictures a simple motion of a human body,
like raising an arm, many parts of the skin do not move individually. Instead,
the skin roughly follows the motion of its underlying bones. Inspired by this
observation, the animation process of virtual models is commonly split into
two parts. First, the animator defines the desired motion by posing a simplified
skeleton of the character. This skeleton has much less degrees of freedom and
is therefore easier to control than the mesh itself. Second, a so-called skinning
method is applied to compute a plausible movement and deformation of the
surface mesh (skin), based on the motion of the skeleton.

In Figure 2.1 (left) we show an example of a skeleton used to animate a
virtual character. Its basic structure is similar to a biological skeleton but its
geometry is simplified to a set of joint nodes connected by lines representing the
bones. It is structured in a hierarchy, starting with the root joint J;. All joints
connected to the root joint by one bone are called its child joints. Analogously,
the root joint is their respective parent. This structure can be continued for
the complete rig until each joint [, k € {2,3,...,]}, has exactly one parent
Jp(xy and a number of child joints. We will call the skeleton’s graph animation
skeleton or (skeletal) rig. Note that this structure does not support loops or loose
parts in the graph. These can occur in some rigs but for the scope of this thesis
we will focus on the most common case of a connected graph without loops.

To define the initial positioning of joints in 3D space and enable simple
control over pose changes, a so-called local transformation Ly € R¥* is
assigned to each joint. It holds the translation from the parent’s position
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FUNDAMENTALS
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Figure 2.1: Left: a typical skeleton graph for a virtual character. Right: a 2D
example of a skeleton graph. The different coordinate frames are depicted
with small arrows. The joint’s initial coordinate frame is rotated to align the
gray y-axis with the child bone. The different mappings building the global
transformation for the joint J5 (right top) and its skinning transformation Ts
(right bottom) are visualized. Note that arrow directions correspond to active
transformations and the corresponding passive mapping between coordinate
frames is directed inversely.

and, optionally, a rotation. In the initial state of the rig, the rotational part is
often used to align a coordinate axis with a bone axis (see Figure 2.1, right).
In case of the root joint, L; holds the global translation and rotation G; = L;
of the character. To compute the global transformation of a joint J, all local
transformations in the kinematic chain of J; are multiplied:

Gy = L1 - Lppky)Lp() Lk- (2.1)

Each Ly transforms from the joint’s to the parent’s coordinate frame and Gy
transforms from the joint’s to the global coordinate frame respectively. We
denote global matrices of the initial state by Gy.

To animate the character, different rotations are applied to the joint’s local
transformations Ly < LiRy, with Ry € SO(3). The final transformation
T, € R¥* of each joint maps from its initial to its current state G, = T\ Gy,
and can therefore be computed via

Ty = GG, .. (2.2)

These final mappings from the initial to the animated skeletal pose (Figure 2.1,
right bottom) are typically used as input for skinning algorithms.

While there are many different skinning approaches, we will for now focus
on the most basic one called Linear Blend Skinning (LBS), introduced by
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2.1 SKINNING BASICS

p

Figure 2.2: Assigning each skin vertex to a single joint results in a rigid, block-
like skinning (left). Blending multiple transformations allows for smoother
transitions at joints (Linear Blend Skinning, right). The character’s skinning
weights that correspond to the hip bone are visualized on the right.

Magnenat-Thalmann et al. [1988]. It is still widely used and various other
approaches can be interpreted as modifications of LBS. If the rest-pose skin
mesh S is composed of S vertices at positions x; € R3, i € {1,2,...,S}, the
goal of any skeleton-based skinning approach is to find the animated vertex
positions x; based on the rig’s transformations Tj. A simple idea would be to
assign each vertex to one bone (e.g., the closest one) and transform it with the
transformation of the bone’s corresponding parent joint. This leads to a kind of
rigid skinning which can be desirable for animating robots or rigid parts of the
character (e.g., an armor), however, the approach obviously fails at deformable
regions of the skin, especially in proximity of joints (see Figure 2.2, left). The
key idea of Linear Blend Skinning is, as hinted by its name, to linearly blend
the joints” transformation matrices in those regions

<);l> = Zwika ()_;l> . (23)
k

Here, wjy are the blending weights, which should typically build a convex
combination (Y wy = 1, wjy > 0) for each vertex. The process of defining
these weights for a character is called rigging, and while automatic rigging
approaches exist [Baran and Popovi¢ 2007; Jacobson et al. 2011], the best results
are still achieved with the help of professional rigging artists that manually
‘paint’ the character’s skinning weights. A LBS skinning result and an example
of skinning weights is shown Figure 2.2. Once all w;; are defined, LBS is very
simple to implement, achieves real-time performance even for large scenes with
multiple detailed characters and is therefore the most widely used skinning
method in applications like games or VR-environments. As mentioned before,
there exist numerous other skinning methods that will be (briefly) described
and discussed in Section 3.1.



2.2 PROJECTIVE DYNAMICS

Methods for physics-based simulations of discretized deformable objects are
generally based on Newton’s second law of motion

miii = fi/ (24)

where m; is the mass associated to vertex x; and f; is the sum of all internal
and external forces acting on it. Defining the velocity v; = X; and stacking the
positions of all N simulated vertices into one matrix z € RN*3, as well as their
velocities and forces v, f € RN*3, results in

z=v and v=M7lf (2.5)

where M = diag(mq,my, ..., my) is a diagonal mass matrix. Implicit time-
integration with time-step Jt leads to the update rules:

Zi1 =2z +0tvi and v = v+ 0tM Ty, (2.6)

where the subscripts t and t + 1 denote the current and next time-step. Com-
bining the two equations in (2.6) and assuming that forces are composed
of constant external forces fext and position-dependent conservative internal
forces induced by potentials fin(z) = — Y; VW;(z) yields

1
ﬁM(ZH—l — Zy — 5t Vt) — fext —|— vai(zt—i—l) = O (27)
i

This is equivalent to solving the minimization problem

.1 1 2
241 = AIGMIN oop HM2 (z —y)HF + ZZWi(z), (2.8)
where y predicts the positions of the next time-step in absence of internal
forces

y = z; + 0t vi + 0P M My (2.9)

The first term of (2.8) therefore considers preservation of linear momentum
and external forces, while the second term tries to minimize the internal
potential energy.

The non-linear system involved in the minimization of (2.8) is typically
solved with the help of Newton’s method [Martin et al. 2011], which is com-
putationally intensive due to the changing linear system, which has to be
constructed and solved repeatedly in each time-step. Bouaziz et al. [2014a]
introduce an alternative approach for solving (2.8), enabling much faster simu-
lations of physical systems, which they call “Projective Dynamics” (PD). To
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2.2 PROJECTIVE DYNAMICS

a) b) c) d) e) f)

Figure 2.3: An example visualizing the local and global step of Projective
Dynamics: A bar (a) shall be deformed by moving and rotating its top end (b).
In the first local step (c), each element of the bar (triangles in 2D, or tetrahedra
in 3D) will be projected to its closest undeformed state (shown in blue) while
the top and bottom parts are projected to the positions at the boundary (red
circles). The global step (d) determines vertex positions by combining the
different projections. This process is iterated (e,f) for a fixed iteration count
Npp, where each iteration decreases the system’s energy (2.8).

achieve this efficiency, they restrict the system to internal potentials of the
following form

w.
Wi(z) = 5 11Qz — pill7- (2.10)

Here, Q; € RP*N has two functionalities: First, it extracts the positions
contributing to the potential W; (e.g., the two vertices of a spring or the four
vertices of a tetrahedron). Second, it allows some processing of the selected
vertices, like subtracting one from another to get a translation-invariant vector
between two points. We will show different examples in the next section.
p; € RFi*3 is the projection of Q,z to the closest allowed state of the potential,
which will also become clearer in the next section. Analogously to the positions
and velocities, the p; and Q; can be concatenated to a matrix Q € R"*N and
p € RP*3, with P = ¥ P;. In that way, the accumulated internal potentials are

expressed as
2

Iy 2.11)

Y Wilz) = 5 |[Wi(Qz—p)]

where W € RP*? is a diagonal matrix build from diagonal, P;-sized blocks of
the w;. Inserting (2.11) into (2.8) yields

2 2
Ziy = argmzinﬁ HM% (z— y)HF + % HW%(QZ — p)HF. (2.12)
Note that the projections p depend on the current positions z, meaning that
the minimization still requires solving a non-linear system at this point. This
is circumvented by alternatingly fixing either p or z and solving for the other.
First, z is kept constant while solving for p. Since each potential W; typically
depends on just a few different vertices, each p; can be determined by solving

9



FUNDAMENTALS

Algorithm 2.1: Time-step of the Projective Dynamics solver

y <zt + 0t vy + S M oy
z+y
for Npq iterations do
p < projectConstraints(z)
z < solveGlobal(z,y, p)
end for
Zi] S Z
Vipl < (241 — 24) /6t

multiple localized problems individually, which is called the local step. Second,
p is kept constant transforming the minimization (2.12) into a linear system

1 1
(mM + QTWQ) z= My + Q' 'Wp, (2.13)

which is solved in the global step of Projective Dynamics. Note that the system
matrix #M + QTWQ is sparse, symmetric, positive definite and does not de-
pend on z. Therefore, as long as masses are constant and no internal potentials
have to be added or removed from the system, it can be pre-factorized using
sparse Cholesky decomposition leading to an efficient global update.

The local and global steps are alternately iterated for Npq iterations. Veloci-
ties are updated at the end of each time-step via

Ziy1 — Zt

o
where u € [0,1] can be used as damping parameter (0 corresponding to
infinite damping and 1 to no damping). One time-step of Projective Dynamics
is summarized in Algorithm 2.1. A visual example of two local-global iterations
is shown in Figure 2.3.

Omitting the mass terms in (2.13) leads to the static (non-dynamic) version
of Projective Dynamics which is equivalent to the previously published Shape-
Up solver [Bouaziz et al. 2012]. The static systems do not involve inertial
effects (i.e., dynamic ‘wobbling’) and thereby converge to a static state in fewer
iterations. This enables simple, constrained-based energy minimization, which
we will leverage in Chapter 4. In both versions of the solver, potentials can
also be interpreted as a set of soft-constraints that should be satisfied by z.
In the following, we will therefore use the term constraints as a synonym for
potentials.

Vil = i (2.14)

2.2.1 Basic Constraint Types

In this section, we will define the constraint types of Projective Dynamics
that will be used throughout the thesis. All constraint types have first been

10



2.2 PROJECTIVE DYNAMICS

introduced by Bouaziz et al. [2014a]. We will develop some specialized versions
built on the base types shown here in later chapters.

Anchor Constraint

An anchor constraint is the simplest type of constraint, pinning a vertex to a
specific location. Here, Q; consists of a single row (P; = 1), that selects the
constrained vertex from z, and the projection is performed by setting p; to
the desired location. Note that all potentials are handled as soft-constraints,
meaning that in case of multiple competing constraints, the vertex is not
guaranteed to stay at the anchor’s position. We will solve this problem by
reformulating anchors as hard constraints in Section 2.2.3.

Spring Constraint

A spring constraint keeps two vertices at a constant distance. Theoretically, this
can be achieved by using two anchors, however, this would also circumvent
any global translation of the spring. Instead, the constraint defines Q; = B;S;,
where S; € R>*N is a binary selector matrix selecting the two vertices and
B, = (—1 1) constructs the vector from the first to the second vertex. In this
formulation, the constraint is translation-invariant, meaning that the global
step can optimize the spring’s translation in just one iteration. Therefore,
a system of multiple constraints will converge much faster to the optimal
solution. For a spring with rest length L, the local update is

- Qjz
=1L :
Pi= Qe

Note that the scaling can also be moved to the global step by Q; + Q;/L, but
in this case, changing the desired rest length would affect the system matrix,
resulting in a costly re-factorization. When splitting a spring into two or more
smaller ones, the combined spring should not be stiffer or softer than the
original. As derived by Bouaziz et al. [2014a], this resolution independence
can be achieved by scaling each weight with the spring’s rest length w; <+ w;L.

Tetrahedron Strain Constraint

A tetrahedron strain constraint penalizes the deformation of a tetrahedron from
an initial state. Given a deformation f: R®> — R3 that maps the undeformed
state to the deformed one, Chao and colleagues [2010] measure the elastic
potential by the deviation of the deformation’s differential df =: F (also called
deformation gradient) to the rotation group SO(3). Discretizing with linear
tetrahedral elements and casting the discrete strain into PD formalism yields

11



FUNDAMENTALS
an elastic potential W for each element

W= 1V min |F —R||%, (2.15)
ReSO(3)
where V is the volume of the undeformed element, F the (constant) deforma-
tion gradient in this element, and R the rotation being closest to F.
The state of a tetrahedral element can be defined by the edge matrix
E; = B3S;z, where S; € R**N is again the binary selector matrix and

-1
By= (-

[
S O =
O = O
_ O O

builds the edge matrix by subtracting the first vertex from the other three
vertices. The deformation gradient maps from the rest state E; to the current
configuration of (column-wise) edges E;r = Fi]_EiT . As long as the initial rest
tetrahedron is not degenerated, we get F; = E; E; .

The deformation gradient is translation-invariant but contains both the
deformation S; € R3*3 and the rotation R; € SO(3) of the corresponding
tetrahedron F; = R;S;, where §; is a positive semi-definite, symmetric ma-
trix. Transposing the matrices in (2.15) and inserting the definition of the
deformation gradient yields the structure of a PD constraint

Wi

W = —

5 Ei_lB:;SiZ - RZT

? 2.16
" 216)

with E;1B3Si = Q; and RiT = pi- The weight is scaled by the volume for
resolution independence w; < w; V; = 1/6w; |det(E;)|.

In each local step, we need to extract the rotational part of the deformation
gradients, which is known as polar decomposition [Shoemake and Duff 1992].
The most common approach for polar decomposition utilizes the singular value
decomposition of the deformation gradient F; = UZVT (we omit the subscripts
here), where U,V € O(3) are orthogonal matrices and L = diag(cy, 0, 03) is
a diagonal matrix holding the singular values. The rotational part of F; is
now R; = UEVT, where £ = diag(1,1,det(UV")) guarantees that R is a true
rotation (i.e., det(R) = 1) by flipping the axis corresponding to the smallest
deformation for inverted elements.

Tetrahedron Volume Constraint

A tetrahedron volume constraint penalizes volume changes of a tetrahedron
from its rest volume. The approach is similar to that of the strain constraint
(2.16). The weighting and Q; will be identical, but the local step projects to the
closest configuration with identical volume F;.
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The volume of a tetrahedron is proportional to the determinant of its
edge matrix leading to de’c(E,-T ) = det(F)) de’c(]?liT ). Thus, a change in volume
av = det(EiT )/ de’c(]:ZiT ) = det(F;) can be determined from the deformation
gradient. With the help of singular value decomposition, this can be further
simplified to dV = det(F;) = det(ULV") = ¢10203det(UVT). Now, the goal
is to find the smallest change in singular values such that dV = 1. Following
the PD-implementation of Deuss et al. [2015], this can be achieved by a few
iterations of gradient descent minimizing (dV — dV;)? with dV; = 1. The
resulting singular values build up a new matrix £ defining the projection p; =
F; = ULVT. Note that we can vary the target volume change dV; to different
values. Thereby, the constraint will blow up or shrink the tetrahedron’s volume
dependent on whether the parameter is smaller or greater than one.

Surface Bending Constraint

A surface bending constraint penalizes local changes in curvature. This is
achieved by restricting the vertex Laplacian to rotations from its initial state

w; _
Wz' = ?l HAXZ' — Rl’AXZ'HIQ:, (217)

where x; and x; denote the vertex positions of the deformed and the initial
surface, respectively. Determining the optimal rotation R; € SO(3) can be
simplified to rescaling Ax; to the length of Ax; in the local step. The constraint
matrix is set to Q; = L;S;, where S; € R"*N selects x; and its n; — 1 one-ring
vertex neighbors from x. L; € R is composed of the cotangent weights and
Voronoi area A; to construct the cotangent Laplacian Ax; [Botsch et al. 2010].
For resolution-independence, the weight should be scaled by the Voronoi area
w; < w;A;. Note that the term ‘bending’ constraint can be misleading, since
the constraint does also constrain the scaling and therefore stretching of the
surface.

2.2.2 Position- vs. Gradient-Based Strain Formulation

To define strain constraints penalizing the difference between the deformed
and undeformed state of a tetrahedral element, the formalism explained before
is straight-forward and commonly used in real-time simulations. However, in
case of polyhedral elements, Bouaziz et al. [2012] define a rigidity constraint
which corresponds to the frequently employed as-rigid-as-possible (ARAP)
energy of Sorkine and Alexa [2007]. This constraint is still applicable in the
tetrahedral case but we noticed that it produces different results than the previ-
ously defined tetrahedral strain constraint. In the following, we will compare
both approaches to explain this behavior and clarify the misconception of
both formulations being equivalent [Miiller et al. 2007; Myronenko and Song
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2009]. To allow for a better comparison and discussion, we omit some term
simplifications and describe both in the same formalism, while borrowing
some of the variables we already used in the tetrahedral case and modifying
their definitions to clarify the analogies.

To describe the state of arbitrary polyhedral elements consisting of N,
vertices, we define E € R¥>*™ containing its N, mean-centered vertices as
columns, as well as its deformed version E. In case of N, > 4 there is in
general no linear transformation mapping E to E. The deformation gradient
F is therefore the linear transformation that minimizes ||FE — EHi and can be
found by solving

F — EE' (F:ET>_1. (2.18)

Its closest rotation R can be determined via polar decomposition F = RS
minimizing the potential

_ 1 _
W(E,E) = - V(E) min |F—-R|%, 2.19
EE) = 3V(E) min |F-R[} 2.19)
analogous to the tetrahedral case (2.15).

Another frequently used approach for measuring the deformation of a
volumetric element is the already mentioned ARAP energy [Miiller et al. 2005;
Sorkine and Alexa 2007; Bouaziz et al. 2012; Deuss et al. 2015], which can be

written as 1
(E,E) = ERérSuOn |E - RE|7. (2.20)

=

It measures the sum of squared differences of the deformed mean-centered
points to the optimally-rotated undeformed points of the element. Finding the
optimal rotation is the well known orthogonal Procrustes problem [Golub and
Van Loan 2012] and is equivalent to

1

5 = 1n H EE' R (2.21)

It can be solved via polar decomposition of H.

Comparing (2.18) and (2.21) reveals that the two approaches decompose
different matrices (F and H) into their rotation (R) and deformation (S) com-
ponents. If we assume that E = RSE, we get

__ __1T\—1 __
F = RSEE' (EET) —RS and G =RSEE' # RS,

i.e., decomposing F restores the original rotation R, while decomposing H in
general results in a different rotation. Miiller et al. [2007] argue that the factor
(EE )~! is symmetric and therefore should be a part of S and not contribute
to the rotation. They conclude that both variants result in the same rotation
R. Myronenko et al. [2009] also state both variants to be equivalent. However,
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Figure 2.4: A two-element bar is stretched hor-
izontally by a factor of two. When fitting po-
sitions (middle), edges minimize the absolute
difference to their undeformed configuration.
When fitting gradients, relative differences are
minimized, preserving the size ratio of both
elements (bottom).

Figure 2.5: A high-resolution cylinder and a coarsely triangulated cuboid
are deformed using our PD-based skinning (Chapter 3). Tetrahedral strain is
handled with different combinations of: decomposing F (top) or H (bottom)
and fitting gradients (left) or positions (right).

since the product of two symmetric matrices is in general not symmetric, this
statement is not true, as pointed out earlier by Horn et al. [1988]. Moreover,
F is independent of the element’s shape while H is not, a drawback also
mentioned by Chao et al. [2010].

Another interesting difference between the two approaches is that mini-
mizing (2.19) tries to fit deformation gradients while minimizing (2.20) fits
deformed positions/edges. The 2D example in Figure 2.4 shows the bene-
fit of fitting gradients: when fitting positions/edges, the absolute differences
between original and deformed edge lengths are minimized, while fitting
gradients minimizes their relative differences. This difference can become more
pronounced in case of irregular and inverted elements, where the changes
in position can be small but gradients differ greatly [Chao et al. 2010]. An
example is shown in Figure 2.5, which demonstrates that decomposing F and
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fitting gradients yields better results in strongly deformed regions. Figure 2.5
also depicts that exchanging the computation of R between gradient- and
position-fitting does not work at all.

2.2.3 Hard Constraints in Projective Dynamics

In the original Projective Dynamics [Bouaziz et al. 2014a], all internal potentials
act as soft constraints and the global step computes a compromise between dif-
ferent projections concerning the same vertex. In case of an anchor constraint,
the desired target position of a vertex is already known in advance, however,
as long as there are concurrent constraints, the resulting vertex position will
never perfectly coincide with the anchor’s location.

We improve on this in a simple but effective manner: by replacing soft
anchor constraints with hard Dirichlet constraints, we remove the N, anchored
vertices from the set of unknowns and thereby reduce the degrees of freedom
from the previously N, + N¢ simulated vertices to only the Ny unanchored
(“free”) vertices. To this end, we partition the vectors and matrices involved in
(2.13) according to these two kinds of vertices:

. Zf . yf . Mf 0 .
) () () e e

Note that Q, its sub-matrices and the projections p now no longer include
anchor constraints, allowing the global system from (2.13) to be replaced by
the reduced version

(672My + QfWQy) 2/ = 6t *Myy; + Qf W (p — Qi)

For systems involving a high number of anchor constraints, the above matrix
is considerably smaller than the original one. The absence of soft constraints
moreover improves the matrix condition [Botsch and Sorkine 2008]. Fur-
thermore, the anchor position is now perfectly preserved during simulation
and we can skip the local step for all anchors. In the following, the number
of simulated vertices N always denotes the number of unanchored vertices
N = Ny.
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There are typically two main types of processing units to execute the in-
structions of an algorithm: the central processing unit (CPU) and the graphics
processing unit (GPU) . The CPU is equipped with a few powerful cores that
are designed to handle a wide range of tasks in a very efficient manner. While
the parallel execution of different instructions is possible, CPU-concurrency is
limited to only a few tasks. Historically, the GPU is designed to compute the
graphical output where the same operation must typically be performed sev-
eral times (e.g., for each pixel of the screen, for each vertex/triangle of a mesh).
For this purpose, it is equipped with hundreds or thousands of lightweight
cores that are specialized to handle simple tasks in parallel. Nowadays, the
GPU’s extreme parallel potential is also leveraged for speeding up compu-
tations in many other fields apart from graphics, like physical simulations,
machine learning or bitcoin mining.

Due to the historical connection to graphical tasks, GPU-communication is
accomplished via shaders, small software modules specialized for the purpose
of rendering a scene. Alternatively, there are more general frameworks like
CUDA and OpenCL that are typically applied to more complex computational
tasks since they support high-level programming languages and offer more
flexibility than shaders. In this thesis, we decided to use CUDA due to its
superior performance compared to OpenCL [Su et al. 2012]. CUDA (Compute
Unified Device Architecture) was introduced by NVIDIA in 2006. They define
it as a general purpose parallel computing platform and programming model
for NVIDIA GPUs [NVIDIA 2021], allowing for the implementation and
execution of algorithms on the GPU using C or C++ as programming language.
To understand the design choices made during the implementation of our
skinning algorithm on the GPU (Section 3.2.3), we will explain the basic
concepts of GPU programming with CUDA in this section. For a more detailed
CUDA guide, we refer to the CUDA C++ programming guide [NVIDIA 2021].

In order to run some instructions on the GPU, they must be placed into
special CUDA functions called kernels. When launching (calling) a kernel, the
number of assigned threads Nt must be set. Thereby, the kernel code will be
executed Nt times in parallel (we will explain what “in parallel” means later).
Inside the kernel, an identifying index of the executing thread (thread ID) can
be accessed to assign the correct portion of the parallel task to it. Below, we
see a simple example kernel for adding arrays of float-values. Here, the thread
ID is used to assign a specific addition to each thread:

__global__ void add(float* a, floatx b, floatx c)
{
int id
clid]

threadIdx.x;
al[id] + b[id];
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Figure 2.6: Example of CUDA’s hierarchical thread and memory structure
with Np = 6 and Ny, = 64.

Threads are structured in so-called thread blocks that are organized in a grid
(see Figure 2.6). If a kernel is called, the number of threads per block Ny,
and the number of blocks Np in the grid (N7 = Ny, - Np) must be specified.
These thread blocks are managed by one or more streaming multiprocessors
(SM), where each of them is equipped with multiple CUDA cores to run
different threads in parallel. The quantity of available SMs and cores per
SM is dependent on the GPU. There is a limit to the maximum number of
threads per block (currently 1024 for all existing NVIDIA GPUs) and also
for the threads and blocks per multiprocessor that can be managed at the
same time (dependent on the GPU’s compute capability). The thread limit is
typically higher than the number of cores per SM to allow switching between
different threads (e.g., if one has to wait due to data access). If the number
of assigned threads/blocks exceeds this limit, the SM will start executing its
maximum quantity of blocks and load additional ones if a block is finished
(see Figure 2.7). Each SM splits the resident blocks into smaller sub-blocks
of 32 threads that are called warps. All threads in a warp execute the same
instruction at the same time, meaning that no thread of the warp will start with
the second instruction if another thread has not yet finished the first one (see
Figure 2.7). If there is a branching instruction, each branch will be serialized
within the warp, whereas different warps can execute different branches at the
same time. Due to the division of blocks into warps, it is advisable to choose
Nipp, to be a multiple of 32 and to avoid intra-warp branching if possible.

