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ABSTRACT In recent years, with the advent of highly scalable artificial-neural-network-based text represen-
tation methods the field of natural language processing has seen unprecedented growth and sophistication.
It has become possible to distill complex linguistic information of text into multidimensional dense numeric
vectors with the use of the distributional hypothesis. As a consequence, text representation methods have
been evolving at such a quick pace that the research community is struggling to retain knowledge of the
methods and their interrelations. We contribute threefold to this lack of compilation, composition, and
systematization by providing a survey of current approaches, by arranging them in a genealogy, and by
conceptualizing a taxonomy of text representation methods to examine and explain the state-of-the-art. Our
research is a valuable guide and reference for artificial intelligence researchers and practitioners interested
in natural language processing applications such as recommender systems, chatbots, and sentiment analysis.
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I. INTRODUCTION13

Computational understanding of natural language is referred14

to as a particularly hard problem of science [1] and sometimes15

it is even described as being ‘‘simply too hard’’ [2]. Nonethe-16

less, the research field of natural language processing (NLP)17

takes on this challenge to enable machines to fully understand18

human text and speech [3]. The principal obstacle for a19

machine in NLP is the symbolic nature of text. Although a20

machine can process it, the meaning of language goes beyond21

what is represented [4]. To access the underlying informa-22

tion, traditional approaches compile texts according to gram-23

matical rules or derived distance measures by comparing24

hand-crafted features and lexical information [5]. However,25

these methods are characterized by either poor scalability or26

their inability to capture more intricate linguistic features,27

that is semantic information. As a consequence, the research28
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field arrived at a boundary and has grown stale in the decades 29

following its conception as a testament to the complexity of 30

the underlying problem [6]. 31

Only recently, the interest in the research field has been 32

reignited by the explosion of available text data on the Inter- 33

net, paving the way for novel data-driven approaches [1], [7]. 34

Artificial neural networks in particular enabled the distillation 35

of linguistic information beyond the symbolic nature of text 36

by representing words as multidimensional dense numeric 37

vectors according to the distributional hypothesis, thereby 38

encapsulating semantic meaning in a so-called language 39

model (LM). 40

Owed to this achievement, text representation (TR) meth- 41

ods have been evolving at an unprecedented rate and the 42

research community is struggling to keep up in providing an 43

overview of the field. We contribute threefold to this lack of 44

compilation, composition, and systematization. 45

(1) Compilation.While surveys of TR exist, they are char- 46

acterized by a low coverage of existing methods, high-level 47
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explanations, and narrow perspectives (see also Section VI).48

We provide a comprehensive compilation of the current49

state-of-the-art of TR methods, detail their motivation, and50

describe how they implement the distributional hypothesis to51

create linguistically rich embeddings.52

(2) Composition. Further, the genealogy of approaches53

that constitute the state-of-the-art is obfuscated by the rapid54

development of the field. We provide an annotated geneal-55

ogy of TR methods. Specifically, we conduct an in-depth56

analysis from a conceptual and chronological viewpoint.57

We carve out evolutionary phases, streams, and differenti-58

ate the branches size, context, efficiency, and multi-tasking.59

Furthermore, we highlight methods that constitute historic60

NLP milestones due to their particular architectural design,61

eventuating in superior downstream task performance.62

(3) Systematization. Lastly, as a means to provide con-63

ceptual guidance on how to judge and classify current64

and future TR methods, we extend beyond the schemata65

employed above and provide a conceptual taxonomy to66

classify TR methods along the dimensions architecture,67

vocabulary, representation, domain dependency, and train-68

ing strategy. We examine each dimension to systematize the69

current state-of-the-art.70

In summary, our survey is the first to provide a com-71

prehensive and detailed review of the state-of-the-art of TR72

and to propose a genealogy visualizing the interrelations and73

dependencies of the identified methods. Our research can74

be a valuable guide and reference for artificial intelligence75

researchers interested in NLP applications such as recom-76

mender systems, chatbots, and sentiment analysis.77

Our research is structured as follows: First, we elabo-78

rate the fundamentals of NLP, artificial neural networks,79

and TR. Next, we introduce our survey methodology based80

on the hermeneutic framework. Subsequently, we present81

a comprehensive list of TR methods and analyze their lin-82

eage to emphasize significant milestones. Lastly, we abstract83

from our survey and provide a conceptual taxonomy of TR84

methods, which we employ to examine the state-of-the-art.85

We close with an overview of related work as well as a86

conclusion and an outlook.87

II. FUNDAMENTALS88

NLP is a field of artificial intelligence that strives for a89

holistic computational understanding of natural language [8].90

This is no trivial task as language is highly variable and91

ambiguous [4]. In fact, it is categorized as AI-complete,92

meaning that its resolution requires the ‘‘synthesis of human-93

level intelligence’’ with regard to natural language [9].94

Consequently, a machine must be able to understand each95

component of language, that is its phonology, morphology,96

syntax, semantics, and pragmatics. This is reflected in a97

set of specific challenges, called NLP tasks, that provide98

a measure as to a machine’s linguistic capabilities. These99

tasks can generally be solved by various methods. However,100

in recent years the research field has been dominated by101

machine learning approaches, in particular artificial neural102

networks that enable deep learning [6]. Importantly, such 103

models cannot operate directly on discrete symbolic inputs. 104

Hence, TR becomes a crucial second dimension of NLP. 105

A. NATURAL LANGUAGE PROCESSING TASKS 106

As previously outlined, computational language understand- 107

ing can be roughly broken down into the lexical, syntac- 108

tic, semantic, and pragmatic analysis of text through NLP 109

tasks. Each linguistic layer therein unites previous layers 110

and introduces a new level of complexity that entails more 111

advanced methodologies. In general, the tasks in the lexical 112

and syntactic layers are intermediate, that is they are not 113

valuable on their own, but rather a means to an end for the 114

resolution of more complex tasks [10]. They deal with the 115

accumulation of relevant insights on the inherent structural 116

aspects of language. The tasks in the subsequent semantic and 117

pragmatic layers can be considered higher level. They aim 118

at understanding the meaning of language and the context it 119

is used in. Note that while we present explicit NLP tasks in 120

every linguistic layer in the following, state-of-the-art models 121

aim to integrate the tasks of all layers implicitly. 122

Lexical analysis. On the lowest linguistic level, lexical 123

analysis studies the structure of words. This encompasses 124

their orthography, morphology, and, in case of spoken text, 125

phonology. The fundamental task in this layer is the tokeniza- 126

tion of text, that is its segmentation into smaller parts. These 127

tokens typically represent words, characters, or concatena- 128

tions thereof, called n-grams. The result of the tokenization 129

is a vocabulary that constitutes the basis for virtually any 130

other NLP task. Because of its central function, it is important 131

to ensure that the tokenization process yields a high-quality 132

vocabulary. The segmentation of meaningful character 133

n-grams (i.e., subwords) poses one challenge. An often-used 134

algorithmic solution is byte-pair encoding, which greedily 135

includes only the most frequent tokens in a corpus in the 136

vocabulary [11]. Higher-level representations, for example 137

words or sentences, can then be constructed by combining 138

the corresponding subwords. Another challenge is the highly 139

variant nature of text. It can be mitigated by a variety of 140

preprocessing steps such as noise removal and text normal- 141

ization. However, current approaches are becoming capable 142

of modeling a large part of the intricacies of natural language 143

in their billions of parameters and depend less and less on 144

such modifications [12]. 145

Syntactic analysis. Syntactic analysis expands the linguis- 146

tic scope from words to sentences to consider grammatical 147

rules. A central task in this layer is part-of-speech (POS) 148

tagging. It describes the traversal of a sentence to annotate the 149

grammatical class of its constituent words. Typical POS are 150

noun, verb, and adjective but can be more fine-grained [13]. 151

The knowledge of the POS of a word has several possi- 152

ble applications, for instance, to improve word-sense disam- 153

biguation. Moreover, POS can be used in conjunction with 154

data augmentation, for example to replace words with their 155

synonym. In addition, dependency parsing can reveal gram- 156

matical dependencies between words and phrases. To that 157
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end, a directed graph is created that holds dependency infor-158

