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Abstract

In this PhD thesis we consider robust (sandwich) variance-covariance matrix estimators
in the context of univariate and multivariate meta-analysis and meta-regression. The
underlying model is the classical mixed-effects meta-regression model. Our goal is
to enable valid statistical inference (testing and construction of confidence regions)
for the model coefficients. Specifically, we employ heteroscedasticity consistent (HC)
and cluster-robust (CR) sandwich estimators in the univariate and multivariate setting,
respectively. Such robust estimators are generally applicable in semiparametric linear
models. A key aim is to provide better small sample solutions for meta-analytic research
and application. Tests based on the original formulations of these estimators are known
to produce highly liberal results, especially when the number of studies included in
the analysis is small. We therefore transfer results for improved sandwich estimation
such as the HC4 estimator by Cribari-Neto and Zarkos (2004) to the meta-analytic
context. We prove the asymptotic equivalence of HC estimators and compare them with
commonly suggested techniques such as the Knapp-Hartung (KH) method or standard
plugin covariance matrix estimation in extensive simulation studies. The new versions
of HC estimators considerably outperform their older counterparts, especially in small
samples, achieving comparable results to the KH method.

In a slight excursion, we focus specifically on constructing confidence regions for
(Pearson) correlation coefficients as the main effect of interest in a random-effects meta-
analysis. We develop a beta-distribution model for generating data in our simulations
in addition to the commonly used truncated normal distribution model. We utilize
different variance estimation approaches such as HC estimators, the KH method and a
wild bootstrap approach in combination with the Fisher-z transformation and an integral
z-to-r back-transformation to construct confidence regions. In simulation studies, our
novel proposals improve coverage over the Hedges-Olkin-Vevea-z (HOVz) approach
and Hunter-Schmidt approaches, enabling reliable inference for a greater range of true
correlations.

Finally, we extend our results for the HC estimators to construct CR sandwich estimators
for multivariate meta-regression. The aim is to achieve valid inference for the model co-
efficients, based on Wald-type statistics (WTS), even in small samples. Our simulations
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show that previously suggested CR estimators such as the bias reduced linearization ap-
proach, can have unsatisfactory small sample performance for bivariate meta-regression.
Furthermore, they show that the adjusted Hotelling’s T 2-test suggested by Tipton and
Pustejovsky (2015) can yield negative estimates for the degrees of freedom when the
number of studies K is small (K ≤ 5). We suggest an adjustment to the classical F -test,
truncating the denominator degrees of freedom at two, which corresponds to a well
defined expected value for an F -distribution. Our CR extensions of HC3 and HC4,
using only the diagonal elements of the hat matrix to adjust residuals, improve coverage
considerably in small samples over the standard CR1 and bias reduced linearization ap-
proaches. We focus specifically on the bivariate case in our simulations but the discussed
approaches can also be applied more generally.

We analyze both small and large sample behavior of all considered tests / confidence
regions in extensive simulation studies. Furthermore, we apply the discussed approaches
in real life datasets from psychometric and medical research.



Zusammenfassung

In dieser Dissertation betrachten wir robuste (Sandwich-)Varianz-Kovarianz-Matrix
Schätzer sowohl im Kontext der univariaten als auch der multivariaten Meta-Analyse
und Meta-Regression. Das zugrunde liegende Modell ist das klassische mixed-effects
Meta-Regressionsmodell. Ziel ist es, eine valide statistische Inferenz (Testen und
Konstruktion von Vertrauensbereichen) für die Modellkoeffizienten zu ermöglichen.
Konkret verwenden wir Heteroskedastizitäts-konsistente (HC) und cluster-robuste (CR)
Sandwich-Schätzer jeweils im univariaten bzw. multivariaten Fall. Solche robusten
Schätzer sind allgemein in semiparametrischen linearen Modellen anwendbar. Ein
wichtiges Ziel ist es, bessere Lösungen für Meta-Analysen mit kleinen Stichproben zu
entwickeln. Tests, die auf den ursprünglichen Formulierungen dieser Schätzer beruhen,
führen bekanntermaßen zu sehr liberalen Ergebnissen, insbesondere wenn die Anzahl
der in die Analyse einbezogenen Studien gering ist. Wir übertragen daher Ergebnisse für
verbesserte Sandwich-Schätzungen wie den HC4-Schätzer von Cribari-Neto and Zarkos
(2004) auf den meta-analytischen Kontext. Wir beweisen die asymptotische Äquivalenz
der HC-Schätzer und vergleichen sie mit alternativen vorgeschlagenen Techniken wie der
Knapp-Hartung (KH)-Methode oder der standard Plugin-Kovarianzmatrix-Schätzung in
umfangreichen Simulationsstudien. Die neueren Versionen der HC-Schätzer übertreffen
ihre älteren Gegenstücke beträchtlich, insbesondere bei kleinen Stichproben, und erzielen
annähernd Ergebnisse wie die KH-Methode.

In einem kleinen Exkurs konzentrieren wir uns speziell auf die Konstruktion von Konfi-
denzbereichen für (Pearson) Korrelationskoeffizienten als interessierenden Haupteffekt
in einer Meta-Analyse mit zufälligen Effekten. Wir entwickeln ein Beta-Verteilungsmodell
für die Generierung von Daten in unseren Simulationen, zusätzlich zu dem üblicherweise
verwendeten Modell der trunkierten Normalverteilung. Wir verwenden HC-Schätzer,
die KH-Methode und einen Wild Bootstrap Ansatz in Kombination mit der Fisher-z-
Transformation und einer integralen z-zu-r-Transformation, um Vertrauensbereiche zu
konstruieren. Unsere neuartigen Vorschläge verbessern in Simulationen die Abdeck-
ung gegenüber dem Hedges-Olkin-Vevea-z (HOVz)-Ansatz und den Hunter-Schmidt-
Ansätzen und ermöglichen zuverlässige Schlussfolgerungen für einen größeren Bereich
von wahren Korrelationen.
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Schließlich erweitern wir unsere Ergebnisse für die HC-Schätzer, um CR-Sandwich-
Schätzer für multivariate Meta-Regression zu konstruieren. Ziel ist es, auch bei kleinen
Stichproben eine valide Inferenz für die Modellkoeffizienten auf der Grundlage der Wald-
Typ-Statistik (WTS) zu erreichen. Unsere Simulationen zeigen, dass zuvor vorgeschla-
gene CR-Schätzer, wie der Ansatz der bias-reduzierten Linearisierung, eine unbefriedi-
gende Leistung bei kleinen Stichproben für bivariate Meta-Regression aufweisen können.
Darüber hinaus zeigen sie, dass der von Tipton and Pustejovsky (2015) vorgeschlagene
angepasste Hotelling’s T 2-Test negative Schätzungen für die Freiheitsgrade liefern kann,
wenn die Anzahl der Studien klein ist (K ≤ 5). Wir schlagen eine Anpassung des
klassischen F -Tests vor, indem wir die Freiheitsgrade des Nenners bei zwei trunkieren,
was einem wohl definierten Erwartungswert einer F -Verteilung entspricht. Unsere
CR-Erweiterungen von HC3 und HC4, die nur die Diagonalelemente der Hutmatrix zur
Anpassung der Residuen verwenden, verbessern die Abdeckung bei kleinen Stichproben
beträchtlich gegenüber den Standardansätzen CR1 und bias-reduzierter Linearisierung.
Wir konzentrieren uns in unseren Simulationen speziell auf den bivariaten Fall, aber die
diskutierten Ansätze können auch allgemeiner angewendet werden.

In umfangreichen Simulationsstudien analysieren wir sowohl das Verhalten bei kleinen
als auch bei großen Stichproben für alle betrachteten Tests/Konfidenzbereiche. Darüber
hinaus wenden wir die diskutierten Ansätze in realen Datensätzen aus der psychome-
trischen und medizinischen Forschung an.
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Notation

Throughout the thesis, vectors and matrices are denoted by bold symbols, e.g.,M .

N Natural numbers

R Real numbers

1{·} Indicator function

M ′ The transpose of a matrix or (column) vectorM

M−1 The inverse of a square matrixM

M+ Moore-Penrose inverse

It t× t identity matrix, t ∈ N

1t t-dimensional column vector of 1’s , t ∈ N

diag(. . .) Diagonal matrix with the values . . . on the diagonal

⊕ Direct sum

tr() The trace of a square matrix

rank() The rank of a matrix

E() The expectation of a random variable

Var() Variance of a random variable
P→ Convergence in probability
d→ Convergence in distribution
a.s.→ Almost sure convergence
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Part I

Introduction
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1 Motivation

Meta-analysis is a widely used statistical technique for synthesizing the results of
multiple trials on the same or closely related research questions. Meta-analyses, like
systematic reviews and umbrella reviews belong to secondary research in the hierar-
chy of evidence (Fusar-Poli and Radua, 2018). Systematic reviews identify published
studies for a specific research question, discuss used methods, summarize results, high-
light key findings and cite limitations (Garg et al., 2008). When study findings are
pooled mathematically, we speak of meta-analysis. An umbrella review is a review of
systematic reviews or meta-analyses. This is in contrast to individual studies such as
randomized controlled trials or observational studies, which are part of primary research.
A visualization of the hierarchy of evidence is given in Figure 1.1.

Individual Studies

Systematic Reviews

Meta-Analyses

Umbrella
Reviews

Primary Research

Secondary Research

Figure 1.1: Hierarchy of Evidence Visualization.
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1 Motivation

As shown in Figure 1.21, which depicts the number of meta-analysis related publications
on PubMed, research volume has increased strongly over the last few decades. This
is indicative of the perceived high value of meta-analysis in the research community.
Despite meta-analyses being performed routinely, scientists commonly face challenges
in their data analyses including a small number of available studies, large variations in
study sizes or substantial heterogeneity. However, standard meta-analytic techniques
frequently assume normally distributed data, based on asymptotic arguments. Such
assumptions are often neither reasonable nor are their violations adequately addressed,
as recently pointed out by Jackson and White (2018), see also Pauly and Welz (2018).
Not being able to rely on asymptotic arguments is very common, as can be seen in
the empirical distribution of sample sizes of published meta-analyses. Davey et al.
(2011) showed in a descriptive analysis of 22 453 meta-analyses from the Cochrane
Database that the median number of trials per meta-analysis was only three. Evidently,
the development of reliable methods for small sample meta-analyses is obligatory.
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Year

C
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Figure 1.2: Meta-analysis related publications on PubMed between 1980 and 2020.

Such issues become even more pronounced in the multivariate setting, where normality
is an even stronger and questionable assumption than in the univariate case. However,
studies frequently report multiple effect sizes collected from overlapping patient groups.

1This figure was created based on a PubMed search for the term “meta-analysis” in December 2021.
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This results in dependencies in the underlying true effects. Such data should generally
be analyzed using a multivariate model, as a univariate analysis would lead to inefficient
estimates. The multivariate normality assumption is especially difficult to verify for
the model’s random effects, when many of the studies do not report all parameters of
interest, as pointed out by Jackson et al. (2011).

In both univariate or multivariate meta-analyses the trials may include study-level
covariates (also called moderators). This is the meta-regression setting. Such moderators,
for example a study’s publication year, can account for systematic differences between
trials and may therefore reduce the between-study heterogeneity in a given model. It is
also possible for meta-regression to incorporate multiple moderators per study, categorial
or continuous, as well as their interactions, see e.g. Knop et al. (2022). This makes
meta-regression very versatile. However, it comes with certain caveats and is sometimes
improperly used and interpreted in practice, as pointed out by Higgins and Thompson
(2004).

Therefore, it is important to understand where the breakdown points lie in routinely
applied methods. One way to check this is via Monte Carlo simulation studies. Fur-
thermore, we need the development of robust methods in order to improve statistical
inference when normality assumptions or asymptotic arguments do not hold. An obvious
example is meta-analysis based on a small number of studies, which occurs frequently
in practice (see above).

This thesis is organized as follows: Chapter 2 describes the underlying statistical models
and methods such as the robust sandwich estimators considered in our work. Chapter 3
provides a summary of the three research articles underlying this dissertation, followed
by Chapter 4, which contains a discussion of the results as well as an outlook for future
research. Finally, Part II contains the three manuscripts summarized in Chapter 3.

In order to further motivate the methods analyzed in this thesis, we give some real
data examples from different areas of application. The datasets can be found in the R
packages metafor and metadat.

Effectiveness of Azithromycin for treating lower respira-
tory tract infections
To demonstrate the importance of the choice of heteroscedasticity consistent estimators
for statistical inference in practice, we consider six studies with data on the effectiveness
of Azithromycin versus Amoxycillin or Amoxycillin/clavulanic acid (Amoxyclav) in the
the treatment of acute lower respiratory tract infections. Azithromycin is an antibiotic,
which is useful for the treatment of different bacterial infections (Foulds et al., 1990).
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1 Motivation

The data were previously analyzed in a meta-analysis by Laopaiboon et al. (2015).
We evaluate the question, whether a trial having included patients with a diagnosis of
pneumonia has a statistically significant effect on the effectiveness of Azithromycin
for patients with a diagnosis of acute bacterial bronchitis. Our analysis is based on a
mixed-effects meta-regression model, where the study level effects are log odds ratios.

Correlation between conscientiousness and medication ad-
herence
This dataset underlying a meta-analysis by Molloy et al. (2013) contains sixteen studies
reporting a correlation between conscientiousness (from the five-factor model of per-
sonality) and medication adherence. The authors report that overall a higher level of
conscientiousness is associated with better medication adherence. Using the various
methods for constructing confidence intervals of correlations in meta-analysis discussed
in our manuscript Welz et al. (2021), we construct confidence intervals for the main effect
in a random-effects meta-analysis. The data can be divided into two subgroups based
on trial design, namely cross-sectional or prospective. We consider these subgroups
individually as well as a summary effect for all studies.

Overall and disease-free survival in neuroblastoma pa-
tients
These 81 trials from Riley et al. (2003, 2007) examine overall and/or disease-free
survival in neuroblastoma patients with amplified (extra copies) versus normal MYC-
N genes. Neuroblastoma is an embryonal cancer of the autonomic nervous system
generally diagnosed in young children with a median age at diagnosis of 17 months
(Maris, 2010). Amplified MYC-N levels are associated with poorer outcomes. The
effect measures are log hazard ratios with positive values indicating an increased risk
of death or relapse/death for patients with higher MYC-N levels compared to patients
with lower levels. We evaluate model coefficients based on a bivariate meta-analysis,
applying cluster robust estimators.

10



2 Statistical Methods

2.1 The Model

The usual (univariate) mixed-effects meta-regression model, also called random-effects
model, is given by

yi = β0 + β1xi1 + . . .+ βmxim + ui + εi, i = 1, . . . , K, (2.1)

where xij denotes the jth moderator variable in the ith study, βj is the corresponding
model coefficient and K the number of independent studies. Consider for example
the dataset from Laopaiboon et al. (2015) contained in the R package metafor. In
this case the y′is are log odds ratios, m = 1 and xi1 is a binary covariate that is equal
to one if study i included patients with a diagnosis of pneumonia and zero otherwise.
Generally, we assume the number of studies is greater than the number of study-level
moderators, i.e. K > m, and the model errors εi and random effects ui are assumed to
be independent. The within-study error εi is usually assumed to have distribution εi ∼
N (0, σ2

i ). Furthermore, the within-study sampling variances σ2
i are typically assumed

to be known, although actually estimated from the data. Additionally, ui is a random
effect that is also typically assumed to be normally distributed with ui ∼ N (0, τ 2).
Together this yields what is also known as a normal-normal hierarchical model (NNHM)
(Friede et al., 2017). However, in our first manuscript we also consider the more general
semiparametric setting with the moment assumptions E(ui) = 0 and Var(ui) = τ 2

without other distributional restrictions. Setting τ 2 := 0 yields the fixed-effect model
(also known as common-effect model) as a special case of the random-effects model.
The moderators xij are study level covariates, which are supposed to reflect systematic
differences between studies that are related to the effect size. These moderators are
supposed to account for part of the heterogeneity in effect sizes, which is typically greater
than what would be expected based on the sampling variability alone (Viechtbauer et al.,
2015).

In the absence of moderators (xij ≡ 0, i = 1, . . . , K, j = 1, . . . ,m), we are in the
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2 Statistical Methods

classical meta-analysis setting, where a synthesized effect can be obtained via

β̂0 =

∑K
i=1 ŵiyi∑K
i=1 ŵi

,

with ŵi representing study weights. These are usually defined as inverse variance weights
with ŵi = (τ̂ 2 + σ2

i )
−1, where τ̂ 2 is some estimate of the heterogeneity variance τ 2.

Random-effects models give larger weights to smaller studies, compared with fixed-
effect models. This can easily be verified if we consider two hypothetical studies 1 and
2 with σ2

2 > σ2
1 , i.e. study 1 is larger than study 2. Let ŵ1F , ŵ2F define the inverse

variance fixed-effect weights and ŵ1R, ŵ2R the inverse variance random-effects weights
respectively. Then it holds

ŵ1F/ŵ2F = σ2
2/σ

2
1 ≥ (τ̂ 2 + σ2

2)/(τ̂ 2 + σ2
1) = ŵ1R/ŵ2R.

This has led some authors to argue against the use of random-effects models (Greenland,
1994), as smaller studies are more susceptible to bias. Nevertheless, random-effects
models are more flexible and offer another distinction versus fixed-effect models. Fixed-
effect models only allow for conditional inference (on the studies at hand), whereas
random-effects models allow for unconditional inference (Hedges and Vevea, 1998).
This means they allow for a generalization beyond the studies being meta-analyzed,
assuming that they are a random sample from a greater, more general population of
studies. The choice of model will depend on the goals of the analysis. In any case, in
this thesis we will focus on the more flexible random-effects models, as study effect
estimates are typically more variable than is assumed in fixed-effect models.

There are many suggestions for the estimation of the heterogeneity variance τ 2. Arguably
the most well known is the method of moments estimator introduced by DerSimonian-
Laird (DL) (DerSimonian and Laird, 1986). Although simple to calculate, the DL
estimator is biased due to truncation at 0. Even though it is often used in applications,
several authors have argued against the use of this estimator (Veroniki et al., 2016).
Maximum likelihood (ML) estimation is also possible, but because ML estimation of
variance components is usually negatively biased (Harville, 1977), the restricted maxi-
mum likelihood (REML) estimator is a better option (Raudenbush, 2009). Furthermore,
there are the closely related (Viechtbauer et al., 2015) moment-based Paule-Mandel (PM)
and the empirical Bayes estimator (Morris, 1983). Many comparative simulation studies
have been undertaken to determine the best choice. A summary of this research can be
found in Veroniki et al. (2016), who generally recommend the PM and for continuous
data the REML estimator. In our work we follow their recommendation and use REML
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2.2 Hypotheses for Model Coefficients

estimation, as we mostly focus on continuous data.

In certain applications it is useful to consider multiple effects per study in a multivariate
model. The multivariate mixed-effects model is given by

yi = Xiβ + ui + εi, i = 1, . . . , K (2.2)

where the usual assumptions are ui ∼ N (0,T ) and εi ∼ N (0,Vi) with ui, εi inde-
pendent. Assuming p effects per study and that all studies report all effects of interest,
we have yi, ui, εi ∈ Rp, and T, Vi ∈ Rp×p, i = 1, . . . , K. Furthermore, for design
matrix and coefficient vectorXi ∈ Rp×q, β ∈ Rq for a q ∈ N. In the bivariate setting,
as considered in the third manuscript of this thesis, we have

T =

(
τ 2

1 ρτ1τ2

ρτ1τ2 τ 2
2

)
and Vi =

(
σ2
i1 σi12

σi12 σ2
i2

)
.

Studies often do not report the sample covariances σi12 between effects. This can be
seen in the dataset on disease-free and overall survival in patients with neuroblastoma
from Riley et al. (2007) and also in a dataset on the effects of deep-brain stimulation
on the motor skills of patients with Parkinson’s disease from Ishak et al. (2007). The
latter is not analyzed in this thesis. Missing sample covariances frequently make the
construction of the within-study variance-covariance matrices Vi difficult in practice.

2.2 Hypotheses for Model Coefficients

In matrix notation Models (2.1) and (2.2) can be written as y = Xβ + u + ε. The
weighted least squares estimate for β is given by

β̂ = (X ′ŴX)−1X ′Ŵy, (2.3)

where the weight matrix Ŵ is again defined via inverse variances. For Model (2.1)
these are given by Ŵ = diag ((τ̂ 2 + σ2

1)−1, . . . , (τ̂ 2 + σ2
K)−1). We denote the variance-

covariance matrix of β̂ by Σ = Cov(β̂). Hedges et al. (2010) show that, given regularity
conditions, β̂ a.s.→ β as K →∞ and β̂ asymptotically follows a normal distribution.

In this set-up, we are interested in constructing valid confidence regions for β or
components thereof. Furthermore, we may want to test hypotheses H0 : β = β0 vs.
H1 : β 6= β0 or more generally H0 : Hβ = c vs. H1 : Hβ 6= c for some hypothesis
matrix H ∈ Ra×(m+1), vector c ∈ Ra and a ∈ N. In the special case c = 0 we can
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2 Statistical Methods

define a unique projection matrix with P := H ′(HH ′)+H , where H+ denotes the
Moore-Penrose inverse ofH . The matrix P is symmetric and idempotent. It then holds
that Pβ = 0 if and only if Hβ = 0 (Brunner and Puri, 2001). For tests regarding

single model coefficients βj , we can consider test statistics of t-type tj = β̂j/

√
Σ̂jj , see

Welz and Pauly (2020). For more general hypotheses as listed above, we base inference
on Wald-type statistics (WTS)

QH = (Hβ̂ − c)′(HΣ̂H ′)−1(Hβ̂ − c), (2.4)

where we generally assume that Σ̂ is positive definite, cf. the third manuscript. Alterna-
tively one might consider ANOVA-type statistics (ATS) or even modified ATS (MATS)
as in Brunner et al. (2017) or Friedrich and Pauly (2018).

In any case we require a reliable, consistent estimator for the variance-covariance matrix
Σ = Cov(β̂), ideally with good small sample properties. This leads us to the next
section on sandwich estimators.

2.3 Sandwich Estimators

In order to construct valid confidence regions and tests regarding the vector of model
coefficientsβ, we require a reliable, consistent estimator for Σ. Given the true (unknown)
weights W, the variance-covariance matrix of β̂ is given by (X ′WX)−1. A standard
approach is therefore to calculate the plug-in estimate (X ′ŴX)−1 of Σ based on
the estimated weights Ŵ . In the case of univariate random effects meta-analysis this

estimator reduces to
(∑K

i=1 ŵi

)−1

, as shown in the technical appendix of the supplement
to Welz and Pauly (2020).