Calling a kernel does involve some overhead. Therefore, fusing multiple
kernels into one is preferable over launching many smaller kernels. The only
limiting factor is the need to synchronize threads to set some interim results
of one thread as input for another one. While threads of a warp are always
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=7 | o

Figure 2.7: Example for parallel execution in CUDA with two streaming
multiprocessors (SM) and a maximum of two resident blocks per SM. Each
thread of a warp executes the same instruction in parallel. If all threads of
a block have completed their tasks, the block is finished (right) and one of
the unfinished blocks (left) can be processed by the SM. The order of warp-
execution is determined by the SM.

synchronized, special synchronization points must be set to force threads of
a whole block to wait for each other. Devices of compute capability 7.0 and
higher also support thread barriers that allow GPU-wide or even system-wide
(for multi-GPU setups) synchronization. On older devices, the only option to
synchronize all threads in the grid is by ending the kernel and starting a new
one. In order to not restrict our approach to very modern GPUs, we will use
only block-wide synchronization in this thesis.

GPU-memory is also structured hierarchically. We will use the CUDA terms
host (CPU) and device (GPU) in the following. The first important thing to note
is that the GPU can just access device memory and not host memory. Therefore,
data has to be allocated on the GPU and must be transferred between host and
device. Since the data allocation is a costly operation, it should be performed
just once at the beginning of a program if possible. The same holds for data
transfers between host and device, which should also be minimized. In some
cases it is preferable to execute some serial task on the device to avoid data
transfers, even if the task itself would run faster on the CPU.

Device memory is divided into three basic types that differ in size and
access speed. First, each thread has its own local memory called registers to
store local variables. Read and write operations to registers are very fast but
most devices are limited to 255 32-bit registers per thread (compute capability
3.2 and higher) and no thread can access data from another thread’s register.
For that purpose there is shared memory, which is shared across the complete
thread block and limited to a few kilobyte per thread block (varying between
48 KB and 163 KB dependent on compute capability). Since shared memory is
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Figure 2.8: Example of memory coalescing with a reduced warp size of 4
threads (instead of 32) and 16 byte-sized cache-lines (instead of 128 byte). We
want to access the y-values of a 4-byte float array storing five 3D-positions.
Memory addresses are shown above. Top row: uncoalesced, three global reads.
Middle row: partially coalesced, two global reads. Bottom row: fully coalesced
(via padding), one global read operation.

also limited per multiprocessor, allocating a high amount of shared memory
reduces the number of thread blocks that can be handled by the SM, which
decreases performance. The majority of the device memory (some gigabytes)
is so-called global memory that can be accessed from every thread. However,
read and write operations are much slower here compared to the local and
shared memory. Therefore, access to global memory should be minimized as
much as possible.

When a warp accesses global memory, e.g., each thread reads a 4-byte
float, the access occurs by reading whole cache-lines (typically 128-byte-sized)
of data from the device memory. In the worst case, each float is located on
a different cache-line leading to 32 read operations (an example is shown
in Figure 2.8, top). In the best case, the floats are stored consecutively in
device memory and the first float’s address coincides with the start of a new
cache-line. Here, just 1 = 128/ (4 - 32) read access per warp is sufficient (see
Figure 2.8, bottom). This is called memory coalescing. Careful planning of
the memory layout is needed to perform as many coalesced global read and
write accesses as possible. This can also involve allocating additional memory
(so-called padding) for optimal coalescing (compare Figure 2.8, middle and
bottom).

In some cases the same data must be used in different parts of the algorithm,
each with its own optimal access pattern. Here, memory coalescing can still
be achieved with the help of shared memory. Shared memory is split into
memory banks: if different threads of one warp access variables residing in the
same bank, there is a so-called bank conflict and the access must be serialized.
There are as many banks as threads per warp (32), and ideally, each thread
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Figure 2.9: Example of trans-
posing data via shared memory
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accesses exactly one of them at the same time. As said before, accessing shared
memory is much faster than global memory. Therefore, it can be advantageous
to perform a coalesced read/write to global memory first, store the result in
shared memory, synchronize the block and read in the desired access pattern.
An example for transposing an array of 3D positions is shown in Figure 2.9.

There are also some specialized kinds of global memory called constant,
texture and surface memory. Constant memory is read-only and provides fast
access if all threads read the same address at the same time. Therefore, all
kernel parameters that are passed by value, like sizes of arrays or constant
parameters, will be stored in constant memory. Texture (read-only) and surface
(read-write) memory use a special texture cache optimized for data access
that provides some two-dimensional locality (e.g., parts of images or dense
matrices). This texture cache can also be beneficial in case of unordered access
patterns and is therefore an option if coalescing is not possible.

Summarizing the basic concepts of this section, the following steps are
important to keep in mind while optimizing GPU CUDA code:

* minimize data transfers between host and device

* minimize the number of kernel executions

* minimize global memory accesses

* optimize data layout for global memory coalescing

¢ if the access must be uncoalesced, try using texture or surface memory

We will make use of these guidelines when optimizing our skinning code in
Section 3.2.3.
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When it comes to real-time skinning in interactive applications, choosing
between existing skinning approaches often means sacrificing one desired
property for another. It seems that high performance, simplicity, a satisfying
quality and a low amount of input data cannot be achieved at the same time.
When building our own approach, we wanted to support advanced effects
like dynamic soft tissue jiggling and collision handling without sacrificing
real-time performance. Additionally, we aimed for a very simple, general and
robust approach for both model construction and animation. Moreover, our
method should yield convincing skinning results for a large variety of skin
meshes without relying on capturing a lot of training data or on professional
rigging expertise.

Our proposed approach, which we call Fast Projective Skinning (FPS), is able
to meet these self-imposed requirements. The process of generating our volu-
metric model is very fast and requires just a minimum amount of input, namely
the character’s skin mesh and its embedded skeleton. These models can be an-
imated using a physics simulation based on Projective Dynamics. Our method
simulates convincing soft tissue deformations, provides secondary motion ef-
fects and can even resolve arbitrary global self-collisions while still maintaining
real-time performance, even for detailed virtual characters. We achieve this by
deriving a highly optimized GPU-implementation of Projective Dynamics that
is able to dynamically add and remove collision constraints on demand. This
required us to switch from the established factorization-based Cholesky solver
to a custom-tailored GPU-based conjugate gradients solver, using a special ma-
trix representation supporting fast matrix-vector multiplications. GPU-based
FPS is therefore the first skinning approach handling arbitrary self-collisions in
real-time. On the CPU however, where factorization-based solvers still achieve
the best performance, we propose a more light-weight method for resolving
local collisions in proximity of joints. Furthermore, we develop an upsampling
technique to transfer the deformation from the lower-resolution simulation
mesh to the high-resolution visualization mesh, which further improves the
computational performance for both CPU and GPU simulations.

Fast Projective Skinning therefore enables real-time physics-based character
animation even for novice users. While we aimed for a simple and general
approach applicable for a large variety of input characters, we will also demon-
strate several options for intuitive customization of the skinning result. To
foster research in real-time physics-based character animation, our source code
is freely available for research purposes on GitHub.
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Individual Contribution The author of this thesis developed the Fast Projective
Skinning approach presented in this chapter. The whole process had been supervised
by Mario Botsch. The main contributions of the method are:

* the simple volumetric mesh generation approach

* the skinning algorithm based on this model that is able to produce convincing,
vivid animations in real-time

* a simple light-weight local collision handling approach

* the development of a highly optimized GPU implementation of the skinning
method allowing to handle arbitrary global collisions in real-time

* an advanced, fast, MLS-based upsampling approach, which further increases the
maximum level of detail for real-time skinning simulations
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3.1 RELATED WORK

In this section we discuss the most relevant related work on geometric,
example-based, and physics-based skinning as well as on Projective Dynamics
and upsampling. For more details on character skinning we refer the interested
reader to the course notes of Jacobson et al. [2014].

3.1.1 Geometric Skinning

Magnenat-Thalman et al. [1988] introduced Linear Blend Skinning (LBS), which
became the standard method to compute skeleton-driven skin deformations.
While easy to compute, LBS suffers from artifacts like volume loss in joint
regions or even collapsing joints in case of twisting bones. Many approaches
try to overcome these drawbacks, for instance by using example poses [Lewis
et al. 2000] or additional weights [Wang and Phillips 2002]. The artifacts in LBS
are caused by the linear interpolation of rotation matrices, which, in general,
does not result in a rotation. Dual Quaternion Skinning (DQS) [Kavan et al.
2008] uses dual quaternions instead of rotation and translation matrices to
overcome this problem. However, DQS suffers from unnatural bulges in the
presence of large rotations. More general skinning transformations [Jacobson
et al. 2012; Kavan and Sorkine 2012] lead to better results than LBS and DQS,
partly due to optimized skinning weights. Le and Hodgins [2016] reduce
the artifacts of LBS and DQS by finding an optimal center of rotation for
each vertex. Since these centers can be pre-computed, their performance is
comparable to LBS and DQS.

A common drawback of geometric approaches is their dependence on high
quality skinning weights, which either are complex to compute [Jacobson
et al. 2011; Kavan and Sorkine 2012] or require hand-tuning by skilled artists.
Automatic rigging methods avoid this problem, either by determining skeleton,
joints and skinning weights through optimization [Baran and Popovi¢ 2007],
or by transferring them from a high-quality template to the target model [Feng
et al. 2015], or recently, with the help of neural networks trained for the rigging
process [Xu et al. 2020]. While some methods require a closed two-manifold
target model [Baran and Popovi¢ 2007; Xu et al. 2020], the auto-rigging method
of Feng et el. [2015] can be applied directly to low-quality models, such as
“dirty” raw 3D-scans. Mancewicz et al. [2014] introduce a skinning approach
that does not depend on high quality skinning weights. They repair the
artifacts of low-quality weights by smoothing the surface in rest pose, storing
the offsets from smoothed to non-smoothed positions and applying them to
the smoothed result of the deformed pose. This approach is able to produce
convincing skinning results even for very simple weights (like the rigid binding
shown in Figure 2.2, left) but is rather slow. Li et al. [2019] highly optimize
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the approach and introduce two parameters that independently control the
behavior for bone bending and twisting. Their Direct Delta Mush approach
is able to skin a full detailed character in real-time but, like all the methods
mentioned so far, it does not include collision handling or dynamic effects.

There are a few geometric approaches that support collision handling to a
certain extent. Vaillant et al. [2013; 2014] tackle the problem by introducing
Implicit Skinning. They describe the skin by an iso-surface of an implicit
function and post-process the result of DQS or LBS by projecting vertices
onto their initial iso-values. This approach can handle self-collisions, however,
the projection produces unnatural results if the interpenetration is too deep.
Though the resulting skin deformation looks very convincing and can even
incorporate muscle bulging, it is rather slow and does not support dynamic
skin deformation effects. The Steklov-Poincare Skinning of Gao et al. [2014]
can handle collisions, but is also too slow and limited to static animations.

To enrich the geometric skinning result with dynamic secondary motion,
Zhang et al. [2020] build a physical simulation on top of the skinned animation.
They even incorporate collision forces but exceed the time-budget for real-time
animations by some orders of magnitude. Rohmer et al. [2021] propose a
more light-weight extension to a standard geometric skinning like LBS or
DQS that supports different jiggling effects with just a small computational
overhead. However, their method is more suitable for artistic, cartoon-like
dynamic effects than for realistic skinning.

3.1.2 Example-Based Skinning

Example-based methods try to learn the skinning deformation from a given
set of training examples. While some approaches learn corrective terms to an
underlying geometric skinning method [Lewis et al. 2000; Weber et al. 2007; Li
et al. 2021], other methods learn the whole skinning function [Anguelov et al.
2005a; Loper et al. 2015]. With the help of neural networks, even nonlinear
soft-tissue dynamics can be learned from training data, resulting in highly
dynamic animations [Casas and Otaduy 2018; Santesteban et al. 2020].

In the last few years, different hybrid models have been introduced that
are composed of a simulated FEM layer on top of a data-driven skinning
animation. Here, material parameters of the physically animated layer can be
optimized with the help of examples. The simulated layer allows for dynamic
motion effects and physics-based interaction [Kim et al. 2017] and can even
support nonlinear, anisotropic elasticity of the skin [Romero et al. 2020]. The
hybrid approach proposed by Tapia et al. [2021] uses a subspace to reduce the
simulation complexity and can thereby handle collisions with rigid geometric
primitives in real-time. Romero et al. [2020] support even complex skin-cloth
interactions but at high computational costs. Holden et al. [2019] show that
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surface deformations due to collisions with external objects can be learned by
a neural network. Nevertheless, there is currently no approach that handles
global self-collisions in real-time.

Another common drawback of all example-based methods is the need for
training examples, which either have to be modeled by a professional artist
or are obtained from 3D-scanning using expensive equipment. Moreover, the
trained model is specific to a certain topology of skeleton and skin mesh, and
changing either of these usually requires a re-training of the model.

3.1.3 Physics-Based Skinning

Physics simulations have also been used to compute convincing skin deforma-
tions. The main drawback of physics-based approaches are the often associated
high computational costs. For instance, Kavan and colleagues [Saito et al. 2015;
Kadlecek et al. 2016] simulate a biomechanical model of the human body,
and McAdams et al. [McAdams et al. 2011] propose a multigrid skinning
simulation that supports contact and collisions. Both give impressive results,
but are far too expensive for real-time scenarios. Capell et al. [Capell et al.
2002, 2005] achieved interactive frame-rates, but only by using a rather coarse
volumetric simulation mesh.

To simulate meshes of higher resolutions at interactive rates, Position Based
Dynamics (PBD) [Miiller et al. 2005; Bender et al. 2017] became a valuable
method in the last decade. PBD simulates elasticity by individually decreasing
local elastic energies and can be parallelized. Rumman et al. [2014; 2015] use
PBD to enhance the result of LBS. Although their results overcome the artifacts
of linear blending, they cannot handle self-collisions and their simulation
produces non-smooth transitions near joints. Pan et al. [2017] extends the PBD
skinning of Rumman et al. [2015] by solving local collisions. They initialize
each pose with the result of linear blend skinning and use PBD constraints
to enhance the result. Their method requires high-quality skinning weights
as well as a local smoothing step in the vicinity of joints, resulting in a loss
of detail in those regions. Bender et al. [2013] use a combination of PBD and
Shape Matching [Miiller et al. 2005] to simulate a three-layered character model,
featuring individual stiffness parameters for bone, fat, and skin tissue. While
their method produces convincing deformations and handles self-collisions,
the technique is too slow for real-time skinning. Moreover, it also depends on
high-quality skinning weights to construct the tissue layers and for an initial
LBS step. Roussellet et al. [2018] combines PBD with the Implicit Skinning
approach of Vaillant et al. [2013] to couple implicit muscles, rigid bones and
deformable skin. Their approach is remarkably fast considering the number
of handled collisions, but still too slow for interactive simulations of a full
character.
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3.1.4 Position-Based Local-Global Solvers

While PBD is very fast, it has the drawback that different constraints sharing
the same vertex can alternatingly project to different goal positions, resulting in
alternating jumps [Bouaziz et al. 2014a]. Furthermore, the order of individual
constraint projections can influence the result. Macklin et al. extend the PBD
approach to decouple the material stiffness from the time-step [2016] and
to support nonlinear elasticity models [2021]. However, their approach still
suffers from the above mentioned drawbacks. Bouaziz et al. [2014a] introduce
Projective Dynamics (PD) and show that PBD is a special case of PD. Their
method overcomes the artifacts of PBD and converges in fewer iterations,
however, it needs to solve a global linear system. Fortunately, the global matrix
is constant and hence can be pre-factorized in most cases. By decoupling
the constraint minimization from the positional update, the PD approach is
also easier to parallelize than PBD. Narain et al. [2017] and Liu et al. [2017]
noticed that PD can be interpreted as a special case of the alternating direction
method of multipliers (ADMM) or a quasi-Newton approach, respectively.
Their methods can handle more general nonlinear elastic models, but are more
complex to implement. Since Projective Dynamics shows clear advantages over
Position Based Dynamics while still being efficient and simple to implement,
we decided to build our skinning simulation on this method.

3.1.5 Accelerating Projective Dynamics

There have been different approaches to speed up Projective Dynamics solvers.
Wang [2015] uses a Chebyshev semi-iterative approach that leads to faster
convergence in case of large deformations. However, for numerical robustness
their method is not used in the first ten iterations of the PD solver. Since
our character simulations are highly constrained by the skeleton, ten or even
fewer iterations are usually sufficient to converge, such that their approach is
not applicable. Fratarcangeli et al. [2016] use a graph-coloring algorithm to
parallelize their Gauss-Seidel solver for the PD linear system (strictly speaking,
this results in a PBD system). But even with an optimal graph coloring, at
least all matrix rows corresponding to the one-ring neighborhood of a vertex
have to be processed sequentially, such that the GPU’s potential cannot be
fully utilized for medium-sized systems (like in our case). Peng et al. [2018]
employ Anderson acceleration to optimize the convergence of PD simulations.
Although this can lead to a drastic reduction of solver iterations in static
simulations, the effect is less apparent in dynamic simulations (such as our
Fast Projective Skinning), where less iterations are required. Li et al. [2019]
accelerate PD-simulations of coupled rigid and soft body parts, but their
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method does not apply to skinning applications, where bone transformations
are given as input instead of being simulated.

Brandt et al. [2018] use model reduction to simulate highly detailed mod-
els in real-time, achieving a massive speed-up compared to a simulation of
the original high-resolution mesh. Lan et al. [2020] use another reduction
approach based on the medial axis transform that also accelerates collision
handling. Xian et al. [2019] also leverages reduced models in a multi-grid
approach that substantially increases performance of PD simulations without
sacrificing accuracy. Model reduction can be considered complementary to
our acceleration approach and could lead to further speed-ups for very large
models if combined with FPS.

3.1.6 Upsampling

Most real-time physics-based animations perform the actual simulation on a
coarse simulation mesh, and transfer the deformation to the high-resolution
visualization mesh. Miiller et al. embed the visualization mesh into a coarse
tetrahedral [2004a] or hexahedral mesh [2004b] for simulation. However,
transforming the visualization vertices via piecewise (tri-)linear interpolation
can lead to visual artifacts. Using normal displacements of the simulation
mesh [Botsch and Sorkine 2008] can again lead to artifacts due to the piecewise
linearity, for instance in regions of high bending. We instead employ and
extend the moving-least-squares approximation of Martin et al. [2010], which
is guaranteed to be globally smooth and therefore leads to higher surface
quality of the upsampled visualization mesh. While Martin and colleagues
employ GMLS instead of MLS to avoid numerical problems, we achieve the
same effect by combining quadratic MLS with matrix pseudo-inversion, which
reduces both memory consumption and computation effort by a factor of ten.
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In the following sections, we explain our Fast Projective Skinning approach.
Beginning with the generation of volumetric meshes from minimal input
(Section 3.2.1), we will show how to animate the resulting models using
Projective Dynamics on the CPU (Section 3.2.2) or, alternatively, with our
much more efficient GPU solver (Section 3.2.3). The last two sections cover our
approaches on upsampling (Section 3.2.4) and collision handling (Section 3.2.5),
allowing simulations of even highly detailed character meshes in real-time
while handling both local and global collisions.

3.2.1 Generating a Volumetric Mesh

As pointed out earlier, physics-based simulations require volumetric models,
while characters designed by artists or acquired via scanning methods are
usually surface models. In order to keep the input of our approach as simple
as possible, we first construct the volumetric mesh from the character’s skin
surface and an embedded skeleton. This also enables us to optimize the
volumetric models with regard to our skinning method as explained in the
following.

Related methods typically compute a tetrahedral mesh that interpolates
the skin surface as its outer boundary and the skeleton’s bone lines in the
interior [Rumman and Fratarcangeli 2014, 2015]. We decided against this
approach since tetrahedral mesh generation (e.g., [Si 2015]) requires the surface
mesh to be closed and intersection-free, which is often not the case. For
example, virtual characters are often 3D-scans of real people, where difficult-
to-scan concave regions (e.g., crotch, armpits) can suffer from holes or self-
intersections. While the modern tetrahedralization approach of Hu et al. [2018]
robustly produces volumetric meshes even for complicated input surfaces,
self-intersecting regions in the input will be merged in the output (e.g., right
upper leg sticks to the left one). Moreover, their approach alters the surface
mesh which would require to re-compute all vertex attributes (e.g., texture
coordinates). To avoid tedious mesh repair sessions we aim at a volumetric
mesh generation technique that also works in such real-world cases.

The main problem with LBS and DQS is the unnatural behavior near joints
in presence of large rotations. In reality, the skin is stretched around the joint
while pressing against it, and, as a consequence, it slightly bulges out. Other
approaches try to approximate this behavior by correcting an initial LBS result
through additional constraints that preserve the distance between skin and
bone-line [Deul and Bender 2013; Rumman and Fratarcangeli 2015, 2014]. In
contrast, our method uses volumetric bones and joints that achieve this bulging
in a more natural manner without any corrective constraints. Changing size
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and placement of volumetric bones and joints enables intuitive control over
the skinning behavior for both static poses and dynamic jiggling.

The resulting method we propose for volumetric mesh generation is spe-
cialized for skinning models, very fast to compute, and provides an intuitive
correspondence between skin and skeleton. It consists of the following steps:
We first inflate the joint positions and line segments of the input skeleton to
true volumetric bones and joints. Second, we shrink the skin surface onto the
bone surface, such that each skin triangle and its copy on the bone surface
span a prismatic element, which we eventually split into tetrahedra.

Bones and Joints

We represent volumetric joints as spheres and volumetric bones as cylinders
with spherical caps, which connect the spherical joints at both endpoints of
the bone segment (see Figure 3.1b). In this representation both joints and
bones are easily defined by a single radius, are simple to compute, and allow
for efficient intersection testing. While some joints would more accurately be
described by ellipsoids, like for example the elbow, we choose spherical joints
due to their simplicity and computational efficiency. Compared to real bones
in living organisms, where even the slightest movement involves complex
contact scenarios of adjacent bones, our simple bone and joint structure avoids
skeletal self-intersections for a wide range of joint rotations.

The user may specify the joint and bone radii directly. Alternatively, we can
also derive them automatically from the skin mesh and the skeleton as follows:
the radius of each bone is set to 75 % of the bone’s closest distance to the skin
surface, and each joint radius is the maximum of all radii of its incident bones.
To ensure that two joints (radii 7; and ;) and the connecting bone (radius ry)
tit into one bone segment of length [;, the condition 1 +r; 4+ 2r, < [, must
be satisfied. In case of equality this results in a spherical bone (see hip bones
in Figure 3.1b). Wherever the volumetric bones do not fit the bone segment
lengths, we can fix this by scaling the associated bone and joint radii by a
factor of I,/ (r1 + r2 + 2rp). Unless otherwise mentioned, all FPS examples
shown in this thesis have been produced using this automatic approach.

Skin Shrinking

The region around joints is typically the area where large deformations occur,
especially at the gaps between neighboring bones. If we generated a tetrahedral
mesh that perfectly encloses the skeleton, tetrahedra in these regions would
be heavily stretched and inverted which causes numerical issues in physical
simulations. In real bodies there is a fluid lubricant instead of an elastic
material in the this area that ensures smooth joint motion. Therefore, we want
our volumetric mesh to wrap the skeleton tightly while leaving some free
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f)

Figure 3.1: Given a skeleton and a skin mesh (a), we automatically compute
volumetric bones and joints (b). Matching every skin vertex with its closest
point on the skeleton (c) leads to artifacts when shrinking the skin to those
vertices (d). Laplacian smoothing of the foot-points on the skeleton gives better
correspondences (e), which leads to good shrinking results (f).

space at the connecting joint areas. In other words, we aim for something like
a rubber-tube, enclosing the skeleton (see Figure 3.1f).

For this purpose, we shrink the vertices of the surface mesh down to the
volumetric bones and joints. Given a skin surface S with S vertices xj, .. ., Xxg,
the shrinking process results in a skeleton surface B wrapping the bones and
joints with S vertices x5, . .. ,xg . The goal is to find the vertex positions xlB
on the volumetric skeleton. To this end, we first find a point s; on the initial
(non-volumetric) input skeleton and then compute the intersection between
the line segment from x; to s; and the volumetric skeleton, finally yielding xiB.