mation, for example subject and object of a sentence. A sub-159

stantial challenge in this layer is the grammatical ambiguity160

of words [14]. Often, the same word assumes different POS.161

Another obstacle are multi-word expressions that do not obey162

standard grammatical rules [15].163

Semantic analysis. Semantic analysis aims at discerning164

the meaning of words and sentences in a language. The165

comprehension of a given sentence may require the under-166

standing of preceding and succeeding sentences. Accord-167

ingly, the linguistic scope expands to involve relationships168

not only between words in a sentence, but between sentences169

themselves. A large variety of NLP tasks can be placed170

on the semantic layer, including text classification, word171

sense disambiguation, machine translation, or summariza-172

tion. For a brief, non-exhaustive survey on this topic refer to173

Otter et al. [6]. The challenges for tasks in this layer can be174

grouped into two categories: semantic relationships between175

words and semantic relationships between words and the176

context they appear in. Instances of the former are synonyms177

and antonyms; instances of the latter are polysemy and multi-178

word expressions.179

Pragmatic analysis. Lastly, pragmatic analysis aims180

at uncovering the meaning of language beyond what is181

expressed literally, distinguishing what is said from what182

is conveyed or accomplished [16]. The linguistic scope183

broadens to world knowledge and common sense. Linguis-184

tic challenges in this layer are concepts such as hyponymy,185

hypernymy, and meronomy. Infusing a model with the ability186

to recognize these implications in the situations in which they187

are important to the meaning of a text is a hard task, not least188

because they commonly remain unspoken. Yin et al. [17]189

illustrate that a computational pragmatic understanding of190

natural language cannot yet be fully achieved and that191

merely atomistic solutions exist. Typically, they involve hand-192

crafted ontologies, for example WordNet,1 that maintain pro-193

found tree-like structures relating words through important194

concepts.195

B. TEXT REPRESENTATION196

TR forms the basis of NLP [18]. It is concerned with the197

adequate encoding and formatting of natural language so that198

a machine can solve a NLP task. In order for a machine to199

derive meaning from text and solve more complex tasks, the200

unstructured, discrete symbols have to be transformed into201

a structured representation, i.e., numeric vectors. This pro-202

cess is called embedding. The two predominant embedding203

approaches are local and distributional representations.204

Local representations. Local representations are neces-205

sary for the initial conversion of symbols into vectors. Each206

vector dimension therein uniquely identifies a token of the207

vocabulary. However, for large corpora the proportion of208

unique tokens seen in a given text is usually much smaller209

than the amount of distinct tokens in the vocabulary, resulting210

1https://wordnet.princeton.edu/

in sparse vectors. This curse of dimensionality leads to sig- 211

nificant problems. Above all, it hinders a model from discov- 212

ering relevant signals in the input data because it sees only a 213

fraction of the enormous amount of possible feature combina- 214

tions at any given time [19]. It is therefore essential to control 215

the dimensionality of the vocabulary with growing corpora. 216

Another implication of the alignment between the dimensions 217

of the vectors with the vocabulary is the inability of local 218

representations to express semantic or syntactic information. 219

This is due to vector dimensions being orthogonal to each 220

other and each individual token exhibiting the same distance 221

to any other token in the vocabulary. As a positive effect, local 222

representations are highly interpretable. 223

The most prevalent local representation method is one- 224

hot encoding. For a given text, each token is individually 225

converted into a binary vector. The vectors are filled with 226

zeroes except for a 1 at the dimension that corresponds to the 227

token’s index in the vocabulary. Analogue to symbolic repre- 228

sentations, one-hot encodings do not provide information on 229

the similarity of tokens. Therefore, they do not facilitate any 230

kind of meaningful analysis of the underlying texts on their 231

own. However, they enable vector and matrix calculations 232

for discrete symbolic inputs, which constitutes the first step 233

for distributional TR with artificial neural networks. This 234

makes one-hot encodings essential for current NLP models. 235

In comparison, a count vector, also known as bag-of-words 236

(BOW), constitutes a local representation that is able to cap- 237

ture similarity information. It operates on a document level. 238

To represent a document in a corpus, the vector represen- 239

tations are created as additive compositions of the one-hot 240

encodings of their constituent tokens. Hence, if the same 241

token appears more than once in a document, the summation 242

of the corresponding one-hot encoding leads to document 243

vectors that reflect frequency information. 244

Distributional representations. Distributional represen- 245

tations build on top of local embeddings to create vectors 246

enriched with linguistic information and overcome the pre- 247

viously discussed disadvantages. To address sparsity, local 248

representations are projected into a shared multidimensional 249

continuous vector space, thereby decoupling the vocabulary 250

from the vector dimensionality to create dense representa- 251

tions. The dimensionality depends on the method that is 252

used for the creation of the embeddings. For instance, if an 253

artificial neural network is used, the dimensionality of the 254

embeddings is prescribed by the hidden layer dimensionality 255

of the network. In order to weave semantic and other lin- 256

guistic information into the embeddings, tokens are projected 257

according to their context. The contextualization is based 258

on the distributional hypothesis [20], which states that the 259

meaning of a word is defined by the distribution of its neigh- 260

boring words, that is co-occurrence information. Concisely 261

put by Firth [21]: ‘‘you shall judge a word by the company it 262

keeps’’. For example, the words ‘apple’ and ‘orange’ would 263

be likely to appear in the same context and would thus 264

occupy similar positions in the vector space. At the same 265

time, words that appear in different contexts would be moved 266
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further away from each other, for example ‘apple’ and ‘brick’.267

In conjunction, the vector space implicitly captures analogy268

relationships [22]. Mikolov et al. [23] famously demonstrate269

that the vector operation vector(‘‘king‘‘) - vector(‘‘man‘‘) +270

vector(‘‘woman‘‘) on trained embeddings results in a vector271

closest to vector(‘‘queen‘‘). Eventually, the contextualization272

of the entire vocabulary according to the corpus produces273

distributional vector representations that abstract arbitrary274

and complex linguistic concepts across their dimensions.275

Unfortunately, this makes an interpretation intricate. More276

so, as each dimension is involved in multiple concepts at277

once [24].2278

C. ARTIFICIAL NEURAL NETWORKS279

The application of artificial neural networks for NLP can280

be divided into the creation of distributional representations,281

that is the contextualization of textual units, and the reso-282

lution of downstream tasks, for example text classification.283

A wide variety of different models can be employed for284

either objective (for an introduction to machine learning and285

deep learning cf. also [25]). Nonetheless, a smaller subset of286

algorithms dominates TR and NLP today, which we present287

in the following:288

Feed forward neural networks (FFNN). The FFNN is289

the simplest form of an artificial neural network [26]. The290

central element of an FFNN is the neuron, which controls the291

signal flow of the network. The neuron takes input signals,292

multiplies them with a weight, and adds a bias term. The293

output of the neuron is determined by passing the resulting294

value through an activation function. This enables the net-295

work to distinguish not linearly separable data [26]. FFNN296

organize neurons into layers, in which the weights connect297

the output of all neurons in each layer to the input of the298

neurons in the following layer. Therefore, each layer projects299

its input onto an n-dimensional vector space, where n is300

the number of neurons in that layer. FFNN distinguish an301

input layer processing the original data representation, one or302

more hidden layers abstracting the output of the input layer303

by projecting it into a vector space corresponding to their304

dimensionality, and the output layer mapping the output of305

the previous layer to a number of neurons corresponding to306

the possible output values.307

Convolutional neural networks (CNN). FFNN are faced308

with a fundamental problem when being applied to discrete309

unstructured data: their fully-connected structure lets the310

number of parameters explode, impeding the ability of the311

network to learn relevant input signals [27]. In response, a312

CNN connects the initial neurons only to parts of the input313

and models higher order dependencies in subsequent layers.314

Similar to CNN in computer vision that work on pixels as the315

atomic representation of images, CNN in the NLP domain use316

the building blocks of text, that is characters or words [28].317

2Distributional representation is not synonymous to distributed represen-
tation [24]. Rather, it is a strict subset that focuses on contextual seman-
tics [5].

As CNN inherently create representations for the entire input 318

sequence, their unmodified application for NLP is limited to 319

tasks that require this coarse representation level. However, 320

the limitation can be resolved by combining CNN with other 321

model architectures [29]. 322

Recurrent neural networks (RNN). RNN are a broad 323

family of artificial neural networks that specialize in the com- 324

putation of sequential data [30]. They are characterized by 325

an explicit self-loop connection [31]. This allows the model 326

to deal with varying input lengths. The crucial difference to 327

FFNN lies in the fact that the RNN shares its weight matrices. 328

This enables it to generalize the detection of relevant signals 329

in the input to any position and reduces parameter complex- 330

ity [31]. The key element of any vanilla RNN is its hidden 331

state. This is where the network implements the self-loop 332

connection [31]. The hidden state of the network thus can 333

be compared to a memory that retains the most important 334

information from the previous and current inputs in a com- 335

pressed form, where the importance of information depends 336

on the training task. Nonetheless, it is a lossy compression 337

as an input vector of arbitrary length is reduced to a fixed 338

length hidden vector [31]. Although RNN specialize in the 339

computation of sequences, their architecture brings with it 340

some issues. The unfolding of the parameter-shared RNN 341

can lead to unstable gradients during the backwards pass 342

with backpropagation through time and it may result in high 343

computational resource requirements and memory usage. 344

Hochreiter and Schmidhuber [32] introduce a more sophis- 345

ticated type of RNN, the Long Short-Term Memory (LSTM), 346

to address the problem of unstable gradients of the vanilla 347

RNN. It introduces a dedicated memory mechanism with the 348

cell state that is decoupled from the hidden state of the net- 349

work and explicitly controlled by three gates: the forget gate, 350

the input gate, and the output gate. This allows the memory 351

to persist over time while being exposed to less encroaching 352

operations than in the vanilla RNN. A variation of the LSTM 353

is the Gated Recurrent Unit (GRU) [33]. It conceptually 354

retains the gated architecture of the LSTM but addresses 355

the problem of high computational resource requirements by 356

reducing tensor operations. Most notably, it drops the cell 357

state of the LSTM and returns to using the networks hidden 358

state as its memory mechanism. Furthermore, the forget and 359

input gate are combined into a single update gate. A second 360

gate, the reset gate, provides the update gate with context for 361

the generation of candidate values. It does so by merging a 362

subset of features of the hidden state with the current input. 363

Transformer. The Transformer is a sequence-to-sequence 364

model consisting of an encoder and a decoder block. The 365

encoder block is made up of several layers with each layer 366

containing multi-head attention, a parameter-shared FFNN, 367

and normalization. The composition of the decoder block is 368

similar, but inserts a masked multi-head attention layer to the 369

front. The principal aspect of the Transformer is that it relin- 370

quishes convolutions and recurrence and instead operates on 371

attention. Attention can be described as a mechanism to high- 372

light the importance of input features for a model in a given 373

VOLUME 10, 2022 96495



P. Siebers et al.: Survey of Text Representation Methods and Their Genealogy

FIGURE 1. Hermeneutic framework of Boell and Cecez-Kecmanovic [38].

task [34]. In the context of TR it can be thought of describing374

the linguistic composition of tokens in terms of syntactic and375

semantic similarities to all tokens in a sequence. This includes376

the influence of a token on itself. As mentioned initially, the377

Transformer model augments the attention mechanism in two378

ways. On the one hand, the first layer in the decoder block379

employs masked attention, which prevents the calculation of380

attention scores for future tokens in a sequence. This is neces-381

sary as the decoder would otherwise be able to indirectly see382

the ground truth of the current token in a deep setting, prevent-383

ing any learning effects [35]. On the other hand, all attention384

scores are calculated withmultiple different projections of the385

input to capture distinct input features. This is called multi-386

head attention. The Transformer model constitutes a highly387

parallelizable architecture as it applies attention on the entire388

input sequence at all layers and shares the FFNN in each layer.389

Additionally, the Transformer excels in learning long-range390

dependencies in text by decreasing the path length between391

the positions of any input and output combination compared392

to other artificial neural network architectures [36]. However,393

the attention mechanism is computationally expensive for394

long sequences [37] and the encoder might be forced to learn395

irrelevant information of input sequences [30].396

III. METHODOLOGY OF LITERATURE REVIEW397

We used the hermeneutic framework by Boell and398

Cecez-Kecmanovic [38] to guide our literature review. The399

hermeneutic framework construes a literature review as an400

iterative, interpretative process, in which literature retrieval401

and literature analysis alternate to facilitate the understanding402

of a research problem. Figure 1 illustrates the elements that403

constitute the framework, that is the inner circle of search and 404

acquisition and the outer circle of analysis and interpretation. 405

In the inner circle, the body of literature is accumulated 406

by identifying relevant publications and refining appropriate 407

search terms. Further, the scholar advances their understand- 408

ing of the problem domain by reassessing their interpretation 409

of the problem’s context and integrating new literature into 410

it. In the outer circle, the body of literature is analyzed on 411

a broader scale. Publications are consolidated and compared 412

among themselves with respect to content and methodol- 413

ogy. Gaps in the current body of literature are identified to 414

motivate further iterations of the hermeneutic circle. Gaps in 415

the existing research are outlined to build an argument and 416

highlight the research problem. There are several inter- and 417

intra-circle linkages between the activities. They highlight 418

how activities can influence each other while conducting the 419

literature review. 420

We organized this process within a scope defined accord- 421

ing to Cooper’s taxonomy [39]: The focus is placed on task- 422

agnostic TR method research outcomes of relevant papers, 423

not their underlying theories nor their application or the 424

methodology with which they were derived. The goal of 425

the review is the integration of the discovered information 426

so that the reader gets an overview and understanding of 427

recent approaches and their benefits and drawbacks. The 428

organization of the review is historical. The findings are pre- 429

sented in a manner that illustrates the evolution of TR along 430

several dimensions. This way it becomes possible to retrace 431

important conceptual changes and challenges, allowing for 432

a comprehensive and descriptive explication of TR over 433

time. The perspective is neutral as information is presented 434

objectively. The target audience for this literature review are 435
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TABLE 1. Search and acquisition circles of the hermeneutic literature review.