A naive test for individual components βj of β for a fixed j can then be obtained via

comparison of the test statistic tj = βj/

√
Σ̂jj with a standard normal quantile, where

Σ̂jj is the jth diagonal element of Σ̂. However, this approach ignores the imprecision
in estimating τ . So when the estimate of the heterogeneity τ 2 is poor and therefore the
weights incorrect, these tests can have undesirable properties, such as an inflated Type I
error rate, especially in small samples (Knapp and Hartung, 2003). Knapp and Hartung,
as well as Sidik and Jonkman (2002), proposed to use a refined variance estimator for
the main effect instead of the standard plug-in estimate. If θ̂ is the main effect estimate
of a random effects meta-analysis and θ̂i is the effect estimate in study i, Knapp and
Hartung (2003) suggest to use
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V̂arKH(θ̂) =
1

K − 1

K∑

i=1

ŵi
w

(θ̂i − θ̂)2 (2.5)

with weights ŵi = (σ2
i + τ̂ 2)−1 and w =

∑K
i=1 ŵi. Hartung (1999) showed that, given

normally distributed study effects θ̂i, (θ̂ − θ)/
√

V̂arKH(θ̂) follows a t-distribution with
K − 1 degrees of freedom, K being the number of studies. This approach has been
suggested over a standard test, based on a plug-in estimate for Σ (see the opening

remarks of Section 2.3) i.e. the comparison of the statistic (θ̂ − θ)/
√(∑K

i=1 ŵi
)−1

with the standard normal quantile z1−α/2, by multiple authors (Viechtbauer et al., 2015;
IntHout et al., 2014). The KH approach was mostly successful in controlling the nominal
significance level in our own work on univariate meta-regression (Welz and Pauly, 2020).

Our research indicates that it is generally preferable to use tK−1 quantiles instead of
standard normal quantiles for constructing valid confidence intervals and tests. In the
multivariate setting it may also be difficult to construct the sampling variance-covariance
matrices Vi because no estimates of covariances between effects are available. Further-
more, there can be various kinds of model misspecification, such as heteroscedastic or
auto-correlated errors. Using so called sandwich estimators, also known as Huber-White
estimators, in combination with tK−1 quantiles, when constructing CIs for individual
components of β, is a possible remedy. They are defined as

Σ̂ = (X ′ŴX)−1X ′Ŵ Ω̂ŴX(X ′ŴX)−1, (2.6)

with Ω = Cov(y). The idea is to crudely estimate Ω using the squared residuals. Never-
theless, certain estimators of this type are consistent as K →∞ under heteroscedasticity
of unknown form (White, 1980; Cribari-Neto, 2004), hence they are also referred to as
HC estimators. We introduce these estimators in the following. The original formulation
sets the “meat” of the sandwich to Ω̂ = diag(Ê)2 with Ê = y −Xβ̂ (White, 1980).
However, this estimator, sometimes called HC0, is known to yield inflated Type I errors
due to a negative bias for variance components (Sidik and Jonkman, 2005a). Therefore,
when testing multiple improvements have been put forth, such as multiplication by the
constant K

K−m−1
(Hedges et al., 2010), called HC1, or a direct transformation of the

residuals by discounting according to the observations’ leverages. The leverage of a
data point is a measure of its distance from other observations and therefore indicates
whether an observation could potentially be highly influential with regard to param-
eter estimations. The leverage of the ith observation corresponds to the ith diagonal
element hii of the hat matrix H = X(X ′ŴX)−1X ′Ŵ . Various suggestions have
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been developed for incorporating the observations’ leverages (Cribari-Neto and Zarkos,
2004; Cribari-Neto et al., 2007). These estimators were first proposed for the special
case of ordinary least squares (OLS) regression, which corresponds to a weight matrix
W = I . A weighted least squares version was introduced to the meta-analytic context
by Sidik and Jonkman (2005b). For meta-analysis and meta-regression, we are in this
more general weighted least squares context.

Commonly suggested in the regression literature are HC3 (Long and Ervin, 2000) and
HC4 (Cribari-Neto and Zarkos, 2004), due to reduced bias and better control of the Type
I error compared with alternative HC estimators. HC3 sets

Ω̂ = diag
(
Ê2

1/(1− h11)2, . . . , Ê2
K/(1− hKK)2

)

and closely approximates the leave-one-out Jackknife estimator for β, as introduced
by Efron (1982). The HC3 estimator discounts the effect of the leverages more than
HC2, which defines Ω̂ = diag

(
Ê2

1/(1− h11), . . . , Ê2
K/(1− hKK)

)
. The latter is rarely

recommended becauseHC3 typically has better small sample behavior (Cribari-Neto and
Zarkos, 2004). HC4 sets Ω̂ = diag

(
Ê2

1/(1− h11)δ1 , . . . , Ê2
K/(1− hKK)δK

)
, where

δi = min{4, hii/h̄}, i = 1, . . . , K, and h̄ is the sample mean of the diagonal values of
H . The discounting is truncated at 4, which corresponds to twice as much discounting
as for the HC3 estimator (Cribari-Neto and Zarkos, 2004). Finally, there is also HC5,
which is similar to HC4 but additionally incorporates a tuning parameter and explicity
takes into account the effect of the maximal leverage (Cribari-Neto et al., 2007).

If studies report multiple effects of interest that are based on overlapping patient groups,
the study effects will be correlated. This is the setting of multivariate meta-analysis or
meta-regression as in Model (2.2). However, information on the correlation structure
between these effects is rarely reported and individual patient data (IPD) unlikely to be
available. This results in very crude estimates of the within-study covariance structure
Vi, at best. The estimator β̂ should still be approximately unbiased, but the standard
errors are likely to be incorrect (Hedges et al., 2010), resulting in invalid inference.
A proposed solution, which does not require the full availability of the within-study
covariance structure, is to use a cluster-robust (CR) estimation approach. These are
sandwich estimators, similar to before, except that now we set

Σ̂ = (X ′ŴX)−1

(
K∑

j=1

X ′jŴjΩ̂jŴjXj

)
(X ′ŴX)−1, (2.7)
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with Ω̂j = AjÊjÊ
′
jA′j , where Aj are some adjustment matrices andXj, Êj, Ŵj refer

to the rows and columns of X, Ê, Ŵ pertaining to study j. For the original CR0

estimator these adjustment matrices are set equal to identity matrices I and CR1 can be
defined analogously to HC1 above, although alternative correction factors are possible,
as implemented in the clubSandwich R package (Pustejovsky, 2021). However, it
has been shown that tests based on CR1 estimators still possess inflated Type I errors
for small to moderate numbers of studies (Hedges et al., 2010). Tipton and Pustejovsky
(2015) proposed a cluster robust estimation approach we call CR2, extending work
by Bell and McCaffrey (2002). Also called bias reduced linearization approach, it is
based on a working model for the variance-covariance matrix Σ. It is designed to be
exactly unbiased given that the working model is correct, i.e. W = Σ−1. Simulations
have been undertaken to assess the decline in performance, when the working model
is in fact wrong, as is likely to be the case in practice (Tipton and Pustejovsky, 2015;
Tipton, 2015). Results indicate that CR2 is not very sensitive to mistakes in the working
model. However, in our third manuscript we demonstrate that CR2 can perform poorly
in bivariate meta-regression, especially when synthesizing few studies. Finally, Bell
and McCaffrey (2002) also introduced CR3 as a cluster-robust extension to HC3. In

equation (2.7) they set Aj =
√

K−1
K

(Ij −Hj)
−1, corresponding to the leave-one-out

Jackknife variance estimate of β̂.

In the third manuscript of this thesis we consider an adjustment to CR3 for bivariate
meta-regression that incorporates only the diagonal elements ofH . This is due to the
natural interpretation of diagonal elements ofH as leverage of data points, whereas the
off-diagonal elements ofH lack an obvious interpretation. We call our estimator Σ̂CR∗

3
,

which has the form (2.7) with

Ω̂j = ÊjÊ
′
j −∆ + ∆ · (Ipj − diag(Hj))

−2, (2.8)

where Hj refers to the submatrix of H with entries pertaining to study j, pj is the
number of observed effects in study j and ∆ = diag(e11, . . . , epjpj) with eii the diagonal
elements of ÊjÊ

′
j for i = 1, . . . , pj . Additionally, we consider a cluster-robust extension

to HC4 for the bivariate setting, which we denote by Σ̂CR∗
4
. This time we set Ω̂j

equal to (2.8) except the diagonal ∆ is multiplied with (Ipj − diag(Hj))
−δj . Here

δj = min{4, hjj/h̄} with hjj denoting the j-th diagonal element of H and h̄ is the
average of the diagonal values of the hat matrixHj .

We apply the discussed HC and CR estimators, as well as the standard and KH ap-
proaches, in univariate (Welz and Pauly, 2020) and multivariate (Welz et al., 2022)
meta-regression models. We perform extensive simulation studies to assess perfor-
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mance in both small and large samples as well as evaluations of illustrative datasets.
Additionally we consider these methods in random-effects meta-analyses of correlation
coefficients (Welz et al., 2021). Some mathematical background for the latter is provided
in the next section.

2.4 Meta-Analysis of Correlation Coefficients

The sample correlation coefficient r, based on n observations (xi, yi), i = 1, . . . , n,

corresponding to a pair of random variables (X, Y ) is given by

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
. (2.9)

Also known as the Pearson correlation coefficient, or product moment correlation
(Schulze, 2004), r is a measure of the linear dependence between two variables. Although
we focus on Pearson correlations in the following, we note that due to susceptibility to
outliers, more robust, rank-based alternatives such as the Spearman correlation coefficient
(Myers and Sirois, 2004) and Kendall’s tau (Kendall, 1938) have been proposed.

Special care must be taken when correlations are the study effects of interest in a meta-
analysis, since it holds r ∈ [−1, 1] and a normal approximation as in the NNHM is
difficult to justify. The exact, involved probability density function of the distribution of
r was derived in an article by Hotelling (1953). However, working with the exact distri-
bution of r is unfeasible. Assuming bivariate normality of (X, Y ), r is approximately
N (%, (1−%2)2/n) distributed for large samples n, where % is the true correlation between
X and Y (Lehmann, 1999). However, the corresponding asymptotic confidence interval
for % has poor coverage when the underlying data are non-normal, as demonstrated in
Welz et al. (2021).

A popular approach is to apply the variance stabilizing Fisher-z transformation (Fisher,
1921) to the correlation coefficients to be synthesized. This transformation is equal to
the inverse hyperbolic tangent and is given by atanh : (−1, 1)→ R, r 7→ atanh(r) =
1
2

ln
(

1+r
1−r
)
. Its inverse is given by the hyperbolic tangent with tanh : R→ (−1, 1), z 7→

tanh(z) = exp(2z)−1
exp(2z)+1

. The main advantages of Fisher-z transformed correlations is
that they are approximately normally distributed and the transformation is variance
stabilizing, since it holds for z = atanh(r) that Var(z) ≈ 1

n−3
(Schulze, 2004). The

usual methodology for random-effects models can then be used to construct a confidence
interval for the main effect on the z-scale. The final step is to then back-transform this
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2.4 Meta-Analysis of Correlation Coefficients

confidence interval using the tanh function. This is the idea of the Hedges-Olkin-Vevea-
z (HOVz) approach (Hafdahl and Williams, 2009; Hedges and Vevea, 1998). Given
study effects ri, i = 1, . . . , K, and their respective Fisher-z transforms zi, i = 1, . . . , K,
the resulting confidence interval is given by

tanh

(
z̄ ± u1−α/2/

( K∑

i=1

ŵi

)1/2
)
, (2.10)

with ŵi = (1/(ni − 3) + τ̂ 2)
−1, u1−α/2 referring to the (1− α/2)-quantile of the stan-

dard normal distribution and z̄ = (
∑K

i=1 ŵizi)/(
∑K

i=1 ŵi). This approach, although
commonly used, has some drawbacks. We highlight these shortcomings and propose
improvements in the second article of this dissertation (Welz et al., 2021). A more
in-depth discussion of this approach can be found in Hafdahl and Williams (2009).

An alternative is to aggregate correlations with the Hunter-Schmidt (HS) approach,
which utilizes sample size weighting:

rHS =

∑K
i=1 niri∑K
i=1 ni

.

Multiple approaches have been proposed for estimating the sampling variance σ2
HS of

rHS , summarized in Schulze (2004). We highlight a suggestion by Osburn and Callender
(1992),

σ̂2
HS =

1

K

(∑K
i=1 ni(ri − rHS)2

∑K
i=1 ni

)
,

which is said to perform reasonably well in both heterogeneous and homogeneous
settings (Schulze, 2004). In the second manuscript we test the validity of the resulting CI
for a main effect (rHS ± u1−α/2σ̂HS) as a competing approach to the Fisher-z-based CIs.
Use of a standard normal quantile in the Hunter-Schmidt CI is based on recommendations
by Hunter and Schmidt (2004).
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3.1 Article 1: ‘A simulation study to compare robust
tests for linear mixed-effects meta-regression’
(RSM, 2020)

We consider the classical mixed-effects meta-regression model described in Section 2.1.
In order to obtain valid tests regarding components of the vector of model coefficients

β̂ = (X ′ŴX)−1X ′Ŵy,

we require consistent and efficient estimators for Cov(β̂). Specifically, we wish to test the
null hypothesis of no moderator effect, given by H0 : {βj = 0}, for j = 1, . . . ,m. We
turn to the for regression often fruitful approach of robust estimators. More specifically,
we consider heteroscedasticity consistent (HC) covariance estimators, also called Huber-
White or sandwich estimators. These sandwich estimators are all of the general form

Σ̂ = (X ′ŴX)−1X ′Ŵ Ω̂ŴX(X ′ŴX)−1.

We introduce and compare a wide range of HC estimators, namely HC0-HC5. We
study their performance in an extensive simulation study, where we focus on Type I error
and power of statistical tests regarding β̂, based on these estimators. We compare these
approaches with the Knapp-Hartung (KH) approach (Hartung and Knapp, 2001), which
was also proposed by Sidik and Jonkman (2002). In our simulation study, we focus on
standardized mean differences as effect sizes. We also consider log odds ratios, with
similar results. We simulate a wide range of parameter choices, considering 5, 10, 20
and 40 studies, an average of 30, 50 and 100 study participants with unequal study sizes
and balanced treatment and control groups as well as varying amounts of heterogeneity
τ 2 between 0.1 and 0.9, i.e. little to substantial heterogeneity. The single moderator
was drawn from a N (0, 1) distribution. We performed a total of 1 000 simulation runs,
corresponding to a Monte Carlo standard error of approximately 0.689% (Morris et al.,
2019).
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The results regarding Type I error indicate that changes in the between-study hetero-
geneity τ 2, the number of subject per study and underlying distributions of the random
effects had little effect on the behavior of the procedures under the null hypothesis. In
contrast, the number of studies K and the chosen test procedure were the main deciding
factors for changes in Type I error control. Tests based on HC0-HC2 were quite liberal,
especially for a maximum of 10 studies. The other estimators controlled the nominal
level α well, except for HC3 with only five studies, which was quite conservative.

When considering power, we observed that power increased for decreasing amounts of
heterogeneity τ 2, increasing number of studies K as well as increasing (average) study
size n. On average the KH approach yielded slightly more power than HC3-HC5 for up
to 10 studies, with approximately equal power for more studies.

We also consider the (empirical) bias E[β̂1] − β1 and variance Var(β̂1) = Σ11. The
simulation results indicate that the estimator β̂1 is approximately unbiased for β1 = 0

and becomes increasingly negatively biased for larger effect sizes β1. Moreover, the
variance increases with newer versions of the HC estimator. The KH method has a
smaller variance than the newer iterations HC3-HC5.

We motivate the methods with a data analysis from medical research that also illustrates
the practical importance of the choice of covariance estimator. The data contains six
studies, which investigate the effectiveness of Azithromycin versus Amoxycillin or
Amoxyclav in the treatment of acute lower respiratory tract infections. The results show
that p-values of tests regarding the model coefficients can vary considerably depending
on the choice of HC estimator.

In the accompanying supplement we also provide a proof for the asymptotic equivalence
(for K →∞) of all considered HC estimators, given mild regularity conditions on the
moderators, as well as the complete simulation results. Additionally, we derive a general
formula for HC-type estimators in the case of no moderators (i.e. meta-analysis).

To sum up, we propose the use of updated versions of robust HC-type estimators. We
compare these in an extensive simulation study with the older HC1 estimator considered
by Viechtbauer et al. (2015) and the Knapp-Hartung method. In the supplement we
prove the asymptotic equivalence of all HC estimators and derive their form analytically
for the case of no moderators (meta-analysis instead of meta-regression). Finally, we
exemplify the different methods and demonstrate the large influence the choice of
estimator can have in practice with a meta-analysis of six studies from medical research,
which considers treatments for acute lower respiratory tract infections.
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3.2 Article 2: ‘Fisher transformation based
confidence intervals of correlations in fixed- and
random-effects meta-analysis’ (BJMSP, 2021)

Pearson correlation coefficients are a common statistical instrument for quantifying
strengths of association. They frequently occur in psychometric research. When multi-
ple studies are available for comparable underlying participant groups, meta-analytic
techniques enable the pooling of evidence and improve precision and stability of es-
timates (Hedges and Olkin, 1985). A standard approach for constructing confidence
intervals for Pearson correlations as effects of a meta-analysis is the HOVz approach
(Hafdahl and Williams, 2009). The idea is to first transform correlations using the
Fisher-z transformation, then construct confidence intervals (CIs) on the z-scale and
finally to backtransform CIs with the inverse Fisher-z transformation. Results from
simulations, however, indicate that in random-effects models the performance of the
HOVz confidence interval can be unsatisfactory, regarding control of the nominal level
(Hafdahl and Williams, 2009).

We propose multiple improvements to the HOVz approach. Our improvements are based
on alternative variance estimates of the pooled effect estimate

z̄ =

∑K
i=1

(
1

ni−3
+ τ̂ 2

)−1

zi

∑K
i=1

(
1

ni−3
+ τ̂ 2

)−1 ,

where zi = atanh(ri), ni refers to the size of study i and ri is the estimated correlation
coefficient (effect) in stduy i. Specifically, we propose using either the KH approach, a
robust estimator of HC-type, as considered in Article 1 of this thesis, or a wild bootstrap
(Wu, 1986) approach to estimate the variance of z̄. We compare these approaches with
the Hunter-Schmidt (HS) method, which proposes sample size weighting.

Additionally, we propose using the integral z-to-r transformation, as suggested by
Hafdahl (2009), instead of the inverse Fisher transformation tanh as in HOVz for the
construction of CIs. The motivation behind is that for ξ ∼ N (atanh(%), σ2) for some
σ2 > 0 and % 6= 0 it holds that % = tanh(E(ξ)) 6= E(tanh(ξ)). Therefore using the
inverse Fisher transformation tanh introduces bias into the analysis. The integral z-to-
r transformation, which aims to alleviate this bias, is equal to the expected value of
tanh(z), so if z ∼ N (µ, τ 2), it is defined as
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ψ(µ | τ 2) =

∫ ∞

−∞
tanh(t)f(t | µ, τ 2)dt,

where f is the density of z. This transformation is used in practice by applying it to the
lower and upper confidence limits on the z-scale, plugging in estimates ẑ and τ̂ 2.

We compare the mentioned approaches in an extensive Monte Carlo simulation study,
focusing on coverage and interval lengths. Notably, we consider two main simulation
designs. First, a truncated normal distribution model, where the true study level effects
%i were sampled from normal distributions N (%, τ 2) truncated so the samples lie within
the interval [−0.999, 0.999], as in Hafdahl and Williams (2009). This truncation results
in bias. Therefore we also consider a second model, where we generate (true) study level
effects %i from transformed beta distributions. The idea is to set Yi = 2(Xi − 0.5) with
Xi ∼ Beta(α, β) with α and β chosen such that E(Yi) = % and Var(Yi) = τ 2.

We simulate a variety of parameter choices such as % between 0 and 0.9, τ ∈ {0, 0.16, 0.4},
K ∈ {5, 10, 20, 40} and (average) trial sizes of 20 and 80 with 10 000 simulation runs
respectively, corresponding to a Monte Carlo standard error of approximately 0.218%

(Morris et al., 2019). The results and thus recommended methods depend on the assumed
model and the amount of heterogeneity present in the data. In general, we believe that the
beta distribution model is better suited for random-effects meta-analysis of correlations.
For most settings we recommend using either the KH, HC3 or HC4 confidence intervals.
The wild bootstrap (WBS) CIs have comparable coverage but are wider on average. HS
and HOVz mostly have unsatisfactory coverage and therefore cannot be recommended.
An exception is for the underlying beta distribution model with K ≥ 40 studies and
|%| > 0.7, where we recommend using the HS approach.

Finally, we exemplify the methods in an illustrative meta-analysis of 16 trials from Mol-
loy et al. (2013) on the correlation between medication adherence and conscientiousness
(from the five-factor model of personality). The results indicate a small positive (statisti-
cally significant) correlation, 0.13 based on a fixed-effect and 0.15 for a random-effects
model.

In summary, we proposed new methods for the construction of confidence intervals for
Pearson correlation coefficients as the main effect in a random-effects meta-analysis.
Specifically, these were based on robust estimators of HC type as well as a wild bootstrap
approach. Additionally, we consider Knapp-Hartung based variance estimation in this
context. We recommend using these estimators in combination with the integral z-to-r
transformation. We compare our novel methods with the HOVz and HS approaches in an
extensive simulation study with focus on empirical coverage and interval lengths. Based
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on these extensive simulations we were able to derive recommendations for applied
researchers. Finally, we exemplify all methods in a real life dataset from psychometric
research, considering the correlation between medication adherence and the personality
trait conscientiousness.
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3.3 Article 3: ‘Cluster-robust estimators for bivariate
mixed-effects meta-regression’ (arXiv, 2022)

Trials frequently report multiple effect sizes that are based on (at least in part) overlapping
patient groups. This results in correlated observations and these dependencies should be
taken into account. When formulating a multivariate statistical meta-analysis or meta-
regression model in practice, it can be difficult to adequately construct the within-study
sampling variance-covariance matrix V . Even if V is specified incorrectly, estimates of
the fixed effects are still approximately unbiased, but with incorrect standard errors. In
the setting of the multivariate meta-regression model described in Section 2.1, we follow
a fruitful approach to deal with such inefficient estimates by using cluster-robust (CR)
covariance estimators.

The general sandwich form of CR estimators is

Σ̂CR = (X ′ŴX)−1

(
K∑

i=1

X ′iŴiΩ̂iŴiXi

)
(X ′ŴX)−1,

where Ω̂i = EiE
′
i withEi = Yi −Xiβ̂. Since this estimator is known to be downward

biased (Hedges et al., 2010), it needs to be adjusted. Previous suggestions are multipli-
cation with a constant such as K

K−q or transforming the residuals themselves by setting

Ω̂i = AiEiE
′
iA
′
i for adjustment matrices Ai for i = 1, . . . , K (Hedges et al., 2010;

Tipton, 2015). Tipton and Pustejovsky (2015) developed a bias reduced linearization
approach, which is designed to be exactly unbiased under the correct specification of
a working model. It is implemented in the clubSandwich R package (Pustejovsky,
2021). However, this estimator can perform poorly in certain settings, such as bivariate
meta-regression with few studies, as we demonstrate in simulations.

In this paper, we present two new CR estimators, which are extensions of the estimators
HC3 and HC4. We investigated the latter in the univariate meta-regression setting
in Welz and Pauly (2020) and applied them to improve confidence regions for meta-
analyzed correlation coefficients in Welz et al. (2021). The main idea is to transform the
residual variances, i.e. the diagonal elements of Ω̂i using (only!) the diagonal elements
of the hat matrix. This is in contrast to the CR3 estimator as suggested by Bell and
McCaffrey (2002), which utilizes the entire hat matrix.