The trivial approach, setting each s; to closest point on the input skeleton,
is not sufficient, as depicted in Figure 3.1c,d. Incorporating vertex normals
to determine the shrinking direction can improve the result, but fails for non-
smooth skin surfaces. In failure cases neighboring vertices x;, x; on the skin
mesh map to very different positions s;, s; on the skeleton.

The latter, however, can easily be corrected by Laplacian smoothing of the
base points s;. We iterate

A
si < si+AAs; = s+ N Y, (sj—si), 3.1)
JEN (i)
where N (i) denotes the one-ring neighbors (on the skin mesh) of vertex x;,
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Figure 3.2: Left: when smoothing the bone-line points s; (blue squares), the
specific s; corresponding to the vertex shown in the middle would be re-
projected (black arrow) to the position indicated by the blue circle. Right: a
better smoothing process can be achieved by first stretching out the skeleton
graph, maximizing each angle between neighboring bones. Note that the skin
(red) does just provide connectivity information and can stay unchanged. For
simplification, we use A = 1 in this example.

|N(i)| the number of neighbors of x;, and A € [0,1] a parameter to control
the smoothing speed (we use A = 1/2). Points at extremal leaf nodes (e.g.,
fingertips, toes) would move inwards during smoothing. However, the initial
s; is already the best correspondence in this case, and we can keep those
fixed. Note that Equation (3.1) does not constrain the points s; to lie on a
bone-line after smoothing. We therefore project the updated s; back to the
skeleton after each iteration. If there is a small angle between two bone-lines
(e.g., at the crotch in a T-Pose), the process can fail to produce a smoother
result, as depicted in Figure 3.2, left. To solve this problem, we stretch-out all
bone-lines to the maximal angle (meaning 180° for two connected bones, 120°
for three, etc.) and move the initial s; along with their bone-line. In that way,
the distance of the back projection is minimized (see Figure 3.2, right). We also
experimented with computing the smoothed result directly on the bone-line
manifold. However, while this is computationally more expensive, we found
no significant gain in quality compared to the iterative approach.

This smoothing process allows the base vertices to slide along the skeleton
(also across joints) and is iterated until convergence. It yields a point distribu-
tion where neighboring skin vertices also have neighboring skeleton points (see
Figure 3.1e) and we can now undo the limb-stretching step. The intersection
between the line from x; to s; and the primitives of the volumetric skeleton
defines the final points x® of B. In the region between spherical joints and
cylindrical bones, we test for intersection with a conical frustum connecting
the two. Further details and illustrations of the intersection test can be found
in the Appendix A. The resulting shrunken skin is depicted in Figure 3.1f.

Our choice of constructing volumetric bones/joints has important benefits.
First, attaching the inner tissue layer to a volumetric bone naturally prevents
the tissue from unnatural twisting around the skeleton. In contrast, when
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Figure 3.3: A twisting motion
is applied to the right leg bone
to turn the knee (red circle) out-
wards. If we use non-volumetric
bones, elements can twist around
their bone-line and undo the
transformation, as apparent on
the left. Volumetric bones (right)
naturally resolve this issue.

connecting the skin to a bone-line, as done for instance by Rumman [2014;
2015] and Capell [2002; 2005], a twisting of the bone-line is not noticed by
connected elements, resulting in an unnatural deformation (see Figure 3.3),
unless particularly prevented [Capell et al. 2005]. Second, effects like skin
bulging and stretching at bent joints can be achieved in a natural manner, as
described in Section 3.2.2.

Volumetric Tissue Mesh

The skin shrinking results in an inner skeleton surface B (for bones) and
an outer skin surface § with identical vertex connectivity. The volumetric
skeleton is wrapped by B (building the skeleton layer) and the soft tissue
layer is enclosed between B and S. Each outer triangle (xi,x]-, x;) on the
skin surface together with its corresponding inner copy (x?, x]B, xP) spans a
volumetric element, which we call prism with slight abuse of notation. Each
prism can be split into three tetrahedra (Figure 3.4, top). The lateral surface
of a prism consists of three quads. In the general case of non-planar quads,
their segmentation into triangles can be accomplished in two ways, each
resulting in a different surface. Therefore, we cannot tetrahedralize each prism
individually, but must instead split the joined quad of neighboring prisms in
the same direction. Ignoring this can lead to artificial gaps or overlaps in the
terahedral mesh. Avoiding gaps is especially important for collision detection,
which would fail at holes in the volumetric mesh. For this purpose, we must
find a valid splitting configuration by defining splitting directions. We indicate
these by arrows on the skin surface (one per edge). Each arrow points to the
vertex connected to the quad’s splitting diagonal (Figure 3.4, bottom left). Our
goal is now to find a valid arrow-configuration. Due to the symmetries in the
prisms’ structure, the only two invalid states (per prism) are pure clock-wise
(cw) or pure counter-clock-wise (ccw) orderings of the arrows. Since six of the
eight configurations for a triangle are valid and each invalid configuration can
be turned into a valid one by simply flipping one edge direction, there is an
efficient solution to this problem: We start by choosing a random direction per
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Figure 3.4: A volumetric prism
element is spanned by each tri-
angle of S and the correspond-
ing triangle of B (top left). Each
of these prisms can be split into
three tetrahedra (top right). When
dividing the prisms, we must split
each pair of connected lateral sur-
face quads in the same way. We

indicate this splitting direction
‘k (dashed line) by an arrow on the
top triangle (bottom left). Starting
with random directions, we itera-

tively rearrange the arrows until
A we find a valid splitting configu-
ration (bottom right).

edge. As long as there is an invalid (cw or ccw) triangle state, we randomly flip
one of its edge directions until the complete mesh is in a valid state (Figure 3.4,
bottom right). Guided by the resulting arrow configuration, we can compute
a tetrahedral mesh without overlaps or holes. For a surface mesh with F
triangular faces, this leads to a volumetric mesh with 2S5 vertices, F prism
elements, and T = 3F tetrahedra.

3.2.2 Coupling of Skeleton and Skin

The generated two-layered volumetric models are now ready to be animated
through a Projective Dynamics simulation (see Section 2.2). This can be broken
down into three simple steps:

* First, given the joint transformations of an animation frame, we rigidly
transform the volumetric bones and joints of the skeleton.

* Second, the surface B is moved along with the new skeletal pose by
attaching its vertices xlB to the volumetric skeleton via anchor constraints.
As shown in Section 2.2.3, we can also treat these as hard constraints.

e Third, the movement of the skeleton surface results in a deformation
of the volumetric elements in the soft tissue layer. By penalizing this
deformation via strain constraints, the skeletal motion finally results in
the motion of the skin.

While the anchoring of the second step is straightforward for vertices lo-
cated on cylindrical bones, vertices on spherical joints require special treatment
to achieve realistic skinning results. When anchoring vertices of the skeleton
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Figure 3.5: When joints rotate with the full transformation of their child
bone, the shrunken skin (red vertices) experiences large stretching on one
side (bottom left). Rotating the joint by the average of the incident bones’
transformations avoids this problem (bottom right).

surface x? at spherical joints, the joint transformation should be chosen as
the (quaternion-blended) average of the two incident bones’ transformation,
instead of the full transformation of the child bone. Otherwise large stretchings
occur at one side of the joint that lead to artifacts in the skin deformation, as
depicted in Figure 3.5.

However, a rigid motion just poorly mimics the natural behavior. The
bending increases the area on one side of the joint. We would therefore expect
that the skeleton surface stretches on this side and compresses on the other
one. Furthermore, the stretching should affect a larger region around the
joint. In a real body, muscles are attached to the bones via tendons and they
compress or stretch to induce a bending of the joint. We want to inversely
model this by compressing and stretching the soft tissue mesh at a bent joint.

To achieve this, we define virtual anchor points on the child and parent
bones as well as on the joint (2D example in Figure 3.6, blue dots). In 3D, those
anchor points are determined as rings of evenly sampled vertices around the
perimeter of the bone/joint. Every vertex x° in between the bone and joint
anchors (red points in Figure 3.6) is represented as a linear combination of four
anchor points (two on the nearest bone and two on the joint). These anchors
are rigidly transformed along with bones and the half-rotated joints, and their
assigned vertices x? are transformed by re-applying the linear combination.

The interpolated position can penetrate the volumetric skeleton, therefore we

Figure 3.6: Vertices of the shrunken skin in the vicinity of joints (red dots)
are transformed by linear interpolation of anchor points on the skeleton (blue
dots), followed by a projection onto the volumetric bones/joints. In that way,
the outer part is stretched, while the inner part is compressed.
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Figure 3.7: Comparison of sticking vertices of the shrunken skin to bones and
joints (left) and our skin sliding (right).

additionally project it onto the surface of the volumetric bones and joints. This
nicely mimics the desired skin sliding behavior around joints and also gives
better results for clothed models (see Figure 3.7).

3.2.3 GPU-Based Projective Skinning

In this section we will derive an efficient parallel GPU implementation of our
skinning approach. For this purpose we summarize all steps contributing to
one rendered frame of a skinned character in Algorithm 3.1, and note which
elements can be processed in parallel for each step. As motivated in Section 2.3,
data transfers between CPU and GPU should be minimized. Therefore, we
move as many of the steps to the GPU as possible. Most of them are easy

Algorithm 3.1: Per frame FPS algorithm

1: update transformations # per joint
2: update base points # per vertex
3: update PD momentum # per vertex
4: for Npq iterations do
5: PD local # per constraint
6: PD global # per coordinate
7: end for
8: update PD velocity # per vertex
9: update face normals # per face
10: update vertex normals # per vertex
11: render frame
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to parallelize: The updates of lines 2, 3, 8, 9 and 10 can be processed with
one thread per element (vertex/face). The local step (line 5) can be computed
using one thread per projection. Note that there are hybrids of OpenGL vertex
array objects and CUDA arrays, which allow to directly render the kernels’
results (line 11) without additional data transfers.

The remaining steps involve updating all joint transformations based on
the current pose and solving the global linear system. The computation of
global transformations Gy is highly recursive (see Equation (2.2)) and therefore
hard to parallelize efficiently. Moreover, the low number of joints (typically
less than a hundred) is further limiting the potential for parallelization. Thus,
evaluating the T on the host and transferring them to the device has shown
to be faster than a slightly parallel GPU implementation. The last critical point
left is the global step (line 6), which we discuss in the following.

GPU Conjugate Gradients

The global step of Projective Dynamics involved in our skinning simulation
requires solving a linear system (see Equation (2.13)). The system matrix
A=06"2M+Q'WQis sparse, symmetric, positive definite and constant, such
that its sparse Cholesky factorization can be pre-computed. Moreover, we can
solve for the three spatial coordinates in parallel, leading to an efficient global
update on multi-core CPUs. This situation changes considerably if the matrix
has to be updated frequently (e.g., due to collisions) and thus needs to be
re-factorized or if the method is to be implemented on the GPU.

The forward and backward substitutions involved in the two triangular
systems of a Cholesky solver are inherently sequential algorithms. While there
exist some ideas for GPU parallelization [Naumov 2011; Liu et al. 2016], solving
medium-sized, sparse, triangular systems is still faster on the CPU. To avoid
the computational bottleneck, we employ a preconditioned conjugate gradients
(PCQG) solver instead. This iterative solver consists of a matrix-vector product
and three dot products per iteration, which both can easily be parallelized.
Furthermore, the solution of the previous FPS time-step can be used as an
initial guess in the iterative solver, reducing the number of required iterations.
We aim for a GPU-based PCG solver that is faster than the CPU-based multi-
threaded pre-factorized sparse Cholesky solver of Eigen [Guennebaud et al.
2018], which is faster than Eigen’s CPU PCG solver.

There already exist several implementations of general PCG solvers on
GPUs [Bolz et al. 2003; Buatois et al. 2009]. CuSPARSE is part of the CUDA
toolkit and provides all functions for building a GPU-based PCG solver, i.e.,
sparse matrix-vector multiplication, vector-vector multiplication, and vector
addition. Unfortunately, this straightforward approach results in many CUDA
kernel calls, which due to their computational overhead decreases perfor-
mance. A considerably faster approach was proposed by Weber et al. [2013],
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Algorithm 3.2: Solve Ax = b with PCG using preconditioner J

Input: Initialize x with solution of previous time-step

1. r< b— Ax

2 d ]rT } Init-Kernel
3 y+dr

4: for Npcg iterations do

5: <y

o 1< ATd Kernel 1
7 vd q

8: v n/v

9: X <+ x+vd
10: r<r—uvq Kernel 2
11: v = rT]r
12: T < ’)//17
13: d«r+1d } Kernel 3

14: end for

which uses just one initialization kernel and three kernels per PCG iteration.
MAGMA [Anzt et al. 2014] is a linear algebra library that also provides a PCG
solver with minimized kernel invocations. However, being optimized for large-
scale linear systems, MAGMA is about two times slower than a CPU-based
sparse Cholesky solver for our medium-sized matrices of a few thousand
unknowns.

We therefore developed our own CUDA-based PCG solver that minimizes
the number of kernel invocations and employs a special matrix format to
optimized coalesced data access (as motivated in Section 2.3). The algorithm
uses an initialization kernel and three kernels per PCG iteration similar to
the approach of Weber et al. [2013], as shown in Algorithm 3.2. We use a
Jacobi preconditioner J, which is simply the inverse of the diagonal part of
A. Note that a further reduction to fewer kernels is not advisable, since all
threads have to be synchronized after each inner product and a global thread

synchronization within kernels is only supported by CUDA on very modern
GPUs.

Matrix and Vector Storage

As explained in Section 2.3, the performance of modern graphics hardware
is limited by memory bandwidth rather than by computing operations. Opti-
mizing memory access is therefore the most important factor when aiming for
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optimal performance. Read and write operations to global GPU (device) mem-
ory should be avoided where possible. The remaining accesses should be done
in a coalesced way (see Figure 2.8). The most expensive step in Algorithm 3.2
is the sparse matrix-vector multiplication, where sparse matrix formats can
reduce memory consumption, memory accesses, and computing operations.

The performance of the multiplication relies heavily on the way we store
the sparse matrix. It is important to reduce the required number of read
operations by either directly choosing a format that takes less memory or
by coalescing the data-accesses. The compressed row storage (CRS) matrix
format matches the row-wise access pattern of PCG and hence is frequently
employed. It stores the non-zero matrix entries in a row-wise manner as an
array of values, an array of corresponding column indices, and a third one
containing the number of non-zeros per row. For CRS-based matrix-vector
multiplication, a thread operates on a complete matrix row and thereby, each
thread accesses a different number of elements in an uncoalesced way (see
Figure 3.8, left). In order to achieve a constant number of elements per row,
the ELLPACK (ELL) matrix format uses a per-row padding with zero elements.
Additionally, the entries are stored in a column-wise manner resulting in a
coalesced access (see Figure 3.8, middle). Here it is important to know how
many non-zero elements per row typically occur in our FPS system matrix.
This depends on the number of edges incident to a vertex, which in turn
depends on its valence in the skin mesh as well as on the tetrahedralization of
its incident tissue prisms. For a typical character mesh, this results in about
4-19 non-zeros per row. Using the ELL format, we would fill-up each row
with zeros to get 19 elements, leading to many unnecessary data accesses.
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Figure 3.8: Access patterns of different matrix formats demonstrated with a
simple example using 4 threads. In CRS sparse matrix format, data is stored
row-wise. If we use one thread per matrix row, the access pattern will be
uncoalesced (we use a different color per accessing thread). The ELL format
uses zero padding, and column-wise storage to support coalesced access. Our
format is a combination of both formats to reduce zero padding while still
guaranteeing coalesced access. Furthermore, we store diagonal elements first
since these are needed for our preconditioner.
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Bell and Garland [2008] solve this problem by combining the ELL format
with the COO (triplet) format, but their approach needs two kernels for
one matrix-vector multiplication. Guo et al. [2016] use a hybrid CRS/ELL
format also using a separate kernel for each part. Weber et al. [2013] instead
employ the zero-padding for each thread block individually by computing
the maximum number of non-zeros per row for each thread block. There
are a lot of other proposed formats that optimize the ELL or CRS formats,
like ELL-R [Vazquez et al. 2009], sliced-ELL [Monakov et al. 2010], as well
as BCRS [Buatois et al. 2009], CRS-T [Yoshizawa and Takahashi 2012], and
CRS SIC [Feng et al. 2011]. In all these approaches, performance benefits come
at the price of additional data that has to be stored, the need to reorder matrix
rows, or the usage of more than one thread per row or multiple kernels per
matrix-vector product.

We propose a combination of ELL and CRS format that requires no addi-
tional zeros and supports a completely coalesced global memory access. The
key idea is to utilize shared memory which can be accessed by all threads
of a thread block and provides faster access than to global memory. Each
row is processed by one thread. We use the ELL format for the first ngy
row entries, set to the minimum number of non-zeros per row, and store the
remaining row elements in CRS format. These are read using a coalesced
access pattern, multiplied by the vector element, and stored in shared memory.
This enables us to employ the complete thread block for reading the data
of all corresponding rows instead of just one thread per row (see Figure 3.8
right). The thread block processes as many rows as there are threads per block.
While the number of values per row can differ largely between consecutive
rows, this variance is much smaller for blocks of rows. After synchronizing
the thread block, the products are read, summed up, and stored in global
memory by the thread that is processing the corresponding row. The overhead
produced by the usage of shared memory is compensated for by coalescing
and distributing the global reads more equally. The major difference to the
hybrid formats of Bell et al. [2008] and Guo et al. [2016] is that we first read
the complete CRS part of a block into shared memory before adding it to the
result instead of doing this in smaller chunks, allowing us to perform the
complete matrix-vector multiplication in a single kernel.

So far, we focused on access patterns for the matrix A but not for the vector
x. Considering that the vector access patterns are hard to predict and exploiting
that the vector is accessed read-only, we bind x to texture memory for the
multiplication, as its cache accelerates random accesses. The three different
spatial coordinates (columns of x) could be processed separately, leading to
3N threads that could work in parallel to compute the N-dimensional matrix-
vector product. However, in that case the same matrix elements have to be
read three times, which for our matrix dimensions is slower than processing
the three coordinates in a single thread.
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Table 3.1: Timings (in ps) for sparse matrix-vector multiplication Ax using
different matrix formats. A is the FPS skinning Matrix of a high-resolution
character mesh (30k simulated vertices). The last four cases use texture memory
to speed up the random access into x. The CPU version is implemented with
Eigen and parallelized using OpenMP. In the 3D case, we process all three
spatial xyz-coordinates of x by one single thread. Hardware specifications can
be found in Section 3.3.

1D 3D
Method timing speedup timing speedup
CPU 382 1 503 1
cuSPARSE 9.1 42 12.6 40
CRS 6.9 55 10.6 47
ELL 12.7 30 14.5 35
CRS + ELL 5.5 69 9.1 55
Ours 42 91 7.7 65

A performance comparison for the PCG matrix-vector multiplication is
shown in Table 3.1. In the following we analyze the impact of the different
optimizations. First, using the combined CRS/ELL format and handling spatial
coordinates separately, the matrix-vector product Ax takes 18.7 us. Handling
all three coordinates in one thread then improves performance to 11.6 ps. Using
texture memory to store the right-hand side yields 9.1 us (corresponding to
the ‘CRS + ELL’ entry), and using shared memory to distribute/coalesce the
operations on the CRS part finally results in the 7.7 us reported in Table 3.1.

A drawback of our format is that we have to allocate a high amount of
shared memory to store all CRS-values of the thread block. Since we cannot
specify an individual amount of shared memory for each block, we have to
allocate the maximum of all blocks. Shared memory on our device (GTX
2080 TI, compute capability 7.5) can use up to 64 kB per block and the same
amount per multiprocessor. Each multiprocessor can run up to 16 blocks with
a maximum total of 1024 threads in parallel. Hence, even if we reduce the
block-size, there is a limitation for the size of the CRS part of 16 non-zeros
(64kB/ (4B -1024)) per row on average in the CRS matrix. If we exceed this
limit, less rows can be processed in parallel or we have to extend the ELL part
of the matrix, which leads to additional zero-padding. This can be observed in
Table 3.1 for the 3D timings. Here, we have to allocate three times as much
shared memory, which leads to a smaller performance gain compared to the
1D case. Note that for small matrices, like we typically use for our character
skinning (about 4k rows), the matrix-vector multiplication is dominated by
the overhead of calling the kernel, and the performance difference between
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the individual formats becomes very small. Using only one kernel is thus
the most important factor and disqualifies other, more sophisticated matrix
formats for our application. Our format turned out to be a good trade-off
between performance, memory consumption, and simplicity.

For scalar products we use a standard approach. Each multiplication is
processed by a different thread and the result is stored in shared memory.
After a block-wide synchronization, the first thread of each block does the
summation of the block’s elements and adds the result to global memory by
an atomic operation.

Like we already explained in Section 2.3, we can use shared memory
to maximize the number of coalesced accesses. Besides our approach for
matrix-vector multiplication, another important example of this is the local
step, where we store and read 3 x 3 blocks of our 3 x P matrix P, holding the
optimal rotations. Both column and row-major storage of P is not optimal
in this case. We need to transpose the data to a 9 x P/3 format to maximize
coalescing. On the other hand, P is part of the right-hand-side term of the
global step, for which the original 3 x P format is optimal. Here, we use shared
memory to rearrange the data (see Section 2.3) as well as in many similar
cases. For further details, we refer to our freely-available implementation of
Fast Projective Skinning on GitHub.

3.2.4 Upsampling

Like many physics-based simulations, Fast Projective Skinning does not use the
full high-resolution mesh for simulation. Instead, the simulation is performed
on a coarse-resolution simulation mesh and then propagated or ‘upsampled’ to
the original high-resolution visualization mesh (see Figure 3.9 and Video V.2).
If we use a proper upsampling approach, the resulting deformation should
be of similar quality as the result of a full-resolution simulation. To explain

Figure 3.9: FPS-simulations on a coarser version of the input mesh (left) allow
for a much faster skinning (middle). Our highly efficient upsampling approach
now transfers the fine-scale details from the detailed visualization mesh to the
coarse posed result (right).
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Figure 3.10: When upsampling the
/A\__.\v/ red mesh to the black one using pre-
computed normal displacements of
the undeformed meshes (top), each
vertex only takes the transformation
of its assigned red segment into ac-
count (bottom left). Our MLS up-
sampling estimates deformations us-

ing multiple segments leading to
smoother results (bottom right).

our upsampling strategies, we will use the index i for properties of the coarse
simulation mesh (vertices x;, normals n;) and the index j for properties of the
high-resolution visualization mesh.

For that purpose, we first tried using normal displacements [Botsch and
Sorkine 2008]. Since we generate our decimated meshes by applying successive
halfedge collapses on the original mesh using a quadric error metric [Garland
and Heckbert 1997], each vertex x; of the original fine-scale mesh is either
at the same location as a vertex of the coarse mesh x;, or can be assigned to
its closest coarse triangle. In rest-pose, we project x; onto this triangle and
store the projection via barycentric coordinates as well as the distance from the
projection to x;. In order to compute the high-resolution result in a deformed
pose, we re-apply the barycentric coordinates and normal displacements to
the skinned coarse mesh. In regions where the deformation is close to a pure
rotation and translation, this perfectly reproduces fine-scale details. However,
using normal displacements can lead to artifacts in regions of strong bending,
where normal displacements do not recover a smooth high-resolution mesh.
This problem is sketched in Figure 3.10 and shown for the shoulder region in
Figure 3.11d.

Inspired by Martin and colleagues [2010] we instead employ a moving-
least-squares (MLS) approach to upsample deformations. We will explain our
MLS-based upsampling in the following but refer to Fries and Matthies [2004]
for more details on MLS interpolation in general.

Upsampling approaches operate on vertex displacements u(x) = x — X,
where the bar notation is again used to distinguish the rest pose position
from the current one. The displacements of simulated vertices u; = u(x;) are
known and can be upsampled to u(x;) by fitting a local affine transformation
A€ R34 through weighted least-squares minimization

2 (3.2)

min Zw(Hij —xi||) ||Ajp &) — u

]
T ey T
where ¢(x) = (1,x,y,z) transforms a position x = (x,y,z)" into a vector of
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linear monomials and w : [0,00) — [0, 1] is a smooth weighting function

w(r) = {(1 e 33)

0 otherwise,

with p defining the support radius of the MLS kernels. For short notation we
define wj; = w(||Xj —X||) and ¢ = P(X¢), k € {i,j}. Minimizing (3.2) with
respect to A; results in

A] = Zwijuil[JITKj_l with (3.4)
i

K] = Zwljll)zlp;r (3.5)
i

Applying the transformations A; to the high-resolution vertex monomials
results in the high-resolution displacements

i
Realizing that everything but u; only depends on rest-pose properties, we find
uj = ZuiNij with (3.7)
i
_ Tic—1
Nij = wijpp; K; "¢, (3.8)

where the Nj; can be pre-computed. This results in a simple and perfectly
parallel update rule (3.7) for the visualization vertices x;.