specialized scholars as prior knowledge in machine learn-436

ing and data science is advisable. The coverage cannot be437

exhaustive because of the hermeneutic character of the liter-438

ature acquisition process. Regardless, a central/pivotal cov-439

erage better harmonizes with the historical organization of440

the review. Additionally, it allows for a more fine-grained441

implementation of the evolutionary aspect of this paper.442

We considered a broad selection of scientific databases443

for our review, namely SpringerLink, arXiv, Web of Sci-444

ence, ACMDigital Library, IEEE Xplore, and ScienceDirect.445

We queried title, abstract, and keywords using the high-level446

term ‘‘natural language processing’’, its abbreviation ‘‘NLP’’,447

and the synonymous term ‘‘computational linguistics’’ as448

well as ‘‘textmining’’ to include all facets of TR.We excluded449

the term ‘‘speech’’ as speech recognition is a distinct field450

relying on a different set of methods. We conducted a back-451

ward search for each publication to identify additional rel-452

evant literature apart from the keyword search. As Boell453

and Cecez- Kecmanovic [38] point out, a literature search454

should incorporate sources apart from scientific databases.455

In response, we included the blogs medium.com and towards-456

datascience.com in our literature search.457

A saturation criterion concludes each hermeneutic circle.458

Due to its subjectiveness, it is not defined by the framework459

but manifests as the absence of novel information over the460

previous iteration. Table 1 summarizes the three search and461

acquisition circles we conducted.462

The literature was retrieved in two steps as shown in463

Table 2. After the initial search with the respective search464

terms, we analyzed title and abstract and found 167 poten-465

tially relevant publications across all circles. After reading466

the full text, we discarded 83 publications for a final set of467

84 publications.468

The initial literature search has been conducted in 2020 and469

was updated in 2022. The retrieved body of literature470

roughly covers a time span from 1995 to 2022. The dis-471

tribution is heavily skewed towards recent publications472

across all hermeneutic circles. This underlines the radical473

change TR has undergone, rendering publications earlier than474

2013 mostly irrelevant for the current progress in the field.475

TABLE 2. Search result of the hermeneutic literature review.

This is due to two reasons: First, in that year a paradigm 476

shift in the field of TR has led to the replacement of vir- 477

tually all previous methods with superior artificial-neural- 478

network-based approaches [6]. Second, this paradigm shift 479

has (re-)ignited interest in the research field, resulting in a 480

substantial increase in publications. In consequence, we only 481

include TR methods from 2013 or later in our review. 482

IV. EVOLUTION OF TEXT REPRESENTATION METHODS 483

A. OVERVIEW OF TEXT REPRESENTATION METHODS 484

In the following, we present and discuss the individual TR 485

methods we identified. Our focus is placed on their motiva- 486

tion and how they implement the distributional hypothesis to 487

create the embeddings. We organized the analysis based on 488

the chronological development of the TR methods, however 489

advancements on a particular method branch are grouped 490

together. Note, that the date of publication is not always 491

coherent with the date of the initial proposal of a TR method. 492

In the following, we use the date of the initial proposal to 493

arrange the TR methods. 494

word2vec. Mikolov et al. [23] propose two architectures, 495

the continuous bag-of-words (CBOW) model and skip-gram 496

model, commonly referred to as word2vec.3 The most impor- 497

tant contribution of these models is the reduction of the 498

computational complexity of calculating distributional repre- 499

sentations. This allows the models to scale to large corpora 500

and hence, to produce robust embeddings that accurately 501

capture the linguistic relationships between words. 502

The CBOW model trains the embeddings by sliding a 503

window over the text in the corpus and predicting each 504

3word2vec is the name of the tensorflow implementation.
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target word using its preceding and succeeding n neighbours.505

To that end, a shared weight matrix is used to project the506

neighbouring words into the same vector space. Thereafter,507

the sum of the resulting vectors is used to predict the original508

target word. As a consequence, the vectors of the neigh-509

bouring words become aligned with the vector of the target510

word. However, during the projection of the words, any order511

information of the tokens is lost, hence the name of themodel.512

The skip-gram model inverts the training process of the513

CBOW model by using the projection of the target word to514

predict its n preceding and succeeding neighbours. Because515

of the higher complexity of the skip-gram training task,516

Mikolov et al. [40] later introduce a number of improve-517

ments, most notably negative sampling. When predicting the518

neighbouring words on the basis of the target center word,519

this extension provides the model with additional randomly520

sampled negative words. The model is then trained to both521

minimize the distances from the target word vector to the522

vectors of the neighbouring words and maximize the distance523

to the negative samples.524

Global Vectors (GloVe). Pennington et al. [41] criticize525

that previous models like word2vec only account for local526

word co-occurrence information. With GloVe, they lever-527

age the full statistical potential of corpora by calculating528

a context-aware global word-to-word co-occurrence matrix529

and transforming it into a distributed vector representa-530

tion. Their approach is inspired by artificial-neural-network-531

based approaches, but it relies on simpler statistics. The532

co-occurrence matrix is populated at position Xij, if the word533

wj appears in the context of wi, with the context being a win-534

dow of size n aroundwi. Subsequently, the embedding vectors535

are optimized according to a loss function in such a way, that536

the dot product of two arbitrary vectors approximate the log537

probability of the corresponding words in the co-occurrence538

matrix. To meet this requirement, the dimensions of GloVe539

embeddings need to capture meaningful information about540

the global context of a word and about the word itself.541

skip-thought. With skip-thought, Kiros et al. [42] aim at542

creating downstream-task-independent and generic sentence543

representations. For that purpose, the skip-gram model is544

adapted to reconstruct the preceding and succeeding sentence545

to an input sentence. It uses a GRU encoder to generate a tar-546

get sentence representation from the input. During the train-547

ing of the model, two GRU decoders must predict each word548

of the preceding and succeeding sentence respectively. For549

each prediction, they can access the encoder representation550

of the sentence and the input token at the previous time-step.551

Finally, the sum of the log-probabilities of the two predicted552

sentences serves as the loss to condition the encoder repre-553

sentation. A limitation of the skip-thought model is its rather554

small vocabulary compared to other TR methods, in particu-555

lar word2vec. To mitigate the problem of out-of-vocabulary556

(OOV)words during inference, skip-thought maps each token557

of word2vec to the most similar token in the skip-thought558

vocabulary through linear regression.559

Char-CNN. Zhang et al. [43] present char-CNN, a CNN 560

that operates on character-level features. They argue that 561

information can be derived from this raw input signal without 562

the necessity for syntactic or semantic knowledge of the 563

underlying language. Furthermore, they question the lack of 564

task specificity of earlier TR methods. Char-CNN is trained 565

on a supervised text classification task. Zhang et al. [43] use 566

six convolutional layers. Furthermore, a variety of filter sizes 567

is defined with the intent of capturing different n-gram com- 568

positions in the text. 569

FastText. FastText [44] enriches word embeddings with 570

subword information with the goal of leveraging morpho- 571

logical aspects of words without the need for morphological 572

analysis. The model achieves this through the embedding of 573

character n-grams complementary to the word embeddings. 574

By doing so, non-trivial representations for OOV words 575

are possible by summing the corresponding n-gram vectors. 576

Additionally, complex semantic relationships can be captured 577

through the morphological similarities of words. This aids 578

in the accurate representation of morphologically rich lan- 579

guages, for example the Finnish language. FastText builds 580

on the word2vec model and uses either CBOW or skip-gram 581

with negative sampling. To enable a reliable representation 582

of both rare and OOV words, parameters responsible for the 583

subword embedding are shared. Joulin et al. [45] improve the 584

FastText implementation by substantially reducing memory 585

complexity. On the one hand, discriminative pruning retains 586

only the best features, that is words and subwords, under the 587

condition that the entire vocabulary remains covered. On the 588

other hand, embeddings are compressed with a quantization 589

algorithm and hashing is extended from subwords only – as 590

in the original implementation – to subwords and words. 591

char2vec. Cao and Rei [46] propose the char2vec model 592

with the goal of applying unsupervised morphological analy- 593

sis on character-level features. The approach is closely related 594

to the FastText model as both models extend word2vec and 595

incorporate the structural information of words. However, 596

FastText does not explicitly aim to uncover morphological 597

aspects of words. Further differences lie in the feature gran- 598

ularity on the one hand and the composition of word repre- 599

sentations on the other hand. The learning task of char2vec 600

is similar to the skip-gram model with negative sampling. 601

However, it is adapted by a function that represents the target 602

word as a composite of two half-words. The function employs 603

a bi-directional LSTM (bi-LSTM) and a subsequent FFNN 604

with an attention model. The two LSTM read the characters 605

of the target word from left to right and from right to left. Sub- 606

sequently, the hidden states of both LSTM are concatenated 607

so that each concatenation represents a different split of the 608

target word. With the goal of applying the embedding of the 609

target word to the skip-gram training task, an FFNN is used 610

to reduce the inflated vector dimensionality, resulting from 611

the previous concatenation of two hidden states, back to its 612

original size. An attention model then weighs the importance 613

of each split of the word. Finally, the weighted vectors are 614
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summed and make up the input to the skip-gram task with615