In order to obtain valid tests and confidence regions for β ∈ Rq, Tipton and Pustejovsky
(2015) proposed a small sample adjustment. Their idea for testing H0 : β = β0 vs
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H1 : β 6= β0 at level α is to consider the WTS Q = (β̂ − β0)
′Σ̂−1(β̂ − β0) and

based on this the Hotelling’s T 2 test 1{Q > ηq
η−q+1

Fq,η−q+1,1−α}. In the latter term η

denotes a degree of freedom that needs to be estimated. Tipton and Pustejovsky (2015)
suggest to use an estimator (η̂Z) originally proposed by Zhang (2012) for heteroscedastic
one-way MANOVA. However, we found that for a small number of studies (K ≤ 5)
it often happens that η̂Z − q + 1 < 0. As the degrees of freedom in an F distribution
cannot be negative, we follow an alternative approach. Our proposal is to use an F -test
with a degree of freedom adjustment, given by

1{Q > qFq,max{2,K−q},1−α}. (3.1)

We obtain the corresponding confidence region Λ via test inversion with

Λ :=
{
β ∈ Rq : (β̂ − β)′Σ̂−1(β̂ − β) ≤ qFq,max{2,K−q},1−α

}
.

Following Johnson et al. (2014), we obtain a confidence ellipsoid centered around β̂,

whose axes are given by β̂ ±
√
λ̂jqFq,max{2,K−q},1−αêj, j = 1, . . . , q where λ̂j and êj

are the eigenvalues and eigenvectors of Σ̂ respectively. The volume of the confidence
ellipsoid Λ is given by (Wilson, 2010)

VΛ =
2πq/2

qΓ(q/2)

q∏

i=1

√
λ̂iqFq,max{2,K−q},1−α. (3.2)

We compare the approaches in a simulation study, examining the coverage of confidence
regions Λ and power of the test (3.1) for bivariate meta-regression with a single modera-
tor, drawn from a N (0, 1) distribution. We consider K ∈ {5, 10, 20, 40} studies, aver-
age study sizes of 40 and 100, coefficient vectors β ∈ {(0, 0, 0, 0)′, (0.2, 0.2, 0.1, 0.1)′,

(0.4, 0.4, 0.2, 0.3)′}, correlations (between effects) % ∈ {0, 0.3, 0.7} and between 0 and
40% of studies that only report one of the two effects. We performed a total of 5 000
Monte Carlo iterations. This corresponds to a Monte Carlo standard error for the empiri-
cal coverage of approximately 0.308% (Morris et al., 2019). Additionally, we apply the
methods in a real life dataset containing studies on overall and/or disease-free surival
in neuroblastoma patients with amplified versus normal MYC-N genes. The data are
contained in the R package metafor and stem from Riley et al. (2003, 2007).

The results indicate that for bivariate meta-regression andK ≤ 10 studies, CR∗3 andCR∗4
provide the closest to nominal coverage. CR∗3 performed just very slightly better than
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CR∗4. For K ≥ 20 studies the standard estimator (X ′ŴX)−1 yielded most accurate
coverage. Both CR∗1 and CR2 were highly liberal, even for larger number of studies. In
general the smaller the number of studies, the more pronounced the difference between
the estimators become.

To sum up, we introduced two novel CR estimators for multivariate meta-regression,
utilizing only the diagonal elements of the hat matrix. We examine the performance
of tests and confidence regions based on these estimators for bivariate meta-regression,
comparing them with state-of-the-art methods such as the bias reduced linearization
approach. In extensive simulations, we show improvements in coverage of the respective
confidence regions, especially for few studies. Furthermore, we analyzed a real life
dataset on overall and disease-free survival in neuroblastoma patients. In this paper
we focus on the bivariate setting. However, the discussed methods are applicable
more generally. Further research is necessary to evaluate the viability of our proposed
estimators in general multivariate settings.
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4 Discussion

In this thesis, we considered various sandwich estimators in order to improve small
sample performance of corresponding tests and confidence regions and thus to allow
for valid inference in meta-analytic models. Starting with univariate meta-analysis and
meta-regression, we also extended the results to the multivariate setting.

We were able to improve the small sample behavior of tests and confidence regions
regarding the model coefficients over previously suggested HC estimators in univariate
mixed effects meta-regression with a single moderator (Welz and Pauly, 2020). Here we
achieved comparable results with the Knapp-Hartung method. We proved the asymptotic
equivalence of all HC estimators, given regularity conditions, and derived their analytic
form for the special case of no moderators (meta-analysis). Simulations suggest that
the results can seemingly be transferred to semi-parametric models, as performance
remained stable in settings with non-normal random effects.

For random effects meta-analysis of (Pearson) correlation coefficients (Welz et al.,
2021) we applied variance estimation methods discussed in Welz and Pauly (2020)
in combination with the Fisher transformation and an integral z-to-r transformation
suggested by Hafdahl (2009). We used these methods to construct novel confidence
intervals for the main effect ρ, considerably improving coverage over state-of-the-art
approaches such as the one by Hedges, Olkin and Vevea (Hedges and Olkin, 1985;
Hedges and Vevea, 1998). As part of our simulation study, we develop an arguably
more appropriate simulation model than the truncated normal distribution model used
in previous work (Field, 2005; Hafdahl and Williams, 2009), using transformed beta
distributions to generate study effect sizes. Our proposed approaches reduce bias,
allowing for valid inference for larger correlations |%|, as compared with state-of-the-art
methods. However, there is still room for improvement to even further reduce bias, which
remains an issue for large |%|, especially when dealing with considerable heterogeneity.

Finally, we extended our research results on heteroscedasticity consistent estimators for
univariate meta-regression to cluster robust estimators for multivariate meta-regression.
Inference regarding model coefficients is made using Wald-type statistics. We made
two novel proposals for CR estimators. Furthermore, our simulations showed that the
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4 Discussion

approximate Hotelling’s T 2 test proposed in Tipton and Pustejovsky (2015) frequently
breaks down forK ≤ 5 studies. Also, coverage based on the state-of-the-art bias reduced
linearization approach can be unsatisfactory for few studies. We therefore suggest a small
sample adjustment for the classical F -test. Our extensive simulations in the bivariate
setting show improved coverage of confidence regions based on our novel proposals.
The approaches can also be applied in higher dimensional settings, but further work is
necessary to assess the viability of our proposals there. A possible avenue for further
improvements in small sample behavior lies in using ANOVA-type (Brunner and Puri,
2001) instead of Wald-type statistics, e.g. in combination with resampling approaches as
is done in MANOVA settings (Friedrich and Pauly, 2018). Another potential approach,
when studies report incomplete information, is to apply imputation methods such as the
MissForest algorithm (Stekhoven and Bühlmann, 2012) or multivariate imputation by
chained equations (Van Buuren and Groothuis-Oudshoorn, 2011).

In summary, in this dissertation we investigated the use of sandwich estimators in
both univariate und multivariate meta-analytic models. The main goal was to improve
small sample behavior of tests and confidence regions regarding the model coefficients.
This is crucially important because meta-analyses of few studies occur frequently in
practice (Davey et al., 2011) and yet commonly used methods often rely on asymptotic
arguments regarding the number of studies. Based on our findings, we were able to
derive recommendations for applied researchers that improve the validity of statistical
inference regarding model coefficients, especially when synthesizing a small number of
studies.

Future work considering alternative statistics such as ATS or MATS statistics, as men-
tioned in Section 2.2, or the combination of individual participant data with novel
resampling techniques may further improve meta-analytic methodology. A starting
point for the latter may be extensions to the paper by Van Den Noortgate and Onghena
(2005) on parametric and non-parametric bootstrap methods for meta-analysis. A further
avenue for future research is to extend the results from Welz et al. (2021) to more
robust correlation measures such as Spearman rank correlations, Kendall’s tau or other
estimators with bounded support like e.g. Wilcoxon-Mann-Whitney effects.
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The explanation of heterogeneity when synthesizing different studies is an

important issue in meta-analysis. Besides including a heterogeneity parameter

in the statistical model, it is also important to understand possible causes of

between-study heterogeneity. One possibility is to incorporate study-specific

covariates in the model that account for between-study variability. This leads to

linear mixed-effects meta-regression models. A number of alternative methods

have been proposed to estimate the (co)variance of the estimated regression

coefficients in these models, which subsequently drives differences in the results

of statistical methods. To quantify this, we compare the performance of hypothe-

sis tests for moderator effects based upon different heteroscedasticity consistent

covariance matrix estimators and the (untruncated) Knapp-Hartung method in

an extensive simulation study. In particular, we investigate type 1 error and

power under varying conditions regarding the underlying distributions, hetero-

geneity, effect sizes, number of independent studies, and their sample sizes.

Based upon these results, we give recommendations for suitable inference

choices in different scenarios and highlight the danger of using tests regarding

the study-specific moderators based on inappropriate covariance estimators.

KEYWORD S

heteroscedasticity, meta-regression, robust covariance estimation, standardized mean difference

1 | INTRODUCTION

Recently, Jackson and White (2018) raised the question
“When should meta-analysis avoid making hidden nor-
mality assumptions?” In the current paper, we investigate
this in the context of meta-regression models while also
studying the effect of employing different methods to
account for heteroscedasticity. Here, the notion meta-
regression refers to a regression, in which the effect sizes
from various studies are modeled by means of certain
study characteristics. Thus, the effect sizes are the depen-
dent (or outcome) variables and the study characteristics

are the independent variables (also called moderators or
explanatory variables).

As the effect sizes are usually certain summary sta-
tistics within diverse studies (as, eg, Cohen's d or a
log-odds ratio), the study-specific moderators can only
account for a part of the between-study heterogeneity.
Thus, to “fully” account for heterogeneity, the intro-
duction of a random effect is necessary, naturally lead-
ing to linear mixed-effects regression models. This was,
for example, proposed1 for the case of a single covari-
ate and later extended.2-7 In this context, a specific
question of interest is to test for an effect of a certain
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moderator, that is, to test the null hypothesis whether
the corresponding regression coefficient is zero. Here,
Viechtbauer et al made a thorough comparison of dif-
ferent existing methods in extensive simulations. In
particular, they compared tests based on the Wald-
type, Knapp-Hartung (with and without truncation),
Permutation, Huber-White, and the likelihood ratio
method together with seven different estimators of the
so-called between-study heterogeneity. It turned out
that the choice of heterogeneity estimator did not
affect the results greatly, while the choice of methods
mattered: They found a certain preference for the
Knapp-Hartung method3 and also concluded that
“Huber-White and likelihood ratio tests (…) cannot be
recommended for routine use, at least in their present
form.” Moreover, they stressed that “additional simula-
tions are needed to assess the performance (…) under
more adverse conditions, such as non-normal random
errors and/or true effects.” In the current paper, we fol-
low this suggestion and continue their work by investi-
gating the effect of non-normal random effects. In
addition, we analyze the effect of choosing different ver-
sions of the Huber-White heteroscedasticity consistent
(HC) covariance estimators. These estimators are typically
applied when the assumption of homogeneous variance
of the residuals is not plausible, to avoid inconsistent
inference. In particular, there exist the six versions HC0-
HC5 of the Huber-White estimator for regression models,
of which Sidik and Jonkman8 proposed the HC0 and
HC1-type in the meta-analytic context. For fixed-effects
regression models, the estimators HC3 and HC4 are often
recommended.9,10 Thus, it is of interest to also investigate
the influence of the different choices in the context of
meta-regression models. This becomes especially impor-
tant under adverse conditions, such as non-normally dis-
tributed effect sizes and/or unbalanced study sizes or
arms. As already shown,11 such circumstances can lead
to poor control of type 1 error and/or poor coverage of
confidence intervals when using standard meta-analytic
techniques. For this paper, we therefore investigate the
performance of the different estimators in different sce-
narios, utilizing both standardized mean differences and
log-odds-ratios as effect measures.

In the following sections, we start with a formal
introduction of the mixed-effects meta-regression model
and introduce inference procedures for testing modera-
tor effects (Section 2). Next, we focus on a motivational
data analysis (Section 3) that illustrates the practical
importance of the choice of covariance estimator and
we analyze the data example using the previously intro-
duced procedures. The data analysis motivates the need
for an extensive simulation study (Section 4). In this
section, we explain the various simulation designs and

illustrate and discuss our main findings. We end with
concluding remarks and an outlook for further research
(Section 5).

2 | THE SETUP

The usual mixed-effects meta-regression model is given
for independent outcome/effect variables

yi = β0 + β1xi1 + � � �+ βmxim + ui + εi, i=1,…,K ð1Þ

where xij denotes the jth moderator variable in the ith study,
βj is the corresponding model coefficient, and K the number
of independent studies. Furthermore, ui is a random effect
that is typically assumed to be normally distributed12 with
ui � N(0, τ2) and εi is the within-study error with distribu-
tion εi �N 0,σ2i

� �
. However, to give answers on the open-

ing question of “When should meta-analysis avoid
making hidden normality aumptions?,” we also study
non-normal situations regarding the random effects ui: We
do not specify a particular distribution and only assume
E uið Þ=0 and Var(ui) = τ2. From a practical point of view,
ui accounts for the variability not explained by the trial-
specific moderators, leading to the notion of between-
study heterogeneity for its variance τ2. We point out here
that the study-level outcome of each individual patient
may be binary. In this case, inference is based on normal
approximations to discrete (binomial) likelihoods. Cau-
tion should be used with such normal approximations, as
highlighted by a recent discussion paper on the topic of
hidden normality assumptions in meta-analysis.13 Here,
an alternative approach would be exact GLMM
approaches, as considered by Stijnen et al and others.14,15

Anyhow, model (1) involves several unknown param-
eters σ2i ,β,τ

2
� �

, which have to be estimated. Thereof, the
within-study sampling variance σ2i is estimated from the
observations in the study and typically assumed to be
known. To provide a simple expression of the weighted
least-squares estimate for β and the corresponding covari-
ance estimators presented below, we rewrite model (1) in
matrix notation as

y=Xβ+u+ ε, ð2Þ

where X ∈ RK × (m + 1), β ∈ Rm + 1, and u, ε ∈ RK. The
weighted least-squares estimator for β is given by

β̂= X 0ŴX
� �−1

X 0Ŵy: ð3Þ

The weight matrix is Ŵ =diag σ2i + τ̂2
� �−1
� �

. In this
setup, we are now interested in testing the null hypothe-
sis of no moderator effect
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H0 : βj =0
n o

for j∈ 1,…,mf g

against two-sided alternatives H1: {βj 6¼ 0}.
There already exist several procedures applicable for

this purpose and most of them are mainly based on a test
statistic of (Welch)-t-type. In particular, these basically
differ in how both, the between-study heterogeneity τ2 as
well as the within-study variances σ2i , are accounted for.
To define them, denote by β̂ the weighted least-squares
estimator for β and Σ=cov β̂

� �
. For all choices of (co)var-

iance estimator Σ̂ considered in part 2.1, a two-sided test
statistic of t-type for testing for the presence of the jth
model coefficient, that is, for inferring H0: {βj = 0}, is then
calculated via

Tj =
β̂jffiffiffiffiffiffi
Σ̂jj

q : ð4Þ

Here, Σ̂jj is the jth diagonal element of the covariance
estimator Σ̂ . For large K, the statistic Tj approximately
follows a t-distribution with K−m− 1 degrees of freedom
under the null hypothesis H0.

16 Comparing |Tj| against
the 1− α/2 quantile of the t-distribution with K−m− 1
degrees of freedom yields the corresponding test and
P values. Under mild regularity conditions on the moder-
ators, these tests are asymptotically correct. We summa-
rize this in Theorem 1, which is given in the supplement
along with a proof.

As has already been pointed out, the testing proce-
dures are not greatly affected by the choice of residual
heterogeneity estimator.17 We therefore solely focus on
one estimator for τ2: the restricted maximum likelihood
(REML) estimator, which was recently propagated as a
good choice for continuous data.18,19 Details regarding
the REML estimator are presented in the Supplementary
Materials (cf. Equation S8). Note that in this context,
REML estimates are more suitable than naive ML esti-
mates of variance components as the latter may have a
negative bias.20

As we have fixed estimators for β and τ2, we now turn
to the question of how to estimate the covariance of the
estimated model coefficient β̂ , given in Equation (3).
Here, the Knapp-Hartung method3 has been rec-
ommended.17 However, in case of semiparametric linear
models, robust Huber-White estimators are often seen as
a reasonable solution; especially when the type of
heteroscedasticity is not specified.9,10,21 As Viechtbauer
et al17 only investigated the HC1 estimator of the six
Huber-White estimators HC0-HC5, we complement their
study by also investigating the other versions with respect
to their applicability in meta-regression. To this end they

are detailed in the next subsection. These HC-estimators
are furthermore compared to the (untruncated) Knapp-
Hartung method, which provided adequate control of the
type 1 error rate in previous research.17

2.1 | Robust (Huber-White) approach

In semiparametric linear models, the assumption of
homogeneous variance of the residuals is often not plau-
sible, possibly leading to invalid inference from classical
methods based on homoscedasticity. Here, the typical
solution is to apply sandwich estimators. These are also
known as Huber-White estimators, to recognize the con-
tributions of Peter J. Huber and Halbert White.22,23 In
model (1), it especially makes sense to consider such esti-
mators because the marginal variances σ2i + τ2 of the
effect size estimates are heteroscedastic. We are now
interested in consistent estimators of the (co)variance
matrix Σ=cov β̂

� �
. The classical White-estimator of type

HC0 that was proposed Sidik and Jonkman8 in the meta-
analytic context is given by

Σ̂0 = X 0ŴX
� �−1

X 0ŴÊ
2
ŴX X 0ŴX

� �−1
, ð5Þ

where Ê=diag y−X β̂
� �

. Multiplying it with K/(K−m
− 1) leads to the HC1-type estimator, which was consid-
ered in the above mentioned work by Viechtbauer et al17

and is given by Σ̂1 =KΣ̂0= K−m−1ð Þ, which is known to
be more conservative. However, even in classical regression
models Wald- or t-tests based on both (co)variance estima-
tors are known to yield inflated type 1 error rates for small
to moderate sample sizes.10,24,25 This was also shown to be
the case in meta-regression models.17 Therefore, improved
versions of the original Huber-White estimator have been
suggested, namely White estimators of type HC2, HC3,
HC4, and HC5. We introduce these estimators but refer to
the papers in which they were originally discussed for fur-
ther details.26-28 As their general forms are rather complex
(cf. Equations 5 and 6), we have also worked out the ana-
lytical form of the HC estimators in the simplest case of no
moderators, that is, random-effects meta-analysis. Please
refer to the Supplementary Material and the discussion for
details. The form of the respective Huber-White covariance
estimators in the context of the mixed-effects meta-
regression model (2) is described below: we first introduce
the HC2 and HC3 estimators given by

HCℓ = Σ̂ℓ = X 0ŴX
� �−1

X 0ŴÊ
2
ℓŴX X 0ŴX

� �−1
, ℓ=2,3:

ð6Þ
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Here, Ê2 = diag 1−xjj
� �−1=2
� �

�Ê and
Ê3 = diag 1−xjj

� �−1
� �

�Ê , where xjj is the jth diagonal
element of the hat matrix X X 0ŴX

� �−1
X 0Ŵ . Thereof,

the HC3 estimator gives a very close approximation to
the computationally more expensive jackknife estimator
described in Reference 26 and given by

HCJK
3 = Σ̂JK

3 =
K−1
K

XK
t=1

β̂ tð Þ−
1
K

XK
s=1

β̂ sð Þ

 !
β̂ tð Þ−

1
K

XK
s=1

β̂ sð Þ

 !0
:

ð7Þ

Here, β̂ ið Þ is the weighted least-squares estimate of β
based on all observations except the ith. It is important
to note that HC3, unlike HC2, is biased under homosce-
dasticity.28 To improve HC3, the following variation was
suggested27:

HC4 = Σ̂4 = X 0ŴX
� �−1

X 0ŴÊ
2
4ŴX X 0ŴX

� �−1
, ð8Þ

where Ê4 = diag 1−xiið Þ−
δi
2

� �
�Ê and δi =min 4, xii�x

� �
.

Finally, there is

HC5 = Σ̂5 = X 0ŴX
� �−1

X 0ŴÊ
2
5ŴX X 0ŴX

� �−1
, ð9Þ

where Ê5 = diag 1−xiið Þ−
αi
2

� �
�Ê and

αi =min xii
�x ,max 4, γxmax

�x

� �� �
with a predefined constant

0< γ <1. Based on findings from simulation studies, the
value γ := 0.7 was recommended.28 We follow this sug-
gestion below.

The asymptotic behavior (for large K) is the same for
all of the considered covariance estimators. However,
for small to moderate numbers of studies K, the respec-
tive behavior may be vastly different, as asymptotic
arguments and limit theorems no longer hold. This is
particularly apparent in the illustrative data example
presented in the next section.

3 | DATA EXAMPLE

Table 1 contains data on six studies, which investigate
the effectiveness of Azithromycin vs Amoxycillin or
Amoxycillin/clavulanic acid (Amoxyclav) in the treat-
ment of acute lower respiratory tract infections. An
explanation of the different variables can be found in
Table 2. Azithromycin is an antibiotic, which is useful
for the treatment of various bacterial infections.29 The
data are contained in the R package metafor and have
previously been analyzed.30 We want to investigate
whether the respective trial having included patients T
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with a diagnosis of pneumonia has a significant effect on
the effectiveness of Azithromycin within the subgroup of
trials containing patients with a diagnosis of acute bacte-
rial bronchitis. We will attempt to answer this question
using a mixed-effects meta-regression model.

Although in the original work on these data30 the
authors used risk ratios as the effect measure, we decided
to utilize the log-odds ratio as the effect measure of
choice, due to its favorable statistical properties, such as
an approximate normal distribution.31 Moreover, the log-
odds ratio behaved similarly to the standardized mean
difference in our preliminary simulations. The resulting
P-values and test statistic values (4) for each choice of
estimator HCi, i = 0, …, 5 and the Knapp-Hartung
method are given in Table 3.

The estimators HC0 and HC1 lead to a rejection of the
null hypothesis at nominal level α = 0.05, while the test
based on HC2 still leads to a significant moderator effect at
the 10% level. On the contrary, tests based on HC3-HC5 do
not reject the null hypothesis. If we compare the newer
covariance estimators HC3-HC5 and HCKH, the Knapp-
Hartung method rejects the null hypothesis at the nominal
level α, whereas the formerly mentioned methods do not.

These results illustrate that the choice of covariance
estimator can have a large influence on results in practice
and that the wrong choice of HC-estimator may lead to
possibly false-positive or -negative test results. In particu-
lar, it is unclear whether the above rejections/non-
rejections are due to a potentially liberal/conservative
behavior or different power characteristics of the
corresponding tests. In any case, researchers should take
care when performing inference on study-specific moder-
ators, especially when the number of investigated studies

K is small. In order to help guide researchers' decision of
which covariance estimator to use in their analysis, we
perform an extensive simulation study regarding type
1 error and power.

