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Preface

This thesis consists of eight chapters and two appendices. Chapter 1 grants an
overview over the main results. Thereafter, in Chapter 2 the notation is fixed,
the operators are introduced, and some basic results needed in the subsequent
chapters are discussed. Chapter 3 proceeds with a short introduction into specific
aspects of control theory and paves the way to the main results of this thesis that
are presented and put into context in Chapter 4. The proofs of the main results
are postponed to Chapters 5–8. Some supplementing computations and technical
details are presented in Appendix A, while Appendix B is an excursus presenting
results of the author which have not been included in the main body of text.

Parts of this thesis are based on and coincide with the following publications
and preprints by the author that were partially obtained in collaboration with
Christian Rose, Albrecht Seelmann, Martin Tautenhahn, and Ivan Veselić:
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[DRST] A. Dicke, C. Rose, A. Seelmann, and M. Tautenhahn. Quantitative unique continua-
tion for spectral subspaces of Schrödinger operators with singular potentials. Preprint:
arXiv:2011.01801.

[DS22] A. Dicke and A. Seelmann. Uncertainty principles with error term in Gelfand–Shilov
spaces. Archiv der Mathematik, 119(4):413–425, 2022.

[DSVa] A. Dicke, A. Seelmann, and I. Veselić. Control problem for quadratic differential op-
erators with sensor sets of decaying density via partial harmonic oscillators. Preprint:
arXiv:2201.02370.

[DSVb] A. Dicke, A. Seelmann, and I. Veselić. Spectral inequality with sensor sets of decaying den-
sity for Schrödinger operators with power growth potentials. Preprint: arXiv:2206.08682.

[DSVc] A. Dicke, A. Seelmann, and I. Veselić. Uncertainty principle for Hermite functions and
null-controllability with sensor sets of decaying density. Preprint: arXiv:2201.11703.

[DV] A. Dicke and I. Veselić. Unique continuation for the gradient of eigenfunctions and
Wegner estimates for random divergence-type operators. Preprint: arXiv:2003.09849.

It is here set out on which of the aforementioned articles the chapters that are
listed below are based on or coincide with.
Chapter 2: Parts of that chapter are extracted from [DSVa], in particular, Subsec-

tion 2.2.1 is an adaptation of [DSVa, Appendix A] to more general potentials.
Chapter 4: The main results of this thesis presented in that chapter are taken from

the works [DRST, DSVc, DSVa, DS22, DS22, DSVb] and parts of the chapter
coincide with or are based on these articles.

Chapter 5: That chapter coincides for the most part with [DSVb, Section 2].
Chapter 6: Sections 6.2 and 6.3 are based upon [DRST, Sections 2 and 3], while

Section 6.4 combines and elaborates further results from [DRST, DSVb].
Chapter 7: Section 7.2 is based upon [DSVc, DSVa], while the proof in Section 7.3

is a shortened version of the proof in [DS22].
Chapter 8: The proof given in that chapter is taken from [DSVa, Section 4].
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CHAPTER 1

Introduction

Imagine the task of measuring the state of a system at a given time through
observations of sensors over a time interval. For physical or economical reasons, it
is usually not preferable or not even possible to observe the entire system. Instead,
one wants to use as few or as small sensors as possible. However, taking fewer or
smaller sensors increases the possible deviation of the measurement from the actual
state or even prevents the measurement entirely. It is therefore a fundamental
problem to derive conditions on the sensors such that the system can be measured
adequately. In this case, one also wants to derive upper bounds for the deviation
between the actual state and the measurement in terms of some conditions imposed
on the sensors. If one is interested in the possibility to steer the system to a
designated state in a given time, a similar problem arises: One again wants to
determine under which configurations of control units one can be insured that the
designated state is attainable. At the same time, it is desirable to minimize the
number or the size of the control units that influence the system, but this causes
the control costs to increase. Hence, it is of interest to obtain bounds for the control
costs depending on the configuration at hand.

In the present thesis, the state of the system is governed by some differential
equation w′(t) = Aw(t) with initial value w(0) = w0 ∈ L2(Rd) and the sensors are
represented by a sensor set ω ⊂ Rd. Provided that the operator A generates a
strongly continuous semigroup (T (t))t≥0, the above task of measuring the state at
a given time T > 0 can be put into mathematical terms as the question whether
there exists an observability constant Cobs > 0 such that the observability estimate

(1.1) ∥w(T )∥2L2(Rd) ≤ C2
obs

∫︂ T

0

∥T (t)w0∥2L2(ω) dt

holds for all initial values w0. In this setting, the constant Cobs accounts for the
possibly occurring deviations of the measurement from the actual state. Any
action to steer the system can then be modeled by adding an inhomogeneity
f ∈ L2([0,∞);L2(ω)) the values f(t) of which are constrained to the control set
we again denote by ω. Hence, the system is then governed by w′(t) = Aw(t) + f(t).
By linearity, the task of steering the system to some state (in the range of T (T ))
is then reduced to the task of choosing the control f in such a way that w(T ) = 0.
Here, the norm of f corresponds to the cost of the control. It is well-established
that for a given set ω the existence of an observability constant such that the
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2 1. INTRODUCTION

observability estimate (1.1) holds is equivalent to the existence of a null-control
f constrained to ω with norm at most Cobs for the dual system. Because of this
duality it is not a limitation to investigate only the problem of observability.

The main objective of this thesis is to study sufficient geometric conditions
on the sensor set ω that guarantee the existence of an observability constant for
different types of systems characterized by the semigroup generator A. Furthermore,
given a sufficient condition, we also investigate how the geometry of the set impacts
the constant Cobs.

There is a vast amount of literature dealing with several different ways to
establish the observability estimate. In this work, we rely on methods going back
to Lebeau and Robbiano. These allow to conclude the existence of an observability
constant by combining two ingredients, namely an uncertainty principle and a
dissipation estimate. In Chapter 3, we recall different forms of Lebeau-Robbiano
methods together with a short outline of basic results from control theory that are
related to the present work.

The main results of this thesis are tailored towards the aforementioned methods
and are presented, discussed, and put into context to earlier results in Chapter 4.
They can be roughly divided into three categories: Spectral inequalities, dissipation
estimates, and uncertainty principles with error term. While all of these are stated
in Chapter 4, their proofs are deferred to Chapters 5–8. Let us emphasize that
Sections 6.1 and 7.1 provide an overview of the origins of the approaches we use.

1.1. Main results

Let us now outline the main results in the order they are formulated in Chapter 4.

1.1.1. Spectral inequalities. In Section 4.1, we consider the situation where
the generator A = ∆ − V is a selfadjoint Schrödinger operator in L2(Rd). For
selfadjoint operators, establishing the observability estimate reduces by the Lebeau-
Robbiano method to the proof of a spectral inequality. The latter has the form

∥f∥2L2(Rd) ≤ d0e
d1λγ1∥f∥2L2(ω),

where ω ⊂ Rd is the sensor set from the observability estimate, f is any function
in the range of the spectral projection Pλ(−∆ + V ) up to energy λ ≥ 1 of the
Schrödinger operator, and d0, d1 > 0, γ1 ∈ (0, 1) are constants. Proving the spectral
inequality not only implies the observability estimate, but there are also explicit
bounds for Cobs in terms of the parameters d0, d1, γ1, and the time T .

Whether spectral inequalities for Schrödinger operators are available and, if
so, what kind of geometric conditions on ω are required heavily depends on the
potential V at hand. The spectral inequalities we prove are especially motivated by
earlier research for the pure Laplacian [Kov00, Kov01, EV18, EV20], for Schrödinger
operators with bounded potentials [NTTV18, NTTV20b], and for the harmonic
oscillator, i.e., for the Schrödinger operator with a quadratic potential [BJPS21,
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MPS22]. We extend and improve these results in several aspects, some of which we
outline in the following. Let us mention beforehand that we always compute the
constants d0, d1, and γ1 explicitly from geometric properties of the sensor set ω.

Singular admissible potentials. Instead of studying merely Schrödinger
operators with bounded potentials, we prove the spectral inequality with potentials
we call singular admissible. These may have mild local singularities and are therefore
allowed to be unbounded. For instance, V (x) = e−|x||x|−q with 0 ≤ q < 1 is singular
admissible in all dimensions d ≥ 2. In our spectral inequality given in Theorem 4.10,
the sensor set ω is assumed to satisfy the same geometric conditions that were used
in case of bounded potentials. Namely, ω is an equidistributed set which means
that it contains a suitable union of open balls with fixed radii, a particular instance
being the set in Figure 1A.

The proof is given in Chapter 6 and uses Carleman estimates and the so-called
ghost dimension. We make use of the fact that singular admissible potentials can
be inserted into the Carleman estimates which allows to follow a similar approach
as in the case of bounded potentials. An important feature of our analysis is that
we can extract two characteristic parameters of the potential in terms of certain
relative bounds. These parameters are the only characteristics of the potential
entering the constants d0 and d1 in the spectral inequality.

Quadratic potentials. In the case of the harmonic oscillator, i.e., V (x) = |x|2,
an orthonormal basis of eigenfunctions is given by the Hermite functions. These
are known to have a fast decay at infinity. We quantify this decay and demonstrate
how to exploit it in order to prove the spectral inequality with sensor sets ω that
become sparse at infinity. More precisely, we show that the sensor set is allowed
to have a subexponentially decaying density, a condition that even allows sets of
finite Lebesgue measure, see Theorem 4.16. As an example, the subexponential
decay of the density corresponds to α < 1 for the sets depicted in Figure 1. Let us
stress that in the previous works [BJPS21, MPS22], the density was not allowed to
decay at all and, in particular, the sensor sets were forced to have infinite Lebesgue
measure.



4 1. INTRODUCTION

Besides this, we also investigate partial harmonic oscillators corresponding to
V (x) = |xI |2 =

∑︁
j∈I x

2
j for some I ⊂ {1, . . . , d}. These have not been considered

previously and we prove the spectral inequality where the density of the set ω is
allowed to decay subexponentially in those directions where the potential grows.
This result is formulated in Theorem 4.19.

Since (partial) quadratic potentials are analytic, we are in the position to use
an approach based on complex analysis. This approach allows us to derive the
spectral inequality with weaker assumptions on the sensor sets than possible by
the method using Carleman estimates mentioned before. Put plainly, ω does not
necessarily need to contain suitable balls, but merely suitable measurable subsets.
The assumptions we make are closely related to the notion of thick sets. We
refer to the last subsection in Appendix A, where we briefly discuss the different
assumptions on ω. The proof of the spectral inequality is given in Chapter 7.
There we describe how the tensor structure of the Schrödinger operator can be
used to derive Bernstein inequalities for elements in the spectral subspace required
for this approach. Furthermore, we also prove that these inequalities yield the
aforementioned quantification of the fast decay of elements in the spectral subspace
of the partial harmonic oscillators (in particular of Hermite function) in directions
where the potential grows unboundedly. Thereafter, the quantified decay is used to
implement the spectral inequality with sensor sets having a decaying density.

Power growth potentials. The third type of potentials we investigate are
those with power growth in certain coordinate directions, see Hypothesis (SI)
on page 45 for the full class of potentials we work with. For a better overview,
we here restrict our attention to the potentials V (x) = |xI |τ where τ > 0 and
I ⊂ {1, . . . , d}. At first glance, these seem quite similar to the previous case of
partial quadratic potentials. However, a major difference is that even these simple
potentials are not analytic for τ /∈ 2N, hence requiring a fundamentally different
approach compared to the harmonic oscillator. This has not been considered
previously, but we underline that this is a very active field of research.

As a first result in this novel territory, we use our insights gained from the study
of singular admissible and quadratic potentials to establish a spectral inequality
also for this class of potentials with power growth in certain coordinate directions.
To this end, in Chapter 5 we establish that the growth of the potentials enforces a
fast decay of eigenfunctions and, more importantly, we quantify this decay. The
decay benefits us in two ways: Firstly, we are able to treat potentials with power
growth by the previously mentioned approach using Carleman estimates. In fact,
the proof largely parallels the one for singular admissible potentials in Chapter 6.
Secondly, we can allow the sensor set ω to become sparse at infinity in directions
where the potential grows. However, due to the Carleman estimate, we require that
the sensor set contains a union of open balls with radii decaying at infinity, see
again the sets depicted in Figure 1. The precise allowed decay rate depends on the
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growth of the potential at hand. Our result for potentials satisfying Hypothesis (SI)
is formulated in Theorem 4.24.

1.1.2. Dissipation estimates. Section 4.2 deals with possibly non-selfadjoint
operators A in L2(Rd). Two situations may arise here: Either the operator is
selfadjoint but a spectral inequality is not available, or it is indeed non-selfadjoint,
so that it is not even possible to formulate a spectral inequality. However, for
certain operators A, the Lebeau-Robbiano method allows us to use the spectral
inequality of a selfadjoint Schrödinger operator −∆ + V in L2(Rd) in order to
conclude the observability. This strategy requires a dissipation estimate of the form

∥
(︁
Id−Pλ(−∆+ V )

)︁
T (t)g∥L2(Rd) ≤ d2e

−d3λγ2 tγ3∥g∥L2(Rd)

for all λ ≥ 1, all 0 < t≪ 1, and all g ∈ L2(Rd), where (T (t))t≥0 is the semigroup
generated by A, and d2, d3, γ2, γ3 ≥ 0 are constants. If such a dissipation estimate
holds, we say that the Schrödinger operator −∆ + V is a suitable comparison
operator for A. Provided that we have a spectral inequality for the Schrödinger
operator at our disposal, the observability estimate holds with the sensor set ω from
the spectral inequality and explicit bounds on the observability constant depending
on the constants in the dissipation estimate as well as in the spectral inequality. In
particular, solely the spectral inequality encodes sufficient conditions on the sensor
set ω.

We consider quadratic differential operators A, i.e., operators that are the Weyl
quantization of a homogeneous quadratic polynomial. Inspired by the previous
works [BPS18, Alp21], we prove that for these operators the suitable class of
comparison operators are the partial harmonic oscillators −∆+ |xI |2. Furthermore,
we show how the appropriate member of this class can be read off the singular space
of A. Thereby, we unify, interpolate and generalize earlier dissipation estimates for
quadratic differential operators. In combination with the spectral inequalities for
partial harmonic oscillators, we establish the observability estimate with the sensor
sets which we have considered there. Recall that these spectral inequalities, in
particular, allow the sensor sets to have a decaying density in the directions where
the potential of the comparison operator grows. Such sensor sets have not been
considered before in this context. Our dissipation is formulated in Theorem 4.29
and the proof is given in Chapter 8.

In addition to the results just outlined, dissipation estimates also play a role
in Section 4.4. There we consider the observability estimate for other types of
operators A, namely Shubin operators, and discuss how our spectral inequalities
can be applied in that setting.

1.1.3. Uncertainty principles with error term. The result we present in
Section 4.3 is concerned with the situation of abstract semigroups (T (t))t≥0 in
L2(Rd) that satisfy Gelfand-Shilov smoothing properties. We describe a method
that is of interest in situations where either no dissipation estimate with respect to
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the spectral projections of a selfadjoint operator is available, or where we have no
spectral inequality for a suitable comparison operator. An approach to treat such
cases goes back to the work [Mar22], where an uncertainty principle with error
term for elements in the range of the semigroup allows to establish an approximate
observability estimate. Under certain conditions on the involved constants it was
shown in [Mil10] that this, in turn, leads to the above stated observability estimate
(1.1), see the derivation of Corollary 3.11 in Chapter 3.

Inspired by these works, we prove an uncertainty principle with error term for
functions in suitable Gelfand-Shilov spaces. This uncertainty principle is closely
related to the spectral inequalities for Schrödinger operators discussed above but
has an extra additive error term on the right-hand side. Postponing the precise
statement to Theorem 4.35 below, we now focus only on this error term. Doing so,
our result can be stated roughly as follows: For certain sensor sets ω, all functions
f in the Gelfand-Shilov space, and all δ > 0 we have

∥f∥L2(Rd) ≤
(︂1
δ

)︂C1

∥f∥L2(ω) + δ · C2,

where C1, C2 > 0 are constants depending on the specific Gelfand-Shilov space, the
function f , and the geometry of ω, but not on δ. In contrast to the previous work
[Mar22] establishing the last inequality with different techniques, the derivation we
present allows to eliminate several technical assumptions on the geometry of the
sensor set and streamlines the proof significantly. Since our proof uses the complex
analytic approach that is also used in the proof of the spectral inequalities for the
partial harmonic oscillators, it is likewise given in Chapter 7.



CHAPTER 2

Preliminaries

In this chapter we introduce the notation, give basic definitions, and provide some
background material that is used in this thesis.

Some of the notation and conventions we use are set out in Table 1 below.

K, K• universal constant or constant that depends only on the param-
eters • indicated in the index, may change from line to line

≲, ≲• short hand notation for A ≤ KB resp. A ≤ K•B
C, Cj, C ′

j constants that do not change from line to line
d dimension, unless otherwise stated a natural number ≥ 1
τd volume of the unit ball in Rd

| · | Euclidean norm or absolute value of a multi-index
x · y Euclidean inner product of x, y ∈ Rd

xI projection onto the coordinates indicated by I ⊂ {1, . . . , d}
1ω characteristic function of the set ω
B(x, r) ball with radius r > 0 centered at x ∈ Rd

Λ(x, a) rectangle with sides of length a ∈ (0,∞)d centered at x ∈ Rd

Λρ(x) Λ(x, (ρ, . . . , ρ)) with ρ > 0
D(z, r) complex disc of radius r > 0 centered at z ∈ C
Dr D(0, r1)× . . . D(0, rd) for r = (r1, . . . , rd) ∈ (0,∞)d

Lp(Ω), Lp
loc(Ω) Lebesgue spaces on the set Ω ⊂ Rd, 1 ≤ p ≤ ∞

Hk(Ω), Hk
loc(Ω) Sobolev subspace of L2(Ω) of order k ∈ N

∥·∥X norm of the space X
L(X, Y ) space of bounded operators S : X → Y
RanS range of the operator S
S(Rd) space of Schwartz functions
⟨ ·, · ⟩H inner product of the Hilbert space H
V⊥ orthogonal complement of V ⊂ H with respect to ⟨·, ·⟩H
H lower semibounded, selfadjoint operator on some Hilbert space
1M(H) spectral projection of H associated with some Borel-set M ⊂ R
Pλ(H) spectral projection 1(−∞,λ](H) for λ ∈ R
A generator of a contraction semigroup on some Hilbert space
(T (t))t≥0 strongly continuous semigroup generated by the operator A

Table 1. List of conventions and frequently used symbols.
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8 2. PRELIMINARIES

2.1. Basic definitions and facts

Let M ⊂ R be any set and let N ⊂ {1, . . . , d}. We write x = (x1, . . . , xd) ∈ Md

and set Md
N = {x ∈ Md : xj = 0 for all j /∈ N}. If x ∈ Md, we denote by xN

the projection of x onto Md
N

∼= M |N | and by L∞
loc(Rd

N ) the space of functions f
defined on Rd for which there is g ∈ L∞

loc(R|N |) such that f(x) = g(xN ) for almost
all x ∈ Rd. Frequently, we use the abbreviation Nd

0,N := (N0)
d
N . Denoting the

j-th unit vector by ej ∈ Rd, we let Id = (ej)j=1,...,d be the identity on Rd and
IdN = (vj)j=1,...,d be the matrix with columns vj = ej if j ∈ N and vj = 0 if j /∈ N .

Important subspaces of the Schwartz functions we frequently use are the so-
called Gelfand-Shilov spaces Sµ

ν (Rd) ⊂ S(Rd) with µ, ν > 0 satisfying µ + ν ≥ 1.
These spaces were originally introduced as the spaces of functions such that both
f and its Fourier transform, have a certain decay encoded by the parameters µ
and ν; this is why the assumption µ + ν ≥ 1 not a restriction, as the space is
otherwise trivial, see, e.g., [NR10, Theorem 6.1.10]. Here, we use an equivalent
characterization, see [NR10, Theorem 6.1.6 and Theorem 6.1.10], and define Sµ

ν (Rd)
as the space of all functions f ∈ S(Rd) for which there are constants D1, D2 > 0
such that

(2.1) ∥xα∂βf∥L2(Rd) ≤ D1D
|α|+|β|
2 (α!)ν(β!)µ for all α, β ∈ Nd

0,

where ∂β = ∂βx denotes the partial derivatives. This definition shows in particular
that these spaces satisfy the inclusion Sµ

ν (Rd) ⊂ Sµ′

ν′ (Rd) whenever µ ≤ µ′ and
ν ≤ ν ′.

2.1.1. Classic results from functional analysis. We now give a fast paced
outline of well-known results from functional analysis that are used in the present
work. The reader familiar with operators on Hilbert spaces, sesquilinear forms,
strongly continuous semigroups, and tensor products may skip directly to Section 2.2.
The following presentation is in parts based on the textbooks [Wei80, EN00, Sch12]
and we refer to these for a more detailed discussion.

Operators on Hilbert spaces. Consider a Hilbert space H and letH : D(H) ⊃
H → H be a linear operator. If H is closed, that is if its domain D(H) is complete
with respect to its graph norm, we define the spectrum σ(H) of H as the set of all
λ ∈ C such that the operator H − λ Id has no bounded inverse. We further
decompose the spectrum into the discrete spectrum σdisc(H) consisting of isolated
eigenvalues with finite multiplicity and the essential spectrum σess(H) = σ(H) \
σdisc(H). Recall that if H is not closed, then the smallest closed extension H of H
(if it exists) is called the closure of H. An operator core is a subset D ⊂ D(H) of
the domain of a closed operator H such that the operator H itself is the closure of
the restriction H|D.

Most importantly, if H is a selfadjoint operators, that is if H agrees with
its adjoint H∗, then H is always closed and the spectrum satisfies σ(H) ⊂ R.
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Furthermore, H is called lower semibounded, if σ(H) ⊂ [m,∞) for some m ∈ R;
if σ(H) ⊂ [0,∞) we simply say that H is nonnegative. The operator H is called
essentially selfadjoint, if its closure is selfadjoint. Finally, let us recall the famous
spectral theorem: It establishes that associated to every selfadjoint operator H
there is a unique spectral measure 1M(H) defined on all Borel-measurable subsets
M of R and taking values in the orthogonal projections of H that diagonalizes H,
i.e., with Pλ(H) = 1(−∞,λ](H) we have H =

∫︁
R λ dPλ(H). For Borel-measurable

functions f , one then defines the operators

(2.2) f(H) =

∫︂
R
f(λ) dPλ(H)

with domain

D(f(H)) =
{︂
x ∈ H :

∫︂
R
|f(λ)|2 d⟨Pλ(H)x, x⟩H <∞

}︂
.

Sesquilinear forms. A sesquilinear form h : D[h]×D[h] → C with domain
D[h] ⊂ H is called densely defined, if D[h] is dense in H and symmetric if h[f, g] =
h[g, f ] holds for all f, g ∈ D[h]. A symmetric sesquilinear form is called lower
semibounded if there exists an m ∈ R such that for all f ∈ D[h] we have h[f, f ] ≥
m∥f∥2H. Additionally, h is called closed, if h is lower semibounded and the space
(D[h], ∥·∥h) with the norm ∥f∥h = (h[f, f ] + (1−m)∥f∥2H)1/2 is complete. If D is a
subspace of D[h] that is dense with respect to this norm, D is called a form core
for h.

Densely defined, lower semibounded, and closed forms are intimately related
to lower semibounded selfadjoint operators by the representation theorem for
semibounded forms. In fact, for every lower semibounded selfadjoint operator H
there is a unique, densely defined, lower semibounded, and closed form h associated
to H in the sense that h[f, g] = ⟨Hf, g⟩H for all f ∈ D(H), g ∈ D[h], where the
domain of H satisfies

D(H) = {f ∈ D[h] : ∃h ∈ L2(Rd)∀g ∈ D[h] : h[f, g] = ⟨h, g⟩L2(Rd)}.

Conversely, for every densely defined, lower semibounded, and closed form h there
is a unique lower semibounded selfadjoint operator H defined by the last two
identities. In this case, we say that the operator H and the form h are associated
to each other.

Strongly continuous semigroups. A semigroup (T (t))t≥0 ⊂ L(H) is called
strongly continuous if for all x ∈ H we have limt↓0∥T (t)x − x∥H = 0. Given
a strongly continuous semigroup (T (t))t≥0 ⊂ L(H), we say that an operator
A : D(A) ⊃ H → H is the generator of (T (t))t≥0, if

D(A) =
{︂
x ∈ H : lim

t↓0

1

t

(︁
T (t)x− x

)︁
exists

}︂
and Ax = lim

t↓0

1

t

(︁
T (t)x− x

)︁
.
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It is well-known that the semigroup is uniquely determined by its generator and
there are several characterizations for generators of semigroups. In this thesis, we
almost exclusively encounter contraction semigroups, i.e., semigroups satisfying
∥T (t)∥L(H) ≤ 1 for all t ≥ 0. The generators of these semigroups are fully
characterized by the Hille-Yosida resp. the Lumer-Phillips theorem: A is the
generator of a contraction semigroup if and only if A is maximal-dissipative, that is
if A is dissipative (i.e., for all λ > 0 and x ∈ D(A) we have ∥(A−λ Id)x∥H ≥ λ∥x∥H)
and satisfies Ran(A− λ Id) = H for some λ > 0. In particular, if A is a negative
selfadjoint operator (i.e., σ(A) ⊂ (−∞, 0]), then it satisfies these conditions and
the semigroup (T (t))t≥0 generated by A satisfies T (t) = etA, where the right-hand
side is defined in the sense of (2.2).

Tensor products. Let H1 and H2 be Hilbert spaces. For f1 ∈ H1 and f2 ∈ H2

we define the conjugate-bilinear form (f1 ⊗ f2)(g1, g2) = ⟨f1, g1⟩H1⟨f2, g2⟩H2 for
gj ∈ Hj, j = 1, 2. Moreover, given two finite sums u =

∑︁
k f1,k ⊗ f2,k and

v =
∑︁

l f
′
1,k ⊗ f ′

2,l with fj,k, f ′
j,l ∈ Hj, j = 1, 2, we set

⟨u, v⟩H1⊗H2 =
∑︂
k,l

⟨f1,k, f ′
1,l⟩H1⟨f2,k, f ′

2,l⟩H2 .

Then, ⟨·, ·⟩H1⊗H2 defines an inner product on the space H1 ⊙ H2 of finite sums∑︁
k g1,k ⊗ g2,k with gj,k ∈ Hj, j = 1, 2. The tensor product H1 ⊗H2 is defined as

the completion of H1 ⊙H2 with respect to the norm induced by the inner product
⟨·, ·⟩H1⊗H2 . The tensor product of operators Hj : D(Hj) ⊃ Hj → Hj, j = 1, 2, is
defined in an analogous fashion: We define

(H1 ⊙H2)
(︂∑︂

k

g1,k ⊗ g2,k

)︂
=
∑︂
k

H1g1,k ⊗H2g2,k

for all finite sums
∑︁

k g1,k ⊗ g2,k ∈ D(H1)⊙D(H2). If both H1 and H2 are densely
defined and closable, then H1 ⊙H2 is also densely defined and closable. We denote
its closure by H1 ⊗H2.

Since tensor product are applied throughout this thesis, let us close this section
with a simple example in the case of L2-spaces.

Example 2.1 (Elementary tensor on L2-spaces, cf. [Sch12, Example 7.9]). Let
H1 = L2(Rm1) and H2 = L2(Rm2) for m1,m2 ∈ N. Then for f1 ∈ H1 and f2 ∈ H2,
we may identify the tensor product f1 ⊗ f2 with an element in L2(Rm1+m2) by
setting (f1 ⊗ f2)(x) = f1(x1)f2(x2) for x = (x1, x2) ∈ Rm1 × Rm2 .

2.2. Schrödinger operators

Here, we introduce two types of Schrödinger operators used in this work. In both
cases, we use the well-known fact that the multiplication operator

(2.3) V : L2(Rd) ⊃ D(V ) → L2(Rd), f ↦→ V · f,
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with a real-valued measurable function V : Rd → R defined on the maximal domain

D(V ) = {f ∈ L2(Rd) : V f ∈ L2(Rd)}
is selfadjoint, see, for instance, [Sch12, Example 5.3].

2.2.1. Nonnegative potentials. Let us first discuss the situation where the
potential V is nonnegative. In anticipation of some of the main results presented
in Section 4.2 below, we also include “partial Laplacians”, even though we consider
mainly the situation where we have a full Laplacian. The latter can be recovered
from the following for J = {1, . . . , d} and d3 = 0.

Let I,J ⊂ {1, . . . , d} and consider the space of partial H1(Rd)-functions

H1
J (Rd) := {f ∈ L2(Rd) : ∂kf ∈ L2(Rd) ∀k ∈ J }

which is complete when equipped with the norm

∥f∥H1
J (Rd) :=

(︂
∥f∥2L2(Rd) +

∑︂
k∈J

∥∂kf∥2L2(Rd)

)︂1/2
.

Furthermore, let VI ∈ L∞
loc(Rd

I) be nonnegative and define the forms

aJ : D[aJ ]×D[aJ ] → C, (f, g) ↦→
∑︂
k∈J

⟨∂kf, ∂kg⟩L2(Rd)

and

vI : D[vI ]×D[vI ] → C, (f, g) ↦→ ⟨V 1/2
I f, V

1/2
I g⟩L2(Rd)

with their respective domains given by

D[aJ ] = H1
J (Rd) and D[vI ] = {f ∈ L2(Rd) : V

1/2
I f ∈ L2(Rd)}.

It is easy to see that aJ is nonnegative and that its form norm coincides with
the norm of H1

J (Rd), so that aJ is a densely defined closed form. We denote the
unique nonnegative, selfadjoint operator associated to aJ by −∆J . The form vI
is likewise nonnegative, closed, and densely defined since it is associated to the
nonnegative, selfadjoint multiplication operator with VI defined in (2.3). Hence,
the form

(2.4) hI,J := aJ + vI with D[hI,J ] := D[aJ ] ∩ D[vI ]

is again closed as a sum of two nonnegative closed forms, see [Sch12, Corollary 10.2].
This form is also densely defined and the associated nonnegative, selfadjoint operator
is given by HI,J = −∆J + VI .

We now prove a tensor representation for the operator HI,J with J ̸= ∅ and
derive related representations for the elements of the spectral subspaces for HI,J .
Without loss of generality, we may reorder the coordinates of Rd in the following
way: There are d1, d2, d3 ∈ {0, . . . , d} with 1 ≤ d1 + d2 ≤ d and d3 = d− d1 − d2
such that

(2.5) J = N1 ∪N2 and I = N1 ∪N3
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where N1 = {1, . . . , d1}, N2 = {d1 + 1, . . . , d1 + d2}, and N3 = {d1 + d2 + 1, . . . , d}.
In case d3 ̸= 0 we need to make a technical constraint here since otherwise the
operator can not be represented as a tensor product: We always assume that VI
can be written as a sum VI(x) = V1(xN1) + V3(xN3) with some Vj ∈ L∞

loc(Rd
Nj
),

j = 1, 3. However, let us emphasize that this is satisfied in all our applications.
Now, analogously to HI,J above, we introduce the selfadjoint nonnegative operators
H1, H2, and H3 corresponding to the expressions

−∆+ V1 in L2(Rd1), −∆ in L2(Rd2), V3 in L2(Rd3),

respectively.

Lemma 2.2. With I and J as in (2.5), the operator H = HI,J admits the
tensor representation

(2.6) H = H1 ⊗ I2 ⊗ I3 + I1 ⊗H2 ⊗ I3 + I1 ⊗ I2 ⊗H3,

where Ij denotes the identity operator in L2(Rdj), j = 1, 2, 3, respectively.

Proof. Denote the operator corresponding to the right-hand side of (2.6) by
H̃. Following [Sch12, Theorem 7.23 and Exercise 7.17.a], H̃ is nonnegative and
selfadjoint with operator core D := spanC{f1 ⊗ f2 ⊗ f3 : fj ∈ D(Hj)}. Moreover,
using the form domains of Hj, j = 1, 2, 3, we have D ⊂ D[hI,J ]. We now proceed
similarly as in [See21, Section 3]: Consider f = f1 ⊗ f2 ⊗ f3 ∈ D and g ∈ D[hI,J ].
By Fubini’s theorem, we then have that g(·, y, z) ∈ D[h1] (the form domain of H1)
for almost every (y, z) ∈ Rd2 × Rd3 . Using this, we see that

⟨(H1 ⊗ I2 ⊗ I3)f, g⟩L2(Rd) = ⟨(H1f1 ⊗ f2 ⊗ f3), g⟩L2(Rd)

=

∫︂
Rd2×Rd3

f2(y)f3(z)⟨H1f1, g(·, y, z)⟩L2(Rd1 ) d(y, z)

=

∫︂
Rd2×Rd3

f2(y)f3(z)h1[f1, g(·, y, z)] d(y, z)

= hN1,N1 [f, g].

In a completely analogous way, we establish

⟨(I1 ⊗H2 ⊗ I3)f, g⟩L2(Rd) = h∅,N2 [f, g]

and
⟨(I1 ⊗ I2 ⊗H3)f, g⟩L2(Rd) = hN3,∅[f, g].

Summing up gives

⟨H̃f, g⟩L2(Rd) = hN1,N1 [f, g] + h∅,N2 [f, g] + hN3,∅[f, g] = hI,J [f, g].

By sesquilinearity, the latter extends to all f ∈ D, so that H̃|D ⊂ H. Since D
is an operator core for H̃ and both H and H̃ are selfadjoint, we conclude that
H̃ = H̃|D = H, which proves the claim. □
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Corollary 2.3. In the situation of Lemma 2.2, we have

σ(H) = σ(H1) + σ(H2) + σ(H3),

and the restriction of H to the Schwartz functions on Rd is essentially selfadjoint.

Proof. The first part follows from [Sch12, Corollary 7.25]; cf. also [Sch12,
Exercise 7.18.a]. For the second part, we observe that H2 and H3 are essentially
selfadjoint on S(Rd2) and S(Rd3), respectively. Moreover, [Kat72] implies that
the operator H1 is essentially selfadjoint on the smooth and compactly supported
functions C∞

c (Rd1) ⊂ S(Rd1). Hence, H is essentially selfadjoint on the space
spanC{f1 ⊗ f2 ⊗ f3 : fj ∈ S(Rdj)} ⊂ S(Rd), see, e.g., [Wei80, Theorem 8.33]. □

We are mostly concerned with the situation where d3 = 0. In this situation we
simply write V (x) = V1(x1) for x = (x1, x2) ∈ Rd1 × Rd2 . Thereby, the previous
calculations simplify and the third tensor factor in (2.6) can be dropped, that is,
we have H = H1 ⊗ I2 + I1 ⊗H2 and σ(H) = σ(H1) + σ(H2). If, in addition, V1
satisfies V1(x) → ∞ as |x| → ∞ (where x ∈ Rd1), [Sch12, Proposition 12.7] implies
that H1 has purely discrete spectrum. In this case, we obtain the following result.

Corollary 2.4. Suppose V1(x) → ∞ as |x| → ∞ and that d3 = 0 holds in
addition to the assumptions of Lemma 2.2. Then:
(a) Every f ∈ RanPλ(H), λ ≥ 0, can be represented as a finite sum

f =
∑︂
k

ϕk ⊗ ψk

with suitable ϕk ∈ RanPλ(H1) and ψk ∈ RanPλ(H2). Moreover, (∂αf)(·, y)
belongs to RanPλ(H1) for all y ∈ Rd2 and all multi-indices α ∈ Nd

0,Ic, while
(∂βf)(x, ·) belongs to RanPλ(H2) for all x ∈ Rd1 and all β ∈ Nd

0,I.
(b) If all elements of RanPλ(H1), λ ≥ 0, can be extended to analytic functions on

Cd1, then f can be extended to an analytic function on Cd.

Proof. We proceed similarly as in the proof of [ES21, Lemma 2.3]. Let f ∈
RanPλ(H) for some λ ≥ 0, and let (ϕk)k be an orthonormal basis of eigenfunctions
of H1 with corresponding eigenvalues µk. Write

f(x, y) =
∑︂
k

⟨f(·, y), ϕk⟩L2(Rd1 )ϕk(x) =
∑︂
k

ϕk(x)gk(y),

where gk ∈ L2(Rd2) is given by gk(y) = ⟨f(·, y), ϕk⟩L2(Rd1 ).
By [Wei80, Theorem 8.34 and Exercise 8.21], the spectral family Pλ(H) for H

admits the representation

Pλ(H) =
∑︂
µ≤λ

1{µ}(H1)⊗ Pλ−µ(H2).
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This implies that
f = Pλ(H)f =

∑︂
k : µk≤λ

ϕk ⊗ ψk

with ψk = Pλ−µk
(H2)gk ∈ RanPλ−µk

(H2) ⊂ RanPλ(H2), which shows part (a) of
the statement.

In order to prove part (b), recall that each element of RanPλ(H2) can be
extended to an analytic function on Cd2 by the Paley–Wiener theorem. Hence, the
statement follows by using the corresponding properties of ϕk and ψk and Hartogs’
theorem on separate analyticity. □

It is also easy to show that the smooth and compactly supported functions are
a form core for H.

Lemma 2.5 (cf. [CFKS87, Theorem 1.13]). Let d3 = 0. Then a form core for
H as in Lemma 2.2 is given by the test functions C∞

c (Rd).

Proof. We give a simple proof for the current situation with V1 ∈ L∞
loc(Rd1).

Let h = a+ v be the form associated to H as in the proof of Lemma 2.2 and
let f ∈ D[h]. First, suppose that f has compact support, and choose a sequence of
test functions (φn) with φn → f in H1(Rd) such that the supports of f and each
φn are contained in a common compact set. Since V ∈ L∞

loc(Rd1), it is then clear
that also v[f − φn, f − φn] → 0, that is, h[f − φn, f − φn] → 0, as n→ ∞.

If f does not have compact support, we approximate f in the form norm by
functions in D[h] with compact support. To this end, we follow the proof of [GY12,
Lemma 2.2] and introduce χ ∈ C∞

c (Rd) with χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for
|x| ≥ 2 and define χε ∈ C∞

c (Rd) for ε > 0 by χε(x) := χ(εx). Crucially, each χεf
belongs to D[h] and has compact support. Also observe that 1− χε is uniformly
bounded in ε with 1 − χε → 0 pointwise as ε → 0. Moreover, ∥|∇χε|∥L∞(Rd) ≤
ε∥|∇χ|∥L∞(Rd) → 0 as ε→ 0. With this, we conclude by the dominated convergence
theorem that χεf → f in H1(Rd) and that v[(1−χε)f, (1−χε)f ] → 0. In particular,
h[(1− χε)f, (1− χε)f ] → 0, as ε→ 0, which together with the first part completes
the proof. □

Let us recall the following classic statement of elliptic regularity which we use
in the proof given in Chapter 5.

Lemma 2.6. Let d3 = 0 and let H be as in Lemma 2.2. We have D(H) ⊂
H2

loc(Rd), and every f ∈ D(H) satisfies Hf = −∆f + V f almost everywhere on
Rd. Moreover, if Hf ∈ H1

loc(Rd) for some f ∈ D(H), then f ∈ H3
loc(Rd).

Proof. Let f ∈ D(H), let h = a + v be the form associated to H, and let
Ω ⊂ Rd be open and bounded. Abbreviate g := (Hf)|Ω ∈ L2(Ω) and h :=
(V f)|Ω ∈ H1(Ω). For all test functions φ ∈ C∞

c (Ω) ⊂ C∞
c (Rd) we then have

a[f, φ] = h[f, φ] − v[f, φ] = ⟨g − h, φ⟩L2(Ω). Classical elliptic regularity results,
see, e.g., [BS91, Theorem S2.2.1], imply that f ∈ H2

loc(Ω). In particular, we have
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−∆f = g − h almost everywhere on Ω. Since Ω was chosen arbitrarily, this proves
the first claim.

If, in addition, Hf ∈ H1
loc(Rd), then the above choices of g and h satisfy even

g − h ∈ H1(Ω), so that the same procedure with the regularity result from [BS91,
Theorem S2.2.1] yields f ∈ H3

loc(Rd). □

The next lemma is presented here for the sake of completeness, since we cannot
specify the domain of the operator H explicitly.

Lemma 2.7. Let d3 = 0 and let H be as in Lemma 2.2. If f ∈ D(H) satisfies
V f ∈ L2(Rd), then f ∈ H2(Rd) and Hf = −∆f +V f pointwise almost everywhere.