negative sampling.616

context2vec. Melamud et al. [47] argue that fixed size617

context windows, which are used by previous TR methods,618

inhibit the representation of long range dependencies. Thus,619

the resulting embeddings reflect only a fraction of the infor-620

mation of a sentence. context2vec [47] constitutes amodel for621

the representation of contexts of variable length to solve this622

problem. Its architecture is based on the CBOW model with623

negative sampling but replaces the averaging operation in the624

projection layer with a bi-LSTM similar to the bi-LSTM used625

in char2vec but operating on word-level. The resulting vector626

is a contextualized representation of the words surrounding627

the target word. It is used to optimize the CBOW learning628

task with negative sampling.629

Very Deep Convolutional Neural Network (VDCNN).630

The VDCNN [28] highlights the benefit of deeper CNN631

architectures for NLP, similar to insights gained in the com-632

puter vision domain. The model pushes the number of convo-633

lutional layers from 6 (see char-CNN) to 29 while continually634

increasing performance on the jointly trained feature extrac-635

tion and text classification task. The convolutional layers are636

organized in blocks as well as batch normalization and use637

max-pooling operations. Analogue to their computer vision638

counterparts VGG Net and ResNet, each pooling operation639

halves the resolution of the feature map and afterwards, the640

number of feature maps is doubled. The VDCNN uses a641

constant filter size of three throughout the network. These642

filters can be thought of to recognize character 3-grams in the643

first convolutional layer and learned compositions thereof in644

later convolutional layers. In a deep setting, this makes the645

approach more flexible than the char-CNN, which prescribes646

various filter lengths at the first layer.647

dict2vec. The premise of dict2vec [48] is that word embed-648

dings can be improved upon using external resources, in par-649

ticular natural language dictionaries. The definitions in the650

dictionary entries serve as additional curated contexts for all651

listed words and provide a mechanism to control the training652

of the network. Specifically, dict2vec uses the dictionary653

entries to generate so-called strong and weak word pairs.654

A strong word pair exists, if a word w1 is in the definition655

of another word w2 and w2 is also in the definition of w1.656

A weak pair exists, if w1 is in the definition of w2, but w2 is657

not in the definition of w1. At its base, dict2vec uses the skip-658

gram model, but extends it with two concepts, positive sam-659

pling and controlled negative sampling, that incorporate the660

discovered word-pair-relationships into the model training.661

Positive sampling selects a number of words that form weak662

and strong connections with the target word and introduces663

a loss so that the dot product of the vectors of the target664

word and its word pairs is minimized. Controlled negative665

sampling works similar to negative sampling described by666

Mikolov et al. [40], but substitutes the error-prone random667

sampling of negative words with the sampling of words that668

do not form aweak or strong pair. This reduces the probability669

of taking coincidentally related words as negative examples.670

Context Vectors (CoVe). With CoVe, McCann et al. [49] 671

draw inspiration from the success of transfer learning in the 672

computer vision domain, where the generalization properties 673

of CNN trained on a vast amount of data are transferred to 674

other task-specific CNN to improve their downstream per- 675

formance. The authors argue that the abundance of machine 676

translation data can act as a catalyst for NLP models in a 677

similar fashion. CoVe embeddings are created as a comple- 678

ment to previously created word embeddings, in particular 679

GloVe embeddings, to provide them with a dynamic context 680

representation. CoVe embeddings are trained on a supervised 681

sequence-to-sequence machine translation task from English 682

to German. The model architecture consists of an encoder 683

and a decoder. The encoder is a two-layer bi-LSTM that uses 684

word embeddings as its input and generates a sequence of 685

hidden states at the final layer as its output. The decoder is a 686

two-layer uni-directional LSTM that attends over all encoder 687

outputs. In other terms, the final hidden states of the encoder 688

reflect the bi-directional context of every word. Crucially, 689

these representations need to generalize cross-lingual con- 690

cepts, for example semantics, as they are indispensable for the 691

decoder during the optimization of the machine translation 692

task. Thus, it is the output of the encoder that constitutes the 693

CoVe embeddings. 694

Universal Language Model Fine-Tuning (ULMFiT). 695

Howard and Ruder [50] agree with McCann et al. [49] as to 696

the importance of transfer learning for NLP and recognize 697

more data as a driver of model performance. However, they 698

propose language modeling4 as the ideal training task instead 699

of machine translation because it entails more data and cap- 700

tures many important linguistic facets. They propose ULM- 701

FiT [50], a method that enables efficient transfer learning 702

for any LM. ULMFiT consists of the three training phases 703

(i.e., pre-training, fine-tuning, and classifier fine-tuning) and 704

proposes the three transfer learning principles of discrimina- 705

tive fine-tuning, slanted triangular learning rates, and gradual 706

unfreezing. 707

In the first phase, an arbitrary LM is trained on the vast 708

amount of data the domain offers. In the second phase, the 709

general text embeddings of the LM are adapted to the out- 710

of-distribution downstream task data. During this process, 711

discriminative fine-tuning prevents the model from overfit- 712

ting to the smaller downstream task dataset by scaling down 713

the learning rate for earlier layers. This preserves the gen- 714

eral knowledge about language an LM captures at the first, 715

less task-specific layers. At the same time, slanted triangular 716

learning rates are used for an efficient adaptation of the 717

model. This principle describes a quick initial increase and 718

subsequent gradual decrease of the learning rate of the LM. 719

It ensures that the LM first finds an adequate parameter 720

space and then converges to the local optimum. In the last 721

4In a narrower sense, language modeling is concerned with the generation
of the probability of a given sequence of words occurring in a sentence.
To generate word probabilities, these LMs are trained on large text corpora
and thereby work as a tool to incorporate abundant information in a concise
manner that is reusable in an out-of-sample context.
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phase, a classifier is fine-tuned. Training all classifier layers722

simultaneously introduces the risk of over- or underfitting the723

data. ULMFiT uses gradual unfreezing to solve this issue.724

First, only the last, that is the least general layer, is trained and725

then, one by one, additional layers are unfrozen and trained726

to convergence.727

Universal Sentence Encoder (USE). Cer et al. [37] con-728

jecture a higher transfer learning potential of sentence-level729

representations for downstream tasks in comparison to word730

embeddings. Moreover, they use unsupervised and super-731

vised training to combine the benefits of more data and con-732

trolled linguistic training tasks respectively. For the creation733

of general sentence representations, Cer et al. [37] propose734

the USE. Two encoder variants are considered, a Transformer735

encoder and a deep averaging network encoder. The for-736

mer generates contextualized representations for every input737

token and composes a sentence representation afterwards,738

while the latter first composes the input embeddings to a sen-739

tence embedding and then contextualizes. The variants offer740

a trade-off between higher accuracy and lower computational741

complexity respectively.742

The encoders are trained by using multi-task learning on a743

skip-thought task, a supervised conversational input-response744

task, and a supervised classification task. The conversational745

input-response task has the model predict the response, given746

an input. During the classification task, the model is asked to747

assign a label to the input, that is ‘‘entailment’’, ‘‘contradic-748

tion’’, or ‘‘neutral’’, that describes the relationship between749

a hypothesis and a premise. According to these tasks, the750

model learns to embed various important aspects of language.751

During training, the encoder is extended with deep artificial752

neural networks to form task-specific architectures. However,753

the parameters of the encoder are shared across all tasks to754

facilitate the generalization of its sentence embeddings.755

Embeddings from Language Models (ELMo).756

ELMo [29] mitigates the problem of polysemy for757

feature-based approaches by dynamically generating word758

embeddings for each input sequence. Furthermore, the759

method highlights how different layers capture specific lin-760

guistic aspects in a deep setting. Peters et al. [29] base their761

conceptual choices on the insights gained by previous TR762

methods. In particular, they train an LM and use a CNN as a763

low-level feature extractor. ELMo consists of three layers.764

The first layer is a character-level CNN that creates word765

embeddings of the input. These embeddings are contex-766

tualized by two layers, which each consist of a bi-LSTM767

trained on a forward and a backwards language modeling768

task. In both layers, the hidden states of the two opposite769

LSTM LMs are concatenated at each index of the input so770

that they are able to contextualize each word embedding with771

respect to the entire sequence. The final ELMo vectors are772

a learned, weighted sum of the output of the three layers773

of the network. The weighting scheme is downstream-task-774

specific because the first two layers of the model rather775

encode syntactic information, while the last layer encodes776

semantics.777

Generative Pre-Training (GPT) With GPT, 778

Radford et al. [51] improve upon previous LM-based 779

approaches by completely relying on attention opera- 780

tions [36]. Specifically, the decoder part of the Transformer 781

is used, which implies masked attention and hence an 782

autoregressive LM. In this context, the direct interaction 783

between a token and all previous tokens in a sequence is 784

enabled, enhancing the model’s capability to contextualize 785

its embeddings [1]. However, the focus of GPT not so much 786

lies on fine-tuning this setup as on in-context learning and 787

scalability. Radford et al. [51] train 12 decoder layers of the 788

Transformer model on a series of downstream tasks with the 789

help of task-specific input transformations and investigate 790

the zero-shot performance of the LM, that is they apply it 791

to a downstream task without any fine-tuning. With GPT-2, 792

Radford et al. [11] further investigate the zero-shot capabil- 793

ities of a pre-trained LM to determine, whether fine-tuning 794

limits its expressiveness [52]. To that end, a few changes 795

are made to the original GPT architecture. Most notably, 796

GPT-2 increases the number of layers to a total of 48, 797

leading to a model size that is orders of magnitude larger 798

than any previous NLP model, that is 1.5 billion parameters. 799

GPT-3 [52] explores the scalability of the GPT model. The 800

depth of a slightly tweaked version of GPT-2 is increased to 801

96 layers, resulting in 175 billion parameters. Furthermore, 802

Brown et al. [52] apply GPT-3 in a few-shot setting, that is 803

conditioning the model to a downstream task by providing a 804

small number of examples. 805

Bidirectional Encoder Representations from Trans- 806

formers (BERT).UnlikeGPT, Devlin et al. [35] only use the 807

encoder block of the Transformer model [36] to train a BERT 808

LM. Because the encoder uses self-attention, each token has 809

direct access to all preceding and succeeding tokens. This 810

allows BERT to train a deeply bi-directional LM. However, 811

the language modeling task of autoregressive LMs such as 812

ELMo or GPT cannot be used. Conditioning these LMs 813

bi-directionally would enable a multi-layer network to triv- 814

ially predict the target token [35]. Therefore, BERT trains 815

an autoencoder LM, called masked LM, by corrupting the 816

input and then trying to reconstruct it. Precisely, 15% of the 817

tokens in the corpus are statically altered during the data 818

pre-processing step. The alteration process either replaces a 819

token with the [MASK ] token (80%), a random token (10%) 820

or the original token (10%). All tokens except for [MASK ] 821

are then used to predict the original tokens. In addition to 822

the masked language modeling task, BERT aims to incor- 823

porate knowledge about the relationships between sentences 824

into the model. To that end, two sentences, separated by a 825

special token [SEP], form the input to the model. The model 826

subsequently predicts, whether the second sentence follows 827

the first one or is randomly drawn from the corpus. This task 828

is called next sentence prediction. To facilitate a distinction 829

between the tokens in the two segments, a segment encoding 830

is added to the input embedding. With [CLS], BERT includes 831

another special token. The token is placed at the beginning 832

of every input sequence and is trained to attend to all tokens 833
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of the sequence. Hence, it is used to capture sequence-level834