We deviate from the standard MLS interpolation in three ways. First, using
a Euclidean distance metric for the weight function requires special treatment
when surface parts (e.g., inner thighs) come close [Martin et al. 2010]. We
therefore employ the geodesic distance w.r.t. the skin surface, computed through
the approach of Kimmel and Sethian [1998].

Second, we switch from linear to quadratic polynomials, i.e.,

P(x) = (1,x,y,z,xx,yy,2z,xy, xz,yz)T.

This allows us to locally reproduce linear and quadratic transformation, which
yields more faithful reconstructions in regions of strong bending (see Fig-
ure 3.11).

Third, in degenerate situations (Figure 3.11c) where K is not invertible
(when the points x; lie on a plane or quadric) the system can either be under-
constrained (x; lies on the same plane or quadric) or has no solution. The
first case can be solved by replacing the inverse K~! by the Moore-Penrose
pseudo-inverse G*. We further enhance the numerical robustness by mean-
centering and scaling the points x; within the support radius p (as well as
the point of evaluation x;) to the unit sphere. The second case is very rare
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Figure 3.11: Different examples of our upsampling. Linear (2nd column)
and quadratic (3rd column) MLS upsampling using k = 8 (b),(c), 16 (e),(f)
and 32 (h),(i) vertices of the simulated low-resolution mesh (a). For small
k-values, matrix K (3.5) can become ill conditioned (see (c)). Using a quadratic
approximation leads to smoother result and less distortion of the simulated
vertices. Normal displacements (d) are not able to produce a transition from a
straight to a curved region. (g) shows the result of a direct simulation of the
high-resolution mesh. This example corresponds to the model ‘human low” in
Table 3.2.

but can be provoked by using a unreasonably small support radius p and
meshes with many regions of perfect planes or quadrics. In those cases, we
fall back to the linear or constant representation of the 1(x) at the price of
sacrificing quadratic or linear precision. Since our upsampling is very efficient,
increasing the size of p is usually the best option to solve these issues while
the introduced overhead is negligible.

Due to the partition of unity and linear reproduction of MLS shape func-
tions [Fries and Matthies 2004], the MLS upsampling weights N;; perfectly
reproduce the initial mesh x; = };x;N;;. Similarly, we can derive that there is
no need to compute the displacement field u(x). We can instead directly use
vertex positions since

Xj = )_(]' + uj = )_(]' + 2 (Xi —)_(i) Ni]' = inNij + ()_(] — Z)_(iNi]) . (3.9
i i i

:ul

-~

=0

The implementation of this upsampling approach in CUDA is simple. Working
with positions (3.9) instead of displacements (3.7) is a massive reduction of
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Figure 3.12: Our MLS-upsampling generates smooth deformations (middle)
even in case of simulation meshes of very low-resolution (left). If we use
quadratic polynomials to approximate deformations, the upsampling does not
result in severe volume losses (right).

memory accesses. To simplify the kernel even more, we use a fixed number k of
nearest neighbors x; for each x; (we found k = 20 to be sufficient). The radius
p in (3.3) is set to the distance of the (k + 1)st nearest neighbor for each vertex
individually. Two neighbor indices can be fused into one 4-byte-integer as long
as the simulation mesh has less than 2!¢ vertices to reduce memory reads even
more. Additionally, the access to both indices and Nj; can be performed in a
coalesced way. Reading the low-resolution positions is highly unordered and
can thus be accelerated by using texture memory (see Section 2.3). Figure 3.11
compares quadratic and linear MLS upsampling with different values of k.
Increasing k produces smoother results but in case of linear MLS it also leads
to over-smoothing near joints, whereas quadratic MLS can better reproduce the
deformation. In Figure 3.12 we use a very high-resolution visualization mesh
to demonstrate that our MLS-upsampling converges to a smooth deformation
even if the coarse deformation has very few faces in the deforming region.

Updating vertex normals of the deformed visualization mesh, typically as
a weighted average of incident triangles” normals, is another computational
bottleneck. We extend the approach to use MLS upsampling for normal
vectors, simply by substituting ¥ (x) with ¥ (n) in (3.5) and (3.8). This results
in different weights N,-]- through which we can compute normals as

v () /|y

Our experiments revealed linear MLS to be sufficient for normal interpolation.
The resulting interpolated normals differ slightly from re-computed normals
in non-rigidly deformed regions, but the difference is visually negligible.

The MLS-based upsampling of vertex positions and normals produces a
computational overhead of just 1-2% when using five times more vertices
in the visualization mesh and k = 20 MLS neighbors. On the CPU, this
upsampling approach is about twice as fast as using normal displacements.
The GPU implementation of MLS upsampling is another ten times faster than
its CPU version.
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3.2.5 Collision Handling

Proper collision handling greatly improves the realism of any skinning method.
It is commonly done in two steps: (i) detecting colliding vertices and (ii)
moving these vertices to resolve the collisions. Despite the large body of
research on fast collision detection and response, collision handling is still a
very time consuming part of soft body simulations due to the high quantity of
primitives that must be tested for collisions.

On the CPU, where the skinning simulation already takes up a large portion
of the frame time budget, our idea was to pre-compute a conservative set of
potentially colliding vertices. However, human anatomy provides way too
many possibilities for collisions, which would result in a prohibitively large
set of potential collisions pairs. In order to still enable real-time animations
on the CPU, we distinguish two types of collisions: local collisions occurring
in proximity of joints (e.g., elbow or knee region) and global collisions (e.g.,
hand touches belly). In contrast to the high quantity of possible global self-
collisions, there are just a few important regions in which local collisions
occur. Moreover, for a local collision at a specific joint, the same two skin
patches collide each time (e.g., a part of the upper leg and one of the lower
leg at the knee). In a pre-processing step, we can therefore find and store
these potential collision pairs, consisting of one vertex from each patch, by
simulating a set of extreme skeleton postures. Thereby, local collisions can
efficiently be tested and resolved at run-time. For the latter we propose a
method to enable/disable collision constraints in the PD simulation while
avoiding the costly re-factorization of the global system matrix. This CPU-
based local collision handling is explained in the first part of this section.

On the GPU however, the high efficiency of our Fast Projective Skinning
simulation allows us to employ a full global collision handling instead. Fur-
thermore, when using our iterative PCG solver, updating the global system
matrix does no longer require a costly re-factorization but just a simple update
of the system matrix. This global collision handling approach is detailed in
the second half of this section.

In both cases, collision detection is done on the CPU using point-in-
tetrahedron tests accelerated by spatial hashing [Teschner et al. 2003]. If
we used the tetrahedra of our volumetric model, all collisions inside of the
skeleton surface B would not be detected. To solve this issue, we construct a
different set of tetrahedra between the skin surface S and the already com-
puted base points s; on the bone-lines. Thereby, the complete interior of the
animated character is covered by tetrahedra and no collision will be missed.
Furthermore, the s; of many triangles lie on the same line, causing one of the
three prism’s tetrahedra to degenerate. We detect and exclude these from the
point-in-tetrahedron tests, leading to an overall faster collision detection.
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CPU-Based Local Collision Handling

In order to collect potential collision pairs, we simulate a set of extreme poses
that have been manually designed to provoke different types of collisions in
the regions of interest (elbows, shoulders, hip/crotch, knees). During these
(offline) simulations we use standard collision detection as explained above.

Each of these individual simulations has two responsible bones and one
joint (e.g., upper arm, lower arm, elbow joint). We denote the normalized
vectors in directions of the bones starting from the joint by b;, b; and the
joint’s position by j;; (see Figure 3.13). We divide all colliding vertices into two
groups C1, C; corresponding to the two colliding skin patches. To this end,
we first find the colliding skin vertex x, that is closest to jij- We compute a
normal n;; = (x. —jij) % (b; X bj) and split the colliding vertices into C; and
C> using the plane defined by j;; and n;;. Note that the vertex x, is identified in
the extreme colliding pose, but the actual splitting is performed more robustly
in a collision-free posture, typically the rest pose. For the two patches C; and
C> we determine collision pairs (x;,x;) by finding for each vertex x; € C; the
closest vertex x; € (3, now again in the colliding pose.

During the real-time skinning simulation, we test all stored potential col-
lision pairs using a custom-tailored procedure aiming at high performance.
Our approximate collision test for a specific potential collision pair entry
{x;, xj,bi,bj,ji]-} works as follows. We project the points x; and X; into the
plane spanned by j;; and b;, b;, and denote the projecting function by 7, (x).
We report a collision based on the angles in the 2D planar configuration shown
in Figure 3.13:

T ) T )
Sc = cosa—cosB = bi (np(xi)_]ij) b; (”P(xj) _]ij)

If oc is negative, i.e., « > B, we report a collision and setup an unilateral
collision constraint as described below. Our approximate test might detect a
collision in the projected 2D configuration where in 3D there is no collision.
However, this false positive is not a problem, since it will be detected by

T, (x)  T,(X)

Figure 3.13: Our approximate collision detection reports a potential collision if
in the projected configuration & > B.
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the unilateral collision constraint. The advantage of this approach is its
high computational efficiency: the difference in frame-rates when adding our
collision constraints to the simulation is just barely noticeable.

This test can also be generalized to situations where b; and b; are not
incident, but connected by a chain of bones, as for instance the shoulder or
hip/crotch region (see Figure 3.1). In such cases we choose the inner (w.r.t. the
bone chain) endpoint of b; as the joint j;; and everything else stays the same.

A common approach for resolving collisions is to translate colliding vertices
to the closest point on the object’s surface. Bouaziz et al. [2014a] suggests
applying unilateral constraints to colliding vertices, defined by the plane
containing the closest face of the surface. This constraint projects the vertex
onto the plane if it is below (i.e., colliding) and otherwise uses its current
position as the local projection p;. In case of self-collisions, however, this
projection is not the closest configuration in which the collision is resolved.
Instead, it causes a gap between the two skin parts (see Figure 3.14, left).
Moreover, the collision planes have to be updated due to the skin movement
and another face might become the closest one to the colliding vertex.

In contrast, we aim at the minimal change in vertex positions to resolve
the collision. For each collision pair (x;,X;) reported by the collision detection
we compute an “in-between plane”, which is defined by the average position
(x; +x;) /2 and the average normal (n; —n;)/ ||n; — n;||. For collision response,
we simply project both vertices onto this plane if they are on the respectively
wrong side. This approach leaves no gaps between the collision-resolved skin
parts (see Figure 3.14, right) and it avoids the costly computation of the closest
face for each colliding vertex. Note that this approach is just an approximation
to an exact collision response, however, as shown in Figure 3.15, it is able to
provide convincing results in real-time.

N\

surface
projection
—

S/

Figure 3.14: Common surface projection of colliding vertices imposes a gap
after the projection step (left). Our collision response acts between a vertex pair
and incorporates vertex normals. Colliding vertices are projected onto a mid-
plane (blue dashed lines). While not resolving collisions perfectly, the result is
visually plausible and fast, since it avoids the computation of a shortest mesh
distance.

our
projection
/
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Figure 3.15: Comparison of simulations with our local collision constraints
disabled (left) and enabled (right).
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Collision constraints are in general unilateral constraints, meaning that the
involved vertices will be projected only if a collision occurs. This behavior
is difficult to implement efficiently in Projective Dynamics, since the global
solve always requires one projection per constraint. Bouaziz et al. [2014a]
propose to add a collision constraint to the solver when vertices collide and to
remove it afterwards. However, this results in many re-factorizations of the
global system matrix and would considerably slow down the CPU-simulation.
Collisions could also be solved in a post-processing step, but that makes them
invisible to surrounding vertices. For example, when one vertex is pushed
in some direction because of a collision, neighboring vertices should also be
affected due to elasticity. More sophisticated deformers for post-processing
collision handling, like the one introduced by Brunel et al. [2021], are able to
solve this issue but come with a computational overhead that prevent real-time
skinning of a complete human character.

Other approaches always use an additional constraint per vertex that either
projects the colliding vertices onto an intersection-free state or projects to the
current position for non-colliding vertices [Lan et al. 2020]. However, the
latter seemingly “do-nothing” constraint leads to artifacts: If other constraints,
like the strain constraint, project to a different position, the collision-related
“do-nothing” projection would prevent the involved vertices from following
the strains’ projection. The high weight typically used for collision constraints
even emphasizes this effect. Increasing the iteration count of the alternating
local/global steps reduces the artifacts (as done by Lan et al. [2020]) but
slows down the simulation. Ichim et al. [2016] avoid these problems by using
Lagrangian multipliers and the Schur complement to efficiently update the
pre-computed factorization. They therefore just re-factorize a smaller matrix
built from the colliding vertices which reduces the computational overhead
when adding and removing collisions. However, this overhead can still become
prohibitively large in situations with many collision constraints.

In our simulation we solve this problem by using two global matrices. The
first one does not include collision constraints while the second one adds
collision constraints for all potentially colliding vertex pairs. Assuming we
would normally compute Npq local/global PD iterations per frame, we now
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perform Npq/2 iterations with the first matrix to get a preliminary skinning
result without collisions. Afterwards we do N,q/2 iterations with the second
global matrix to resolve possible collisions. This time, we have a good initial-
ization for our “do-nothing” projection from the first solves without collisions.
In that way, we can incorporate collisions in Projective Dynamics without the
above-mentioned artifacts and without slowing down the simulation due to re-
factorizations. For a full character with about 800 pre-computed collision pairs,
the associated overhead is just about 2 — 4%. For comparison, re-factorizing
the global matrix would result in an overhead of 300%. Figure 3.15 compares
simulations with and without local collision handling. More examples can be
found in Video V.3.

GPU-Based Global Collision Handling

While the method above works well for local collisions, extending it to global
collisions is infeasible. By just considering all possible body-parts that can be
reached with our hands, there are far to many possible collision scenarios that
would have to be pre-computed. And even if we managed that, the number of
potential collision pairs would lead to extremely many collision constraints.

However, matrix changes are no longer a performance problem for our iter-
ative PCG solver, since no factorization has to be updated, and re-computing
the diagonal Jacobi preconditioner J is trivial. Nevertheless, a complete re-
build of the system matrix would be prohibitive, due to our custom matrix
format (see Section 3.2.3). We therefore do not update A, but instead represent
the system matrix as the sum A + A.,, where A, contains the changing
non-diagonal entries. Whenever collisions change, we just rebuild the highly
sparse matrix A., and update the diagonal entries of A. We store A, in CRS
format and use our shared memory access pattern explained in 3.2.3. The
computation of QTWp in (2.13) is handled in a similar way.

Collision detection is done on the CPU as explained before. The nearest
surface point for a colliding vertex can be efficiently determined due to our
volumetric tissue mesh construction: Each tetrahedron is uniquely associated
with the skin triangle that its prismatic cell was built from. Thus, if we detect
a collision in a tetrahedron, we project the colliding vertex onto this triangle’s
plane. While this is not always the closest point on the skin it is a very good
approximation (see Figure 3.16 and Video V.4).

For skinning animations we have a lot of resting contacts. If we removed a
collision constraint as soon as the corresponding vertex has left the tetrahedron,
the strain constraints would push the vertex back into the colliding state in
the next iteration. This causes the vertex to alternate between a colliding and
a resolved state. To avoid this oscillating behavior, we retain all colliding
triangle-vertex pairs that have a distance less than a threshold ... We set this
to 25% of the mesh’s average edge length.
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Figure 3.16: Comparison of simulations with our global collision constraints
disabled (left) and enabled (right). The male model is part of the MPI Dynamic
FAUST dataset [Bogo et al. 2017].

Resting contacts cause a second problem: As discussed earlier, using target
positions in collision constraints can lead to unnatural dynamic effects. For
example, if the character’s skin collides between upper arm and forearm while
jumping up and down, the global translation of the jumping motion will be
transferred through the strain constraints, but all target projections of colliding
vertices would still be untranslated, leading to local artificial damping. To
solve this issue, we use translation-invariant collision constraints: Instead of
using the absolute position of the collision-free state as target projection, we
represent it relative to the corresponding skin triangle using three edge-strain
constraints acting like springs between the colliding vertex and the triangle’s
vertices. The rest-length of each spring is set to the distance between a vertex
of the triangle and the projection of the colliding point to the triangle plane.
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We implemented our skinning method in C++ using OpenGL for rendering
and Eigen [Guennebaud et al. 2018] for numerical linear algebra. We built our
own Projective Dynamics solver inspired by Shape-Op [Deuss et al. 2015]. Our
examples using Position Based Dynamics are based on the PDB framework of
Bender et al. [2017]. All timings were measured on a workstation equipped
with Intel Core 19-10900X CPU (10 cores, 20 threads x 3.7 GHz) and an Nvidia
RTX 2080 TI (4352 CUDA cores, compute capability 7.5). For parallelization
we used OpenMP on the CPU and CUDA 11.1 on the GPU.

Pre-processing & Parameters

Apart from the pre-computations required for our skinning simulation and
upsampling, like mesh decimation, computation of MLS-weights and the
volumetric mesh generation, we perform some special pre-processing for
human characters. Here, we exclude all face vertices from the simulation, since
it often contains complicated parts like separate eye and teeth meshes and is
usually animated using blendshapes rather than skeleton-based skinning. For
coupling the simulation to the movements of the face in connecting regions
(i.e., at the neck), we use additional anchor constraints (either soft or hard) at
the boundary.

If not otherwise mentioned, we use the following parameters in all our
simulations: The weight of the tetrahedron strain constraint is set to 85 and
the global and local collision weight to 150. We set a time-step of 6t = 0.2,
disable additional damping via y = 1.0 (implicit damping is sufficient) and
perform N,; = 10 local-global iterations per time-step. All human characters
are scaled such that distances are measured in 1m. For determining vertex
masses, the user can set the total body weight of the character. This mass is
divided among the vertices such that each sub-mass is proportional to the
volume of all tetrahedra sharing the associated vertex.

Note that the frame rate also affects the dynamic behavior of the simulation:
at lower rates the same motion is performed in fewer sub-steps leading to
larger jumps of the skeleton from frame to frame. This is usually handled by
coupling the time-step to the frame rate. However, since the time-step also
controls the amount of implicit damping, there will still be a difference in
the results. Therefore, we usually set the global mass parameter manually to
adjust the intensity of dynamic jiggling.

Polar Decomposition

A performance bottleneck of our CPU simulation is the polar decomposi-
tion used in the local projection steps to extract the rotational part of the
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elements” deformation gradients, which is typically done via singular value
decomposition (SVD).

We increase performance by using faster alternatives to SVD for computing
the polar decomposition, as proposed by Chao et al. [2010]: we only compute
the SVD in case of det(F) < 10~°, and use the Newton-based approach of
Higham [1986] otherwise. An explanation of the algorithm can be found
in Appendix A. Although we use the fast SVD implementation of Sifakis et
al. [2011], this approach leads to a performance gain of the full CPU simulation
by a factor of 1.9. On the GPU, we use the fast SVD implementation of Gao et
al. [2018]. Here, opposed to the CPU case, the determinant-based branching
shows no benefits. As explained in Section 2.3, a warp (32 threads) always
performs the same operation in parallel and branching requires threads of one
branch to wait for the others to finish their branch. That means warp execution
can only be sped up, if all 32 threads follow the same (faster) branch.

Additionally, we implemented the iterative polar decomposition approach
of Kugelstadt et al. [2018], which takes advantage of the rotation result from a
previous local step. But opposed to reasonable speedups for CPU simulations,
we found just minor improvements of a few percent compared to the direct
SVD method on the GPU. We think that this is due to the additional cost of
reading the matrix of the previous step. Moreover, we found the method to be
less robust: if the deformation gradient includes high rotation angles (> 60°)
or inversions, it often fails to extract a proper rotation, even when using many
iterations. Therefore, we decided against using this approach.
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In this section, we provide visual examples of simulations using our Fast
Projective Skinning. We compare it to other skinning approaches and demon-
strate its robustness and flexibility (Section 3.4.1). Additionally, we give details
on the efficiency of our method regarding computational performance and
memory consumption (Section 3.4.2).

3.4.1 Visual Results

By using a physics-based simulation, our method overcomes the artifacts of
LBS (joint collapse) and DQS (bulging), as shown in Figures 3.17, 3.18 and
in Video V.1. For the extreme pose shown in Figure 3.18 also the skinning
with optimized centers of rotation (CoR) of Le and Hodgins [2016] suffers
from bulging artifacts in the chest region, which is challenging since it is
influenced by more than two bones. Moreover, the results of LBS, DQS and
CoR all depend on high quality skinning weights and do not support collision
handling or dynamic effects as opposed to our method. Examples of our

Figure 3.17: Three example poses. From left to right: Linear Blend Skinning,
Dual Quaternion Skinning and our Fast Projective Skinning. The rightmost
bottom image shows our FPS result with global collision handling enabled.
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Figure 3.18: Comparison to other skinning approaches on a challenging pose.
From top to bottom: LBS, DQS, CoR, skinning with PBD, our FPS.
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Figure 3.19: Top: raw scan obtained from Photoscan [Agisoft 2017], suffering
from noise (arms) and holes due to missing data (feet). Bottom: Some input
models suffer from self-intersections (e.g., in the crotch region). In this case,
TetGen [Si 2015] fails to produce a volumetric model and TetWild [Hu et al.
2018] merges the intersecting regions leading to unwanted results (bottom
middle). Our skinning approach robustly handles these challenging models
(top/bottom right).

local/global collision handling can be found in Figure 3.15, 3.16, 3.17 and in
Video V.3 (local) and V.4 (global). Especially in combination with dynamics,
collisions provide much more believable motions, and FPS is the first approach
that can detect and resolve global collisions for a full human character in
real-time. Video V.5 shows some challenging motion-captured animations.

We also tried using Position Based Dynamics for our simulation, based
on the implementation of Bender et al. [2017]. We add a spring constraint
per tetrahedral edge and a volume-constraint, as proposed by Rumman and
Fratarcangeli [2015]. An example is shown in Figure 3.18. Our skin shrinking
step can lead to tetrahedrons with high aspect ratios, which are problematic
for PBD, while our Projective Dynamics simulation works robustly. Moreover,
PBD needs more iterations to converge than PD, and the PBD framework sup-
ports fitting positions only, causing the drawbacks discussed in Section 2.2.2.
Since each constraint directly updates its corresponding vertices, it is more
difficult to parallelize than the independent local steps of PD. Furthermore, the
order in which the constraints are processed affects the solution and can lead
to alternating jumps between different goal positions. PD’s stability under
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extreme motions and deformations, as demonstrated by Bouaziz et al. [2014a],
is particularly important for skinning applications, where abrupt changes in
joint angles can occur, e.g., due to noise and outliers in motion capture data.

Non-clean input meshes are another challenge for common skinning ap-
proaches. Here, automatic rigging is not able to produce proper skinning
weights and traditional tetrahedral mesh generation approaches fail. Our
method for volumetric mesh generation robustly handles non-clean meshes,
as we demonstrate in Figure 3.19 by skinning a raw scan suffering from noise
and holes. We also tried to apply the TetWild approach of Hu et al. [2018]
to our inputs. While their method produces high-quality tetrahedral meshes
for almost arbitrary input surfaces, it can take several minutes to compute,
and the number of tetrahedra is much higher compared to our models, which
negatively affects performance. In the bottom row of Figure 3.19 we further
show that TetWild causes skinning artifacts by merging regions with initial
self-intersections. Moreover, by not using our skin shrinking approach, the
region between joints is also filled with tetrahedra. When bending the joint,
these are exposed to extreme strain which negatively affects the skinning result.
Our method can also handle challenging input skeletons. For instance, we can
simulate the armadillo model with a skeleton consisting of just two bones in
the torso. This can be desirable if the animator just wants to make some quick
adjustments to the pose without constructing a full character rig including
every bone. Note that collision detection and dynamics will not work properly
in this case since some tetrahedra cover regions outside of the mesh.

When aiming for stylized animations, it may be desired to allow the
bones to twist and stretch instead of being limited to rigid motions [Jacobson
and Sorkine 2011]. This extension can be easily implemented in the current
pipeline by simply twisting and stretching vertices of the skeleton surface B
as demonstrated in Figure 3.20. We can also support unconnected skeletons

"= e ™ "

Figure 3.20: Our skinning algorithm is not limited to rigid motions of the
skeleton. In this example, a cylinder mesh with three bones (top) is skinned
using a twisting of its second and a stretching of its third bone (middle). In
fact, we can incorporate even complex transformations of the bone layer if
desired by the artist (bottom).
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Figure 3.21: Skeleton-based skinning is not well-suited for soft extremities like
the elephant’s trunk. We can instead use virtual bones for the mid-part of
the trunk, resulting in an unconnected skeleton. Top row (left to right): base
pose, skinned pose with connected skeleton, skinned pose with unconnected
skeleton. We are also able to simulate fully unconstrained extremities by
setting virtual bones only. The bottom row shows some example frames of a
rotating head motion, that dynamically shakes the soft trunk.

by temporarily connecting the individual parts using virtual bones for the
volumetric mesh generation process. When building the FPS system matrix,
we simply do not set anchor constraints in these regions. In the same way, soft
extremities can be modeled. Examples of this are shown in Figure 3.21 and in
Video V.7.