3.1 | Software

Although this data set was analyzed using the open
source software R, other statistical software packages are
available for meta-regression. Two examples are metareg
in Stata as well as various procedures in SAS. Metareg in
Stata, for example, implements the REML method as the
default estimation procedure regarding the between-
study variance τ2. In both Stata and SAS, the covariance
matrix estimation approach can be specified: Metareg
implements the Knapp-Hartung method as the default
covariance estimation approach. In SAS, the PROC

TABLE 2 Explanation of variables in Table 1

Variable Meaning

ai Number of clinical failures in the group treated with Azithromycin

n1i Number of patients in the group treated with Azithromycin

ci Number of clinical failures in the group treated with amoxycillin or amoxyclav

n2i Number of patients in the group treated with amoxycillin or amoxyclav

age Whether the trial included adults or children

diag.ab Trial included patients with a diagnosis of acute bacterial bronchitis

diag.cb Trial included patients with a diagnosis of chronic bronchitis with acute exacerbation

diag.pn Trial included patients with a diagnosis of pneumonia

ctrl Antibiotic in control group (amoxycillin or amoxyclav)

bi n1i - ai

di n2i - ci

mod 1 {diag.ab == 1 & diag.pn == 1}

θ̂i Estimated effect (here the log-odds-ratio)

vi Sampling variance

TABLE 3 Test statistics and P-values for the data example in

Table 1 based on various HC-type covariance estimators and the

Knapp-Hartung method

Estimator Tj =
β̂jffiffiffiffiffi
Σ̂jj

p
ffiffiffiffiffiffi
Σ̂jj

q
P-value

HC0 3.777 0.288 .019

HC1 3.084 0.352 .037

HC2 2.423 0.449 .073

HC3 1.434 0.758 .225

HC4 1.367 0.795 .244

HC5 1.367 0.795 .244

HCKH 2.943 0.369 .042
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PANEL procedure per default uses the standard sample
covariance estimator but allows the option to specify one
of the HC covariance estimators HC0-HC4 using the
HCCME= option in the MODEL statement.32,33 In the
rma function in the metafor package in R, the default
covariance matrix is simply V=diag σ2i + τ̂2

� �
with REML

as the default estimation procedure for the between-study
heterogeneity τ2. The Knapp-Hartung method can be
specified via the option test = “knha” in the rma

function.

4 | SIMULATION STUDY

We conducted a Monte Carlo simulation using standard-
ized mean differences and log-odds-ratios as the effect
size measures. As we do not want to assume individual
patient data, only the study effects θ̂i are available
(cf. Equation 10). As in previous work,17 we assumed a
single moderator influencing the true study-specific
effects resulting in the model

θi = β0 + β1xi + ui: ð10Þ

The values of the moderator xi were independently
generated from a standard normal distribution and with-
out loss of generality, β0 was set to 0. Moreover, the ran-
dom effects ui were chosen to be either standard normal-,
(standardized) exponential-, double exponential-, log-nor-
mal-, or t3-distributed. For a detailed definition of the
corresponding data generating processes, we refer to
Section S6 in the Supplementary Material.

For the effect size, we considered the standardized
mean difference in the ith study. We generated the true
parameter θi directly, analogously to Viechtbauer et al,17

according to Equation (10). An unbiased estimator of θi is
given by Hedges' g34

gi = 1−
3

4 nTi +nCið Þ−9

	 

di, ð11Þ

where nTi and nCi denote the size of treatment and control
group, respectively, which are specified below. Moreover,
di denote the effect size estimates (Cohen's d) from study
i which were generated via

di =ϕi=
ffiffiffiffiffiffiffiffiffiffiffi
Xi=ni

p
,

where ϕi
~N θi,1=nTi +1=nCi
� �

, Xi
~χ2ni with ni =nT

i +nC
i −2

and then applying expression (11).
For the between-study heterogeneity τ2, we chose the

values {0.1, 0.2, …, 0.9} and for β1 we considered the

choices {0, 0.2, 0.5}, where 0 corresponds to no effect of
the moderator variable. The number K of independent
studies was chosen from {5, 10, 20, 50}. Finally, a good
approximation of the sampling variance of yi is given by35

vi =1=nT
i +1=nCi +

g2i
2 nT

i +nC
ið Þ : ð12Þ

In order to see if and in what way the results
depended on the chosen effect size measure, we also
investigated log-odds ratios for binary data. Simulating
data in a manner analogous to the one described in foun-
dational work,8,12 (results not shown) it turned out that
the change of effect size did not alter the general conclu-
sion. Therefore, we focus on the standardized mean dif-
ference alone.

Regarding study size, we considered balanced experi-
mental and control groups, that is, nTi =nCi . We then con-
sidered the case of equal study sizes (nTi � η for some η)
and unbalanced study sizes. In the former case, we simu-
lated the values η ∈{5, 10, 20, 40, 80} and in the latter we
chose the study size vectors (6, 8, 9, 10, 42), (16, 18,
19, 20, 52), and (41, 43, 44, 45, 77) in accordance with
previous work.17 For K>5, these study size vectors were
simply repeated accordingly, for example, for K = 10 a
study size vector might be (6, 8, 9, 10, 42, 6, 8, 9, 10, 42).

In total, we simulated 30, 240 = 9(τ2) × 3(β1) × 4
(K) × 8(ni) × 5(ui) × 7 (6 HC and Knapp-Hartung) differ-
ent configurations with N = 1000 simulation runs,
respectively. The simulation study was conducted in R,
using the metafor package.36 All tests were performed
with a nominal significance level of α = 0.05.

In practice, the study-specific moderators are often-
times binary, as can be seen in our data example. For this
reason, we have also (exemplarily) considered binary
moderators in the case of balanced study sizes, consider-
ing normal and exponential random effects. So, instead
of generating the x1i from a N 0,1ð Þ distribution, we gen-
erated them from a Bernoulli distribution with parameter
P = .2. It is necessary to exclude the case where all mod-
erators are equal to 1 or 0. Furthermore, it is sufficient to
consider only power for the binary moderators, as the
type 1 error will be the same as in the case of standard
normally generated moderators because for β1 = 0 the
choice of x1i does not matter.

5 | RESULTS

In this section, we describe the results of the simulation
study. In particular, we present type 1 error and power
based on the different covariance estimators under
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various simulation configurations. For power, we consid-
ered both the case of a (comparatively) smaller effect size
β1 = 0.2 and a (comparatively) larger effect β1 = 0.5 of
the study-specific moderator. For ease of presentation, we
focus on the most important results and general trends
and refer the interested reader to the Supplementary
Material for the complete simulation results.

5.1 | Type 1 error rate

Studying the type 1 error results for all configurations
given in the Supplementary Material, we can draw the
first general conclusion that changes in the between-
study heterogeneity τ2, the number of subjects in each
study and the underlying distributions of the random
effects had little effect on the behavior of the procedures
under the null hypothesis. In comparison, the number of
studies K and the chosen test procedure were the driving
forces for changes in type 1 error control. We therefore
start by presenting a summary of the results of type
1 error simulations for different combinations of these
two forces in boxplots given in Figure 1. The results
shown in Figure 1 are for the scenario of unequal study
sizes. We present results for HC1-HC5 and the Knapp-
Hartung method, referring HC0 to the Supplementary
Material, due to its known liberal behavior.

Here, each boxplot represents the 9(τ2) × 3(ni) × 5
(ui) = 135 different empirical type 1 error rates for each
test in case of K ∈{5, 10, 20, 50} studies. The White-type
test based on the classical HC0-estimator exhibits highly
inflated type 1 error rates, as expected; particularly for a
smaller number of studies. The type 1 error rates are even
more inflated than for HC1. For details we refer to the
Supplementary Material. A similar, but less pronounced
behavior can be observed for the tests based upon HC1

and HC2. On the contrary, all other procedures control the
nominal level α = 0.05 quite well. HC3-HC5 are slightly
conservative for K = 5 studies. HC3 has a type 1 error
around 3% and HC4 and HC5 around 4% for K = 5. For
these three estimators, the type 1 error converges to the
nominal level α for increasing number of studies K. The
Knapp-Hartung method holds the nominal level exactly
for K = 5 studies but seems to become (only slightly) con-
servative for increasing number of studies K. It is interest-
ing to note that there was no significant correlation
between type 1 error and different study sizes n (for a fixed
number of studies K), see the Supplement for details.
Finally, the Knapp and Hartung method controlled the
nominal level α very well for a smaller number of studies
K ∈{5, 10}, which is in line with previous research.17 On
the contrary, the other HC estimators were either liberal
or slightly conservative in the scenario of K = 5 studies.

For a better comparison of the procedures with the
overall best type 1 error control (HC3-HC5 and HCKH),
we present the boxplots of their simulated type 1 error
rates together in one figure (see Figure 2). The results
shown are from the simulation configuration of unbal-
anced study sizes and the standardized mean difference
as effect measure.

Figure 2 summarizes the observed type 1 error rates.
These are fairly close to the nominal level α = 5%, albeit
being slightly conservative at the median with median
type 1 error rates between 4% and 5%. The exception is
the HC3 estimator in the case of five studies, which is
much more conservative with a median type 1 error rate
just below 3% and the entire boxplot has whiskers lying
below the nominal level α. For HC3-HC5, the type 1 error
rates increase monotonically toward the nominal level
for an increasing number of studies K, and for the
Knapp-Hartung method the type 1 error rates start close
to nominal for the case of K = 5 studies and decrease
(slowly) away from the nominal level for increasing num-
bers of studies K.

Based on these results, we conclude that for ≤10 stud-
ies the Knapp-Hartung method is to be recommended
(in terms of type 1 error control) and for the case of ≥20
studies, especially when the number of studies is very
large, for example, 50 studies as in Figure 2, HC3 is the
preferred estimator with regards to type 1 error control.
For the case of 10 < K < 20 studies, further simulations
need to be done in order to give a clear recommendation
for the choice of covariance estimator. For more compre-
hensive recommendations, we compare the procedures'
power behavior in the next section.

5.2 | Power

In addition to the type 1 error rate, we investigated the
power of the respective tests to reject the null hypothesis
of no effect of the moderator variable, when it is in fact
false. To this end, we consider alternatives with (compar-
atively) small and (comparatively) larger effects by setting
β1 = 0.2 and β1 = 0.5, respectively.

For all methods, the observed general trend was that
power increased monotonically for decreasing amounts
of heterogeneity τ2, increasing number of studies K as
well as increasing study size n. In the following, we again
concentrate on power for the procedures based on HC3-
HC5 and Knapp-Hartung, as these were the only tests
with a satisfactory type 1 error control. The detailed
power simulation results, for each separate simulation
scenario, for these, and all other methods are given in
Section S6.2 of the Supplement. As the results for hetero-
geneous and homogeneous study sizes were very similar,
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we restrict ourselves to the former case and again refer to
the Supplement (Section S6.2) for the complete results.

Figure 3 summarizes the power results for the tests
based on HC3-HC5 and HCKH for a (comparatively) small
effect size of β1 = 0.2, in the scenario of unbalanced study

sizes. Median power ranges from around 5% to 8% for
K = 5 to around 45% to 47% for K = 50. For larger
amounts of studies, the power of all shown tests is close
together. However, HC3 does seem to have slightly more
median power than the other estimators for K = 50. In

FIGURE 1 Type 1 error of tests

based on the White-type estimators

HC1-HC5 and the Knapp-Hartung

correction HCKH for varying number

of studies K ∈{5, 10, 20, 50} and τ2

∈{0.1, 0.2, …, 0.9}—with unbalanced

study sizes and standardized mean

difference (SMD) as effect measure.

Each boxplot represents 135 type

1 error rates. For detailed individual

simulation results, please refer to the

Supplement [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 2 Type 1 error based on HC3-HC5

and HCKH for K ∈{5, 10, 20, 50}, τ2 ∈{0.1, 0.2, …,
0.9}—with unbalanced study sizes and

standardized mean difference (SMD) as effect

measure [Colour figure can be viewed at

wileyonlinelibrary.com]
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the scenario of K = 5 studies, the Knapp-Hartung method
yields much greater power than HC3 and slightly more
power than HC4 and HC5. For K = 10 and K = 20 studies,
HCKH has slightly more median power than HC3-HC5, as
well as having a longer “upper whisker” in the latter
case, in comparison to the other methods.

The results for a (comparatively) larger effect of
β1 = 0.5 can be found in the Supplementary Materials.
We again concentrate on the estimators HC3-HC5 and
HCKH. In the Supplement, we also give the power results
for the scenario of balanced study sizes. For β1 = 0.5, the
difference between methods is more pronounced; espe-
cially for a smaller number of studies K ∈{5, 10}. In fact,
HCKH has considerably more power than HC3-HC5 for
K ∈{5, 10}. At the median this difference amounts to 7%-
8% more power than HC3 and around 4% more than HC4

and HC5 for K = 5 and around 7%-8% more power than
HC3-HC5 for K = 5. For larger study sizes, this effect
diminishes and the results are quite close together.
Results were very similar for balanced study sizes.

5.3 | Bias and variance estimation

In addition to type 1 error and power, we also study the
bias E β̂1

� �
−β1 and the variance var(β̂1 ) = Σ11 of the

effect estimator of β̂1 in the Supplement. Clearly β̂1 is

identical across all variations of variance estimator.
Because these values cannot be expressed analytically, we
resorted to simulations, which we performed in the sce-
nario of normally distributed random effects and bal-
anced study sizes with moderator variables drawn from a
normal distribution. Our findings can be summarized as
follows: The estimator β̂1 is approximately unbiased for
β1 = 0 and becomes increasingly negatively biased for
larger effect sizes β1. Moreover, the variance seems to
increase with each new version of the HC estimator, that
is, from HC0 to HC5. The Knapp-Hartung method, how-
ever, has a smaller variance than the newer iterations of
the HC estimators HC3-HC5. The details can be found in
the Supplement.

5.4 | Binary moderators

Finally, since moderators can also be binary in practice,
we extended the simulations to consider this scenario.
The results of the power simulations with binary modera-
tors indicate that use of binary covariates instead of con-
tinuous ones reduces power considerably. Furthermore,
power did increase for larger numbers of studies K but
much more slowly than in the case of continuous moder-
ators. When comparing the power results of the different
covariances estimators, it became apparent that the HC

FIGURE 3 Power of tests based on HC3-

HC5 and HCKH for K ∈{5, 10, 20, 50}, τ2 ∈{0.1,
0.2, …, 0.9}, and β1 = 0.2—with unbalanced

study sizes and standardized mean difference

(SMD) as effect measure [Colour figure can be

viewed at wileyonlinelibrary.com]
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estimators displayed vastly superior power over the
Knapp-Hartung method when the number of studies was
small (K ≤ 10). This is interesting, as with continuous
moderators Knapp-Hartung often had more power. For
large numbers of studies (K = 50), Knapp-Hartung had
slightly more power than the HC estimators. It therefore
seems prudent to use one of the newer HC estimators
(HC3-HC5) instead of the Knapp-Hartung method when
dealing with binary moderators and a small number of
studies K. However, if dealing with binary moderators
and a large number of studies (K > 20), it is probably best
to stick with the Knapp-Hartung method. Detailed results
can be found in the Supplementary Material.

6 | DISCUSSION AND FURTHER
RESEARCH

Mixed-effects meta-regression models offer a good possi-
bility to describe and model moderator (covariate) effects
from various studies in a meta-analysis. In this context, it
is of interest to determine which moderators significantly
help to explain heterogeneity. This naturally leads to t-
tests for the null hypotheses of no moderator effects.
Here, Viechtbauer et al17 compared several procedures in
extensive simulations and recommended the
(untruncated) Knapp-Hartung method3 as the procedure
of choice. We complement their investigations by addi-
tionally considering all six robust covariance estimators
of Huber-White (HC) type suggested in the literature,
while also extending their simulation scenarios. In fact,
following recent discussions on hidden normality assump-
tions in meta-analyses,13 we also study situations with
non-normal random effects. Although we focus on
hypothesis tests for moderator effects, confidence inter-
vals for the unknown regression coefficients based on t-
quantiles can easily be constructed via test inversion.37

The coverage probabilities of these confidence intervals
would be given by 1 minus the respective type 1 error.

For a total of 30 240 different simulation configura-
tions we compared the t-tests based on the six different
HC-type estimators (HC0-HC5) and the (untruncated)
Knapp-Hartung method3 with respect to their type 1 error
control and power. As observed in other regression
contexts,9,17,25,27,28 the tests based on the classical Huber-
White estimators HC0, HC1 as well as HC2 generally had
a highly inflated type 1 error, except for the simulation
scenario of K = 50 studies. Of the other existing modifica-
tions HC3-HC5, all managed a satisfactory control of the
nominal level α. HC4 and HC5 controlled the nominal
level more exactly, whereas the HC3 estimator was con-
servative in the case of very few studies (K = 5), with an
observed type 1 error of around 3%. The (untruncated)

Knapp-Hartung method also controlled the nominal level
α well, albeit being more exact for smaller numbers of
studies and slightly conservative for a larger number of
studies K.

Regarding the behavior under different alternatives,
all tests' power tended to increase monotonically with
increasing study numbers K, increasing average study
size and decreasing amounts of heterogeneity τ2—a mar-
ked difference when comparing to type 1 error behavior,
where τ2 and study size had little influence.

Somewhat surprisingly the choice of distribution of
the random effects in the simulation study had hardly
any effect on the type 1 error and power of t-tests based
on the considered covariance estimators. This leads us to
conclude that the typical normality assumption ui � N
(0, τ2) for the mixed-model random effects is
unproblematic, at least in the scenarios we considered in
our simulation study.

Comparing HC3-HC5 and the Knapp-Hartung-
method, we observed a higher power of the latter; espe-
cially in case of larger moderator effects or few studies.
Only in case of small moderator effects and a larger num-
ber of studies (K = 50) a slight power advantage of the
HC3-method was observed. Nevertheless, our findings
lead to similar conclusions as drawn in previous
research17 that in most cases the (untruncated) Knapp-
Hartung method seems to be the procedure of choice.

In addition to meta-regression, we have considered
the special case of no moderators (random-effects meta-
analysis) and worked out the formulas for the individual
HC-type variance estimators of the main effect θ̂ in this
case. These results are presented in Proposition 1 of the
technical Appendix in the Supplementary Material, along
with a proof. Additionally, the individual formulas of the
six HC estimators Σ̂0,…, Σ̂5 of the form
Σ̂ℓ =

PK
j=1vj,ℓ�ε̂2j , ℓ=0,…,5 for specific weights vj,ℓ are

presented in Equations (S2)-(S7) of the Supplement along
with a numerical example. Σ̂0 and Σ̂1 only differ by a
constant, whereas Σ̂2-Σ̂5 differ through the exponent of a
weighting factor included in vj,ℓ. Please refer to the tech-
nical Appendix of the Supplementary Material for their
explicit form.

In applications, one of the most problematic cases is
when only a small number of studies are available. Our
data example in Section 3 shows how large the influence
of the choice of HC estimator can be in such a scenario.
One possible reason may be that all considered estima-
tors make direct use of the residuals. In case of few stud-
ies, this may not be too reliable, leading to less stable
estimation of the between-study heterogeneity τ2 and
more variable SE. Here, alternative approaches exist,
such as higher order likelihood based methods, which
aim to improve on inference based on first order
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likelihoods. In this context, some authors have, for exam-
ple, recommended inference based on Skovgaard's
second-order statistic.38,39 Moreover, we additionally con-
jecture that for such a case of few studies the underlying
error distribution plays an important role as well.13 We
leave an exhaustive evaluation of these “residual con-
cerns” to future research.

We conclude this paper with an outlook on ongoing
and future research. In most clinical trials, two or more
endpoints of interest are measured. Therefore, the cur-
rent investigations will be extended to the case of multi-
variate mixed-effects meta-regression models. As the
assumption of normality is usually more problematic
than in the univariate case,40-43 an adequate treatment
may require the extension and/or improvement of exis-
ting methods. In this context, the additional study of
modern imputation techniques44,45 will be mandatory.
Moreover, different to the present setting one might
explore the methodology under the presence of individ-
ual patient data, allowing the application of a multitude
of different permutation or resampling procedures.25,46,47
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RECOMMENDATIONS
Based on the results of our simulation study, we give the
following recommendations:

In general, we recommend the use of the Knapp-
Hartung method. However, there are a few special cases,
in which an HC-estimator may be superior. In particular,
in the scenario of many studies (K ≥ 50) and an effect
size that is suspected to be “not too large”, that is,
β1 ≤ 0.2, the HC3 estimator seems to yield slightly more
power than the Knapp-Hartung method, with both con-
trolling the nominal type 1 error level α well. Further-
more, when dealing with binary moderators and a small
number of studies (K ≤ 10), it seems that the modern HC
estimators HC3-HC5 have more power than the Knapp-
Hartung method, while controlling type 1 error and
should therefore be preferred in this scenario.

If a researcher does decide to use one of the HC esti-
mators HC0-HC5 then the estimators HC0-HC2 should
not be used, mainly due to their inflated type 1 error
behavior. The other three HC-estimators control the
nominal type 1 error α well. When deciding between the

HC-estimators HC3-HC5, the choice can be made based
on the number of studies available. For K ≤ 10 studies
(especially for K = 5), HC4 and HC5 have more power
than HC3. However, for K ≥ 20 studies, HC3 yields
slightly more power than the other two.
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Meta-analyses of correlation coefficients are an important technique to integrate results

from many cross-sectional and longitudinal research designs. Uncertainty in pooled

estimates is typically assessed with the help of confidence intervals, which can double as

hypothesis tests for two-sided hypotheses about the underlying correlation. A standard

approach to construct confidence intervals for themain effect is theHedges-Olkin-Vevea

Fisher-z (HOVz) approach, which is based on the Fisher-z transformation. Results from

previous studies (Field, 2005, Psychol. Meth., 10, 444; Hafdahl andWilliams, 2009, Psychol.

Meth., 14, 24), however, indicate that in random-effects models the performance of the

HOVz confidence interval can be unsatisfactory. To this end, we propose improvements

of the HOVz approach, which are based on enhanced variance estimators for the main

effect estimate. In order to study the coverage of the new confidence intervals in both

fixed- and random-effects meta-analysis models, we perform an extensive simulation

study, comparing them to established approaches. Data were generated via a truncated

normal and beta distribution model. The results show that our newly proposed

confidence intervals based on a Knapp-Hartung-type variance estimator or robust

heteroscedasticity consistent sandwich estimators in combinationwith the integral z-to-r

transformation (Hafdahl, 2009, Br. J. Math. Stat. Psychol., 62, 233) provide more accurate

coverage than existing approaches in most scenarios, especially in the more appropriate

beta distribution simulation model.