information.835

Multi-Task Deep Neural Network (MT-DNN).836

MT-DNN [53] combines language modeling with multi-task837

learning before fine-tuning. By adapting the pre-trained838

BERT LMwith several supervised NLP tasks, the model uses839

a large quantity of cross-task data without overfitting to a840

specific downstream task, resulting in regularization effects841

for more effective model fine-tuning. MT-DNN adapts the842

BERT LM by sequentially feeding input mini-batches of the843

different tasks to the network and updating the weights of844

all layers according to the loss function of the respective845

task. The model thus approximatively reduces the model846

error on all multi-task objectives simultaneously. MT-DNN847

uses four task specific layers on top of the LM: single-848

sentence classification, pairwise text similarity, pairwise text849

classification, and relevance ranking. During the first task,850

a label corresponding to the sentiment of a sentence has to be851

predicted. The second task has the model predict a value that852

indicates the semantic similarity of two sentences. The third853

task is similar to the classification task employed in USE. The854

last task is to rank the best answers to a given query.855

Cross-lingual Language Models (XLM). Conneau and856

Lample [54] criticize the monolingual focus of TR methods857

and the overrepresentation of the English language. They pos-858

tulate that multilingual approaches can advance cross-lingual859

understanding and create high-quality text representations for860

low-resource languages and propose XLM. The models align861

token representations across different languages by training862

on a shared, cross-lingual vocabulary. XLM implements three863

models each with a different training task: the autoregressive864

LM of GPT, the autoencoder masked LM of BERT, and865

a translation LM. The translation LM transfers the masked866

LM to a supervised setting, in which two parallel sentences867

are concatenated for the input and aligned with a shared868

positional-embedding. In addition, a language embedding869

provides additional information for the model. Subsequently,870

input tokens are masked and predicted in accordance with the871

masked language modeling task.872

TransformerXL. Dai et al. [55] point out two key weak-873

nesses of previous Transformer-based architectures: maxi-874

mum context distance and context fragmentation. The former875

limitation restricts the modeling of relationships between876

tokens to the length of the input because contexts are no877

longer seen during training. The latter forces the model878

to train the first tokens in a given input sequence from879

scratch as context information from previous inputs cannot880

be accessed. Both limitations therefore result from a limited881

input sequence length. TransformerXL [55] trains an autore-882

gressive LM that introduces the notion of recurrence to the883

Transformer architecture to overcome the above mentioned884

limitations. The outputs of the hidden layers of previous885

input sequences are cached and concatenated with the hidden886

states of the current input sequence to predict each token.887

Once the maximum memory capacity is reached, the oldest888

cached hidden states are discarded to free up space [56].889

In order to enable the recurrence mechanism, the positional 890

encoding of the Transformer, which is statically implemented 891

at the embedding layer, has to be made relative. Otherwise, 892

the same indices would be used for different tokens when 893

attending to previous sequences. Dai et al. [55] resolve this 894

issue by extending the attention formula. Specifically, they 895

add trainable biases that adjust for the distance between any 896

two tokens. 897

Enhanced Representation through kNowledge IntE- 898

gration (ERNIE). Sun et al. [57] argue that effective text 899

representation methods should use more than just word 900

co-occurrence information of the corpus. ERNIE adapts the 901

masking strategy of the BERT LM by extending it with 902

phrase-masking and entity-masking. Phrases are defined as 903

conceptual units consisting of characters or words. Entities 904

are abstract or concrete concepts that can be denoted with a 905

proper name. In this manner, the model incorporates prior 906

knowledge about language and depends less on long con- 907

text information. The LM is pre-trained with the help of 908

a three-layer masking strategy. First, 15% of the tokens in 909

the input sequence are masked at random. In the second 910

layer, entities of the input sequences are identified via lexical 911

analysis and the corresponding tokens are masked. Lastly, 912

phrases are identified and masked analogue to the entity 913

masking process. Sun et al. [58] later introduced ERNIE 2.0, 914

a continuous multitask pre-training framework in line with 915

the insights gained from their previous model proposition 916

ERNIE. They extend the ways in which information other 917

than co-occurence can be leveraged. ERNIE 2.0 enables the 918

pre-training of an LM on different custom training tasks 919

that can be extended by new tasks at any point in time. 920

It pre-trains a BERT encoder onword-aware, structure-aware, 921

and semantic-aware pre-training tasks that improve lexical, 922

syntactic, and semantic capabilities respectively. Word-aware 923

tasks consist of the adapted autoencoder LM introduced by 924

ERNIE, the prediction of whether a token is capitalized and 925

the prediction, whether a token appears at a different posi- 926

tion of the same document. Structure-aware tasks are the 927

reordering of a permuted input sequence and a prediction, 928

whether two sentences are adjacent, in the same document 929

or from different documents. Semantic-aware tasks include 930

the prediction of the semantic or rhetorical relatedness of 931

two text spans and a task similar to relevance ranking in the 932

MT-DNN. 933

MAsked Sequence to Sequence pre-training (MASS). 934

Song et al. [59] use a full Transformer to condition a GPT- 935

like decoder on a BERT-like encoder. The encoder of their 936

MASS model is similar to BERT as it masks part of the 937

input. Nonetheless, the employed masking strategy differs. 938

It is tailored to mask spans of text by replacing consecutive 939

tokens with individual mask tokens [M ]. The decoder of 940

the MASS model adopts the autoregressive LM of GPT. 941

However, the unmasked tokens for the encoder aremasked for 942

the decoder to force the latter to relymore heavily on the input 943

representations of the encoder and thus, the implicit linguistic 944

knowledge encoded in them. 945
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XLNet. Despite their ability to model deep bi-directional946

contexts, autoencoder LM approaches face two major prob-947

lems [60]: First, there is a discrepancy between pre-training948

and fine-tuning. Masked tokens are encountered during949

pre-training but never in a downstream task. Second, masked950

tokens are assumed to be independent of each other. They951

are predicted simultaneously without consideration for other952

masked tokens of the same sequence. XLNet [60] addresses953

these problems by creating an autoregressive LM that does954

not sacrifice bi-directionality, called permuted LM. This is955

achieved by maximizing the expected log-likelihood of all956

permutations of an input sequence. Naturally, the permuta-957

tions include sequences, in which words that appeared after958

the target word in the original input, now appear before it959

and vice versa. Because the model parameters are shared960

the network hence learns bi-directional context information.961

XLNet permutes its factorization order, not the actual input to962

not deviate from inputs encountered during fine-tuning. This963

is achieved with attention masks. However, in a bi-directional964

context this introduces the problem of trivially predicting the965

target word [60]. To resolve this issue, XLNet introduces966

two streams of attention. The content stream, as used in967

the vanilla Transformer, is a contextualized representation968

of each input token. The query stream only contains the969

context representation for each input token. The query stream970

is used when predicting a token at the current position to971

hide the token identity and thus prevent a trivial prediction.972

The content stream is used in all other cases. XLNet accepts973

the same input structure as BERT, but the network is built974

on top of a TransformerXL backbone. Furthermore, the con-975

cept of relative embeddings introduced by TransformerXL976

is extended to the segment encoding of BERT, mainly to977

improve generalization capabilities.978

Robustly optimized BERT approach (RoBERTa).979

Liu et al. [61] argue that the original BERT is severely980

under-trained and that the model can substantially improve981

in performance through effective and carefully crafted pre-982

training tasks. To this end, RoBERTa [61] introduces small983

but effective changes to the vanilla BERT model while984

leaving the core architecture almost identical. The first985

key change is making the masked language modeling task986

dynamic, that is generating the masking pattern each time987

an input sequence is passed into the network. This increases988

variance in the training data and thus helps the model to989

generalize better. The second key change is omitting the next990

sentence prediction task. This change effectively doubles the991

context length the model can represent because the input992

is no longer split into two potentially unrelated sequences.993

Furthermore, it prevents the introduction of unwanted noise994

during training [62]. RoBERTa is also trained on more data995

with larger batches for a longer time and uses a larger996

byte-pair encoding vocabulary, that is smaller subword units997

than BERT.998

SpanBERT. Joshi et al. [62] accentuate the inability of999

many models to accurately represent multi-word expres-1000

sions because they optimize the prediction of singular tokens1001

during training. The solution of SpanBERT [62] is straight- 1002

forward. It adapts BERT to mask spans of natural words 1003

in the input. The process is similar to phrase masking in 1004

ERNIE, that is each token of a span is replaced with an 1005

individual [MASK ] token. SpanBERT further introduces the 1006

span boundary task, in which the model has to recover a 1007

complete span using only its boundary tokens. This integrates 1008

span-level information into the respective boundary tokens. 1009

Lastly, like RoBERTa, SpanBERT omits the next sentence 1010

prediction task. 1011

A Lite BERT (ALBERT) The main contribution of 1012

ALBERT [63] is its improved parameter efficiency over 1013

previous encoder-only Transformer models. Through factor- 1014

ized embedding parametrization, ALBERT disconnects the 1015

embedding matrix size from the hidden layer size of the 1016

model with a set of smaller matrices. This results in a param- 1017

eter reduction when the hidden layer size is bigger than 1018

the embedding matrix size, allowing efficient scaling of the 1019

hidden matrix size according to the modeling needs. Addi- 1020

tionally, ALBERT shares all of its parameters across layers by 1021

default, further decreasing the amount of model parameters. 1022

Although this has a slight negative impact on downstream 1023

task performance, it stabilizes the network parameters during 1024

training [63]. Moreover, the next sentence prediction task 1025

of BERT is not omitted but replaced with a sentence order 1026

prediction task. The authors argue that predicting whether a 1027

sentence belongs to the same document is too trivial of a task. 1028

In their proposed new task, themodel has to ascertain whether 1029

the order of two consecutive sentences is correct or swapped. 1030

Finally, ALBERT implements the n-gram masking strategy 1031

of SpanBERT. 1032

Megatron-LM. When increasing the size of an LM, 1033

at some point memory limitations pose a substantial prob- 1034

lem [64]. Therefore, Shoeybi et al. [65] explore the scal- 1035

ability of LMs by training Megatron-LM, which consists 1036

of multi-billion parameter versions of BERT and GPT-2. 1037

In order to train thesemodels, the authors rely onmodel paral- 1038

lelism techniques. Specifically, Megatron-LM distributes the 1039

calculation of general matrix multiplications across multiple 1040

workers. These matrix operations occur in several architec- 1041

tural components of the two previously mentioned models. In 1042

FFNN, the matrix multiplication of the weights with the input 1043

is split along the weight matrix columns to be distributed on 1044

several workers. During the output calculation, the respective 1045

weight matrix multiplication is parallelized along its rows. 1046

Furthermore, Megatron-LM makes use of the parallel nature 1047

of the attention mechanism by splitting attention heads across 1048

several workers. However, the output of the attention heads 1049

has to be merged. For this, the respective matrix operation is 1050

distributed along the rows of the output. Lastly,Megatron-LM 1051

lets each worker optimize a set of parameters for layer nor- 1052

malization and dropout themselves to reduce communication 1053

requirements between workers. 1054

Building on the Megatron-LM backbone, Turing Natu- 1055

ral Language Generation (T-NLG) [66] uses advances in 1056

distributed computing and distributed memory optimization 1057
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technologies (i.e., DeepSpeed and Zer0) to train a1058