Proof. Let f ∈ D(H) with V f ∈ L2(Rd), and let g ∈ C∞
c (Rd). Then,

a[f, g] = h[f, g]− v[f, g] = ⟨Hf, g⟩L2(Rd) − ⟨V f, g⟩L2(Rd) = ⟨Hf − V f, g⟩L2(Rd)

with the to H associated form h = a + v. By approximation, we conclude that
a[f, g] = ⟨Hf − V f, g⟩L2(Rd) for all g ∈ H1(Rd), which proves that f ∈ D(∆) =

H2(Rd) and −∆f = Hf − V f . □

Partial harmonic oscillators. Let us point out some specifics of the situation
where the potential is of the form VI(x) = |xI |2 and, accordingly, H = HI,J is a
so-called partial harmonic oscillator. First, we consider the set

GI,J = {f ∈ L2(Rd) : xα∂βf ∈ L2(Rd) ∀α ∈ Nd
0,I , β ∈ Nd

0,J } ⊂ D[hI,J ]

that is used in the proof we give in Chapter 8.

Lemma 2.8. We have GI,J ⊂ D(HI,J ) and HI,J f = −∆J f + |xI |2f for all
f ∈ GI,J . In particular, GI,J is invariant for HI,J .

Proof. Let f ∈ GI,J and g ∈ D[hI,J ] ⊂ H1
J (Rd). Then, using Fubini’s

theorem and that C∞
c (R) is dense in H1(R), integration by parts in each coordinate

of J yields

hI,J [f, g] =
∑︂
k∈J

⟨∂kf, ∂kg⟩L2(Rd) + ⟨|xI |f, |xI |g⟩L2(Rd)

= ⟨−∆J f, g⟩L2(Rd) + ⟨|xI |2f, g⟩L2(Rd)

= ⟨−∆J f + |xI |2f, g⟩L2(Rd).

Since g ∈ D[hI,J ] was arbitrary, this proves the claim. □

Next, we show that for general I,J ⊂ {1, . . . , d} we can trade the parts of
the potential corresponding to elements in I \ J for additional derivatives via an
appropriate partial Fourier transform. Let m = #(I \ J ), and decompose

x = (x(1), x(2)) with x(1) ∈ Rd
I\J , x

(2) ∈ Rd
(I\J )c .
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We consider the partial Fourier transform

(2.7) (FI\J f)(x) =
1

(2π)m/2

∫︂
Rm

f(η, x(2))e−iη·x(1)

dη for f ∈ L2(Rd),

which, by Plancherel’s and Fubini’s theorems, defines a unitary operator on L2(Rd).
We utilize this transformation to show that HI,J is unitary equivalent to a partial
harmonic oscillator HI′,J ′ with J ′ ⊃ I ′.

Lemma 2.9. With FI\J as in (2.7) we have

HI,J = F−1
I\JHI∩J ,I∪JFI\J .

In particular, for all λ ≥ 0 we have

FI\J RanPλ(HI,J ) = RanPλ(HI∩J ,I∪J ).

Proof. We first observe that for j ∈ J , the partial derivative ∂xj
in direction

ej commutes with FI\J , while for j ∈ I ∩ J , the multiplication by xj commutes
with FI\J . Moreover, for f ∈ L2(Rd) and k ∈ I \ J , we have xkf ∈ L2(Rd) if and
only if ∂xk

FI\J f ∈ L2(Rd) and ∂xk
FI\J f = −iFI\J (xkf). With this, we see that

f ∈ D[hI,J ] if and only if FI\J f ∈ D[hI∩J ,I∪J ] and that

hI∩J ,I∪J [FI\J f,FI\J g] = hI,J [f, g] for all f, g ∈ D[hI,J ],

which proves the first part of the lemma. Immediately, the unitary equivalence
implies the second part. □

2.2.2. Operator bounded potentials. For J = {1, . . . , d} the space of
partial H1-functions HJ (Rd) introduced in the previous subsection coincides with
the Sobolev space H1(Rd). Moreover, the unique selfadjoint operator associated to
the form a = aJ is in this case the usual Laplacian

−∆: L2(Rd) ⊇ D(∆) → L2(Rd) with D(∆) = H2(Rd).

If V : Rd → R is a measurable function, the associated multiplication operator is
said to be infinitesimally ∆-bounded if for every ε > 0 there exists some b = b(ε) ≥ 0
such that

∥V f∥L2(Rd) ≤ ε∥∆f∥L2(Rd) + b∥f∥L2(Rd) for all f ∈ D(∆).

For such V the well-known Kato-Rellich theorem implies that the Schrödinger
operator H defined as the operator sum

(2.8) H = −∆+ V : L2(Rd) ⊃ D(∆) → L2(Rd),

is selfadjoint and lower semibounded.

Remark 2.10. If Ω ⊊ Rd, then the choice of the form-domain D[a] of

a[f, g] =
d∑︂

j=1

⟨∂kf, ∂kg⟩L2(Ω) with f, g ∈ D[a]
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encodes the boundary conditions of the Laplacian. For instance,
• if D[a] = H1(Ω), the associated selfadjoint Laplacian −∆N

Ω has Neumann
boundary conditions.

• if D[a] = H1
0 (Ω) is the closure of C∞

c (Ω) with respect to the norm of
H1(Ω), the associated selfadjoint Laplacian −∆D

Ω has Dirichlet boundary
conditions.

• if Ω is a bounded and rectangular shaped domain and D[a] = H1
per(Ω) is

the closure of the periodic C∞(Ω)-functions with respect to the norm of
H1(Ω), the associated selfadjoint Laplacian −∆per

Ω has periodic boundary
conditions.

If V : Ω → R is a measurable function that is infinitesimally ∆•
Ω-bounded, where

• ∈ {N,D, per, . . . } denotes the chosen boundary conditions, the corresponding
Schrödinger operator H•

Ω with these boundary conditions can be defined analogously
to (2.8) via the Kato-Rellich theorem.

2.3. Quadratic differential operators

Here we recall some results from the theory of quadratic differential operators that
are used in the formulation and proof of our main result in Section 4.2. For a
broader overview on the general theory of pseudo-differential operators, we refer,
among others, to [Hör07, NR10]. To begin with, we consider the complex quadratic
polynomial

(2.9) q : Rd × Rd → C, q(x, ξ) =
∑︂

|α+β|=2

α,β∈Nd
0

cα,βx
αξβ, cα,β ∈ C.

It is well-known that the distribution kernel

K(x, y) = (2π)−d/2F−1
(︁
Rd ∋ ξ ↦→ q((x+ y)/2, ξ)

)︁
(x− y)

defines a continuous operator qw : S(Rd) → S ′(Rd) by

⟨qwu, v⟩ = ⟨K, v ⊗ u⟩ for u, v ∈ S(Rd).

Here S ′(Rd) is the space of tempered distributions, F : S ′(Rd) → S ′(Rd) denotes
the Fourier transform, and ⟨·, ·⟩ is the pairing between S ′(Rd) and S(Rd) and
between S ′(R2d) and S(R2d), respectively. Moreover, the thus defined operator qw
extends to a continuous operator on S ′(Rd), see [NR10, Proposition 1.2.13], and
we may therefore define

(2.10) A : L2(Rd) ⊃ D(A) → L2(Rd), f ↦→ qwf

on
D(A) = {f ∈ L2(Rd) : qwf ∈ L2(Rd)}.

We call A the quadratic differential operator associated to q and q its symbol.
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The next lemma due to Hörmander shows that quadratic differential operators
with symbol A are generators of contraction semigroups if the real part of q is
non-positive.

Proposition 2.11 ([Hör95]). Let q be as in (2.9). Then the operator A defined
by (2.10) is closed, densely defined, and agrees with the closure of the restriction of
qw to the space S(Rd). If Re q ≤ 0, then A generates a contraction semigroup.

We point out that a symbol q may also be complex valued in which case the
generator in the previous proposition is non-selfadjoint.

The operator A = qw introduced via a distribution in (2.10), is explicitly given
by

(2.11) (Af)(x) = (qwf)(x) =
1

(2π)d

∫︂
Rd

eix·ξ
∫︂
Rd

e−iy·ξq
(︂x+ y

2
, ξ
)︂
f(y) dy dξ

for f ∈ S(Rd), see [NR10, Propositon 1.2.3]. With this explicit expression at hand,
one easily verifies that A is a simple differential operator.

Lemma 2.12. For f ∈ S(Rd) and k, j ∈ {1, . . . , d} we have:
(a) If q(x, ξ) = x2k then (qwf)(x) = x2kf(x).
(b) If q(x, ξ) = ξ2j then (qwf)(x) = (∂2xj

f)(x).
(c) If q(x, ξ) = xkξj then (qwf)(x) = 1

2

(︁
ixk(∂xj

f)(x) + i(∂xj
(xkf))(x)

)︁
.

Let now R : Rd → Rd be any unitary map and let q̃ be the quadratic polynomial
with q̃(x, ξ) = q(Rx,Rξ). The following lemma relates the Weyl quantizations of q
and q̃.

Lemma 2.13. Let (URf)(x) = f(Rx) for f ∈ L2(Rd). Then URq
wU−1

R = q̃w on
S(Rd). Moreover, if Ã is the quadratic differential operator with symbol q̃ we have
URAU−1

R = Ã.

Proof. Let f ∈ S(Rd). We have

(q̃wf)(x) =
1

(2π)d

∫︂
Rd

eix·ξ
∫︂
Rd

e−iy·ξq
(︂Rx+Ry

2
,Rξ

)︂
f(y) dy dξ

and substituting y′ = Ry and ξ′ = Rξ yields

(q̃wf)(x)

=
1

(2π)d

∫︂
Rd

eix·R
−1ξ′

∫︂
Rd

e−iR−1y′·R−1ξ′q
(︂Rx+ y′

2
, ξ′
)︂
f(R−1y′) dy′ dξ′

=
1

(2π)d

∫︂
Rd

eiRx·ξ′
∫︂
Rd

e−iy′·ξ′q
(︂Rx+ y′

2
, ξ′
)︂
f(R−1y′) dy′ dξ′

= (qw(f ◦ R−1))(Rx).
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Hence UR
(︁
qw(U−1

R f)
)︁
(x) = q̃wf(x). Finally, since the operator A is the closure of

qw|S(Rd) by Proposition 2.11, the statement of extends to the operators A and Ã
corresponding to q and q̃, respectively. □

Remark 2.14. It is also possible to give the proof of Lemma 2.13 using
Lemma 2.12 and establishing the identity URq

wU−1
R = q̃w for the elementary

symbols q(x, ξ) = xαξβ with |α + β| = 2 via the chain rule.

2.3.1. The singular space. It is a result of Hörmander [Hör95] that the
semigroup generated by a quadratic differential operator can be identified with
the Hamilton flow of the corresponding quadratic symbol.1 Interpreting q as a
quadratic form on R2d and using the same letter to denote the polarized form,
the Hamilton flow associated with q is the solution of the system of 2d-ordinary
differential equations Z ′ = −iJ ∂

∂Z
q(Z), where J is the matrix corresponding to the

standard symplectic form σ on R2d. Since q is a quadratic form on R2d, there is a
matrix Q ∈ R2d×2d such that for all X, Y ∈ R2d we have q(X, Y ) = X ·QY . Setting
F = JQ we therefore have q(X, Y ) = σ(X,FY ) for all X, Y ∈ R2d and with this
matrix the Hamilton flow can be written as e−itF . It is easy to compute that

F =
1

2

(︃
(∂ξj∂xk

q(x, ξ))dj,k=1 (∂ξj∂ξkq(x, ξ))
d
j,k=1

−(∂xj
∂xk

q(x, ξ))dj,k=1 −(∂xj
∂ξkq(x, ξ))

d
j,k=1

)︃
and F is called the fundamental matrix. With the fundamental matrix at hand,
the singular space of the quadratic form q (or the operator A = qw) has been
introduced in [HPS09] as

(2.12) S = S(A) = S(q) =

(︄
2d−1⋂︂
j=0

ker
[︁
ReF (ImF )j

]︁)︄
∩ R2d,

where the real ReF and imaginary part ImF are taken entrywise. We denote by
k0 ∈ {0, . . . 2d− 1} the smallest number such that

(2.13) S =

(︄
k0⋂︂
j=0

ker
[︁
ReF (ImF )j

]︁)︄
∩ R2d,

which exists due to the Cayley-Hamilton theorem. Throughout this work, we call
k0 the rotation exponent of q (resp. A). One important case are the real-valued
symbols where k0 = 0 since ImF = 0.

The singular space is strongly connected to so-called smoothing properties of
the semigroup generated by A = qw which play a major role in the result we
state in Section 4.2. More precisely, it encodes directions in the phase space in

1In [AB] it is stated i.a. that the so-called exact classical-quantum correspondance due to
Hörmander “allows to identify a semigroup generated by the Weyl quantization of a quadratic
form with the Hamiltonian flow of this quadratic form (i.e. the exponential of a matrix).”

The author is grateful to Paul Alphonse for pointing out this correspondence in a personal
conversation in Dortmund.
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which elements in the range of the semigroup associated to the operator A do not
behave like a Schwartz function. We refer the reader to Chapter 8 below for more
information and references concerning the connection between the singular space
and the smoothing properties of the semigroup.

The singular space can be easily computed for the partial harmonic oscillators
HI,J introduced via the form method in Section 2.2 above.

Lemma 2.15. Let I,J ⊂ {1, . . . , d} and define q(x, ξ) = −|ξJ |2 − |xI |2 for
x, ξ ∈ Rd. Then, for the quadratic differential operator A with symbol q, we have
A = −HI,J and the singular space is given by S(A)⊥ = Rd

I × Rd
J .

Proof. The operators A and −HI,J agree on the Schwartz space and therefore
the desired equality follows from Corollary 2.3 and Proposition 2.11. In order to
calculate the singular space, we note that the rotation exponent k0 of q is zero
since q is real-valued. A direct calculation yields S(q) = kerF = Rd

Ic × Rd
J c . □

In order to have explicit examples at hand where our main result from Section 4.2
is applicable, we present the particular models of a Kolmogorov and Kramers-
Fokker-Planck operators here. These operators are special examples of so-called
generalized Ornstein-Uhlenbeck operators and our result in Section 4.2 can also be
applied for this larger class of operators. However, the following examples already
allow us to distinguish our results sufficiently from previous results. Therefore, for
simplicity we restrict ourselves to these.

In the next examples we let d = 2m with m ∈ N and write y = (y(1), y(2)) ∈
Rd = Rm × Rm. The singular space in both examples can be computed explicitly
as demonstrated for instance in [Alp21, Proof of Theorem 5.2].

Example 2.16 (Kolmogorov equation). Let q(x, ξ) = −|ξ(1)|2+ix(2) ·ξ(1). Then
the quadratic differential operator corresponding to this quadratic polynomial is
the Kolmogorov operator A = ∆x(1) − x(2) · ∇x(1) . For this operator the singular
space is given by S(A)⊥ = {0} × Rd.

Example 2.17 (Kramers-Fokker-Planck operator). Let I1 ⊂ {1, . . . ,m} and
define

Q =

(︃
0 0
0 2 Idm

)︃
, B =

(︃
0 Idm

− IdI1 0

)︃
, and R =

(︃
0 0
0 1

2
Idm

)︃
.

The quadratic differential operator A corresponding to the quadratic polynomial

(2.14) q(x, ξ) = −1

2
Qξ · ξ − 1

2
Rx · x− iBx · ξ

is given by

A = ∆x(2) −
1

4
|x(2)|2 − x(2) · ∇x(1) +∇x(1)V (x(1)) · ∇x(2) ,

where V (x(1)) = |(x(1))I1|2 is the so-called external potential. In this setting, the
singular space satisfies S(A)⊥ = Rd

I × Rd with I = I1 ∪ {m+ 1, . . . , d}.



CHAPTER 3

Control theory

In this chapter, we give a brief introduction into control theory for evolution
equations on Hilbert spaces. The abstract concepts of (null-)controllability and
(final-state) observability are introduced in Section 3.1, where also the duality of
these notions is discussed. As a consequence of this duality, we limit ourselves
in the rest of this thesis to the study of observability. In Section 3.2, we present
criteria to conclude observability of a system solely from properties of the generator.
Our study of observability in Chapter 4 mainly relies on these criteria.

The setting we introduce here is contained in several works dealing with control
theory and this chapter is oriented in part on the presentations in [EN00, TW09,
ENS+20].

3.1. Observability and controllability

The time evolution of the state of an autonomous linear system w′(t) = Aw(t)
with initial value w(0) = w0 ∈ H on a Hilbert space H is described by the
strongly continuous operator semigroup (T (t))t≥0 generated by A : H ⊃ D(A) → H.
These semigroups were and are studied extensively, see, e.g., the monographs
[HP57, Paz83, EN00]. When modeling manipulations or measurements of the
system from the outside one enters the field of control theory. Let us start by
formulating the problem in more detail: We deal with the controlled abstract Cauchy
problem

(3.1)

⎧⎪⎨⎪⎩
w′(t) = Aw(t) + Bu(t), t ∈ (0, T ],

v(t) = Cw(t), t ∈ [0, T ],

w(0) = w0, w0 ∈ H,

where T > 0, U and V are the control and observation Hilbert spaces, respectively,
B ∈ L(U ,H) is the control operator, C ∈ L(H,V) is the observation operator, and
u ∈ L2((0, T );U) is the control function. We denote the abstract control system
associated to (3.1) by Σ(A,B, C) and write Σc(A,B) or Σo(A, C) if there is no
observation or no control operator, respectively.

The mild solution of the system Σc(A,B) is given by Duhamel’s formula as

(3.2) w(t) = T (t)w0 +

∫︂ t

0

T (t− s)Bu(s) ds, t ∈ (0, T ].

21



22 3. CONTROL THEORY

Hence, the free evolution t ↦→ T (t)w0 is influenced only by the so-called controlla-
bility map

(3.3) Bt : L
2((0, T ),U) → H, Btu =

∫︂ t

0

T (t− s)Bu(s) ds for t ∈ (0, T ].

This motivates the labeling of B as a control operator, since B restricts how the
control function can interact with the system. The question of interest in this
setting is whether we can find a control function for a given control operator such
that the mild solution vanishes in time T . Note that this implies by linearity that
one can steer the system to every state in the range of T (T ).

Definition 3.1 (Null-controllability). The system Σc(A,B) is said to be null-
controllable in time T > 0, if for every initial value w0 ∈ H there exists a control
function u = u(w0) ∈ L2((0, T );U) such that the mild solution satisfies w(T ) = 0.
If Σc(A,B) is null-controllable, the control costs in time T of the system Σc(A,B)
are

(3.4) CT = sup
w0∈H

∥w0∥H=1

min
{︁
∥u∥L2((0,T );U) : T (T )w0 + BTu = 0

}︁
.

Example 3.2. Suppose that B ∈ L(U ,H) is surjective. Then for all s ∈ [0, T ]
there is us ∈ U such that Bus = T (s)w0 and setting u(s) = −us/T for s ∈ [0, T ]
we have BTu = −T (T )w0. Hence, w(T ) = 0 and Σc(A,B) is null-controllable.

It clearly depends on the control operator B (and the controllability map)
whether there is any chance that the system Σc(A,B) is null-controllable. In fact,
if the system Σc(A,B) is null-controllable in time T > 0, then in view of (3.2) we
must have

(3.5) Ran T (T ) ⊂ RanBT

and this inclusion may serve as an equivalent definition of null-controllability.
When working with the system Σo(A, C), we can observe (or measure) the state

w(t) of the system at time t only through the observation v(t). This motivates the
following question: Is it is possible to recover the final state w(T ) = T (T )w0 only
from the observations v(·) = CT (·)w0 on the interval [0, T ]?

Definition 3.3 (Observability). The system Σo(A, C) is called (final-state)
observable in time T > 0 if there is a constant Cobs = Cobs(T ) > 0 such that

(3.6) ∥T (T )w0∥H ≤ Cobs

(︃∫︂ T

0

∥CT (t)w0∥2V dt
)︃1/2

for all w0 ∈ H.

As for null-controllability, it heavily depends on the observation operator if the
system is observable.

Remark 3.4. The observability estimate (3.6) only depends on the semigroup.
Therefore, in order to avoid unnecessarily complicated formulations if we work
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with a semigroup without specifying its generator, we also say that the semigroup
(T (t))t≥0 is observable through C (or from some set ω if C = 1ω) in time T if (3.6)
holds.

The null-controllability of the system Σc(A,B) and the observability of the
system Σo(A, C) are intimately related since the adjoint of the controllability map
satisfies

(3.7) (B∗
Tw)(s) = B∗T (T − s)∗w for w ∈ H, s ∈ [0, T ].

Since by [Paz83, Corollary 10.6] the adjoint semigroup (T (t)∗)t≥0 is again a strongly
continuous semigroup with generator A∗, the integral of the norm of the adjoint of
the controllability map over the interval [0, T ] corresponds to the right-hand side of
the observability estimate (3.6) for the adjoint semigroup, cf. inequality (3.8) below.
Hence, we obtain that null-controllability and observability are dual concepts.

Theorem 3.5. The system Σo(A, C) is observable in time T > 0, if and only if
the system Σc(A

∗, C∗) is null-controllable in time T . Furthermore, the control costs
in time T of the system Σc(A

∗, C∗) satisfy

CT = min{Cobs : (3.6) holds for all w0 ∈ H}.

Since in almost all of the results presented in this work we consider classes of
generators that are closed under taking adjoints, it is always possible to switch
between observability and null-controllability by Theorem 3.5. In fact, since B is a
bounded operator, we have B = B∗∗ and therefore it always suffices to study the
observability of the system Σo(A

∗,B∗) in order to prove null-controllability of the
system Σo(A,B) and vice versa. For this reason, in the most parts of this thesis we
only treat the observability of the system Σo(A, C). One exception is Section 4.3
below, where we cannot guarantee that the class is closed under taking adjoints,
cf. Remark 4.37.

The proof of Theorem 3.5 is a direct consequence of the identity (3.7) and an
abstract functional analytic lemma, the so-called Douglas’ lemma [Dou66]. We give
here the version of the latter from [ENS+20], that also includes a statement about the
control costs. For further references, we refer the reader to [DR77, Zab20, TW09].

Lemma 3.6. Let X, Y , and Z be Hilbert spaces and let P ∈ L(X,Z) and
Q ∈ L(Y, Z). Then the following conditions are equivalent:

(i) RanP ⊂ RanQ,
(ii) There is some C > 0 such that ∥P ∗z∥X ≤ C∥Q∗z∥Y for all z ∈ Z,
(iii) There is some R ∈ L(X, Y ) such that P = QR.
Moreover,

min{C : ∥P ∗z∥X ≤ C∥Q∗z∥Y ∀z ∈ Z} = min{∥R∥L(X,Y ) : P = QR}.

Proof of Theorem 3.5. We apply Lemma 3.6 with X = Z = H, Y =
L2((0, T );U), P = T (T ) and with Q = BT . In this setting, (i) takes the form of
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the alternative definition of null-controllability in (3.5), while (ii) reads as

(3.8) ∥T ∗(T )z∥H ≤ C∥B∗
T (·)z∥L2((0,T );U) = C ·

(︃∫︂ T

0

∥B∗
T (s)z∥V ds

)︃1/2

, z ∈ H.

Substituting (3.7) into this expression then proves the equivalence. Moreover, if
one of the two equivalent statements holds, then the operator R whose existence
is guaranteed by (iii) maps an initial value to a suitable control function such
that the mild solution vanishes at T and the norm of this operator agrees with
the control costs CT defined in (3.4). Thereby, we get the desired identity for the
control costs. □

3.2. Criteria for observability and the observability constant

Given a generator A of a strongly continuous semigroup, we are now interested
in conditions on C guaranteeing observability. In addition, given any sufficient
condition for C, it is also of great interest to track the observability constant (or an
upper bound for it) in terms of this condition.

The possibly most studied situation is that of H = L2(Ω) for an open set Ω ⊂ Rd

where the observation operator is a multiplication operator by the characteristic
function of some measurable set ω ⊂ Ω, i.e., C = 1ω : L

2(Ω) → L2(ω). In this case,
the set ω is often referred to as a sensor set, which is guided by the interpretation
that we measure the state of the system with sensors placed throughout the domain
Ω. Consider, for example, the Dirichlet Laplacian A = ∆ = ∆D

Ω in L2(Ω). Then a
sufficient condition for observability of the heat system Σo(∆,1ω) was established
by Lebeau and Robbiano in the pioneering paper [LR95], see also [LZ98, JL99].
There it is shown, that the system Σo(∆,1ω) is observable, if there are constants
d0, d1 > 0 such that the so-called spectral inequality

(3.9) ∥Pλ(−∆)g∥2L2(Ω) ≤ d0e
d1λ1/2∥1ωPλ(−∆)g∥2L2(ω)

holds for all g ∈ L2(Ω). Hence, this condition eliminates the dependence on the
time parameter and reduces the investigation of the observability of the parabolic
system Σo(∆, 1ω) to the study of properties of elements in the spectral subspace of
the generator.

Similar results, often called a Lebeau-Robbiano method in the literature, were
subsequently obtained in various situations. For expository reasons, we first consider
selfadjoint operators on general Hilbert spaces with abstract observation operators
which were studied explicitly in [TT11] (for operators with purely discrete spectrum)
and in [NTTV20a]. However, let us emphasize that the papers [Mil10, BPS18],
which are only mentioned further below, have already obtained similar results
before and have served as an important inspiration for [NTTV20a]. The papers
[TT11, NTTV20a] improve on the original formulation of [LR95] in two significant
ways: Firstly, they give estimates on the observability constant Cobs in terms of
the parameters d0 and d1 in the uncertainty relation (3.9). Secondly, they allow
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a dependence of the constant on the spectral parameter of the form λγ1 for some
γ1 ∈ (0, 1). We here recall the main result from [NTTV20a], as it gives the best
upper bound for the observability constant in terms of d0, d1, and γ1. Note that
this theorem contains the statement from [LR95] as a special case.

Theorem 3.7 ([NTTV20a, Theorems 2.8 and 2.12]). Let −A be a lower semi-
bounded selfadjoint operator and let κ = inf σ(−A). Suppose that there are d0 > 0,
d1 ≥ 0, and γ1 ∈ (0, 1) such that we have the spectral inequality

(3.10) ∥Pλ(−A)g∥2H ≤ d0e
d1(λ−κ−)γ1∥CPλ(−A)g∥2V for all λ > κ, g ∈ H.

Then the system Σo(A, C) is observable in all times T > 0 and the observability
constant satisfies

C2
obs ≤

C1d0
T

(︁
2d0∥C∥L(H,V) + 1

)︁C2 exp
(︂
C3

d
1/(1−γ1)
1

T γ1/(1−γ1)
− κ−T

)︂
,

where C1, C2, C3 > 0 are constants depending only on γ1 and κ− = min{0, κ}.

It is worth pointing out that if we have established the spectral inequality only
for, say, λ ≥ 1, then we still get (3.10) by slightly adapting the constants d0 and d1.

When dealing with non-selfadjoint generators A, it is not possible to formu-
late the spectral inequality (3.10), since there is no natural replacement for the
spectral projections Pλ(−A). However, there are similar results where the spectral
projections are replaced by some family of operators (Pλ)λ satisfying, in addition
to an analog of (3.10), a so-called dissipation estimate (see (3.12) below) which
guarantees an exponential decay of the semigroup on (RanPλ)

⊥. Results in this
direction were proven in [Mil10, WZ17, BPS18]. Moreover, [BEPS20] consider the
situation of contraction semigroups with sensor sets varying in time and with a
certain blow-up of the dissipation estimate in small times (that is, d2 = d2(t) in
(3.12) below with a polynomial blow-up as t → 0), while general semigroups on
Banach spaces were treated in [GST20].

Here we formulate the result from the last mentioned reference in the special
case of Hilbert spaces.

Theorem 3.8 ([GST20, Theorem 2.1]). Let A be the generator of a strongly
continuous semigroup (T (t))t≥0 such that for some M ≥ 1 and κ ∈ R we have
∥T (t)∥L(H) ≤ Meκt for all t ≥ 0. Suppose that for some λ∗ ≥ 0 and a family
(Pλ)λ≥λ∗ ⊂ L(H) of operators there are

(i) d0, d1, γ1 > 0 with

(3.11) ∥Pλg∥2H ≤ d0e
d1λγ1∥CPλg∥2H for all λ > λ∗, g ∈ H,

and
(ii) d2 ≥ 1, d3, γ2, γ3, T > 0 with γ1 < γ2 such that for all t ∈ (0, T/2] we have

(3.12) ∥(Id−Pλ)T (t)g∥H ≤ d2e
−d3λγ2 tγ3∥g∥H for all λ > λ∗, g ∈ H.
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Then the system Σo(A, C) is observable in time T and

C2
obs ≤

C2
1

T
exp
(︂ C2

T γ1γ3/(γ2−γ1)
+ C3T

)︂
,

where the constants are explicitly given by

C1 = (4Md
1/2
0 )max{(4d2M2)(d

1/2
0 ∥C∥L(H,V) + 1)8/(e log 2), e2d1(2λ

∗)γ1},
C2 = 8(2γ1−γ2(2 · 4γ3)γ1γ3/(γ2−γ1)dγ21 /d

γ1
3 )1/(γ2−γ1),

C3 = max{κ, 0}(1 + 10/(e log 2)).

Oftentimes, in applications Theorem 3.8 can be applied with γ2 = 1 and
therefore we are particularly interested in (3.11) with γ1 < γ2 = 1. In fact, this
is the situation we encounter for selfadjoint generators: By spectral calculus, a
negative selfadjoint operator A generates a contraction semigroup (T (t))t≥0 with
T (t) = etA, so that we can set M = 1 and κ = 0 in Theorem 3.8. Furthermore,
setting Pλ = Pλ(−A) for λ ≥ λ∗ = κ = 0 we have by spectral calculus

∥(Id−Pλ)e
tAf∥H ≤ e−tλ∥f∥H for all t > 0,

which indeed shows the dissipation estimate (3.12) with γ2 = 1 and with γ3 = d2 =
d3 = 1. Since also the (spectral) inequalities (3.10) and (3.11) are equivalent in
this case, Theorem 3.7 and Theorem 3.8 coincide for selfadjoint generators.

Let us now discuss the dependence of the observability constant on the time
T > 0. To this end, we suppress for now all constants depending on parameters
other then T . Theorem 3.7 establishes Cobs ≲ 1/T 1/2 as T → ∞. This is can also
be seen in Theorem 3.8 for the case of contraction semigroups, i.e., if κ ≤ 0 and
therefore C3 = 0. It is known that this behavior is optimal, in fact [NTTV20a,
Theorem 2.13] shows that also Cobs ≳ 1/T 1/2 as T → ∞. However, if the semigroup
is not a contraction semigroup, it is expected to experience an exponential blow-up
in the large time regime.

For small times the observability constant in both theorems blows up at most
exponentially, e.g., the observability constant of the heat system Σo(∆, 1ω) satisfies
Cobs ≲ ec/T as T → 0. That this exponential blow-up is actually the worst
case scenario for heat systems was shown in [Sei84] (in dimension one) and in
[FI96, Mil10] (in higher dimensions). Complementing lower bounds of the form
Cobs ≳ ec/T for T → 0 were given in [Güi85, Proposition 3] (in one dimension)
and in [Mil04, Theorem 2.1] (in higher dimensions). Hence, the estimates in both
theorems above are optimal in the small as well as in the large time regime for
these systems.

Besides the already mentioned references, there is a vast amount of literature
on the dependence of the observability constant on the time T > 0 which we cannot
reproduce here in its entirety. We therefore refer the reader to the discussion in the
papers [NTTV20a, GST20]. Since in all our applications we prove observability
using either Theorem 3.7 or a corollary of Theorem 3.8, see Corollary 3.9 below,
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we do not discuss the time dependence in more detail. Instead, the dependency of
most interest to us is that of the geometry of ω on the observability of the system
Σo(A,1ω), where ω ⊂ Rd and A is the generator of a contraction semigroup on
L2(Rd). Moreover, if the system is indeed observable, we also briefly investigate
the influence of the geometry on the observability constant of the system. There
are also previous works studying this dependence in several situations, the ones
most important to our results being [EV18, NTTV18, Egi21, NTTV20a, BPS18,
BJPS21, MPS22, Alp21]. We address these in the discussion in Chapter 4.

So far we have only treated the case where the dissipation estimate (3.12) holds
for all times t ∈ (0, T/2]. However, in all our applications below where the generator
of the semigroup is non-selfadjoint, we can only prove the dissipation estimate
(3.12) for small times 0 < t≪ 1. In order to still achieve observability for all times
T > 0 we formulate the following simple corollary to Theorem 3.8. It extends the
statement from [BPS18, Theorem 2.1] which agrees with the corollary for families
(Pλ)λ of projections on some L2-space. Essentially, this corollary mirrors the fact
that observability of a contraction semigroup is transitive in time, i.e., if the system
is observable in some time T0, then it is also observable in all times T ≥ T0 and the
observability constant does not get worse. Since in the next proof we only use the
contractivity of the semigroup it is apparent that we no longer obtain the decay
for large times T .

Corollary 3.9. Let A be the generator of a contraction semigroup and suppose
that part (i) of Theorem 3.8 holds. Then, if part (ii) of Theorem 3.8 holds only
for t ∈ (0, T0/2] with some T0 > 0, the system Σo(A, C) is observable in all times
T > 0 and we have

(3.13) C2
obs ≤ C ′

1 exp

(︃
C ′

2

T γ1γ3/(γ2−γ1)

)︃
,

where C ′
1, C

′
2 > 0 are constants depending only on γ1γ3/(γ2 − γ1), C1, C2, and T0.

Proof. Let C ′
2 = C2 + CC

2γ1γ3/(γ2−γ1)
1 and C ′

1 = exp
(︁
C1T

−γ1γ3/(γ2−γ1)
0

)︁
, where

C > 0 is a constant that depends only on γ1γ3/(γ2 − γ1) and that is chosen in such
a way that log x ≤ Cxγ1γ3/(γ2−γ1) for all x > 0. Then the statement follows from
Theorem 3.8 if T ≤ T0 and from the contractivity of the semigroup if T > T0. □

We point out that the constant in the previous corollary was only given in this
specific form to avoid distinguishing between the two cases T ≤ T0 and T > T0 in
inequality (3.13).

The last method to prove observability we present in this chapter goes back
to the works [Mil10, Mar22]. In contrast to the criteria we considered up to now
it does not combine a spectral inequality with a dissipation estimate but instead
supposes an uncertainty principle with an error term for elements in the range of
the contraction semigroup (T (t))t≥0. For some set ω ⊂ Rd, this reads as

(3.14) ∥T (t)g∥2L2(Rd) ≤ Ut∥T (t)g∥2L2(ω) + Et∥g∥2L2(Rd), g ∈ L2(Rd),



28 3. CONTROL THEORY

for all t ∈ (0, t0), where t0 > 0, and where Ut, Et are suitable constants depending,
amongst others, on the parameter t and are both monotone decreasing in t. This
way of establishing observability is of interest whenever we are not able to use
Theorem 3.7 or Theorem 3.8 (respectively Corollary 3.9), but we can use properties
of elements in the range of the semigroup to prove (3.14). We pursue this approach
in Section 4.3 below.

Since the result we use in Section 4.3, see Corollary 3.11 below, was only stated
implicitly in [Mar22, Proof of Theorem 2.11], we give a short derivation here. To
this end, we first recall the following lemma which is a slightly customized version
of [Mil10, Lemma 2.1].

Lemma 3.10. Let (T (t))t≥0 be a strongly continuous contraction semigroup on
L2(Rd) and suppose that there is a monotone increasing function h : [0,∞) → [0, 1)
with h(τ) → 0 as τ → 0 such that for some q ∈ (0, 1) and some τ0 > 0 we have the
approximate observability estimate

(3.15) h(τ)∥T (t)g∥2L2(Rd) ≤
∫︂ τ

qτ

∥T (s)g∥2L2(ω) ds+ h(qτ)∥g∥2L2(Rd)

for all g ∈ L2(Rd) and all τ ∈ (0, τ0). Then, for all T > 0 we have

∥T (T )g∥2L2(Rd) ≤
C1

h
(︁
(1− q)T

)︁ ∫︂ T

0

∥T (t)g∥2L2(ω) dt,

where C1 = 1/h
(︁
(1− q)τ0/2

)︁
.

The idea introduced in [Mar22] is then to build the proof of the observability
estimate upon the uncertainty principle with error term (3.14) and Lemma 3.10.
Indeed, using that (T (t))t≥0 is a contraction semigroup, we see that we can interpret
the approximate observability estimate (3.15) as an integrated version of (3.14):
Since the semigroup is a contraction, for all t > 0 and q ∈ (0, 1) we have

∥T (t)g∥2L2(Rd) =
1

(1− q)t

∫︂ t

qt

∥T (t)g∥2L2(Rd) ds ≤
1

(1− q)t

∫︂ t

qt

∥T (s)g∥2L2(Rd) ds,

so that plugging in (3.14) we get

∥T (t)g∥2L2(Rd) ≤
Uqt

(1− q)t

∫︂ t

qt

∥T (s)g∥2L2(ω) ds+ Eqt∥g∥2L2(Rd)

for all t ∈ (0, t0), where we used that E(·) is monotone decreasing. Thus, if we can
find a monotone increasing function h as in Lemma 3.10 such that for some τ0 ≤ t0
and some appropriately chosen and fixed q we have

(3.16)
Uqτ

(1− q)τ
≤ 1

h(τ)
and Eqτ ≤ h(qτ)

h(τ)
for τ ∈ (0, τ0),

then (3.14) implies the approximate observability estimate (3.15) with this function
h. In particular, we get the following corollary to Lemma 3.10.
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Corollary 3.11. Let (T (t))t≥0 be a strongly continuous contraction semigroup
on L2(Rd) and suppose that (3.14) holds for all τ ∈ (0, τ0) with constants Uτ and
Eτ that satisfy (3.16) with some monotone increasing function h : [0,∞) → [0, 1)
satisfying h(τ) → 0 as τ → 0. Then, with the constant C1 from Lemma 3.10 we
have

∥T (T )g∥2L2(Rd) ≤
C1

h
(︁
(1− q)T

)︁ ∫︂ T

0

∥T (t)g∥2L2(ω) dt for all T > 0.





CHAPTER 4

Observability

In this chapter the main results of this thesis are presented and discussed. We first
state spectral inequalities for two types of Schrödinger operators in Section 4.1:
Those with admissible singular potentials and with partial power growth potentials.
In the case of partial power growth potentials, we further distinguish between the
partial harmonic oscillator (i.e., the case of quadratic potentials) and Schrödinger
operators with more general partial power growth potentials including, amongst
others, (partial) anisotropic Shubin-type operators. After that, in Section 4.2 we
present a class of accretive operators that are comparable to the partial harmonic
oscillators in the sense of a dissipation estimate. Using the Lebeau-Robbiano method
and falling back to the spectral inequality of the partial harmonic oscillators, we
present observability estimates also for the systems associated with these possibly
non-selfadjoint generators. Finally, Section 4.3 discusses an observability result
that can be obtained from smoothing effects of the semigroup, while in Section 4.4
we discuss supplementary results that can be derived using the spectral inequalities
from Section 4.1.

Throughout the chapter we use the notation introduced in Chapter 2, see for
instance Table 1. In particular, K always denotes a universal constant, whereas
Kd denotes a constant depending only on the dimension d. Recall that both
may change from line to line. Furthermore, we remind the reader of the notation
Σo(A,1ω) from Section 3.1.

4.1. Spectral inequalities for selfadjoint Schrödinger operators

Let ω ⊂ Rd be some measurable sensor set and let H = −A : L2(Rd) ⊃ D(A) →
L2(Rd) be some lower semibounded selfadjoint Schrödinger operator. In this case,
the spectral inequality (3.10) (with κ− = 0) is often formulated as

(4.1) ∥f∥2L2(Rd) ≤ d0e
d1λγ1∥f∥2L2(ω)

for all λ ≥ 1 and all f ∈ RanPλ(H). Such estimates bear various names depending
on the area of analysis where they appear. For instance, while in the context of
control theory one often sticks to the term spectral inequality, in, e.g., the context
of random Schrödinger operators an estimate of the form (4.1) is also referred to
as a quantitative unique continuation estimate. We here adopt the following way of
speaking.

31
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Definition 4.1. We say that (4.1) is a spectral inequality if and only if the
inequality holds for all f ∈ RanPλ(H), λ ≥ 1, and with γ1 < 1. If it holds merely
for all f in a subspace of RanPλ(H) (e.g., for individual eigenfunctions) or if γ1 ≥ 1,
we call it a quantitative unique continuation estimate.