1. Introduction

Quantifying the association of metric variables with the help of the Pearson correlation

coefficient is a routine statistical technique for understanding patterns of association. It is
a basic ingredient of the data analysis ofmany cross-sectional and longitudinal designs, and

is also indispensable for various psychometric and factor-analytic techniques. When

several reports are available for comparable underlying populations, meta-analytic

methods allow the available evidence to be pooled (Hedges & Olkin, 1985; Hunter &

Schmidt, 2004), resulting in more stable and precise estimates.
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Systematic reviews based onmeta-analyses of correlations are among themost cited in

industrial and organizational psychology, clinical psychology and educational psychology

(e.g. Aldao,Nolen-Hoeksema, & Schweizer, 2010; Barrick&Mount, 1991; Sirin, 2005 each

with several thousand citations), and the methodological monograph on pooling
correlations of Hunter and Schmidt (2004) is approaching 10,000 citations on Google

Scholar at the time of writing. In addition, pooled correlations are the basis for meta-

analytic structural equation modelling (e.g., Cheung, 2015; Jak, 2015, and registered

replication efforts pool correlations to reassess findings of others (e.g., Open Science

Collaboration, 2015).).

1.1. The importance of confidence intervals for pooled correlations
Schulze (2004) provides a comprehensive summary of fixed- and random-effects meta-

analysis of correlations. The best-known approaches are based on Fisher’s z transformation

(Field, 2001, 2005; Hafdahl &Williams, 2009; Hedges &Olkin, 1985) or on direct synthesis

of correlations via the Hunter--Schmidt (HS) method (Hunter & Schmidt, 1994; Schulze,

2004). Regardless of themethod and the purpose of themeta-analysis, the point estimate of

the correlation is accompanied by an estimate of its uncertainty, in the form of a standard

error (SE) or a confidence interval (CI). Since the absolute value of a correlation is bounded

by1, aCImight be asymmetric in this context, that is, not centred around thepoint estimate.
Also, CIs are often more useful than SEs, because a null hypothesis of the form H0 : ρ¼ ρ0
can be rejected at level α if a 100ð1�αÞ% CI does not include ρ0 (duality of hypothesis

testing and CIs). A CI’s coverage is ideally close to the nominal 1�α level; for example, a

multi-centre registered replication report does want to rely either on an anti-conservative

(too narrow) CI that is overly prone to erroneously rejecting previous research, or on a

conservative (too wide) CI lacking statistical power to refute overly optimistic point

estimates. Despitemethodological developments since the late 1970s, the choice of a CI for

a pooled correlation should be a careful one: simulation experiments reported in this paper
reinforce the finding that CIs are too liberal when heterogeneity is present. The main

objective of this paper is a systematic investigation of competingmethods, especially when

moderateor even substantial amounts of heterogeneity arepresent, promising refinedmeta-

analyticmethods for correlations, especially thosebasedon theFisherz transformation.The

remainder of this introduction reviews results for (z-transformation-based) pooling, and

briefly introduces relevant methods for variance estimation.

1.2. Pooling (transformed) correlation coefficients

A line of research summarized inHunter and Schmidt (1994) pools correlation coefficients

on the original scale from �1 to 1. One of the merits of the HS methodology is a clear

rationale for artefact corrections, that is, correlations are disattenuated for differences at

the primary report level in reliability or variable range. While this part of the HS

methodology is beyond the scope of the current paper, CIs originating from Osburn and

Callender (1992) are studied here as an HS-based referencemethod (see also Field, 2005).

Fisher’s z-transformation (= areatangens hyperbolicus) maps the open interval
ð�1,1Þ to the real number line. Working with z values of correlations avoids problems

arising at the bounds and makes normality assumptions of some meta-analytic models

more plausible (Hedges & Olkin, 1985). Field (2001) presents a systematic simulation

study, and describes scenarios with too liberal behaviour of the HSmethodology, but also

reports problems with z-transformed pooled values. A simulation strategy is also at the
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core of Field (2005), who places a special emphasis on heterogeneous settings. He finds

similar point estimates for z-transformation-based and HS pooling, with the CIs from the

HS method too narrow in the small-sample case. The simulation study of Hafdahl and

Williams (2009) includes a comprehensive account of random-effects modelling and
related sources of bias in point estimates. Focusing on point estimation, Hafdahl and

Williams (2009) defend z-transformed pooling, but Hafdahl (2009) recommends the

integral z-to-r transformation as a further improvement. In the spirit of Hafdahl and

Williams (2009), the current paper focuses on variance estimators and resulting CIs,

especially in the case of heterogeneity.

1.3. Estimating between-study variance
All CIs studied here are of the form g θ̂� σ̂θ̂

� �
, for an appropriate back-transformation g

(which is not needed in the HS approach), a point estimator θ̂ and its SE estimator σ̂θ̂,
which depends on the between-study variance estimation. The quality of the CI will

depend on an appropriate choice. In other words, especially when primary reports are

heterogeneous and the underlying study-specific true correlations vary, good estimators

of the between study variance are needed to obtain neither too wide nor too narrow CIs.

The comprehensive study of Veroniki et al., (2016) supports restricted maximum

likelihood estimation (REML) as a default estimator of the between-study variance. Since
large values of the mean correlation cause REML convergence problems, the robust two-

step Sidik and Jonkman (2006) estimator is adoptedhere. Recently,Welz and Pauly (2020)

showed that in the context of meta-regression, the Knapp–Hartung (KH) adjustment

(Hartung, 1999; Hartung & Knapp, 2001) aided (co)variance estimation, motivating the

inclusion of KH-type CIs in the subsequent comparison.

Less well known in the meta-analysis literature are bootstrap methods for variance

estimation, which are not necessarily based on a parametric assumption for the random-

effects distribution. TheWu (1986)wild bootstrap intended for heteroscedastic situations
is evaluated here. Bootstrapping is complemented by sandwich estimators (heteroscedas-

ticity consistent, HC; White, 1980) which Viechtbauer, López-López, Sánchez-Meca, and

Marn-Martnez (2015) introduced in the field ofmeta-analysis. Recently, awide range ofHC

estimatorswere calculatedbyWelz and Pauly (2020),whose comparison also includes the

more recent HC4 andHC5 estimators (Cribari-Neto, Souza, & Vasconcellos, 2007; Cribari-

Neto & Zarkos, 2004). In sum, the following comparison includes a comprehensive

collection of established and current variance estimators and resulting CIs.

In Section 2 we introduce the relevant models and procedures for meta-analyses of
correlations withmore technical detail, as well as our proposed refinements. In Section 3

weperform an extensive simulation study andpresent the results. In Section 4wepresent

an illustrative data example on the association of conscientiousness (in the sense of the

NEO-PI-R; Costa Jr and McCrae, 1985, 2008) and medication adherence (Molloy,

O’Carroll, & Ferguson, 2013). Section 5 concludes the paper with a discussion of our

findings and give an outlook for future research.

2. Meta-analyses of Pearson correlation coefficients

For a bivariate metric random vector (X,Y) with existing secondmoments the correlation

coefficient ρ¼Cov X,Yð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð ÞVar Yð Þp

is usually estimated with the (Pearson)

correlation coefficient

Confidence Intervals of Correlations 3



r¼ ∑n

i¼1ðxi�xÞðyi�yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1ðxi�xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n

i¼1ðyi�yÞ2
q , (1)

where ðxi,yiÞ, i¼ 1,⋯,n, are independent observations of (X,Y).

The Pearson correlation coefficient is asymptotically consistent, that is, for large

sample sizes, its value converges to the true ρ. It is also invariant under linear
transformations of the data. However, its distribution is difficult to describe analytically

and it is not an unbiased estimator of ρ, with an approximate bias of

ðr�ρÞ≈� 1
2
ρð1�ρ2Þ=ðn�1Þ (Hotelling, 1953).

As correlation-based meta-analyses with r as effect measure occur frequently in

psychology and the social sciences we briefly recall the two standard models (see

Schwarzer, Carpenter, & Rücker, 2015): the fixed- and random-effects models. The fixed-

effect meta-analysis model is defined as

yi ¼ μþ ɛi, i¼ 1, . . .,K , (2)

where μ denotes the common (true) effect, that is, the (transformed) correlation in our

case,K the number of available primary reports, and yi the observed effect in the i th study.

Themodel errors ϵi are typically assumed to be normally distributedwith ɛi ind∼N 0, σ2i
� �

.

In this model the only source of sampling error comes from within the studies. The
estimate of the main effect μ is then computed as a weighted mean via

μ̂¼ ∑
K

i¼1

wi

w
yi, (3)

wherew :¼∑K

i¼1wi and the study weightswi ¼ σ̂�2
i are the reciprocals of the (estimated)

sampling variances σ̂2i . This is known as the inverse variance method. The fixed-effect

model typically underestimates the observed total variability because it does not account

for between-study variability (Schwarzer et al., 2015). However, it has the advantage of

being able to pool observations, if individual patient data (IPD) are in fact available,

allowing for greater flexibility in methodology in this scenario.

The random-effectsmodel extends the fixed-effect model by incorporating a random

effect that accounts for between-study variability, such as differences in study population
or execution. It is given by

μi ¼ μþuiþ ɛi, i¼ 1,⋯,K , (4)

where the random effects ui are typically assumed to be independent and Nð0,τ2Þdis-
tributed with between-study variance τ2and ɛi ind∼N 0, σ2i

� �
. Furthermore, the random

effects (ui)i and the error terms (ϵi)i are jointly independent. Thus, for τ2 ¼ 0, the fixed-

effect model is a special case of the random-effects model. The main effect is again

estimated via the weighted mean μ̂ given in equation (3) with study weights now defined
as wi ¼ðσ̂2i þ τ̂2Þ�1

.

A plethora of approaches exist for estimating the heterogeneity variance τ2. Which

estimator should be used has been discussed for a long time, without reaching a definitive

conclusion. However, a consensus has been reached that the popular and easy-to-

calculate DerSimonian--Laird estimator is not the best option. Authors such as Veroniki

et al., (2016) and Langan et al., (2019) have recommendedusing iterative estimators for τ2.
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We therefore (initially) followed their suggestion and used the REML estimator. However,

in some settings, such as large ρvalues, the REML estimator had trouble converging, even

after the usual remedies of utilizing step halving and/or increasing the maximum number

of permitted iterations. We therefore opted to use the two-step estimator suggested by
Sidik and Jonkman (SJ), which is defined by starting with a rough initial estimate of

τ̂20 ¼ 1
K
∑K

i¼1ðyi�yÞ2 and is then updated via the expression

τ̂2SJ ¼
1

K�1
∑
K

i¼1

wiðyi� μ̂Þ2, (5)

where wi ¼ τ̂20= σ̂2i þ τ̂20
� �� ��1

and μ̂¼ ∑
K

i¼1

wiyi=∑
K

i¼1

wi (Sidik & Jonkman, 2005). A

comprehensive comparison of heterogeneity estimators for τ2in the context of random-

effects meta-analyses for correlations would be interesting but is beyond the scope of this

paper.

Before discussing different CIs for the common correlation μwithinmodel (4),we take

a short excursion on asymptotics for r in the one-group case.

2.1. Background: Asymptotic confidence intervals
Assuming bivariate normality of (X,Y), r is approximately distributed asNðρ,ð1�ρ2Þ2=nÞ
for large sample sizes n (Lehmann, 2004). Here, bivariate normality is a necessary

assumption to obtain ð1�ρ2Þ2 in the asymptotic variance (Omelka & Pauly, 2012).

Plugging in r, we obtain an approximate 100ð1�αÞ% CI of the form

r�u1�α=2ð1� r2Þ= ffiffiffi
n

p
, where u1�α=2 denotes the ð1�α=2Þ quantile of the standard

normal distribution.

In fixed-effect meta-analyses, when IPD are available, this result can be used to

construct a CI based on pooled data: calculating ρ̂pool, the pooled sample correlation

coefficient, we obtain an approximate CI for ρ as

ρ̂pool�u1�α=2

1� ρ̂2pool

� �
ffiffiffiffi
N

p , (6)

where N :¼∑K

i¼1ni is the pooled sample size. As this pooling of observations only makes
sense if we assume that each study has the same underlying effect, this approach is not

feasible for a random-effectsmodel, even if IPDwere available. In any case, evenunder IPD

and a fixed-effects model, this CI is sensitive to the normality assumption and the

underlying sample size, as we demonstrate in Table 1 for the case K ¼ 1. We simulated

bivariate data from standard normal and standardized lognormal distributions1 with

correlation ρ∈f:3, :7gand study size n∈f20, 50, 100g. In each setting we performed

N = 10,000 simulation runs. For the lognormal data coverage is extremely poor in all

cases, ranging from 53–80%. For the normally distributed case coverage was somewhat
low at 90% for n = 20 but improved for larger sample sizes. This case study clearly

illustrates that alternatives are needed when the data cannot be assumed to stem from a

normal distribution or sample sizes are small.

1 Further details regarding the data generation can be found in the online supplementary materials.
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After this short excursion we return to model (4) and CIs for ρ.

2.2. The Hunter--Schmidt approach

The aggregation of correlations in the Hunter–Schmidt approach is done by sample size

weighting:

rHS ¼∑K

i¼1niri

∑K

i¼1ni

: (7)

Several formulae have been recommended for estimating the sampling variance of this
mean effect size estimate. We opted for a suggestion by Osburn and Callender (1992),

σ̂2HS ¼
1

K

∑K

i¼1niðri� rHSÞ2
∑K

i¼1ni

 !
, (8)

which is supposed to perform reasonably well in both heterogeneous and homogeneous
settings (Schulze, 2004). In the simulation study wewill investigate whether this is in fact

the case for the resulting CI, rHS�u1�α=2σ̂HS.

2.3. Confidence intervals based on the Fisher z transformation

A disadvantage of the asymptotic confidence interval (6) is that the variance of the limit

distribution depends on the unknown correlation ρ. This motivates a variance-stabilizing

transformation. A popular choice for correlation coefficients is the Fisherz transforma-

tion (Fisher, 1915),

ρ↦z¼ 1

2
ln

1þρ
1�ρ

� �
¼ atanhðρÞ: (9)

The corresponding inverse Fisher transformation is z↦tanhðzÞ¼ ðexpð2zÞ�1Þ=
ðexpð2zÞþ1Þ.

The variance-stabilizing property of the Fisher transformation follows from the

δ-method (Lehmann, 2004); that is, if
ffiffiffi
n

p ðr�ρÞ!dNð0,ð1�ρ2Þ2Þ thenffiffiffi
n

p ðẑ�zÞ¼ ffiffiffi
n

p ðatanhðrÞ� atanhðρÞÞ!dNð0,1Þ: Following, it is reasonable to substituteffiffiffi
n

p
by,

ffiffiffiffiffiffiffiffiffiffiffi
n�3

p
that is, to approximate the distribution of ẑby,N atanh rð Þ,1= n�3ð Þð Þ still

assuming bivariate normality. Thus, a single-group approximate 100ð1�αÞ% CI can be
constructed via tanhðẑ�u1�α=2=

ffiffiffiffiffiffiffiffiffiffiffiffi
N�3

p Þ:

Table 1. Empirical coverage of the asymptotic confidence interval for K ¼ 1, study size

n∈ 20, 50, 100f g and correlation ρ∈ 0:3,0:7f g

Distribution

N

ρ 20 50 100

Normal .3 .90 .93 .94

.7 .90 .92 .94

Lognormal .3 .79 .80 .79

.7 .63 .57 .53
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In the random-effects model (4), the z transformation may also be used to construct a

CI for the common correlation ρ. Here, the idea is again to use inverse variance weights to

define

z¼
∑K

i¼1
1

ni�3
þ τ̂2

� ��1

zi

∑K

i¼1
1

ni�3
þ τ̂2

� ��1 , (10)

where zi ¼ atanhðriÞ. A rough estimate of the variance of z is given by ð∑K

i¼1wiÞ�1
. In the

fixed-effect case with τ2 ¼ 0 this yields the variance estimate

∑K

i¼1ðni�3Þ� ��1 ¼ðN�3KÞ�1. Then z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�3K

p
approximately follows a standard

normal distribution and an approximate 100ð1�αÞ% CI is given by

tanhðz�u1�α=2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�3K

p Þ. Proceeding similarly in the random-effects model (4), one

obtains the Hedges–Olkin–Vevea Fisher-z(HOV z) CI

tanhðz�u1�α=2=ð∑
K

i¼1

wiÞ
1=2

Þ, (11)

with wi ¼ð1=ðni�3Þþ τ̂2Þ�1
(Hafdahl & Williams, 2009; Hedges & Olkin, 1985; Hedges

& Vevea, 1998).

2.3.1. Knapp--Hartung-type CI

The above approximation of the variance of z via ∑K

i¼1wi

� ��1
can be rather inaccurate,

especially in random-effects models. Although this is the exact variance of z when the

weights are chosen perfectly as wi ¼ðσ2i þτ2Þ�1
, this variance estimate does not protect

against (potentially substantial) errors in estimating σ̂2i and τ̂2 (Sidik & Jonkman, 2006).

Therefore, we propose an improved CI based on the KH method (Hartung & Knapp,

2001). Knapp andHartung proposed the following variance estimator for the estimate μ̂of
the main effect μin a random-effects meta-analysis (REMA):

σ̂2KH ¼ V̂arKH μ̂ð Þ¼ 1

K�1
∑
K

i¼1

wi

w
μ̂i� μ̂ð Þ2, (12)

where again w¼∑K

i¼1wi. showed that if μ̂ is normally distributed, then μ̂�μð Þ=σ̂KH
follows a t distribution with K�1 degrees of freedom. Therefore an approximate

100ð1�αÞ% CI for μ is given by

tanh z� tK�1,1�α=2 � σ̂KH
� �

, (13)

where tK�1,1�α=2 is the 1�α=2 quantile of the t distribution with K�1 degrees of

freedom. Because of the approximately normal distribution of z-transformed correlations,

the CI ((13)) seems justified. Various authors have highlighted the favourable perfor-

mance of the KH approach compared to alternative meta-analytic methods (IntHout,
Ioannidis, & Borm, 2014; Viechtbauer et al., 2015; Welz & Pauly, 2020). Analogously to

(13), we can construct further CIs by using other variance estimation procedures for

Var μ̂ð Þ.
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2.3.2. Wild bootstrap approach

Another possibility for estimating the variance of z is through bootstrapping. Bootstrap-

ping belongs to the class of resampling methods. It allows the estimation of the sampling

distribution of most statistics using random sampling methods. The wild bootstrap is a
subtype of bootstrapping that is applicable in models which exhibit heteroscedasticity.

Roughly speaking, the idea of the wild bootstrap approach is to resample the response

variables based on the residuals. The idea was originally proposed by Wu (1986) for

regression analysis.

We now propose a confidence interval for ρ based on a (data-dependent) wild

bootstrap (WBS) approach combined with the ztransformation. The idea works as

follows. We assume an REMA model with Pearson’s correlation coefficient as the effect

estimate (and K>3 studies). Given the estimated study-level correlation coefficients
ri, i¼ 1,⋯,K , we transform these using ztransformation to ẑi, i¼ 1,⋯,K , and estimate

z¼ atanhðρÞvia ẑ¼∑i wi=wð Þẑi, where again wi ¼ðσ̂iþ τ̂2Þ�1
with σ̂2i ¼ 1

ni�3
and

w¼∑iwi. Here, τ̂
2 may be any consistent estimator of the between-study heterogeneity

τ2, where we have chosen the SJ estimator. We then calculate the estimated residuals

ɛ̂i ¼ ẑ� ẑi and use these to generate B new sets of study-level effects

ẑ
∗
1b, . . ., ẑ

∗
Kb,b¼ 1, . . .,B. Typical choices for Bare 1,000 or 5,000. The new study-level

effects are generated via

ẑ
∗
ib :¼ ẑiþ ɛ̂i �vi, (14)

where vi ∼N 0,γð Þ. The usual choice of variance in a WBS is γ¼ 1. However, we

propose a data-dependent choice of either γK ¼ðK�1Þ=ðK�3Þ or γK ¼ðK�2Þ=ðK�3Þ.
These choices are based on simulation results, which will be discussed in detail in
Section 3.Wewill later refer to these approaches asWBS1,WBS2 andWBS3, respectively.

The corresponding values for γ are 1, ðK�1Þ=ðK�3Þ and ðK�2Þ=ðK�3Þ. This allows us

to generate B new estimates of the main effect z by calculating

ẑ
∗
b ¼

∑K

i¼1w
∗
ibẑ

∗
ib

∑K

i¼1w
∗
ib

, (15)

with w∗
ib≡wi. We then estimate the variance of ẑ via the empirical variance of ẑ∗1,⋯, ẑ∗B,

σ∗2z :¼ 1

B�1
∑
B

i¼1

ðẑ∗i �z∗Þ2, with z∗ ¼ 1

B
∑
B

i¼1

ẑ
∗
i

It is now possible to construct a CI for z as in equation (13) but with this new variance

estimate of�z. The CI is back-transformed via the inverse Fisher transformation to obtain

a CI for the common correlation ρ, given by

tanh ẑ� σ̂∗z � tK�1,1�α=2
� �

: (16)
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Figure 1 provides a visual illustration of the WBS procedure discussed above.

2.3.3. HC-type variance estimators

Last but not least,we employheteroscedasticity consistent variance estimators [sandwich

estimators; White, 1980). Different forms (HC0,...,HC5) are in use for linear models

(Rosopa, Schaffer, & Schroeder, 2013). The motivation for the robust HC variance

estimators is that in a linear regression setting the usual variance estimate is unbiased
when unit-level errors are independent and identically distributed. However, when the

unit-level variances are unequal, this approach can be biased. If we apply this to the meta-

analysis context, the study-level variances are almost always unequal due to varying

sample sizes. Therefore, it makes sense to consider variance estimators that are unbiased

even when the variances of the unit (study) level variances are different.

The extension of HC estimators to the meta-analysis context can be found in

Viechtbauer et al., (2015) for HC0 andHC1 and inWelz and Pauly (2020) for the remaining

HC2,⋯,HC5. Statistical tests based on these robust estimators have been shown to
perform well, especially those of types HC3 and HC4. In the special case of an REMA they

are defined as

σ̂2HC3
¼ 1

ð∑K

i¼1wiÞ2
∑
K

j¼1

w2
j ɛ̂

2
j ð1�xjjÞ�2

σ̂2HC4
¼ 1

ð∑K

i¼1wiÞ2
∑
K

j¼1

w2
j ɛ̂

2
j ð1�xjjÞ�δ j , δ j ¼min 4,

xjj

x

n o
,

Transform 
correlations r to z, fit 
REMA model, 
calculate residuals
= −

Draw 
~ (0, )

randomly

Generate pseudo-
data:

Repeat B 
times

Fit new REMA 
& save effect
estimate

Figure 1. Visual illustration of the wild bootstrap procedure for generating B bootstrap samples of

the main effect estimate on the z scale. REMA, random-effects meta-analysis.
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with ɛ̂ j ¼ ẑ j� ẑ,xij ¼wj=∑
K

i¼1

wi and x¼K�1 ∑
K

i¼1

xij [see theAppendix S1 ofWelz and Pauly,

2020 for details). Plugging them into equation (13) leads to the confidence intervals

tanh ẑ� σ̂HC j
� tK�1,1�α=2

� �
, j¼ 3,4: (17)

2.3.4. Integral z-to-r transformation

There is a fundamental problem with back-transforming CIs on the z scale using the

inverse Fisher transformation tanh. Consider a random variable ξ :NðartanhðρÞ,σ2Þwith

some variance σ2>0 and ρ≠0. Then ρ¼ tanhððξÞÞ≠ðtanhðξÞÞ by Jensen’s inequality.