Transformer-decoder-only model with 17 billion parameters.1059

Smith et al. [67] go a step further and scale the same1060

Megatron-LM variant to 530 billion parameters. Their1061

model, the Megatron-Turing Natural Language Generation1062

(MT-NLG), is the largest non-sparse model at the time of1063

writing. In order to be able to train a model of such size the1064

authors pair the tensor-slicing of Megatron-LM with a com-1065

plementary parallelization strategy across three dimensions.1066

First, the model is divided into blocks which are distributed1067

on parallel workers. Second, the individual model layers in1068

each block are allocated to parallel workers. Third, the input1069

data batches are distributed on parallel workers independently1070

of the first two measures. To efficiently coordinate the par-1071

allelisms of the model is to minimize the communication1072

overhead between the parallel workers. To this effect, the1073

topology of the hardware cluster is taken into account, that1074

is parallel workers requiring frequent communications are1075

placed in the same or adjacent nodes.1076

DistilBERT. Similarly to ALBERT, DistilBERT [68]1077

focuses on reducing the computational complexity of a model1078

while maintaining downstream task performance. It uses a1079

setup called knowledge distillation, in which a small student1080

model learns to replicate the behaviour of a larger teacher1081

model. Both teacher and student are versions of BERT, but1082

the network depth of the student is halved. The student is1083

initialized with the weights of the trained teacher and imple-1084

ments three loss functions to align their prediction behavior.1085

A distillation loss aligns the probability distribution over all1086

tokens. The masked language modeling task of BERT is used1087

in a supervised manner to align discrete token predictions,1088

where the ground truth are the predictions of the teacher.1089

Lastly, a cosine embedding loss aligns the embedding vectors1090

for the tokens.1091

Text-To-Text Transfer Transformer (T5)1092

Raffel et al. [69] agglomerate the most valuable insights1093

gained by previous TR models and combine them in the T5,1094

a large-scale text-to-text framework for the resolution of any1095

NLP task. T5 relies on a full Transformer, as encoder- or1096

decoder-only variants would limit downstream task applica-1097

bility. To distinguish different tasks, the model is fed with1098

a text string that indicates the task that has to be performed,1099

for example ‘‘TL;DR’’ for summarization. The initial string is1100

followed by prefixed input-strings in a task-specific structure.1101

As implied by its name, the output of the model is always1102

textual. The model also unifies the objective function to1103

be a maximum likelihood for all tasks. The encoder of T51104

uses a span masking task, in which a number of tokens are1105

replaced by a singular mask token. At its base the decoder1106

uses masked self-attention in an autoregressive manner to1107

predict the spans. However, this setup can be limiting in1108

conjunction with prefix information being passed to the1109

model. For instance, in a machine translation task a sentence1110

in the original language is provided so that the model knows1111

what it has to translate. This information would be subject1112

to masking as it forms part of the input. Thus, the model1113

would only be able to access partial information for most 1114

time-steps to predict the translation. T5 solves this issue by 1115

allowing the decoder to attend to any position of the prefixed 1116

input. Beyond that, the attention to previous positions remains 1117

prohibited. 1118

Xue et al. [70] adapt the T5 model to operate on bytes 1119

instead of tokens, eliminating the need for vocabulary genera- 1120

tion, text pre-processing, and tokenization. Their model ByT5 1121

achieves competitive performance when masking longer 1122

spans of text and scaling the depth of the encoder. 1123

BART. BART [71] implements the standard Transformer- 1124

based neural machine translation architecture. However, the 1125

encoder fulfils the role of corrupting the input text according 1126

to an arbitrary function and the decoder learns to recon- 1127

struct the original in an autoregressive manner. Consequently, 1128

BART generalizes the masked LM of BERT and the autore- 1129

gressive LM of GPT. The approach allows for high flexibility 1130

in terms of pre-training input transformations. In particular, 1131

BART allows for changes to the length of the input text. This 1132

is used to mask spans of text similarly to SpanBERT but with 1133

the difference of inserting only a single [MASK ] token inde- 1134

pendently of the span length, hence incorporating knowledge 1135

about the amount of missing tokens on the decoder side. 1136

Reformer. The Reformer [72] joins the rank of TR meth- 1137

ods that aim at reducing computational complexity such as 1138

DistilBERT. However, it is the first identified approach that 1139

targets the full Transformer architecture. Kitaev et al. [72] 1140

mainly carve out the attention calculation as a problematic 1141

factor in terms of computation. Their solution is the approxi- 1142

mation of the keymatrix of the attention formula. They reason 1143

that only the key values with the highest similarity to the 1144

query are required because the attention scores are subject 1145

to a softmax function. To sort the keys accordingly, locality- 1146

sensitive hashing is used. This hashing function maps each 1147

key vector to a bucket and ensures that similar vectors end 1148

up in the same bucket. Thus, the attention can be calculated 1149

efficiently for each respective bucket. The Reformer further- 1150

more does not materialize the query matrix in memory for 1151

memory-efficiency at the cost of performance. 1152

Compressive Transformer. Rae et al. [56] propose the 1153

Compressive Transformer. The model extends the Trans- 1154

formerXL with a new memory layer to model even longer 1155

context dependencies in text. In total, the Compressive Trans- 1156

former accesses three layers of memory: the current sequence 1157

(vanilla Transformer), the TransformerXL memory, and the 1158

novel compressed memory. More specifically, instead of dis- 1159

carding old memories like the TransformerXL, a compres- 1160

sion function is used to retain lossy representations. The 1161

compression function can be max/mean pooling, 1D convo- 1162

lution, dilated convolutions, or most-used, where memories 1163

are sorted by their average attention. To facilitate the atten- 1164

tion mechanism over previous sequences, the Compressive 1165

Transformer adopts the relative positional encoding of the 1166

TransformerXL. 1167

ProphetNet. Qi et al. [73] postulate that autoregressive 1168

LM overvalue local correlations of words at the cost of global 1169
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dependencies. To address this issue, they adapt the autore-1170

gressive language modeling task to predict n tokens for each1171

token in a sequence. Hence, the model is forced to plan for1172

future tokens. The change is implemented by extending the1173

two-stream attention mechanism of XLNet to n-stream self1174

attention, where each stream i is responsible for the prediction1175

of the future i-th token. ProphetNet further incorporates the1176

masked LM of BERT on the encoder side of its Sequence-to-1177

Sequence (Seq2Seq) architecture.1178

Efficiently Learning an Encoder that Classifies Token1179

Replacements Accurately (ELECTRA). ELECTRA [74] is1180

similar to an inverse variant of DistilBERT, that is it uses1181

a small network to optimize a large network. The focus1182

of this approach lies on improving parameter efficiency as1183

well. In particular, the masked LM of BERT is extended1184

with a replaced token prediction task. This novel task is1185

implemented by concatenating two models, a generator and1186

a discriminator. The generator is a reduced version of BERT1187

that trains on the masked language modeling task to generate1188

and pass on plausible token replacements for 15% of the input1189

sequence. Subsequently, the discriminator, a larger BERT,1190

is initialized with the weights of the generator and has to1191

predict for every token, whether it appears in the original1192

sequence or has been altered by the generator. This procedure1193

enables the discriminator to update the weights for all tokens1194

per training step in comparison to only those of masked1195

tokens in the masked language modeling task. Furthermore,1196

no masked tokens are passed to the discriminator. This solves1197

the pre-training/fine-tuning discrepancy of autoencoder LM1198

discussed by XLNet.1199

MPNet. MPNet [75] leverages the advantages of permu-1200

tative language modeling of XLNet and the masked LM1201

of BERT while mitigating their respective discrepancies1202

between pre-training and fine-tuning. For this purpose, the1203

authors create a masked and permuted language modeling1204

task. In particular, MPNet can access 100% of the positional1205

information of a sequence in contrast to permutative language1206

modeling and uses bidirectional context information between1207

predicted tokens in contrast to the masked LM. This is imple-1208

mented by permuting a token sequence and splitting it into1209

three parts: non-masked tokens, mask-tokens, and the tokens1210

that have beenmasked. Subsequently, self-attention is applied1211

to the first two parts, while two-stream self-attention as in1212

XLNet is applied to the entire token sequence.1213

Funnel-Transformer. The Funnel-Transformer [76]1214

improves computational efficiency by gradually reducing1215

the hidden vector length with increasing model depth. The1216

respective pooling function reduces the length of the hidden1217

vector representation of the model with a sliding window1218

mean pooling operation. Importantly, the resulting repre-1219

sentation is not fed to the next layer directly but is only1220

used to create the query vector for the self attention oper-1221

ation, while the full sequence representation is used for1222

the key and value vectors. This makes the resulting pooled1223

representation more context sensitive. However, due to the1224

dimensionality reduction, the Funnel-Transformer loses the1225

capability of representing individual input tokens. Since this 1226

might be required for the resolution of a downstream task, 1227

Dai et al. [76] propose a decoder to recuperate expressive 1228

token-level representations. Concretely, the last hidden rep- 1229

resentation of the model is first upsampled to the original 1230

sequence length by repeating hidden vectors. Then, the last 1231

hidden vectors of the uncompressed part of the encoder are 1232

added to the upsampled hidden vectors. Finally, the result is 1233

passed through several additional Transformer layers to refine 1234

the token-level representations. 1235

BigBird. Zaheer et al. [77] emphasize the low theoretical 1236

understanding of the self-attention operation of the original 1237

Transformer. Hence, they question the necessity of full self- 1238

attention, which scales quadratically with sequence length, 1239

for good NLP performance. BigBird uses sparse matrix cal- 1240

culations in three distinct attention patterns that retain the 1241

expressiveness and flexibility of the model while reducing 1242

computational complexity to be linear. The first pattern is ran- 1243

dom attention. Here, each query attends to a random number 1244

of randomly chosen keys. The goal is to approximate some 1245

characteristics of the full self-attention. The second pattern is 1246

called window attention. It aims at capturing local relations 1247

between tokens as each token attends to a certain number of 1248

preceding and succeeding tokens. The third pattern is global 1249

attention, in which a specific added or a chosen existing token 1250

attends to and is attended to by every other token in the input. 1251

This captures sequence-level information in the embedding 1252

of global tokens. 1253

Roughly synchronous to BigBird, Beltagy et al. [78] 1254

developed the similar Longformer model, which exploits the 1255

lower computational complexity of the sparse attention oper- 1256

ation to drastically increase the processable input sequence 1257

length. It uses the same three sparse attention patterns as 1258

BigBird, with the exception that dilated windows are used 1259

to further increase the receptive field of the model with 1260

increasing model depth at no additional computational cost. 1261

Decoding-enhanced BERT with disentangled attention 1262

(DeBERTa). DeBERTa [79] refines the token embedding 1263

strategy of BERT in two ways. First, each token is explicitly 1264

represented with n relative position embeddings to all other 1265

tokens in a sequence in addition to a content embedding. The 1266

positional and content vectors are summarized in matrices 1267

and used to calculate three attention scores of a token towards 1268

another, that is content-to-content, content-to-position, and 1269

position-to-content. Content- and position-specific query and 1270

key projectionmatrices are used respectively. The above strat- 1271

egy captures crucial linguistic information on the relatedness 1272

and importance of tokens in a sequence. Second, DeBERTa 1273

incorporates absolute positional information at the very end 1274

of the architecture instead of adding it to the token representa- 1275

tions in the beginning as done with BERT. Hence, the model 1276

is more accurately tuned to capture information on content 1277

and relative positions as only a small amount of parameters 1278

attends to the absolute positioning of tokens. 1279

Language Understanding with Knowledge-based 1280

Embeddings (LUKE). LUKE [80] extends the masked LM 1281
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of BERT with a novel training task that accounts for entity-1282