Let us now turn to the observability of the systems Σo(A,1ω) in time T > 0.
In view of Theorem 3.7, it suffices to study spectral inequalities for the operator
H = −A in order to extract sufficient conditions on the sensor set that guarantee
observability in all times. In the observability estimate, the geometry of the set
ω is then expressed in the constants d0, d1, and γ1 of the spectral inequality (4.1)
and, therefore, we are especially interested in the dependence of these constants on
properties of the sensor set. The parameter γ1 plays an important role here since
the proof of observability via the Lebeau-Robbiano strategy in Theorem 3.7 fails if
γ1 ≥ 1. This is why our sensor sets need to be chosen in a way that guarantees
γ1 < 1.

In the case where A = ∆ = ∆D
Ω is the Dirichlet Laplacian on a bounded domain

Ω, it is well-known that the system Σo(∆, 1ω) is observable in all times T > 0 if the
sensor set is any open set [LR95] or even any measurable set with positive Lebesgue
measure if the domain is additionally Lipschitz and locally star-shaped (e.g., a
convex set) [AE13, AEWZ14]. Both results do not give explicit estimates on the
observability constant in terms of the geometry of the sensor set. If the domain is a
cube Ω = (0, 2πL)d with L > 0, such estimates were given in [EV18, NTTV20a] if A
is the selfadjoint realization of the Laplacian with periodic, Dirichlet, or Neumann
boundary conditions, see Corollary 4.5 below.

The situation is remarkably different if the domain is unbounded: On the
whole of Rd, it was shown independently in [EV18] and [WWZZ19] that the system
Σo(∆,1ω) is observable in time T > 0 if and only if the sensor set is a thick set in
the sense of the following definition.

Definition 4.2 (Thick set). Let γ ∈ (0, 1] and ρ > 0. The measurable set
ω ⊂ Rd is said to be (γ, ρ)-thick if

(4.2)
|B(x, ρ) ∩ ω|
|B(x, ρ)|

≥ γ for all x ∈ Rd.

We say that a set ω is thick if there are γ and ρ such that ω is (γ, ρ)-thick and, in
this case, we call γ and ρ the thickness parameters of ω.

Similar conditions have also been used for heat systems on infinite strips [Egi21],
halfspaces, orthants, sectors of certain angle [ES22] (where the Laplacian may
sometimes be replaced by a constant coefficient divergence-type operator), and
also for null-controllability of systems in Lp(Rd) (1 < p < ∞) corresponding to
an elliptic operator associated with a homogeneous strongly elliptic polynomial of
degree at least two [GST20].
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The necessity of thick sensor sets ω for the observability of the heat system
Σo(A, 1ω) on Rd is shown in [EV18, Section 4] by considering a sequence of Gaussians
and exploiting the translation invariance of the Laplacian, while the proof of the
sufficiency and the estimate for the observability constant therein follows from
Corollary 3.9 and a suitable spectral inequality for the Laplacian. With the
definition of thick sets at hand, we are in the position to state the results from
[EV18] for bounded and unbounded domains simultaneously. To this end, we first
formulate a spectral inequality for the Laplacian. On the whole of Rd, it goes
back to an estimate for functions with compactly supported Fourier transform
[Kov01, Kov00], which has then been adapted to functions on a torus having a finite
Fourier series [EV20]. We refer the reader to Section 7.1 below for the theorems
from the last mentioned papers and for more substantial background.

These results were turned into spectral inequalities in [EV18] by the simple ob-
servation that functions in the spectral subspace of the Laplacian have a compactly
supported Fourier transform or a finite Fourier series, respectively, see Lemma 7.5
below.

Theorem 4.3 ([Kov01, Kov00, EV20, EV18]). Let ω be a (γ, ρ)-thick set. If
either

(i) Ω = Rd and ∆ is the Laplacian on Rd, or
(ii) Ω = (0, 2πL)d for some L > 0, ∆ = ∆•

Ω, • ∈ {D,N, per}, is the Laplacian on
Ω with Dirichlet, Neumann, or periodic boundary conditions, and ρ ≤ 2πL,

then

∥f∥2L2(Ω) ≤
(︂Kd

γ

)︂K(d+ρλ1/2)

∥f∥2L2(Ω∩ω) for all λ ≥ 1, f ∈ RanPλ(−∆).

In particular, we have the spectral inequality (4.1) with γ1 = 1/2, d0 = (Kd/γ)Kd,
and d1 = Kρ log(Kd/γ).

Remark 4.4. The constants d0 and d1 are uniform in the sidelength L in
the situation of Theorem 4.3 (ii). For this reason, the spectral inequality for the
Laplacian on a cube is called scale-free. Furthermore, it is also possible to formulate
the above theorem if thick sets are defined with respect to hyperrectangles instead
of balls, see Theorem 7.4 below. However, for reasons of comparability to our main
results below we refrain from doing so here.

The exponent γ1 = 1/2 one encounters in the previous theorem is known to be
sharp. For bounded domains, this can be inferred from [LL12, Proposition 5.5], see
also [JL99, Proposition 14.9], for all sets ω ⊂ Ω with ω ̸= Ω, while for thick sets
on the whole of Rd this is shown in [Kov01]. This exponent is also the benchmark
when comparing our main results for Schrödinger operators to the case of the pure
Laplacian.

Combining the spectral inequality with Theorem 3.7 we conclude observability
of the system Σo(∆, 1Ω∩ω) with the following bound for the observability constant.
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We point out that Theorem 3.7 was not yet available when [EV18] was published
and therefore the estimate in the latter paper lacks the decay in large times.

Corollary 4.5 (cf. [ENS+20, Theorem 5.3], [NTTV20a, Theorem 4.9]). Let
ω be a (γ, ρ)-thick set and suppose (i) or (ii) of Theorem 4.3. Then the system
Σo(∆,1Ω∩ω) is observable in time T > 0 with

C2
obs ≤

Kd2

TγKd
· exp

(︄
Kd2ρ2 log

(︁
1
γ

)︁2
T

)︄
.

When the pure Laplacian is perturbed by some potential, the situation might
change drastically depending on the properties of the potential (also called the
heat generation term in the situation of heat systems). In the present work, we are
concerned with two types of potentials and corresponding Schrödinger operators
H = −A = −∆ + V in L2(Rd): The first one corresponds to the case where
V is some real-valued potential with mild local singularities, a so-called singular
admissible potential. Such potentials are, amongst others, infinitesimally ∆-bounded
in L2(Rd). The second type describes potentials that grow unboundedly in some or
all coordinate directions. The prime example for this case is a quadratic potential
V (x) = |x|2, but we also consider more general so-called confinement potentials,
i.e., real-valued V ∈ L∞

loc(Rd) satisfying V (x) → ∞ as |x| → ∞.
The different nature of these two types of potentials manifests itself in various

ways. Let us mention the most important difference for our analysis here. As
operators in L2(Rd), Schrödinger operators with confinement potentials have purely
discrete spectrum with exponentially decaying eigenfunctions. On the other hand,
Schrödinger operators with singular admissible potentials generically have continu-
ous spectrum and elements in spectral subspaces do not enjoy a quantifiable decay.
Hence, one expects that sensor sets for the former operators may become sparse
near infinity while sensor sets for the latter operators need to be equidistributed
throughout the whole domain.

4.1.1. Schrödinger operators with singular potentials. Observability
for heat systems Σo(∆− V,1ω) with bounded heat generation term V ∈ L∞ was
studied in [FI96, Fur00] by means of global Carleman estimates. Using methods
from [FI96], it was established in [FZ00] that on bounded domains Ω with Dirichlet
boundary conditions the above system (with ∆ = ∆D

Ω ) is observable in time T > 0
from any nonempty open sensor set ω ⊂ Ω with

Cobs ≤ exp
(︁
C(∥V ∥2/3∞ + 1/T )

)︁
as T → 0,

where C > 0 is a constant that depends on the domain Ω and the sensor set ω.
Actually, this result is best possible in even space dimensions as was shown in
[DZZ08], cf. also [Zua07, Proposition 5.1 and Theorem 5.2].

Although these results already establish observability on bounded domains,
the dependence of the constant Cobs on the geometry of the domain and the
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sensor set ω is not explicit. These explicit dependencies on geometric properties
require a more accurate analysis which was first implemented for the above heat
system (again, based on a spectral inequality) in [NTTV18, Theorem 2.15] if Ω is
a hypercube. Afterwards, this approach was extended in [NTTV20b] to operators
on so-called generalized rectangles Ω, i.e., sets of the form Ω =×d

j=1
(aj, bj) with

−∞ ≤ aj < bj ≤ ∞ for j = 1, . . . , d, giving, besides that, also the first result
for such Schrödinger operators on unbounded domains. These approaches are
restricted to rectangular shaped domains due to certain extension arguments for
elements in spectral subspaces that are required in the proof, cf. Remark 6.17 below.
Moreover, in contrast to Theorem 4.3 above, the proof of the spectral inequality in
[NTTV18, NTTV20b] is based on Carleman estimates, and, as a consequence, the
approach in these papers only allows to consider sensors sets which contain some
union of open balls.

Definition 4.6. Let G > 0 and δ ∈ (0, G/2). A set ω ⊂ Rd is said to be (G, δ)-
equidistributed, if for each k ∈ (GZ)d the intersection of ω with the hypercube
ΛG(k) centered at k with sides of length G contains a ball of radius δ.

We now formulate the spectral inequality from [NTTV20b] for Schrödinger
operators on the whole of Rd. Here the spectral parameter λ is allowed to be any
real number since this allows to optimize the observability constant when H has
negative spectrum.

Theorem 4.7 ([NTTV20b, Theorem 2.1]). Let H = −∆+V for some bounded
V ∈ L∞(Rd). Then for all G > 0, δ ∈ (0, G/2), all (G, δ)-equidistributed sets ω,
all λ ∈ R, and all f ∈ RanPλ(H) we have

(4.3) ∥f∥2L2(Rd) ≤
(︂G
δ

)︂Kd·(1+G4/3∥V ∥2/3∞ +Gλ
1/2
+ )

∥f∥2L2(ω),

where λ+ = max{0, λ}.
This result implies by Theorem 3.7 observability of the system Σo(∆−V, 1ω) in

L2(Rd). We refrain from formulating the observability estimate at this point and
instead refer the reader to Corollary 4.11 below.

Remark 4.8. A spectral inequality with thick sensor sets for Schrödinger
operators on Rd has been obtained in [LM, Theorem 1.2]. However, this requires
analytic potentials V : Rd → R vanishing at infinity that can be extended holo-
morphically to some strip Ur = {z ∈ Cd : |Im z| < r} with r > 0 and satisfy
|∂αV (z)| ≲r (1 + |z|)−|α|−ε for some ε ∈ (0, 1) and all |α| ≤ 2 and z ∈ Ur. Further-
more, the dependence of the constants on the thickness parameters is again not
explicit.

Estimates of the form (4.3) have already been obtained previously to [NTTV18,
NTTV20b] in [CHK03, RMV13, GK13, BK13, Kle13], cf. the overview in Sec-
tion 6.1 below. However, these papers show (4.3) only for individual eigenfunctions
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[RMV13] or for elements of a spectral subspace Ran1I(H
•
Ω) with some (rather

short) energy interval I ⊂ R [Kle13], where Ω is an appropriate hyperrectangle
in Rd and the operator has suitable boundary conditions. In particular, these
results were no spectral inequalities in the sense of Definition 4.1 and therefore not
sufficient for applications in control theory. Furthermore, even these quantitative
unique continuation estimates have almost exclusively been considered for bounded
potentials. Only [KT16] considers some singular unbounded potentials but is still
restricted to short energy intervals, cf. Theorem 6.3 below.

We now present a class of singular potentials for whose associated Schrödinger
operators we prove a spectral inequality.

Definition 4.9 (Singular admissible potentials). Let V : Rd → R be a measur-
able function. If the domain of the associated selfadjoint multiplication operator
in L2(Rd) contains H1(Rd), i.e., if D(V ) ⊃ H1(Rd), then the potential V is called
(singular) admissible (on Rd).

As shown in Lemma 6.5 below, an admissible potential is infinitesimally ∆-
bounded in L2(Rd) and satisfies

(4.4) ∥V f∥2L2(Rd) ≤ λ1∥∇f∥2L2(Rd) + λ2∥f∥2L2(Rd) for all f ∈ H1(Rd)

with some λ1, λ2 ≥ 0. Therefore, the Schrödinger operator H = −∆+ V is again
selfadjoint and lower semibounded by the Kato-Rellich theorem, cf. Subsection 2.2.2
above. Since any V ∈ L∞(Rd) defines a bounded operator in L2(Rd) and therefore
D(V ) = L2(Rd), such V are clearly admissible with λ1 = 0 and λ2 = ∥V ∥2∞.
However, for d ≥ 3 also potentials V ∈ Lp(Rd) with p ≥ d are singular admissible,
see Example 6.7 below. In particular, the class of admissible potentials covers for
d ≥ 2 the potentials considered in [KT16].

The next theorem is our first main result which was first formulated in the joint
work [DRST] of the author with Christian Rose, Albrecht Seelmann, and Martin
Tautenhahn. It not only encompasses Theorem 4.7 for bounded potentials, but
also extends [KT16].

Theorem 4.10. Let H = −∆+ V for some singular admissible potential V .
Then for all G > 0, δ ∈ (0, G/2), all (G, δ)-equidistributed sets ω ⊂ Rd, all λ ∈ R,
and all f ∈ RanPλ(H) we have

(4.5) ∥f∥2L2(Rd) ≤
(︂G
δ

)︂Kd·(1+G2λ1+G4/3λ
1/3
2 +Gλ

1/2
+ )

∥f∥2L2(ω),

where λ1, λ2 ≥ 0 are as in (4.4).

We give the proof of this theorem in Chapter 6 below. Let us emphasize that
only the characteristic parameters λ1 and λ2 of the potential enter the constant
on the right-hand side of (4.5). Furthermore, the theorem is again formulated for
λ ∈ R instead of just λ ≥ 1 in order to ensure comparability with Theorem 4.7.
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Theorem 4.10 implies observability of heat systems with singular admissible
heat generation term V from every (G, δ)-equidistributed sensor set ω. More
precisely, Theorem 3.7 is applicable with γ1 = 1/2, d0 = (G/δ)Kd·(1+G2λ1+G4/3λ

1/3
2 )

and d1 = Kd ·G log(G/δ). This gives the following result.

Corollary 4.11. Let ω ⊂ Rd be a (G, δ)-equidistributed set. Then for all
admissible V the system Σo(∆− V,1ω) is observable in time T > 0 with

C2
obs ≤

1

T

(︂G
δ

)︂Kd·(1+G2λ1+G4/3λ
1/3
2 )

· exp
(︂Kd ·G2 log2(G/δ)

T
− κ−T

)︂
,

where κ = inf σ(−∆+ V ) and κ− = min{0, κ}.

Remark 4.12. If V is a bounded potential and accordingly λ1 = 0 and
λ2 = ∥V ∥2∞, then the observability constant can be slightly optimized. In fact, in
this situation one gets

C2
obs ≤

1

T

(︂G
δ

)︂Kd·(1+G4/3∥V−κ∥2/3∞ )

· exp
(︂Kd ·G2 log2(G/δ)

T
− κ−T

)︂
,

see [NTTV20a, Theorem 4.11]. Here the term ∥V − κ∥2/3∞ in the exponent results
from applying the spectral inequality to the operator H − κ = −∆+ (V − κ).

4.1.2. Schrödinger operators with confinement potentials. When the
Laplacian is perturbed by a confinement potential V , the operator H = −A =
−∆+V has purely discrete spectrum, cf. the discussion before Corollary 2.4 above,
although it is defined on the whole of Rd. Hence, from the spectral point of view,
A has the same properties as the Laplacian on a bounded domain, where any
set ω of positive Lebesgue measure serves as a sensor set for observability of the
system Σo(∆,1ω). For the same system on Rd this is no longer the case and
observability requires at least thick sensor sets, which excludes, for instance, sets
of finite Lebesgue measure. One may ask how this spectral dichotomy influences
the criteria for observability of the system Σo(A,1ω).

Another motivation stems from the observation that the eigenfunctions of A
vanish exponentially at infinity. More precisely, in Chapter 5 as well as in Lemma 7.9
below we establish weighted inequalities of the form

(4.6) ∥eC|x|pf∥L2(Rd) ≤ eC
′λq∥f∥L2(Rd)

with suitable constants C,C ′, p, q > 0 for f ∈ RanPλ(H). This weighted inequality
implies that half of the L2-mass of such f is contained in a ball of radius proportional
to λq/p, which can be seen as a quantification of the fast decay. In particular, this
entails that the L2-mass on areas far away from the origin contributes only a
negligible amount to the whole L2-mass. One therefore wonders whether it is
possible to establish the spectral inequality with a set ω ⊂ Rd that is sparse near
infinity. This would also directly yield the observability of the system Σo(A,1ω)
from such sensor sets ω.
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In the literature, observability of the system Σo(A,1ω) has so far been studied
mostly in the case where V (x) = |x|2l for some l ∈ N, in which case the Schrödinger
operator is called an (anisotropic) Shubin operator or, if l = 1, the harmonic
oscillator. For arbitrary l ∈ N, [Mil] established that the system Σo(∆− |x|2l,1ω)
is observable in all times T > 0 with the sensor set being any open cone of the form

ω =
{︁
x ∈ Rd : |x| ≥ r0 and x/|x| ∈ Ω0

}︁
for some open Ω0 ⊂ Sd−1 and some r0 ≥ 0 if and only if l > 1. In this case,
the observability constant satisfies the bound Cobs ≤ exp

(︁
C/T (l+1)/(l−1)

)︁
.1 Apart

from these results, there are approaches that show observability of the system
Σo(∆− |x|2l, 1ω) with l > 1 using different techniques but not a spectral inequality
for the generator itself; these paths are discussed in Sections 4.3 and 4.4 below.
However, for the harmonic oscillator (i.e., l = 1), the situation is notably different
and spectral inequalities have been studied extensively using that the eigenfunctions
of this operator are the well-known Hermite functions, see, e.g., Theorem 4.13 and
4.15 below.

In this subsection, we formulate a spectral inequality for a class of Schrödinger
operators with (partial) power growth potentials. Amongst others, this includes the
operators A = ∆− |xI |τ with arbitrary τ > 0 and nonempty I ⊂ {1, . . . , d}; recall
from Chapter 2 that xI denotes the projection of x onto the coordinates indicated
by I. However, our results are still bipartite: If A = ∆ − |xI |2 is the negative
partial harmonic oscillator, we use a technique based on complex analysis to prove
the spectral inequality. This uses so-called Bernstein inequalities for elements in
the spectral subspace of A. Such inequalities heavily rely on the fact that the
Hermite functions satisfy some very specific recursion formulas (see (7.8) below).
Furthermore, since Bernstein inequalities imply that the eigenfunctions are analytic,
it is not possible to establish such inequalities for arbitrary potentials with power
growth. Therefore, the same approach is not applicable for these potentials and
we instead use an approach based on Carleman estimates similar to the proof of
the above Theorem 4.10 which is much more flexible with respect to the potential.
However, we pay for this flexibility by having to accept stronger assumptions on
the sensor set and by losing the dependence on the energy that is expected to be
optimal. In particular, this explains why the results for the harmonic oscillator we
present now are considerably stronger than those for other types of potentials, see
the discussion after Theorem 4.23 below.

Partial harmonic oscillators. Let H = −∆+ |x|2 be the harmonic oscillator.
As already pointed out above, the eigenfunctions of H are the well-known Hermite

1Note added: Shortly before completion of this work, it has been shown in [Mar, Theorem 2.5]
that the system Σo(∆ − |x|2l,1ω) with l > 1 is observable as soon as ω has strictly positive
Lebesgue measure.
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functions

(4.7) Φα(x) =
d∏︂

j=1

ϕαj
(xj), α ∈ Nd

0,

where

ϕk(t) =
(−1)k√︁
2kk!

√
π
et

2/2 d
k

dtk
e−t2 , k ∈ N0,

denotes the k-th standard Hermite function; note that ϕk(t) = pk(t)e
−t2/2 for

some polynomial pk of degree k. More precisely, Φα is an eigenfunction of H
corresponding to the eigenvalue 2|α|+ d for all α ∈ Nd

0 and therefore the spectral
subspace of the harmonic oscillator can be expressed as

(4.8) RanPλ(H) = EN for 2N + d ≤ λ < 2(N + 1) + d,

were EN = span{Φα : |α| ≤ N}, N ∈ N0, denotes the space spanned by the Hermite
functions Φα of degree |α| ≤ N . Using this representation for the spectral subspaces,
spectral inequalities for the harmonic oscillator can be reformulated as uncertainty
principles for Hermite functions. Indeed, if for some measurable set ω ⊂ Rd and
some constants d′0, d′1, and γ1 we have

(4.9) ∥f∥2L2(Rd) ≤ d′0e
d′1N

γ1∥f∥2L2(ω) for all N ∈ N, f ∈ EN ,

then by (4.8) this implies the spectral inequality (3.10) (in the form (4.1)) with
d0 = d′0 and d1 = d′1/2

γ1 .
The first result that deals with uncertainty principles for Hermite functions

of the form (4.9) was given in [BPS18] using Carleman estimates, where ω must
contain a suitable union of open balls. Subsequently, in [BJPS21] it was shown
that thickness of ω is sufficient for (4.9) to hold. In view of the discussion following
Theorem 4.16 below, we also recall a result for arbitrary open ω from the last
reference, although it has an unfavorable dependence on N , i.e., the spectral
parameter.

Theorem 4.13 ([BJPS21, Theorem 2.1]). Let ω ⊂ Rd be measurable.
(i) If ω is (γ, ρ)-thick for some ρ > 0 and some γ ∈ (0, 1], then there is a

constant C > 0 depending on the thickness parameters and the dimension d such
that

∥f∥2L2(Rd) ≤ C
(︂Kd

γ

)︂KdρN
1/2

∥f∥2L2(ω) for all N ∈ N, f ∈ EN .

(ii) If ω is any nonempty and open set, then there is a constant C > 0 such that

∥f∥2L2(Rd) ≤ CeCN logN∥f∥2L2(ω) for all N ∈ N, f ∈ EN .

Let us emphasize that part (i) of this result has been reproduced in [ES21,
Corollary 1.9] with more explicit constants.
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The condition on ω in part (i) of the above theorem is the same as for the
spectral inequality for the Laplacian. In particular, it does not reflect that the
Hermite functions decay (super-)exponentially. On the other hand, part (ii) of the
theorem establishes an inequality with a superlinear dependence on the spectral
parameter. In fact, this result is sharp and therefore it is not possible to prove a
spectral inequality for bounded sensor sets ω. This was first observed in [Mil] and
can also be seen by means of the following simple example.

Example 4.14. Let a > 0 and ω = [−a, a]. Suppose that for all N ∈ N the
uncertainty relation

(4.10) ∥f∥2L2(R) ≤ ec·h(N)∥f∥2L2(ω), N ∈ N, f ∈ EN ,
holds with some nonnegative function h and a constant c > 0 independent from N .
Consider fN (x) = xNe−|x|2/2. Then fN ∈ EN , and a simple computation shows that

∥fN∥2L2(R) =

∫︂ ∞

0

yN− 1
2 e−y dy = Γ

(︂
N +

1

2

)︂
and ∥fN∥2L2(ω) ≤

√
πa2N ,

where Γ denotes the Gamma function. Plugging these into (4.10), we derive

(4.11) Γ
(︂
N +

1

2

)︂
≲ ec·h(N)+2N log a for all N ∈ N.

On the other hand, Stirling’s formula for the Gamma function shows that

Γ
(︂
N +

1

2

)︂
≥
√︄

2π

N + 1
2

(︂N + 1
2

e

)︂N+ 1
2
≳ e

1
2
·N logN for large N.

Consequently, (4.11) can only hold if N logN ≲ h(N) for large N . In particular, h
can not be of the form h(N) = Nβ with β < 1.

In view of the previous example we are interested in unbounded sensor sets that
take into account that elements in the spectral subspace are concentrated near the
origin. The first result in this direction was given in [MPS22], where the authors
generalized the spectral inequality from Theorem 4.13 (i) to sensor sets that are
merely thick with respect to an unbounded, sublinear scale. This allows, amongst
others, sensor sets which have holes of unboundedly growing diameter which are
clearly not thick, see, e.g., Example 4.18 below.

Theorem 4.15 ([MPS22, Theorem 2.1]). Let R > ς > 0, γ ∈ (0, 1], and let
ρ : Rd → (0,∞) be a 1

2
-Lipschitz continuous function satisfying

ς ≤ ρ(x) ≤ R(1 + |x|2)(1−ε)/2 for all x ∈ Rd and some ε ∈ (0, 1].

Then there is a constant C1 > 0 depending on ς, R, γ, d, and ε as well as a constant
C2 > 0 depending on R, d, and ε such that for all measurable sets ω ⊂ Rd satisfying

(4.12)
|B(x, ρ(x)) ∩ ω|
|B(x, ρ(x))|

≥ γ for all x ∈ Rd
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we have

∥f∥2L2(Rd) ≤ C1

(︂Kd

γ

)︂C2N1−ε/2

∥f∥2L2(ω) for all N ∈ N, f ∈ EN .

The drawback of the assumptions in the last theorem is that they still rule
out sets of finite Lebesgue measure. Indeed, if ω is any set with finite Lebesgue
measure and ρ is any unbounded scale satisfying ρ(x) → ∞ as |x| → ∞, then

|B(x, ρ(x)) ∩ ω|
|B(x, ρ(x))|

≤ |ω|
τdρ(x)d

→ 0 as |x| → ∞.

In particular, (4.12) can not be satisfied and Theorem 4.15 is not applicable.
The first main result of this subsection is taken from the joint work [DSVc]

of the author with Albrecht Seelmann and Ivan Veselić. It is formulated for
sensor sets that are thick merely with respect to a variable sublinear scale and a
subexponentially decaying density. Moreover, even in the case of a constant density
our result removes the technical conditions from Theorem 4.15 and its constant is
explicit in all model parameters.

Theorem 4.16. Let 0 ≤ α < ε ≤ 1, R > 0, γ ∈ (0, 1], and suppose that
ρ : Rd → (0,∞) satisfies

ρ(x) ≤ R(1 + |x|2)(1−ε)/2 for all x ∈ Rd.

Then, for all measurable sets ω satisfying

(4.13)
|B(x, ρ(x)) ∩ ω|
|B(x, ρ(x))|

≥ γ1+|x|α for all x ∈ Rd

we have

∥f∥2L2(Rd) ≤
1

3

(︂Kd

γ

)︂K1+αd3+α/2(1+R)2N1− ε−α
2

∥f∥2L2(ω) for all N ∈ N, f ∈ EN .

This theorem allows sensor sets ω with finite Lebesgue measure which are not
in scope of Theorem 4.15.

Example 4.17. Let
(4.14) ω =

⋃︂
k∈Zd

B(k, d1/2 · 2−1−|k|α) for some 0 < α < 1.

Then ω has finite Lebesgue measure and satisfies (4.13) with ρ ≡ d1/2 and γ = 2−d.
Here the factor d1/2 in the definition of ω is merely used to avoid an additional
prefactor on the right-hand side of (4.13) since |B(x, d1/2)| = τdd

d/2.

Let us also note here that there are sets which are thick with respect to an
unbounded scale while they are not thick with respect to a fixed scale with a
decaying density. Together with the preceding example this shows for the first time
that the variable scale and the decaying density are two notions that can not be
compared.
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Example 4.18. Let d = 1 and ρ(x) = (1 + x2)1/4. Then

ω = R \B(100n3, n) satisfies
|B(x, ρ(x)) ∩ ω|
|B(x, ρ(x))|

≥ 1

4
for all x ∈ Rd,

see Subsection A.2.2 in Appendix A for the proof. However, for all fixed ρ > 0 we
have B(100n3, ρ) ∩ ω = ∅ if n ≥ ρ and therefore ω can not satisfy (4.13) with a
constant scale ρ and any α.

A more general result can be formulated for partial harmonic oscillators where
the potential V (x) = |xI |2 with I ⊂ {1, . . . , d} is growing unboundedly only in
some coordinate directions while it is constant in others. Here, naturally, the
anisotropy of the potential is also reflected in the criteria for a sensor set. For
reasons of readability, we postpone the full result in this case to Corollary 7.21
in Chapter 7 below and formulate here the result for partial harmonic oscillators
only for sensor sets that satisfy the corresponding thickness condition with respect
to a constant scale and with respect to hypercubes instead of balls. The latter
allows for a simpler proof since we can cover the whole of Rd by cubes without any
overlap, see the discussion at the beginning of Subsection 7.2.5 below. However,
Subsection A.2.1 shows that it is not essential whether we take balls or hypercubes.

The next result was obtained by the author in the joint work [DSVa] with
Albrecht Seelmann and Ivan Veselić. Since the partial harmonic oscillators do not
have discrete spectrum, it is again formulated for elements in the spectral subspace
RanPλ(H).

Theorem 4.19. Let H = −∆+ |xI |2 with some I ⊂ {1, . . . , d}. Then for all
measurable sets ω ⊂ Rd satisfying

(4.15)
|Λρ(k) ∩ ω|
|Λρ(k)|

≥ γ1+|kI |α for all k ∈ (ρZ)d

with some α ≥ 0, ρ > 0, and γ ∈ (0, 1], we have

∥f∥2L2(Rd) ≤
1

3

(︂Kd

γ

)︂K1+αd·(1+ρ)2λ(1+α)/2

∥f∥2L2(ω) for all λ ≥ 1, f ∈ RanPλ(H).

The proof of Theorem 4.19 is given in Section 7.2 below. In that section we
also formulate Corollary 7.21 which contains Theorem 4.16 as a special case.

From the spectral inequality in Theorem 4.19 we now get an observability
estimate using again Theorem 3.7.

Corollary 4.20. Let I ⊂ {1, . . . , d}, and suppose that the sensor set ω satisfies
(4.15) with α ∈ [0, 1). Then system Σo(∆− |xI |2,1ω) is observable and

C2
obs ≤

C

T
exp
(︂ C

T 1+2α/(1−α)

)︂
for a constant C > 0 that depends on the model parameters α, γ, and ρ. In
particular, there are sets ω with finite Lebesgue measure from which the system
Σo(∆− |x|2,1ω) is observable.
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Remark 4.21. Actually, the observability constant can be computed more
explicitly: Indeed, using Theorem 3.7 with κ− = 0, γ1 = (1 + α)/2,

d0 =
1

3

(︂Kd

γ

)︂K1+αd(1+ρ)2

and d1 = K1+αd(1 + ρ)2 log(Kd/γ),

we have

C2
obs ≤

C1

T

(︂Kd

γ

)︂C2·K1+αd(1+ρ)2

exp

(︄
C3

(︂C4|log γ|2

T 1+α

)︂1/(1−α)
)︄

with the constants C1, C2, and C3 from Theorem 3.7 and with C4 = K1+αd4(1+ρ)4.
Note that C1, C3, and C3 depend on γ1 and therefore also on α.

Power growth potentials. We now move on to a more general class of
(partial) power growth potentials, the prime examples of which are the Shubin-type
potentials V (x) = |x|τ with some τ > 0.

Hypothesis (S). Let V ∈ W 1,∞
loc (Rd), that is, V and its weak derivatives of

first order are contained in L∞
loc(Rd). Suppose that V is such that

(i) for some c1, c2 > 0 and some 0 < τ1 ≤ τ2 we have

c1|x|τ1 ≤ V (x) ≤ c2|x|τ2 for all x ∈ Rd;

(ii) for some ν > 0 we have

(4.16) Mν := ∥e−ν|x||∇V |∥L∞(Rd\B(0,1)) <∞.

Let us first consider simple examples of potentials satisfying this hypothesis.

Example 4.22. Let V (x) = |x|τ for some τ > 0. Then (i) is trivially satisfied,
and since |∇V | = τ |x|τ−1 for |x| ≥ 1, it is not hard to verify that (ii) holds with
ν = τ and with Mτ ≤ τe1−τ . Now let V (x) = |x|τ +W (x) with W : Rd → [0,∞)
being any differentiable function with bounded derivatives satisfying W (x) ≤ |x|τ .
Then (ii) is still satisfied with the same choice for ν and a simple calculation shows
(i) with c1 = 1, c2 = 2, and τ1 = τ2 = τ .

Let us briefly comment on the assumptions in Hypothesis (S): The lower bound
in part (i) on the one hand allows to bound the eigenvalue counting function for
H = −∆+V with V as in Hypothesis (S), cf. (5.11) below, and, on the other hand,
is needed to control the growth of the potential. Thereby, we are able to establish
a suitable L2-decay for eigenfunctions of H, see Proposition 5.5 below. The bound
in part (ii) allows to obtain a similar decay for partial derivatives of eigenfunctions
by differentiating the eigenvalue equation Hf = λf , which introduces partial
derivatives of the potential to the equation, see Proposition 5.6 below. Together
with the bound on the eigenvalue counting function, this amounts to the fact that
even the H1-mass of f ∈ RanPλ(H) is strongly localized, see Theorem 5.1 below,
so that by a “cut-off procedure” (cf. inequality (6.24) below) the considerations can
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essentially be reduced to a suitable bounded subset of Rd. Finally, the upper bound
in (i) provides a corresponding bound on the potential on this bounded subset.

Through the method just discussed, we are able to use essentially the same
approach as for Theorem 4.10 above to prove a spectral inequality for Schrödinger
operators with potentials as in the above Hypothesis (S). However, this approach
is the reason why we need to localize the H1-mass and therefore why part (ii) in
Hypothesis (S) is needed.

The next main result was established by the author in collaboration with
Albrecht Seelmann and Ivan Veselić [DSVb].

Theorem 4.23. Let H = −∆+ V with V as in Hypothesis (S). Then there is
a constant C > 0 depending only on τ1, τ2, c1, c2, ν,Mν, and the dimension d, such
that for all measurable sets ω ⊂ Rd for which for some δ ∈ (0, 1/2) and α ≥ 0 each
intersection (k + (−1/2, 1/2)d) ∩ ω, k ∈ Zd, contains a ball of radius δ1+|k|α, we
have

(4.17) ∥f∥2L2(Rd) ≤
(︂1
δ

)︂C1+α·λ(α+2τ2/3)/τ1

∥f∥2L2(ω) for all λ ≥ 1, f ∈ RanPλ(H).

The dependence on λ in the exponent is sublinear if α + 2τ2/3 < τ1 and,
therefore, in this case the above theorem constitutes a spectral inequality. In the
particular case of V (x) = |x|τ as in the first part of Example 4.22 above, the
constant in the theorem depends only on τ and the dimension d, and we must have
α < τ/3 in order for the dependence on λ in the exponent to be sublinear.

Every (1, δ)-equidistributed set satisfies the assumptions of the theorem with
α = 0. On the other hand, every set ω as in Theorem 4.23 satisfies the geometric
assumptions (4.15) of Theorem 4.19 (for I = {1, . . . , d}) with ρ = 1, γ = Kdδ

d,
and the same choice for α, see the calculations in Subsection A.2.3 in Appendix A.

Thus, in the case of the harmonic oscillator (i.e., τ = 2), we must have α < 2/3
in Theorem 4.23 while Theorem 4.19 allows α < 1 in this situation. This difference
is due to the different approach we use here. In fact, even for α = 0 and arbitrary
potentials as in Hypothesis (S) the dependence on λ in the exponent of the constant
in (4.17) is of order γ1 = 2τ2/(3τ1) ≥ 2/3, while it is expected that the optimal
dependence is of order 1/2 as obtained for operators of Schrödinger type in all the
aforementioned results; recall that this behavior is known to be sharp for the pure
Laplacian. The slightly worse behavior in our Theorem 4.23 above is due to the
mentioned cut-off procedure, which is needed in order to conduct the proof using
Carleman estimates. It is also due to the Carleman approach that we are only able
to consider sensor sets containing suitable open balls and not just measurable sets
satisfying (4.15) with I = {1, . . . , d}.

If τ1 − 2τ2/3 > α > 0, then ω as in (4.14) above has finite measure and satisfies
the assumptions of the theorem. Thus, Theorem 4.23 gives a spectral inequality
for general V as in Hypothesis (S) also for some sensor sets with finite Lebesgue
measure if τ1 − 2τ2/3 > 0.
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Exploiting the tensor structure, we get as a simple generalization of Theorem 4.23
a spectral inequality for partial power growth potentials. In order to formulate it,
we adapt Hypothesis (S) to include these potentials.

Hypothesis (SI). Let I ⊂ {1, . . . , d}. Suppose that V (x) = VI(xI), where
VI ∈ W 1,∞

loc (R|I|) satisfies the assumptions of Hypothesis (S) with Rd replaced by
R|I|.

Prototypical examples of potentials as in Hypothesis (SI) are V (x) = |xI |τ
for some τ > 0 and some I ⊂ {1, . . . , d} corresponding to the partial Shubin-type
operators.

The next theorem was also stated in [DSVb] and relates for τ = 2 to Theo-
rem 4.19 with the same choice for I. In particular, it contains Theorem 4.23 as a
special case.

Theorem 4.24. Let I ⊂ {1, . . . , d}, and let H = −∆ + V with V as in
Hypothesis (SI). Then there is a constant C > 0 depending only on the parameters
τ1, τ2, c1, c2, ν,Mν connected to VI and the dimension d, such that for all measurable
sets ω ⊂ Rd for which for some δ ∈ (0, 1/2) and α ≥ 0 each intersection Λ1(k) ∩ ω,
k ∈ Zd, contains a ball of radius δ1+|kI |α, we have

∥f∥2L2(Rd) ≤
(︂1
δ

)︂C1+α·λ(α+2τ2/3)/τ1

∥f∥2L2(ω) for all λ ≥ 1, f ∈ RanPλ(H).

We derive this theorem in Section 6.4 below parallel to Theorems 4.10 and
4.23. The already mentioned H1-localization for elements in RanPλ(H) we utilize
is established in Chapter 5.

We close this section by formulating the observability result that is a direct
consequence of Theorem 4.24 and Theorem 3.7.

Corollary 4.25. Let I ⊂ {1, . . . , d}, let V be as in Hypothesis (SI), and let
0 ≤ α < τ1 − 2τ2/3. Then, if ω is a measurable set such that each intersection
Λ1(k) ∩ ω, k ∈ Zd, contains a ball of radius δ1+|kI |α, the system Σo(∆− V,1ω) is
observable in time T > 0.

More specifically, if V (x) = |xI |τ for some τ > 0, then we have

C2
obs ≤

C ′

T
exp

(︄
C ′

T 1+
2α+τ/3
τ/3−α

)︄
with a constant C ′ > 0 depending on τ , α, and δ.

Remark 4.26. The proof of the upper bound for the observability constant for
potentials V (x) = |xI |τ uses Theorem 3.7 with κ− = 0, γ1 = α/τ+2/3, d0 = δ−C1+α

and d1 = C1+α log 1
δ
. With this, it is not hard to obtain the slightly more explicit

bound

C2
obs ≤

C1

T

(︂1
δ

)︂KC2C1+α

exp

(︄
C3

(︂C(1+α)τ |log δ|τ

Tα+2τ/3

)︂1/(τ/3−α)
)︄
.
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Here C1, C2, and C3 are the constants from Theorem 3.7 that depend on γ1 and
thus also on τ and α.

4.2. Quadratic differential operators

We now turn to the study of observability of the system Σo(A, 1ω) with possibly non-
selfadjoint generators A in L2(Rd) and continue with our investigation of sufficient
conditions on ω ⊂ Rd that guarantee observability. The difficulties that may
arise here are twofold: On the one hand, even if A is selfadjoint, a corresponding
spectral inequality might not be available. Even worse, on the other hand, the
generator might not be selfadjoint and therefore it makes no sense to talk about
spectral projections. In both cases, it is natural to search for a suitable nonnegative
selfadjoint operator H such that with its spectral projections Pλ = Pλ(H) we can
prove a dissipation estimate of the form (3.12) at least for small times 0 < t < t0,
that is,

∥(Id−Pλ)T (t)g∥L2(Rd) ≤ d2e
−d3λγ2 tγ3∥g∥L2(Rd)

for all λ ≥ 1, and all g ∈ L2(Rd), where (T (t))t≥0 is the semigroup generated by
A. If we can arrange this, we say that the operator H is a suitable comparison
operator for A or that A is comparable to H. We see further below that the
comparison operator is usually not unique. If we have already established a spectral
inequality for H, the Lebeau-Robbiano method set out in Corollary 3.9 directly
implies observability of the system Σo(A, 1ω) from the same sensor sets from which
the system Σo(−H, 1ω) is observable. In particular, the picked comparison operator
directly determines the possible sensor sets. Hence, if one is interested in the most
general sensors sets possible, the comparison operator needs to fit the generator,
see the discussion after Proposition 4.28 below for a more precise description of
this.