In Figure 3.22 we demonstrate the influence of joint positions and sizes. By
choosing smaller joints that are closer to the surface, we get a sharper tip when
bending the joint. On the other hand, setting a larger joint radius produces
a bigger and smoother joint bulge. Both effects can be useful for different
regions of the body. The former is better suited for finger and elbow joints,
while the latter better approximates shoulder and knee joints.

Figure 3.22: The position and
size of joints influence the skin-
ning result. The location of the
bent joint is indicated with a
blue circle. Left: small radius
and close to the surface. Right:
large radius and located at the
center of the cylinder.
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3.4.2 Performance

All the visual results shown so far can be simulated in real-time when using
Fast Projective Skinning. In the following, we compare the performance of
our method on both CPU and GPU for different character models. Note that
while the GPU version of FPS exploits the iterative PCG solver discussed in
Section 3.2.3, the CPU version employs Eigen’s sparse Cholesky solver, since
it is faster than the CPU-based PCG solver. Timing results are provided in
Table 3.2.

Without global collision handling, even our CPU-FPS is able to achieve inter-
active frame rates. Due to the MLS-upsampling (Section 3.2.4) we do not need
to use high resolutions for the simulated meshes. Therefore, the settings of
the ‘human low” model provide sufficient quality. Comparing CPU-FPS to
GPU-FPS without collision handling, the latter is faster by an additional factor
of 4-9, depending on model size. The timings for our MLS-upsampling are
merely dependent on the number of high-resolution vertices H (compare the
mid and low human character models in Table 3.2) as long as we use a constant
number of neighbors for the upsampling. Note that the number of surface
vertices S (and tetrahedra) of the elephant and ‘human mid” models are similar.
The difference in simulated vertices N comes from the decreased number of
boundary constraints due to the virtual bones we use for the elephant’s trunk.

Analyzing FPS with global collisions, the CPU version has to re-compute
the Cholesky factorization, which the PCG solver of the GPU version avoids.
Comparing the two, GPU-FPS is about 5x — 8x faster than CPU-FPS. Even
with full collision handling, GPU-FPS is in general faster than CPU-FPS
without collisions. Since both FPS versions perform collision detection on
the CPU, the difference in f., times is due to matrix re-factorization in the
CPU case. Note that the collision timings refer to global collision handling.
Our pre-computed local collision formulation comes with negligible overhead,
hence, we can always handle at least local collisions in real-time on the CPU.

The tpre timings listed in Table 3.2 do not include the computation of the
upsampling weights which takes 10-20 seconds per model. These weights
are pre-computed and stored. All other initialization steps for constructing
the volumetric model from a skin surface and a skeleton graph are quite fast
(tpre < 1sec) and are therefore performed each time before the simulation
starts. GPU-FPS is also memory efficient. Global memory on the GPU is
limited, especially for video games, where most of the memory is reserved for
highly detailed textures. Our typical human character models require only
about 14 MB (8 MB simulation, 6 MB upsampling) of device memory to be
skinned and are therefore able to fit within these restrictions.

Comparing the low-, mid-, and high-resolution human character results,
one can observe that the simulation time scales linearly with the number of
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CPU-FPS

GPU-FPS

Model S N T H tpre tsim  tus fps teol fPScol tsim tus fps teol fpscoi Mgru
Cylinder 810 874 4.8k 51k 97 1.5 0.74 410 2.0 210 1.2 0.07 630 0.5 450 16
Human low 3472 4151 21k 15k 253 6.5 022 145 89 63 1.6 0.02 530 1.1 330 14
Human mid 8482 9937 51k 15k 451 16.2 022 59 21 26 21 0.02 403 2.7 190 22
Human high 15k 18k 92k 15k 702 296 — 33 40 14 29 — 301 63 104 32
Armadillo 5189 6280 31k 173k 663 97 22 8 14 38 1.8 032 393 1.3 260 56
Elephant 8700 13k 52k 44k 939 21.5 058 44 21 23 23 0.05 370 2.7 185 32

Table 3.2: Benchmark results for several models with S input surface vertices, N simulated vertices, T simulated tetrahedra, and
H high-res visualization vertices, comparing our CPU-based Fast Projective Skinning with the GPU version of our approach. We
list the pre-computation time for constructing the volumetric mesh tpre, the simulation time t5y, of one time-step (10 local-global
iterations, each with 10 PCG iterations on GPU); the time t,s for upsampling to the visualization mesh; performance in frames
per second (fps) for skinning, upsampling, and visualization; the time f.,); for collision detection and matrix update; performance
in fps for skinning, upsampling, collision handling, and visualization (fpsc.y). All timings are given in milliseconds. Lastly, Mgpu
gives the amount of device memory that is used by our GPU solver in megabytes. Note that the armadillo, cylinder and elephant
model can be found in different figures of this thesis but all human character models shown in this thesis are similar to the model
‘human low’ in regards to vertex counts and computation times. As explained before, the face region of the human character
models is not simulated and contains about 6k vertices that are not included in H. Nevertheless, their rigid transformation and

visualization still contributes to the timings.

62



3.4 RESULTS & DISCUSSION

T T T T T T T T T
60 -
CPUsoft BC ® = = ®
[ 4
50 | CPU hard BC e Y 2 -
) 4:0 — =
=
s
~ 30 S —
o)
% 20 | _
g
10 -
0 | |
0 2 4 6 8 10 12 14 16 18
T T T T T T T T T
> GPUsoftBC = = = Lo |
GPU hard BC e o®”
4 P A -
o”‘
) L J _—
N ST -
£ mee=o
& 2 - "‘ —
0 j
g
1 - _
0 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18

Simulated Vertices in 1000

Figure 3.23: Performance comparison of Fast Projective Skinning with anchor
constraints using Projective Dynamic’s soft boundary conditions, and our hard
Dirichlet boundary conditions on CPU (top) and GPU (bottom).

simulated vertices N on the CPU. On the GPU, we observe a sub-linear scaling
due to overheads of kernel calls and a low GPU occupancy for smaller meshes.
Note that in case of the simple cylinder model, this effect is predominant
leading to a very small difference between GPU and CPU timings.

The influence of using hard constraints instead of soft constraints (Sec-
tion 2.2.3) is analyzed in Figure 3.23. Hard constraints considerably reduce
the size of the system matrix, since all constrained vertices are removed from
the system. The absence of soft constraints furthermore improves the matrix
condition [Botsch and Sorkine 2008], which improves convergence of our iter-
ative solver. This leads to speed-up factors of 1.35 (for small meshes) up to
1.8 (for large meshes) on the CPU (Figure 3.23). On the GPU, the performance
gain for small meshes is barely noticeable (only a few percent), because our
4352 CUDA cores can solve smaller systems completely in parallel, such that
any further reduction just leaves some threads idle. In addition, the overhead
of calling a kernel is more dominant for small meshes as explained before.
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For larger systems however, the reduced formulation also yields an important
speed-up of about 40% on the GPU.

When analyzing frames per second we include all steps of the pipeline con-
tributing to one frame. In the following, we list more detailed timings for the
armadillo model that should serve as a guideline for future optimization: The
total frame-time of 2.54 ms (1000 ms /393 fps) splits up into 0.19 ms (7.5%) for
computing the transformation matrices of joints and bones and sending these
to the GPU, 1.75ms (68.9%) for the Projective Dynamics time-step, 0.04 ms
(1.6%) for updating the normals of the simulation mesh (needed for the up-
sampling) and 0.32ms (12.6%) for the upsampling itself, lastly, the remaining
0.24ms (9.4%) are used for rendering the visualization mesh. The 1.75ms of
the PD time-step can be further divided into the local step (0.62 ms), the global
step (1.1 ms) and all other steps (0.03ms) of the PD algorithm (2.1).

The distribution of the frame-time reveals that the local and global updates
are still the major bottleneck of the algorithm. We found one additional
option to increase performance even more if desired /needed: Looking at the
cylinder model in Table 3.2, smaller models are barely able to reduce the
frame-time further due to the overhead of calling the different kernels of the
PD-algorithm (Npq = 10 updates, each with 10 PCG iterations require 310
kernel calls for the global steps in each time-step). We experimented with
lower numbers of PD iterations and found that it can be further reduced to
Npq = 2, without noticing major visual differences as shown in the Video V.6
(one can observe a slight difference at the fingers for abrupt hand motions).
This reduces the simulation time by a factor of five and results in more than
1500 frames per second when using the low-resolution human character mesh
with MLS upsampling and without collision handling, which is not much
slower than standard Linear Blend Skinning. Here, other parts of the whole
skinning pipeline like rendering and forward kinematics become increasingly
relevant for the frame’s time-budget. Moreover, we are currently detecting and
updating global collisions for every frame. This can be reduced to about 60
updates per second (or even further, dependent on the motion) to accelerate
FPS with global collision handling to more than 1000 frames per second.

Due to the high performance and moderate memory requirements, we can
even animate multiple characters in real-time using Fast Projective Skinning.
When simply running multiple FPS-solvers sequentially, frame-time scales
linearly with the number of characters. We assume that it would be beneficial
to fuse the corresponding kernels of different characters into one (e.g., one
kernel for the local step of all characters instead of one per character) but we
did not implement this for verification.
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3.5 SUMMARY & LIMITATIONS

We have presented Fast Projective Skinning, a physics-based skinning approach
that enables high quality skeleton-based character animation in real-time. Our
volumetric skeleton and tissue model is computed automatically from an input
skin mesh and a skeleton graph. In particular, our technique does not require
any skinning weights, which makes it easy to setup and use for a large variety
of skin meshes.

Our volumetric skeleton provides effects like joint bulges and skin sliding
in a more natural way than existing approaches, which require additional
constraints. Compared to methods based on Position Based Dynamics, our
Projective Dynamics simulation is more robust and converges faster. This is
crucial, since we do not just correct an initial geometric skinning, but instead
compute the full deformation through a physics-based simulation, which in
turn yields a more natural behavior.

For CPU skinning, we can efficiently detect and resolve local collisions by
pre-computing potential collision pairs and through novel collision constraints
that do not require computationally expensive re-factorization of the system
matrix. Our GPU implementation of the Projective Dynamics solver yields
not just an considerable speed-up, but also overcomes the dependence on
a constant set of constraints throughout the simulation. By exploiting this
feature, Fast Projective Skinning becomes the first skinning approach that is
capable of detecting and handling arbitrary self collisions in real-time. The
MLS-based upsampling of vertex positions and normals efficiently transfers
deformations of the low-resolution simulation meshes to the high-resolution
input meshes used for visualization.

Our method also has some limitations: By default, FPS is not suitable for
meshes with overhanging/overlapping parts, like big bulges of fat or clothing.
In those cases the skin shrinking can lead to tetrahedra that are partially
outside of the character’s volume, which can cause unnatural dynamics and
erroneous collisions. We presented a workaround in 3.4.1, that involves
defining additional, virtual bones inside of overhanging body parts. Moreover,
FPS is not applicable if the skin mesh is composed of multiple unconnected
parts or if the skeletons lies outside of the skin. A solution to the former
could be to join the sub-meshes by temporary additional vertices/edges in a
pre-processing step as proposed by Le and Lewis [2019]. Our skin shrinking
process can produce tetrahedra of high aspect ratios, and in some cases (e.g.,
bulges, irregular triangulation), there can be a tangential shift between skin
and skeletal triangles. In the next chapter, we will develop a more sophisticated
(but also much slower) skin shrinking approach leading to layered meshes of
higher quality. Nevertheless, we did not notice any major artifacts caused by
this problem in our FPS simulations.
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Another problem is that our collision constraints incorporate vertex and
face normals. We observed cases where collision response and normal update
lead to small oscillations at resting contacts. This can be prevented by using a
higher mesh resolution in colliding regions. Employing more sophisticated
elastic deformers in the projection step like those introduced by Brunel et al.
[2021] could improve collision results in future. In general, realistic collision
handling requires realistic input motions: if a hand is moved into the rib-cage,
the result will most likely look implausible. Another promising avenue for
future work is to investigate recent solvers for nonlinear elasticity, such as
ADMM [Narain et al. 2017] or the hyper-elastic solver of Liu et al. [2017].

The physical/anatomical plausibility of our approach is limited by the
simple one-layer tissue mesh spanned between skin and bones, which can
be observed in Video V.8. Since our model lacks a realistic representation of
the body’s interior, collisions and dynamic jiggling effects can look too strong
in some regions. This problem is most apparent at the upper torso and the
hips that do not include the large rib-cage and pelvis bone-structure, or the
lower arm that is in reality built from two bones and a lot of muscles. To an
extent, we can imitate a realistic anatomy by manually defining additional
bones (e.g., to mimic a rib-cage) and by varying the stiffness of the soft tissue
layer locally. In the following chapter, we will build a more sophisticated tissue
mesh including realistic representations of the skeleton and muscle layer for
human characters.
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A THREE-LAYERED ANATOMICAL MODEL

4 v

Figure 4.1: Starting from the surface of a human (left), we fit a three-layered
model consisting of a skin, muscle, and skeleton surface (middle), which
enables physical simulations in a simple and intuitive way. Interior structures,
such as individual models of muscles and bones, can also be transferred using
our layered model (right).

In the previous chapter, we presented a fast and simple approach for creat-
ing volumetric models of general virtual characters. However, our FPS model
consists of a very simplified skeleton and just one uniform soft tissue layer.
Therefore, it cannot be applied to simulate advanced effects like convincingly
distributed dynamic jiggling or fat growth. In this chapter, we will focus on
human characters to develop a model that is anatomically plausible, applicable
for a wide range of body shapes, and ready to be used in physics simulations.
Furthermore, we again aim for a very simple and efficient model generation
approach requiring a low amount of input data.

If we look at a human, its appearance is mostly determined by everything
we can directly see (skin, hair, cloth, etc.). Hence, it is not surprising that
research has focused on capturing, analyzing, and animating surface models
of humans. Consequently, there are numerous surface-based capturing ap-
proaches, suitable for almost every level of detail and budget: from complex
multi-camera photogrammetry setups that capture finest-scale wrinkles of
the human face [Riviere et al. 2020] over approaches that compute ready-to-
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animate models from simple smart-phone videos [Wenninger et al. 2020] to
machine learning approaches that reconstruct a virtual model from a single im-
age [Weng et al. 2019]. As we already explained in the previous chapter, there
are two different classes of approaches for creating convincing animations of
those models. First, by collecting large amounts of 3D captured data to build
sophisticated surface-based models [Loper et al. 2015; Anguelov et al. 2005b;
Bogo et al. 2017], and second, with the help of physics-based simulations. The
latter however, require models of volumetric virtual humans that incorporate
(discrete approximations of) their interior anatomical structures. Although
surface-based models might be sufficient for many applications, others (e.g.,
surgery simulation) require a volumetric model as an essential prerequisite.

While there exist detailed volumetric models of the human body [Acker-
man 1998; Christ et al. 2009; Zygote 2020], they can be very tedious to work
with. Since they usually consist of hundreds of different bones and muscles,
merely creating a volumetric tetrahedral mesh for simulation purposes can
be frustratingly difficult. Moreover, those models represent average humans
and transferring their volumetric structure and anatomical details to a specific
human (e.g., a scanned person) is not straightforward. Although there are
a few approaches for creating personalized interior anatomy [Dicko et al.
2013; Kadlecek et al. 2016], these methods either deform bone structures in
a non-plausible manner [Dicko et al. 2013] or require a complex numerical
optimization [Kadlecek et al. 2016].

In this chapter we present a robust and efficient method for transferring
an interior anatomy template into the surface mesh of a scanned person in
just a couple of seconds. Inspired by our two-layered FPS models, we split
the human body into three layers that are bounded by surfaces sharing the
same triangulation: the skin surface defines the outer shape of the human,
the muscle surface envelopes its individual muscles, and the skeleton surface
wraps the subject’s skeleton (see Figure 4.1 middle). The muscle layer is hence
enclosed in between the skeleton and muscle surface, and the subcutaneous
fat tissue by the muscle surface and skin surface. This layered template model
is derived from the Zygote body model [Zygote 2020], which provides an
accurate representation of both the male and female anatomy. We propose
simple and fast methods for fitting the layered template to surface scans of
humans and for transferring the high-resolution anatomical details [Zygote
2020] into these fitted layers (see Figure 4.1 right). Our method is robust,
efficient, and fully automatic, which we demonstrate on about 1700 scans from
the European CAESAR dataset [Robinette et al. 2002].

Our approach enriches simple surface scans by plausible anatomical details,
which are suitable for educational visualizations and volumetric simulations.
We note, however, that due to the lack of true volumetric information, it is not
a replacement of volumetric imaging techniques in a medical context.
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Individual Contribution The approach for creating personalized, volumetric ana-
tomical models presented in this chapter was developed in cooperation with Stephan
Wenninger and supervised by Mario Botsch. Stephan Wenninger prepared the different
datasets (pointclouds and surface meshes) by re-topologizing them to a common surface
template. The author of this thesis created the novel approach for generating a layered
volumetric template defined by skin, muscle, and bone surfaces, which all have the
same triangulation, thereby making volumetric tessellation straightforward. Stephan
Wenninger built the regressor that extracts the amount of muscle and fat mass of a
subject from the skin surface only, thereby making manual specification of muscle
and fat distribution unnecessary. By combining the former steps, the author of this
thesis developed a robust and efficient method for transferring the layered volumetric
template model into a given surface scan of a human in just a couple of seconds. The
author further designed and implemented the different applications for physics-based
simulation and fat growth.

Corresponding Publication This chapter is based on the following publication:

Komaritzan, M., Wenninger, S. and Botsch, M. (2021). “Inside Humans: Creating
a Simple Layered Anatomical Model from Human Surface Scans.” Frontiers in
Virtual Reality, 2.
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Using a layered volumetric model of a virtual character has been shown
beneficial compared to a surface-only model in multiple previous works.
Deul and Bender [2013] compute a simple layered model representing a
bone, muscle, and fat layer, which they use for a multi-layered skinning
approach. Simplistic layered models have also been used to extend the SMPL
surface model [Loper et al. 2015] in order to support elastic effects in skinning
animations [Kim et al. 2017; Romero et al. 2020]. Compared to these works, our
three layers yield an anatomically more accurate representation of the human
body, while still being simpler and more efficient than complex irregular
tetrahedralizations. Saito et al. [2015] show that a muscle enveloping layer
yields more convincing muscle growth simulations and reduces the number
of tetrahedral elements required in their computational model. They also
demonstrate how to simulate different variations of bone sizes, muscle mass
and fat mass for a virtual character.

When it comes to the generation of realistic personalized anatomical struc-
tures from a given skin surface, most previous works focus on the human head:
Ichim et al. [2016] register a template skull model to a surface-scan of the head
in order to build a combined animation model using both physics-based and
blendshape-based face animation. Ichim et al. [2017] also incorporate facial
muscles and a muscle activation model to allow more advanced face anima-
tion effects. Gietzen et al. [2019] and Achenbach et al. [2018] use volumetric
CT head scans and surface-based head scans in order to learn a combined
statistical model of the head surface, the skull surface, and the enclosed soft
tissue, which allows them to estimate the head surface from the skull shape
and vice versa. Regarding other parts of the human body, Zhu et al. [2015]
propose an anatomical model of the upper and lower limbs that can be fit to
surface scans and is able to reconstruct motions of the limbs.

There are just two former approaches for generating an anatomical model
of the complete core human body (torso, arms, legs) from a given skin surface.
In their pioneering work, Dicko et al. [2013] transfer the anatomic details
from a template model to various humanoid target models, ranging from
realistic body shapes to stylized non-human characters. They transfer the
template’s anatomy through a harmonic space warp and per-bone affine
transformations, which, however, might distort muscles and bones in an
implausible way. Different distributions of subcutaneous fat can be (and have
to be) painted manually into a special fat texture. The work of Kadlecek et al.
[2016] is most closely related to our approach. They build an anatomically
plausible volumetric model from a set of 3D-scans of a person in different
poses. An inverse physics simulation is used to fit a volumetric anatomical
template model to the set of surface scans, where custom constraints prevent
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muscles and bones from deforming in an unnatural manner. We discuss the
main differences between our approach and those of Dicko et al. [2013] and
Kadlecek et al. [2016] in Section 4.3.

Estimating the body composition from surface measures or 3D surface
scans (like we do in Section 4.2.3) has been tackled before. There are numerous
formulas for computing body fat percentage (BF), or body composition in
general, from certain circumferences, skinfold thicknesses, age, gender, height,
weight, and density measurements. Prominent examples are the 3-, 4-, and
7-site skinfold equations, or the Siri- and Brozek formulas [Jackson and Pollock
1985; Siri 1956; Brozek et al. 1963]. These formulas, however, either rely on
anthropometric measurements that have to be taken by skilled personnel or
on measuring the precise body density via expensive devices, such as BOD
PODs [Fields et al. 2002]. Ng et al. [2016] compute BF based on a 3D body
scan of the subject, but their formula is tailored towards body scans and
measurements taken with the Fit3D Scanner [Fit3D 2021]. Even with the
help of the authors we could not successfully apply their formulas to scans
taken with different systems, since we could always find examples resulting
in obviously wrong (or even negative) body fat percentages. Recently, Maalin
et al. [2020] showed that modeling body composition through body fat alone
is an inferior measure for defining the shape of a person compared to a
combined model of fat mass and muscle mass. We therefore adapt their data
to estimate fat mass and muscle mass from surface scans alone (Section 4.2.3).
Incorporating these estimations into the volumetric fitting process allows us
to determine the proportion of muscles in the soft tissue layer more plausibly
than Kadlecek et al. [2016].
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Our approach consists of three main contributions: First, the generation of the
volumetric three-layered template, described in Section 4.2.2, where we derive
the skin, muscle, and skeleton surfaces from the male and female Zygote
model [Zygote 2020]. Second, the estimation of a person’s body composition,
i.e.,, how much of the person’s soft tissue is described by muscles and fat
(Section 4.2.3). By adapting the BeyondBMI dataset [Maalin et al. 2020] to
our template, we derive this information from the surface scan alone. Third,
by utilizing this information about body composition, we derive an efficient
method for fitting the layered template (including all contained anatomical
details) (in)to a given human surface scan (Section 4.2.4). Figure 4.2 shows
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Zygote Surface Scans Beyond BMI Dataset
(Template Generation) ( Surface Fitting ) ( Learnmg )
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Figure 4.2: Overview of our volumetric template fitting approach. From the
Zygote model [Zygote 2020], we build layered volumetric templates for the
male and female anatomy. By adapting the BeyondBMI dataset [Maalin et al.
2020] we learn a model for estimating fat and muscle mass from a surface
model. Given a person’s surface scan, we then estimate its fat/muscle mass
and use this information to fit the volumetric template (in)to the surface scan,
which yields the personalized anatomical model.
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an overview of the whole process, starting from the different input data sets,
the template model and the muscle/fat regressor, to the final personalized
anatomical fit.

4.2.1 Data Preparation

In our approach we make use of several publicly or commercially available
datasets for model generation, model learning, and evaluation:

o Zygote: The Zygote model [Zygote 2020] provides high-resolution repre-
sentations of the male and female anatomy. We use their skin, muscle,
and skeleton meshes for building our layered template.

* BeyondBMI: Maalin et al. [2020] scanned about 400 people and additionally
measured their fat mass (FM), muscle mass (MM), and body mass index
(BMI) using a medical-grade eight-electrode bioelectrical impedance anal-
ysis. They provide annotated (synthetic) scans of 100 men and 100 women,
each computed by averaging shape and annotations of two randomly
chosen subjects. From this data we learn a regressor that estimates fat
and muscle mass from the skin surface.

* Hasler: The dataset of Hasler et al. [2009] contains scans of 114 subjects in
35 different poses, captured by a 3D laser scanner. The scans are annotated
with fat and muscle mass percentage as measured by a consumer-grade
impedance spectroscopy body fat scale. We use this dataset to evaluate
the regressor learned from the BeyondBMI data.

* CAESAR: The European subset of the CAESAR scan database [Robi-
nette et al. 2002] consists of 3D-scans (with about 70 selected landmarks)
equipped with annotations (e.g., weight, height, BMI) of about 1700 sub-
jects in a standing pose. We use this data to evaluate our overall fitting
procedure.

All these data sources use different model representations, i.e., either different
mesh tessellations or even just point clouds. In a pre-processing step we there-
fore re-topologize the skin surfaces of these datasets to a common triangulation
by fitting a surface template using the non-rigid surface-based registration of
Achenbach et al. [2017].