level tokens. This is achieved by explicitly masking entities1283

in addition to words and giving them a distinct token embed-1284

ding. Furthermore, the attention mechanism is adapted to1285

explicitly model the relations of words to entities and vice1286

versa. LUKE also accounts for architectural optimization1287

since BERT by using the improved RoBERTa as its baseline.1288

Switch Transformer. The Switch Transformer [81] rep-1289

resents a sparsely-activated model that maximizes parameter1290

count efficiently to increase model performance, while simul-1291

taneously reducing training time. More accurately, the model1292

consists of a large number of expert models with their own1293

parameters. In each layer the single best expert is determined1294

for each token in the input by a routing mechanism and the1295

resulting representations are linearly combined and passed1296

on to the next layer. Since the size of all weight matrices is1297

determined beforehand but the decisions of the routing mech-1298

anism are dynamic, an auxiliary loss is added to the model1299

to encourage the router to evenly distribute the layer inputs1300

across all available experts. Otherwise, too many tokens may1301

be assigned to an expert, which causes those tokens to be1302

dropped, that is not be used in the current layer.1303

Knowledge Embedding and Pre-trained LanguagE1304

Representation (KEPLER). KEPLER [82] captures fac-1305

tual as well as linguistic knowledge in its embeddings by1306

training on knowledge graphs and arbitrary text respectively.1307

Concretely, the training of KEPLER is jointly governed by1308

two loss functions expressed in a knowledge embedding task1309

with negative sampling and the masked language modeling1310

task of BERT. The knowledge embedding task uses entity1311

descriptions and fixed relation embeddings extracted from1312

knowledge graphs and subsequently maximizes the similarity1313

of a given entity description with any neighboring entity1314

description, while minimizing the similarity of not connected1315

entities. At that, the projection of the entity descriptions is1316

done with the same encoder that is used during masked lan-1317

guage modeling. Hence, KEPLER can build on top of exist-1318

ing Transformer architectures. Precisely, KEPLER initializes1319

with a RoBERTa checkpoint.1320

Character Architecture with No tokenization In Neural1321

Encoders (CANINE). Clark et al. [83] identify explicit tok-1322

enization as a rudiment of the beginnings of artificial-neural-1323

network-based TR. They present CANINE, an encoder-only1324

Transformer that instead learns tokenization by operating1325

directly on byte strings. In particular, Unicode character1326

codepoints are converted into numerical representations by1327

concatenating the results ofmultiple hashing functions. These1328

representations are then fed to a block-wise local attention1329

layer in order for it to learn a composition function to greater1330

linguistic units, for example subwords. Next, strided con-1331

volution is applied to the representation vectors as a down-1332

sampling method to compensate for the greater sequence1333

length of Unicode character codepoints in comparison to1334

textual units, for example characters. The resulting repre-1335

sentations are then fed through a deep stack of Transformer1336

encoders. For downstream tasks that require the prediction1337

of text sequences, an upsampling method is provided. The 1338

downsampled deep representations of the model are padded 1339

to the input sequence length by replicating them n times, n 1340

being the downsampling rate, and concatenating them with 1341

the representations of the local attention layer. 1342

B. GENEALOGY 1343

In order to trace the history of the presented TR meth- 1344

ods we place them in a genealogy that comprises temporal 1345

information along one axis and identifies different evolu- 1346

tionary branches on the other axis. The latter describes four 1347

paradigms that can be traced throughout the history of TR: 1348

size, context, efficiency, and multi-tasking. Hence, any TR 1349

method can be assigned to at least one of these evolutionary 1350

branches. 1351

Size. TR methods that fall into the size branch value 1352

more data and larger models over highly curated corpora 1353

and custom-built training tasks. These models consistently 1354

achieve state-of-the-art results on NLP tasks but require 1355

extensive computational resources and distributed architec- 1356

tures, making them inaccessible for most researchers. 1357

Context. The representatives of the context branch aim at 1358

increasing the distance of textual dependencies that can be 1359

modeled. This is achieved either by allowing for longer text 1360

sequences to be processed by a model or by adapting the 1361

memory mechanism of a model, for example storing more 1362

network activations. Context information is especially valu- 1363

able if either the input or the output of a model is expected to 1364

be long in a given NLP task, for example for summarization. 1365

Efficiency. The efficiency branch tries to achieve high 1366

performance on a small scale. It has gained traction due to 1367

the trend of continuously creating larger, more potent models, 1368

which, however, remain inaccessible for most researchers 1369

due to immense resource costs. Common approaches are 1370

the optimization of the operations of a TR method or the 1371

transferal of the abilities of larger models to versions with 1372

a smaller footprint. 1373

Multi-tasking. Finally, the multi-tasking branch aims at 1374

explicitly capturing many facets of language by simultane- 1375

ously optimizing amodel on various carefully crafted training 1376

tasks. Hence, finding an effective combination of training 1377

tasks is the principal objective of this branch. For instance, 1378

it could include semantic, syntactic, and orthographic tasks. 1379

Figure 2 provides a schematic overview of the relations of 1380

the different TR methods. 1381

An analysis of the temporal axis of the genealogy indicates 1382

that the evolution of TR can be split into two phases. The first 1383

phase ranges from 2013 to 2017 and the second phase ranges 1384

from 2019 until today. 2018 can be seen as the transition 1385

between the two phases. At the beginning of each phase 1386

stands a novel approach that changed the landscape of TR and 1387

inspired the development of manifold TR methods. This is 1388

reflected in the high number of outgoing connections of such 1389

a TR method in the genealogy. Consequently, the first phase 1390

was initiated by the word2vec models and the second phase 1391

by BERT and, in part, GPT. During the first phase, new TR 1392
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FIGURE 2. Genealogy of recent TR methods.

methodswere inspired byword2vecmodels, yet they scarcely1393

built on top of each other and rather branched out separately1394

to address the four paradigms size, context, efficiency, and1395

multi-tasking. The high amount of leaf nodes in the genealogy1396

illustrates that the first phase was characterized by radical1397

changes concerning model architecture and other concep-1398

tional choices. The second phase stands in stark contrast.1399

While the TR models still branched out, the tendency was1400

to refine and extend previous methods, in particular BERT1401

and GPT. This emphasizes that a robust architecture was 1402

found with the Transformer [36]. An analysis of the transition 1403

period reveals two mostly disjoint streams that clearly show 1404

the adoption of LM in favor of previous contextualization 1405

approaches. Moreover, a split can be identified between TR 1406

methods that employ autoregressive approaches (left) and 1407

those that use autoencoder approaches (right). Taking another 1408

look at the second period, however, the two split streams are 1409

in the process of reuniting due to an increasing number of new 1410
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sequence-to-sequence architectures, which combine aspects1411

of autoencoding and autoregression.1412

Finally, an illustration of the central problems in the history1413

of TR is helpful to comprehend the motivation that drove the1414

evolution of TR methods. In our genealogy, we highlight1415

methods in bold that constitute the solution to such a problem1416

and subsequently advanced the performance of NLP in gen-1417

eral and TR in particular. It is worthwhile to mention that the1418

transition period played a major role in shaping the evolution1419

of TR as indicated by several consecutive bold methods.1420

The first hurdle of modern TR was a severe computational1421

bottleneck. Pioneering FFNN could not efficiently model the1422

highly variant feature space of natural language and had to1423

either reduce computation time or training data, both leading1424

to diminishing TR capabilities. The hurdle was taken with1425

the word2vec models that provided a parameter efficient1426

architecture to make the calculation of distributional embed-1427

dings feasible for large corpora. However, the embeddings1428

were stored in static lookup-tables. In effect, homonyms were1429

united in a single embedding and thus made indistinguish-1430

able. The setup thus inherently discarded polysemy. In addi-1431

tion, the resulting embedding inevitably modeled a bias that1432

was likely extreme and intransparent. ELMo received a lot of1433

attention for solving the problem of polysemy. The approach1434

created token embeddings on a per sample basis as a function1435

of the entire input sequence. This allowed for the distinction1436

of homonyms according to context information. Instead of1437

inputting static lookup-tables, ELMo provided a dynamic1438

embedding model that could be prepended to a task-specific1439

architecture. However, a fundamental design principle for1440

the training of artificial neural networks was still violated.1441

The models could not directly map raw data to an inference,1442

which gave space to errors and diminished performance.1443

ULMFiT proposed an end-to-end approach with great suc-1444

cess and restructured the course of the NLP domain in its1445

wake. Recent years document that the Transformer has estab-1446

lished itself as the best performing end-to-end architecture1447

for NLP. With that the central problems in the NLP domain1448

have shifted from changing the layout and combination of1449

different model architectures to exploiting the capacities of1450

the now ubiquitous Transformer. At the beginning of that1451

process stand BERT and GPT which achieved high lan-1452

guage understanding and generation capabilities respectively.1453

Subsequently, the creators of XLNet aspired to combine the1454

generative power of GPT and discriminative power of BERT1455

into one model.RoBERTa focused on refining BERT to train1456

more efficiently and effectively and managed to lay a strong1457

foundation that has been used for the creation of new models1458

up to more than a year later. KEPLER focused on explicitly1459

integrating common sense andworld knowledge to drawNLP1460

methods near to the pragmatic layer. Meanwhile, T5 was1461

designed to be task-agnostic, that is applicable to any NLP1462

problem, as a one-for-all solution. CANINE extended the1463

end-to-end principle to the model vocabulary by operating1464

on byte strings instead of predefined token vocabularies.1465

Lastly, MT-NLG pushed computational boundaries with an1466

immense amount of model parameters driven by the goal 1467

of creating an artificial intelligence that captures and thus 1468

understands all aspects of language. 1469

V. DISCUSSION OF TAXONOMY OF TEXT 1470

REPRESENTATION METHODS 1471

The compilation and analysis of TR methods conducted 1472

above enabled us to create a taxonomy of TR methods. 1473

It comprises the five dimensions architecture, vocabulary, 1474

representation, domain-dependency, and training strategy 1475

along which a classification of a given TR method can be 1476

made (see Table 3). In the following, we describe its dimen- 1477

sions and discuss the changes through time in each dimension 1478

to point out the current state-of-the-art. Note that the dimen- 1479

sions are sometimes fuzzy, for example ELMo combines two 1480

architectures, the CNN and the LSTM. A classification of all 1481

TR methods can be found in Table 4. 1482

Architecture. The first dimension is the architecture of TR 1483

methods. The evolution in this dimension is mainly driven 1484

by the increase in computational capabilities and artificial 1485

neural networks. Early TRmethods relied onFFNN or therein 1486

inspired simple statistical calculations. The main limitation 1487

of these approaches were their inability to model sequence 1488

information efficiently. Due to their lack of expressiveness, 1489

these approaches have been replaced by deeper and more 1490

complex models, more precisely CNN and RNN. CNN stood 1491

out with their efficiency and ability to extract high-quality 1492

features from elementary parts of text, especially charac- 1493

ters, while RNN capitalized on the sequential nature of text. 1494

LSTM have had exceptional success by combining effective 1495

sequence modeling with stable network training. However, 1496

a step-change in NLP has been taking place with the introduc- 1497

tion of the Transformer architecture. It exploits present-day 1498

computational possibilities through its parallelizable struc- 1499

ture, and outclasses other model architectures in terms of 1500

capturing long-range dependencies in text. 1501

Vocabulary. The vocabulary dimension describes the 1502

tokenization granularity of a TR method. The body of liter- 1503

ature distinguishes four granularities: byte-level, character- 1504

level, subword-level, and word-level tokens. On account of 1505

a straightforward implementation, the first approaches for 1506

TR used word-level tokens. However, the low granularity led 1507

to extensive vocabularies, resulting in generalization issues. 1508

A particular problem were OOV and rare words. Character- 1509

and subword-level tokens subsequently mitigated the prob- 1510

lem of large vocabularies and OOV words but faced the 1511

challenge of learning meaningful compositions of tokens 1512

to larger linguistic units. Nonetheless, in terms of down- 1513

stream task performance they surpassed word-level methods, 1514

implying the use of word morphology to better generalize 1515

language. More specifically, the morphological information 1516

could be accessed either implicitly through the combination 1517

of character-level features or explicitly through the incorpo- 1518

ration of subword-level tokens into the vocabulary. However, 1519

character-level approaches struggled with underfitting natu- 1520

ral language so that subword vocabularies have become the de 1521
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TABLE 3. Taxonomy of TR methods highlighting the state-of-the-art.