In this section, the choice of the comparison is derived from properties of the
operator A, which is here always a quadratic differential operator A = qw as defined
in Section 2.3, where q is a complex quadratic form satisfying Re q ≤ 0. Recall
from Proposition 2.11 that A is then the generator of a contraction semigroup in
L2(Rd) that we always denote by (T (t))t≥0.

4.2.1. Dissipation estimates with a comparison operator. To the best of
the authors knowledge, the first proof of observability using a comparison operator
was given in [BPS18] for quadratic differential operators A with singular space
S(A) = {0} and with the harmonic oscillator H = −∆ + |x|2 as the selfadjoint
comparison operator. Recall from Lemma 2.15 that the singular space of the latter
operator likewise satisfies S(H) = {0}.

Proposition 4.27 ([BPS18, Proposition 4.1]). Let S(A) = {0}, let k0 be the
rotation exponent of A from (2.13), and let Pλ = Pλ(−∆+ |x|2). Then there are
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C0, t0 > 0 such that

(4.18) ∥(1− Pλ)T (t)g∥L2(Rd) ≤ C0e
−C0t2k0+1λ∥g∥L2(Rd)

for all 0 < t < t0, all λ ≥ 1, and all g ∈ L2(Rd).

A similar result is also available with the pure Laplacian as the selfadjoint
comparison operator: In [AB, Remark 2.9] the authors state that the technique
developed in [Alp21, Section 4.2] implies that all quadratic differential operators
A with S(A) ⊂ Rd × {0} satisfy a dissipation estimate similar to (4.18), but with
Pλ = Pλ(−∆) the projection onto a spectral subspace of the Laplacian; recall again
from Lemma 2.15 that S(∆) = Rd × {0}.

Proposition 4.28 (see [Alp21, Section 4.2], [AB, Remark 2.9]). Assume
S(A) = U × {0} for some subspace U ⊂ Rd, let k0 be the rotation exponent of A,
and let Pλ = Pλ(−∆). Then there are C0, t0 > 0 such that

∥(1− Pλ)T (t)g∥L2(Rd) ≤ C0e
−C0t2k0+1λ∥g∥L2(Rd)

for all 0 < t < t0, all λ ≥ 1, and all g ∈ L2(Rd).

Both dissipation estimates spelled out in Propositions 4.27 and 4.28 cover the
case S(A) = {0}. Hence, it is natural to compare the two complementing spectral
inequalities in this case. It turns out that Proposition 4.28 is strictly weaker than
Proposition 4.27. Indeed, recall from Section 4.1 that spectral inequalities for the
Laplacian require thick sensors sets, while Theorem 4.16 shows that thickness is
not necessary for spectral inequalities for the harmonic oscillator. In this sense,
if S(A) = {0}, using the harmonic oscillator as a comparison operator for A and
applying Corollary 3.9 allows for more general sensors sets than using the pure
Laplacian.

The result we formulate next was obtained jointly by the author with Albrecht
Seelmann and Ivan Veselić [DSVb]. It shows that it is reasonable to classify
comparison operators for quadratic differential operators by the form of their
singular space and that the partial harmonic oscillators constitute a class of
comparison operators that interpolate, in some sense, between the Laplacian and
the harmonic oscillator. More generally, our result allows also to use the operators
HI,J = −∆J +|xI |2 with I,J ⊂ {1, . . . , d} as selfadjoint comparison operators. By
Lemma 2.15, the singular space of such operators is given by S(HI,J ) = Rd

Ic ×Rd
J c

and, accordingly, we get a dissipation estimate with the spectral projections of
the operators HI,J . For J = {1, . . . , d}, the next theorem covers and extends
the previously mentioned dissipation estimates obtained for quadratic differential
operators. We postpone the proof to Chapter 8 below. The constant C0 from the
next theorem is given in Theorem 8.4 below.

Theorem 4.29. Let S(A)⊥ = Rd
I × Rd

J for some sets I,J ⊂ {1, . . . , d}, let
k0 be the rotation exponent from (2.13), and let Pλ = Pλ(HI,J ). Then, there are
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constants C0 > 0 and t0 ∈ (0, 1) such that

∥(1− Pλ)T (t)g∥L2(Rd) ≤ 2e−C0t2k0+1λ∥g∥L2(Rd)

for all g ∈ L2(Rd), all 0 < t < t0, and all λ ≥ 1.

Applying suitable rotations, the previous theorem can be generalized to singular
spaces of the form S(A)⊥ = V × W , where V,W ⊂ Rd are vector spaces of
dimensions d1 = dimV and d2 = dimW . Indeed, in this case, there is an orthogonal
transformation R : Rd → Rd such that

(4.19) RV = Rd
I and RW = Rd

J

with I = {1, . . . , d1} and with J = {d1 − l + 1, . . . , d1 + d2 − l}, where l =
dim(V ∩ W ). Letting q be the quadratic form corresponding to A, a simple
calculation using the chain rule shows that the singular space of the form q̃
given by q̃(x, ξ) = q(R−1x,R−1ξ) for all x, ξ ∈ Rd is characterized by S(q̃)⊥ =
Rd

I × Rd
J . Furthermore, the accretive operator Ã = q̃w associated with q̃ by the

Weyl quantization satisfies A = URÃU−1
R where URf = f ◦ R, see Lemma 2.13.

Thus, we have T̃ (t) = U−1
R T (t)UR for the semigroup (T̃ (t))t≥0 generated Ã, so that

applying Theorem 4.29 to Ã proves the following result.

Corollary 4.30. Let S(A)⊥ = V ×W , and let R be as in (4.19). Then, with
Pλ = URPλ(HI,J )U−1

R , we have

∥(1− Pλ)T (t)g∥L2(Rd) ≤ 2e−ct2k0+1λ∥g∥L2(Rd)

for all g ∈ L2(Rd), 0 < t < t0, and λ ≥ 1.

Remark 4.31. There are also quadratic forms whose singular space does not
satisfy S(q)⊥ = V ×W . Consider, e.g., the form q(x, ξ) = −(x+ ξ)2 on R2 with
singular space S(q) = {r · (1,−1)⊤ : r ∈ R}. The operators corresponding to such
forms are not covered by Corollary 4.30.

4.2.2. Observability and applications. We now combine the dissipation
estimate from Theorem 4.29 with the corresponding spectral inequality for a partial
harmonic oscillator from Subsection 4.1.2 above and discuss applications of our
results. Accordingly, in all these applications we have J = {1, . . . , d}. Note,
however, that in Corollary 7.26 below we also prove a spectral inequality for the
operator HI,J with J ̸= {1, . . . , d} where the observation operator is not the
multiplication operator by a characteristic function of a sensor set.

For simplicity, in the rest of this section we refrain from giving explicit estimates
for the observability constant.

If A is any quadratic differential operator with singular space S(A) = {0},
then Theorem 4.29 holds for the projections Pλ = Pλ(−∆+ |x|2) onto the spectral
subspace of the harmonic oscillator. This situation has already been considered in
[BJPS21, MPS22] based on Proposition 4.27 and the spectral inequalities established
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in the last mentioned papers, see Theorems 4.13 and 4.15 above. The important
point to note in this case is that replacing the last mentioned theorems by our
spectral inequality from Theorem 4.16 we conclude observability from sensor sets
satisfying the geometric assumptions of Theorem 4.16.

Corollary 4.32. Suppose that S(A) = {0}. Then, for all measurable sets ω
satisfying

|B(x, ρ(x)) ∩ ω|
|B(x, ρ(x))|

≥ γ1+|x|α for all x ∈ Rd,

where 0 ≤ α < ε ≤ 1, R > 0, γ ∈ (0, 1], and ρ : Rd → (0,∞) is a function satisfying
ρ(x) ≤ R(1 + |x|2)(1−ε)/2 for all x ∈ Rd, the system Σo(A, 1ω) is observable in time
T > 0.

Sensor sets as in the above corollary were not accessible before in this context.
In particular, recall that there are sets of finite Lebesgue measure satisfying the
assumptions of this lemma, e.g., the set given in Example 4.17.

If the singular space is not zero, the dissipation estimate from Theorem 4.29
shows that the spectral inequalities for the partial harmonic oscillator formulated
in Theorem 4.19 are applicable towards observability. Thereby, we establish
observability from sensor sets with a decaying density in directions encoded by the
singular space. This corollary covers also situations where the sensor set is not
thick and is therefore new.

Corollary 4.33. Suppose that S(A)⊥ = Rd
I × Rd for some I ⊂ {1, . . . , d}.

Then, for all measurable sets ω satisfying
|Λρ(k) ∩ ω|
|Λρ(k)|

≥ γ1+|kI |α for all k ∈ (ρZ)d

and some 0 ≤ α < 1, γ ∈ (0, 1], the system Σo(A,1ω) is observable in time T > 0.

Corollaries 4.32 and 4.33 can be applied for instance in the context of Exam-
ples 2.16 and 2.17:

The Kolmogorov operator A from Example 2.16 satisfies S(A)⊥ = {0} × Rd.
For this case, the corresponding dissipation estimate has already been established
in [BPS18] and in combination with the spectral inequality for the Laplacian this
already establishes observability of the system Σo(A,1ω) from thick sensor sets.
This is covered by Corollary 4.33. Let us point out that observability of the
Kolmogorov equation has already been shown previously to [BPS18], e.g., using
Carleman estimates [LM16, Zha16] if the sensor set contains a suitable union of
open balls.

In all situations where S(A)⊥ ⊋ {0} × Rd, the above corollaries improve earlier
results. Previously, dissipation estimates for such operators A were only established
with the Laplacian as the selfadjoint comparison operator, see [Alp21]. With this
method it is only possible to establish the observability of the system Σo(A,1ω)
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with thick sensor sets. Corollary 4.33 removes this conditions. This is best seen
for the Kramers-Fokker-Planck operator introduced in Example 2.17: Without an
external potential the singular space of this operator is given by S(A)⊥ = Rd

I ×Rd,
where d = 2m for m ∈ N and I = {m+ 1, . . . , d}. Hence, S(A)⊥ ⊋ {0} × Rd and
Corollary 4.33 yields that Σo(A, 1ω) is observable from sensor sets ω which are not
thick, whereas [Alp21] only establishes observability from thick sets in this setting.

4.3. Semigroups with smoothing effects

In the preceding sections we discussed observability of systems Σo(A,1ω) by in-
specting the generator A. More precisely, properties of A were used as an input for
our results: While in Section 4.1 we proved a spectral inequality for the negative
H = −A of the selfadjoint generator, in Section 4.2 we used the singular space
of A to determine suitable comparison operators. This section takes a different
point of view and examines the observability solely based on properties of the
semigroup. There are results in this direction that use the so-called smoothing
properties of the semigroup to choose an appropriate comparison operator, see the
discussion in Section 4.4 below. However, the approach we present in this section
does not use comparison operators. Instead, we follow the approach presented in
Corollary 3.11 and derive observability estimates from uncertainty principles with
error term established for functions in the range of the semigroup associated to
the abstract Cauchy problem. In our setting, the semigroup (T (t))t≥0 in L2(Rd) is
always a contraction semigroup that is smoothing in some Gelfand-Shilov space in
the following sense.

Definition 4.34 (Smoothing properties). Let (T (t))t≥0 be a strongly contin-
uous contraction semigroup in L2(Rd), and let ν, µ > 0. We say that (T (t))t≥0

is smoothing in the Gelfand-Shilov space Sµ
ν (Rd) if there are constants r1, r2 ≥ 0,

C1, C2 > 0, and t0 ∈ (0, 1) such that for all t ∈ (0, t0), all g ∈ L2(Rd), and all
α, β ∈ Nd

0 we have

(4.20) ∥xα∂βT (t)g∥L2(Rd) ≤
C1C

|α|+|β|
2

tr1+r2(|α|+|β|) (α!)
ν(β!)µ∥g∥L2(Rd).

In what follows, we always assume that ν > 0 and µ ∈ (0, 1] are such that
µ+ ν ≥ 1. Here, the assumption on µ guarantees that T (t)g is analytic if t ∈ (0, t0)
and g ∈ L2(Rd), see Lemma A.8 for a proof of this statement. Recall that the
assumption µ+ ν ≥ 1 rules out that the Gelfand-Shilov spaces are trivial.

From the smoothing properties (4.20) it is easy to conclude an L2-inequality
with a strictly positive weight function for elements in the range of the semigroup.
In fact, expanding the weight function by the multinomial theorem and using the
smoothing properties for each summand we obtain

(4.21) ∥(1 + |x|2)n/2∂βT (t)g∥L2(Rd) ≤
C1(d+ 1)n/2C

1+n+|β|
2

tr1+r2(n+|β|) (n!)ν(|β|!)µ∥g∥L2(Rd)
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for all n ∈ N, all β ∈ Nd
0, all t ∈ (0, t0), and all g ∈ L2(Rd) if (T (t))t≥0 is smoothing

in the Gelfand-Shilov space Sµ
ν (Rd), cf. [Mar22, Lemma 5.2]. This inequality enters

the main result of this section as an essential assumption. It replaces, in some
sense, the assumption of the spectral inequalities that the element for which we
prove an uncertainty principle lies in the spectral subspace of the operator. Setting
f = T (t)g with g ∈ L2(Rd) and t ∈ (0, t0), inequality (4.21) can be reformulated as

(4.22) ∥(1 + |x|2)n/2∂βf∥L2(Rd) ≤ D1D
n+|β|
2 (n!)ν(|β|!)µ for all n ∈ N0, β ∈ Nd

0,

with

(4.23) D1 =
C1

tr1
∥g∥L2(Rd) and D2 =

(d+ 1)1/2C2

tr2
.

Motivated by this inequality, the main result of this section reads as follows. It
was first obtained in this form in the authors work [DS22] with Albrecht Seelmann.
Its proof is given in Section 7.3 below.

Theorem 4.35. Suppose that f ∈ C∞(Rd) satisfies (4.22) with some D1 > 0,
D2 ≥ 1, ν ≥ 0, and 0 ≤ µ < 1 satisfying µ+ ν ≥ 1. Moreover, let ε ∈ [0, 1) with
s = εν + µ < 1, let γ ∈ (0, 1], and let ρ : Rd → (0,∞) be a measurable function
satisfying

ρ(x) ≤ R(1 + |x|2)ε/2 for all x ∈ Rd

with some R ≥ 1.
Then, there is C > 0 depending on γ,R, r0, ν, s, and the dimension d, such that

for all δ ∈ (0, 1] and all measurable sets ω ⊂ Rd satisfying

(4.24)
|B(x, ρ(x)) ∩ ω|
|B(x, ρ(x))|

≥ γ for all x ∈ Rd

we have

(4.25) ∥f∥2L2(Rd) ≤ eC·(1+log 1
δ
+D

2/(1−s)
2 )∥f∥2L2(ω) + δD2

1.

The estimate (4.25) differs from the usual form of an uncertainty principle (e.g.,
those presented in Section 4.1 above) by the appearance of the term δD2

1. We call
this the error term since it can be chosen arbitrarily small. However, for small
values of δ, which corresponds to a small error term, the constant in the uncertainty
term gets (polynomially) large.

In [Mar22], the same result is proved under more technical assumptions, namely
that ρ is a Lipschitz contraction with a uniform positive lower bound. On the other
hand, the case s = 1, which also allows µ = 1, is treated in [Mar22] but is not in
the scope of the method we discuss here. Nevertheless, [Mar22] does not present
any applications in terms of observability in this case.

Applying Theorem 4.35 to f = T (t)g with D1 and D2 as in (4.23) shows that
a semigroup that is smoothing in a Gelfand-Shilov space satisfies the assumptions
of Corollary 3.11. This, in turn, proves observability of the semigroup from sensor
sets satisfying (4.24) and reproduces [Mar22, Theorem 2.11] with less restrictive
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conditions on the sensor set. The technical proof of the following corollary is
postponed to Subsection A.1.2 in Appendix A.

Corollary 4.36. Suppose that (T (t))t≥0 is a strongly continuous contraction
semigroup that is smoothing in the Gelfand-Shilov space Sµ

ν (Rd) with 0 ≤ µ < 1
and ν > 0 satisfying µ + ν ≥ 1. Let ε ∈ [0, 1) be such that εν + µ < 1 and let
ρ : Rd → (0,∞) be as in Theorem 4.35. Then (T (t))t≥0 is observable from every
measurable set ω ⊂ Rd satisfying (4.24) with some γ ∈ (0, 1]. More precisely, in
this case we have

∥T (T )g∥2L2(Rd) ≤ C exp

(︃
C

T
2r2

1−(εν+µ)

)︃∫︂ T

0

∥T (t)g∥2L2(ω) dt

for all g ∈ L2(Rd) and all T > 0, where C ≥ 1 is a constant depending on
γ,R, r0, ν, ε, µ, ν, C1, C2, r2, and the dimension d.

This result can be considered as a “backup result” since it is applicable for all
semigroups that are smoothing in a Gelfand-Shilov space. However, it does not
allow, e.g., the sensor set to have a decaying density. In particular, stronger result
are available in certain situations, see Theorem 4.42 and the discussion following
Theorem 4.43 below.

Remark 4.37. It is not clear if the class of operators that generate semigroups
as in the previous corollary is closed under taking adjoints. For this reason, if
one is interested in the null-controllability of the system Σc(A,1ω), one needs to
check whether the semigroup generated by A∗ is a strongly continuous contraction
semigroup that is smoothing in the Gelfand-Shilov space Sµ

ν (Rd) with 0 ≤ µ < 1
and ν > 0. If this is the case, Corollary 4.36 and the duality in Theorem 3.5
establish null-controllability.

4.4. Supplementary results and discussion

We close this chapter by discussing supplementary results which are either simple
corollaries or closely related to the ones presented so far. To this end, for brevity,
we restrict our considerations to the case of Shubin-type operators H = −∆+ |x|τ
with τ > 0 and, in the case of the harmonic oscillator, we only consider sets that
are thick with respect to a decaying density and a fixed scale. Furthermore, we
track the constants less explicit than we did in Theorem 4.16 above and we do not
formulate estimates for the observability constant here.

We first recall that for a nonnegative selfadjoint operator H we have Pλ(H
θ) =

Pλ1/θ(H) for θ > 0 by the transformation formula for spectral measures. Combining
this identity with the spectral inequalities from Theorem 4.16 and Theorem 4.23,
respectively, we get the following spectral inequalities for the fractional operators
Hθ which are needed in the subsequent discussion.
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Corollary 4.38. Let θ, ρ > 0, α ≥ 0, and H = −∆+ |x|2. Then there is a
constant C > 0 such that for all measurable sets ω ⊂ Rd satisfying

(4.26)
|B(x, ρ) ∩ ω|
|B(x, ρ)|

≥ γ1+|x|α for all x ∈ Rd

and some γ ∈ (0, 1], we have

(4.27) ∥f∥2L2(Rd) ≤
(︂1
γ

)︂Cλ(1/2+α/2)/θ

∥f∥2L2(ω) for all λ ≥ 1, f ∈ RanPλ(H
θ).

The exponent in (4.27) satisfies (1/2 + α/2)/θ < 1 if 0 ≤ α < 2(θ − 1/2), and
in this case we have a spectral inequality.

Corollary 4.39. Let θ, τ > 0, α ≥ 0, and H = −∆+ |x|τ . Then there is a
constant C > 0 such that for all δ ∈ (0, 1/2), all measurable sets ω satisfying that
each intersection Λ1(k) ∩ ω, k ∈ Zd, contains a ball of radius δ1+|k|α, we have

(4.28) ∥f∥L2(Rd) ≤
(︂1
δ

)︂C·λ(2/3+α/τ)/θ

∥f∥L2(ω) for all λ ≥ 1, f ∈ RanPλ(H
θ).

In contrast to the previous corollary, we here need 0 ≤ α < τ(θ − 2/3) in order
for the exponent to satisfy (2/3 + α/τ)/θ < 1, which is again a manifestation of
the cut-off procedure used in the proof, cf. the discussion following Theorem 4.23
above.

These corollaries are of particular interest for (anisotropic) Shubin operators
H = −∆+ |x|2l for l ∈ N. This is motivated by the following characterization of
Gelfand-Shilov spaces Sµ

ν (Rd) with

(4.29) µ =
lθ

l + 1
, ν =

θ

l + 1
for some θ ≥ 1.

Proposition 4.40 ([CGPR19, Theorem 1.4]). Let H = −∆+ |x|2l and let µ
and ν be as in (4.29). Then f ∈ Sµ

ν (Rd) if and only if there is s > 0 such that

(4.30) ∥esH(l+1)/(2lθ)

f∥L2(Rd) <∞.

For θ = l = 1 we have µ = ν = 1/2 while the usual harmonic oscillator appears
in the exponent in (4.30). This suggests that for semigroups that are smoothing in
the symmetric Gelfand-Shilov space S1/2

1/2(R
d) (in the sense of Definition 4.34 above),

the harmonic oscillator may serve as a suitable selfadjoint comparison operator. In
fact, using only this smoothing property, it is possible to adapt the reasoning from
the proof of Theorem 4.29 (see Chapter 8 below) to show the following theorem.
This can also be extracted from [MPS22, Eq. (4.26)].

Theorem 4.41. Let θ ∈ [1, 2), Pλ = Pλ((−∆+ |x|2)1/θ), and suppose that the
semigroup (T (t))t≥0 is smoothing in the symmetric Gelfand-Shilov space Sθ/2

θ/2(R
d)
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in the sense of Definition 4.34. Then there are C, t1 > 0 such that for all λ ≥ 1,
all g ∈ L2(Rd), and all t ∈ (0, t1) we have

(4.31) ∥(1− Pλ)T (t)g∥L2(Rd) ≤
C

tr1+2r2
e−t2r2/θ+1λ∥g∥L2(Rd),

where r1, r2 are the constants from Definition 4.34.

In combination with the spectral inequality from Corollary 4.38 and the Lebeau-
Robbiano method formulated in Corollary 3.9 above, this proves observability
for semigroups satisfying the smoothing properties in Theorem 4.41. In light of
the stronger spectral inequality for the harmonic oscillator we proved above this
improves upon the statement in [MPS22].

Theorem 4.42. Let θ ∈ [1, 2) and suppose that A is the generator of a semigroup
(T (t))t≥0 that is smoothing in the Gelfand-Shilov space Sθ/2

θ/2(R
d). Then the system

Σo(A,1ω) is observable if there are ρ > 0, γ ∈ (0, 1], and 0 ≤ α < 2(θ − 1/2) such
that the sensor set ω satisfies (4.26).

In the discussion following Proposition 8.1 below we point out that quadratic
differential operators A with singular space S = {0} generate semigroups that
satisfy the assumptions of the previous theorem with θ = 1. Other examples of
such semigroups are those generated by general (an-)isotropic Shubin operators
A = −((−∆)m + |x|2l)κ for m, l ∈ N and κ > 0.

Theorem 4.43 ([Alp, Eq. (2.3)]). Let A = −((−∆)m + |x|2l)κ for m, l ∈ N
and κ > 0. Then A generates a semigroup (T (t))t≥0 that is smoothing in the
Gelfand-Shilov space Sµ

ν (Rd) with

µ = max
{︂ 1

2κm
,

l

l +m

}︂
and ν = max

{︂ 1

2κl
,

m

l +m

}︂
.

More precisely, we have (4.20) with r1 = d(m+ l)/(2κml) and r2 = min{µ, ν}.

In the isotropic case l = m, the semigroup in the above theorem is smoothing in
the symmetric Gelfand-Shilov space Sµ

µ(Rd) with µ = max{1/2, 1/(2κl)}. Thus, if
κ > 1/(2l), then µ ∈ [1/2, 1) and we may apply Theorem 4.42 with θ = 2µ ∈ [1, 2)
to conclude observability of the system Σo(A,1ω) with ω as in this theorem.

For anisotropic Shubin operators H = −A = −∆+ |x|2l, l ∈ N, observability of
the system Σo(A,1ω) from thick sensor sets ω was shown in [Alp, Theorem 2.6]
by establishing a dissipation estimate with respect to the spectral projections of
the Laplacian and combining it with the spectral inequality formulated in Theo-
rem 4.3 (i). However, Theorems 4.42 and 4.43 allow also to study observability of
the system corresponding to anisotropic Shubin operators using so-called forced
symmetrization, cf. [Alp]. This argument simply takes into account that every
semigroup that is smoothing in the Gelfand-Shilov space Sµ

ν (Rd) is trivially smooth-
ing in the symmetric Gelfand-Shilov space Smax{µ,ν}

max{µ,ν}(R
d) ⊃ Sµ

ν (Rd). In particular,
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by Theorem 4.43, the semigroup generated by A = ∆ − |x|2l is smoothing in
the Gelfand-Shilov space Sl/(l+1)

1/(l+1)(R
d) ⊂ S

l/(l+1)
l/(l+1)(R

d), so that we may apply Theo-
rem 4.42 with θ = 2l/(l + 1). This yields observability of the system Σo(A,1ω) if
ω satisfies (4.26) with α < 1/l. However, here larger l requires smaller α which is
counterintuitive and stands in strong contrast to the situation we encountered in
Corollary 4.39 with θ = 1, where larger l allows for larger α.

In view of the preceding discussion, it appears to be of interest to characterize
spaces Gl, l ∈ N, such that we have a dissipation estimate with respect to the
spectral projections of the operator H = −∆ + |x|2l if the semigroup (T (t))t≥0

is smoothing in Gl. Such dissipation estimate in combination with the spectral
inequality from Corollary 4.39 would imply observability for these semigroups from
the same sensor sets from which the system Σo(−H,1ω) is observable. However,
Proposition 4.40 suggests that for l ̸= 1 the Gelfand-Shilov spaces are not the right
spaces for this task since the power of the operator in (4.30) satisfies (l+1)/(2lθ) < 1
if l > 1 and θ ≥ 1.





CHAPTER 5

Decay of linear combinations of eigenfunctions

In this chapter we quantify decay properties of linear combinations of eigenfunctions
of Schrödinger operators with potentials as in Hypothesis (S). Although there are
several results available for eigenfunctions establishing a fast decay in L2-sense,
see, e.g., [Agm82, Dav82, BS91], we need an explicit weighted L2-estimate also
for the partial derivatives of first order. The approach in [GY12] seems to be the
most convenient one for this task. However, since it is essential for us to have the
dependence of the decay on the spectral parameter explicitly quantified, we have
to revisit the reasoning from [GY12] and extract the statements we need.

The main objective of the present chapter is to prove the following result.

Theorem 5.1. Let H = −∆+ V with V as in Hypothesis (S). Then there is a
constant C0 > 0, depending only on τ1, c1, ν,Mν, and the dimension d, such that

(5.1) ∥f∥2
H1(Rd\B(0,C0λ1/τ1 ))

≤ 1

2
∥f∥2L2(Rd)

for every f ∈ RanPλ(H), λ ≥ 1.

Remark 5.2. If desired, the dependence of C0 in Theorem 5.1 on τ1, c1, ν,Mν

can be traced explicitly from the proof. We refrain from doing so here for simplicity
and brevity.

Throughout this chapter, let H = −∆+ V where V is as in Hypothesis (S).
We use the parameters c1, c2, τ1, and Mν introduced in the hypothesis and we
denote by h = a+ v the form associated to H.

5.1. Weighted inequalities

We prove Theorem 5.1 by establishing weighted L2-estimates for functions and
gradients of functions in the spectral subspace of H with an exponential weight.
As a preparation, we need the following lemma which, together with its proof, is
essentially taken from [GY12, Lemma 2.1].

Lemma 5.3. Suppose that for some ϕ ∈ L2(Rd) and λ ≥ 0 the function
f ∈ H2

loc(Rd) ∩ L2(Rd) satisfies −∆f + V f − λf = ϕ almost everywhere. Then,
f ∈ D[h] and for all g ∈ D[h] we have h[f, g]− λ⟨f, g⟩L2(Rd) = ⟨ϕ, g⟩L2(Rd).

Proof. Consider the function χ : Rd → [0, 1] with χ(x) = (1 − |x|2)2 for
|x| < 1 and χ(x) = 0 for |x| ≥ 1, and define χε : Rd → [0, 1] for 0 < ε < 1/2

57
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by χε(x) = χ(εx). Observe that χε → 1 pointwise and monotonically as ε → 0.
Moreover, χε vanishes outside of B(0, 1/ε), in particular on the boundary ∂B(0, 1/ε).
With ∇(χεf) = χε∇f + f∇χε, integration by parts therefore gives

⟨−∆f, χεf⟩L2(B(0,1/ε)) = ⟨|∇f |, χε|∇f |⟩L2(B(0,1/ε)) + ⟨∇f · ∇χε, f⟩L2(B(0,1/ε)),

so that

⟨|∇f |, χε|∇f |⟩L2(B(0,1/ε)) + ⟨V f, χεf⟩L2(B(0,1/ε))

= ⟨−∆f + V f, χεf⟩L2(B(0,1/ε)) − ⟨∇f · ∇χε, f⟩L2(B(0,1/ε))(5.2)
= ⟨λf + ϕ, χεf⟩L2(B(0,1/ε)) − ⟨∇f · ∇χε, f⟩L2(B(0,1/ε)).

Now, for x ∈ B(0, 1/ε) and j = 1, . . . , d we have ∂jχε(x) = −4ε2xjχε(x)
1/2,

that is,
|∇χε(x)| = 4ε2|x|χε(x)

1/2 ≤ 4εχε(x)
1/2.

Thus,

|⟨∇f · ∇χε, f⟩L2(B(0,1/ε))| ≤ ∥f∥L2(B(0,1/ε))∥|∇f ||∇χε|∥L2(B(0,1/ε))

≤ 4ε∥f∥L2(B(0,1/ε))∥|∇f |χ1/2
ε ∥L2(B(0,1/ε))

≤ 2ε
(︁
∥f∥2L2(B(0,1/ε)) + ∥|∇f |χ1/2

ε ∥2L2(B(0,1/ε))

)︁
= 2ε

(︁
∥f∥2L2(B(0,1/ε)) + ⟨|∇f |, χε|∇f |⟩L2(B(0,1/ε))

)︁
.

Plugging the latter into (5.2) implies

(1− 2ε)

(︃∫︂
Rd

χε|∇f |2 +
∫︂
Rd

χεV |f |2
)︃

≤ (1− 2ε)⟨|∇f |, χε|∇f |⟩L2(B(0,1/ε)) + ⟨V f, χεf⟩L2(B(0,1/ε))

≤ |⟨λf + ϕ, χεf⟩L2(B(0,1/ε))|+ 2ε∥f∥2L2(B(0,1/ε))

≤ ∥ϕ∥L2(Rd)∥f∥L2(Rd) + (λ+ 2ε)∥f∥2L2(Rd),

that is,∫︂
Rd

χε|∇f |2 +
∫︂
Rd

χεV |f |2 ≤ 1

1− 2ε

(︂
∥ϕ∥L2(Rd)∥f∥L2(Rd) + (λ+ 2ε)∥f∥2L2(Rd)

)︂
for all ε > 0. Since the right-hand side of the last inequality is uniformly bounded
as ε→ 0, it follows from the monotone convergence theorem that indeed f ∈ D[h]
with

h[f, f ] ≤ ∥ϕ∥L2(Rd)∥f∥L2(Rd) + λ∥f∥2L2(Rd).

Finally, for g ∈ C∞
c (Rd) integration by parts shows

h[f, g] = a[f, g] + v[f, g] =

∫︂
Rd

(−∆f + V f)g =

∫︂
Rd

(ϕ+ λf)g

= ⟨ϕ+ λf, g⟩L2(Rd),
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and the latter extends to all g ∈ D[h] by approximation since C∞
c (Rd) is a form

core for H by Lemma 2.5. □

The next result is now at the core of our proof of Theorem 5.1 and is a
quantitative version of the statement in [GY12, Lemma 2.3]. Its proof is also
extracted from that reference.

Lemma 5.4. Let λ ≥ 0, µ > 0, and R ≥ 1 be such that V (x) ≥ µ2 + λ + 1
whenever |x| ≥ R. Moreover, suppose that the function f ∈ H2

loc(Rd) ∩ L2(Rd)
satisfies −∆f + V f − λf = ϕ almost everywhere with some ϕ ∈ L2(Rd). Then, if
e2µ|x|ϕ ∈ L2(Rd), we have

(5.3) ∥eµ|x|f∥2L2(Rd) ≤
1

2
∥e2µ|x|ϕ∥2L2(Rd\B(0,R)) + (4µ+ 6)e2µ(R+1)∥f∥2L2(Rd).

Proof. According to Lemma 5.3, we have f ∈ D[h]. Suppose first that f is real-
valued and choose an infinitely differentiable function χ : Rd → [0, 1] with χ(x) = 0
for |x| ≤ R and χ(x) = 1 for |x| ≥ R+1 such that ∥|∇χ|∥L∞(Rd) ≤ 2. For ε > 0 let
w(x) = wε(x) = µ|x|/(1 + ε|x|). Then w is bounded and infinitely differentiable on
Rd \{0}. Accordingly, the same is true for χew and χe2w. Therefore, χe2wf , χ2e2wf ,
and g := χewf are all real-valued, belong to D[h], and vanish in the ball B(0, R). In
particular, the choice ofR implies that v[g, g] ≥ (µ2+λ+1)∥g∥2

L2(Rd)
. Moreover, with

the relation ∇(e±wg) = e±w∇g ± ge±w∇w and the identity ∥|∇w|∥L∞(Rd\{0}) = µ
we obtain

∇(e−wg) · ∇(ewg) = |∇g|2 − |g|2|∇w|2 ≥ −µ2|g|2,
so that

h[χf, χe2wf ] = h[e−wg, ewg] = a[e−wg, ewg] + v[g, g] ≥ (λ+ 1)∥g∥2L2(Rd),

or, in other words,

(5.4) ∥χewf∥2L2(Rd) ≤ h[χf, χe2wf ]− λ⟨f, χ2e2wf⟩L2(Rd).

Clearly, v[χf, χe2wf ] = v[f, χ2e2wf ]. Furthermore, a straightforward computa-
tion shows ∇(χf) · ∇(χe2wf) = ∇f · ∇(χ2e2wf) + ηe2w|f |2 with

(5.5) η := 2χ∇χ · ∇w + |∇χ|2.
Taking into account Lemma 5.3 with g = χ2e2wf , we therefore have

h[χf, χe2wf ] = h[f, χ2e2wf ] + ⟨f, ηe2wf⟩L2(Rd)

= ⟨ϕ+ λf, χ2e2wf⟩L2(Rd) + ⟨f, ηe2wf⟩L2(Rd).

Plugging the latter into (5.4) gives

∥χewf∥2L2(Rd) ≤ ⟨ϕ, χ2e2wf⟩L2(Rd) + ⟨f, ηe2wf⟩L2(Rd)

= ⟨χ2e2wϕ, f⟩L2(Rd) + ⟨f, ηe2wf⟩L2(Rd)(5.6)

≤ ∥χ2e2wϕ∥L2(Rd)∥f∥L2(Rd) + ∥ηe2w∥L∞(Rd)∥f∥2L2(Rd).
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The function η in (5.5) vanishes outside of the annulus R < |x| < R+1 and satisfies
|η| ≤ 2|∇χ||∇w|+ |∇χ|2 ≤ 4(µ+ 1). Hence,

∥ηe2w∥L∞(Rd) ≤ 4(µ+ 1)e2µ(R+1).

We thus conclude from (5.6) that

∥ewf∥2L2(Rd) = ∥ewf∥2L2(B(0,R+1)) + ∥ewf∥2L2(Rd\B(0,R+1))

≤ e2µ(R+1)∥f∥2L2(Rd) + ∥χewf∥2L2(Rd)

≤ ∥χ2e2wϕ∥L2(Rd)∥f∥L2(Rd) + (4µ+ 5)e2µ(R+1)∥f∥2L2(Rd)

≤ ∥e2wϕ∥L2(Rd\B(0,R))∥f∥L2(Rd) + (4µ+ 5)e2µ(R+1)∥f∥2L2(Rd)

≤ 1

2
∥e2wϕ∥2L2(Rd\B(0,R)) + (4µ+ 6)e2µ(R+1)∥f∥2L2(Rd),

where we used Young’s inequality for products for the last estimate. Since w(x) =
wε(x) → µ|x| as ε → 0 pointwise and monotonically, (5.3) now follows by the
monotone convergence theorem.

If f is not real-valued, we proceed analogously for Re f and Im f separately
and combine the obtained inequalities to arrive again at (5.3). □

Applying Lemma 5.4 with ϕ = 0 allows us to obtain the desired weighted
L2-estimates for eigenfunctions of H, where R can be computed from λ and the
constants in part (i) of Hypothesis (S).

Proposition 5.5. Suppose that f ∈ D(H) with Hf = λf for some λ ≥ 0, and
choose R ≥ 1 such that Rτ1 ≥ (λ+ 2)/c1. Then

∥e|x|/2f∥2L2(Rd) ≤ 7eR+1∥f∥2L2(Rd).

Proof. According to Lemma 2.6, we have f ∈ H2
loc(Rd) and −∆f+V f−λf = 0

almost everywhere. Applying Lemma 5.4 with µ = 1/2 and ϕ = 0 therefore proves
the claim. □

In order to obtain by means of Lemma 5.4 an analogous result for the partial
derivatives of an eigenfunction, we follow the approach of [GY12] and differentiate
the eigenvalue equation Hf = λf . Indeed, since Hf ∈ H2

loc(Rd), we know that, in
fact, f ∈ H3

loc(Rd) by elliptic regularity, see Lemma 2.6, and it follows that each
∂jf ∈ H2

loc(Rd) with j = 1, . . . , d satisfies

(5.7) −∆∂jf + V ∂jf − λ∂jf = −f∂jV
almost everywhere. This allows to apply Lemma 5.4 to ∂jf with a corresponding
right-hand side and, thus, leads to the following result.

Proposition 5.6. Let f ∈ D(H) with Hf = λf for some λ ≥ 0, and choose
R ≥ 1 such that Rτ1 ≥ ((ν + 1)2 + λ+ 1)/c1. Then, we have

∥e|x|/2|∇f |∥2L2(Rd) ≤
(︁
8λ+ (2ν + 5)M2

ν

)︁
e2(1+ν)(R+1)∥f∥2L2(Rd).
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Proof. Denote by ϕj := −f∂jV the right-hand side of (5.7). Then, in light of
the hypothesis on R, we may first apply Lemma 5.4 to f with µ = ν + 1 and ϕ = 0
to obtain

(5.8) ∥e(1+ν)|x|f∥2L2(Rd) ≤ (4ν + 9)e2(1+ν)(R+1)∥f∥2L2(Rd).

Since |ϕj(x)| ≤Mνe
ν|x||f | on Rd\B(0, 1) by part (ii) of Hypothesis (S), we conclude

that e|x|ϕj ∈ L2(Rd\B(0, 1)). In view of (5.7), we may then again apply Lemma 5.4,
this time to ∂jf with µ = 1/2 and ϕ = ϕj = −f∂jV , which gives

(5.9) ∥e|x|/2∂jf∥2L2(Rd) ≤
1

2
∥e|x|ϕj∥2L2(Rd\B(0,1)) + 8eR+1∥∂jf∥2L2(Rd).