This approach is based on an animation-ready, fully rigged, statistical
template model. Its mesh tessellation (about 21k vertices), skeletal rig, and
skinning weights come from the Autodesk Character Generator [Autodesk
2014]. It uses a 10-dimensional PCA model representing the human body
shape variation, and we will call it the surface template in the following. In a
pre-processing step we fit the surface template to all input surface scans to
achieve a common triangulation and thereby establish dense correspondence.
This fitting process is guided by a set of landmarks, which are either specified
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manually or provided by the dataset. A nonlinear optimization then deter-
mines alignment (scaling, rotation, translation), body shape (PCA parameters),
and pose (inverse kinematics on joint angles) in order to minimize squared
distances of user-selected landmarks and automatically determined closest
point correspondences in a non-rigid ICP manner [Bouaziz et al. 2014b]. Once
the model parameters are optimized, a fine-scale out-of-model deformation
improves the matching accuracy and results in the final template fit. For more
details we refer to Achenbach et al. [2017].

4.2.2 Generating the Volumetric Template

We use the male and female Zygote body model [Zygote 2020] as a starting
point for our volumetric model. Our volumetric template is defined by the
skeleton surface B (for bones), the muscle surface M, and the skin surface S. The
skeleton is enveloped by the skeleton surface, the muscle layer resides between
the skeleton surface and the muscle surface, and the (subcutaneous) fat layer
between muscle surface and skin surface, respectively. The soft-tissue layer is
the union of the fat and muscle layers. In our layered model we exclude the
head, hands, and toes. These regions will be identical to the skin surface in all
layers. See Figure 4.3 for a visualization of the layered template.

)

a) J

Figure 4.3: Our layered template for both male (top) and female (bottom):
the skin surface (a), the skeleton surface enveloping the skeleton (b), and the
muscle surface enveloping both muscles and skeleton (c). For (b) and (c) the
left half shows the enveloping surface, the right half the enveloped anatomy.
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Inspired by the two-layered volumetric models we used in our FPS method,
the three surfaces B, M, and S will be constructed to share the same triangu-
lation, providing a straightforward one-to-one correspondence between the
ith vertices on each surface, which we denote by x? , le, and x;s , respectively.
Note that we differ slightly from the FPS notation by also denoting skin ver-
tices with a superscript for easier identification in the different equations. Each
two corresponding triangles (x? ,x;s ,x%) on S and (xl/\/l,xf\/l,xlﬁw) on M span
a volumetric element of the fat layer. Similarly, the volumetric elements of

the muscle layer are spanned by pairs of triangles (xZM, x]M, xf/l) on M and

(xf3 , x}g , XE ) on B. Analogously to the previous chapter, we call these elements,

built from six vertices of two triangles, prisms, and will either use them directly
in a simulation or split them into three tetrahedra each, resulting in a simple
conforming volumetric tessellation.

The following two parts of this section describe how to generate the skeleton
surface B and the muscle surface M. The skin surface S is generated by fitting
the surface template of Achenbach et al. [2017] to the skin of the anatomical
model [Zygote 2020], as described in Section 4.2.1.

The Skeleton Surface

The skeleton surface B should enclose all the bones of the detailed skeleton
model, as shown in Figure 4.3, center. We achieve this by shrink-wrapping
the skin surface S onto the skeletal bones. To avoid problems caused by
gaps between bones (e.g., rib-cage, tibia/fibula), we first generate a skeleton
wrap W, a watertight genus-0 surface that encapsulates the bones, and then
shrink-wrap the skin surface to VV instead. The wrap surface V can easily be
generated by a few iterations of shrink-wrapping, remeshing, and smoothing
of a bounding sphere in a 3D modeling software like Blender or Maya. This
results in a smooth, watertight, and two-manifold surface W that excludes
regions like the interior of the rib-cage and small holes like in the pelvis or
between ulna and radius.

To generate the skeleton surface, we could apply our FPS skin shrinking
approach from Section 3.2.1 by defining a skeleton graph inside the skeleton
surface, finding nearest neighbors from each skin vertex to its bone-lines and
smoothing those until convergence to get the base-points. Lastly, the vertex
positions of the skeleton surface would be defined by the intersection between
each line from a skin vertex to its base-point and WW. While this approach func-
tioned properly for the simple tube-like skeletons of our FPS method, using
the same strategy on realistic skeletons results in highly distorted triangles
(see Figure 4.4) impairing the quality of the model itself and all simulations
based on it.

Instead, we develop a more sophisticated skin shrinking approach that
results in a high-quality skeleton surface B by starting from the skin surface
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Figure 4.4: The skin shrinking approach we applied to generate the volumet-
ric Fast Projective Skinning models (left) works well on cylindrical parts of
the skeleton (e.g., rib-cage) but distorts the triangles in more complicated
region (e.g., hips). Moreover, it does not take tangential shifting between
skin and skeleton layer into account. For comparison, the result of our more
sophisticated fitting approach is shown on the right.

S, ie., setting X = S, and then minimizing a nonlinear least squares energy.
This energy is composed of a fitting term, which attracts the surface X to the
bone wrap W, and a regularization term, which prevents X from deforming
in a physically implausible manner from its initial state ¥ = S:

B = argn}én WetEgit (X, W) + WregEreg (X, ) . 4.1)

The regularization is formulated as a discrete bending energy that penalizes
the change of mean curvature, measured as the change of length of the
Laplacian:

Ereg(X,X) = Y Aj||Ax; — R, (4.2)
x;€X
where x; and x; denote the vertex positions of the deformed surface & and
the initial surface X, respectively. The matrix R; € SO(3) denotes the optimal
rotation aligning the vertex Laplacians Ax; and Ax;, which are discretized
using the cotangent weights and the Voronoi areas A; [Botsch et al. 2010].

The fitting term penalizes the squared distance of vertices x; € X from

their target positions t; € W:

Efit(')(r W) = Z wiAi ||X1' — tin . (43)

X,'EX

The target positions t; are points (not necessarily vertices) on the skeleton
wrap W of either one of three types: closest point correspondences, fixed
correspondences, or collision targets. The weight w; is determined solely by
the type of target position t; (0.1 for closest point correspondences, 1 for fixed
correspondences, 100 for collision targets). We define just one target t; for each
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Figure 4.5: An example of minimizing
the alignment energy (4.4) for the skin
vertex xf . Its closest position on the
skeleton wrap is x!V, leading to a small
minimal angle (between black dotted
line and §). The position x* maximizes
the minimal angle and minimizes the
energy (4.4). It can be found by tracing
a line from x¢ in negative direction of
the average normal nf +n.

vertex x;. The default is a closest point correspondence per vertex, which can
be overridden by a fixed correspondence, and both of them will be overridden
by the collision target in case of a detected collision. Below we explain the
three target types.

Closest point correspondences are updated in each iteration of the mini-
mization to match the closest position on W to the vertex x; € &, ie,
t = arg mineyw [[x; — t].

Near complicated regions, like the armpit or the rib-cage, the skin has to
stretch considerably to deform toward the skeleton wrap. As a consequence,
corresponding triangles (xf,xf,xf ) on the skin surface S and (x?, xf, xP) on
the eventual skeleton surface B will not be approximately on top of each other,
but will instead be tangentially shifted. Misaligned triangles lead to heavily
sheared prisms, which can cause artifacts in physical simulations. We define
a per-vertex score penalizing misalignment of corresponding vertices x;s cS
and x!V € W w.r.t. their common averaged normal n{ + n!V:

.
(nf +n%) (¢ —x")

[0 +n P[] 7 =]

Eatign (X7, %)) = 1. (4.4)

A 2D example of minimizing this energy is shown in Figure 4.5.

Fixed correspondences are responsible for reducing these tangential shifts and
thereby improving the prism shapes. We determine them for some vertices
at the beginning of the fit as explained in the following, and keep them fixed
throughout the optimization. Since the alignment error increases faster if the
distance between skin surface and skeleton wrap is small, we specify fixed
correspondences for vertices on S that have a distance less than 3 cm to W. For
each such vertex we randomly sample points in the geodesic neighborhood of
xlw and select the one that minimizes (4.4) as fixed correspondence. Normal
vectors of sample points are generated using barycentric Phong interpolation.
To avoid interference of spatially close fixed correspondences, we add them
in order of increasing distance to the skeleton, and skip all vertices having a
distance smaller than 5 cm to all previously selected ones. In that way, we get
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O.UI

Figure 4.6: Standard non-rigid registration from skin to skeleton (left) results in
a bad tangential alignment of corresponding triangles, causing sheared prisms,
which we visualize by color-coding the alignment error (4.4). Using fixed corre-
spondences reduces this error (center). Shifting closest point correspondences
with bad alignment reduces the error even further (right).

a well distributed set of fixed correspondences, favoring those with a small
skin-to-skeleton distance. Figure 4.6, center, shows that this already reduces
the alignment error by a large amount.

Closest point correspondences can also drag vertices to locations with
high alignment error. In each iteration of the non-rigid ICP, we compute
Ealign (x;s , x,') for each vertex on S and its counterpart on the current state of X’.
If this error exceeds a limit of 0.01, which corresponds to an angle deviation of
8° from the optimal angle, we sample the one-ring neighborhood of vertex x;
on X, set x; to the sample with minimal alighment error and update its closest
point correspondence t; on Y. This strategy reduces the alignment error even
further, as shown in Figure 4.6, right.

Collision targets prevent X from intersecting W, ensuring that in the con-
verged state the surface X (i.e., B, due to (4.1)) fully encloses VW. We therefore
detect these collisions during the optimization, resolve them, and define a
collision target for each colliding vertex. We use the exact continuous collision
detection of Brochu et al. [2012] and, in case of a collision, we back-track the tri-
angles’ linear path from the current X to the initial S to find the non-colliding
state closest to X'. This state defines collision targets t; for colliding vertices x;,
which replaces the other two types of target positions in all following steps
of the minimization. In case of multiple collisions for the same vertex x;, we
determine all non-colliding states separately and choose the t; that is closest to
the initial skin surface S.

For the minimization of (4.1) we use the Projective framework of Bouaziz
et al. [2012, 2014a], implemented through an adapted local/global solver from
the ShapeOp library [Deuss et al. 2015] (see also Section 2.2). Eyeg corresponds
to the bending constraint (Equation (2.17)) and Eg; can be implemented using
anchor constraints. We first initialize X with § and set wreg = wg; = 1. When
the minimization converges, we update the initial Laplacians Ax; in (4.2) to
the Laplacians Ax; of the current solution & and decrease Wreg by a factor of
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0.1. This is repeated until wreg reaches 1077 In order to speed up the fitting
process, we first remove high frequency details of the skin surface (e.g., nipples
and navels) by Laplacian smoothing [Botsch et al. 2010] before computing the
initial Laplacians Ax;. Since we exclude head, hands, and toes from the layered
template, those regions are fixed throughout the whole process. The alignment
error of the resulting skeleton surface B is shown in Figure 4.3b.

Due to the high resolution of the skeleton wrap and the continuous collision
detection, the whole process is considerably slower (about three minutes) than
the previous FPS-based skin shrinking approach but yields a much smoother
result (shown in Figure 4.4). Note that this skin shrinking must just be executed
twice, i.e., for the male and female template.

The Muscle Surface

We generate the muscle surface M by minimizing the same energy as in
Equation (4.1), but using a different method for finding the correspondences t;
in Equation (4.3), which exploits that we already established correspondence
between skin surface S and skeleton surface 5. We do not employ closest
point correspondences, but instead set for each vertex x; a fixed correspondence
t; to the first intersection of the line from skin vertex xf to skeleton vertex XZB
with the high-resolution muscle model [Zygote 2020]. If there is no intersection
(e.g., at the knee), we set t; = xP and assign a lower weight w;. When the
minimization converges we decrease wreg, and project the vertices of the
current muscle surface x* to their corresponding skin-to-skeleton line from
x? to xP. Due to the collision handling, the resulting muscle surface M will
enclose the high-resolution muscle model. To ensure that our volumetric
elements always have a non-zero volume, even in regions where no muscles
are located between skin and bone, we enforce a minimal distance of 1 mm to
B. The resulting muscle surface M is visualized in Figure 4.3c. Note that the
muscle layer does not exclusively contain muscles: especially in the abdominal
region, a large portion of the muscle layer is filled by organs. We therefore
define a muscle thickness map that for each vertex i stores the accumulated

length of the segments of the line (x¥ xiB ) that are covered by muscles. This

17
map will be used later in Section 4.2.4.

4.2.3 Estimating Fat Mass and Muscle Mass

Having generated the volumetric layered template, we want to be able to fit it to
a given surface scan of a person. To regularize this under-determined problem,
we first have to estimate how much of the person’s soft tissue is explained
by fat mass (FM) and muscle mass (MM), respectively. This is a challenging
problem since we want to capture only a single surface scan of the person and
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[Ng et al. 2016] 27.5% 28.6% 26.3%
Ours 14.3% 15.7% 21.9%

Figure 4.7: We applied the method of Ng et al. [2016] to estimate the body fat
percentage of a skinny, a muscular and a moderately corpulent person (left to
right). For comparison, we also give the results of our body fat estimator.

therefore cannot rely on information provided by additional hardware, such as
a DXA scanner or a body fat scale. Kadlecek et al. [2016] handle this problem
by describing the person’s shape primarily through muscles, i.e., by growing
muscles as much as possible and defining the remaining soft tissue volume as
fat. This strategy results in adipose persons having considerably more muscle
mass than leaner people. Although there is a certain correlation between total
body mass (and also BMI) and muscle mass — because the higher weight has a
training effect especially on the muscles of the lower limbs [Tomlinson et al.
2016] — this general trend is not sufficient to define the body composition of
a person. Like already mentioned in Section 4.1, there exist several methods
for determining the body fat percentage from outer measures. While these
approaches can work on certain target scans, we always found examples of
obviously wrong BF estimations when we applied the different formulas to our
scanned models of the CAESAR dataset [Robinette et al. 2002]. In Figure 4.7
we demonstrate this on three scans and their corresponding BF, determined
through the method of Ng et al. [2016]. Here, the skinny person has a very
high body fat prediction of 27.5%, even higher than the prediction of the
moderately corpulent person. Moreover, the BF of muscular people is also
often overestimated by existing methods that rely on outer measures.

Maalin et al. [2020] measured both FM and MM using a medical-grade
eight-electrode bio-electrical impedance analysis and acquired a 3D surface
scan. From this data, they built a model that can vary the shape of a person
based on specified muscle or fat variation, similar to Piryankova et al. [2014].
Our model should perform the inverse operation, i.e., estimate FM and MM
from a given surface scan. We train our model on their BeyondBMI dataset,
which consists of scans of 100 men and 100 women captured in an approximate
A-pose (see Figure 4.8), each annotated with FM, MM, and BMI.
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)

Figure 4.8: Examples for the BeyondBMI dataset provided by Maalin et al.
[2020] consisting of scans of 100 men and 100 women, annotated with fat mass,
muscle mass, and BMI. The scans lack geometric data for head, hands, and feet
and are captured in approximate A-pose (with noticeable variation in pose).

By applying the surface fitting described in Section 4.2.1 to the BeyondBMI
dataset, we make their scans compatible to our template and un-pose them
to a common T-pose, thereby making any subsequent statistical analysis
pose-invariant. After re-excluding the head, hands, and feet of our surface
template, we are left with M = 100 surface meshes per sex that consist
of S = 7665 vertices x;. We denote the j' training mesh by a vector of
stacked vertex coordinates X; € R3% and perform PCA on the data matrix
X = (Xg,...,Xpm) € R¥*M_ Let P € R3*Msub be the resulting basis of the
subspace spanned by the first Mg, principal components and p the mean of
the training data. Since the data is now pose-normalized, the dimensionality
reduction can focus solely on differences in human body shape. As a result, our
model only needs Mg, = 12 PCA components to explain 99.5 % of the data
variance, while the original BeyondBMI dataset needs Mgy, = 24 components
to cover the same percentage due to noticeable variations in pose during the
scanning process (see Figure 4.8).

We then perform linear regression to estimate FM and MM from PCA
weights, as proposed by Hasler et al. [2009]. To this end, each scan X; is
projected to Mgyp-dimensional PCA coordinates ¢; = PT(X]- — p). We can now
define the linear fat mass and muscle mass estimators

FM(c) = afyc + bpm (4.5)
MM(c) = aypc + bym (4.6)

and determine its coefficients apy, aypv € RFswv and beyy, by € R through
linear least squares fitting of ¢; to their annotated fat mass FM; and muscle
mass MM;. For a new scan we are now able to predict fat mass and muscle
mass by registering the surface template to the scan, yielding the stacked
coordinate vector Y, transforming it to PCA coordinates ¢ = PT(Y — ), and
applying the regressors (4.6), (4.5).
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For a first evaluation of this model, we perform a leave-one-out test on the
BeyondBMI dataset, i.e., excluding each scan once, building the regressors as
described above from the remaining M — 1 scans, and measuring the mean
absolute error of the predictions. We again use Mg, = 12 PCA components,
as this covers almost all the variance present in the dataset and gives the linear
regression enough degrees of freedom. The leave-one-out evaluation yields
a mean absolute error (MAE) of MAEpy = 1.20kg (£0.93) and MAEyy =
1.01kg (£0.79) for the female dataset, where the fat mass lies in the range
6.27 kg to 34.71 kg and the muscle mass in the range 21.59 kg to 31.63 kg. The
linear regression shows an average R? score of 0.84, confirming that there
is indeed a linear relationship between PCA coordinates and the FM/MM
measurements. Performing the leave-one-out test on the male dataset shows
similar values: MAEgy; = 1.37 kg (£1.00) and MAEyy = 1.46 kg (£1.11), fat
mass in the range 3.91kg to 27.83kg, muscle mass in the range 31.51kg to
51.20kg, and an average R? score of 0.88.

We compared the linear model to a support vector regression (using scikit-
learn [Pedregosa et al. 2011] with default parameters and RBF kernels), but
in contrast to Hasler et al. [2009] we found that for the BeyondBMI dataset
this approach performs considerably worse: MAEpy; = 2.98kg (£2.85) and
MAEyy = 1.24kg (41.02) with an average R? score of 0.64 for the female
dataset, and MAEpy; = 2.63kg (+2.60) and MAEy = 2.48kg (£+1.82) with
an average R? score of 0.58 for the male dataset. We therefore keep the simpler
and better-performing linear regression model.

Whenever we fit the volumetric model to a given body scan, as explained
in the next section, we first use the proposed linear regressors to estimate the
person’s fat mass and muscle mass and use this information to generate the
muscle and fat layers in Section 4.2.4.

4.2.4 Fitting the Volumetric Template to Surface Scans

Given a surface scan of a person, we create a personalized three-layered
anatomical model through the following steps: First, we fit our surface template
to the scan, which establishes one-to-one correspondence with the volumetric
template and puts the scan into the same T-pose as the template (Section 4.2.1).
After this pre-processing, we deform the volumetric template to match the
scanned subject. To this end, we adjust global scaling and per-bone local
scaling, such that body height and limb lengths of template and scan match,
which is explained in the first part of this section. This is followed by a
quasi-static deformation of the volumetric template that considers the skin
surface S as hard constraint and yields the skeleton surface B through energy
minimization. Given the skin surface S, the bone surface B, and the estimated
fat mass and muscle mass from our regressors (Section 4.2.3), the muscle
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surface M is determined, as detailed in the third part of this section. Having
transferred all three layer surfaces to the scan we show how to warp the
detailed anatomical structures of the template into the personalized model.

Global and Local Scaling

Registering the surface template to the scan allows us to put the latter into the
same alignment (rotation, translation) and the same pose as the volumetric
template. The next step is to correct the mismatch in scale by adjusting body
height and limb lengths of the volumetric template.

This scaling does influence all three of the template’s surfaces. Since the
shape of the skeleton surface B will be constrained to the result after scaling,
we have to keep the scaled bone lengths and bone diameters within a plausible
range. The length of prominent bones, like the upper arm or the upper leg
(humerus and femur), can be well approximated by measures on the surface of
the model. However, finding the correct bone diameters is impossible without
measurements of the subject’s interior. In particular for corpulent or adipose
subjects, the subcutaneous fat layer dominates the appearance of the skin
surface, preventing us from precisely determining the bone diameters from the
surface scan. It has been shown that there is a moderate correlation of bone
length and bone diameter [Aydin Kabakci et al. 2017; Ziylan and Murshid
2002] and (obviously) a strong correlation of body height and bone length
[Dayal et al. 2008]. We therefore perform a global isotropic scaling depending on
body height (affecting bone lengths and diameters) as well as local anisotropic
scaling depending on limb lengths (affecting bone lengths only).

The global scaling is determined from the height difference of scan and
template and is applied to all vertices of the template model. It therefore scales
all bone lengths and bone diameters uniformly. Directly scaling with the height
ratio of scan and template, however, can result in too thin or too thick bones
for extreme target heights. Thus, we damp the height ratio d;, = hscan/ Htemplate
by dj, <— 0.5(d;, — 1) 4+ 1, which means that a person that is 20% taller than the
template will have 10% thicker bones than the template. This heuristic results
in visually plausible bone diameters for all our scanned subjects.

After the global scaling, the local scaling further adjusts the limb lengths of
the template to match those of the scan. The (fully rigged) surface template
has been fit to both the scan (Section 4.2.1) and the template (Section 4.2.2).
This fit provides a simple skeleton graph for both models. We use the length
mismatch of the respective skeleton graph segments to determine the required
scaling for upper and lower arms, upper and lower legs, feet, and torso. We
scale these limbs in their corresponding bone directions (or the spine direction
for the torso) using the bone stretching of Kadlecek et al. [2016]. As mentioned
before, this changes the limb lengths but not the bone diameters.
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Figure 4.9: Matching template (grey) and scan (red): First, we put the scan
into the same pose as the template (top right). Body height and limb lengths
of the template are then adjusted by a global uniform scaling (bottom left),
followed by local scaling for limbs and spine (bottom right).

This two-step scaling process is visualized in Figure 4.9. As a result,
the scaled template matches the scan with respect to alignment, pose, body
height, and limb lengths. Its three surfaces, which we denote by S, M, and B,
provide a good initialization for the optimization-based fitting described in
the following.

Skeleton Fitting

Given the scaled template of the previous step, we now fit the skin surface
S and skeleton surface B by minimizing a quasi-static deformation energy.
The template’s skin surface S should match the (skin) surface of the scan and
since both meshes have the same triangulation, we can simply copy the skin
vertex positions from the scan to the template and consider them as hard
Dirichlet constraints. It therefore remains to determine the vertex positions of
the skeleton surface B, such that the soft tissue enclosed between skin surface
S and skeleton surface B (fat + muscles, which we call flesh) deforms in a
physically plausible manner. This is achieved by minimizing a quasi-static
energy consisting of three terms:

E(B) = wr6gEreg (B,B) + wﬂeshEﬂesh(Br S) + wcollEcoll(Br S) . (4-7)
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The first term is responsible for keeping the skeleton surface (approxi-
mately) rigid and uses the same formulation as Equation (4.2), with B and B
denoting the skeleton surface before and after the deformation, respectively.
We employ a soft constraint with high weight wyg instead of deforming bones
in a strictly rigid manner [Kadlecek et al. 2016], since we noticed that for very
thin subjects the skeleton surface might otherwise protrude the skin surface
and therefore a certain amount of bone deformation is required. We also
do not penalize deviation from rigid or affine transformations as Dicko et al.
[2013] since this penalizes smooth shape deformation in the same way as
locally flipped triangles, which we observed to cause artifacts in the skeleton
surface. The discrete bending energy of Equation (4.2), with a suitably high
regularization weight wyeg, allows for moderate smooth deformations and gave
better results in our experiment.

The second term prevents strong deformations of the prism elements

p € P, spanned by corresponding triangles (x%,x%,x?) on the skin surface

and (xP, x]l.g,x,€g ) on the skeleton surface. While we penalize deformation of
the top/bottom triangles, we allow changes of prism heights, i.e., anisotropic
scaling in the direction from surface to bone, since otherwise the soft tissue
layer cannot grow to bridge the gap from the skeleton surface to the skin
surface. This behavior is modeled by the anisotropic strain limiting energy

2
o (4.8)

Efen(B,S) = % Z;) HFP —RPBPSPB;)
(S

where F, € R3*3 is the deformation gradient of the element p, i.e., the linear
part of the best affine transformation that maps the un-deformed prism p
to the deformed prim p in the least squares sense (see Equation (2.18) from
Section 2.2.2). Polar decomposition F, = R;S, decomposes F,, into a rotation
R, and scale/shear S, [Shoemake and Duff 1992]. B, is a rotation matrix
that aligns the z-axis with the surface normal of the prism’s corresponding
skin triangle, i.e., the direction in which we allow stretching. The matrix S,
represents the anisotropic scaling Sp = diag(1,1,a), where & € [¥min, ¥max]
allows to tune the amount of stretching in normal direction that should
be allowed. We use amin = 0.2 and amax = 5.0 to allow stretching and
compression of the element up to a factor of five before the energy of this
element increases.

Third, we detect the set of collisions C, defined as vertices of the skeleton
surface B that are outside of the skin surface S. For these colliding vertices we
add a collision penalty term

1

Econ(B,S) = 5 Y wi|x — s (x:)|?, (4.9)
x;€C

where 7t5(x;) is the projection of the colliding vertex x; to a position 2 mm
beneath the closest triangle on the skin surface S. The weight w; is initialized
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to 1 when the corresponding vertex collides for the first time, and is increased
by 1 each time the minimization was not able to resolve the collision.