This means the back-transformation introduces an additional bias. A remedy was

proposed by Hafdahl (2009), who suggested back-transforming from the z scale using an

integral z-to-r transformation. This transformation is the expected value of tanhðzÞwhere

z :Nðμz,τ2zÞ that is,

ψðμzjτ2zÞ¼
Z ∞

�∞
tanhðtÞf ðtjμz,τ2zÞdt, (18)

where f is the density of z. In practicewe apply this transformation to the lower and upper

confidence limits on the z scale, plugging in the estimates ẑ and τ̂2z . For example, for the

KH-based CI (13) with z scale confidence bounds ‘¼ z� tK�1,1�α=2 � σ̂KH and

u¼ zþ tK�1,1�α=2 � σ̂KH, with an estimated heterogeneity τ̂2z (on the z scale), the CI is

given by

ψð‘jτ̂2zÞ,ψðujτ̂2zÞ
� �

:

If the true distribution of ẑ is well approximated by a normal distribution and τ̂2z is a
good estimate of the heterogeneity variance (on the z scale), ψ should improve the CIs as

compared to simply back-transformation with tanh (Hafdahl, 2009). Following this

argument, we also suggest using ψ instead of tanh. We calculate the integral with

Simpson’s rule (Süli &Mayers, 2003), which is amethod for the numerical approximation

of definite integrals. Following Hafdahl (2009), 150 subintervals over ẑ�5 � τ̂SJ were used.
Note that the HOVz CI is implemented in its original formulation, using tanh.

3. Simulation study

We have suggested several new CIs for the mean correlation ρ, all based on the z

transformation, applicable in both, fixed- and random-effects models. In order to
investigate their properties (especially coverage of ρ), we perform extensive Monte Carlo

simulations. We focus on comparing the coverage of our newly suggested CIs with

existing methods.

3.1. Simulation study design

The Pearson correlation coefficient is constrained to lie in the interval ½�1,1�. The typical
random-effects model μi ¼ μþuiþ ɛi, assuming a normal distribution for the random
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effect ui ∼N 0,τ2ð Þ and error term ɛi ∼N 0,σ2i
� �

, needs to be adjusted, since values

outside of ½�1,1� could result when sampling without any modification.

3.1.1. Model 1

As a first option for generating the (true) study-level correlations, we consider a truncated

normal distribution ρi ∼N ρ,τ2ð Þ: Sampling of ρi is repeated until a sample lies within the

interval ½�0:999, 0:999�. This type of truncated normal distribution model was also used

in Hafdahl andWilliams (2009) and Field (2005). A problemwith this modelling approach

is that the expected value of the resulting truncated normal distribution is in general not

equal to ρ. For a random variable X stemming from a truncated normal distribution with

mean μ, variance σ2, lower bound a and upper bound b,

ðXÞ¼ μþσ
ϕðΔ1Þ�ϕðΔ2Þ

δ
,

where Δ1 ¼ða�μÞ=σ, Δ2 ¼ðb�μÞ=σ and δ¼ΦðΔ2Þ�ΦðΔ1Þ (Johnson, Kotz, & Balakr-

ishnan, 1994). Here ϕð�Þ is the probability density function of the standard normal

distribution andΦð�Þ its cumulative distribution function. Figure S15 shows the bias in our

setting with a¼�0:999 and b¼ 0:999. The bias is equal to σðϕðΔ1Þ�ϕðΔ2ÞÞ=δ. In
addition to generating a biased effect, the truncation also leads to a reduction of the overall

variance, which is smaller than τ2.

3.1.2. Model 2

We therefore studied a second model, in which we generate the (true) study-level effects

ρi from transformed beta distributions: Y i ¼ 2ðXi�0:5Þ with Xi ∼Beta α,βð Þ for studies
i¼ 1,⋯,K . The idea is to choose the respective shape parameters α,β such that

E Y ið Þ¼ 2 � α

αþβ
�0:5

� �
¼ ρ,

Var Y ið Þ¼ 4αβ

ðαþβÞ2 αþβþ1ð Þ¼ τ2:

The solution to the system of equations above is

α¼ð1�ρÞð1þρÞ�τ2

τ2
� 1þρ

2

� �
,

β¼ 1�ρ
1þρ

� �
α:

In this second simulation scenario we also truncate the sampling distribution of the

correlation coefficients to ½�0:999, 0:999�, but values outside of this interval are

considerably rarer. The second model has the advantages that the expected value and

variance are approximately correct, unlike in the first (truncated)model. A disadvantage is
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that for extreme τ2 values, the above solution for α (and thus β) may become negative,

which is undefined for parameters of a beta distribution. However, this was not a concern

for the parameters considered in our simulation study and only occurs in more extreme

scenarios.

3.1.3. Parameter choices

In order to get a broad overview of the performance of all methods, we simulated various

configurations of population correlation coefficient, heterogeneity, sample size and

number of studies. Here we chose the correlations ρ∈f0, :1, :3, :5, :6, :7, :8, :9gand
heterogeneity τ∈ 0,0:16,0:4f g. We used the same values for τ as Hafdahl and Williams

(2009), to enable comparability of our simulation studies. Moreover, we considered small
to large numbers K∈ 5, 10, 20, 40f g of studies with different study sizes. For K = 5, we

considered n
!¼ 15, 16, 19, 23, 27ð Þ as vector of ‘small’ study sizes and 4 �n! for larger study

sizes, corresponding to an average study size nð Þof 20 and 80 subjects, respectively. For all
other choices of K we proceeded similarly, stacking copies n

~
behind each other, for

example, the sample size vectors n
!
, n
!� �

and 4 � n
!
, n
!� �

forK ¼ 10. Byway of comparison,

Hafdahl and Williams (2009) considered 5 ≤K ≤ 30. As we wanted to capture the

methods’ behaviour when many studies are present, we also included the setting K ¼ 40
in our simulation study. Additionally, we accounted for variability in study sizes, which

will be present in virtually any meta-analysis in practice. Additionally, we considered two

special scenarios: the case of few and heterogeneous studies, with study size vector

23,19,250,330,29ð Þ and the case of many large studies, with study size vector n
!∗

,n
!∗� �

with n
!∗ ¼ 210,240,350,220,290,280,340,400,380,290ð Þ. The latter case corresponds to

K ¼ 20 studies with an average of 300 study subjects.

Thus, in total we simulated 8 ρð Þ�3 τ2ð Þ�10 K , studysizevectorð Þ� modelsð Þ¼ 480

different scenarios for each type of confidence interval discussed in this paper. For each

scenario we performed N ¼ 10,000 simulation runs, where for the WBS CI each run was

based upon B¼ 1,000 bootstrap replications. The primary focus was on comparing
empirical coverage, with nominal coverage being 1�α¼ :95. For 10,000 iterations, the

Monte Carlo standard error of the simulated coverage will be approximatelyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:95� :05=10000

p
≈0:218% , using the formula provided in the recentwork on simulation

studies by Morris, White, and Crowther (2019).

All simulations were performed using the open-source software R. The R scripts

written by the first author especially make use of the metafor package for meta-analysis

(Viechtbauer, 2010).

3.2. Results

For ease of presentation, we aggregated the multiple simulation settings with regard to

number and size of studies. The graphics therefore display the mean observed coverage

for each confidence interval type and true main effect ρ. Results are separated by

heterogeneity τ2 and simulation design. The latter refers to the truncated normal

distribution approach and the transformed beta distribution approach, respectively.More

detailed simulation results for all settings considered are given in the Appendix S1.
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3.2.1. Coverage

We first discuss the results based on the truncated normal distribution (model 1). In the

case of no heterogeneity (fixed-effect model), Figure 2 shows that the new methods

control the nominal coverage of 95% well. Only the first wild bootstrap (WBS1) CI

exhibits liberal behaviour, yielding empirical coverage of approximately 93:5% . The HS

approach only provides 90% coverage, and HOVzwas slightly conservative with (mean)

coverage of around 97–98% . Moreover, in the fixed-effect model the value of ρ did not

affect any of the methods.
In the truncated normal set-up with moderate heterogeneity of τ¼ 0:16 in Figure 3,

several things change. First, there is a strong drop-off in coverage for higher correlations

ρ≥ :8. For HS this drop-off occurs earlier for ρ ≥ :7. Second, for ρ ≤ :7, HS is even more

liberal than for τ¼ 0, with coverage around 87.5%. Additionally, HOVz is no longer

conservative but becomes more liberal than WBS1 with estimated coverage probabilities

around 90–94% for ρ≤ :7. For all new methods a slight decrease in coverage can be

observed for increasing values of ρ from 0 to .7. Moreover, there is a slight uptick at ρ¼ :8
for HOVz, followed by a substantial drop-off. Overall the WBS3, HC3, HC4 and KH CIs
show the best control of nominal coverage in this setting.

We now consider model 2 with a transformed beta distribution model. In the fixed-

effects case (τ2 ¼ 0) the two models are equivalent so we obtain the same coverage as in

Figure 2. For moderate heterogeneity (τ¼ 0:16; see Figure 4), our newly proposed

methods clearly outperformHOVz andHS,with a good control of nominal coverage.Only

for ρ¼ :9 is their coverage slightly liberal. WBS1 performs just slightly worse than the

other newCIs. The observed coverage for HS is around 86–88% for ρ ≤ :7 and drops to just
below 80% for ρ¼ :9. For ρ>:6 the HOVz CI is even worse, with values dropping
(substantially) below 75%.

Figure 2. Mean Coverage for truncated normal distributionmodel with τ¼ 0, aggregated across all

number of studies and study size settings. HC, heteroscedasticity-consistent; HOVz, Hedges–-
Olkin–Vevea Fisher z; HS, Hunter–Schmidt; KH, Knapp–Hartung; WBS, wild bootstrap
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For ease of presentation, the results for the case of extreme heterogeneity with τ¼ 0:4
are given in the Appendix S1. Here, we only summarize important points from Figures

S13–S14. In the truncated normal distribution model we observe that HS again has

Figure 4. Mean coverage for transformed beta distribution model with τ¼ 0:16, aggregated across

all number of studies and study size settings. HC, heteroscedasticity-consistent; HOVz, Hedges–-
Olkin–Vevea Fisher z; HS, Hunter–Schmidt; KH, Knapp–Hartung; WBS, wild bootstrap

Figure 3. Mean coverage for truncated normal distributionmodel with τ¼ 0:16, aggregated across

all number of studies and study size settings. HC, heteroscedasticity-consistent; HOVz, Hedges–-
Olkin–Vevea Fisher z; HS, Hunter–Schmidt; KH, Knapp–Hartung; WBS, wild bootstrap
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unsatisfactory coverage, compared with the other approaches. For our new CIs based on

the Fisher transformation, for small K , coverage is approximately correct for ρ≤ :6 and

then drops off considerably. HOVz is slightly liberal with coverage around 90% for ρ≤ :6
and then drops off strongly. This holds for both smaller and larger studies with
n∈ 20,80f g, respectively. For an increasing number of studies K , HOVz remains largely

unchanged, whereas coverage of the new methods gets progressively worse (i.e., the

drop-off in coverage occurs earlier for an increasing number of studies). For K ¼ 40 the

new CIs only have correct coverage for ρ ≤ :3. In the case of the beta distribution model

with τ¼ 0:4 the new CIs provide correct coverage for ρ≤ :7 in all scenarios, dropping off

after this threshold. HOVz is highly inadequate, with coverage growing progressively

worse for increasing K . HOVz only has correct coverage for simultaneously ρ≤ :1 and

large K . For K ¼ 5, HS has coverage up to 82%, decreasing for increasing values of ρ.
However, for increasing number of studies (whether large or small), HS appears to

converge towards nominal coverage. In particular, for K ¼ 40 and ρ>:7, HS provides the
most accurate coverage under the beta distribution model.

3.2.2. Interval lengths

We simulated the expected confidence interval lengths for all methods discussed in this

paper. The detailed results are provided in Figures S7–S12. The results again depend on
both the assumed model and the amount of heterogeneity τ.

Generally we observe that the confidence intervals become increasingly narrow for

increasing values of ρ and increasinglywide for larger values of τ. For the truncated normal

distribution model and τ¼ 0, HS (on average) yields the shortest confidence intervals and

HOVz the widest, with the other CIs lying in between with quite similar lengths. Only for

K ¼ 5 are the CIs based on the wild bootstrap quite wide, indicating that potentially more

studies are required to reliably use WBS-based approaches. For τ¼ 0:16, HS again yields

the shortest CIs in all scenarios. For smallK , theWBS approaches yield thewidest CIs, and
formore studies,HOVz is thewidest,when ρ is small, but becomingnearly as narrow asHS

when ρ is close to 1. The lengths of the other CIs are nearly identical for K ¼ 40, whereas

for fewer studies there are considerable differences. This relative evaluation also holds for

τ¼ 0:4.
When the underlying model is the beta distribution model and τ¼ 0, the results are

equivalent to the truncated normal distribution model. For τ¼ 0:16 and K ¼ 5 the widths

of the newCIs decreasewith increasing ρuntil ρ¼ :7. Interestingly, thewidths of theseCIs

then increase again for ρ>:7,whichwasnot observed in the truncated normalmodel. This
effect becomes much less pronounced for increasing number of studies K. HS is always

narrower than the newCIs, and, forK ≥ 20,HOVz is thewidest at ρ¼ 0but evennarrower

than HS for ρ ≥ :8. For τ¼ 0:4 the results are similar, except that thewidths of the CIs now

decrease monotonously for increasing ρ and HOVz is narrowest for ρ>:5.

3.2.3. Recommendations

We summarize our findings by providing recommendations to practitioners wishing to
choose between the methods considered. The recommendations will depend on the

assumed model and how much heterogeneity is present in the data. We believe the beta

distributionmodel is better suited for random-effects meta-analyses of correlations. Recall

that HOVz employs the inverse Fisher transformation, whereas our newly proposed

confidence intervals employ the integral z-to-r transformation suggested by
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� τ¼ 0 (fixed-effect model). HS and HOVz are not recommended. We recommend using

KH, HC3 or HC4.

� τ¼ 0:16. For the truncatednormalmodel, HS andHOVz are not recommended andwe

recommend using KH, HC3 or HC4. For ρj j>:7, all methods are unsatisfactory and only
in the case ofK ¼ 40may HOVz be preferable. For the beta distributionmodel, HS and

HOVz are not recommended. All new confidence intervals exhibit satisfactory

coverage. For small K, WBS approaches yield wider confidence intervals, therefore

preferably use KH, HC3 or HC4.

� τ¼ 0:4. For the truncated normal model, HS is not recommended. For K ¼ 5 and

ρj j≤ :7 we again recommend KH, HC3 or HC4. For K ≥ 10 and ρj j≤ :7 we recommend

HOVz. For ρj j>0:7 none of the methods is satisfactory. For the beta distribution

model, HOVz is not recommended. For ρj j≤ :7 we recommend KH, HC3 or HC4. For
K ≥ 40 and ρj j>:7 we recommend using HS. For K ≤ 20 and ρj j>:7 none of the

methods is satisfactory.

4. Illustrative data analyses

Between 25% and 50% of patients fail to take their medication as prescribed by their
caregiver (Molloy et al., 2013). Some studies have shown thatmedication adherence tends

to be better in patientswho score higher on conscientiousness (from the five-factormodel

of personality). Table 2 contains data on 16 studies, which investigated the correlation

between conscientiousness and medication adherence. These studies were first analysed

in the form of a meta-analysis in Molloy et al. (2013). The columns of Table 2 contain

information on the authors of the respective study, the year of publication, the sample size

of study i (ni), the observed correlation in study i, the number of variables controlled for

(controls), study design, the type of adherence measure (a_measure), the type of
conscientiousness measure (c_measure), the mean age of study participants (mean_age)

and themethodological quality (as scoredby the authors on a scale from1 to 4,with higher

scores indicating higher quality).

Regarding the measurement of conscientiousness, where NEO (Neuroticism-

Extraversion-Openness) is indicated as c_measure, the personality trait of conscientious-

ness was measured by one of the various types of NEO personality inventories (PIs; Costa

Jr and McCrae, 1985, 2008).

We performed both a fixed- and random-effects meta-analysis, using all methods
considered. For the random-effects model we used the SJ estimator to estimate the

between-study heterogeneity variance τ2. Combining all available studies yielded

rFE ¼ :130, rRE ¼ :154 and τ̂2SJ ¼ 0:012. In addition to a complete-case study, we also

examined the cross-sectional and prospective studies separately. In total there were five

cross-sectional and 11 prospective studies in the data set. For the cross-sectional studies

rFE ¼ :168 and rRE ¼ :170 resulted and slightly lower values for the prospective studies

(rFE ¼ :108, rRE ¼ :147). Heterogeneity estimates were τ̂2SJ ¼ 0:007 (cross-sectional) and

τ̂2SJ ¼ 0:016 (prospective), respectively. In Table 3weprovide values of all CIs discussed in
this paper.

In the case of all studies (K ¼ 16), all methods yield quite similar CIs except for HS.

Additional simulations for this situation (K ¼ 16, τ2 ¼ 0:012, ni as in Table 3) are given in

the Appendix S1 and show a coverage of around 80% for HS, while all other methods

exhibit a fairly accurate coverage of around 95% and HOVz with around 94%. Thus, the
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price paid for the narrowHSCIs is poor coverage. Additional analyses of other data sets are

given in the Appendix S1.

5. Discussion

We introduced several newmethods to construct confidence intervals for themain effect
in random-effects meta-analyses of correlations, based on the Fisher z transformation. We

compared these to the standard HOVz and Hunter--Schmidt confidence intervals and,

following the suggestion by Hafdahl (2009), utilized an integral z-to-r transformation

instead of the inverse Fisher transformation. We performed an extensive Monte Carlo

simulation study in order to assess the coverage and mean interval length of all CIs. In

addition to the truncated normal distribution model considered by Hafdahl and Williams

(2009) and Field (2005), we investigated a transformed beta distribution model which

exhibits less bias in the generation of the study-level effects.
The results of our simulations show that for low and moderate heterogeneity and

correlations of ρj j ≤ :7, our newly proposed confidence intervals improved coverage

considerably over the classical HOVz and Hunter-Schmidt approaches. However, for

extreme heterogeneity and ρj j>:7 all confidence intervals performed poorly. Therefore,

further methodological research is necessary in order to fill this gap. Also, the choice of

data-generatingmodel (truncated normal or transformedbeta distribution) has substantial

influence on results. For various reasons, which we discussed when introducing the two

models, the beta distribution model is arguably more appropriate. Based on our findings,
we provide recommendations to practitioners looking for guidance in choosing amethod

for data analysis. These are listed in Section 3.2.3.

5.1. Limitations and further research

In the present paper we focused on the Pearson correlation coefficient, as it is the most

commonly used dependence measure. However, a limitation of the Pearson correlation

coefficient is that it only considers the linear relationship between variables. If variables
are related via some nonlinear function or significant outliers are present, other

Table 3. Random-effects model confidence intervals for all studies and subgroups separated by

study design, original data from Molloy et al. (2013)

Approach

Study design

All designs Cross-sectional Prospective

HOVz [.081, .221] [.067, .266] [.050, .240]

HS [.073, .174] [.100, .220] [.035, .166]

KH [.080, .218] [.037, .291] [.043, .239]

WBS1 [.086, .213] [.063, .267] [.051, .232]

WBS2 [.079, .219] [.053, .276] [.043, .239]

WBS3 [.084, .215] [.058, .272] [.048, .234]

HC3 [.081, .218] [.041, .288] [.041, .241]

HC4 [.083, .216] [.054, .276] [.045, .237]

HC, heteroscedasticity-consistent; HOVz, Hedges--Olkin--Vevea Fisher z; HS, Hunter–Schmidt; KH,

Knapp–Hartung; WBS, wild bootstrap.
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correlation coefficients such as Spearman’s rank correlation may be more appropriate.

The Spearman correlation coefficient is the Pearson correlation coefficient of the rank

values of the variables considered. Moreover, it shares similar properties with Pearson’s

correlation such as taking values in [−1,1] and even being asymptotically normal under
relatively weak assumptions (Schmid & Schmidt, 2007). The confidence intervals we

discussed in this paper can be calculated analogously for Spearman correlation

coefficients, for example when dealing with ordinal data. Evaluating their performance,

as we did in our simulation study, in conjunctionwith Spearman correlations is a topic for

future research. A detailed analysis of Spearman’s and more general correlations as in

Schober, Boer, and Schwarte (2018),, however, is outside the scope of this paper.

When dealing with different underlying data than we considered in our paper, it

should be kept inmind that although the underlying normal-normalmodel (4) is often very
useful, it has some limitations. For example, when dealing with binomial variables with

extreme observations, normal approximations may perform poorly (Agresti & Coull,

1998).. A context where this might occur are ceiling or floor effects on questionnaires or

ability tests; that is, when many participants obtain a near maximal (or minimal) score on

some questionnaire, a normal approximation may be invalid. Count data may also be

problematic, due to their ordinal nature and especially when zeros frequently occur.

Therefore researchers should carefully consider the data being analysedwhen choosing a

fitting model in practical applications.
In real-life data sets model (4) may be improved by including meaningful moderator

variables, leading to meta-regression as considered in Viechtbauer et al., (2015) andWelz

and Pauly (2020).. This can considerably reduce the heterogeneity present in the model.

We attempted to further improve the proposed confidence intervals with the help of a

bias correction for the Pearson correlation coefficient r, given by

r∗ ¼ r 1� r2ð Þ= 2 n�1ð Þð Þ, as the (negative) bias of r is usually approximated by

Br ¼�ρ 1�ρ2ð Þ= 2 n�1ð Þð Þ (Hotelling, 1953; Schulze, 2004). However, this bias correc-

tion actually made coverage worse in the settings studied.
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Abstract

Meta-analyses frequently include trials that report multiple effect
sizes based on a common set of study participants. These effect sizes will
generally be correlated. Cluster-robust variance-covariance estimators
are a fruitful approach for synthesizing dependent effects. However,
when the number of studies is small, state-of-the-art robust estimators
can yield inflated Type 1 errors. We present two new cluster-robust
estimators, in order to improve small sample performance. For both
new estimators the idea is to transform the estimated variances of
the residuals using only the diagonal entries of the hat matrix. Our
proposals are asymptotically equivalent to previously suggested cluster-
robust estimators such as the bias reduced linearization approach.
We apply the methods to real world data and compare and contrast
their performance in an extensive simulation study. We focus on
bivariate meta-regression, although the approaches can be applied
more generally.
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1 Introduction

In psychometric and medical research, studies frequently report multiple
dependent outcomes. These effects can be synthesized across studies, while
incorporating study level moderators, via multivariate meta-regression (Berkey
et al., 1998). This is a more sophisticated approach than averaging the effects
within studies to create aggregate effects, which are then synthesized. A
fruitful approach to achieve reliable inference in the case of a multivariate
meta-regression is to use a cluster-robust (CR) variance-covariance estimator
(Hedges et al., 2010). Robust estimators are designed to account for potential
model misspecification. They can handle dependent effect size estimates
and heteroscedastic model errors. A frequent problem in multivariate meta-
analysis models is that it is difficult to impossible to compute the variance-
covariance matrix of the vector of effect estimates. This is because trials
frequently report neither the sampling covariances between study effects
nor individual patient data (IPD). This is where CR estimators come into
play: They have multiple advantages, such as providing consistent standard
errors and asymptotically valid tests without requiring restrictive assumptions
regarding the (correlation) structure of the model errors.