Taking into account (5.8) and that

∥|∇f |∥2L2(Rd) = a[f, f ] ≤ h[f, f ] = ⟨Hf, f⟩L2(Rd) = λ∥f∥2L2(Rd),

summing over j = 1, . . . , d then yields

∥e|x|/2|∇f |∥2L2(Rd) ≤
1

2
∥e|x|f |∇V |∥2L2(Rd\B(0,1)) + 8eR+1∥|∇f |∥2L2(Rd)

≤ M2
ν

2
∥e(1+ν)|x|f∥2L2(Rd\B(0,1)) + 8λeR+1∥f∥2L2(Rd)

≤
(︁
8λ+ (2ν + 5)M2

ν

)︁
e2(1+ν)(R+1)∥f∥2L2(Rd),

which proves the claim. □

5.2. Localization of linear combinations of eigenfunctions

Recall from the discussion before Corollary 2.4 that H has purely discrete spectrum,
and let (λk)k∈N be an enumeration of its spectrum σ(H) in nondecreasing order
(without multiplicities). With

N(λ) := #(σ(H) ∩ (−∞, λ]),

we may then expand every f ∈ RanPH(λ) as

(5.10) f =

N(λ)∑︂
k=1

fk

where fk = PH({λk})f for k ∈ {1, . . . , N(λ)}. We have the simple bound

N(λ) ≤ #{k : λk ≤ λ} ≤
∑︂

k : λk≤λ

(λ+ 1− λk) ≤
∑︂

k : λk≤λ+1

(λ+ 1− λk)

and in light of the lower bound V (x) ≥ c1|x|τ1 on the potential in part (i) of
Hypothesis (S), the right-hand side can be estimated explicitly by means of the
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classic Lieb-Thirring bound from [LT91, Theorem 1]. More precisely, for λ ≥ 1 this
theorem yields∑︂

k : λk≤λ+1

(λ+ 1− λk) ≲d

∫︂
Rd

max{λ+ 1− V (x), 0}d/2+1 dx

≤
∫︂
B(0,((λ+1)/c1)1/τ1 )

(λ+ 1)d/2+1 dx

≲d

(︂ 2

c1

)︂d/τ1
λ1+d(1/2+1/τ1),

and, therefore,

(5.11) N(λ) ≤ Kd

(︂ 2

c1

)︂d/τ1
λ1+d(1/2+1/τ1) ≤ eC1λ1/τ1

for some constant C1 > 0 depending only on c1, τ1, and the dimension d.

Remark 5.7. The Lieb-Thirring bound actually also takes into account multi-
plicities. It is worth to mention that for d ≥ 3 the classic Cwikel-Lieb-Rozenblum
bound provides a sharper estimate for N(λ), but the above is more than sufficient
for our purposes.

We are now in position to prove the main result of this chapter.

Proof of Theorem 5.1. For every r > 0, we have

∥f∥2H1(Rd\B(0,r)) ≤ ∥e−|x|/2∥2L∞(Rd\B(0,r)) ·
(︁
∥e|x|/2f∥2L2(Rd) + ∥e|x|/2|∇f |∥2L2(Rd)

)︁
≤ e−r

(︁
∥e|x|/2f∥2L2(Rd) + ∥e|x|/2|∇f |∥2L2(Rd)

)︁
.

Moreover, using the expansion (5.10) and Hölder’s inequality, we may estimate

∥e|x|/2f∥2L2(Rd) ≤

(︄
N(λ)∑︂
k=1

∥e|x|/2fk∥L2(Rd)

)︄2

≤ N(λ)

N(λ)∑︂
k=1

∥e|x|/2fk∥2L2(Rd)

and similarly, taking into account |∇f | ≤
∑︁N(λ)

k=1 |∇fk|,

∥e|x|/2|∇f |∥2L2(Rd) ≤ N(λ)

N(λ)∑︂
k=1

∥e|x|/2|∇fk|∥2L2(Rd).

We choose

R := ((ν + 1)2 + λ+ 1)1/τ1 ≤ 31/τ1(1 + ν)2/τ1λ1/τ1/c1 ≲ν,τ1,c1 λ
1/τ1 ,

which meets the requirement on R in both Propositions 5.5 and 5.6 for all eigenfunc-
tions corresponding to eigenvalues not exceeding λ. In particular, this is the case
for the functions fk in the expansion (5.10). Since

∑︁N(λ)
k=1 ∥fk∥2L2(Rd)

= ∥f∥2
L2(Rd)
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and in light of the bound for N(λ) in (5.11), applying Propositions 5.5 and 5.6 for
each fk separately therefore implies that

∥e|x|/2f∥2L2(Rd) + ∥e|x|/2|∇f |∥2L2(Rd) ≤ eC2λ1/τ1∥f∥2L2(Rd)

for some constant C2 > 0 depending only on c1, τ1, ν,Mν , and d. Hence,

∥f∥2H1(Rd\B(0,r)) ≤ e−reC2λ1/τ1∥f∥2L2(Rd)

and choosing r := log 2 + C2λ
1/τ1 ≤ (C2 + log 2)λ1/τ1 then proves the claim with

the constant C0 = C2 + log 2. □

We end this chapter by stating a simple qualitative result which we also obtain
from Lemma 5.4 with the same technique as exercised above. This is needed
in certain situations in Subsection 6.4.2 below only because we have no explicit
representation for the domain D(H) at our disposal.

Proposition 5.8. If ∥e−µ|x|V ∥L∞(Rd) < ∞ for some µ > 0, then there is a
constant C3 > 0 depending on V, µ, λ, and the dimension d, such that

(5.12) ∥V f∥L2(Rd) ≤ C3∥f∥L2(Rd)

for all f ∈ RanPλ(H), λ ≥ 0. In particular, for each such f we have V f ∈ L2(Rd)
and f ∈ H2(Rd) with Hf = −∆f + V f .

Proof. By Lemma 2.7 it suffices to show (5.12). However, applying Lemma 5.4
we easily see

∥V f∥L2(Rd) ≤ ∥e−µ|x|V ∥L∞(Rd)∥eµ|x|f∥L2(Rd) ≤ C3∥f∥L2(Rd) <∞. □





CHAPTER 6

Spectral inequalities based on Carleman estimates

The goal of this chapter is to give the proofs of Theorems 4.10 and 4.23 which
are both based on Carleman estimates. In the first Section 6.1, we give a short
presentation of certain quantitative unique continuation estimates that are based
on Carleman estimates and can be seen as predecessor results to the aforementioned
theorems. We discuss properties of the potentials we work with in Section 6.2 and,
thereafter, in Section 6.3, we deduce two Carleman estimates valid for Schrödinger
operators with singular admissible potentials by perturbing existing Carleman
estimates for the pure Laplacian. The main results are then proven in Section 6.4:
In Subsection 6.4.1 we first verify covering inequalities that follow from the Carleman
estimates proven in Section 6.3 for functions satisfying some differential equation
almost everywhere. From these we conclude an interpolation inequality that is
applied to specifically constructed eigenfunctions of a Schrödinger operator on
Rd+1, which are related to elements in the spectral subspace by the so-called ghost
dimension framework we recall in Subsection 6.4.2. Using this framework we finally
conclude the proofs of the main results in Subsection 6.4.3.

6.1. The Carleman approach to spectral inequalities

By unique continuation properties of differential operators one refers to the fact that
solutions of certain differential equations must vanish identically if they vanish on
a nonempty open subset. For operators with analytic coefficients, such results were
first obtained already in [Hol01]. The case of operators with non-analytic coefficients
was studied in two dimensions by Carleman [Car45] using weighted inequalities
that nowadays are known as Carleman estimates. This method was subsequently
generalized by several authors, see the introduction in [Hör63, Chapter VIII] for
further references. Carleman estimates have found a wide variety of applications,
e.g., in inverse problems [Yam09, Isa17], unique continuation [Ken87], control
theory [LR95, FI96], uniqueness of Cauchy problems [Zui83], and in the theory of
random Schrödinger operators [BK05], see also [BK13, RMV13, GK13]. We refer
to the book [Ler19] for an exhaustive discussion of Carleman estimates and their
applications.

Quantitative forms of unique continuation properties using Carleman estimates
go back at least to the works [LR95, LZ98, JL99], wherein the following spectral
inequality for the Laplacian is proven. Here one has no control over the constant
C that encodes the geometric properties of the set ω.

65
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Theorem 6.1 ([LZ98, JL99], see also [LR95]). Let Ω ⊂ Rd be bounded and let
ω ⊂ Ω be open. Then, there is a constant C > 0 such that for all λ ≥ 0 and all
f ∈ RanPλ(−∆D

Ω ) we have

∥f∥2L2(Ω) ≤ CeCλ1/2∥f∥2L2(ω).

A lot of progress in quantitative unique continuation based on Carleman esti-
mates has been made due to its applications in the theory of random Schrödinger
operators, where such results were first used in the highly influential paper [BK05].
In this setting, the sensor set is usually an equidistributed set (since this models
the position or influence of ions, cf., e.g., the exposition in [Sto01]) and also quanti-
tative unique continuation estimates for individual eigenfunctions are of interest
since these already imply a so-called eigenvalue lifting, see, for instance, [NTTV18,
Corollary 2.6] and the excursus in Appendix B below.

In order to present results preceding our Theorem 4.10, we now recall the main
result from [RMV13].

Theorem 6.2. Let δ ∈ (0, 1/2) and let ω ⊂ Rd be (1, δ)-equidistributed as
in Definition 4.6. Then for all L ∈ N, all real valued V ∈ L∞(Rd), and all
f ∈ D(∆D

ΛL
) ∪ D(∆per

ΛL
) satisfying the differential inequality |∆f | ≤ |V f | almost

everywhere on ΛL, we have

∥f∥2L2(ΛL)
≤
(︂1
δ

)︂Kd·(1+∥V ∥2/3∞ )

∥f∥2L2(ΛL∩ω).

While this theorem holds for eigenfunctions f of the Schrödinger operator
H = −∆+V , it is not applicable for all functions in a spectral subspace and therefore
no spectral inequality. Furthermore, even for eigenfunctions f corresponding to
an eigenvalue λ ≥ 0, the exponent takes the form Kd · (1 + ∥V ∥2/3∞ + λ2/3) and
therefore the power 2/3 of the eigenvalue differs from the expected 1/2 we get for
the pure Laplacian (V ≡ 0) and which is known to be sharp in this case. This is
due to the fact that instead of working with the parameter λ separately, one here
considers f as an eigenfunction (with eigenvalue 0) of the Schrödinger operator
H̃ = −∆+ (V − λ), so that λ inherits the exponent 2/3 from the potential-term.
Actually, a similar phenomenon occurs in the proof of Theorem 4.23 below.

A first approach to generalize Theorem 6.2 to elements in the spectral subspace
was given in [Kle13, Theorem 1.1] and subsequently generalized in [KT16, Theo-
rem 1.2] to certain singular potentials. For brevity, we only recall the result from
the last mentioned reference since it agrees with [Kle13, Theorem 1.1] in the case
of bounded potentials.

Theorem 6.3 ([KT16, Theorem 1.2]). Let p ≥ d for d ≥ 3, p > 2 for d = 2,
and p ≥ 2 for d = 1. Suppose that V = V1 + V2 with some V1 ∈ L∞(Rd),
V2 ∈ Lp(Rd), and consider the Schrödinger operator H = −∆+ V on L2(Rd). Let
q = 4p2/((3p− d)(2p− d)) for d ≥ 2 and let q = 2p2/((3p− 4)(p− 1)) for d = 1.
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Then, there is a constant C > 0, depending only on the dimension d, such that if
for δ ∈ (0, 1/2) and λ > 0 we set

η2 =
1

2
δC·(1+(∥V1∥∞+∥V2∥p+λ)q),

then for all finite rectangles Λ = Λa(x0) with a ∈ (114
√
d,∞)d and x0 ∈ Rd and all

(1, δ)-equidistributed sets ω ⊂ Rd we have

∥f∥2L2(Λ) ≤ 4 ·
(︂1
δ

)︂2C·
(︁
1+(∥V1∥∞+∥V2∥p+λ)q

)︁
∥f∥2L2(Λ∩ω)

for all intervals I ⊂ (−∞, λ] with |I| ≤ 2η and all f ∈ Ran1I(H
•
Λ), • ∈ {D, per}.

Remark 6.4. Since q → 2/3 as p → ∞, setting q = 2/3 if p = ∞ we recover
[Kle13, Theorem 1.1].

The reason why this theorem merely allows short energy intervals I is that
the proof is based on an unique continuation estimate with an additional error
term (which, in case of bounded potentials, essentially follows from [RMV13] with
minor adjustments) and the observation that for I = [µ− η, µ+ η] this error term
∥(H•

Λ − µ)f∥L2(Λ) is bounded by η∥f∥L2(Λ) and can therefore be subsumed into the
norm on the left-hand side.

The result from [Kle13] (for bounded potentials) was generalized to arbitrary
linear combinations of eigenfunctions, that is, to a spectral inequality, in [NTTV18]
for Schrödinger operators on finite cubes and in [NTTV20b] for Schrödinger op-
erators on generalized rectangles, see Theorem 4.7 above for the most general of
these results in the case of operators on the whole of Rd. Here, while the proofs in
[RMV13, Kle13, KT16] apply only a single Carleman estimate to the eigenfunction
itself, [NTTV18, NTTV20b] is based on two Carleman estimates (with and without
a boundary term) applied to a function that is constructed in a way introduced in
[JL99] from an element in the spectral subspace of the operator. The Carleman
estimate with the boundary term allows to come back to the original function
whilst the Carleman estimate without the boundary term is used to perform the
actual step from the equidistributed sensor set to the whole generalized rectangle.

We follow the same path in the proofs of Theorems 4.10 and 4.23 below. For
the former, we prove generalizations of the two aforementioned Carleman estimates
that feature singular admissible singular potentials and we also generalize the
resulting interpolation inequality using these Carleman estimates. For the latter,
we use Theorem 5.1 to essentially reduce our considerations to suitable regions
where the a priori unbounded potential behaves like a bounded one.

6.2. Basic properties of the Schrödinger operators

In this section we investigate properties of the potentials and their associated
Schrödinger operators we deal with in this chapter. First, we provide some properties
of singular admissible potentials that are at the core of our considerations.
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Lemma 6.5. Let V : Rd → R be singular admissible in the sense of Definition 4.9.
Then:
(a) V is infinitesimally operator bounded with respect to the Laplacian ∆ in L2(Rd).

More precisely, there are constants a, b ≥ 0 such that

(6.1) ∥V f∥L2(Rd) ≤ aε∥∆f∥L2(Rd) +
(︂a
ε
+ b
)︂
∥f∥L2(Rd)

for all f ∈ D(∆) and all ε > 0.
(b) There are constants λ1, λ2 ≥ 0 such that

(6.2) ∥V f∥2L2(Rd) ≤ λ1∥∇f∥2L2(Rd) + λ2∥f∥2L2(Rd)

for all f ∈ H1(Rd).

Proof. (a) We clearly have D((−∆)1/2) ⊂ H1(Rd) ⊂ D(V ) which already
implies that V is infinitesimally operator bounded with respect to the Laplacian
by [Tre08, Corollary 2.1.20]. However, in order to get the more precise bound
(6.1), we observe that by [Sch12, Lemma 8.4] the multiplication operator V is
(−∆)1/2-bounded and there are a, b ≥ 0 such that

∥V f∥L2(Rd) ≤ aε∥(−∆)1/2f∥L2(Rd) + b∥f∥L2(Rd)

for all f ∈ D((−∆)1/2). Now, as in the proof of [Tre08, Corollary 2.1.20], it is easy
to calculate that for all f ∈ D(∆) we have

∥(−∆)1/2f∥L2(Rd) ≤ ∥∆f∥1/2
L2(Rd)

∥f∥1/2
L2(Rd)

≤ ε∥∆f∥L2(Rd) +
1

ε
∥f∥L2(Rd).

In particular, f ∈ D((−∆)1/2), and combining the last two inequalities we obtain
the desired inequality (6.1).

(b) We have D(∇) = H1(Rd) ⊂ D(V ), where ∇ denotes the gradient as a
closed operator in H1(Rd). Using again [Sch12, Lemma 8.4] this implies that V is
relatively bounded with respect to the gradient which agrees with the claim. □

Recall that Lemma 6.5 (a) ensures that the operator sum H = −∆+ V with
a singular admissible potential V is selfadjoint in L2(Rd) and lower semibounded,
cf. Subsection 2.2.2 above.

Remark 6.6. (a) V is singular admissible if V 2 is form bounded with respect
to the Laplacian −∆. Indeed, an inequality like (6.2) holds for all f ∈ D(∆) ⊂
D(V 2), which extends to (6.2) by taking the closure of ∇. Hence, for f ∈ H1(Rd)
we have ∥V f∥L2(Rd) < ∞ and therefore f ∈ D(V ), which shows that V is
singular admissible.

(b) If V : Rd → R is measurable with D(∆) ⊂ D(V 2), then V is singular admissible.
Indeed, in this case, V 2 is ∆-bounded, see, e.g., [Kat80, Remark IV.1.5]. The
claim follows from the fact that V 2 is also form bounded with respect to −∆,
see, e.g., [Kat80, Theorem VI.1.38], and part (i).
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Based on the preceding discussion, we now construct examples of singular
admissible potentials.

Example 6.7. (a) Every real-valued V ∈ L∞(Rd) is singular admissible.
(b) It follows from [KM82, Lemma 2.1] that V 2 is form bounded with respect to

∆ if V ∈ Lp(Rd) with p ≥ d for d ≥ 3, p > 2 for d = 2 and p = 2 for d = 1.
Therefore, by Remark 6.6 (a), such potentials are singular admissible.

(c) If V : Rd → R is measurable such that V 2 belongs to the Kato class in Rd (see,
e.g., [AS82] or [CFKS87, Section 1.2] for a discussion), then V 2 is infinitesimally
form bounded with respect to the Laplacian. Hence, V is singular admissible
on Rd by Remark 6.6 (a). In particular, this is the case if V belongs to

Lp
loc,unif(R

d) =
{︁
h ∈ Lp(Rd) : sup

x∈Rd

∥h∥Lp(B(x,1)) <∞
}︁

with p > d for d ≥ 2 and p = 4 for d = 1.
Since the singular admissible potentials clearly form a vector space, also sums

of potentials from (a), (b), and (c) are singular admissible. Therefore, in dimension
d ≥ 2, this class essentially covers the singular potentials considered in Theorem 6.3.
However, potentials of the type (c) have not been in scope of this theorem.

We close this section with a lemma that allows to bound the Laplacian of
an element of the spectral subspace RanPλ(H). These bounds are used in the
proofs of the spectral inequalities in Section 6.4 below and are formulated here
simultaneously for both types of potentials, since this avoids redundancies later on.

Lemma 6.8. Let H = −∆+ V where V is either

(i) as in Hypothesis (SI), or (ii) singular admissible.

Then, in both cases, there are constants N1, N2 ≥ 0 such that for all λ ≥ 0 and all
f ∈ RanPλ(H) we have

∥∆f∥2L2(Rd) ≤ 4(λ2 +N1)∥f∥2L2(Rd) and ⟨−∆f, f⟩L2(Rd) ≤ 2(λ+N2)∥f∥2L2(Rd).

More precisely, we have N2 = 0 in case (i) and N2 = 1 + λ1 + λ2 in case (ii).

The constant N1 enters only on an abstract level in the proof of Lemma 6.16
below, and the exact knowledge of it is therefore not necessary.

Proof. For f ∈ RanPλ(H) ⊂ D(H) we have −∆f = Hf − V f and therefore

(6.3) ∥∆f∥2L2(Rd) ≤ 2 ·
(︁
∥Hf∥2L2(Rd) + ∥V f∥2L2(Rd)

)︁
by Young’s inequality. Now we distinguish between the two cases for V .

(i) Suppose that V is as in Hypothesis (SI). According to the discussion in
Subsection 2.2.1 we may assume without loss of generality that I = {1, . . . , d1} for
some d1 ≤ d. Then, using the tensor representation of H proven in Lemma 2.2
we have H = H1 ⊗ I2 + I1 ⊗ H2, where H1 is a Schrödinger operator with a
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potential as in Hypothesis (S) in L2(Rd1) and where H2 is the Laplacian in
L2(Rd−d1). Thus, by Corollary 2.4 we have f(·, x2) ∈ RanPλ(H1) for almost
all x2 ∈ Rd−d1 and we may apply Proposition 5.8 to f(·, x2) so that by Fubini’s
theorem we get ∥V f∥2

L2(Rd)
≤ C2

3∥f∥2L2(Rd)
, where C3 is the corresponding constant

from Proposition 5.8. Inequality (6.3) now easily implies

∥∆f∥2L2(Rd) ≤ 2(λ2 + C2
3)∥f∥2L2(Rd)

and since the potential is nonnegative, we have

⟨−∆f, f⟩L2(Rd) ≤ ⟨Hf, f⟩2L2(Rd) ≤ λ∥f∥2L2(Rd).

(ii) Suppose that V is singular admissible. Using that V is infinitesimally
operator bounded with respect to −∆ according to Lemma 6.5, the bound (6.3)
yields

∥∆f∥2L2(Rd) ≤ 2∥Hf∥2L2(Rd) + 2 ·
(︂
2aε∥∆f∥2L2(Rd) + 2

(︂a
ε
+ b
)︂
∥f∥2L2(Rd)

)︂
for some constants a, b ≥ 0 and all ε > 0. Hence, choosing ε = 1/(8a) we have

∥∆f∥2L2(Rd) ≤ 4∥Hf∥2L2(Rd) +N1∥f∥2L2(Rd) ≤ (4λ2 +N1)∥f∥2L2(Rd)

for some constant N1 ≥ 0. For the second inequality we estimate

⟨−∆f, f⟩L2(Rd) ≤ ⟨Hf, f⟩L2(Rd) + ⟨|V |f, f⟩L2(Rd).

By Lemma 6.5 (b) and Young’s inequality we have

⟨|V |f, f⟩L2(Rd) ≤
ϱ

2
∥V f∥2L2(Rd) +

1

2ϱ
∥f∥2L2(Rd)

≤ ϱλ1
2

∥V f∥2L2(Rd) +
(︂ 1

2ϱ
+ λ2

)︂
∥f∥2L2(Rd)

for arbitrary ϱ > 0. Hence,

⟨−∆f, f⟩L2(Rd) ≤
1

1− ϱλ1

2

⟨Hf, f⟩L2(Rd) +

1
2ϱ

+ λ2

1− ϱλ1

2

∥f∥2L2(Rd)

and choosing ϱ = 1/(1 + λ1) we have thus shown

⟨−∆f, f⟩L2(Rd) ≤
(︂
2λ+(λ1+2λ2)

)︂
∥f∥2L2(Rd) ≤ 2

(︂
λ+(1+λ1+λ2)

)︂
∥f∥2L2(Rd). □

6.3. Carleman estimates with singular admissible potentials

Here we present two Carleman estimates valid for Schrödinger operators with
singular admissible potentials. Both Carleman estimates improve or complement
earlier results in the literature. The first Carleman estimate, see Theorem 6.9
below, goes back to [Ves03, EV03], where an inequality of this kind is proven for
a class of second order parabolic operators. In the elliptic setting, quantitative
versions are proven for the pure Laplacian in [BK05, KT16], and for second order
elliptic operators in [NRT19]. The second Carleman estimate, see Theorem 6.10
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below, supplements the Carleman estimate of [LR95] where second order elliptic
operators are considered.

Roughly speaking, our main observation is that we can add a singular admissible
potential in an existing Carleman estimate. For our purposes we implement this
for the Carleman estimate given in [KT16] and a special case of the one in [LR95].

In the following, we denote by ∇d+1 and ∆d+1 the gradient and the Laplacian
on Rd+1, while ∇ and ∆ denote the corresponding expressions on Rd. For the
partial derivative in the (d+ 1)-coordinate we write ∂t and for V : Rd → R we use
the same symbol to denote V : Rd × R → R with V (x, t) = V (x) for t ∈ R. This
construction is necessary since in the proof in Section 6.4 below we will turn a
function f in the spectral subspace of the Schrödinger operator H = −∆+ V into
a function F defined on a domain in Rd+1 satisfying (−∆d+1 + V )F = 0 almost
everywhere.

Let ρ > 0 and define on Rd+1 the weight function w by

w(y) = ϕ(|y|/ρ) with ϕ(r) = r exp
(︂
−
∫︂ r

0

1− e−t

t
dt
)︂
.

For future reference we note that the such defined weight function w satisfies

(6.4) |y|/(ρe) ≤ w(y) ≤ |y|/ρ and |∇w(y)|2 ≤ w2(y)/|y|2 ≤ 1/ρ2

for all y ∈ B(0, ρ) \ {0}.

Theorem 6.9. Let V : Rd → R be singular admissible. Then there is a constant
K1 ≥ 1, depending only on the dimension d, such that for all α ≥ α0 = K1(1 +

λ1ρ
2 + λ

1/3
2 ρ4/3) and all F ∈ H2(Rd+1) with support in B(0, ρ) \ {0} we have∫︂

Rd+1

αρ2w1−2α|∇d+1F |2 + α3w−1−2α|F |2

≤ Kdρ
4

∫︂
Rd+1

w2−2α|(−∆d+1 + V )F |2.
(6.5)

Proof. The case V ≡ 0 in the theorem agrees with [KT16, Lemma 2.1]. Let
us denote the constant in this case by α̃0 ≥ 1 and let K ′

d be the constant on the
right-hand side. It remains to show that we can insert V on the right-hand side
of (6.5). To this end, we estimate |∆d+1F |2 ≤ 2|(−∆d+1 + V )F |2 + 2|V F |2 and
subsume the resulting term 2K ′

dρ
4I with

I =

∫︂
Rd+1

w2−2α|V F |2 =
∫︂
R
∥(V w1−αF )(·, t)∥2L2(Rd) dt

in the left-hand side of (6.5) by appropriate choices of Kd and α0 that do not
depend on F . More precisely, since w is smooth on the support of F , we have
w1−α(·, t)F (·, t) ∈ H1(Rd) for all t ∈ R. Thus,

I ≤
∫︂
R
λ1∥∇(w1−1α(·, t)F (·, t))∥2L2(Rd) + λ2∥w1−1α(·, t)F (·, t)∥2L2(Rd) dt.
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The product rule and (6.4) imply that the inequality

|∇d+1(w
1−αF )|2 ≤ 2w2−2α|∇d+1F |2 + 2(α− 1)2|F |2w−2α/ρ2

≤ 2w1−2α|∇d+1F |2 + 2(α/ρ)2w−1−2α|F |2
(6.6)

holds almost everywhere, where we have taken into account that both sides vanish
outside of B(0, ρ) \ {0}. Plugging this into the estimate for I, we see that we have
proven (6.5) with Kd = 4K ′

d, provided that

αρ2 − 4λ1K
′
dρ

4 ≥ αρ2/2 and α3 − 2K ′
dρ

4(2λ1(α/ρ)
2 + λ2) ≥ α3/2.

The latter is clearly satisfied for all α ≥ α0 with

(6.7) α0 = max{α̃0, 8K
′
dλ1ρ

2 + (4K ′
dλ2ρ

4)1/3}.

Since the maximum is clearly bounded by K1(1+λ1ρ
2+λ

1/3
2 ρ4/3) for some constant

K1 ≥ 1 depending only on the dimension d, this proves the claim. □

For the second Carleman estimate we define the weight function

(6.8) u : Rd+1 ∋ (x, t) ↦→ −t+ t2/2− |x|2/4 ∈ R.

Furthermore, for ρ > 0 we let B+
ρ = {x ∈ Rd+1 : |x| < ρ, xd+1 ≥ 0} and we

denote by C∞
c,0(B

+
ρ ) the set of all functions F : Rd+1

+ = Rd× [0,∞) → C that satisfy
F (x, 0) = 0 for all x ∈ Rd and for which there exists a smooth function F̃ on Rd+1

with supp F̃ ⊂ B(0, ρ) ⊂ Rd+1 satisfying F = F̃ on Rd+1
+ .

Theorem 6.10. Let V : Rd → R be singular admissible, let ρ ∈ (0, 2 −
√
2),

and let u be the weight function given in (6.8). Then there is a constant K2 ≥ 1,
depending only on the dimension d, such that for all β ≥ β0 = K2(1 + λ1ρ

2 + λ
1/3
2 )

and all F ∈ C∞
c,0(B

+
ρ ) we have∫︂

Rd+1
+

e2βu
(︂
β|∇d+1F |2 + β3|F |2

)︂
≤ Kd

(︄∫︂
Rd+1
+

e2βu|(−∆d+1 + V )F |2 + β

∫︂
Rd

e2βu(·,0)|(∂tF )(·, 0)|2
)︄
.

(6.9)

In the particular case where V ≡ 0, Theorem 6.10 follows from the Carleman
estimate given in [LR95, Proposition 1 in the appendix]. This Carleman estimate is
formulated for arbitrary real-valued weight functions u ∈ C∞(Rd+1) which satisfy

• (∂tu)(x) ̸= 0 for all x ∈ B+
ρ , and

• for all ξ ∈ Rd+1 and x ∈ B+
ρ the implication

if

{︄
2⟨ξ,∇u⟩ = 0,

|ξ|2 = |∇u|2

}︄
then

d+1∑︂
j,k=1

(∂jku)
(︁
ξjξk + (∂ju)(∂ku)

)︁
> 0.
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The particular weight function (6.8) has been suggested in [JL99]. With this choice,
the two above conditions are satisfied if ρ ∈ (0, 2−

√
2).

Proof of Theorem 6.10. We have already noted that the theorem holds in
case that V ≡ 0. Let β̃0, K

′
d ≥ 1 be the corresponding constants for this case. The

proof of the theorem is now analogous to the one of Theorem 6.9. We only need to
replace (6.6) by

|∇d+1(e
βuF )|2 ≤ 2e2βu

(︂
|∇F |2 + β2ρ2|F |2/4

)︂
on suppF ⊂ B(0, ρ),

and choose

(6.10) β0 = max{β̃0, 2K
′
dλ1ρ

2 + (4K ′
dλ2)

1/3}.

Again, the maximum is bounded by K2(1 + λ1ρ
2 + λ

1/3
2 ) for some constant K2 ≥ 1

depending only on the dimension d which proves the claim. □

6.4. Proof of the spectral inequalities

We have collected all necessary preliminaries that enter the proofs of the spectral
inequalities. Throughout this section, unless otherwise stated, let H = −∆+ V
where the potential V is

(i) as in Hypothesis (SI), or (ii) singular admissible.

However, it is worth pointing out that in Subsection 6.4.1 below it suffices to
focus on the situation of singular admissible potentials, since potentials as in
Hypothesis (SI) locally behave like a bounded potential and we only derive local
estimates therein.

6.4.1. Covering estimates for eigenfunctions. Based on the Carleman
estimates we now establish local inequalities for a function F defined on some
subset of Rd+1 that follow as in [JL99, NTTV18, NTTV20b] from the Carleman
estimates presented above. These results are used in the proof of Theorems 4.10
and 4.23 given in Subsection 6.4.3 below. In the proofs of these two theorems,
the function F is constructed from an element of the spectral subspace of the
Schrödinger operator H = −∆+ V by spectral calculus, see (6.18) below, and it
is then always a H2-function that satisfies (−∆d+1 + V )F = 0 pointwise almost
everywhere and is antisymmetric in the (d+ 1)-th coordinate, cf. Subsection 6.4.2
below. In view of this, the restrictions we impose in the upcoming lemmas are
always satisfied for the such defined function F . Nevertheless, we intentionally
postpone the construction of F from f ∈ RanPλ(H) and first prove the local
inequalities for an abstract function in order to point out that the proofs of the
estimates below are detached from the ghost dimension framework.
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In order to begin with the proof, we introduce for some θ ∈ (0, 1/2) the constants

u1 = −θ2/16, u2 = −θ2/8, u3 = −θ2/4,

r1 =
1

2
−

√
16− θ2

8
, r2 = 1, r3 = 6e

√
d,

R1 = 1−
√
16− θ2

4
, R2 = 3

√
d, R3 = 9e

√
d.(6.11)

This choice is taken from [NTTV18] and accounts for the geometric conditions
compiled in Lemma 6.13 below. Furthermore, we define the annuli Aj = B(0, Rj) \
B(0, rj), j ∈ {1, 2, 3}, in Rd+1 as the level sets of the weight function w from the
Carleman estimate in Theorem 6.9.

From Theorem 6.9 we conclude the following three annuli inequality.

Lemma 6.11 (Three annuli inequality). Let θ ∈ (0, 1/2) and let V be singular
admissible. Then for all F ∈ H2(B(0, R3)) with (−∆d+1 + V )F = 0 and all α ≥ α0

we have

∥F∥2H1(A2)
≤ Kd

(︂ 1

θ4

(︂eR2

r1

)︂2α−2

∥F∥2H1(A1)
+
(︂eR2

r3

)︂2α−2

∥F∥2H1(A3)

)︂
.

Proof. Let η ∈ C∞
c (Rd+1) be a smooth cutoff function with 0 ≤ η ≤ 1, η ≡ 0

on B(0, r1) ∪ B(0, R3)
c, and with η ≡ 1 on B(0, r3) \ B(0, R1). Then ∇d+1η ̸≡ 0

only on A1 ∪A3. Since the diameter of the annulus A1 satisfies R1 − r1 = Kθ2 and
the diameter of the annulus A3 satisfies R3 − r3 = Kd, we can choose η in such a
way that

max{∥∆d+1η∥L∞(A1), ∥|∇d+1η|∥L∞(A1)} ≲d
1

θ4

and

max{∥∆d+1η∥L∞(A3), ∥|∇d+1η|∥L∞(A3)} ≲d 1.

Applying Theorem 6.9 with ρ = R3 to the function ηF and using the product rule
we get ∫︂

Rd+1

αw1−2α|F∇d+1η + η∇d+1F |2 + α3w−1−2α|ηF |2

≲d

∫︂
Rd+1

w2−2α
(︁
4|∇d+1η|2|∇d+1F |2 + |F |2|∆d+1η|2

)︁
,

since (−∆d+1 + V )F = 0. Using that η ≡ 1 and ∇d+1η ≡ 0 on A2 and observing
that the bounds for the weight function stated in (6.4) imply w1−2α ≥ w2−2α and
analogously w−1−2α ≥ w2−2α on B(0, R3), we obtain∫︂

A2

αw1−2α|∇d+1F |2 + α3w−1−2α|F |2 ≥
(︂R3

R2

)︂2α−2

∥F∥2H1(A2)
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as a lower bound for the left-hand side. For the right-hand side we use that
∇d+1η ̸≡ 0 and ∆d+1η ̸≡ 0 only on A1 ∪A3. Combining this with the upper bound
for the weight function, we get(︂R3

R2

)︂2α−2

∥F∥2H1(A2)
≤
∫︂
Rd+1

w2−2α
(︁
4|∇d+1η|2|∇d+1F |2 + |F |2|∆d+1η|2

)︁
≲d

1

θ4

(︂eR3

r1

)︂2α−2

∥F∥2H1(A1)
+
(︂eR3

r3

)︂2α−2

∥F∥2H1(A3)
.

Hence, multiplying by (R3/R2)
2α−2 we derive the desired inequality. □

In a very analogous fashion we obtain an inequality for the levels sets

Uj = {(x, t) ∈ Rd × [0, 1] : u(x, t) > uj}, j ∈ {1, 2, 3},

of the weight function of the second Carleman estimate, Theorem 6.10, where u is
given in (6.8). Since u3 > u2 > u1 we here have the inclusions U3 ⊃ U2 ⊃ U1 and
by definition the weight function satisfies u ≥ uj on Uj.

Lemma 6.12. Let θ ∈ (0, 1/2) and let V be singular admissible. Then for all
F ∈ H2(U3) with (−∆d+1 + V )F = 0 and F (·, 0) ≡ 0 that are antisymmetric in the
(d+ 1)-th coordinate, and all β ≥ β0 we have

e2βu1∥F∥2H1(U1)
≤ Kd

(︄
e2βu2

θ8
∥F∥2H1(U3)

+ ∥(∂tF )|t=0∥2L2(B(0,θ))

)︄
.

Proof. Let η ∈ C∞
c (Rd+1) be a smooth cutoff function with 0 ≤ η ≤ 1.

Suppose that η is antisymmetric in the (d + 1)-th coordinate, η ≡ 1 on U2, and
supp η∩Rd× [0,∞) ⊂ U3. With the same argument as in the proof of the previous
lemma we may choose η in such a way that

max{∥∆d+1η∥L∞(Rd+1), ∥|∇d+1η|∥L∞(Rd+1)} ≲d
1

θ4
,

cf. also [NTTV18, Appendix B]. Since ηF ∈ H2(Rd+1) is symmetric in the (d+ 1)-
th coordinate by the choice of η, there is a sequence of of (Φn)n ⊂ C∞

c (Rd+1) of
functions that are symmetric in the (d+ 1)-th coordinate such that Φn → ηF in
H2(Rd+1), see [AF03, 3.22 Theorem], and by [AF03, 5.37 Theorem] we also have
(∂tΦn)|t=0 → (∂t(ηF ))|t=0 in L2(Rd). Therefore, Theorem 6.10 is applicable with
ρ = 1/2 and with F = Φn. Letting n → ∞, using the same arguments as in the
proof of Lemma 6.11 above, and dividing by β we thereby obtain

e2βu1∥F∥2H1(U1)
≲d

e2βu2

θ8
∥F∥2H1(U3)

+

∫︂
Rd

e2βu(·,0)|η(·, 0)(∂tF )|t=0|2

since F (·, 0) ≡ 0. For the last term we use u(x, 0) = −|x|2/4 < 0 and supp η(·, 0)∩
Rd ⊂ B(0, θ), which finally proves the statement. □
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For some Lk ∈ N0 ∪ {∞}, k ∈ {1, . . . , d}, we set

(6.12) Λ =
d×

k=1

(︂
Lk −

1

2
, Lk +

1

2

)︂
and suppose that K ⊂ Zd is such that Λ =

⋃︁
k∈K Λ1(k). Moreover, let (zk)k∈K be

a sequence with B(zk, θ) ⊂ Λ1(k) for all k ∈ K. For z ∈ Rd and j = 1, 2, 3 we set
Uj(z) = Uj + (z, 0) and Aj(z) = Aj + (z, 0) and we let

U•
j =

⋃︂
k∈K

Uj(zk) and A•
j =

⋃︂
k∈K

Aj(zk).

Note that A•
1 is a disjoint union and that the sets U•

j and A•
j depend on Λ (through

the index set K) although this is not indicated explicitly.
For the special choices of rj, Rj, and uj, j ∈ {1, 2, 3}, that we have made here,

parts (b)–(d) of the next lemma were proven in [NTTV18, Lemma 3.3].

Lemma 6.13. Let

(6.13) Γ =
d×

k=1

(︂
Lk + 2R3 −

1

2
, Lk + 2R3 +

1

2

)︂
.

Then, we have U•
j ∪ A•

j ⊂ Γ× (−R3, R3) for all j ∈ {1, 2, 3} and

(a) for x ∈ U•
j ∪ A•

j we have |xk| ≲d Lk;
(b) A•

1 ∩ Rd+1
+ ⊂ U•

1 ;
(c) Λ× [−1, 1] ⊂ A•

2 if all Lk ≥ 5;
(d)

∑︁
k∈K 1Aj(zk) ≤ Kd.

Proof. Using the definition of Uj it is easy to see that for (x, t) ∈ Uj we have
|t| ≤ 1 and |x| ≤ θ so that Uj ⊂ B+

θ . Analogously, the definition of Aj yields that
|x| ≤ R3 and |t| ≤ R3 for (x, t) ∈ Aj so that for (x, t) ∈ Uj ∪ Aj we have |x| ≤ R3

as well as |t| ≤ R3. Thus,

U•
j ∪ A•

j ⊂

(︄⋃︂
k∈K

B(zk, R3)

)︄
∪ (−R3, R3) ⊂ Γ× (−R3, R3).

Since R3 = 9e
√
d ≤ Kd, this inclusion also implies (a). For the verification of parts

(b)–(d) we refer to [NTTV18, Lemma 3.3]. □

Combining the last three lemmata, we now prove the pivotal result of this
subsection. Here it is imperative for the proof of Theorem 4.23 below to note that
Lemma 6.13 guarantees that no information of V outside of Γ (as defined in (6.13))
enters the proof.

In what follows, we write A ∼d B if A ≲d B and B ≲d A.

Proposition 6.14 (Covering and interpolation). Let Λ be as in in (6.12), let
K, and (zk)k∈K be as in the preceding paragraph, let Γ be as in (6.13), and let V be
singular admissible. Then there is κ ∈ (0, 1) satisfying κ ∼d 1/|log θ| such that for
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all F ∈ H2(Γ× (−R3, R3)) satisfying (−∆d+1 + V )F = 0 and |F (·, t)| = |F (·,−t)|
for t ∈ (−R3, R3) we have

∥F∥1/κH1(Λ×(−1,1)) ≤
(︂1
θ

)︂Kd(1+λ1+λ
1/3
2 )

∥F∥1/κ−1/2

H1(Γ×(−R3,R3))
· ∥(∂tF )|t=0∥1/2L2(

⋃︁
k∈K B(zk,θ))

.

Proof. Applying Lemma 6.12 to the translates Uj(zk) and summing over
k ∈ K, the definition of the sets U•

j and u2 − u1 = u1 implies that

∥F∥2H1(U•
1 )

≲d
e2βu1

θ8
∥F∥2H1(U•

3 )
+ e−2βu1∥(∂tF )|t=0∥2L2(

⋃︁
k∈K B(zk,θ))

.