In order to perform the iterative minimization of (4.7), we again use a
(static) PD solver (Section 2.2). The regularization energy can be implemented
as a bending constraint and collisions via anchor constraints (Section 2.2.1).
Efesh can be incorporated by modifying the polyhedron strain constraint from
Section 2.2.2: In the local projection step, we determine F, via (2.18), com-
pute its polar decomposition F, = R,S, and determine the current amount
of stretching & = (B,;S;B)33. This is clamped to the range [#min, #max] to
determine the constraint’s projection RPBPSPB;. We set the weights wreg = 0.1,
Wilesh = 0.01, and wo; = 50. The minimization is iterated until convergence.
In the converged state, we detect collisions and add the corresponding collision
constraints to the system. Minimization and collision detection are alternat-
ingly repeated until no collisions are found in a converged solution. For all
tested subjects, the skeleton fitting always reached this final stage in less than
ten seconds on average.

Muscle Fitting

Having determined the skin surface S and skeleton surface B, we now fit
the muscle surface M in between S and B, such that the ratio of fat mass
(FM) and muscle mass (MM) resembles the values estimated by our regressors
(Section 4.2.3). This muscle fitting is accomplished in three steps: First, we
transfer the template’s muscle surface to the fitted skin and skeleton surfaces,
which we call average muscle layer in the following. Second, we grow and
shrink the muscles as much as anatomically and physically plausible, yielding
the minimum and maximum muscle layers. Third, we find a linear interpolation
between these two extremes that matches the predicted fat mass and muscle
mass as good as possible.

The average muscle surface is transferred from the scaled template M
(Section 4.2.4, Figure 4.9) by minimizing an energy consisting of two objectives:

E(M) = WregEreg (M, M) + WiineEjine (M, B, S) . (4.10)

The first term tries to preserve the shape of the scaled template’s muscle
surface M and is modeled using the regularization energy of Equation (4.2).
The second term preserves the template’s property that each muscle vertex
M resides on the line segment from its corresponding skeleton vertex x? to
its skin vertex x¥, by penalizing the squared distance from that line:

Ejine(M, B,S) = % )3 ‘ Xi — 7L (Xi’x?’x;S)’

x;eM

X

2
, (4.11)

where 7ty (xi,x?, X9 ) is the projection of x; onto the line (1 — B)XE + px?,

B € [0,1]. Minimizing (4.10) leads to flat abdominal muscles like in the
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Figure 4.10: In addition to our
fat layer holding the subcuta-
neous fat that resides between

\ skin and muscle surface, there
Abdominal Muscles . .
is visceral fat that accumulates
Subcutaneous Fat below the abdominal muscles
and between organs. Visceral
Visceral Fat
fat pushes the muscles out-
wards and must therefore be

taken into account when fitting
the belly region of the muscles
for obese targets.

template model, which is unrealistic for corpulent or adipose subjects, because
the majority of body fat resides in two different fat tissues: the subcutaneous
fat, which is located between skin and muscle surface, and the visceral fat,
which accumulates in the abdominal cavity, i.e., under the muscle layer (see
Figure 4.10). Since the bulging of the abdomen due to visceral fat causes
a bulging of the belly, we inversely want the abdominal muscles in M to
slightly bulge out in case of a belly bulge in the skin surface S. The latter is a
combined effect of visceral and subcutaneous fat in the abdominal region. We
model this effect by adjusting Ej;,e for each vertex x; in the abdominal region.
Instead of using the full interval B € [0,1], we adjust the lower boundary
t0 Bmin = |[}XM —xB||/[x¢ —xB||, i.e., the parameter B where for the (scaled)
template the muscle surface intersects the line. Note that Ej;;, has to compete
with the regularization Ereg and therefore, the muscle bulge in the abdominal
region will be less dominant than Bmin would suggest. This is especially
important for targets with multiple belly bulges that are mainly caused by
subcutaneous fat. The regularization prevents these higher frequency bulges
from being present in M.

For the iterative minimization of (4.10) we use PD bending constraints
and modified anchor constraints performing the line projection in the local
step. We initialize M with M and set Wreg = 0.01, wyjpe = 1.0. When the
minimization converges, we update the Laplacians in Erg to those of the
current solution and decrease wreg by a factor of 0.5. This is iterated until the
maximal distance of a vertex to its bone-to-skin line (see (4.11)) is less than
0.2mm. Lastly, we project each vertex onto its corresponding bone-to-skin line
to get a perfect alignment.

Having transferred the average muscle surface, we next grow /shrink mus-
cles as much as possible in order to define the maximum /minimum muscle
surfaces. Since certain muscle groups might be better developed than others,
we perform the muscle growth/shrinkage separately for the major muscle
groups, namely upper legs (including buttocks), lower legs, upper arms, lower
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Figure 4.11: Left: When computing the maximum muscle surface, we move
muscle vertices toward the skin by an amount proportional to their muscle
potential, which for each vertex is the length of the dotted line intersected
with the muscle. The vertex with the black dotted line defines the maximum
allowed stretch in this example. Right: An example of our minimum and

maximum muscle layers for the same target. These two define the lower and
upper limit for the muscle mass and vice versa for the fat mass.

arms, chest, abdominal muscles, shoulders, and back. Muscles are built from
fibers and grow perpendicular to the fiber direction. In all cases relevant for
us, the fibers are approximately perpendicular to the direction from M to S,
thus muscle growth/shrinkage will move vertices x! along the line from x?
to x?. The amount of vertex movement along these directions is proportional
to the muscle thickness map of the template (computed in Section 4.2.2). We
determine how much we can grow a muscle before it collides with the skin
surface in the thicker parts of the muscle (instead of close to its endpoints
where it connects to the bone). Figure 4.11 shows an example, where the
leftmost muscle vertex is already close to the skin and would prevent any
growth if we took endpoint regions into account. For each muscle group, we
also define an upper limit for muscle growth that prevents the muscles from
increasing further, even if the skin distance is large (e.g., for adipose subjects).
For determining the minimal muscle surface, we repeat the process in the
opposite direction (towards the skeleton surface). To prevent distortions of the
muscle surface, we do not set the new vertex positions directly, but instead
use them as target positions t; (using Equation (4.3)) and regularize with
Equation (4.2). Figure 4.11 (right) shows an example of minimum/maximum
muscle surfaces computed by this procedure.

We determine the final muscle surface M by linear interpolation between
the minimum and maximum muscle surfaces, such that the resulting fat
mass FM and muscle mass MM match the values predicted by the regressors
(denoted by FM* and MM™) as good as possible. To this end, we have to
compute FM and MM from an interpolated muscle surface M. We can
compute the volume Vpp, of the fat layer (between & and M) and the volume

88



4.2 METHOD

VML of the muscle layer (between M and B) and convert these to masses
myr, and myy, by multiplying with the (approximate) fat and muscle densities
pr = 0.9kg/l and pp = 1.1kg/1, respectively.

The resulting masses require some corrections though: First, we have to
add the visceral fat (VAT), which is not part of our fat layer but resides in
the abdominal cavity. We estimate the VAT mass myar by computing the
difference of the cavity volumes of the scaled template and of the final fit,
thereby assuming a negligible amount of VAT in the template. Second, we
subtract the skin mass mg;, from the fat layer mass. We assume an average
skin thickness of 2 mm, multiply this by the skin’s surface area and the density
pr. Third, our fat layer includes the complete reproductive apparatus in the
crotch region. This volume is even larger due to the underwear that was worn
during scanning and incorrectly increases the fat layer mass by mocn. Our
corrected fat mass is then

FM = MEL + MyAT — Mskin — Merotch- (4-12)

We correct the muscle mass by subtracting the mass m1,,4 of the abdominal
cavity, which is incorrectly included in the muscle layer. The remaining muscle
mass is always too small even when using the maximum muscle surface, due
to all muscles not considered in the muscle layer, such as heart, face, and hand
muscles or the diaphragm. It is known that the lean body mass roughly scales
with the squared body height [Heymsfield et al. 2011], which is the basis of
the well known body and muscle mass indices. We analogously assume the
missing muscle mass to be proportional to the squared height /1 of the subject,
ie., my, = «h?, with a constant « to be determined later. The corrected muscle
mass is therefore

MM = mpmp. — Mapg + mMy,. (4.13)

There are other terms like the fat of head, hands, and toes, which could be
added, or the volume of blood vessels and tendons, which could be subtracted.
We assume those terms to be negligible.

Since the total volume of the soft tissue layer Vst = Wi + VL is constant,
the muscle layer mass m is coupled to the fat layer mass mpy, via my, =
(Vst — VL) pm. We want to compute the fat layer mass such that the resulting
FM and MM minimize the least squares error to the values predicted by
the regressor: Ecomp = (FM — FM*)? 4+ (MM — MM*)?. Inserting (4.12) and
(4.13) into Ecomp, rewriting myy in terms of mpr, and setting the derivative
dEcomp/dmgr, = 0 yields the optimal fat layer mass

FM* — MVAT + Mskin + Merotch + Y (VST PM — Mapd + my — MM*)
1+p2

Mg =

7

(4.14)
with the density ratio p = pm/pr-
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Figure 4.12: Measured muscle and fat masses provided by the BeyondBMI
dataset for its female and male subjects, plotted on top of the possible ranges
defined by our minimum and maximum muscle surfaces. Note that our
minimal fat mass is coupled to the maximal muscle mass and vice versa.

The minimum/maximum muscle surface yields a maximum/minimum
fat layer mass. The optimized fat layer mass is clamped to meet this range,
thereby defining the final fat layer mass. We then choose the linear interpolant
between the minimum and maximum muscle surface that matches this fat
mass, which we find through bisection search.

We did this for the scans of 100 men and 100 women from the BeyondBMI
dataset [Maalin et al. 2020], where we know the values for FM and MM
from measurements, and optimized the value of x for this dataset, yielding
Kmale = 1.5 and Kemae = 1.0. This is plausible since women in general have
a lower muscle mass. For instance, the average measured muscle mass of
the male subjects in the dataset is indeed 50% higher than the average MM
for the female subjects. The mean absolute errors (MAE) for the BeyondBMI
dataset are MAEyp = 0.37kg (£0.31), MAEgy = 0.46kg (£0.38) for the
female subjects and MAEyn = 0.46kg (£0.39), MAER\; = 0.57 kg (+0.48) for
the male subjects. Figure 4.12 shows how well our model can adjust to the
target values of muscle and fat mass. All values are inside or at least close to
the predicted possible range of minima and maxima. Moreover, in most cases
the muscle/fat mass values for the same person split the two ranges at about
an inverse point (e.g., close to maximum muscle and close to minimum fat),
which leads to the low errors stated above.

Transferring Original Anatomical Data

After fitting the skin surface S to the scan and transferring the skeleton surface
B and the muscle surface M into the scan, the final step is to transform the
high-resolution anatomical details (Zygote’s bone and muscle models in our
case) from the volumetric template to the scanned subject. We implement
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this in an efficient and robust manner as a mesh-independent space warp
d: R? — R3 that maps the original template’s skin surface S, muscle surface
M, and skeleton surface B (all marked with a hat) to the scanned subject’s
layer surfaces S, M, and B, respectively. All geometry that is embedded in
between these surfaces will smoothly be warped from template to scan.

Dicko et al. [2013] also employ a space warp for their anatomy transfer,
which they discretized by interpolating values d;jx on a regular 3D grid con-
structed around the object. Their space warp is computed by interpolating the
skin deformation & — S on the boundary and being harmonic in the interior
(i.e., Ad = 0), which requires the solution of a large sparse Poisson system for
the coefficients d;j.

We follow the same idea, but use a space warp based on triharmonic radial
basis functions (RBFs) [Botsch and Kobbelt 2005], which have been shown to
yield higher quality deformations with lower geometric distortion than many
other warps (including FEM-based harmonic warps) [Sieger et al. 2013]. The
RBF warp is defined as a sum of n RBF kernels and a linear polynomial:

d(x) = i wigj(x) +ax+b, (4.15)
j=1

where w; € R? is the coefficient of the j™ radial basis function ¢;(x) =
¢(||x — ¢j||), which is centered at ¢; € R?. As kernel function we use ¢(r) = r°,
leading to highly smooth triharmonic warps (A3d = 0). The term ax + b is a
linear polynomial ensuring linear precision of the warp.

In order to warp the high-resolution bone model from the template to the
scan, we setup the RBF warp to reproduce the deformation B +— B. To this
end, we select 5000 vertices ; € BB from the template’s skeleton surface by
farthest point sampling. The corresponding vertices on the scan’s skeleton
surface are denoted by x; € B. At these vertices X; the deformation function
d(%;) should interpolate the displacements d; = x; — X;. These constraints lead
to a dense, symmetric, but indefinite (1 +4) x (1 4 4) linear system, which we
solve for the coefficients wy, ..., wy, a, b using the LU factorization of Eigen
[Guennebaud et al. 2018]. Note that all coefficients only depend on properties
of the template and can therefore be pre-computed and stored. The resulting
RBF warp d then transforms each vertex x of the high-resolution bone model
as x < x+d(x). This process can trivially be parallelized over all model
vertices, which we implement using OpenMP. We follow the same procedure
to warp the high-resolution muscle model, but collect 7000 constraints from the
vertices X; € S U M of the skeleton and muscle surfaces, since these enclose
the muscle layer.
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Generating a personalized anatomical model for a given surface scan of a
person consists of the following steps: First, the surface template is registered
to the scanner data (triangle mesh or point cloud) as described in Section 4.2.1
following Achenbach et al. [2017]. After manually selecting 10-20 landmarks,
this process takes about 50 sec. Fitting the surface template establishes dense
correspondence with the surface of the volumetric template and puts the scan
into the same T-pose as the volumetric template. Fitting the volumetric tem-
plate by transferring the three layer surfaces (Section 4.2.4) takes about 15 sec.
Transferring the high-resolution anatomical models of bones and muscles
(145k vertices) takes about 0.5 sec (we pre-computed the warp coefficients for
each template, which takes 4.5sec). Timings were measured on a desktop
workstation, equipped with an Intel Core i9 10900X CPU and a Nvidia RTX
2080 TI GPU except for the surface template registration (Section 4.2.1), which
was carried out on a different machine equipped with an Intel Core 19 10850K
and a Nvidia RTX 3070.

Dicko et al. [2013] and Kadlecek et al. [2016] are the two approaches
most closely related to ours. Dicko et al. [2013] also use a space warp for
transferring anatomical details, but since they only use the skin surface as
constraint, the interior geometry can be strongly distorted. To prevent this, they
restrict bones to affine transformations, which, however, might still contain
unnatural shearing modes and implausible scaling. Our space warp yields a
higher smoothness due to the use of C* RBF kernels instead of C° trilinear
interpolation. It reduces unnatural distortion of bones and muscles by using
the interior layer surfaces as constraints instead of the skin surface, and by
optimizing these layers w.r.t. anatomical distortion. In Figure 4.13 we compare
the result of a harmonic warp using only the skin surface as constraint to our

Figure 4.13: Result of transferring the anatomy by using just the skin layer and
a harmonic basis (left). Here, both muscles and bones deform too much to
fit overweight targets. We use the additional muscle and skeleton layer and a
triharmonic basis (right) to prevent unnatural deformations.
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Figure 4.14: The approach of
Kadlecek et al. [2016] can result in
intersections between skeleton and
muscles as shown here at the rib-
cage, where the ribs cut through the
muscle layer. By using our layered
models, we can successfully avoid
any interpenetration of the differ-
ent layers (and therefore its con-

( tained structures) when fitting to
various body types. The image was

K taken from Kadlecek et al. [2016],
Figure 13.

three-layered, triharmonic warp. The former shows drastic and unrealistic
deformations of both muscles and bones while our approach solves these
issues. Note that additionally restricting the bones to affine transformations
like Dicko et al. [2013] would still produce unnaturally thick bones (e.g., the
upper leg bone) and muscles.

Compared to Kadlecek et al. [2016], we require just a single input scan,
since we infer (initial guesses for) joint positions and limb lengths from the
full-body PCA of Achenbach et al. [2017]. Putting the scan into T-pose prevents
us from solving for bone geometry and joint angles simultaneously, which
makes our approach much faster than theirs (15 sec vs. 30 min). Moreover, our
layered model yields a conforming volumetric tessellation with constant and
homogeneous per-layer materials, which more effectively prevents bones from
penetrating skin or muscles. In their approach the bones (especially the rib-
cage) often intersect the muscle layer as mentioned by Kadlecek et al. [2016] as
a limitation of their work. We show one of their examples to demonstrate this
problem in Figure 4.14. Furthermore, we automatically derive the muscle/fat
body composition from the surface scan, which yields more plausible results
than growing muscles as much as possible [Kadlecek et al. 2016], since the
latter tends to overestimate the amount of muscles for corpulent people. Our
model extracts muscle and fat masses using data of real humans and can
therefore adopt to the variety of human shapes (low FM and high MM, high
FM and low MM, and everything in between). Finally, we support both
male and female subjects by employing individual anatomical templates and
muscle/fat regressors for men and women.
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4.3.1 Evaluation on Hasler Dataset

In order to further evaluate the generalization abilities of the linear FM /MM
models (Section 4.2.3) to other data sources, we estimate FM and MM for
a subset of registered scans from the Hasler dataset [Hasler et al. 2009] and
measure the prediction error. We select scans of 10 men and 10 women, making
sure to cover the extremes of the weight, height, fat, and muscle percentage
distribution present in the data.

For the female sample, the predictions show a mean absolute error of
MAEpy = 0.65kg (£0.44) and MAEypy = 4.39kg (£1.71). For the male sam-
ple, the model shows a similar error for the MM prediction, but performs worse
at predicting FM: MAEgy; = 3.32kg (£1.98) and MAEyy = 4.14kg (£2.74).
Compared to the leave-one-out tests on the BeyondBMI data, the average error
increases noticeably, which can partly be explained by differences in the mea-
surement procedure between the two datasets: while Hasler et al. [2009] used a
consumer-grade body fat scale, Maalin et al. [2020] used a medical-grade scale,
which should lead to more accurate measurements. Nevertheless, these results
show that our regressor generalizes well to other data sources, providing a
simple and sufficiently accurate method for estimating FM and MM from body
scans.

Given the FM and MM values of a target from our regressor, we choose the
optimal muscle surface between the minimal and maximal muscle surface as
explained in Section 4.2.4. Comparing the final FM and MM of the volumetric
model to the ground truth measurements of the Hasler dataset we get end-to-
end errors of MAEgy; = 0.70kg (£0.52), MAEMM = 4.19kg (£1.39) (female)
and MAEpy = 349kg (£2.02), MAEym = 3.81kg (£2.56) (male). This
evaluation shows that the muscle fitting introduces just a very low additional
error, or even reduces the error of the estimator.

4.3.2 Evaluation on CAESAR Dataset

In order to demonstrate the flexibility and robustness of our method, we
evaluate it by generating anatomical models for all scans of the European
Caesar data set [Robinette et al. 2002], consisting of 919 scans of women and
777 scan of men, with height range 131 cm to 218 cm for men and from 144 cm
to 195cm for women (we restricted to scans with complete annotation and
taken in standing pose). Some examples for men and women of different body
shapes can be seen in Figure 4.15 and Figure 4.16.

For the 1696 CAESAR scans, our muscle and fat mass regressors yield
just one slightly negative value for the fat mass of the thinnest male (body
weight 48kg, height 1.72m, BMI 16.14kg/m?). For all other subjects, we
get values ranging from 3.5% to 38.9% body fat (mean 20.3 %) for male
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Figure 4.15: Some examples for various male body shape types. For each input
surface the transferred muscles and skeleton are shown in front and side view.
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N

Figure 4.16: Some examples for various female body shape types. For each

input surface the transferred muscles and skeleton are shown in front and side
view.
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subjects and 8 % to 45.3 % (mean 28.9 %) for female subjects. The range of
predicted muscle masses is 24.9kg to 57.8kg (men) and 20.1kg to 37.7kg
(women). When determining the optimal interpolation between the minimum
and maximum muscle layer, we meet the estimated target values up to mean
errors MAEpy = 1.08kg (£0.9) (male), MAEgy; = 1.41kg (£1.35) (female)
and MAEyn = 0.88kg (£0.74) (male), MAEyy = 1.15kg (£1.11) (female).
Note that even the scan with predicted negative FM can be reconstructed
robustly. In this case the muscle surface will be the maximum muscle surface,
which in general is a suitable estimate for very skinny subjects.

The CAESAR dataset does not include ground truth data for fat and mus-
cle mass of the scanned individuals. Thus, in order to further evaluate the
plausibility of our estimated body composition, we compare it to known body
fat percentiles. Percentiles are used as guidelines in medicine and provide
statistical reference values. For instance, a 10! percentile of 20.8% body fat
means that 10% of the examined population have a body fat percentage less
than 20.8%. Assuming that the European CAESAR dataset is a representative
sample of the population, the percentiles we get from our reconstructions of
the CAESAR scans should match the percentiles of the European population.
The total body mass of each subject is provided in the dataset. Therefore,
we can compute the BF from the values produced by our fat mass regressor
(Section 4.2.3), determine the percentiles on the CAESAR dataset and com-
pare these to Kyle et al. [2001], who measured body fat using 4-electrode
bio-electrical impedance analysis from 2735 male and 2490 female western
European adults. Our body fat percentiles on the CAESAR dataset are very
well in agreement with their results, as shown in the following table:

Percentile sthqoth  p5th  5oth  75th  gpth  g5th
Mal Our estimate 102 123 160 203 246 281 307
ale
Kyle et al. [2001] | 109 126 157 192 235 270 292
Our estimate 186 211 247 285 337 374 393
Female

Kyle et al. [2001] | 185 20.8 238 281 326 375 405

4.3.3 Physics-Based Character Animation

As explained before, the complicated process of creating volumetric models is
often prohibitive for physics-based character animation. Our Fast Projective
Skinning approach (Chapter 3) provides a simple and efficient model gener-
ation but the volumetric skeleton built from spheres and cylinders is just a
rough approximation to realistic anatomy. Moreover, FPS handles muscles
and fat in one combined layer, taking no differences in body composition into
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1°0°3°)

Figure 4.17: Our layered anatomical model can be animated using an extension
of Fast Projective Skinning (FPS), as shown in (a). When the character performs
a jump to the left (b), our realistic skeleton correctly restricts the dynamic
jiggling to the belly region (b-left), while the original FPS deforms the the
complete torso (b-right). For a static twist of the torso (c), the rib-cage of
our layered model keeps the chest region rather rigid and concentrates the
deformation to the belly (c-left). Without a proper anatomical model, the
deformation of FPS is distributed over the complete torso (c-right).

account. Our three layered anatomical models overcome some limitations of
the FPS approach while still being much simpler and faster to produce than
previous models [Kadlecek et al. 2016].

We demonstrate this by modifying our skinning method to make it com-
patible with the three-layered models. We build the skeleton graph by setting
joints at locations of the real anatomical joints (the spine is approximated
with only four joints). When changing the pose of the animation skeleton,
the detailed skeleton mesh is animated using Linear Blend Skinning, where
most of the volumetric bones just depend on one joint but a few (e.g., spine
and scapula) are also influenced by multiple joints. We attach vertices of the
skeleton surface B to their corresponding bone using hard constraints (see
Section 2.2.3) such that they follow the skeletal motion.

The remaining steps of the skinning simulation stay unchanged. The FPS
soft tissue layer is now split into our separate muscle and fat layers. This
enables us to use different stiffness values for the fat and muscle layers (the
latter being three times larger). Moreover, the skeleton surface of the three-
layered model features a realistic rib-cage. As a result, our extended version of
FPS yields more realistic results compared to vanilla FPS in particular in the
torso and belly region, as shown in Figure 4.17 and 4.18 and in Video V.8. In
other regions like arms and legs, where the bones” shape is already close to the
cylinders of the simplified FPS skeletons, differences in the skinning result are
more subtle. Note that the GPU simulation still allows real-time simulations
of the full three-layered model. Using the same settings as in Table 3.2, we
achieve about 250 fps with N ~ 16.7k simulated vertices of our three surface
(a large part of the skeleton surface can be set as boundary constraint) and
collisions disabled.
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‘3

Figure 4.18: A bending-backwards posture with (left) and without (middle)
defined sliding regions, where the skeleton surface can stretch. The right
image shows the result of the simplified FPS-based volumetric model.

The FPS skin sliding approach explained in Section 3.2.2 is based on the
simplified skeletal structure and is therefore not applicable when using a
realistic skeleton. In order to accomplish a similar effect, we define some
regions in proximity of joints, which we do not attach to bones by hard
constraints. In these areas the skeleton surface can stretch and compress
when the corresponding joint is bent. This is especially important in the
abdominal region. Here, a rigid binding of the skeletal motion to different
joints leads to artifacts as shown in Figure 4.18, middle. Allowing a stretching
and compression in this area simulates the softer abdominal region more
realistically (Figure 4.18, left). Note that the skeletal rig as well as all manual
assignments have to be defined just once for the template as they can be
transferred to all derived models.