Cluster-robust estimators are an extension of heteroscedasticity consis-
tent (HC) estimators. HC estimators, proposed by White (1980) and later
extended in Cribari-Neto (2004) and Cribari-Neto et al. (2007), were first
proposed in the meta-analytic literature by Sidik and Jonkman (2005). They
have been examined and applied for use in ANCOVA (Zimmermann et al.,
2019), ordinary least squares regression (Hayes and Cai, 2007) and mixed-effect
meta-regression (Hedges et al., 2010; Viechtbauer et al., 2015; Welz and Pauly,
2020). When trials report multiple effects stemming from the same study
participants, their clustered, i.e. correlated nature should be accounted for.
This is where CR estimators come in. The original formulations of both HC
and CR estimators have been shown to possess a downward bias for variance
components, as well as yielding highly inflated Type 1 errors of respective
test procedures in case of a small number of studies/clusters (Viechtbauer
et al., 2015; Tipton and Pustejovsky, 2015; Welz and Pauly, 2020). Therefore
it is recommended to instead use one of various improvements that have been
suggested. We discuss some of these, such as the bias reduced linearization
approach and CR3 as introduced in Bell and McCaffrey (2002), as well as
two new proposals in the chapter on cluster-robust estimators. These can be
applied generally for multivariate meta-regression, but we focus specifically
on the bivariate case.

First, we present the statistical model, as well as tests and confidence
regions for the model coefficients in Section 2. In Section 3, we describe
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multiple CR estimators, including two new suggestions. In Section 4, we
conduct a real world data analysis. Section 5 describes the design and results
of our simulation study. We close with a discussion of the results and an
outlook for future research (Section 6).

2 The Set-up

The usual multivariate mixed-effects meta-regression model (Jackson et al.,
2011) is given by

Yi = Xiβ + ui + εi, i = 1, . . . , l, (1)

where k is the number of independent studies, β ∈ Rq is a vector of coefficients
and Xi a pi × q design matrix of study-level covariates. In the following we
will assume that there are p effects of interest per study, but only pi ≤ p effects
are observed (reported) in study i, i.e. Yi ∈ Rpi . Furthermore, ui is a random
effect that is typically assumed to be multivariate normally distributed with
ui ∼ N (0, Ti) and εi is the within-study error with εi ∼ N (0, Vi). With Ti

we refer to the pi × pi submatrix of the matrix T =

(
τ 2

1 τ12

τ12 τ 2
2

)
, denoting the

p× p between-study variance-covariance matrix (under complete data). Vi

refers to the corresponding pi× pi within-study variance-covariance matrix. A
typical example would be a compound symmetry structure for Ti, see Section
5 below. We rewrite model (1) in matrix notation as

Y = Xβ + u+ ε, (2)

with β ∈ Rq, Y = (Y ′1 , . . . , Y
′
K)′, and design matrix X. Assuming that we

have a block diagonal matrix of weights Ŵ = diag(Ŵ 1, . . . , ŴK), usually

corresponding to the inverse variance weights with Ŵi =
(
T̂i + Vi

)−1

, then

the weighted least squares estimator for β is given by (Hedges et al., 2010)

β̂ = (X ′ŴX)−1X ′ŴY . (3)

We will focus on constructing (multivariate) confidence regions for β and
confidence intervals for the individual coefficients βj, j = 1, . . . , q based on

testing the hypotheses H0 : {β = β0} vs. H1 : {β 6= β0}. We set Σ = Cov(β̂)

and denote estimates thereof by Σ̂. We discuss specific choices for estimating
Σ in Section 3.

Neglecting multiplicity, we note that a commonly used confidence interval
for βj, j = 1, . . . , q is given by
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β̂j ±
√

Σ̂jjz1−α/2. (4)

Here z1−α/2 denotes the 1− α/2 quantile of the standard normal distribution

and Σ̂jj denotes the jth diagonal element of Σ̂. A confidence interval with
better small sample performance that is asymptotically equivalent for k →
∞ is given by using the tp(k)−q,1−α/2 quantile instead, which refers to the
1− α/2 quantile of the t-distribution with p(k)− q degrees of freedom. Here
p(k) :=

∑k
i=1 pi is the total number of observed effects, which is equal to

the number of studies k in the univariate setting (Viechtbauer et al., 2015).
Alternatively the degrees of freedom of the t distribution can be estimated via
a Satterthwaite approximation, as suggested by Bell and McCaffrey (2002).

In order to construct a (1 − α) confidence region for β we consider the
usual Wald-type test-statistic (Tipton and Pustejovsky, 2015)

Q = (β̂ − β0)′Σ̂
−1

(β̂ − β0), (5)

Alternatively, if one were interested in testing more general hypotheses of
the form H0 : {Hβ = c} vs. H1 : {Hβ 6= c} for some hypothesis matrix
H ∈ Rs×q (which we assume to be of full rank) and vector c ∈ Rs, then the
test statistic becomes

QH = (Hβ̂ − c)′(HΣ̂H ′)−1(Hβ̂ − c),
For example, the special case of a test regarding a single regression coefficient
βa would be given by H equal to a vector of length q with a 1 at entry a and
0 otherwise.

Under the null hypothesis Q is approximately χ2
q-distributed (and QH

approximately χ2
f -distributed with f = rank(H)), assuming Σ is positive

definite. However, it is known that tests based on this approximation can
perform poorly for small to moderate values of k (Tipton and Pustejovsky,
2015). An arguably better alternative is the F -test

1 {Q > qFq,k−q,1−α} , (6)

where Fq,k−q,1−α denotes the 1−α quantile of an F -distribution with q and k−q
degrees of freedom. This is analogous to the t-tests for univariate coefficients
and is superior to the test based on the asymptotic χ2-approximation (Tipton
and Pustejovsky, 2015). However, the F -test has been criticized for only
performing well in certain scenarios (Tipton, 2015). As a remedy for smaller
k, Tipton and Pustejovsky (2015) proposed to approximate Q by a Hotelling’s
T 2 distribution with parameters q and (degrees of freedom) η, such that
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η − q + 1

ηq
Q ∼ F (q, η − q + 1). (7)

They discuss different approaches for estimating the degrees of freedom η.
Based on their research, they recommend an estimation approach, which
they call “HTZ”. We briefly summarize this estimator, originally proposed by
Zhang (2012) for heteroscedastic one-way MANOVA, and refer to their paper
for details.

First note that the statistic in (5) can also be written as Q = z′S−1z

with z = Σ−1/2(β̂ − β0) and S = Σ−1/2Σ̂Σ−1/2. Under H0, z is normally
distributed with mean 0 and covariance I (Tipton and Pustejovsky, 2015).
Moreover, if S is a random q × q matrix such that ηS follows a Wishart
distribution with η degrees of freedom and scale matrix Iq, the estimator is
given by

η̂Z =
q(q + 1)∑q

a=1

∑q
b=1 Var(sab)

.

Here sab denotes the entry (a, b) of S. This approach corresponds to setting
the total variation in S equal to the total variation in a Wishart distribution
(Tipton and Pustejovsky, 2015).

However, our own simulations showed that there are situations when
η̂Z < q− 1 and therefore η̂Z − q+ 1 < 0. Specifically this frequently happened
in cases with a small number of studies (k ≤ 5). As the degrees of freedom
in an F distribution cannot be negative the HTZ approach is not applicable
here. Therefore we will stick to the classical F -test (6), although we propose
a small sample adjustment. In our simulations the F -test (6) leads to very
liberal or conservative results, depending on the variance-covariance estimator
used, in settings with k = 5 studies. We therefore propose to truncate the
denominator degrees of freedom at the value two, i.e. we consider the F -test

1
{
Q > qFq,max(2,k−q),1−α

}
. (8)

The simple motivation behind this adjustment is that for an Fm,n distri-
bution with degrees of freedom m and n the expected value n

n−2
only exists

when n > 2. We also tested a truncation of the denominator degrees of free-
dom at three. However, simulations indicate superior coverage of respective
confidence intervals for a truncation at two.

Confidence regions for β can be derived via test inversion. For example,
if (8) is a test for H0 : {β = β0} vs. H1 : {β 6= β0}, then the set

Λ :=
{
β ∈ Rq : (β̂ − β)′Σ̂

−1
(β̂ − β) ≤ qFq,max(2,k−q),1−α

}
(9)
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is a corresponding confidence region for β.
A confidence ellipsoid can be obtained following Johnson et al. (2014),

based on the eigenvalues λ̂j and eigenvectors êj of Σ̂. This means Λ is an

ellipsoid centered around β̂, whose axes are given by

β̂ ±
√
λ̂jqFq,max(2,k−q),1−αêj, j = 1, . . . , q.

This means Λ extends for
√
λ̂jqFq,max(2,k−q),1−α units along the estimated

eigenvector êj for j = 1, . . . , q. Since the volume of an n-dimensional ellipsoid
with axis lengths a1, . . . , an is given by (Wilson, 2010)

V =
2πn/2

nΓ(n/2)

n∏

i=1

ai,

the volume of the confidence ellipsoid Λ is equal to

VΛ =
2πq/2

qΓ(q/2)

q∏

i=1

√
λ̂iqFq,max(2,k−q),1−α.

3 Cluster-Robust Covariance Estimators

Robust variance-covariance estimators, also known as sandwich estimators or
Huber-White estimators, have been recommended as a promising alternative
in the context of meta-regression (Hedges et al., 2010; Tipton, 2015; Welz and
Pauly, 2020). Robust estimators are designed to account for potential model
misspecification. They have many desirable properties, such as consistency
under heteroscedasticity or asymptotic normality (Hedges et al., 2010) without
making restrictive assumptions about the specific form of the effect sizes’
sampling distributions.

The reliability of confidence regions based on the statistic (5) depends

on the quality of the estimator Σ̂ for Σ = Cov(β̂). The standard (Wald-

type) estimator, which we will refer to as ST , is given by (X ′ŴX)−1. The

motivation behind this estimator is that the true covariance matrix of β̂ (given
correct weights) is equal to Σ = (X ′WX)−1 with W = diag (W1, . . . ,WK)
and Wi = Ti + Vi. However, this ignores the imprecision in the estimation
of T, V and therefore in the estimation of W. In fact, if T is estimated
poorly, this may lead to deviations from nominal Type 1 error and coverage
of corresponding confidence regions (Sidik and Jonkman, 2005).

In the case of univariate meta-analysis and meta-regression
heteroscedasticity-consistent (HC) estimators can be applied (Sidik
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and Jonkman, 2005; Viechtbauer et al., 2015; Welz and Pauly, 2020). For
multivariate meta-regression however, the correlated nature of the study
effects needs to be taken into account. We therefore consider cluster-robust
(CR) estimators. A selection of CR estimators is, e.g., implemented in the R

package clubSandwich (Pustejovsky, 2021). The package recommendation is
the “bias reduced linearization” approach CR2, which is discussed in detail
in Tipton and Pustejovsky (2015); Pustejovsky and Tipton (2018). Sandwich
estimators (of HC- as well as CR-type) are all of the general form

Σ̂ = (X ′ŴX)−1X ′Ŵ Ω̂ŴX(X ′ŴX)−1, (10)

with the differences lying in the central “meat” matrix Ω̂, surrounded by
the “bread”. This form motivates the name “sandwich” estimator. HC1

†

is arguably the best known sandwich estimator in the context of univariate
meta-regression (Hedges et al., 2010; Viechtbauer et al., 2015; Tipton and
Pustejovsky, 2015). However, the extensions HC3 and HC4 are frequently
recommended as superior alternatives in the non meta-analytic literature, see
Cribari-Neto et al. (2007) for details, and have been shown to be superior
to HC1 (Long and Ervin, 2000; Hayes and Cai, 2007; Zimmermann et al.,
2019). A natural extension of HC1 for the multivariate setting and what we
will refer to as CR∗1 is defined as

Σ̂CR∗
1

= k
k−q(X

′ŴX)−1

(
K∑

i=1

X ′iŴiΩ̂iŴiXi

)
(X ′ŴX)−1, (11)

where Ω̂i = EiE
′
i with Ei = Yi −Xiβ̂ and k

k−q is a correction factor that
converges to 1 as k goes to infinity. The motivation for this factor is to correct
for a liberal behavior in case of few studies/clusters k; see the clubSandwich

package for similar choices.
However, as our simulation study below will show, tests based on CR∗1

are still quite liberal when k is small. An alternative is to instead use a bias
reduced linearization approach, which was originally proposed by Bell and
McCaffrey (2002) and further developed by Pustejovsky and Tipton (2018).
This estimator, called CR2, is designed to be exactly unbiased under the
correct specification of a working model. This is achieved via a clever choice
of adjustment matrices in the formulation of the estimator, see Tipton and
Pustejovsky (2015); Pustejovsky and Tipton (2018) for details. This is the
recommended approach in the clubSandwich package (Pustejovsky, 2021).

†Σ̂HC1 = k
k−q (X′ŴX)−1

(∑K
i=1X

′
iŴiε̂

2
i ŴiXi

)
(X′ŴX)−1
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Another alternative is the CR3 estimator, which is a close approximation of
the leave-one-(cluster)-out Jackknife variance-covariance estimator. CR3 is
also implemented in the clubSandwich package.

However, all of the estimators above can be unsatisfactory for small k, as
our simulations will show. Therefore, in addition to these CR-estimators, we
propose two others, which are extensions of the HC3 and HC4 estimators.
Since HC3 and HC4 often outperform both HC1 and HC2 in the univariate
regression setting (Long and Ervin, 2000; Cribari-Neto, 2004; Welz and
Pauly, 2020), one would suspect their respective cluster-robust extensions to
outperform in the case of multivariate regression. We therefore define CR∗3
and CR∗4 via

Σ̂CR∗
3

= (X ′ŴX)−1

(
K∑

i=1

X ′iŴiΩ̂3iŴiXi

)
(X ′ŴX)−1, (12)

Σ̂CR∗
4

= (X ′ŴX)−1

(
K∑

i=1

X ′iŴiΩ̂4iŴiXi

)
(X ′ŴX)−1. (13)

Here Ω̂3i is defined as

Ω̂3i = Ω̂i −∆ + ∆ · (Ipi − diag(H i))
−2 , (14)

where H i refers to the submatrix of H with entries pertaining to study i, pi
is the number of observed effects in study i and ∆ = diag(EiE

′
i). H refers to

the hat matrix H = X(X ′ŴX)−1X ′Ŵ . Furthermore, Ω̂4i is equal to (14)
except ∆ is multiplied with (Ipi − diag(H i))

−δi , where δi = min
{

4, hii/h̄
}

with hii denoting the i-th diagonal element of H and h̄ is the average of
the values in the diagonal of the hat matrix. This data-dependent exponent
stems from the HC4 suggestion by Cribari-Neto (2004). HC4 performs well
in univariate meta-regression (Welz and Pauly, 2020) and therefore motivates
an extension to the cluster-robust context.

We highlight that our proposed estimator CR∗3 is different from the esti-
mator CR3 implemented in the R package clubSandwich as proposed by Bell
and McCaffrey (2002). Whereas the latter uses the entire hat matrix for each
cluster, we propose to use just the diagonal elements. In contrast, the “meat”
matrix for CR3 is given by

∑K
i=1X

′
iŴi(I −Hi)

−1Ω̂i(I −Hi)
−1ŴiXi.

Furthermore note that CR∗3 is not even equal to the estimator with meat
matrix given by

K∑

i=1

X ′iŴi(I − diag(Hi))
−1Ω̂i(I − diag(Hi))

−1ŴiXi

8



because Ω̂i is in general not a diagonal matrix (only block-diagonal), due to
the clustered nature of the data.

For univariate regression we were able to prove the asymptotic equivalence
of all HC estimators, which is formulated in the supplement of Welz and
Pauly (2020). Under some some weak regularity conditions it follows that the
leverages asymptotically converge to zero, as the number of studies k goes
to infinity. Therefore, we expected similar results to hold for CR estimators
with analogous arguments. A theorem regarding the asymptotic equivalence
of CR estimators under regularity conditions is given in the supplement of
this paper, along with a proof.

4 Data Analysis

We exemplify the methods presented in this manuscript with the analysis
of a dataset containing 81 trials examining overall (OS) and/or disease-free
survival (DFS) in neuroblastoma patients with amplified (extra copies) versus
normal MYC-N genes. The data are contained in the R package metafor and
were previously analyzed by Riley et al. (2003, 2007). Amplified MYC-N
levels are associated with poorer outcomes. The effect measures are log
hazard ratios with positive values indicating an increased risk of death or
relapse/death for patients with higher MYC-N levels as compared to patients
with lower levels. 17 studies reported both outcomes, 25 studies only reported
DFS and 39 studies only reported OS.

The dataset contains the log hazard ratios and the corresponding sam-
pling variances. However, since no information is available on the sampling
covariances between OS and DFS we must make some assumptions with
regard to our working model. In the spirit of a sensitivity analysis we will
first assume a weaker correlation of %1 = 0.5 and subsequently a stronger
correlation of %2 = 0.8 and then compare the results. This means for a
hypothetical study i that reports log hazard ratios for OS and DFS, yi,OS
and yi,DFS, with an assumed correlation of 0.5 along with respective sampling
variances σ2

i,OS and σ2
i,DFS, we have the sampling variance-covariance matrix

Vi =

(
σ2
i,OS 0.5 · σi,OSσi,DFS

0.5 · σi,OSσi,DFS σ2
i,DFS

)
.

We assume a multivariate meta-regression model that includes a random
effect as in Section 2 as well as an unstructured (but positive definite) variance-
covariance matrix. In the following we are interested in testing whether both
pooled effects are different from zero. When the full dataset is analyzed, the
Wald-test for H0 : {β = 0} vs. H1 : {β 6= 0} returns a p-value < 0.001 for
all CR estimators and for both %1 and %2. However, let us assume we only
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had the data from studies 1-5, which all contain results for both OS and DFS.
Such a situation is not unrealistic, considering the median number of studies
per meta-analyses in a sample of 22,453 published meta-analyses from the
Cochrane Database was three (Davey et al., 2011). This reduced dataset is
shown in Table 1. The p-values for the estimators CR1∗, CR3∗, CR4∗, CR2

and ST for assumed correlations %1, %2 are displayed in Table 2.

study yi vi outcome
1 -0.11 0.45 DFS
1 -0.14 0.66 OS
2 0.30 0.07 DFS
2 0.67 0.08 OS
3 0.41 0.77 DFS
3 0.43 0.66 OS
4 0.47 0.29 DFS
4 2.08 0.45 OS
5 0.76 0.24 DFS
5 0.70 0.31 OS

Table 1: Sample of five studies containing log hazard ratios (yi) for disease-free
and overall survival and their respective sampling variances (vi).

The results show that when the number of studies is small the p-values
can vary substantially, depending on the choice of estimator. Furthermore,
the results based on CR estimators appear to be more stable and depend
much less on the underlying V matrix i.e. the assumed correlation between
OS and DFS than the standard estimator (X ′ŴX)−1. This motivates the
use of a CR approach over the standard variance-covariance estimator.

Estimators
p-values
%1 %2

CR1* 0.073 0.075
CR3* 0.069 0.077
CR4* 0.076 0.090
CR2 0.054 0.055
ST 0.138 0.206

Table 2: p-values of Wald-tests based on CR estimators and the standard
variance-covariance estimator (X ′ŴX)−1 for assumed correlations of %1 =
0.5 and %2 = 0.8.
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5 Simulation Study

Simulation Design In order to assess the performance of the previously
discussed methods, we conducted a Monte Carlo simulation. We con-
sidered k ∈ {5, 10, 20, 40} studies, average study sizes N ∈ {40, 100}
with balanced treatment and control groups, coefficient vectors β =
(β0, β1, β2, β3)

′ ∈ {(0, 0, 0, 0)′, (0.2, 0.2, 0.1, 0.1)′, (0.4, 0.4, 0.2, 0.3)′}, correla-
tions % ∈ {0, 0.3, 0.7} and missing data ratios from {0, 0.1, 0.2, 0.3, 0.4}. The
latter refers to the number of studies that only report one of the two effects
of interest and % refers to the IPD correlations between the two observed
outcomes. In the coefficient vector β the first two entries refer to the popu-
lation means of the two effects of interest and the other two represent the
effect of the study-level moderator on each effect respectively. Study sizes
were varied, such that for an average study size N , 20% of studies had size
0.8N, 0.9N, . . . , 1.2N respectively. Datasets with missing data were generated
by first simulating complete data and then removing entries completely at
random.

The simulated study-level effects are (correlated) standardized mean
differences (SMD). We estimated these SMDs via the adjusted Hedges’ g
(Hedges, 1981)

g :=
Γ(m/2)√

(m/2)Γ((m− 1)/2)
d

with m = nT +nC−2 and where nT and nC refer to the treatment and control
group sizes. Hedges’ g is defined as d = (x̄T − x̄C)/s∗, with a pooled standard

deviation s∗ =

√
(nT−1)s2T +(nC−1)s2C

m
, where s2

T , s
2
C refer to the variances in the

treatment and control groups respectively (Hedges, 1981). This adjustment
to Hedges’ g yields an unbiased effect estimator (Lin and Aloe, 2021). We
generated the SMDs by first simulating individual participant data (IPD).
The treatment and control group IPD observations Y T

ij and Y C
ij were drawn

from bivariate normal distributions respectively. More precisely, for study
i = 1, . . . , k and participant j = 1, . . . , Ni/2 the observations are drawn from

Y T
ij ∼ N (θi, P ) and Y C

ij ∼ N (0, P ) with θi = Xβ + ui and P =

(
1 %
% 1

)
is

the population correlation matrix of the outcomes in study i. X is a 2× q
design matrix of covariates. In our specific simulation design of a single
study-level covariate x with potentially different influence on the two study

effects we have X =

(
1 0 x 0
0 1 0 x

)
.
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For the heterogeneity matrix T we consider the two settings
(

τ 2 0.2τ 2

0.2τ 2 τ 2

)
and

(
τ 2 0.4τ 2

0.4τ 2 2τ 2

)
.

For M = N/2 (average size of the treatment and control groups), we set

τ 2 := 2
M

+
β2
0

4M
= 4

N
+

β2
0

2N
, which is approximately equal to the sampling

variance of the standardized mean difference (Borenstein et al., 2021). This
corresponds to an I2 value of 0.5. Here, I2 refers to the percentage of the total
variation across studies that is due to heterogeneity rather than sampling
variation (Higgins and Thompson, 2002).