We now interpolate this inequality using the interpolation result formulated in
Lemma A.1. In this lemma we choose r = s = −2u1 > 0, κ = 1/2, t0 = β0,

P = ∥F∥2H1(U•
1 )
, Q = ∥F∥2H1(U•

3 )
/θ8, and R = ∥(∂tF )|t=0∥2L2(

⋃︁
k∈K B(zk,θ))

.

Then, using β0 ≲d 1 + λ1 + λ
1/3
2 , the prefactor in inequality (A.2) is bounded from

above by eKd(1+λ1+λ
1/3
2 ) ≤ θ−Kd(1+λ1+λ

1/3
2 ) and therefore we derive

(6.14) ∥F∥2H1(U•
1 )

≤ θ−Kd(1+λ1+λ
1/3
2 )∥F∥H1(U•

3 )
∥(∂tF )|t=0∥L2(

⋃︁
k∈K B(zk,θ)).

We proceed analogously and apply also Lemma 6.11 to the translates Aj(zk) of
the annuli. Then, summing again over k ∈ K, we get

∥F∥2H1(A•
2)
≲d

1

θ4

(︂eR2

r1

)︂2α−2

∥F∥2H1(A•
1)
+Kd

(︂eR2

r3

)︂2α−2

∥F∥2H1(A•
3)
,

where we used Lemma 6.13 (d) for the second term on the right-hand side. By part
(c) of the last mentioned lemma, we may bound the left-hand side from below by
∥F∥2H1(Λ×(−1,1)) and using |F (·, t)| = |F (·,−t)| as well as part (b) of the lemma we
have ∥F∥2H1(A•

1)
≤ 2∥F∥2H1(U•

1 )
. Hence, taking the square root, we get

∥F∥H1(Λ×(−1,1)) ≲d
1

θ4

(︂eR2

r1

)︂α−1

∥F∥H1(U•
1 )
+
(︂eR2

r3

)︂α−1

∥F∥H1(Γ×(−R3,R3)),

and we are again in the position to apply Lemma A.1, at this point with the choices

r = − log(eR2/r3), P = ∥F∥H1(Λ×(−1,1)),

s = log(eR2/r1), Q = (eR2/r3)∥F∥H1(Γ×(−R3,R3)),

t0 = α0, R = (eR2/r1)∥F∥H1(U•
1 )
/θ2.

Then

(6.15) κ =
log(r3/(eR2))

log(r3/r1)
∼d

1

log(1/θ)

while α0 ≲d 1 + λ1 + λ
1/3
2 . Using this to estimate the corresponding constant from

inequality (A.2), we obtain

(6.16) ∥F∥H1(Λ×(−1,1)) ≤ θ−Kd(1+λ1+λ
1/3
2 )/ log(1/θ)∥F∥κH1(U•

1 )
∥F∥1−κ

H1(Γ×(−R3,R3))
.
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The statement is now immediately clear from applying inequalities (6.16) and (6.14)
successively, using U•

3 ⊂ Γ× (−R3, R3), cf. Lemma 6.13, and raising the resulting
inequality to the power 1/κ. □

6.4.2. Ghost dimension. The proofs of Theorems 4.10 and 4.23 are based
on the so-called ghost dimension framework. This was introduced in [JL99] as a
method to deal with spectral projections by applying some spectral calculus that
transforms elements in the spectral subspace into an eigenfunction of a similar
operator in higher dimensions. For Schrödinger operators, this method was used in
[NTTV18, NTTV20b] for bounded potentials and is here extended to the situation
where the potential is either singular admissible or as in Hypothesis (SI).

In order to introduce the ghost dimension, let H : H ⊃ D(H) → H be any lower
semibounded selfadjoint operator on some Hilbert space H. Denote by (Ft)t∈R the
family of unbounded selfadjoint operators

(6.17) Ft =

∫︂ ∞

−∞
st(µ) dPµ(H), st(µ) =

⎧⎪⎨⎪⎩
sinh(

√
µt)

√
µ

µ > 0

t µ = 0
sin(

√
−µt)√
−µ

µ < 0

,

in H. For fixed f ∈ RanPλ(H) we define the function F̃ : R → H by

F̃ (t) := Ft := Ftf ∈ RanPλ(H) ⊂ D(H)

and we let

(6.18) F : Rd × R, (x, t) ↦→ Ft(x).

While this construction works for arbitrary lower semibounded, selfadjoint
operators, it is particularly accessible for Schrödinger operators as in this case the
function F can be interpreted as a function satisfying the eigenvalue equation of
a Schrödinger operator in (d+ 1)-dimensions pointwise almost everywhere. Our
goal is to apply the interpolation result from Proposition 6.14 with the extended
function F . However, before we show that F indeed satisfies (−∆d+1 + V )F = 0
almost everywhere (recall that V (x, t) = V (x) for t ∈ R), we state a lemma that
allows us to come back to f after using Proposition 6.14 for F .

The next lemma unifies (in the case of operators on the whole of Rd) [NTTV20b,
Proposition 2.9], [DRST, Lemma 6.1], and [DSVb, Lemma 3.1], where a similar
result is proven for H = −∆ + V with potentials V that are bounded, singular
admissible, or have power growth, respectively.

Lemma 6.15. Let ι > 0 and let f ∈ RanPλ(H) for some λ ≥ 0. Then with the
function F given in (6.18) we have

ι

2
∥f∥2L2(Rd) ≤ ∥F∥2H1(Rd×(−ι,ι)) ≤ 2(1 + λ+N2)(1 + ι)3e2

√
λι∥f∥2L2(Rd).
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Proof. For the proof of the lower bound we observe that by spectral calculus

∥F∥2H1(Rd×(−ι,ι)) ≥
∫︂ ι

−ι

∥∂tFt∥2L2(Rd) dt =

∫︂ λ

−∞

[︄∫︂ ι

−ι

(∂tst(µ))
2 dt

]︄
d∥PH(µ)f∥2L2(Rd).

We distinguish between the two cases µ < 0 and µ ≥ 0. In the latter case, we
have ∂tst(µ) ≥ 1 and, therefore, the inner integral is bounded from below by 2ι.
However, in the other case, we have ∂tst(µ) = cos2(

√
−µt) and we calculate∫︂ ι

−ι

(∂tst(µ))
2 dt = ι+

sin(2
√
−µι)

2
√
−µ

.

Since for small ι < π/(2
√
−µ) the second summand is nonnegative and for all larger

ι we have |sin(2
√
−µι)|/(2

√
−µ) < ι/2 by the mean value theorem, we conclude

that in both cases

∥F∥2H1(Rd×(−ι,ι)) ≥
ι

2

∫︂ λ

−∞
1 d∥PH(µ)f∥2L2(Rd) =

ι

2
∥f∥2L2Rd).

Concerning the upper bound we first write

∥F∥2H1(Rd×(−ι,ι)) =

∫︂ ι

−ι

∥Ft∥2L2(Rd) + ∥∂tFt∥2L2(Rd) + ∥∇Ft∥2L2(Rd) dt

=

∫︂ ι

−ι

∥Ft∥2L2(Rd) + ∥∂tFt∥2L2(Rd) + ⟨−∆Ft, Ft⟩L2(Rd) dt

≤ 2

∫︂ ι

−ι

(1 + λ+N2)∥Ft∥2L2(Rd) + ∥∂tFt∥2L2(Rd) dt,

where we used Lemma 6.8 for the last inequality. By spectral calculus, we therefore
have

∥F∥2H1(Rd×(−ι,ι)) ≤ 2(1 + λ+N2)

∫︂ λ

−∞

[︄∫︂ ι

0

st(µ)
2 + (∂tst(µ))

2 dt

]︄
d∥Pµ(H)f∥2L2(Rd)

since f ∈ RanPλ(H). In order to estimate the inner integral, we again distinguish
between µ < 0 and µ ≥ 0.

• Let µ < 0 and t ≥ 0. Then st(µ) = sin(
√
−µt)/

√
−µ ≤ t by the mean

value theorem and ∂tst(µ) = cos(
√
−µt) ≤ 1 + t.

• Let µ ≥ 0 and t ≥ 0. Then st(µ) = sinh(
√
µt)/

√
µ ≤ t cosh(

√
µt) ≤ te

√
µt

by the mean value theorem and ∂tst(µ) = cosh(
√
µt) ≤ e

√
µt.

In the first case we thus have∫︂ ι

0

st(µ)
2 + (∂tst(µ))

2 dt ≤
∫︂ ι

0

2(1 + t)2 dt ≤ (1 + ι)3

while in the second case∫︂ ι

0

st(µ)
2 + (∂tst(µ))

2 dt ≤
∫︂ ι

0

(1 + t2)e2
√
µt dt ≤ (ι+ ι3/3)e2

√
µι ≤ (1 + ι)3e2

√
µι.
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Hence, with µ+ = max{0, µ}, we have

∥F∥2H1(Rd×(−ι,ι)) ≤ 2(1 + λ+N2)

∫︂ λ

−∞
(1 + ι)3e2

√
µ+ι d∥Pµ(H)f∥2L2(Rd)

≤ 2(1 + λ+N2)(1 + ι)3e2
√
λι∥f∥2L2(Rd). □

The next lemma now establishes the almost everywhere identity needed for
Proposition 6.14.

Lemma 6.16. We have F ∈ H2(Rd × (−ι, ι)) for every ι > 0. Moreover, F is
antisymmetric in t and satisfies (∂tF )(·, 0) = f as well as

(6.19) (−∆d+1 + V )F = 0

almost everywhere on Rd.

Proof. The antisymmetry in the (d+1)-th entry follows from the antisymmetry
of t ↦→ st(µ). It is shown in Lemma A.9 in the appendix that F is (infinitely)
weakly as well as L2(Rd)-differentiable with respect to t and that the derivatives
agree. More precisely, we have

(6.20) ∂kt F (·, t) =
(︃∫︂

[κ,λ]

∂kt st(µ) dPµ(H)

)︃
f ∈ D(H) for k ∈ N,

and this formula also implies (∂tF )(·, 0) = f since ∂tst(µ)|t=0 = 1. Moreover, as in
[NTTV20b, Proof of Lemma 2.5], we have

HFtPλ(H)f =

∫︂ λ

κ

µst(µ) dPµ(H)f

and the above formula for the derivatives of F therefore yields H(F (·, t)) =
(∂2t F )(·, t) since µst(µ)− ∂2t st(µ) = 0. Hence, (6.19) holds almost everywhere.

It remains to show that F ∈ H2(Rd × (−ι, ι)). To this end, we first note that
Lemma 6.15 implies F ∈ H1(Rd × (−ι, ι)). Thus, it remains to show∑︂

β∈Nd+1
0

|β|=2

∥∂βF∥L2(Rd×(−ι,ι)) <∞.

We write ∑︂
β∈Nd+1

0
|β|=2

∥∂βF∥2L2(Rd×(−ι,ι)) = ∥∂2t F∥2L2(Rd×(−ι,ι))

+∥∇d∂tF∥2L2(Rd×(−ι,ι)) +
∑︂
β′∈Nd

0
|β′|=2

∥∂β′
F∥2L2(Rd×(−ι,ι)).

(6.21)
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In order to bound the first summand on the right-hand side, we use Ft ∈ RanPλ(H)
as well as HFt = (∂2t F )(·, t) to obtain

∥∂2t F∥2L2(Rd×(−ι,ι)) =

∫︂ ι

−ι

∥(∂2t F )(·, t)∥2L2(Rd) dt =

∫︂ ι

−ι

∥HFt∥2L2(Rd) dt

≤ λ2
∫︂ ι

−ι

∥Ft∥2L2(Rd) dt = λ2∥F∥2L2(Rd×(−ι,ι)) <∞.

Based on Lemma 6.8 we bound the second and third term on the right-hand
side of (6.21): Using that ∂tFt ∈ RanPλ(H) by spectral calculus, we have

∥∇d∂tF∥2L2(Rd×(−ι,ι)) =

∫︂ ι

−ι

∥∇d(∂tF )(·, t)∥L2(Rd) dt =

∫︂ ι

−ι

⟨−∆∂tFt, ∂tFt⟩L2(Rd) dt

≤ 2(λ+N2)

∫︂ ι

−ι

∥Ft∥L2(Rd) dt = 2(λ+N2)∥F∥2L2(Rd×(−ι,ι)) <∞,

so that the second term is bounded. For the last term we estimate∑︂
β′∈Nd

0
|β′|=2

∥∂β′
Ft∥2L2(Rd) ≤ 2

∑︂
β′∈Nd

0
|β′|=2

1

β′!
∥∂β′

Ft∥2L2(Rd)) = ∥∆Ft∥2L2(Rd)),

where the identity follows from integration by parts, cf. [See21, Example 4.2].
Applying Lemma 6.8 and integrating over t ∈ (−ι, ι) finally gives∑︂
β′∈Nd

0
|β′|=2

∥∂β′
F∥2L2(Rd×(−ι,ι)) ≤ 4(λ2+N1)

∫︂ ι

−ι

∥Ft∥2L2(Rd)) dt = 4(λ2+N1)∥F∥2L2(Rd×(−ι,ι)),

which proves the lemma. □

Remark 6.17. In an analogous way it is possible to also consider Schrödinger
operators H•

Λ = −∆•
Λ+V with Dirichlet, Neumann, or periodic boundary conditions

(if applicable) • ∈ {D,N, per} on generalized rectangles Λ =×d

j=1
(aj, bj) with

−∞ ≤ aj < bj ≤ ∞, j ∈ {1, . . . , d}. This requires that V is singular admissible on
Λ, that is, D(V ) ⊃ H1(Λ). The above proofs (in particular the one of Lemma 6.5)
can easily be adapted to this situation. However, in order to apply Proposition 6.14,
it is necessary to extend the potential, the operator in (d+ 1)-dimension, and the
function F to a large enough region that contains the set Γ× (−R3, R3) defined
in (6.13). We here avoid these merely technical details and refer the reader to
[DRST, Lemma 4.5] for the extension procedure needed for the potential and to
[NTTV18, NTTV20b] for the extension of the operator and the function F .

6.4.3. Proof of Theorems 4.10 and 4.23. We are now in the position to
give the proofs of our main results. First, we examine the situation for singular
admissible potentials.
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Proof of Theorem 4.10. It suffices to prove the statement in the case where
G = 1, since the general case follows from this by a classical scaling argument,
see Subsection A.1.6 in Appendix A where it is analyzed how the parameters
λ1 and λ2 behave under this scaling. Recall that V is singular admissible and
therefore N2 = 1+ λ1 + λ2 in Lemma 6.8. Without loss of generality let λ ≥ 0. Fix
f ∈ RanPλ(H) and define F as in (6.18) above. Using Lemma 6.15 twice (with
ι = R3 = 9e

√
d as in (6.11) above and with ι = 1) we have

∥F∥2
H1(Rd×(−R3,R3))

∥F∥2
H1(Rd×(−1,1))

≤ 4(1 + λ+N2)(1 +R3)
3e2

√
λι

≤ eKd·(log(1+λ+λ1+λ2)+λ1/2).

(6.22)

Let K = Zd and let (zk)k∈Zd with zk ∈ Λ1(k) be such that ω ⊃
⋃︁

k∈KB(zk, δ).
Applying Proposition 6.14 for the function F with θ = δ we obtain

∥F∥1/κ
H1(Rd×(−1,1))

≤ θ−Kd(1+λ1+λ
1/3
2 )∥F∥1/κ−1/2

H1(Rd×(−R3,R3))
∥(∂tF )|t=0∥1/2L2(

⋃︁
k∈Zd B(zk,δ))

≤ θ−Kd(1+λ1+λ
1/3
2 )∥F∥1/κ−1/2

H1(Rd×(−R3,R3))
∥f∥1/2L2(ω).

Plugging in (6.22) and dividing by ∥F∥1/κ−1/2

H1(Rd×(−R3,R3))
we get

∥F∥1/2
H1(Rd×(−R3,R3))

≤ θ−Kd·(1+λ1+λ
1/3
2 )eKd·(log(1+λ+λ1+λ2)+λ1/2)/κ∥f∥1/2L2(ω)

and we further estimate the constant using

log(1 + λ+ λ1 + λ2) + λ1/2 ≤ 8 ·
(︁
1 + λ1 + λ

1/3
2 + λ1/2

)︁
,

which is a simple consequence of log(1 + r) ≤ 2r1/3 for r ≥ 0. Thereby, in light of
1/κ ∼d log(1/θ) (cf. equation (6.15)), the prefactors match exactly and we get

∥F∥H1(Rd×(−R3,R3)) ≤ δ−Kd·(1+λ1+λ
1/3
2 +λ1/2)∥f∥L2(ω)

since θ = δ. Applying Lemma 6.15 (with ι = R3) once again, we bound the
left-hand side from below by the norm of f on the whole of Rd and finally conclude

∥f∥2L2(Rd) ≤ δ−Kd·(1+λ1+λ
1/3
2 +λ1/2)∥f∥L2(ω). □

The proof of the spectral inequality for Schrödinger operators with potentials
as in Hypothesis (SI) proceeds in an analogous way, but implements a cut-off
procedure which allows to only apply Proposition 6.14 on a region where V is
bounded by part (i) of Hypothesis (SI).

Proof of Theorem 4.23. Let V be as in Hypothesis (SI) and let F be as in
(6.18). Then N2 = 0 in Lemma 6.8 and therefore, similar to (6.22) above, we have

(6.23)
∥F∥2

H1(Rd×(−R3,R3))

∥F∥2
H1(Rd×(−1,1))

≤ eKd·λ1/2

.
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Moreover, since f ∈ RanPλ(H) and F is defined as in (6.18), the functions Ft and
∂tFt are also contained in RanPλ(H) for all t ∈ R. As in the proof of Lemma 6.8
above, we assume without loss of generality that I = {1, . . . , d1} with d1 ≤ d.
Furthermore, we let d2 = d−d1 and write H = H1⊗I1+I2⊗H2 with H1 = −∆+V
in L2(Rd1) and H2 = −∆ in L2(Rd2) according to Lemma 2.2, where V satisfies
Hypothesis (S). If d2 = 0 the second summand of H can be dropped here. The
representation for h ∈ RanPλ(H) proven in Corollary 2.4 applied with h = F (·, t)
and with h = ∂tF (·, t) then yields that ∂tF (·, x2, t) and ∂αx2

F (·, x2, t) for α ∈ Nd2
0 ,

|α| ≤ 1, belong to RanPλ(H) for all t ∈ R and almost all x2 ∈ Rd2 . Hence,
expanding the H1-norm as

∥F∥2H1(Rd×(−1,1)) =

∫︂ 1

−1

∫︂
Rd2

[︂
∥F (·, x2, t)∥2H1(Rd1 ) + ∥∇x2F (·, x2, t)∥2L2(Rd1 )

+ ∥∂tF (·, x2, t)∥2L2(Rd1 )

]︂
dx2 dt

and estimating each of the three summands according to Theorem 5.1, we get

(6.24) ∥F∥2H1(Rd×(−1,1)) ≤ 2 · ∥F∥2
H1(B(d1)(0,C0λ1/τ1 )×Rd2×(−1,1))

.

In combination with (6.23) we derive at

∥F∥2H1(Rd×(−R3,R3))
≤ 2eKd·λ1/2∥F∥2

H1(B(d1)(0,C0λ1/τ1 )×Rd2×(−1,1))

≤ 2eKd·λ1/2∥F∥2
H1(Λ(d1)×Rd2×(−1,1))

,

where Λ(d1) ⊂ Rd1 denotes the smallest cube of odd integer sidelength that contains
B(d1)(0, C0λ

1/τ1). Let K = K(λ) =
(︁
Zd1 ∩ Λ(d1)

)︁
× Zd2 and let (zk)k∈K be points

such that
ω ∩

(︁
Λ(d1) × Rd2

)︁
⊃
⋃︂
k∈K

B
(︁
zk, δ

1+|k|α)︁,
which is possible according to the assumption on ω. Clearly, by the definition Λ(d1),
for all k ∈ K we have |kI | ≤ KdC0λ

1/τ1 . Therefore,

inf
k∈K

δ1+|kI |α ≥ δ1+(KdC0λ1/τ1 )α =: θ and ω ∩
(︁
Λ(d1) × Rd2

)︁
⊃
⋃︂
k∈K

B(zk, θ).

Now we apply Proposition 6.14 with this choice for θ and recall from the discussion
preceding Proposition 6.14 that only information of V on Γ as defined in (6.13)
enters the proof. However, since the last lemma implies Γ ⊂ KdΛ×Rd2 , part (i) of
Hypothesis (S) yields

∥V |Γ∥∞ ≤ (KdC0λ
1/τ1)τ2 ≤ C1λ

τ2/τ1 ,

where C1 = Kτ2
d C

τ2/τ1
0 ≥ 1. Thus, V behaves like a bounded potential and therefore

we may follow the proof of Theorem 4.10 with λ1 = 0 and λ2 = C2
1λ

2τ2/τ1 . This
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gives

∥F∥H1(Rd×(−R3,R3)) ≤ θ−Kd·(1+C2
1λ

2τ2/3τ1+λ1/2)∥f∥L2(
⋃︁

k∈K B(zk,θ))

≤ θ−Kd·(1+C2
1λ

2τ2/3τ1 )∥f∥L2(ω)

since 2τ2/3τ1 ≥ 2/3 ≥ 1/2. Plugging in θ = δ1+(KdC0λ1/τ1 )α and using Lemma 6.15
we finally conclude

∥f∥L2(Rd) ≤ δ−K
1+τ2+α
d C

2τ2/τ1+α
0 ·λ(2τ2/3+α)/τ1∥f∥L2(ω)

≤ δ−C1+αλ(2τ2/3+α)/τ1∥f∥L2(ω),

where C = K1+τ2
d C

1+2τ2/τ1
0 . □



CHAPTER 7

Uncertainty principles based on complex analysis

In this chapter we use techniques based on complex analysis to prove the spectral
inequalities for partial harmonic oscillators, in particular Theorems 4.16 and 4.19,
as well as the uncertainty principle with error term formulated in Theorem 4.35.
We start with a short survey of the historic development which led to the approach
discussed here, see Section 7.1 below. Thereafter, Section 7.2 is devoted to the
proof of the spectral inequalities for the partial harmonic oscillators. More precisely,
in that section we first establish technical preliminaries that enter the proof of a
generalized spectral inequality that is written down and proven in Subsection 7.2.4
below. We infer the actual spectral inequalities as simple corollaries to this
generalized version in Subsection 7.2.5. Some minor extension of the aforementioned
results are described in Subsection 7.2.6. The chapter is concluded with the proof
of Theorem 4.35 in Section 7.3. Since this proof is very similar to the proof given
in Section 7.2, several arguments require only minor adjustments and we refer in
this case to the corresponding arguments in Section 7.2.

7.1. Logvinenko-Sereda inequalities

Heisenberg’s famous uncertainty principle states that measuring the momentum of
a particle inevitably changes its position and, vice versa, measuring its position
changes its momentum. This implies that it is impossible to simultaneously
determine the precise position and momentum of a particle. There are various
mathematical formulations of this principle, see, e.g., the monograph [HJ94] for
an overview. Since the momentum of an observable can be obtained from its
position via the Fourier transform, one of the mathematical formulations is, that if
a function f has a compactly supported Fourier transform ˆ︁f , then f itself cannot
have compact support. This qualitative fact is well-know and a direct consequence
of the Paley-Wiener and the identity theorem for holomorphic functions.

In order to discuss more quantitative versions of the uncertainty principle, we
follow the diction of [HJ94] and call a set ω ⊂ Rd determining, if for all functions

f ∈ E = {g ∈ L2(Rd) : supp ˆ︁g ⊂ B(x, r) for some r > 0, x ∈ Rd}
there is a constant C > 0 such that

(7.1) ∥f∥L2(Rd) ≤ C∥f∥L2(ω).

Clearly, if ω is determining, then each f ∈ E vanishes identically if it vanishes on ω.
85
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Conditions on the set ω guaranteeing that it is determining were first studied
in [Pan61, Pan62]. Therein, necessary conditions were established in all dimension,
while the sufficiency was only shown in one dimension; however, for dimensions
d ≥ 2 an alternative sufficient condition, unrelated to the necessary one, was also
given. Moreover, the proof gives no information about the constant C in inequality
(7.1). This was done, independently, only by Kacnel’son [Kac73] and Logvinenko &
Sereda [LS74]. Actually, they give a full characterization of determining sets ω for
all dimensions and even in a general Lp(Rd)-setting, p ∈ [1,∞), where determining
sets are defined analogously to the L2-situation above. We restrict ourselves here
to the Hilbert space situation and formulate the result from the last mentioned
articles in this setting.

Theorem 7.1 ([Kac73, LS74]). Let ω ⊂ Rd be measurable. Then ω is deter-
mining if and only if there are γ ∈ (0, 1] and ρ > 0 such that ω is (γ, ρ)-thick in
the sense of Definition 4.2 above.

If one of the two equivalent statements holds, then there are constants C1, C2 > 0
depending only on γ, ρ, and d, such that

∥f∥L2(Rd) ≤ C1e
C2r∥f∥L2(ω)

for all f ∈ L2(Rd) with supp ˆ︁f ⊂ B(x, r) for some r > 0 and some x ∈ Rd.

The constant provided by the above theorem is not explicit in the thickness
parameters nor in the dimension. This drawback has been eliminated by Kovrijkine
[Kov01, Kov00] using an approach based on complex analysis. This allows to derive
an explicit constant which is polynomial in 1/γ, improving significantly on the
constant in Theorem 7.1.

In fact, [Kov01, Kov00] uses a slightly refined definition of thickness which we
recall here in order to state the geometric assumptions in full generality.

Definition 7.2. A measurable set ω ⊂ Rd is said to be (γ, a)-thick for some
γ ∈ (0, 1] and some a = (a1, . . . , ad) ∈ (0,∞)d if

|Λ(x, a) ∩ ω|
|Λ(x, a)|

≥ γ for all x ∈ Rd.

The one dimensional version of the next theorem was established in [Kov01],
while the higher dimensional analogue was proven in [Kov00]. We again formulate
only the L2-version here, although it is stated in the mentioned references for all
Lp-spaces with p ∈ [1,∞].

Theorem 7.3 ([Kov01, Kov00]). Let γ ∈ (0, 1], a ∈ (0,∞)d, and let ω ⊂ Rd be
measurable. Then, for all f ∈ L2(Rd) with supp ˆ︁f ⊂ Λ(x, b) for some x ∈ Rd and
some b ∈ (0,∞)d we have

(7.2) ∥f∥L2(Rd) ≤
(︂Kd

γ

)︂d(Ka·b+1)

∥f∥L2(ω)
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if and only if ω is (γ, a)-thick.

The strength of the approach [Kov01, Kov00] is the fact that the assumption
on the support of ˆ︁f is merely used to guarantee that f is analytic and satisfies a
Bernstein inequality. This allows the approach to be generalized to appropriate
subspaces of analytic functions satisfying a Bernstein-type inequality. This was
done, for instance, for functions having a compactly supported Hankel (or Fourier-
Bessel) transform [GJ13] and for some model spaces [HJK20]. Moreover, [EV20]
treated the situation of functions on a torus Td

L =×d

j=1
(0, 2πLj)

d with sides
L = (L1, . . . , Ld) ∈ (0,∞)d having a finite Fourier series. In order to formulate
their result, we write k/L := (k1/L1, . . . , kd/Ld) for k ∈ Zd and define the Fourier
coefficients of a function f ∈ L2(Td

L) by

ˆ︁f(k/L) = 1∏︁d
j=1 2πLj

∫︂
Td
L

f(x)e−ix·(k/L) dx, k ∈ Zd.

Hence, supp ˆ︁f ⊂ Zd/L ⊂ Rd and f has a finite Fourier series if supp ˆ︁f is contained
in a compact set.

Theorem 7.4 ([EV20]). Let L, a ∈ (0,∞)d and let ω ⊂ Rd be a (γ, a)-thick set
with 0 < aj ≤ 2πLj for all j = 1, . . . , d. Then, every function f ∈ L2(Td

L) with
supp ˆ︁f ⊂ Λ(x, b) for some x ∈ Rd and some b ∈ (0,∞)d satisfies

(7.3) ∥f∥L2(Td
L)

≤
(︂Kd

γ

)︂Ka·b+3d+ 1
2∥f∥L2(Td

L∩ω)
.

This result was further extended in [Egi21] to functions on strips having com-
pactly supported Fourier coefficients in the bounded coordinate directions and
compactly supported Fourier transform in the unbounded ones.

The interest in the last two Logvinenko-Sereda inequalities from the control
theory point of view stems from the observation by [EV18] that the explicit form of
the constant allows to reformulate them into spectral inequalities for the Laplacian.

Lemma 7.5. If either
(i) Ω = Rd and ∆ is the Laplacian on Rd, or
(ii) Ω = (0, 2πL)d for some L > 0 and ∆ = ∆•

Ω, • ∈ {D,N, per}, is the Laplacian
on Ω with periodic, Dirichlet, or Neumann boundary conditions,

then for all λ ≥ 1 we have

(7.4) RanPλ(H) =
{︁
f ∈ L2(Ω) : supp ˆ︁f ⊂ B(0,

√
λ)
}︁
.

In particular, Theorems 7.3 and 7.4 imply the spectral inequalities for the Laplacian
stated in Theorem 4.3.

The restriction of compact Fourier support in Theorems 7.3 and 7.4 has subse-
quently been replaced by a compact Fourier support in terms of the orthonormal
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basis of Hermite functions [BJPS21] based on Bernstein inequalities for the Hermite
functions established in the last reference, see Theorem 4.13. As already noted
in the discussion before Theorem 4.13, this implies a spectral inequality for the
harmonic oscillator. Furthermore, a fairly abstract framework that allows to estab-
lish a spectral inequality for a lower semibounded selfadjoint operator satisfying
some abstract Bernstein-type inequality was given in [ES21]. Amongst others, this
allows to treat the Laplacian (with suitably chosen boundary conditions) on some
specific triangles or sectors in R2 as well as all the aforementioned results were
ω was assumed to be thick. However, if the set ω is not assumed to be thick, it
is necessary to complement the Kovrijkine approach with additional techniques.
For instance, the proof of Theorem 4.15 above given in [MPS22] relies on weighted
versions of the Bernstein inequalities for Hermite functions. The intention of this
chapter is to show how the decay of the functions under consideration can be used
to considerably weaken the geometric assumptions on the set ω.

7.2. Spectral inequality for partial harmonic oscillators

The goal of this section is to prove a generalized spectral inequality, see Theorem 7.19
below, and to show that this generalized version implies the spectral inequality for
the partial harmonic oscillators we formulated in Theorem 4.19. In fact, we conclude
this theorem from the generalized spectral inequality in Subsection 7.2.5 below.
There we also formulate and prove the announced generalization of Theorem 4.19
to an unbounded scale which includes Theorem 4.16 as a special case. Furthermore,
at the end of the present section, in Subsection 7.2.6 below, we prove a spectral
inequality for the operators HI,J . However, there we are dealing with observation
operators which are not multiplication operators by a characteristic function of a
sensor set.

7.2.1. Global properties of spectral elements. We start by studying global
properties of elements in the spectral subspace. To this end, recall from Lemma 2.2
that we can write the partial harmonic oscillator HI = −∆ + |xI |2 as a tensor
product between the (full) harmonic oscillator H1 = −∆+ |x|2 and the Laplacian
H2 = −∆, where, without loss of generality, I ⊂ {1, . . . , d1} for some d1 ≤ d. Since
the spectral elements also have a tensor representation by Corollary 2.4 (a), we get
global properties for HI and for RanPλ(HI) from related properties for H1, H2,
and their respective spectral subspaces. We point out that in the present setting
every f ∈ RanPλ(HI) can be extended to an analytic function on Cd which we
denote again by f , cf. Corollary 2.4 (b).

The properties we are interested in here are the so-called Bernstein inequalities.
These inequalities were first established for functions with compactly supported
Fourier transform or series, see [Boa54, Theorem 11.3.3] and [MS13, Proposi-
tion 1.11], and later adapted to functions in the spectral subspace of suitable
selfadjoint operators, see [ES21] and [BJPS21, Proposition 4.3]. Here we follow
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the concept of [ES21] and present averaged versions of the Bernstein inequalities,
which allows us to give slightly more efficient estimates below.

We start with the Bernstein inequality for the Laplacian and the harmonic
oscillator. The proof of both uses the technique of [ES21, Lemma 2.1].

Lemma 7.6. Let λ ≥ 1.
(i) Every f1 ∈ RanPλ(H1) satisfies

(7.5)
∑︂
|α|=m

1

α!
∥∂αf1∥2L2(Rd1 ) ≤

∏︁m−1
k=0 (λ+ 2k)

m!
∥f1∥2L2(Rd1 ), m ∈ N0.

(ii) Every f2 ∈ RanPλ(H2) satisfies

(7.6)
∑︂
|α|=m

1

α!
∥∂αf2∥2L2(Rd2 ) ≤

λm

m!
∥f2∥2L2(Rd2 ), m ∈ N0.

Proof. We first prove (i). To this end, recall that the Hermite functions
(Φα)α∈Nd

0
defined in (4.7) form an orthonormal basis of eigenfunctions of the

harmonic oscillator corresponding to the eigenvalue 2|α| + d1 for all α ∈ Nd1
0 .

Choosing N ∈ N0 such that 2N + d1 ≤ λ < 2N + d1 + 2, we therefore have
f1 ∈ EN = {Φα : |α| ≤ N}. We show

(7.7)
∑︂
|α|=m

1

α!
∥∂αf1∥2L2(Rd1 ) ≤

∏︁m−1
k=0 (2N + d1 + 2k)

m!
· ∥f1∥2L2(Rd1 ), m ∈ N0,

which implies the asserted inequality by the definition of N . In order to prove
(7.7), we proceed by induction and observe first that integration by parts shows

d1∑︂
j=1

∥∂xj
f1∥2L2(Rd1 ) = ⟨f1,−∆f1⟩L2(Rd1 ) ≤ ⟨f1, H1f1⟩L2(Rd1 ) ≤ (2N + d)∥f1∥2L2(Rd1 ),

which is the above statement for m = 1. Now, Lemma A.2 implies∑︂
|α|=m+1

1

α!
∥∂αf1∥2L2(Rd1 ) =

1

m+ 1

∑︂
|α|=m

1

α!

d1∑︂
j=1

∥∂α+ejf1∥2L2(Rd1 )

and since

(7.8) ∂αf1 ∈ EN+|α| for all α ∈ Nd
0,

we may use the induction hypothesis to further estimate the right-hand side by
2(N + |α|) + d1

m+ 1

∑︂
|α|=m

1

α!
∥∂αf1∥2L2(Rd1 )

≤ 2(N + |α|) + d1
m+ 1

·
∏︁m−1

k=0 (2N + d1 + 2k)

m!
∥f1∥2L2(Rd1 ),
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which proves the asserted inequality and, therefore, the Bernstein inequality (7.5).
In case of (ii), the spectral subspace RanPλ(H2) is invariant under H2 = −∆.

Since for f2 ∈ RanPλ(H2) we have ⟨f2,−∆f2⟩L2(Rd2 ) ≤ λ∥f2∥2L2(Rd2 )
, the same

induction as before proves (7.6) □

Remark 7.7. The property (7.8) is characteristic for the finite linear combina-
tions of Hermite functions. It can easily be proved using the so-called raising and
lowering operators R = d

dx
− x and L = d

dx
+ x of the harmonic oscillator, see, e.g.,

[BJPS21, Section 4.2].

Next, we use the previous lemma and the tensor structure to establish a
Bernstein inequality for elements in the spectral subspace of the partial harmonic
oscillator.

Lemma 7.8. Given λ ≥ 1, every function f ∈ RanPλ(HI) satisfies∑︂
|α|=m

1

α!
∥∂αf∥2L2(Rd) ≤

CB(m,λ)

m!
· ∥f∥2L2(Rd) for all m ∈ N0,

where

(7.9) CB(m,λ) := 2m
m−1∏︂
k=0

(λ+ 2k).

Proof. Let f ∈ RanPλ(HI). By Corollary 2.4, we have that (∂βf)(x, ·)
belongs to RanPλ(H2) for all x ∈ Rd1 and all β ∈ Nd

0,I . In the next step we split a
multi-index α ∈ Nd

0 as α = β+ν with β ∈ Nd
0,I and ν ∈ Nd

0,Ic . We apply Lemma 7.6
for fixed m ∈ N and β ∈ Nd

0,I to f1 = ∂βf as well as Fubini’s theorem to obtain∑︂
|ν|=m−|β|

1

ν!
∥∂ν∂βf∥2L2(Rd) ≤

λm−|β|

(m− |β|)!
∥∂βf∥2L2(Rd).

In the same way, f(·, y) ∈ RanPλ(H1) for all y ∈ Rd2 , so that∑︂
|β|=j

1

β!
∥∂βf∥2L2(Rd) ≤

∏︁j−1
k=0(λ+ 2k)

j!
∥f∥2L2(Rd).

Putting the last two estimates together, we arrive at∑︂
|α|=m

1

α!
∥∂αf∥2L2(Rd) =

m∑︂
j=0

∑︂
|β|=j

1

β!

∑︂
|ν|=m−j

1

ν!
∥∂ν∂βf∥2L2(Rd)

≤ 1

m!

(︃ m∑︂
j=0

(︃
m

j

)︃ j−1∏︂
k=0

(λ+ 2k)λm−j

)︃
∥f∥2L2(Rd).
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In order to complete the proof, it only remains to observe that
m∑︂
j=0

(︃
m

j

)︃ j−1∏︂
k=0

(λ+ 2k) · λm−j ≤
m−1∏︂
k=0

(λ+ 2k)
m∑︂
j=0

(︃
m

j

)︃
= 2m

m−1∏︂
k=0

(λ+ 2k). □

Since the spectral subspace of the harmonic oscillator is invariant under the
Fourier transform, the Bernstein inequality allows to conclude a weighted L2-
inequality that again encodes the fast decay of elements in the spectral subspace in
the growth directions of the potential in the same manner as Proposition 5.5 above.
Similar bounds have already been obtained in [BJPS21, DSVc, DSVa] but the
derivation we present here shows the close relationship to the Bernstein inequalities
and also optimizes the constants.

Lemma 7.9. Let λ ≥ 1 and f ∈ Ranλ(HI). Then

(7.10) ∥e|xI |2/16f∥2L2(Rd) ≤ 4 · 2λ∥f∥2L2(Rd).

Here the weight function is quadratic in the exponent in contrast to the linear
term in the exponent of the weight function in Chapter 5, e.g., in the aforementioned
Proposition 5.5. However, since the dependence of the constant on the spectral
parameter λ changes similarly, this does not drastically change the radius of the ball
where such functions are localized. More precisely, in view of the weighted inequality
(4.6) we here have q/p = 1/2 with q = 1 and p = 2, whereas Proposition 5.5 (in
case of V (x) = |x|2) gives the same result with q = 1/2 and p = 1. We nevertheless
prove Lemma 7.9 here since its weight function allows to slightly optimize the
dependence of the constant on the dimension d.

Proof of Lemma 7.9. Let f1 ∈ RanPλ(H1). By Plancherel’s identity and
integration by parts we have

1

(2m)!
∥|x|2mf1∥2L2(Rd1 ) =

1

(2m)!
∥(−∆)m ˆ︁f1∥2L2(Rd1 )

=
1

(2m)!
⟨ ˆ︁f1, (−∆)2m ˆ︁f1⟩L2(Rd1 ) =

∑︂
|α|=2m

1

α!
∥∂α ˆ︁f1∥2L2(Rd1 ).

Using that the spectral subspace RanPλ(H1) is invariant under the Fourier trans-
form, we can apply Lemma 7.6 (a) to ˆ︁f1 and obtain

∥e|x|2/16f1∥L2(Rd1 ) ≤
∞∑︂

m=0

1

16mm!
∥|x|2mf1∥L2(Rd1 )

=
∞∑︂

m=0

1

16mm!

(︃
(2m)! ·

∑︂
|α|=2m

1

α!
∥∂α ˆ︁f1∥2L2(Rd1 )

)︃1/2

≤
∞∑︂

m=0

1

16mm!

(︃2m−1∏︂
k=0

(λ+ 2k)

)︃1/2

∥ ˆ︁f1∥L2(Rd1 ).(7.11)
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We calculate
2m−1∏︂
k=0

(λ+ 2k) ≤ 22m
2m−1∏︂
k=0

(⌈λ/2⌉+ 1 + k) = 4m · (⌈λ/2⌉+ 2m)!

⌈λ/2⌉!