facto standard. Importantly, this status quo might be about to1522

change due to highly flexible byte-level approaches. They do1523

away with explicit vocabulary creation and, in consequence,1524

the need for text pre-processing, allowing models to operate1525

on any language and to learn their own token boundaries in1526

an end-to-end fashion at the cost of computational overhead.1527

Representation.The representation dimension determines1528

the units of text for which distributional representations are1529

created by a TR method. A priori, the unit of representation1530

of a given method cannot be of a finer granularity than its1531

vocabulary. Contrarily, low-level token representations can1532

be composed to represent larger linguistic units. Further-1533

more, the smallest linguistic unit distributional representa-1534

tions seem sensible for are subwords, given that morphemes1535

are the smallest meaning bearing elements of language [84].1536

Nonetheless, some approaches still choose a lower represen-1537

tation level. Overall, TR methods represent text on a byte,1538

character, subword, word, and sequence level. As with the1539

vocabulary, TR started at the word-level because of the simple1540

implementation. Afterwards, sequence representations were1541

explored and performed better than word-level representa-1542

tions on NLP tasks that required such high-level represen-1543

tations, for example text classification. However, due to their1544

aforementioned compositional flexibility, subword represen-1545

tations have become the de facto standard. Even so, most1546

state-of-the-art TR methods additionally include sequence1547

representations, because a simple composition of subwords1548

to such a large textual unit would likely carry with it a1549

degradation of the representation quality. That is, themeaning1550

of a sequence can be larger than the combination of the1551

meaning of the individual subwords [4]. This might further1552

explain why character-level representations played only a1553

marginal role in the evolution of TRmethods. Note that while1554

byte-level representation faces a similar problem, it benefits1555

from the aforementioned advantages, that is a vocabulary-free1556

and thusmore integrated end-to-end training. That being said,1557

it remains to be seen whether byte-level can improve upon1558

subword-level representations.1559

Domain-dependency. The fourth dimension of TR meth-1560

ods is the domain-dependency. TR can either be trained1561

in a supervised, semi-supervised, or unsupervised fashion.1562

The first TR methods were unsupervised, which allowed the1563

models to be trained on vast amounts of data. The resulting1564

text representations embedded general aspects of language1565

and could be used as the basis for task-specific architec-1566

tures. Contrary to this development, supervised approaches1567

were recognized to improve performance on NLP tasks by1568

fitting text representations to the task domain. Yet, the evident 1569

drawback of supervised training was the limited in-domain 1570

data, and the approachwas discarded as unsupervised corpora 1571

grew to effectively contain the entire textual internet. The 1572

necessity of training task-specific architectures from scratch 1573

when using unsupervised approaches on the one hand and 1574

the lack of training data in a supervised setting on the other 1575

hand, led to the adoption of semi-supervised TR methods. 1576

Semi-supervision combines the advantages of both previous 1577

approaches and hence established as the state-of-the-art in 1578

this dimension. A model is first trained on a huge corpus 1579

to capture the general aspects of language. Subsequently, the 1580

same model is fine-tuned on task-specific data. 1581

Training strategy. The last dimension is the training 1582

strategy. It refers to how the distributional hypothesis is 1583

implemented to create distributional representations. Four 1584

fundamental training strategies can be distinguished: con- 1585

text compression, autoregressive LM, autoencoder LM, and 1586

Seq2Seq. The first approaches were FFNN-based strategies 1587

that aligned the vector representations of tokens that occurred 1588

together in fixed size windows around a position. These 1589

approaches were efficient but did not account for order infor- 1590

mation. Moreover, context-windows were typically smaller 1591

than the input sequence, limiting the context information 1592

available to these models. Although later approaches mit- 1593

igated both drawbacks by employing RNN and extending 1594

the context-window to the entire input sequence respectively, 1595

order information was still not used effectively. Specifi- 1596

cally, merely compressing order and context information into 1597

embeddings according to a sequence was not sufficient. Sub- 1598

sequently, autoregressive LM improved model performance 1599

by leveraging order information in explicitly learning the 1600

distribution of sequences in a corpus. However, these models 1601

introduced uni-directionality as a new limitation to themodel- 1602

ing of context information because only the preceding tokens 1603

to a target token were considered at any time-step. Many 1604

TR methods dealt with this problem by concatenating two 1605

opposite autoregressive LMs with good results, but autoen- 1606

coder LMs made it possible to directly include bi-directional 1607

context information of an entire sequence for every position 1608

in a deep manner. Thereby, great strides were made in terms 1609

of downstream task performance on many NLP tasks, the 1610

caveat being inferior scalability and generative capabilities 1611

in comparison to autoregressive LMs. Hence, efforts were 1612

made to integrate bi-directional context into autoregressive 1613

LMs. Especially a hybrid learning strategy known as Seq2Seq 1614

has gained traction. It combines aspects of autoencoding 1615
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TABLE 4. Classification of the identified TR methods according to our taxonomy.

and autoregression for a flexible approach in terms of input1616

manipulations, scalability, and downstream task applicability1617

with competitive performance.1618

VI. RELATED WORK1619

In an attempt to survey TR, several authors have contributed1620

to the field but did not provide a comprehensive compilation,1621

composition, and systematization.1622

Cambria and White [7] use the concept of jumping curves 1623

to illustrate the change of NLP from lexical to compositional 1624

semantics, that is not analyzing the words but the concepts of 1625

a text. However, they do not cover specific TR methods. 1626

Otter et al. [6] break down NLP into natural language 1627

modeling, morphology, and semantics. The advances in each 1628

field are discussed in the context of deep learning and are 1629

framed with real world applications. Thus, the authors place 1630
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a strong focus on task-specificmodels as well as architectures1631

and digress from presenting the underlying TR methods.1632

Furthermore, due to the publishing date of the paper, current1633

advances are not covered.1634

Ferrone and Zanzotto [5] review the different modalities1635

of TR, for example symbolic and distributed representation.1636

They show a trade-off between expressiveness and inter-1637

pretability. In particular, they examine the ability of dis-1638

tributed representations to exploit more aspects of texts, while1639

being harder to interpret. Nevertheless, their research is lim-1640

ited to early TR methods.1641

Li et al. [85] portray the evolution of NLP from shallow1642

to deep models. They demonstrate this development with the1643

example of the text classification task in NLP. While they1644

mention a variety of different TR methods, the focus is rather1645

placed on specificmodel architectures relating to downstream1646

tasks.1647

Zhou et al. [1] structure the evolution of NLP along the1648

perspectives modeling, learning, and reasoning. Similarly to1649

Li et al. [85], they give a representative overview of TR, only1650

briefly covering concrete methods. Moreover, reasoning is1651

not related to TR specifically but rather to the broader NLP1652

domain.1653

Wang et al. [18] identify three challenges in the history of1654

TR methods: words, the understanding of context, and repre-1655

sentations for different languages. They continue to show in1656

detail the key TR methods and concepts that helped to over-1657

come these challenges. However, improvements beyond the1658

key approaches are not accounted for. As a result, we adopt1659

a representative perspective, although more fine-grained with1660

respect to TR than given by Zhou et al. [1] or Li et al. [85].1661

Wang et al. [86] focus on illustrating the trend from static1662

to dynamic TR. They extend the considerations from Ferrone1663

and Zanzotto [5] by describing a selection of important TR1664

methods in detail, including recent approaches. Moreover,1665

they highlight the conceptual challenges the TR methods1666

overcome to improve on previous approaches. Nonetheless,1667

as in [18], fine-grained developments in the field of TR are1668

not covered.1669

Peng and Han [87] and Duan et al. [88] elaborate on some1670

of the most pervasive, recent TR methods. Yet, the brevity of1671

the surveys is indicative of their incompleteness.1672

In contrast, Han et al. [89] provide an extensive review of1673

pre-trained models for TR. More precisely, they group the1674

models according to the underlying problem that motivated1675

their conception. The identified groups are further used to1676

visualize the interrelations between and motivations behind1677

the models in a family tree. But in spite of the level of1678

detail throughout the paper, the authors shed little light on1679

approaches precedingGPT andBERT, do not explain how the1680

presented models work in detail, and show only rudimentary1681

interrelations between the models.1682

VII. CONCLUSION1683

TR has been evolving at an unprecedented rate. The result1684

is a plethora of new and improved TR methods leading to a1685

diffuse overall picture of the research field, which is confus- 1686

ing for novices in the domain of NLP and at least challenging 1687

for experts to keep track of. In this work, we made the effort 1688

to compile and systematize these TR methods and thus shed 1689

light on the recent evolution of TR. 1690

In order to trace the genealogy of TR, many perspectives 1691

on the lineage of TR methods are possible. A comprehensive 1692

view can be achieved through their combination. In par- 1693

ticular, we described the evolution through the development 1694

of conceptual choices, chronological relations, and design 1695

paradigms. In addition, the motivations behind pivotal TR 1696

methods supplement more detailed information. The end of 1697

the genealogy displays the current state-of-the-art. However, 1698

it cannot be defined as singular methods but rather as a combi- 1699

nation of conceptual choices. More concretely, Transformer- 1700

based models that train a semi-supervised LM on subwords 1701

to form subword representations. 1702

Looking forward it can be suspected that the pace of radical 1703

changes in the TR domain, which has been sustained over 1704

recent years, is decelerating. The Transformer architecture 1705

seems to have stopped conceptual revolutions in favor of 1706

gradual increments. Nevertheless, new approaches are con- 1707

stantly being proposed introducing changes that need to be 1708

evaluated. 1709

Current developments suggest that progress will be divided 1710

into two fields. On the one hand, there is an increased 1711

interest in products based on artificial intelligence, which 1712

drives the development of task-specific architectures, mod- 1713

els, and methods. On the other hand, resource-rich play- 1714

ers, for example Google and Nvidia, continue to search 1715

for breakthroughs on the research side of TR. In particu- 1716

lar, a complete understanding of natural language, that is 1717

on the lexical, syntactic, semantic and, crucially, pragmatic 1718

layer. 1719

Unfortunately, the necessity for an enormous amount of 1720

computational resources in the latter case is closing off the 1721

research field formany. In light of this, focusmay aswell shift 1722

to other open issues, for example explaining distributional 1723

representations or dealing with structural bias. 1724
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