We briefly discuss the covariance between two SMDs in the setting where
we have a single treatment and control group but with different outcome
measures. The resulting effect sizes will be correlated because the outcomes
are collected from the same study participants. Olkin and Gleser (2009)
showed that a large sample estimate for the covariance between two SMDs d1

and d2 with estimated (raw data) correlation %̂ is given by

Ĉov(d1, d2) = %̂
(

1
nT

+ 1
nC

)
+
%̂2d1d2

m
. (15)

Thus we obtain

Ĉov(g1, g2) =

(
Γ(m/2)√

(m/2)Γ((m− 1)/2)

)2(
%̂

(
1

nT
+

1

nC

)
+
%̂2d1d2

m

)
. (16)

All results are based on a nominal significance level α = 0.05. For each
scenario we performed N = 5000 simulation runs. The primary focus was
on comparing empirical coverage of the confidence regions (9) with nominal
coverage being 1− α = 0.95. For 5000 iterations, the Monte Carlo standard

error of the simulated coverage will be approximately
√

0.95×0.05
5000

≈ 0.31% and

assuming a power of 80% the Monte Carlo standard error of the simulated

power will be approximately
√

0.8×0.2
5000

≈ 0.57% (Morris et al., 2019).

All simulations were performed using the open-source software R. The
R scripts written by the first author especially make use of the metafor

package for meta-analysis (Viechtbauer, 2010) as well as James Pustejovsky’s
clubSandwich package.

Results

Figures 1–4 display the empirical coverage based on the adjusted F -test
(8) and estimators CR∗1, CR∗3, CR∗4, CR2 and ST . CR∗1 and CR2 yield much
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less than nominal coverage 95% in all settings, but especially for k < 40.
CR2 gives around 50% coverage for five studies, between 70-80% for ten,
82-87% for twenty and 88-91% coverage for forty studies. The CR∗1 estimator
yields between 25-50% coverage for five studies, 65-75% for ten, 80-86% for
twenty and 87-91% for forty studies. It is interesting to observe a clustering
of coverage results for the estimator CR1∗ and k = 5 (depending on the inter-
study correlation of effects) that cannot be observed for any other setting or
estimator. The standard estimator ST gives approximately correct coverage
for k ≥ 20 but is highly conservative for k ≤ 10 studies, especially for five.
CR∗3 very consistently yields slightly more coverage than CR∗4 in all settings
except for k = 40 where the difference between the two is negligible. For
k = 5 coverage based on CR∗4 is approximately nominal and when based on
CR∗3 slightly conservative. For k = 10 and k = 20 CR∗4 gives coverage around
91-92% and CR∗3 around 93-94%. For k = 40 both yield coverage around
92-94%.
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Figure 1: Coverage of the confidence set (9) based on an inversion of the
adjusted F -test for k = 5 studies.
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Figure 2: Coverage of the confidence set (9) based on an inversion of the
adjusted F -test for k = 10 studies.
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Figure 3: Coverage of the confidence set (9) based on an inversion of the
adjusted F -test for k = 20 studies.
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Figure 4: Coverage of the confidence set (9) based on an inversion of the
adjusted F -test for k = 40 studies.

In addition to these empirical coverage results, we also consider the
power related to the respective tests and confidence regions. The power
plots are provided in Figures 5 and 6 for β = (0.2, 0.2, 0.1, 0.1)′ and β =
(0.4, 0.4, 0.2, 0.3)′ respectively. We show box plots to summarize the various
simulation settings. For β = (0.4, 0.4, 0.2, 0.3)′ power is monotone increasing
in the number of studies k for all estimators. For β = (0.2, 0.2, 0.1, 0.1)′ power
is monotone increasing in k for CR∗3, CR

∗
4 and ST , whereas for CR∗1 and CR2

power decreases from a median of approximately 70% and 60% to 55% and
52% respectively, when going from five to ten studies and then increases in k
beyond this point.

The differences in power between the considered estimators are small
for a large number of studies and become more pronounced as the number
of studies decreases. For forty studies the power based on all estimators
is nearly identical for both choices of β. For twenty studies power based
on CR∗1 and CR2 is slightly higher than for the other estimators. CR∗3,
CR∗4 and ST yield approximately the same power for both choices of β and
twenty studies. For k = 10 and β = (0.2, 0.2, 0.1, 0.1)′ the median power
for CR∗1 and CR2 is around 55% and 52% respectively, whereas for CR∗3,
CR∗4 and ST it is around 25%, 31% and 20% respectively. For k = 10 and
β = (0.4, 0.4, 0.2, 0.3)′ the median power for CR∗1 and CR2 is around 87%,
whereas for CR∗3, CR∗4 and ST it is around 70%, 74% and 73% respectively.
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For k = 5 and β = (0.2, 0.2, 0.1, 0.1)′ the median power for CR∗1 and CR2 is
around 70% and 60% respectively, whereas for CR∗3, CR∗4 and ST it is only
around 8%, 12% and 0% respectively. For k = 5 and β = (0.4, 0.4, 0.2, 0.3)′

the median power for CR∗1 and CR2 is around 83% and 70% respectively,
whereas for CR∗3, CR∗4 and ST it is around 13%, 24% and 1% respectively.
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Figure 5: Box plots of power based on adjusted F -test for all settings with
β = (0.2, 0.2, 0.1, 0.1)′.
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Figure 6: Box plots of power based on adjusted F -test for all settings with
β = (0.4, 0.4, 0.2, 0.3)′.
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6 Discussion

Multivariate Meta-Regression is an important tool for synthesizing and in-
terpreting results from trials reporting multiple, correlated effects. However,
information on these correlations is rarely available to analysts, making it
difficult to construct the variance-covariance V matrix of the studies’ sam-
pling errors. Cluster-robust estimators allow for a correction of the standard
errors, therefore enabling more reliable inference. In this paper we introduced
two new proposals of CR estimators for use in multivariate meta-regression.
We performed a simulation study, comparing these estimators with results
based on two alternative CR estimators and the standard variance-covariance
estimator with a focus on coverage and power of confidence sets and tests, as
well as an illustrative real life data analysis. In our manuscript we only inves-
tigated the bivariate meta-regression setting, although all methods discussed
are also applicable in higher dimensions. Further work is necessary to assess
the viability of our suggestions in other settings, such as when the number of
effects per study is greater than two.

Our main findings can be summarized as follows: The Zhang estimator,
discussed in Tipton and Pustejovsky (2015), can lead to a negative estimate
of the denominator degrees of freedom in the F -distribution. This can occur
when the number of studies is very small. The AHZ approach is therefore not
recommendable for bivariate meta-regression if the number of studies is small
(k ≤ 5). Furthermore, when using the classical F -test in the bivariate setting,
we recommend truncating the denominator degrees of freedom at two. The
CR∗1 and CR2 estimators yield an empirical coverage that lies far below the
nominal level 1−α and the coverage based on the other estimators, especially
for smaller numbers of studies. On the flip side the tests based on these two
CR-estimators unsurprisingly have superior power. The ST estimator has
approximately correct coverage for k ≥ 20 studies but is highly conservative
for k ≤ 10 studies. CR∗3 and CR∗4 yield approximately correct coverage for
five studies. CR∗3 also gives nearly correct coverage for ten studies whereas
CR∗4 becomes slightly liberal in this case.

Based on our results we recommend using either the CR∗3 or CR∗4 estimator
for bivariate meta-regression if k ≤ 10 with a very slight preference for CR∗3.
For an analysis with k ≥ 20 studies the ST estimator seems to work best.

A limitation of our simulation study is that the sampling covariances
between study-level effects were available for the construction of weight
matrices. As mentioned in the introduction, this is often not feasible in
practice, requiring analysts to calculate weights using a specified working
model for the covariance structure. Hedges et al. (2010) provide possible
working models likely to be found in meta-analyses. They propose the use of
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approximately inverse variance weights, based on these working models.
An open question that requires further research is what the best testing

procedure is when the number of studies k is no greater than around five.
Neither the adjusted Hotelling’s T 2 approach in combination with Zhang’s
estimator for the degrees of freedom, which was recommended by Tipton and
Pustejovsky (2015), nor the naive or adjusted F -tests used in our simulations
seem to be the ideal approach. This requires more intensive work that is
outside the scope of this manuscript. For a discussion of alternative estimation
approaches for the degrees of freedom in the adjusted Hotelling approach,
we refer to Tipton and Pustejovsky (2015). Another question for future
research is whether other statistics or resampling approaches that have shown
promising small sample approximations for heterogeneous MAN(C)OVA
settings (Friedrich et al., 2017; Friedrich and Pauly, 2018; Zimmermann et al.,
2020) can also help in multivariate meta-regression models.
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Viechtbauer, W., López-López, J. A., Sánchez-Meca, J., and Maŕın-Mart́ınez,
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Supplement to “Cluster-Robust Estimators for Bivariate
Mixed-Effects Meta-Regression”

Theorem 1. Suppose there is a k0 ∈ N such that k(X ′ŴX)−1 exists and

is uniformly bounded element-wise for all k ≥ k0. Furthermore, let T̂ be
a consistent estimator for T and Λ the confidence region defined in the
main paper. Then the CR estimators CR0, CR1, CR2, CR3, CR

∗
3, CR

∗
4 are

asymptotically equivalent and we have P (Λ 3 β) −→ 1− α as k →∞.

Proof. Let k ∈ N be the number of studies, β ∈ Rq and X ∈ Rk×q. Further-
more, β̂ = (X ′ŴX)−1X ′Ŵy and H = X(X ′ŴX)−1X ′Ŵ . Then

HX = X(X ′ŴX)−1X ′ŴX = X,

and since X is a design matrix with the first column equal to 1kp, all row
sums in H are equal to 1. Due to the regularity condition that there exists a
k0 ∈ N such that ∀ k ≥ k0 : k(X ′ŴX)−1 exists and is uniformly bounded
element-wise, we have that for every i, j ∈ {1, . . . , kp} : hij

a.s.→ 0 as k →∞.
So for i ∈ {1, . . . , k} it holds that Hi → 0 as k →∞. Here Hi refers to the

submatrix of H with entries pertaining to study i. Thus (Ipi−Hi)
η −→ Ipi and

also (Ipi − diag(Hi))
η −→ Ipi as k →∞ for any η ∈ R. It follows that Σ̂a −

Σ̂b → 0q×q as k → ∞ for any choice of a, b ∈ {CR0, CR
∗
1, CR3, CR

∗
3, CR

∗
4},

i.e. they are asymptotically equivalent.
Consider the test statistic

Q = (β̂ − β0)
′Σ̂−1

CR(β̂ − β0),

where Σ̂CR is one of the considered CR variance-covariance estimators. Then
for any choice of CR estimator (as they are all consistent) we have Σ̂CR →
Σ = Cov(β̂) as k →∞. It follows with Slutzky’s Lemma that Q

d−→ χ2
q as

k →∞ because with Lemma 2 in White (1980), it holds that Σ̂
−1/2
CR β̂

d−→
N (β, Iq). Furthermore it holds that qFq,k−q,1−α

d−→ χ2
q,1−α as k →∞ because

Fq,k−q
d
=

χ2
q/q

χ2
k−q/(k−q)

, where χ2
q, χ

2
k−q are independent chi-squared distributed

random variables with q, k − q degrees of freedom and ξ := χ2
k−q/(k − q)

a.s.→ 1

as k →∞ since E(ξ) ≡ 1 and Var(ξ) = 2
k−q → 0 for k →∞.

Therefore the confidence region Λ from the main paper is an asymptotic
1− α confidence region for β.
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Technical Appendix

We include a technical appendix, which is an excerpt (pp. 236–242) of the supplement
from the first manuscript (Welz and Pauly, 2020). The rest of the supplement, which
includes complete simulation results, is omitted for the sake of brevity. The technical
appendix includes mathematical details that were not included in the main publication
of the first article.
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7 Technical Appendix

Proposition 1. Let K ≥ 2 be the number of studies. Then the general form of the
HC-type estimator in the case of no moderators is

Σ̂` =
c`

(
∑K

i=1 wi)
2

K∑

j=1

w2
j ε̂

2
j(1− xjj)γ` , ` = 0, . . . , 5 (S1)

where wj = (σ2
j + τ̂ 2)−1, xjj =

wj∑K
i=1 wi

is the jth diagonal element of the hat matrix

X(X ′ŴX)−1X ′Ŵ and γ` takes different values, depending on the type of HC
estimator. Moreover, for HC1, c1 = K

K−1
, otherwise c` = 1. The residuals are

defined as ε̂ = (ε̂j)
K
j=1 = y −Xβ̂.

Proof. Proposition 1
We first note that in the case of no moderators the design matrix takes the simple
form X = (1, . . . , 1)′ ∈ RK . The HC estimators from equations (3) - (7) are then
given by

Σ̂` = (X ′ŴX)−1X ′Ŵ Ω̂`ŴX(X ′ŴX)−1, ` = 0, 2, . . . , 5

with Σ̂1 = K
K−1

Σ̂0, where Ŵ = diag(σ2
i + τ̂ 2)−1 and

Ω̂` = diag
(

y−Xβ̂
)2

· diag
(

(1− xjj)γ`
)
.

Then

X ′ŴX = (1, . . . , 1) · Ŵ · (1, . . . , 1)′ =
K∑

i=1

(σ2
i + τ̂ 2)−1 =:

K∑

i=1

wi,

where the wi are the classical inverse variance weights of the random effects model.
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Furthermore the jth diagonal element of the hat matrix is

xjj = [X(X ′ŴX)−1X ′Ŵ ]jj

= [(1, . . . , 1)′ ·
( 1∑K

i=1wi

)
· (1, . . . , 1) · diag(wi)]jj

= [
( 1∑K

i=1 wi

)
·




1 . . . 1
...

...
1 . . . 1


 · diag(wi)]jj

=
( 1∑K

i=1wi

)
·



w1 . . . wK
...

...
w1 . . . wK



jj

=
wj∑K
i=1wi

.

Thus

Σ̂` =
c`

(
∑K

i=1wi)
2
X ′Ŵ · Ω̂` · ŴX

=
c`

(
∑K

i=1wi)
2
(1, . . . , 1) · diag(wi) · Ω̂` · diag(wi) · (1, . . . , 1)′

=
c`

(
∑K

i=1wi)
2
· (w1, . . . , wK) · Ω̂` · (w1, . . . , wK)′

=
c`

(
∑K

i=1wi)
2

K∑

j=1

w2
j ε̂

2
j(1− xjj)γ` ,

with the diagonal elements of the hat matrix given by xjj =
wj∑K
i=1 wi

. 2

Remark 1. Based on Proposition 1, the six HC-type variance estimators in the case
of no moderators (meta-analysis) are given by

Σ̂0 =
1

(
∑K

i=1wi)
2

K∑

j=1

w2
j ε̂

2
j(1− xjj)0 =

1

(
∑K

i=1wi)
2

K∑

j=1

w2
j ε̂

2
j (S2)

Σ̂1 =
K/(K − 1)

(
∑K

i=1 wi)
2

K∑

j=1

w2
j ε̂

2
j(1− xjj)0 =

K/(K − 1)

(
∑K

i=1wi)
2

K∑

j=1

w2
j ε̂

2
j (S3)

Σ̂2 =
1

(
∑K

i=1wi)
2

K∑

j=1

w2
j ε̂

2
j(1− xjj)−1 (S4)
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Σ̂3 =
1

(
∑K

i=1wi)
2

K∑

j=1

w2
j ε̂

2
j(1− xjj)−2 (S5)

Σ̂4 =
1

(
∑K

i=1wi)
2

K∑

j=1

w2
j ε̂

2
j(1− xjj)−δj , δj = min{4, xjj

x̄
} (S6)

Σ̂5 =
1

(
∑K

i=1wi)
2

K∑

j=1

w2
j ε̂

2
j(1− xjj)−αj , αj = min{xjj

x̄
,max{4, ηxmax

x̄
}} (S7)

with xjj =
wj∑K
i=1 wi

and x̄ = 1
K

K∑
i=1

xii. Furthermore xmax = max{x1, . . . , xK} and

η is a tuning parameter that we set equal to 0.7 based on recommendations in the
literature3.

Numerical Example (HC estimators in a random-effects meta-analysis setting)

Consider the following hypothetical data set of five studies containing study id’s,
as well as effect (θ̂i) and variance (σ2

i ) estimates: We first need to calculate the

study i effect θ̂i variance σ2
i

1 3.40 0.34
2 2.70 0.13
3 2.50 0.10
4 2.90 0.17
5 4.10 0.43

weights wi = (σ2
i + τ̂ 2)−1. Using the DerSimonian-Laird estimator for the between

study heterogeneity τ 2, we obtain τ̂ 2
DL = 0.0894492 and thus get the weights w1 =

2.328564, w2 = 4.556863, w3 = 5.278460, w4 = 3.854319 and w5 = 1.925116
respectively. (Here we could of course have used any of the other estimators for τ 2.)

This yields the main effect estimate θ̂ =

K∑
i=1

wiθ̂i

K∑
i=1

wi

= 2.925172. The squared residuals

ε̂2
j are thus given by ε̂2

1 = 0.225462, ε̂2
2 = 0.050702, ε̂2

3 = 0.180771, ε̂2
4 = 0.000634

and ε̂2
5 = 1.380221 respectively. After calculating the standardized weights xjj we

are able to calculate the different HC estimators. Table 7 contains the mentioned
estimates.
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id j effect θ̂j variance σ2
j weight wj ε̂2

j standardized weight xjj
1 3.40 0.34 2.33 0.23 0.12977
2 2.70 0.13 4.56 0.05 0.25396
3 2.50 0.10 5.28 0.18 0.29417
4 2.90 0.17 3.85 0.00 0.21481
5 4.10 0.43 1.93 1.38 0.10729

We obtain the following values for the various HC-type variance estimators (as
well as the Knapp-Hartung variance estimate for comparison):

Σ̂0 = 0.0386275

Σ̂1 = 0.0482844

Σ̂2 = 0.0487442

Σ̂3 = 0.0622734

Σ̂4 = 0.0519365

Σ̂5 = 0.0519365

Σ̂KH = 0.0608829

We observe that Σ̂0 has the smallest value, followed by Σ̂1 and Σ̂2. This is in
alignment with the behavior observed in our simulation study, i.e. the liberal behavior
of the estimatorsHC0–HC2. The estimatorsHC4 andHC5 are equal in this example
because δi = αi ∀i ∈ {1, . . . , 5}, as in both cases the minima in the equations
correspond to xjj

x̄
.

Theorem 1. Suppose there exists K0 ∈ N such that (K−1X′X)−1 exists and is
uniformly bounded element-wise for all K ≥ K0. Furthermore assume that MK :=

1
K

K∑
i=1

(X ′iXi) is non-singular for all K sufficiently large, where Xi is the ith row of

the matrix X. If τ̂ 2 is a consistent estimator for τ 2, HC0–HC5 are asymptotically
equivalent and for any choice within φ we have E(φ) −→ α under H0 : {βj = 0}
as well as E(φ) −→ 1 under H1 : {βj 6= 0} as K →∞.

Proof. Theorem 1
Let K ∈ N be the number of studies, β ∈ Rm+1, X ∈ RK×(m+1) and τ̂ 2 be a
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consistent estimator for τ 2, i.e. with P(| τ̂2
τ2
− 1| > ε)

p−→
K→∞

0 for all ε > 0. Then
consider the test statistic

Tj =
β̂j√
Σ̂jj

=
(X ′ŴX)−1X ′ŴYj√

(X ′ŴX)−1X ′Ŵ Ê2ŴX(X ′ŴX)−1
jj

.

Obviously Ŵ = diag
(

(σ2
i + τ̂ 2)−1

)
is symmetric because it is a diagonal matrix.

Furthermore it holds that Ê
2

=
(

diag(y −Xβ̂)
)2

· diag
(

(1− hjj)−γ
)
, with γ ∈

R fixed, converges towards
(

diag(y −Xβ̂)
)2

for K →∞ because hjj := H(j, j)

are the diagonal elements of the hat matrix H = X(X ′ŴX)−1X′Ŵ , which has
trace m+ 1. This can be easily verified by utilizing the commutative property of the
trace:

tr(H) = tr(X(X ′ŴX)−1X′Ŵ )

= tr(X′ŴX(X ′ŴX)−1)

= tr(I(m+1)×(m+1)) = m+ 1.

Due to the regularity condition that there exists a K0 ∈ N such that ∀K ≥ K0 :
(K−1X′X)−1 exists and is uniformly bounded element wise, we have that for every
j ∈ {1, . . . , K} : hjj −→

K→∞
0. The given regularity condition is also enough in

the weighted least squares context (consider the weight matrix Ŵ = diag(ϕi) with
ϕi := (σ2

i + τ̂ 2)−1 contained in the hat matrix H) because of the bounded variances
0 < σ2

i + τ 2 <∞:

(X ′ŴX) = X ′diag(ϕi)X

=




x1,1 . . . xK,1
... . . . ...

x1,m+1 . . . xK,m+1


 ·



ϕ1 0 0

0
. . . 0

0 0 ϕK


 ·



x1,1 . . . x1,m+1

... . . . ...
xK,1 . . . xK,m+1




=




ϕ1 · x1,1 . . . ϕK · xK,1
... . . . ...

ϕ1 · x1,m+1 . . . ϕK · xK,m+1


 ·



x1,1 . . . x1,m+1

... . . . ...
xK,1 . . . xK,m+1




=
K∑

i=1

ϕi




x2
i,1 . . . xi,m+1xi,1
... . . . ...

xi,1xi,m+1 . . . x2
i,m+1



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≤ max
{
ϕi : 1 ≤ i ≤ K

}
·
K∑

i=1




x2
i,1 . . . xi,m+1xi,1
... . . . ...

xi,1xi,m+1 . . . x2
i,m+1


 ,

with all finite elements. Thus hjj −→
K→∞

0 for every 1 ≤ j ≤ K and therefore

Ê
2 −→
K→∞

(
diag(y −Xβ̂)

)2

. The latter is an estimator for diag
(

Var(yi)
)

. As we
also have convergence in distribution of each component of the standardized least
squares estimator to a standard normal distribution under the given assumptions (cf.4

Lemma 2) it follows that

Tj ≈
β̂j

se(β̂j)

d−→
K→∞

Z, Z ∼ N(0, 1)

by Slutzky’s Lemma. As φ = 1{|Tj |>tK−m−1,1−α/2} and tK−m−1,1−α/2 −→
K→∞

z1−α/2,

where z1−α/2 is the 1− α/2 quantile of the standard normal distribution, it follows
that φ is a consistent, level-α test for testing H0 : {βj = 0} vs. H1 : {βj 6= 0}. 2

The REML estimator of τ 2 (Details):

The REML estimator τ̂ 2
REML maximizes the restricted log-likelihood

lRE = −1

2
K ln(2π) +

1

2
ln(|X′X|)− 1

2
ln(|τ 2I + V |)− 1

2
ln(|X’WX|)− 1

2
y’Py,

(S8)
where P is defined as

P = W −WX(X ′WX)−1X ′W .

Here, V = diag(σ2
i ) and W = diag(wi) is the diagonal weight matrix with wi =

(σ2
i + τ̂ 2

current)
−1.

The estimate τ̂ 2
REML can then be computed iteratively via Fisher’s scoring algo-

rithm with step halving.1,5 The method is implemented in the R function rma from
the metafor package, where the default starting value is set as the non-iterative
Hedges estimator.6 In principle though, any of the non-iterative heterogeneity esti-
mators for τ 2 may be chosen as a suitable starting value.
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