≤ 16m2⌈λ/2⌉(2m)! ≤ 64m2λ(m!)2,

where we used (k + j)! ≤ k!j! · 2k+j for k, j ∈ N0 and ⌈λ/2⌉ ≤ λ for all λ ≥ 1.
Plugging this into (7.11) and using Plancherel’s identity once again, we get

(7.12) ∥e|x|2/16f1∥L2(Rd1 ) ≤ 21+λ/2∥f1∥L2(Rd1 ).

By Corollary 2.4 we have f(·, y) ∈ Ranλ(H1) for all y ∈ Rd2 . Thus, using
Fubini’s theorem and applying (7.12) with f1 = f(·, y) we get

∥e|xI |2/16f∥L2(Rd) =

(︃∫︂
Rd2

∥e|·|2/16f(·, y)∥2L2(Rd1 ) dy

)︃1/2

≤
(︃∫︂

Rd2

22+λ∥f(·, y)∥2L2(Rd1 ) dy

)︃1/2

= 21+λ/2∥f∥L2(Rd). □

7.2.2. Covering and localization of Bernstein inequalities. In order to
treat as many sensor sets ω as possible at once, we work with an abstract covering
of Rd and impose certain conditions on this covering in the formulation of the
following lemmas. All of these conditions will be condensed in Hypothesis (Hλ)
below.

Let (Qk)k∈K be any finite or countably infinite family of measurable, nonempty,
bounded, convex subsets Qk ⊂ Rd and let κ ≥ 1 be such that

(7.13)
⃓⃓⃓
Rd \

⋃︂
k∈K

Qk

⃓⃓⃓
= 0 and

∑︂
k∈K

1Qk
(x) ≤ κ for all x ∈ Rd.

We say that (Qk)k∈K is an essential covering of Rd of multiplicity at most κ. From
the decay encoded in Lemma 7.9 we extract that elements of the covering that are
far away from the origin carry only a neglectable amount of the mass of f . Hence,
we can reduce our considerations to the covering elements close to the origin.

Remark 7.10. We already used a similar reduction argument in inequality
(6.24) in the proof of Theorem 4.23 above. However, in contrast to the situation
there, we here only need to localize the function in the L2-norm and the localization
is not used to regard the potential essentially as bounded.

In what follows, B(d1)(0, r) denotes the ball in Rd1 .

Lemma 7.11. Let λ ≥ 1 and C = 6 · (1 +
√
log κ). Then the subset

(7.14) Kc := Kc(λ) :=
{︁
k ∈ K : Qk ∩ (B(d1)(0, Cλ1/2)× Rd2) ̸= ∅

}︁
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satisfies ∑︂
k∈Kc

c

∥f∥2L2(Qk)
≤ 1

4
∥f∥2L2(Rd) for all f ∈ RanPλ(HI).

Proof. For f ∈ RanPλ(HI) and s ≥ Cλ1/2, Lemma 7.9 implies that

∥f∥2
L2(Rd\(B(d1)(0,s)×Rd2 ))

= ∥e−|xI |2/16e|xI |2/16f∥2
L2(Rd\(B(d1)(0,s)×Rd2 ))

≤ 4e−s2/82λ∥f∥2L2(Rd)

≤ 1

4κ
∥f∥2L2(Rd).

By definition, Qk ∩ (B(d1)(0, Cλ1/2)× Rd2) = ∅ for k ∈ Kc
c. Hence,∑︂

k∈Kc
c

∥f∥2L2(Qk)
≤ κ∥f∥2

L2(Rd\(B(d1)(0,CN1/2)×Rd2 ))
≤ 1

4
· ∥f∥2L2(Rd). □

We now localize the Bernstein inequality proven in Lemma 7.8 to the covering
elements. This approach was established by Kovrijkine [Kov01, Kov00] and used in
many works thereafter, cf. the overview presented in Section 7.1. It is clear that one
can not expect that the global inequality implies a localized version on all of the
covering elements. However, by choosing an additional prefactor depending on the
multiplicity κ and the order of derivatives m, we can nevertheless guarantee that
it holds on sufficiently many of the covering elements, the so-called good covering
elements. Furthermore, increasing the aforementioned prefactor, it is also possible
to conclude a pointwise inequality on all of those good elements.

In order to be more precise, we say that Qk for k ∈ K is good with respect to a
function f ∈ RanPλ(HI) if

(7.15)
∑︂
|α|=m

1

α!
∥∂αf∥2L2(Qk)

≤ 2m+1κ
CB(m,λ)

m!
∥f∥2L2(Qk)

for all m ∈ N,

and we call Qk bad otherwise, i.e., if

(7.16)
∑︂
|α|=m

1

α!
∥∂αf∥2L2(Qk)

> 2m+1κ
CB(m,λ)

m!
∥f∥2L2(Qk)

for some m ∈ N.

Here, the constant differs from the constant in the (global) Bernstein inequality
in Lemma 7.8 only by the additional prefactor 2m+1κ. The latter is used in the
lemma below to compensate the multiplicity of the covering and an additional
summation over the order m that is needed since the upper bound for the norm
∥f∥L2(Qk) given by the definition (7.16) only holds for some m.

Lemma 7.12. Let

(7.17) Kg := {k ∈ K : Qk good}.
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Then

(7.18)
∑︂
k∈Kg

∥f∥2L2(Qk)
≥ 1

2
∥f∥2L2(Rd)

and for all k ∈ Kg there exists a point xk ∈ Qk with

(7.19)
∑︂
|α|=m

1

α!
|∂αf(xk)|2 ≤

4m+1κCB(m,λ)

m!
·
∥f∥2L2(Qk)

|Qk|
for all m ∈ N0.

Proof. In order to prove (7.18), we show that the bad elements Qk, k ∈ Kc
g,

contribute for at most half of the mass of f . To this end, we use the upper bound
for ∥f∥L2(Qk) on the bad Qk given by (7.16), which, however, only holds for certain
m ∈ N. We therefore take the sum over all m ∈ N and get

∥f∥2L2(Qk)
≤

∞∑︂
m=1

m!

2m+1κCB(m,λ)

∑︂
|α|=m

1

α!
∥∂αf∥2L2(Qk)

.

Summing also over the bad covering elements and using that the multiplicity of
the covering is at most κ implies∑︂

k∈Kc
g

∥f∥2L2(Qk)
≤

∞∑︂
m=1

m!

2m+1CB(m,λ)

∑︂
|α|=m

1

α!
∥∂αf∥2L2(Rd)

and the Bernstein inequality from Lemma 7.8 applied to the right-hand side gives

(7.20)
∑︂
k∈Kc

g

∥f∥2L2(Qk)
≤ ∥f∥2L2(Rd)

∞∑︂
m=1

1

2m+1
=

1

2
∥f∥2L2(Rd).

The existence of a point xk ∈ Qk, k ∈ Kg, such that (7.19) holds follows by a
similar argument. Here, we assume for contradiction that for all x ∈ Qk there is
m = m(x) ∈ N0 with

(7.21)
∑︂
|α|=m

1

α!
|∂αf(x)|2 > 4m+1κCB(m,λ)

m!|Qk|
∥f∥2L2(Qk)

.

Since this, as before, does not hold for all m, we take again the sum over m ∈ N.
Moreover, in order to turn the pointwise inequality (7.21) into an inequality between
L2-norms, we integrate over the Qk so that

∥f∥2L2(Qk)
<

∞∑︂
m=0

m!

4m+1κCB(m,λ)

∑︂
|α|=m

1

α!
∥∂αf∥2L2(Qk)

.

The definition (7.15) of good elements now shows

∥f∥2L2(Qk)
< ∥f∥2L2(Qk)

∞∑︂
m=0

1

2m+1
= ∥f∥2L2(Qk)

,
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contradicting (7.21). Hence, for every k ∈ Kg there is xk ∈ Qk such that the
pointwise bound (7.19) holds. □

Remark 7.13. In the proof of (7.19) above we used the definition of good
covering elements for all m ∈ N0, although the definition of good elements in (7.15)
above is restricted to m ∈ N. However, since the constant on the right-hand side
of (7.15) is at least 1, it is obvious that we can also apply (7.15) in case m = 0.

So far, we classified the covering into elements near to or far from the origin,
and into good and bad elements. In the next lemma we show that it suffices to
consider good elements near the origin, i.e., covering elements Qk with k ∈ Kc ∩Kg.

Lemma 7.14. Given f ∈ RanPλ(HI), Kc as in (7.14), and Kg as in (7.17), we
have

∥f∥2L2(Rd) ≤ 4
∑︂

k∈Kc∩Kg

∥f∥2L2(Qk)
.

In particular, Kc ∩ Kg ̸= ∅.

Proof. Subadditivity, Lemma 7.11, and (7.18) imply∑︂
k∈Kc

c∪Kc
g

∥f∥2L2(Qk)
≤
∑︂
k∈Kc

c

∥f∥2L2(Qk)
+
∑︂
k∈Kc

g

∥f∥2L2(Qk)
≤ 3

4
∥f∥2L2(Rd).

Passing to the complementary sum over k ∈ Kc ∩ Kg proves the claim. □

7.2.3. Local estimate. We next derive local estimates on the covering ele-
ments. The following lemma is implicitly contained in several recent works such
as [GJ13, Theorem 4.5], [EV20, Section 5], [WWZZ19], [BJPS21, Section 3.3.3],
[MPS22], [ES21, Lemma 3.5], and [Egi21]. More precisely, the formulation of the
next lemma with the additional bijection Ψ was established in [ES21, Lemma 3.5],
while earlier works considered only the situation where Ψ = Id. We discuss in
Subsection 7.2.6 below how the bijection can be used to optimize the constant.

Lemma 7.15 (Local estimate). Let Q ⊂ Rd be a nonempty, bounded, convex
and open set that is contained in a hyperrectangle with sides of length l ∈ (0,∞)d

parallel to the coordinate axes and let f : Q→ C be a non-vanishing function that
has an analytic extension f : Q+D4l → C with bounded modulus.

Then, for every measurable set ω ⊂ Rd and every linear bijection Ψ: Rd → Rd

we have

(7.22) ∥f∥2L2(Q∩ω) ≥ 12
(︂ |Ψ(Q ∩ ω)|
24dτd(diamΨ(Q))d

)︂4 logM
log 2

+1

∥f∥2L2(Q)

with

M :=

√︁
|Q|

∥f∥L2(Q)

· sup
z∈Q+D4l

|f(z)|.
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The normalized supremum in the above lemma automatically satisfies M ≥ 1.
Since f ∈ RanPλ(HI) is a non-vanishing function that has an analytic extension

to the whole of Cd by Corollary 2.4 (b), Lemma 7.15 is applicable for such f . We
emphasize that only further below, when we prove an upper bound for M if Q = Qk

with k ∈ Kg ∩ Kc, we use more information about f then just the analyticity.
The proof of the above lemma we present here goes back to [Naz93, Kov00,

Kov01]. It was inspired by the so-called Turan lemma, see [Naz93, Theorem I]
and also [Tur84], and can be thought of as a L2-variant of the following lemma for
analytic functions.

Lemma 7.16 (Kovrijkine’s lemma [Kov01]). Let ε > 0 and Φ: D(0, 4 + ε) → C
be an analytic function with |Φ(0)| ≥ 1. Then

(7.23) sup
t∈[0,1]

|Φ(t)| ≤
(︂ 12

|E|

)︂2 logMΦ
log 2

sup
t∈E

|Φ(t)|

for all measurable sets E ⊂ [0, 1] with |E| > 0, where

MΦ = sup
z∈D4

|Φ(z)|.

In [Kov01] the above lemma is only formulated in case ε = 1. Although the
proof for arbitrary ε > 0 is essentially the same, we provide it here for the sake of
completeness. Moreover, the proof below gives some details that were omitted in
[Kov01].

Proof of Lemma 7.16. Jensen’s formula implies that the number m of zeros
(ak) of Φ inside D(0, 2) is at most logMΦ/ log 2. Hence, the Blaschke condition∑︁

k(1−ak/2) <∞ is satisfied and there is a zero-free analytic function g : D(0, 2) →
C with |g(0)| ≥ 1 and maxz∈D(0,2)|g(z)| ≤ MΦ such that Φ(z) = B(z)g(z) for
z ∈ D(0, 2) and the Blaschke product

B(z) =
m∏︂
k=1

|ak|
ak

·
ak
2
− z

2

1− ak
2
· z
2

=
m∏︂
k=1

|ak|
ak

· 2(ak − z)

4− akz
, z ∈ D(0, 2),

see, e.g., [FL88, Satz 5.2]; here we used the scaling factor 1/2 since Blaschke’s
result is formulated for the unit disc. By construction of g, the function defined
by D(0, 2) ∋ z ↦→ log(MΦ/|g(z)|) is positive and harmonic, so that Harnack’s
inequality is applicable and yields

(7.24) max
|z|≤1

log
MΦ

|g(z)|
≤ 3 log

MΦ

|g(0)|
≤ 3 logMΦ.

Therefore, min|z|≤1|g(z)| ≥M−2
Φ and since [0, 1] ⊂ D(0, 1) we get

maxx∈[0,1]|g(z)|
minx∈[0,1]|g(z)|

≤
max|z|≤1|g(z)|
min|z|≤1|g(z)|

≤M3
Φ.
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Let us write B = P/Q with polynomials P (z) = 2m
∏︁m

k=1|ak|(ak − z) and
Q(z) =

∏︁m
k=1 ak(4 − akz) of degree m. A simple calculation using the triangle

inequality shows |ak(4− akz)| ≥ 2|ak| and |ak(4− akz)| ≤ 6|ak| for |z| ≤ 1, so that

maxx∈[0,1]|Q(z)|
minx∈[0,1]|Q(z)|

≤
max|z|≤1|Q(z)|
min|z|≤1|Q(z)|

≤ 3m.

The Remez inequality [Rem36] for a polynomial P of degree m states that

max
x∈[0,1]

|P (z)| ≤
(︂ 4

|E|

)︂m
sup
x∈E

|P (x)|.

Thus, by the identity Φ = B · g on D(0, 2) and the fact that B = P/Q we conclude

max
x∈[0,1]

|Φ(x)| ≤ max
x∈[0,1]

|g(z)| ·
maxx∈[0,1]|P (z)|
min|z|≤1|Q(z)|

≤M3
Φ ·min

|z|≤1
|g(z)| ·

(︁
4
|E|

)︁m
supx∈E|P (x)|

3−m ·max|z|≤1|Q(z)|

≤M3
Φ ·
(︂ 12

|E|

)︂m
sup
x∈E

|Φ(x)|,

where we used min|z|≤1|Q(z)| ≥ 3−m max|z|≤1|Q(z)| in the second inequality. Using
the bound m ≤ logMΦ/ log 2 and estimating

M3
Φ ≤ exp(3 logMΦ) ≤ exp

(︂
log
(︂ 12

|E|

)︂ logMΦ

log 2

)︂
=
(︂ 12

|E|

)︂ logMΦ
log 2

concludes the proof. □

Remark 7.17. The above proof can also be adapted to the case where Φ is
merely analytic on a disc of radius 1 + ε with ε > 0. However, in that case the
upper bound for the number of zeros of Φ inside D(0, 1) given by Jensen’s formula
and the right-hand side of (7.24) would take the form

log supz∈D(0,1)|Φ(z)|
log(1 + ε)

resp.
(︂
1 +

2

ε

)︂
log sup

z∈D(0,1)

|Φ(z)|.

The idea of the proof of Lemma 7.15 is to introduce a set W where |f | is
pointwise smaller than a specific constant and to use the pointwise lower bound on
the complement of W to obtain (7.22). Thereby, it remains to show that W makes
up only a small portion of the set Q ∩ ω. This is then proven using Lemma 7.16,
since it allows us to connect a point where |f | is large via a line segment to the set
W where |f | is small, leading to a bound for the measure of this set, see inequality
(7.28) below.

Our proof is oriented on the one given in [ES21].
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Proof of Lemma 7.15. We show that the set

W =
{︂
x ∈ Q : |f(x)| <

(︂ |Ψ(Q ∩ ω)|
24dτd(diamΨ(Q))d

)︂2 logM
log 2 ·

∥f∥L2(Q)

|Q|1/2
}︂

where |f | is small compared to its L2-norm on Q and to the measure of Q ∩ ω
makes up at most half of the mass of Q ∩ ω, i.e., |(Q ∩ ω) \W | ≥ |Q ∩ ω|/2. Then,
using the pointwise lower bound for |f | on the complement of W , we get

∥f∥2L2(Q∩ω) ≥ ∥f∥2L2(Q\W ) ≥ |(Q ∩ ω) \W | · inf
x∈Q\W

|f(x)|2

≥ |Q ∩ ω|
2|Q|

·
(︂ |Ψ(Q ∩ ω)|
24dτd(diamΨ(Q))d

)︂4 logM
log 2 · ∥f∥2L2(Q)

= 12
(︂ |Ψ(Q ∩ ω)|
24dτd(diamΨ(Q))d

)︂4 logM
log 2

+1

∥f∥2L2(Q),

which proves (7.22).
It remains to show |(Q ∩ ω) \W | ≥ |Q ∩ ω|/2, which follows immediately from

the inequality |Q ∩ ω| ≥ 2|W |. In order to prove the latter, fix some point x0 ∈ Q
where |f(x0)| ≥ ∥f∥L2(Q)/|Q|1/2; such x0 exists as otherwise integrating over Q
yields a contradiction. Using polar coordinates, we now choose a direction ˆ︁y0 ∈ Sd−1

such that the longest line segment in Ψ(Q) starting at Ψ(x0) in direction ˆ︁y0 sees a
large part of the set Ψ(W ). More precisely, there is ˆ︁y0 ∈ Sd−1 such that

|Ψ(W )| =
∫︂ ∞

0

td−1

∫︂
Sd−1

1Ψ(W )(Ψ(x0) + tˆ︁y) dσ(ˆ︁y) dt
≤ dτd

∫︂ ∞

0

td−11Ψ(W )(Ψ(x0) + tˆ︁y0) dt.
Hence, denoting the line segment by Ψ(I) where I = {x0 +Ψ−1(ˆ︁y0) ∈ Q : s ≥ 0}
and observing that the length |Ψ(I)| of the line segment can not exceed the diameter
of Ψ(Q), we further estimate

(7.25)
|Ψ(W )|

dτd(diamΨ(Q))d
≤ |Ψ(I)|d−1|Ψ(W ∩ I)|

(diamΨ(Q))d
≤ |Ψ(W ∩ I)|

|Ψ(I)|
.

In particular, the intersection between Ψ(I) and Ψ(W ) is not to small.
Let ˆ︁ξ0 = Ψ−1(ˆ︁y0)/|Ψ−1(ˆ︁y0)| be the unit vector in direction Ψ−1(ˆ︁y0). Then, for

z ∈ D(4 + ε) with sufficiently small ε > 0 we have x0 + t|I|ˆ︁ξ0 ∈ Q + D4l and,
therefore,

Φ: D(4 + ε) → C, z ↦→ |Q|1/2

∥f∥L2(Q)

· f(x0 + t|I|ˆ︁ξ0)
is analytic by assumption. Moreover, the normalized supremum satisfies and

MΦ = sup
z∈D(0,4)

|Φ(z)| ≤ |Q|1/2

∥f∥L2(Q)

sup
z∈Q+D4l

|f(z)|.
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Let E = {t ∈ [0, 1] : x0 + t|I|ˆ︁ξ0 ∈ W} be the part of the line segment where |Φ| is
small. By the choice of x0 we have |Φ(0)| ≥ 1, while, on the other hand,

(7.26) sup
t∈E

|Φ(t)| ≤ |Q|1/2

∥f∥L2(Q)

sup
x∈W

|f(x)|.

By construction of E and by Lemma 7.16 we have a lower bound for |Φ| on E.
Indeed, using that a simple computation shows that the measure of E is given by
|E| = |W ∩ I|/|I| = |Ψ(W ∩ I)|/|Ψ(I)|, applying Lemma 7.16 with E, and using
(7.25) we obtain

(7.27)
(︂ |Ψ(W )|
12dτd(diamΨ(Q))d

)︂2 logMΦ/ log 2

≤ sup
t∈E

|Φ(t)|.

Inequality (7.26) now plays the upper bound for |f | on W off against the lower
bound on the left-hand side of (7.27), leading to the desired inequality. In fact, by
the definition of W we have

sup
x∈W

|f(x)| ≤
(︂ |Ψ(Q ∩ ω)|
24dτd(diamΨ(Q))d

)︂2 logMΦ/ log 2∥f∥L2(Q)

|Q|1/2
,

but using (7.27) and (7.26) on the right-hand side we derive at

(7.28) sup
x∈W

|f(x)| ≤
(︂ |Ψ(Q ∩ ω)|

2|Ψ(W )|

)︂2 logMΦ/ log 2

· sup
x∈W

|f(x)|.

Since W ≠ ∅ and f is continuous, we have supx∈W |f(x)| > 0, and dividing both
sides of the last inequality by this factor we obtain |Ψ(Q ∩ ω)| ≥ 2|Ψ(W )|, or,
equivalently, the asserted inequality |Q ∩ ω| ≥ 2|W |. □

In order to apply Lemma 7.15 with Q = Qk, k ∈ K, we need to assume that
each of the covering elements Qk is contained in a hyperrectangle, i.e., that there
are lk = (l

(1)
k , . . . , l

(d)
k ) ∈ (0,∞)d and zk ∈ Qk, k ∈ K, such that

(7.29) Qk ⊂ zk +
d×

j=1

(0, l
(j)
k ).

However, as indicated by the index, the sidelengths (lk)k∈K do not need to be
uniformly bounded for all k ∈ K and for now we only assume the existence of lk
such that (7.29) holds. Then, for Qk with k ∈ Kg, using Taylor expansion around
the point xk ∈ Qk from Lemma 7.12 where we have control over all derivatives, we
now obtain an estimate for the supremum

(7.30) Mk :=

√︁
|Qk|

∥f∥L2(Qk)

· sup
z∈Qk+D4lk

|f(z)|

of a non-zero f ∈ RanPλ(HI).
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Lemma 7.18. Let k ∈ Kg and suppose that there are lk ∈ (0,∞)d and zk ∈ Rd

such that (7.29) holds. Then, the quantity Mk in (7.30) satisfies

Mk ≤ 2κ1/2
∑︂
m∈N0

CB(m,λ)
1/2 (10|lk|)m

m!
.

Proof. Let xk ∈ Qk be a point as in (7.19). Using Taylor expansion of f
around xk, for every z ∈ xk +D5lk we then have

|f(z)| ≤
∑︂
α∈Nd

0

|∂αf(xk)|
α!

|(z − xk)
α| ≤

∑︂
m∈N0

∑︂
|α|=m

|∂αf(xk)|
α!

(5lk)
α

≤
∑︂
m∈N0

(︃∑︂
|α|=m

(5lk)
2α

α!

)︃1/2(︃∑︂
|α|=m

|∂αf(xk)|2

α!

)︃1/2

=
∑︂
m∈N0

(5|lk|)m√
m!

(︃∑︂
|α|=m

|∂αf(xk)|2

α!

)︃1/2

≤ 2κ1/2
∥f∥L2(Qk)√︁

|Qk|

∑︂
m∈N0

CB(m,λ)
1/2 (10|lk|)m

m!
,

where for the second last step we used that
∑︁

|ν|=m l
2ν
k /ν! = |lk|2m/m!. Taking into

account that Qk +D4lk ⊂ xk +D5lk , this proves the claim. □

7.2.4. Generalized spectral inequality. We are now in the position to state
and prove our generalized spectral inequality. To this end, for each fixed λ ≥ 1, we
formulate an abstract hypothesis on the covering elements Qk with k ∈ Kc(λ).

Hypothesis (Hλ). Let K be finite or countably infinite and let (Qk)k∈K be an
essential covering of Rd with multiplicity at most κ as in (7.13). For fixed λ ≥ 1
and all k ∈ Kc, where Kc = Kc(λ) is as in (7.14), we suppose that

(i) Qk is nonempty, convex, open, and contained in a hyperrectangle with sides
of length lk = (l

(1)
k , . . . , l

(d)
k ) ∈ (0,∞)d parallel to the coordinate axes;

(ii) the sidelengths satisfy |lk| ≤ Dλ(1−ε)/2 for some ε ∈ (0, 1] and D > 0 indepen-
dent of k ∈ Kc;

(iii) there is a linear bijection Ψk : Rd → Rd such that

(7.31)
|Ψk(Qk)|

(diamΨk(Qk))d
≥ η

for some η > 0 independent of k ∈ Kc.

A covering as in Hypothesis (Hλ) satisfies all the properties of the covering used
in the previous Subsections 7.2.2 and 7.2.3. In addition, property (ii) gives an upper
bound for the size of the covering elements, which essentially entails the sublinear
dependence on the energy parameter λ. The existence of a bijection Ψk as required
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in property (iii) is used in the proof below to give a uniform lower bound for the
constant in the local estimate from Lemma 7.15. It is always guaranteed that
such bijection exists for η = τd/(2d)

d, see the discussion in Subsection 7.2.6 below.
However, we state it here as a hypothesis, as it may be possible to optimize the
constant η by choosing better adapted Ψk for certain coverings, cf. Example 7.25.

With Hypothesis (Hλ) at hand, we are now ready to prove the following result,
which is not a spectral inequality in the usual sense as the energy λ is fixed and
the geometric condition on ω depends on λ. For this reason, it suffices to impose
conditions on the sensor set ω only with respect to the bounded region covered by
Qk with k ∈ Kc = Kc(λ).

Theorem 7.19 (Generalized spectral inequality). With fixed λ ≥ 1 assume
Hypothesis (Hλ), and let a ≥ 0 and γ ∈ (0, 1] be given. Then, if ω ⊂ Rd is a
measurable set satisfying

(7.32)
|Qk ∩ ω|
|Qk|

≥ γλ
a/2

for all k ∈ Kc,

we have

(7.33) ∥f∥2L2(ω) ≥
3

κ

(︂ ηγ

24dτd

)︂7(︁1600eD(D+1)+log(4κ1/2)
)︁
λ1−(ε−a)/2

∥f∥2L2(Rd),

for every f ∈ RanPλ(HI).

Remark 7.20. Let us emphasize that, on one hand, ε and D in condition (ii)
as well as η in condition (iii) need to be uniform in k ∈ Kc. On the other, formally
they are allowed to depend on λ. However, in all applications presented here this
will not be the case implying that the exponent in (7.33) is proportional to λ1−

ε−a
2 .

In this case, the relevant power satisfies 1− ε−a
2
< 1 if and only if a < ε.

Proof of Theorem 7.19. In light of Hypothesis (Hλ) and the local estimate
in Lemma 7.15 we have

∥f∥2L2(Qk∩ω) ≥ ak∥f∥2L2(Qk)
with ak = 12

(︂ |Qk ∩ ω|
24dτd|Qk|

)︂4 logMk
log 2

+1

for k ∈ Kc = Kc(λ), where Mk is as in (7.30). By Lemma 7.14 we further estimate(︂
min

k∈Kc∩Kg

ak

)︂
∥f∥2L2(Rd) ≤ 4

∑︂
k∈Kc∩Kg

ak∥f∥2L2(Qk)

≤ 4
∑︂

k∈Kc∩Kg

∥f∥2L2(Qk∩ω) ≤ 4κ∥f∥2L2(ω)

(7.34)
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and it suffices to establish a suitable lower bound for the minimum on the left-hand
side. Using the assumption (7.32) on the set ω, we have

(7.35) ak ≥ 12

(︄
ηγλ

a/2

24dτd

)︄4
logMk
log 2

+1

for all k ∈ Kc.

In order to proceed further, we recall the definition of CB(m,λ) from (7.9) and
show

(7.36) 2−mCB(m,λ) =
m−1∏︂
k=0

(λ+ 2k) ≤ (2δ)2mee/δ
2

(m!)2e2
√
λ/δ for δ > 0.

To this end, we follow the arguments given in the proof of [BJPS21, Proposition 4.3]
along the lines and distinguish between two cases:

• Let 2(m − 1) ≤ λ so that λ + 2k ≤ λ + 2(m − 1) ≤ 2λ. Hence, the
product under consideration is clearly bounded by (2λ)m and we get
(2λ)m ≤ (

√
2δ)2m(λ1/2/δ)2m ≤ (m!)2 exp(2

√
λ/δ).

• Now, suppose that 2(m − 1) ≥ λ so that λ + 2k ≤ 2(m − 1) + 2k ≤
4(m − 1). Hence, the product under consideration is now bounded by
(4m)m ≤ 22mm!em = (2δ)2mm!(e/δ2)m. Estimating the last factor therefore
gives (4m)m ≤ (2δ)2m(m!)2 exp(e/δ2).

Moreover, we recall that condition (ii) of Hypothesis (Hλ) gives |lk| ≤ Dλ(1−ε)/2

for all k ∈ Kc. Therefore Lemma 7.18 and the above inequality (7.36) imply

Mk ≤ 2κ1/2
∑︂
m∈N0

CB(m,λ)
1/2 (10Dλ

(1−ε)/2)m

m!

= 2κ1/2ee/(2δ
2)e

√
λ/δ
∑︂
m∈N0

(20
√
2δDλ(1−ε)/2)m for all k ∈ Kc ∩ Kg,

where δ > 0 is arbitrary. However, for the particular choice

δ =
(︁
40
√
2Dλ(1−ε)/2

)︁−1
,

the series converges and we obtain

Mk ≤ 4κ1/2 exp(1600eD2λ1−ε + 40
√
2Dλ(1−ε)/2

√
λ)

≤ 4κ1/2 exp(1600eD(D + 1)λ1−ε/2).

Thus,

logMk ≤ log(4κ1/2) + 1600eD(D + 1)λ1−ε/2

≤
(︁
1600eD(D + 1) + log(4κ1/2)

)︁
λ1−ε/2
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for all k ∈ Kc ∩ Kg. Combining the latter with (7.35), we arrive at

ak ≥ 12
(︂ ηγ

24dτd

)︂7(︁1600eD(D+1)+log(4κ1/2)
)︁
λ1−(ε−a)/2

for all k ∈ Kc ∩ Kg,

where we used that 1 + 4/ log 2 ≤ 7. In view of (7.34), this proves the claim. □

7.2.5. Proof of the spectral inequalities. It remains to conclude the spec-
tral inequalities for the partial harmonic oscillators from the generalized spectral
inequality. To this end, we discuss examples of sets ω ⊂ Rd where Theorem 7.19
can be applied with D and ε not depending on λ. In the situation of Theorem 4.19,
these sets are characterized in terms of an explicit covering, but for Corollary 7.21
below the covering is implicitly constructed using Besicovitch’s covering theorem.
Both results should be regarded as corollaries to Theorem 7.19.

Proof of Theorem 4.19. Let Qk = Λρ(k) for k ∈ K = (ρZ)d. We then have
κ = 1 and, thus, C = 6 in Lemma 7.11. Moreover, with Ψk in condition (ii) being
the identity, we may choose η = 1/dd/2. Taking into account that Stirling’s formula
implies the asymptotic formula τd ∼ (2πe/d)d/2/

√
dπ, we infer that 24dτd/η ≤ Kd.

Furthermore, it is easy to see that lk = (ρ, . . . , ρ) satisfies |lk| = d1/2ρ = Dλ0 with
D := d1/2ρ. Hence, (Qk)k∈K = (Λρ(k))k∈(ρZ)d satisfies Hypothesis (Hλ) for every
λ ≥ 1. Both constants D and η are independent of λ.

Now we show
|kI |
2

≤ inf
x∈Λρ(k)

|xI | ≤ Cλ1/2 for all k ∈ Kc ⊂ (ρZ)d.

The upper bound follows instantly from the definition of Kc and we only need to
prove the lower bound. To this end, let x ∈ Λρ(k) and j ∈ {1, . . . , d}. Suppose
that kj ̸= 0. Then we have |kj| ≥ ρ and |xj − kj| ≤ ρ/2. Therefore, |xj| ≥
|kj| − |xj − kj| ≥ |kj| − ρ/2 ≥ |kj|/2. Since the same inequality is trivially satisfied
if kj = 0, summing over j ∈ I gives |x| ≥ |kI |/2 for all x ∈ Λρ(k). This proves the
lower bound.

Finally, using this estimate for the infimum, we get that for k ∈ Kc we have

γ1+|kI |α ≥
(︁
γ2

α)︁1+(|kI |/2)α ≥
(︁
γ2

α)︁1+Cαλα/2

≥
(︁
γ2(2C)α

)︁λα/2

.

Using that ω satisfies

(4.15 revisited)
|Λρ(k) ∩ ω|
|Λρ(k)|

≥ γ1+|kI |α for all k ∈ (ρZ)d,

this shows
|Λρ(k) ∩ ω|
|Λρ(k)|

≥
(︁
γ2(2C)α

)︁λα/2

for all k ∈ Kc ⊂ (ρZ)d.
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The claim in Theorem 4.19 now follows from Theorem 7.19 with ε = 1, a = α,
and γ replaced by γ2(2C)α . It only remains to observe the specific constant from
the simple estimate

2 · (2C)α · 7
(︁
1600eD(D + 1) + log(4)

)︁
≤ K1+α · d · (1 + ρ)2. □

Motivated by Theorem 4.15, we also consider sets ω that are thick with respect
to a scale that is allowed to vary in the coordinate directions corresponding to I.
To this end, let ρ1 : Rd1 → (0,∞) be any function that satisfies

ρ1(x) ≤ R(1 + |x|2)
1−ε
2 for all x ∈ Rd1

with R > 0 and ε ∈ (0, 1], and let ρ2 > 0. Given x = (x(1), x(2)) ∈ Rd1 × Rd2 = Rd

we set
Q(x) := B(d1)(x(1), ρ1(x

(1)))× Λρ2(x
(2)) ⊂ Rd1 × Rd2 .

The following result generalizes Theorem 4.16. Here, if d1 = d, then d2 = 0 and
the second factors in the tensor sets Q(x) are empty. In this case the proof of the
next corollary can be carried out in the same way, but is even simpler.

Corollary 7.21. Let 0 ≤ a < ε ≤ 1. For all measurable sets ω ⊂ Rd satisfying

(7.37)
|Q(x) ∩ ω|
|Q(x)|

≥ γ1+|xI |a for all x ∈ Rd

and some γ ∈ (0, 1], we have

(7.38) ∥f∥2L2(ω) ≥ 3
(︂ γ

Kd

)︂K1+ad3+a/2(1+R+ρ2)2λ
1− ε−a

2

∥f∥2L2(Rd)

for all λ ≥ 1 and all f ∈ RanPλ(HI).

In contrast to the situation in the previous proof of Theorem 4.19, the proof
of Corollary 7.21 starts with the construction of the family (Qk)k∈K, as it is this
time not given explicitly in the statement of the result. For this purpose, we use
the following formulation of the well-known Besicovitch covering theorem which
allows to extract a countable subcovering (Qk)k∈K of (Q(x))x∈Rd with bounded
multiplicity.

Proposition 7.22 (Besicovitch). If V ⊂ Rd1 is a bounded set and B is a family
of closed balls such that each point in V is the center of some ball in B, then there
are at most countably many balls (Bk) ⊂ B such that with some universal constant
C0 ≥ 1 we have

1V ≤
∑︂
k

1Bk
≤ Cd1

0 .

Proof. The proof of Besicovitch’s theorem in [Mat95, Theorem 2.7] shows
that the statement of the proposition holds with Cd1

0 = 16d1C1, where C1 is chosen
such that the following implication is true: If y1, . . . , yn ∈ Sd1−1 are points with
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|yr−ys| ≥ 1 for all r ̸= s, then n ≤ C1. Since for such points the spherical distance
dSd1−1(yr, ys) of yr and ys can be bounded from below by

dSd1−1(yr, ys) = arccos
(︂
1− |yr − ys|2

2

)︂
≥ arccos(1− 1/2) = π/3,

it is easy to see that C1 ≤ Kd1 . This proves the statement with C0 = (16C1)
d1 . □

Proof of Corollary 7.21. We consider only the case d1 < d. Let λ ≥ 1
and set V = B(d1)(0, Cλ1/2) ⊂ Rd1 , where C = 6(1 + (log(Cd1

0 ))1/2). Then, the
assumptions of Proposition 7.22 are fulfilled for V and the family of balls

B = {B(d1)(x, ρ1(x)) : x ∈ V }.
This shows that there is a subset K∗ ⊂ N and a collection of points (yj)j∈K∗ ⊂ V
such that the balls Bj = B(d1)(yj, ρ1(yj)) satisfy |V \

⋃︁
j∈K∗

Bj| = 0. Setting
B0 = Rd1 \

⋃︁
j∈K∗

Bj, the family (Bj)j∈N0 , N0 = K∗ ∪ {0}, is then an essential
covering of Rd1 with ∑︂

j∈N0

1Bj
≤ Cd1

0 =: κ.

Set K := N0 × (ρ2Z)d2 and Qk := Bk(1) × Λρ2(k
(2)) for k = (k(1), k(2)) ∈ K.

Then, (Qk)k∈K is an essential covering of Rd with with multiplicity at most κ. By
construction we have

Kc = {k ∈ K : Qk ∩ (B(d1)(0, Cλ1/2)× Rd2) ̸= ∅} = K∗ × (ρ2Z)d2

and Qk = Q((yk(1) , k
(2))) for k ∈ Kc.

We show that (Qk)k∈K satisfies Hypothesis (Hλ): It is easy to see that (i) is
satisfied with lk = (2ρ1(yk(1)), . . . , 2ρ1(yk(1)), ρ2, . . . , ρ2). In order to verify condition
(ii), we follow [ES21, Lemma C.1] and consider for k ∈ Kc the linear bijections
Ψk : Rd → Rd with

Ψk(x) = (rx(1)/ diamBk(1) , x
(2)/ diamΛρ2(k

(2))), where r2 = d1/d2.

With (diamΨk(Qk))
2 = 1 + r2 it is then not difficult to show

|Ψk(Qk)|
(diamΨk(Qk))d

=
τd1d

d1/2
1

2d1dd/2
=: η,

which proves condition (ii). In particular, using the asymptotic formula for τd we
have

24dτd
η

∼ d1+d/2(2πe/d)d/22d1
√
d1π√

dπd
d1/2
1 (2πe/d1)d1/2

≤ Kd.

Since yk(1) ∈ V for all k ∈ Kc, we have |yk(1) | ≤ Cλ1/2 and, consequently,

ρ1(yk(1)) ≤ 2RCλ(1−ε)/2 for all k ∈ Kc.

Combining this with the identity for lk stated above, we obtain

∥lk∥2 ≤ ∥lk∥1 ≤ 2d1ρ1(yk(1)) + d2ρ2 ≤ Dλ(1−ε)/2 with D = d(4RC + ρ2),
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which proves condition (iii). Thus, Hypothesis (Hλ) is satisfied.
Using again |yk(1) | ≤ Cλ1/2 for k ∈ Kc, we see that the hypothesis on the set ω

yields
|Qk ∩ ω|
|Qk|

≥ γ1+(Cλ1/2)a ≥
(︁
γ1+Ca)︁λa/2

for k ∈ Kc,

and this shows, in turn, that the assumptions of Theorem 7.19 are fulfilled with γ
replaced by γ1+Ca . Hence, the constant is given by

3

κ

(︂ηγ1+Ca

24dτd

)︂7(︁1600eD(D+1)+log(4κ1/2)
)︁
λ1−(ε−a)/2

≥ 3
(︂ γ

Kd

)︂(1+Ca)·7
(︁
1600eD(D+1)+log(4κ1/2)

)︁
λ1−(ε−a)/2

.

In order to get the constant from the statement of the corollary, we collect from
the previous computations that κ ≤ Kd, 1 + Ca ≤ (1 + Ka)da/2, as well as
D ≤ Kd3/2(R + ρ2). Thereby, it is easy to see that

(1 + Ca) · 7
(︁
1600eD(D + 1) + log(4κ1/2)

)︁
≤ K1+ad3+a/2(1 +R + ρ2)

2,

which gives the precise constant in the statement. □

7.2.6. Discussion and extensions. Let us note here two observations that
admit us to slightly generalize the above approach. The first of these allows to get
rid of property (iii) in the Hypothesis (Hλ) which, however, might slightly worsen
the dependence of the constants on the dimension d. The second allows, via a
partial Fourier transform, to prove a spectral inequality for the operators HI,J
with J ⊊ {1, . . . , d}.