4.3.4 Simulation of Fat Growth

Our anatomical model can also be used to simulate an increase of body fat,
where its volumetric nature provides advantages over existing surface-based
methods.

In their computational bodybuilding approach, Saito et al. [2015] also
propose a method for growing fat. They, however, employ a purely surface-
based approach that conceptually mimics blowing up a rubber balloon. This is
modeled by a pressure potential that drives skin vertices outwards in normal
direction, regularized by a co-rotated triangle strain energy. The user must
specify a scalar field that defines where and how strong the skin surface should
be “blown up”, which is used to modulate the per-vertex pressure forces.
Despite the strain-based regularization we sometimes noticed artifacts at the
boundary of the fat growing region and therefore add another regularization
through Equation (4.2). This approach allows the user to tune the amount of
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Figure 4.19: Given a reconstructed model (left), the pressure-based fat growth
of Saito et al. [2015] leads to a more uniform increases in fat volume (center),
while our volume-based fat growth increases the initial fat distribution.

subcutaneous fat, but unless a carefully designed growth field is specified, the
fat growth looks rather uniform and balloon-like (see Figure 4.19, mid-top).

Every person has an individual fat distribution and gaining weight typically
intensifies these initial fat depots. We model this behavior by scaling up the
local prism volumes of our fat layer. Each fat prism can be split into three
tetrahedra, which define volumetric elements t € T with initial volumes \7]-. A
simple uniform scaling s - V; achieves the desired effect that fat increases more
in fat-intense regions. The growth simulation is implemented by minimizing
the energy

Egrow (S) = wyolEvol(S) + wregEreg (‘S/ 3) + Wrest Erest (81 S) (4.16)

with the Laplacian regularization of Equation (4.2), the displacement regular-
ization
Erest(S,S) = Y Aillxi — xi||? (4.17)

X, €S

and the volume fitting term

Evoi(S) = Y V; (vol(t)) —s-V;)?, (4.18)
tieT

where § and S denote the skin surface before/after the fat growth and s is the
global fat scaling factor. The energy minimization can again be performed by
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g 8 7
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'Y 3 g
Figure 4.20: Examples of our fat growth simulation, with input models shown
in the top row and their weight-gained version in the bottom row.

the static version of the PD solver (Section 2.2) using volume, bending and
anchor constraints (Section 2.2.1). Saito et al. [2015] argued that anisotropically
scaling fat tetrahedra in one direction does not produce plausible results.
However, isotropically scaling the volume leaves the minimization more freedom
and yields convincing results. Figure 4.19 compares the pressure-based and
volumetric fat growth simulations. Figure 4.20 shows some more examples
produced by combining both methods. Note that all examples did not require
a per-vertex scalar growth field, however, we divided the body into four parts
(i.e., legs, belly, chest, arms) in order to choose a local growth-rate per region.

If we want to use our volume-based fat growth to grow fat on a very
skinny person, the initial (negligible) fat distribution does not provide enough
information on where to grow fat. Manually defining a per vertex-scalar
growth field like Saito et al. [2015] solves this issue, however, we found a
simpler solution: since we can easily fit the volumetric template to several
subjects, we can “copy” the distribution of fat prism volumes from another
person and “paste” it onto the skinny target, which simply replaces the
target volumes in (4.18). This enables a fat transfer between different subjects,
which is shown in Figure 4.21. Note that this approach transfers just the fat
distribution, and the scaling factor, i.e., the amount of additional weight, can
still be set manually.

All presented approaches are not able to simulate the growth of visceral
fat since only the subcutaneous fat layer is scaled. To solve this issue, we can
re-apply our muscle fitting (Section 4.2.4) to the result of the fat growth.
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Figure 4.21: Examples of “fat transfer”. The two subjects in the first and third
row have a very low amount of body fat. Therefore, scaling their fat volumes
is not suitable for fat growth. Instead, we copy the fat distributions of other
subjects (shown as small insets). This allows us to simulate a similar fat growth
behavior for the skinny targets.
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4.4 SUMMARY & LIMITATIONS

We created a simple layered volumetric template of the human anatomy and
presented an approach for fitting it to surface scans of men and women
of various body shapes and sizes. Our method generates plausible muscle
and fat layers by estimating realistic muscle and fat masses from the surface
scan alone. In addition to the method for fitting the layered template to the
target, we also showed how to transfer internal anatomical structures, such as
bones and muscles, using a high-quality space warp. Compared to previous
work, our method is fully automatic and considerably faster, enabling the
simple generation of personalized anatomical models from surface body scans.
Besides educational visualization, we demonstrated the potential of our model
for physics-based character animation and anatomically plausible fat growth
simulation.

Our approach has some limitations: First, we do not generate individual
layers for head, hands and toes, where in particular the head would require
special treatment. Combining our layered body model with the multi-linear
head model of Achenbach et al. [2018] is therefore a promising direction
for future work. Our method assumes that target persons have four limbs,
hence it cannot model humans who lost an arm or a leg. The regressors
for fat and muscle mass could be further optimized by training on more
body scans with known body composition. Given more accurate training
data, as for instance provided by DXA scans, we could extend the fat/muscle
estimations to individual body parts. Moreover, we focused on muscles, fat
and bones and ignored other structures like blood vessels, organs, tendons
and cartilages. These can be transferred from template to target by applying
our harmonic space warp but our model is currently not able to simulate
their functionality. Another limiting factor is that all models produced by our
method share the basic shape of their muscles. In most cases this is a reasonable
approximation but the abdominal muscles are an important exception. The
‘six-pack” becomes visible for very low amounts of body fat and varies widely
in size and symmetry for different people. In the current state, our muscle layer
cannot adapt to these variations. The fact that the three layers of our model
share the same topology/connectivity can also be considered a limitation,
since we cannot use different, adaptive mesh resolutions in different layers.
We minimized misalignment of corresponding triangles when generating
the different template layers, however, our simple approach for creating the
volumetric elements in between two surfaces can still result in tetraheda of
high aspect ratio. While we did not notice any artifacts in the simulations, we
could increase the quality of the volumetric elements by employing a more
sophisticated tetrahedralization approach [Si 2015] using our surfaces B, M,
S as input.
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The presented applications of our models for animation and fat growth
both provide space for further improvements. We used a modification of
Fast Projective Skinning (see Section 4.3.3) allowing for simple and efficient
animations of our anatomical models, however, we thereby also inherited the
limitations of FPS, like its restriction to a linear elasticity model. In addition,
bones should also be treated as a nonrigid object (especially the rib cage)
to allow for a more realistic behavior. The simplified FPS skeletons made
from spheres and cylinders prevent connected bones from intersecting for the
majority of anatomically plausible joint angles. However, this is no longer the
case when using a more realistic skeleton, for which we must carefully choose
the rotation centers to minimize inter-bone penetrations at joints. Setting
sliding regions like explained in Section 4.3.3 helps to avoid artifacts in these
cases. In future, we would like to extend this approach and also simulate the
deformation of the skeleton surface B rather than rigidly attaching it to bones.
In this way, we could handle collisions with the detailed bone meshes and
more realistically simulate the skin-sliding behavior.

We also plan to develop more automatic fat growth simulations. While
we do not require a detailed fat growth texture like Saito et al. [2015], our
approach is still a manual task, where we choose a region (e.g., belly, chest,
legs) and set a desired amount of growth per region. In future, we would
like to learn the typical fat distributions and ranges from the layered models
of the Caesar dataset [Robinette et al. 2002] and try to find some clusters of
‘fat growth types’. The goal would be to determine the corresponding cluster
for a given obese person (or choose one for a skinny person) and simulate fat
growth based on that specific type and the targeted weight.

Moreover, we focused only on weight gain but simulating realistic weight loss
is also an interesting topic for future work. We can theoretically set a reduced
volume in our current fat growth approach but this only works for small
reductions. When targeting significantly smaller volumes, we also need to
shrink the skin surface S realistically. A promising approach could be to first
simulate fat growth for many persons and using this as training data to learn
the inverse operation. We think that the simple structure of our layered model
can be beneficial to generate synthetic training data for statistical analysis and
machine learning applications in general.
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In the last decade, companies realized something that researchers have known
for a long time: the data of each aspect of everyone’s live is a valuable currency.
It is required for applications ranging from personalized advertisement up to
methods based on artificial intelligence. However, it also raises the need for
data privacy and significantly empowers those who can afford the most data.
The same trend can be observed in many recent approaches for character ani-
mation relying on increasing amounts of data, in this case 3D-scans of humans
in different poses (also called examples). Even though these example-based
methods are able to produce very convincing animations, collecting examples
requires expensive equipment, which is prohibitive for small developer teams
and circumvents the creation of their own models based on their demands.
Furthermore, since real-world data is not available for fictional characters, the
usage of those approaches is limited.

A (monetary) cheaper and more general solution is offered by physics-based
approaches. Rather than just capturing the results, they try to understand and
model the rules of physics underlying every plausible motion and deformation
of matter. Physics-based simulations are often used in movie productions, es-
pecially to animate very dynamic motions (e.g., cloth, hair, fluids), but are also
employed to produce very convincing character animations. Typically, these
simulations have two main disadvantages: they require volumetric character
models that are cumbersome to create and have very high computational costs
(multiple seconds or even minutes per frame are quite common). This thesis
tried to tackle and solve these two problems of physics-based animation.

For this purpose, we developed Fast Projective Skinning, a physics based
skinning approach being capable of simulating various character models in
real-time. An important self-imposed requirement was that the user must
provide just a minimal amount of input data for animating their model.
Moreover, we intended not to rely on tedious, manual fine-tuning steps like
the typical rigging process of common character animation pipelines. In the
end, the resulting freely available implementation of our FPS-approach takes
just the skin mesh and the desired skeletal structure as input. We also provide
an additional small application for defining the latter (see Figure 5.1).

The volumetric model, which is required for the simulation, is automatically
created from skin and skeleton. The structure of the model is inspired by the
anatomy of real bodies: on an abstract level, they are built from soft tissue
surrounding solid, tube-shaped bones. Following this idea, we built a simple
volumetric skeleton and shrink the skin until it wraps this skeleton like a
rubber-tube. Our shrinking process has several advantages: First, it can be
applied very efficiently on a wide range of input data (both skeletons and
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Skeleton Builder - o ®
Pr

Figure 5.1: Our Fast Projective Skinning application includes a skeleton-builder
that takes a skin mesh as input and allows a simple drag-and-drop construction
of the skeleton graph (left). The user can also decimate the mesh and compute
the upsampling weights with the help of this app. Thereby, our FPS approach
provides a simple and intuitive way to animate the model (right).

skin meshes). Second, it provides a very simple and robust volumetric mesh
generation that does not involve any additional software. Third, due to the
tubular structure of our shrunken skin, the area in between two bones is not
contained in the resulting tetrahedral mesh. These regions involve the most
extreme deformations and can cause artifacts in physics-based simulations if
not handled carefully. Our representation successfully avoids this problem
and is even capable of simulating the stretching and compression of skin in
these regions (skin sliding).

Position-based solvers like Projective Dynamics are already capable of
simulating our resulting volumetric models in real-time on the CPU for mod-
erate resolutions. However, applications like video games typically involve
multiple skinned characters in addition to numerous other effects that must
be computed in each frame, thus, the remaining time budget per frame is
extremely small in general. Therefore, we optimized our approach in multiple
ways to meet those demands. First, we reduced the size of the simulated
system by incorporating hard constraints in the Projective Dynamics algorithm.
Additionally, we are able to perform our simulations on very coarse represen-
tations of the models by introducing an upsampling approach that efficiently
maps to the full resolution. Our upsampling method outperforms similar
previous techniques in terms of both memory consumption and computational
efficiency. Furthermore, we have shown how to leverage the huge potential for
parallelization by developing a highly optimized GPU implementation of Fast
Projective Skinning. Overall, we were able to reduce the computation time
per frame to less than 0.5ms which is even comparable to common geometric
approaches.

Regarding animation quality, our Fast Projective Skinning achieves very
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convincing results and further supports dynamic jiggling of soft tissue. More-
over, we introduced two approaches for incorporating collision handling in
FPS. We can pre-compute potential collision pairs for solving local collisions in
proximity of joints, handled by special, light-weight local collision constraints.
We recommend using these for CPU-based FPS for which a full collision detec-
tion would drastically impair the efficiency. However, GPU-based FPS is able
to manage the additional overhead of a full global collision detection while
maintaining real-time performance. As a result, Fast Projective Skinning is
the first skinning approach capable of handling arbitrary global collisions for
complete humanoid characters in real-time.

While FPS achieves convincing results without requiring any manual steps,
it simultaneously offers some opportunities to modify the results based on
artistic choices: First, the size and positioning of our volumetric joints influence
the surrounding area. Moreover, all parameters can be defined on a vertex
base. For instance, an artist could increase or decrease the amount of dynamic
jiggling for a specific area by varying the mass. Furthermore, we have shown
that FPS supports stretchable and twistable bones as well as virtual bones to
simulate unconnected skeletons and soft limbs.

The flexibility of our approach is based on the simplifications we made to
generate the volumetric models. While FPS overcomes the artifacts of common
geometric approaches, the assumed simplifications can still impair the quality.
Particularly for animations of humans, which can be observed on real persons
every day, even small imperfections attract attention. A typical example is the
poor approximation of the rib-cage in our models, or the missing information
of fat and muscle distribution, both leading to unrealistic behavior, especially in
dynamic simulations. In the second half of this thesis, we therefore introduced
a second approach to generate anatomically plausible, personalized volumetric
models of humans from 3D surface scans. We purposely did not built on
volumetric scans (MRI, CT) of the subject since these are highly expensive and,
in case of CT-scans, involve X-radiation.

Inspired by our FPS-models consisting of two topologically identical sur-
faces, we extended the idea of a layer-based volumetric representation. Starting
from a detailed anatomical model, we generated a high-quality layered tem-
plate model of an average male and female character. This time, we used
three topologically identical surfaces: a skeleton surface wrapping the realistic
skeleton, a muscle surface enclosing both muscles and skeleton and the skin.

We further built personalized three-layered models by employing a volu-
metric fitting process that subsequently modifies the template model until it
perfectly fits the surface scan of the target person. By first registering each
input mesh to the same animatable surface template, we can perform the
volumetric fitting process in a uniform pose. This process further leverages
the conformal layered structure of the template, and is therefore both much
faster than previous approaches and produces more realistic results.
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Dividing the soft tissue into plausible fat and muscle volumes had been
one of the main challenges for our method. We built a regressor that is able to
estimate the muscle and fat mass from the 3D-scan of a person and produces
much more reliable results than comparable existing methods. The estimated
muscle and fat mass values, as well as our layered structure, allow for a simple
construction of the personalized muscle surface: after initializing the surface by
constraining it between the subject’s skin and skeleton surface, we can modify
the thickness of both fat and muscle layer by moving the muscle surface to one
of its two enclosing surfaces. This results in a plausible minimal and maximal
muscle layer. The user can now either set a desired amount of muscle and
fat mass, or we automatically detect these using the estimator. Our approach
takes also visceral fat into account that produces a bulge of the abdominal
muscles for corpulent persons.

Lastly, anatomical structures can be transferred from template to target
with a triharmonic space warp. As a result, our approach creates personalized,
anatomically plausible volumetric models for humans in a few seconds. These
provide more realistic character animation than our simplistic two-layered
models for both static poses and dynamic motions. We further presented a
simple approach for fat growth and fat transfer.

Beyond physics simulations, we can think of various future applications for
quickly generated, personalized anatomical models, particularly in medicine.
For instance, a bone fracture could be explained to patients using their per-
sonalized anatomical model instead of a medical skeleton model. Here, our
layered representation would provide a plausible guess for the majority of the
body and the specific area could be augmented by volumetric (MRI, CT) scans.
Our models can also be used for educational purpose: time-intensive memo-
rization of human anatomy could be much more exciting for medical students
if the reference were their own bodies or those of partners or celebrities, which
could be studied in a VR-environment. Regarding cosmetic surgery, the ability
to visualize potential outcomes of a surgical operation via physical simulations
is very important for both patients and surgeons. Moreover, our model could
be applied to enhance therapy for obese or anorexic people by confronting the
patients with their personalized models while changing the amount of body
fat with our fat growth approach. Furthermore, athletes could use our models
to visualize their personal muscles and for simulating the effect of different
amounts of body fat/muscles. All these fields of applications benefit from fast
generation of personalized anatomical models.

We want to emphasize once more that our method cannot replace volumet-
ric imaging techniques in a medical context, but instead provides a plausible
guess for the interior structures of a person. Compared to the two-layered
FPS models, it is less general since it focuses on human characters. This is
compensated for by providing a more realistic human model.
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Lastly, we would like to outline some promising directions of future work:

If a patch of skin begins to stretch, the required force increases slowly
for small deformations but grows more drastically for larger ones due
to collagen fibers lining up with the stress direction [Gibson and Kenedi
1967]. Muscles are built from aligned fibers resulting in an anisotropic
stretching behavior [Green et al. 2013]. To account for both effects, it
would be interesting to experiment with solvers that support nonlinear
and anisotropic elasticity models [Narain et al. 2017; Liu et al. 2017] in
combination with our FPS approach.

So far, the skin surface forms the outermost layer of our character models.
But skin can also be covered by hair and cloth, which are currently
“baked” into the skin surface (we have shown various examples of dressed
characters with hair in Chapter 3). Modeling and simulating hair and
cloth is a challenging task, especially in real-time, but would increase the
realism of our character simulations by a huge amount.

While the animation of the anatomical models is real-time capable, it is
still considerably slower than the simulation of the simplistic two-layered
models. Therefore, it would be interesting to see to which extent we could
reproduce the results of the anatomical model by optimizing parameters
of our simplified ones (local stiffness, masses, position and size of joints).

For medical treatment, just a specific region of the body is typically
scanned using volumetric imaging techniques. Like already mentioned
before, enhancing our anatomical models with those partial volumetric
scans could further extend the applicability of our method. Similarly,
additional information about local fat and muscle distribution could
enhance our process of fitting the muscle surface.

The various three-layered models we generated could be used to build a
statistical anatomical model for humans similar to former surface models
[Hasler et al. 2009]. These represent the variations of human anatomy
through a set of parameters and could also serve as a generator of vol-
umetric human models. We already experimented with simple PCA
models but found that they cannot prevent the surfaces from intersecting.

We think that, due to their simple layered structure, our models could
effectively be used in machine learning applications. For instance, a
neuronal network could be trained to predict the skin deformation based
on a given deformed skeleton surface using our simulations to generate
large sets of training data. The fat growth simulations could also be
learned and probably inverted to predict a leaner version of a person. We
could also try to train a generator of our anatomical models based on
different inputs like images, sketches or even descriptions of the person.
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All in all, both Fast Projective Skinning and the efficient generation of
personalized anatomical models presented in this thesis can help making
physics-based simulations of virtual characters more applicable and simplify
the animation process for both novice users and experts.

There is a final factor that should not be underestimated besides all the
serious applications presented in this thesis: it can be simply fun to watch the
mesmerizing dynamic motions of the animated characters.
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APPENDIX

Intersections between Lines and the FPS Skeleton

In order to shrink the skin onto the simplified skeletons that we use in our Fast
Projective Skinning (see Section 3.2.1), we need to compute the intersection
between a line (from skin to skeleton’s bone-line) and a cylinder or a sphere.
Each point x; on a line between two points 1p and 1; can be defined via

xj(A) = 1o+ Al (A1)

with the line’s direction 1 = (1; — 1)/ ||l — lp|| and A; € [0, 1]. Each point x on
a sphere with center ¢y and radius ry satisfies

[x — col| =70 (A.2)

To define a cylinder of the same radius between ¢y and another point ¢; (length

C = ||e; — ¢gl|, direction ¢ = (¢; — ¢g)/C), the left term in (A.2) can be altered
to the shortest distance from x to the mid-line

H (x —¢cp) — ((x — co)Tc> CH = 70. (A.3)

In the region between a bone’s cylinder and a joint’s sphere of an FPS-skeleton,
we test for intersections with a conical frustum (see Figure A.1). Starting from
(A.3), we can create a conical frustum by linearly interpolating the radius from

//”— T, ~~\\\
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Figure A.1: In order to get a tube-like wrap around our volumetric skeleton
(black) we check for intersections with three different shapes: spheres (dashed
blue), cylinders (filled red) and conical frustums (filled blue).
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o (at ¢p) to a second radius 71 (at ¢7)

r —7o

H (x—¢cp) — ((x — co)Tc> CH =ro+ ((x — C())TC> - (A4)

(A.4) can be re-transformed to (A.3) by setting rq = rg, and similarly (A.3) to
(A.2) by setting ¢ = 0. Therefore, we first solve the general case of intersecting a
line with a conic frustum by inserting (A.1) into (A.4). The point of intersection
is Xg = Xl(/\s) with

Ag = (=b—+d)/a
a=1-(1"c)*(1+13)
b= lT(l() — C()) — (lTC) ((10 — C())TC> (1 + T’lzi) — (ITC)T’dTO

2
c=(lo—co)* — 15— ((10 — CO)TC) (1+13) —2r4r0(lg — co) e
d=b*—ac
rg = (r1—ry)/C.

In case of a line-cylinder intersection (r; = 0), variables a, b, ¢ simplify to
a=1-1"c)?
b=1"(lp—co) — (1"c) ((10 - Co)TC>
c=(lg—co)?—75— <(10 — C())TC>2,

and in case of a line-sphere intersection (¢ = 0) these further simplify to

a=1

b=1"(1p — co)

c = (l() — C())2 — 7’%
There is no intersection if d < 0. Additionally, both (xs —¢g)Tc and (¢; —xs)Te
must be positive in case of a conic or cylinder. Otherwise, the resulting
intersection is not located in between the two confining points (¢g and ¢1). To
take the the spherical caps of the volumetric bones into account, we apply two
additional line-sphere intersections per bone. The two conic radii are set to
80% of the connected bone radius and joint radius, respectively. We check
for intersections with all volumetric elements of the skeleton and choose the
one with the smallest positive value of Ag, which yields the final point of the
skeleton surface.
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Iterative Polar Decomposition Algorithm

Computing the polar decomposition of a 3 x 3 matrix F = RS via singular
value decomposition is computationally expensive. In case of det(F) > 107>,
the closest rotation R can also be found using the faster, iterative approach of
Higham [1986]. The algorithm initializes Ry = F and iterates

1 _
Ry1 = 5 (R + Ry ), (A.5)

which converges to the rotation R as explained in the following.
Inserting the singular value decomposition F = ULV into the first iteration
of (A.5) yields

Ri=-(F+F )= %(UZVT +ur vl =U G(z + 2—1)) VT,

NI

Each update can therefore be formulated as

Rii = UL V'

1 -
Tpr = 5T+ I ),

with Xy = XZ. Since I is diagonal and holds the singular values of F, each
diagonal value is updated via oy 1 = (0} + 1/0%) /2, which can be identified
as Heron’s method xj,1 = (xx + a/xy)/2 for iteratively computing the square
root of 2 = 1, or equivalently, Newton’s method for finding the root of
f(x) = x* — 1. Hence, E; converges to identity and thereby Ry — UVT, which
is equivalent to the rotational part of F as long as det(UVT) is positive. The
latter is guaranteed by our initial condition det(F) > 10~°. Higham [1986]
also shows that the algorithm converges quadratically and can be further
accelerated with the help of an additional parameter. For our small 3 x 3
matrices, this variation showed no noticeable speed-up, hence, we simply use
Equation (A.5) in our implementation of Fast Projective Skinning. We stop
iterating if ||Ryq — Rg||* < 1075 which in general takes less than 4 iterations.

127












	Acronyms
	Introduction
	Fundamentals
	Skinning Basics
	Projective Dynamics
	Basic Constraint Types
	Position- vs. Gradient-Based Strain Formulation
	Hard Constraints in Projective Dynamics

	GPU Programming

	Fast Projective Skinning
	Related work
	Geometric Skinning
	Example-Based Skinning
	Physics-Based Skinning
	Position-Based Local-Global Solvers
	Accelerating Projective Dynamics
	Upsampling

	Method
	Generating a Volumetric Mesh
	Coupling of Skeleton and Skin
	GPU-Based Projective Skinning
	Upsampling
	Collision Handling

	Implementation Details
	Results & Discussion
	Visual Results
	Performance

	Summary & Limitations

	A Three-Layered Anatomical Model
	Related work
	Method
	Data Preparation
	Generating the Volumetric Template
	Estimating Fat Mass and Muscle Mass
	Fitting the Volumetric Template to Surface Scans

	Results and Applications
	Evaluation on Hasler Dataset
	Evaluation on CAESAR Dataset
	Physics-Based Character Animation
	Simulation of Fat Growth

	Summary & Limitations

	Conclusion
	Bibliography
	Appendix