John’s lemma and the bijections Ψk. As already stated above, property
(iii) of Hypothesis (Hλ) is always satisfied if we choose η appropriately. While in
the proofs of Theorem 4.19 and Corollary 7.21 we were able to explicitly construct
suitable bijections (since the geometry of the covering sets is quite simple), it
might be considerably harder for general convex coverings. However, even in
this situations the following corollary to John’s ellipsoid theorem guarantees the
existence of suitable bijections.

Proposition 7.23. Let ∅ ≠ Q ⊂ Rd be convex, open, and bounded. Then there
is an linear bijection Ψ: Rd → Rd with

(7.39) η :=
τd
2ddd

≤ |Ψ(Q)|
(diamΨ(Q))d

≤ τd
2d/2

.

If, in addition, Q is centrally symmetric, i.e., if there is x0 ∈ Q such that x0+x ∈ Q
implies x0 − x ∈ Q, then η can be replaced by τd/(4d)d/2.
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Proof. For the lower bound we use John’s theorem [Joh48], which states that
for every convex, open, bounded ∅ ≠ Q ⊂ Rd there is a linear bijection Υ: Rd → Rd,
some z ∈ Rd, and a radius r > 0 such that the ellipsoid E = Υ(B(0, r)) satisfies
E ⊂ Q+ z ⊂ d · E or, equivalently, setting Ψ = Υ−1, we have

B(0, r) ⊂ Ψ(Q) + Ψz ⊂ d ·B(0, r).

This implies that 2r ≤ diamΨ(Q) ≤ 2rd, as well as

|Ψ(Q)| ≥ τdr
d ≥ τd

(︂diam(Ψ(Q))

2d

)︂d
=

τd
(2d)d

(︁
diam(Ψ(Q))

)︁d
.

For centrally symmetric Q, John’s theorem gives E ⊂ Q+ z ⊂
√
d · E leading in

the same way to the stated claim in this case.
For the upper bound we recall from Jung’s theorem [Jun01] that the set Ψ(Q)

is contained in a ball B of radius R > 0 satisfying

R ≤ diam(Ψ(Q))
√︁

1/(2 + 1/d) ≤ diam(Ψ(Q))√
2

.

Hence,
|Ψ(Q)| ≤ |B| = τd

2d/2
(︁
diamΨ(Q)

)︁d
. □

Using the last proposition we get the following corollary to Theorem 7.19 by
simply plugging in the above choice for η.

Corollary 7.24. With fixed λ ≥ 1 assume Hypothesis (Hλ) except condition
(iii). Then, for all ω satisfying (7.32) we have

(7.40) ∥f∥2L2(ω) ≥
3

κ

(︂ γ

Kd

)︂7(︁1600eD(D+1)+log(4κ1/2)
)︁
λ1−(ε−a)/2

∥f∥2L2(Rd),

for every f ∈ RanPλ(HI), λ ≥ 1, where

Kd =

⎧⎪⎨⎪⎩
24 · 2dd1+d, if all Qk, k ∈ Kc, are convex;
24 · 2dd1+d/2, if all Qk, k ∈ Kc, are centrally symmetric;
24 · d1+d/2τd, if all Qk, k ∈ Kc are cubes.

The next example shows that the lower bound from Proposition 7.23 can be
improved by choosing a customized bijection.

Example 7.25. Let Q = B(0, 1), let Ψ be as in Proposition 7.23 and let Ψ̃ be
the identity. Then, since Q is centrally symmetric, we have

|Ψ(Q)|
(diamΨ(Q))d

≥ τd
(4d)d/2

and
|Ψ̃(Q)|

(diam Ψ̃(Q))d
≥ τd

2d
.

Hence, the two situations differ by the factor dd/2.
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Spectral inequalities with parts of pure multiplication. So far we have
restricted our considerations to the situation where we have a full Laplacian
perturbed by some potential V (x) = |xI |2 with I ⊂ {1, . . . , d}. We now show
that using the Fourier transform we can also prove a spectral inequality for the
operator HI,J with I \ J ̸= ∅. However, here the observation operator C is not
the characteristic function of a measurable set.

Suppose that I ∪ J = {1, . . . , d} while J ≠ {1, . . . , d}. Then, by Lemma 2.9
the operator HI,J is unitary equivalent to the operator HI∩J via the partial Fourier
transform FI\J from (2.7). Thus, spectral inequalities of the form ∥1ωf∥22 ≥ C∥f∥22
for HI∩J translate directly to spectral inequalities for HI,J of the form ∥Cf∥22 ≥
C∥f∥22 with C = F−1

I\J1ωFI\J and the same constant C > 0. Since HI∩J is an
operator of the form discussed in the previous parts of this section, we thus get
a spectral inequality for HI,J . This is exemplified in the following result for the
situation of Theorem 4.19.

Corollary 7.26. Suppose I ∪ J = {1, . . . , d}, I \ J ̸= ∅, and let ω be as in
(4.15). Then, there is a universal constant K ≥ 1 such that for every λ ≥ 1 and
all f ∈ RanPλ(HI,J ) we have

∥Cf∥2L2(Rd) ≥ 3
(︂ γ

Kd

)︂K1+αd·(1+ρ)2λ(1+α)/2

∥f∥2L2(Rd),

where C = F−1
I\J1ωFI\J .

The case I ∪J ≠ {1, . . . , d} can be reduced to this provided the sensor sets are
chosen as appropriate Cartesian products. This is the reason why the assumption
I ∪ J = {1, . . . , d} is not a constraint here.

Remark 7.27. If ω is Borel measurable, then B = F−1
I\J1ωFI\J can be in-

terpreted by functional calculus. Let X1, . . . , Xd be the strongly commuting po-
sition operators Xjf = xjf . Then the multiplication operator 1ω agrees with
1ω(X1, . . . , Xd) defined by joint functional calculus, cf. [Sch12, Chapter 5.5]. Since
the momentum operators P1, . . . , Pd with Pjf = −i∂jf correspond to the position
operators by F−1

{j}XjF{j} = Pj, we have

C = 1ω(R1, . . . , Rd), where Rj =

{︄
Xj, j ∈ J \ I
Pj, j ∈ I \ J

.

In particular, the observation operator C is not the characteristic function of a
sensor set ω.

7.3. Uncertainty principles with error term

The proof of the uncertainty principle with error term for functions in some
Gelfand-Shilov space stated in Theorem 4.35 likewise uses the approach presented
in the previous section. However, since in the setting of Theorem 4.35 there is
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no Bernstein-type inequality available, [Mar22] introduced the idea to use the
definition of good elements and the additional error term as an replacement for
the missing Bernstein-type inequalities needed. While [Mar22] then proceeds by
using an estimate for quasianalytic functions from [NSV04] and a suitable estimate
for the so-called Bang degree, we rely on the more standard approach from the
previous section and estimate Taylor expansions around suitably chosen points. We
also incorporate the decay that is guaranteed by assumption (4.22). More precisely,
the inequality

(4.22 revisited) ∥(1 + |x|2)n/2∂βf∥L2(Rd) ≤ D1D
n+|β|
2 (n!)ν(|β|!)µ

holds for all n ∈ N0 and all β ∈ Nd
0, in order to reduce the considerations to a

bounded subset of Rd in a similar manner as in Lemma 7.11 above. However, since
there is no norm of f on the right-hand side of (4.22), we choose this ball in such
a way that the contribution of f outside of it can be subsumed into the error term,
see (7.42) below. This way, we obtain a more streamlined proof while getting rid
of the technical assumption on the scale ρ used in [Mar22].

7.3.1. Localization and good covering elements. Suppose f satisfies
(4.22) for all n ∈ N0, β ∈ Nd

0. Let δ ∈ (0, 1] and

(7.41) r :=
D2√︁
δ/2

≥ 1 so that sup
x∈Rd\B(0,r)

1

1 + |x|2
≤ δ

2D2
2

.

Then, (4.22) with n = 1 and β = 0 implies that

(7.42) ∥f∥2L2(Rd\B(0,r)) ≤
δ

2
·
∥(1 + |x|2)1/2f∥2

L2(Rd)

D2
2

≤ δD2
1

2
.

As in the proof of Corollary 7.21 above we use inequality (7.42) and Besicovitch’s
covering theorem, Proposition 7.22 above, to extract a countable subcovering of{︁

B(x, ρ(x)) : x ∈ Rd s.t. B(x, ρ(x)) ∩B(0, r) ̸= ∅
}︁
,

where ρ is as in Theorem 4.35. To this end, we first note that the assumption on ρ
in Theorem 4.35 implies

(7.43) ρ(x) ≤ 2R|x|ε/2 ≤ |x|/2 for all |x| ≥ max{1, (4R)1/(1−ε)} =: r0.

Now we observe that the assumption on the intersection requires |x| − ρ(x) < r
and, thus, |x| < r0 or |x|/2 ≤ |x| − ρ(x) < r, that is, |x| < 2r. Hence, by
Besicovitch’s covering theorem there is K0 ⊂ N and a collection of points (yk)k∈K0

with |yk| < max{r0, 2r} such that the family of balls Qk = B(yk, ρ(yk)), k ∈ K0,
gives an essential covering of B(0,max{r0, 2r}) with overlap at most κ = Cd

0 as in
(7.13) above. With Q0 := Rd \

⋃︁
k∈K0

Qk and K := K0 ∪ {0}, the family (Qk)k∈K
thus gives an essential covering of Rd with overlap at most κ, i.e.,⃓⃓⃓

Rd \
⋃︂
k∈K

Qk

⃓⃓⃓
= 0 and

∑︂
k∈K

1Qk
(x) ≤ κ for all x ∈ Rd.
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We abbreviate w(x) = wε(x) = (1 + |x|2)ε/2. If ε < 1 we infer from [Mar22,
Lemma 5.3] that (4.22) implies (by Hölder’s inequality)

(7.44) ∥wn∂βf∥L2(Rd) ≤ D1D̃
n+|β|
2 (n!)εν(|β|!)µ for all n ∈ N0, β ∈ Nd

0,

with D̃2 = 8νeνD2 ≥ 1. If ε = 1, then (7.44) agrees with (4.22) for D̃2 = D2 ≥ 1.
We therefore just work with (7.44) for the remaining part, since the power of n! in
this bound guarantees that the series in (7.50) below converges.

We define the good elements of the covering in the same way as we did in the
previous Section 7.2. More precisely, we say that Qk, k ∈ K0, is good with respect
to f if ∑︂

|β|=m

1

β!
∥wm∂βf∥2L2(Qk)

≤ 2m+1κ · 2d
mq2m

δ ·m!
∥f∥2L2(Qk)

for all m ∈ N0,

where qm = D̃
2m

2 (m!)s with s = εν + µ. Furthermore, we again call Qk, k ∈ K0,
bad if it is not good and set

Kg = {k ∈ K : Qk good}.
Although due to the missing global Bernstein inequalities we can not show that

the mass of f on the good balls covers some fixed fraction of the mass of f on
the whole of Rd, inequality (7.44) nevertheless implies that the mass of f on the
bad balls is bounded by δD2

1/2. Hence, the contribution of the bad elements can
likewise be subsumed into the error term. This is summarized in the following
result which is proved essentially in the same way as inequality (7.20) in the proof
of Lemma 7.12 above.

Lemma 7.28. We have

∥f∥2L2(Rd) ≤ ∥f∥2L2(
⋃︁

k∈Kg
Qk)

+ δD2
1.

Proof. Since

∥f∥2L2(Rd) ≤ ∥f∥2L2(
⋃︁

k∈Kg
Qk)

+ ∥f∥2L2(
⋃︁

k/∈Kg
Qk)

+ ∥f∥2L2(Q0)
,

it suffices to show

(7.45)
∑︂
k/∈Kg

∥f∥2L2(Qk)
+ ∥f∥2L2(Q0)

≤ δD2
1.

To this end, we first note that Q0 ⊂ Rd \B(0, r) and, thus, ∥f∥2L2(Q0)
≤ δD2

1/2 by
(7.42). As in the proof of Lemma 7.12, we now use the definition of bad covering
elements, sum over m ∈ N0 and use (7.44) instead of the global Bernstein type
inequality to conclude ∑︂

k/∈Kg

∥f∥2L2(Qk)
≤ δ

2
·D2

1.

This proves (7.45) and, thus, the lemma. □
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In the next lemma we use the definition of good elements to extract a pointwise
estimate for the derivatives of f as in the proof of inequality (7.19) of Lemma 7.12
above.

Lemma 7.29. Let k ∈ Kg. Then there is xk ∈ Qk such that for all m ∈ N0 and
all β ∈ Nd

0 with |β| = m we have

(7.46) |∂βf(xk)| ≤
(︂2κ
δ

)︂1/2
· 2m+1dm/2 · C(k,m)1/2 ·

∥f∥L2(Qk)√︁
|Qk|

with

(7.47) C(k,m) = q2m sup
x∈Qk

w(x)−2m.

Proof. It suffices to observe that

∥∂βf∥2L2(Qk)
= ∥w−m · wm∂βf∥2L2(Qk)

≤ sup
x∈Qk

w(x)−2m · ∥wm∂βf∥2L2(Qk)
.

Following the proof of (7.19) in Lemma 7.12 above along the lines establishes the
existence of xk ∈ Qk as in (7.46). □

7.3.2. Local estimate and proof of Theorem 4.35. In order to estimate f
on each Qk, k ∈ Kg, we use the local estimate from Lemma 7.15. The next lemma
shows that the assumptions of Lemma 7.15 are satisfied and gives a suitable upper
bound for the normalized supremum

(7.48) Mk :=

√︁
|Qk|

∥f∥L2(Qk)

· sup
z∈Qk+D8ρ(xk)

|F (z)| ≥ 1

using the pointwise estimate (7.46). Note that here we have l = (2ρ(xk), . . . , 2ρ(xk))
for the sidelengths of the rectangle containing Qk in Lemma 7.15 and this is why
the polydisc in the previous definition of Mk has radius 4 · 2ρ(xk) = 8ρ(xk).

Lemma 7.30. Let k ∈ Kg. Then, the restriction f |Qk
has an analytic extension

Fk : Qk +D8ρ(xk) → C, and with with D = 40d3/2D̃
2

2Rmax{r0, 2} the normalized
supremum Mk in (7.48) satisfies

logMk ≤ log(2C1) +
1

2
log
(︂2κ
δ

)︂
+D1/(1−s),

where C1 > 0 is a constant depending only on s = εν + µ.
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Proof. Let xk ∈ Qk be a point as in Lemma 7.29. For every z ∈ xk +D10ρ(xk)

we then have∑︂
β∈Nd

0

|∂βf(xk)|
β!

|(z − xk)
β|

≤
∑︂
m∈N0

∑︂
|β|=m

1

β!

(︂2κ
δ

)︂1/2
2m+1dm/2C(k,m)1/2(10ρ(xk))

|β|∥f∥L2(Qk)√︁
|Qk|

= 2
(︂2κ
δ

)︂1/2∥f∥L2(Qk)√︁
|Qk|

∑︂
m∈N0

C(k,m)1/2
(20d3/2ρ(xk))

m

m!
.

Taking into account that Qk +D8ρ(xk) ⊂ xk +D10ρ(xk) and that f is analytic by
Lemma A.8, this shows that the Taylor expansion of f around xk defines an analytic
extension Fk : Qk +D8ρ(xk) → C of f with bounded modulus and that

(7.49) Mk ≤ 2
(︂2κ
δ

)︂1/2 ∞∑︂
m=0

C(k,m)1/2
(20d3/2ρ(xk))

m

m!
.

In order to estimate the right-hand side further, suppose first that |xk| ≤ r0
with r0 ≥ 1 as in (7.43). Then, the upper bound for ρ gives

ρ(xk) ≤ R(1 + r20)
ε/2 ≤ R(1 + r20)

1/2 ≤ 2Rr0.

Using (7.49), (7.47), and the definition of qm, it follows that

Mk ≤ 2
(︂2κ
δ

)︂1/2 ∞∑︂
m=0

qm · sup
x∈Qk

1

w(x)m
· (40d

3/2Rr0)
m

m!

≤ 2
(︂2κ
δ

)︂1/2 ∞∑︂
m=0

(40d3/2D̃
2

2Rr0)
m

(m!)1−s
,

where we have taken into account that w(x) ≥ 1 for all x ∈ Rd. On the other hand,
if |xk| ≥ r0, then for all x ∈ Qk we have the lower bound |x| ≥ |xk| − ρ(xk) ≥
|xk|/2 > 0 since ρ(x) ≤ |x|/2 for all |x| ≥ r0 by (7.43) and, thus,

ρ(xk)

w(x)
≤ Rw(xk)

w(x)
≤ 2R

(︂ |xk|
|x|

)︂ε
≤ 2R

(1/2)ε
≤ 4R.

Using again (7.49) and (7.47) then gives

Mk ≤ 2
(︂2κ
δ

)︂1/2 ∞∑︂
m=0

qm · sup
x∈Qk

ρ(xk)
m

w(x)m
· (20d

3/2)m

m!

≤ 2
(︂2κ
δ

)︂1/2 ∞∑︂
m=0

(80d3/2D̃
2

2R)
m

(m!)1−s
.
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We conclude that for both cases |xk| ≤ r0 and |xk| ≥ r0 we have

Mk ≤ 2
(︂2κ
δ

)︂1/2 ∞∑︂
m=0

(40d3/2D̃
2

2Rmax{r0, 2})m

(m!)1−s
= 2
(︂2κ
δ

)︂1/2 ∞∑︂
m=0

Dm

(m!)1−s
.

We estimate the series using the asymptotics from [Olv97] formulated in Lemma A.3.
This implies that there is a constant C1 ≥ 1 depending only on s such that

(7.50)
∞∑︂

m=0

Dm

(m!)1−s
≤ C1e

D1/(1−s)

.

Hence,

Mk ≤ 2C1

(︂2κ
δ

)︂1/2
eD

1/(1−s)

and taking the logarithm we conclude

logMk ≤ log(2C1) +
1

2
log
(︂2κ
δ

)︂
+D1/(1−s). □

With this preparatory steps, we are now in the position to conclude the proof
of the uncertainty principle with error term.

Proof of Theorem 4.35. Recall from (4.24) and the definition of Qk above
that |Qk ∩ ω|/|Qk| ≥ γ for all k ∈ K and, therefore,

|Qk ∩ ω|
24dτd(diamQk)d

=
1

24d · 2d
· |Qk ∩ ω|

|Qk|
≥ γ

24d · 2d
.

Hence, applying Lemma 7.15 with Ψ = Id and using the estimate for logMk with
k ∈ Kg derived in Lemma 7.30, we obtain for all Qk with k ∈ Kg that

∥f∥2L2(Qk∩ω) ≥
(︂ γ

24d · 2d
)︂5+ logC1

log 2
+ 2

log 2
log 2κ

δ
+ 4

log 2
D1/(1−s)

∥f∥2L2(Qk)
.

Using the definition of D we further estimate

5 +
logC1

log 2
+

2

log 2
log

2κ

δ
+

4

log 2
D1/(1−s) ≤ C2 ·

(︂
1 + log

1

δ
+D

2/(1−s)
2

)︂
for some constant C2 > 0 depending on s, R, r0, s, and d. Therefore,

(7.51)
(︂K
γ

)︂C2·
(︁
1+log 1

δ
+D

2/(1−s)
2

)︁
∥f∥2L2(Qk∩ω) ≥ ∥f∥2L2(Qk)

,

and summing over all good Qk gives∑︂
k∈Kg

∥f∥2L2(Qk)
≤
(︂K
γ

)︂C2·
(︁
1+log 1

δ
+D

2/(1−s)
2

)︁ ∑︂
k∈Kg

∥f∥2L2(Qk∩ω)

≤ κ
(︂K
γ

)︂C2·
(︁
1+log 1

δ
+D

2/(1−s)
2

)︁
∥f∥2L2(ω).
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Together with Lemma 7.28 this proves

∥f∥2L2(Rd) ≤ eC·
(︁
1+log 1

δ
+D

2/(1−s)
2

)︁
∥f∥2L2(ω) + δD2

1,

where C = log κ+ C2

(︁
logK + log 1

γ

)︁
. □



CHAPTER 8

Dissipation estimate

Throughout this chapter, let A be a quadratic differential operator that is the
generator of a semigroup (T (t))t≥0. The goal is to give the proof of Theorem 4.29
which is based on anisotropic smoothing effects of the semigroup. These effects
describe the phenomenon that for certain generators the function T (t)g ∈ L2(Rd)
with arbitrary g ∈ L2(Rd) has a certain regularity for t > 0. Several recent works,
see, e.g., [HPSV17, HPSV18, PSRW18, PS18, Alp21, AB], show that the smoothing
effects of the semigroup are intimately related to the structure of the singular space
of the generator as defined in (2.12). In particular, the article [PSRW18] (see also
the discussion of it in [BPS18, last paragraph in Subsection 1.3.2]) shows that the
singular space encodes the propagation of so-called Gabor wave front sets of T (t)g.
These measure the global regularity in terms of the smoothness and the decay at
infinity simultaneously. Put plainly, the singular space is a subspace of R2d, since
the first d-coordinates measure the decay at infinity while the second d-coordinates
measure the smoothness. In particular, the Gabor wave front set contains directions
in the phase space in which a tempered distribution does not behave like a Schwartz
function, cf. [PS18, RT21]. It has been established in [PSRW18] that only the
parts of the Gabor wave front set of the initial value inside the singular space of
the generator may still occur after applying the semigroup, while all other parts
get regularized by the semigroup. For instance, if S(A) = {0} then T (t)g ∈ S(Rd)
for t > 0 since no part of the Gabor wave front set of any g lies inside the (trivial)
singular space of the generator, see [HPS09, Proposition 3.1.1].

For operators A with more general singular spaces the preceding discussion is
made precise in Theorem 8.2 below. In order to put our results in perspective, we
first state the result that was the main ingredient in the proof of the dissipation
estimate in [BPS18], formulated in Proposition 4.27 above.

Proposition 8.1 ([HPSV18, Proposition 4.1]). Let S(A) = {0} and let k0 be
the rotation exponent from (2.13). Then there are C,C ′, t0 > 0 such that

∥eCt2k0+1(−∆+|x|2)T (t)g∥L2(Rd) ≤ C ′∥g∥L2(Rd) for all 0 < t < t0.

The inequality in the previous proposition implies that for some D, t0 > 0 and
all α, β ∈ Nd

0, t ∈ (0, t0), we have

(8.1) ∥xα∂βxT (t)g∥L2(Rd) ≤
D1+|α|+|β|(α!)1/2(β!)1/2

t(k0+1/2)(|α|+|β|+2d)
∥g∥L2(Rd),

115
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cf. [HPSV18, Inequality (4.19)]. This establishes that the semigroup is even
smoothing in the symmetric Gelfand-Shilov space S1/2

1/2(R
d) ⊂ S(Rd) in the sense

of Definition 4.34 above. An alternative proof of Proposition 8.1 starting from the
estimate (8.1) has been suggested in [MPS22].

In a similar way, as observed in [AB, Remark 2.9], the technique of [Alp21,
Section 4.2] can be adapted to prove

∥eCt2k0+1(−∆)T (t)g∥L2(Rd) ≤ C ′∥g∥L2(Rd) for all 0 < t < t0

and some constants C,C ′, t0 > 0 using (8.1) only for α = 0. This leads to a proof
of the above Proposition 4.28. We follow the same path and establish a new version
of Proposition 8.1 for the operators HI,J starting with a corresponding version of
(8.1). To this end, we need the following corollary to [AB, Theorem 2.6].

Theorem 8.2. Let S(A)⊥ = Rd
I × Rd

J for some sets I,J ⊂ {1, . . . , d} and
let k0 be the rotation exponent from (2.13). Then there are constants C1 > 0 and
t0 ∈ (0, 1) such that for all α ∈ Nd

0,I, β ∈ Nd
0,J , and all t ∈ (0, t0) we have

(8.2) ∥xα∂βxT (t)g∥L2(Rd) ≤
C

|α|+|β|
1

t(|α|+|β|)(k0+1/2)
(α!)1/2(β!)1/2∥g∥L2(Rd).

Proof. We set Yk = (ek, 0) ∈ R2d, k ∈ I, and Y ′
j = (0, ej) ∈ R2d, j ∈ J ,

where el ∈ Rd is the l-th unit vector in Rd. Denote by DYk
and DY ′

j
the Weyl

quantizations of the symbols q(x, ξ) = ek · x and q(x, ξ) = ej · ξ, respectively. Then
DYk

= xk and DY ′
j
= −i∂xj

, cf. Lemma 2.12. Under the imposed assumptions, [AB,
Theorem 2.6] implies that there are constants C > 0 and t0 ∈ (0, 1) such that for
all m ∈ N and t ∈ (0, t0) we have

(8.3) ∥DY 1 . . . DY mT (t)g∥L2(Rd) ≤
Cm

tmk0+m/2
(m!)1/2∥g∥L2(Rd).

Here each of the Y 1, . . . , Y m can be any of the vectors {Yk : k ∈ I} ∪ {Y ′
j : j ∈ J }

forming a basis of S(A)⊥ = Rd
I × Rd

J .
Let now α ∈ Nd

0,I and β ∈ Nd
0,J . For each k ∈ I, we take αk-times the vector

Yk, and, similarly, βj-times the vector Y ′
j for each j ∈ J . In total, these are

m = |α|+ |β| many vectors. Hence, (8.3) implies

∥xα∂βxT (t)g∥L2(Rd) ≤
C |α|+|β|

t(|α|+|β|)(k0+1/2)
((|α|+ |β|)!)1/2∥g∥L2(Rd)

and using (|α|+|β|)! ≤ 2|α|+|β||α|!|β|! as well as |α|! ≤ d|α|α! this proves the theorem
with C1 = 2

√
dC. □

Inequality (8.2) makes precise the above discussion that the singular space
encodes the directions were smoothness and decay at infinity of T (t)g for fixed
t > 0 and g ∈ L2(Rd) is guaranteed. In particular, for the semigroup generated by
the negative partial harmonic oscillator this inequality with β = 0 shows that we
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have decay of elements in the range of the semigroup in those directions where the
potential grows unboundedly.

We now show that Theorem 8.2 implies a version of Proposition 8.1 for partial
harmonic oscillators. To this end, in view of inequality (8.2), we single out the class

(8.4) GI,J := {f ∈ L2(Rd) : xα∂βf ∈ L2(Rd) ∀α ∈ Nd
0,I , β ∈ Nd

0,J }
of partially Schwartz functions and denote l := |I ∩ J | ≤ d. According to
Theorem 8.2 the assumptions of the following lemma are natural since they are
satisfied with D1 = ∥g∥L2(Rd) and with D2 = C1t

−(k0+1/2) if f = T (t)g for an initial
datum g ∈ L2(Rd), a time t ∈ (0, t0), and if the singular space of the generator
satisfies S(A)⊥ = Rd

I × Rd
J .

Lemma 8.3. Let D1, D2 > 0 be constants, and suppose that f ∈ GI,J satisfies

(8.5) ∥xα∂βf∥L2(Rd) ≤ D1D
|α|+|β|
2 (α!)1/2(β!)1/2 for all α ∈ Nd

0,I , β ∈ Nd
0,J .

Then, for s ≤ 1/(40e · 2ddD2
2) we have f ∈ D(esHI,J ) and

∥esHI,J f∥L2(Rd) ≤ 2
(︂2
3

)︂l
D1 ≤ 2D1.

Proof. Define the differential expressions Hj, j ∈ {1, 2, 3}, with

H1g = (−∆I∩J + |xI∩J |2)g, H2g = −∆J\Ig, H3g = |xI\J |2g
for g ∈ GI,J . By Lemma 2.8, we have (HI,J + l)f = (H1 + l)f +H2f +H3f. Since
the Hj, j ∈ {1, 2, 3}, leave GI,J invariant and commute pairwise, this gives

(HI,J + l)nf =
∑︂
|ν|=n
ν∈N3

0

(︃
n

ν

)︃
(H1 + l)ν1Hν2

2 H
ν3
3 f

for n ∈ N0. It is easy to see that

Hν2
2 H

ν3
3 f = (−1)ν2

∑︂
|β|=ν2

β∈Nd
0,J\I

∑︂
|α|=ν3

α∈Nd
0,I\J

(︃
ν2
β

)︃(︃
ν3
α

)︃
x2α∂2βx f ∈ GI,J (Rd).

Moreover, Lemma A.5 (with d replaced by l) in Appendix A shows

(8.6) ∥(H1 + l)ν1g∥L2(Rd) ≤ 32ν1−dlν1
∑︂

|γ+δ|≤2ν1
γ,δ∈Nd

0,I∩J

(2ν1)
ν1−|γ+δ|/2∥xγ∂δxg∥L2(Rd).

Hence, inserting g = Hν2
2 H

ν3
3 f in formula (8.6) and using the triangle inequality

for operator norms, we are left with estimating∑︂
|γ+δ|≤2ν1
γ,δ∈Nd

0,I∩J

∑︂
|β|=ν2

β∈Nd
0,J\I

∑︂
|α|=ν3

α∈Nd
0,I\J

32ν1−ddν1(2ν1)
ν1−|γ+δ|/2

(︃
ν2
β

)︃(︃
ν3
α

)︃
∥xγ+2α∂δ+2β

x f∥L2(Rd).
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We may now apply the hypothesis (8.5) for each summand separately. This is
possible since γ + 2α ∈ Nd

0,I and δ + 2β ∈ Nd
0,J . Hence,

32ν1−ddν1(2ν1)
ν1−|γ+δ|/2 · ∥xγ+2α∂δ+2β

x f∥L2(Rd)

≤32ν1−llν1(2ν1)
(2ν1−|γ+δ|)/2D1D

|γ+2α|+|δ+2β|
2 ((γ + 2α)!)1/2((δ + 2β)!)1/2.

(8.7)

In order to further estimate this term, we use the simple inequality ζ! ≤ |ζ||ζ| for
multi-indices ζ and the upper bound |γ + 2α|+ |2β + δ| ≤ 2n resulting from the
conditions of the summations. Thereby,

D
|γ+2α|+|δ+2β|
2 ((γ + 2α)!)1/2((δ + 2β)!)1/2 ≤ D2n

2 (2n)(|γ+2α|+|δ+2β|)/2.

Moreover, since 2ν1 − |γ + δ|+ |γ + 2α|+ |δ + 2β| = 2n, we get using ν1 ≤ n that

(2ν1)
ν1−|γ+δ|/2(2n)(|γ+2α|+|δ+2β|)/2 ≤ (2n)(2ν1−|γ+δ|+|γ+2α|+|δ+2β|)/2 = (2n)n.

Combining this with the elementary estimate (2n)n ≤ (2e)nn! and (8.7) yields

32ν1−ddν1(2ν1)
ν1−|γ+δ|/2 · ∥xγ+2α∂δ+2β

x f∥L2(Rd) ≤ 32ν1−ldν1D1(2eD
2
2)

nn!.

Noting also that applying the multinomial formula twice we have∑︂
|γ+δ|≤2ν1
γ,δ∈Nd

0,I∩J

∑︂
|β|=ν2

β∈Nd
0,J\I

∑︂
|α|=ν3

α∈Nd
0,I\J

(︃
ν2
β

)︃(︃
ν3
α

)︃
≤ #{γ, δ ∈ Nd

0,I∩J : |γ + δ| ≤ 2ν1} · dν2+ν3

≤ (2ν1 + 1)ldν2+ν3 ≤ 2l2ν1ddν2+ν3 ,

we finally derive

∥(H1 + l)ν1Hν2
2 H

ν3
3 f∥L2(Rd) ≤

(︂2
3

)︂l
D1(9 · 2d)ν1(2e · dD2

2)
nn!.

By the multinomial formula, we have thus shown

∥(HI,J + l)nf∥L2(Rd) ≤
∑︂
|ν|=n
ν∈N3

0

(︃
n

ν

)︃
∥(H1 + l)ν1Hν2

2 H
ν3
3 f∥L2(Rd)

≤
(︂2
3

)︂l
D1(20e · 2dD2

2)
nn!.

Finally, let s =
(︁
40e · 2ddD2

2

)︁−1. Then f ∈ D(es(HI,J+l)) and

∥es(HI,J+l)f∥L2(Rd) ≤
∞∑︂
n=0

sn

n!
∥(HI,J + l)nf∥L2(Rd) ≤ 2 ·

(︂2
3

)︂l
D1.

It remains to observe that f ∈ D(esHI,J ) with

∥esHI,J f∥L2(Rd) ≤ ∥es(HI,J+l)f∥L2(Rd) ≤ 2 ·
(︂2
3

)︂l
D1

by the spectral theorem. □
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The above lemma is the central tool in the proof of the following generalization
and sharpening of Proposition 8.1.

Theorem 8.4. Let S(A)⊥ = Rd
I × Rd

J for some sets I,J ⊂ {1, . . . , d} and let
k0 be the rotation exponent from (2.13). Then we have for all g ∈ L2(Rd) that
T (t)g ∈ D(eC0t2k0+1HI,J ) and

∥eC0t2k0+1HI,J T (t)g∥L2(Rd) ≤ 2∥g∥L2(Rd) for all t ∈ (0, t0).

Here C0 = 1/(40e · 2ddC2
1), and C1 and t0 ∈ (0, 1) are as in Theorem 8.2.

Proof. Recall that (8.2) in Theorem 8.2 shows that for every 0 < t < t0 the
function f = T (t)g satisfies the hypotheses of Lemma 8.3 with D1 = ∥g∥L2(Rd) and
D2 = C1t

−(k0+1/2). The latter lemma therefore gives
⃦⃦
esHI,J f

⃦⃦
L2(Rd)

≤ 2∥g∥L2(Rd)

for s ≤ 1/(40e · 2ddD2
2), which proves the theorem. □

We have now assembled all tools needed to prove the dissipation estimate.

Proof of Theorem 4.29. We have T (t)g ∈ D(eC0t2k0+1HI,J ) and

(8.8)
⃦⃦
eC0t2k0+1HI,J T (t)g

⃦⃦
L2(Rd)

≤ 2∥g∥L2(Rd) for t ∈ (0, t0)

by Theorem 8.4. For those t, we therefore have

T (t)g = e−C0t2k0+1HI,J eC0t2k0+1HI,J T (t)g.

Moreover, the projections Pλ = Pλ(HI,J ) and the operator e−C0t2k0+1HI,J commute,
so that the previous identity and the spectral theorem imply

∥(1− Pλ)T (t)g∥L2(Rd) =
⃦⃦[︁
e−C0t2k0+1HI,J (1− Pλ)

]︁
eC0t2k0+1HI,J T (t)g

⃦⃦
L2(Rd)

≤
⃦⃦
e−C0t2k0+1HI,J (1− Pλ)

⃦⃦
L(L2)

·
⃦⃦
ect

2k0+1HI,J T (t)g
⃦⃦
L2(Rd)

≤ 2e−C0t2k0+1λ · ∥g∥L2(Rd)

for t ∈ (0, t0), where we used inequality (8.8) in the last line. □





APPENDIX A

Supplementary results and proofs

This appendix collects some additional results which are of a more technical nature.

A.1. Technical lemmas and proofs

We first recall some basic lemmas that were used in the main part of this work.
Furthermore, we point out some technical details which were skipped there.

A.1.1. Basic lemmas. We start with a simple interpolation result which
played an essential role in the proof of Proposition 6.14.

Lemma A.1 (cf. [Rob95, p. 110]). Let P,Q,R ≥ 0 with P ≤ Q. Suppose that
there are constants r, s, t0 > 0 such that

(A.1) P ≤ e−rtQ+ estR for all t ≥ t0.

Then

(A.2) P ≤ max{2, ert0} ·Q1−κRκ with κ =
r

r + s
.

Proof. Let t1 ∈ R be such that et1 = (Q/R)1/(r+s). If t1 ≥ t0, we may apply
(A.1) and obtain

P ≤
(︂R
Q

)︂r/(r+s)

Q+
(︂Q
R

)︂s/(r+s)

R ≤ 2Q1−κRκ.

In case that t1 < t0 we have (Q/R)1/(r+s) = et1 ≤ et0 and therefore Qκ ≤ ert0Rκ.
Hence,

P ≤ Q = Q1−κQκ ≤ ert0Q1−κRκ.

Plugging these two estimates together we obtain (A.2). □

The next lemma was used in the proof of the Bernstein inequalities in Section 7.2.

Lemma A.2. Let h : Nd
0 → C. Then, for all m ∈ N0 we have

1

m+ 1

d∑︂
j=1

∑︂
|β|=m

1

β!
h(β + ej) =

∑︂
|α|=m+1

1

α!
h(α).
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Proof. Let α ∈ Nd
0. For j ∈ {1, . . . , d} and β ∈ Nd

0 with α = β + ej it is easy
to see α! = β! · αj. Hence,∑︂

(j,β) : α=β+ej

1

β!
=

1

α!

∑︂
(j,β) : α=β+ej

αj =
|α|
α!
,

where for the last equality we have taken into account that α = β + ej for some
j ∈ {1, . . . , d} and β ∈ Nd

0 if and only if αj > 0. Therefore,

1

m+ 1

d∑︂
j=1

∑︂
|β|=m

1

β!
h(β + ej) =

1

m+ 1

∑︂
|α|=m+1

h(α)
∑︂

(j,β) : α=β+ej

1

β!
=

∑︂
|α|=m+1

1

α!
h(α),

which proves the assertion. □

We also mention the following simple consequence of the asymptotics established
in [Olv97] which we used in the proof of Lemma 7.30.

Lemma A.3. Let p ∈ (0, 4]. Then there is a constant C1 > 0 such that
∞∑︂

m=0

xm

(m!)p
≤ C1e

x1/p

for all x ≥ 1.

Proof. We infer from [Olv97, Chapter 8, Eq. (8.07)] that for p ∈ (0, 4] we have

F (x) :=
∞∑︂

m=0

xm

(m!)p
=

epx
1/p

p1/2(2πx1/p)(p−1)/2

(︁
1 +R(p, x)

)︁
where R(p, x) ∈ O(x−1/p) as x → ∞. Hence, there are C ′

1, x0 ≥ 1 such that
R(p, x) ≤ C ′

1x
−1/p for x ≥ x0. If x ≥ x0 we directly obtain F (x) ≲p ex

1/p . On
the other hand, if x < x0 we estimate F (x) ≤ F (x0) ≲p,x0 1. However, since x0
depends only on p and since ex

1/p ≥ 1, this also yields F (x) ≲p e
x1/p . □

A.1.2. Proof of an observability estimate. Here we provide the simple
computations that are needed to conclude the observability estimate stated in
Corollary 4.36 in Section 4.3. We first recall that Theorem 4.35 implies (3.14) with

(A.3) Uqτ = eC·(1+log 1
δ
+((d+1)1/2C2(qτ)−r2 )2/(1−s)) and Eqτ = C2

1δ/(qτ)
2r1

for all δ ∈ (0, 1] and all τ ∈ (0, t0), where s = εν + µ. The next lemma shows that
these constants satisfy (3.16).

Lemma A.4. There is a constant C3 ≥ 1 depending on C,C1, C2, r1, r2, and s,
and numbers q0 ∈ (1/2, 1) and τ0 ∈ (0, t1) such that

(3.16 revisited)
Uqτ

(1− q)τ
≤ 1

h(τ)
and Eqτ ≤ h(qτ)

h(τ)
for τ ∈ (0, τ0)

holds with
h(τ) = (1− q0) exp

(︂
−C3 · τ−2r2/(1−s)

)︂
.
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Before we give the proof of the lemma we show how it implies Corollary 4.36.

Proof of Corollary 4.36. Applying Theorem 4.35 to f = T (t)g with D1

and D2 as in (4.23) shows (3.14) with the constants from (A.3). According to
Lemma A.4, these constants satisfy (3.16) so that the desired observability estimate
follows from Corollary 3.11. □

The following proof is essentially extracted from [Mar22, Proof of Theorem 2.11].

Proof of Lemma A.4. Without loss of generality we suppose that q ≥ 1/2
and choose δ = exp

(︁
−τ−2r2/(1−s)

)︁
so that

Uqτ ≤ exp
(︁
C ′ · τ−2r2/(1−s)

)︁
where C ′ = C·

(︁
1 + ((d+ 1)1/2C22

r2)2/(1−s)
)︁
. Moreover, the choice of δ also yields

Eqτ ≤ C2
1

(qτ)2r1
exp
(︁
−τ−2r2/(1−s)

)︁
.

We use twice that log x ≤ Kκx
κ for every κ > 0 and all x ≥ 1. Then we can choose

τ0 ≤ t0 sufficiently small and obtain simultaneously

Uqτ

τ
= exp

(︂
c · τ−2r2/(1−s) + log

1

τ

)︂
≤ exp

(︁
C3 · τ−2r2/(1−s)

)︁
with a constant C3 > 0 depending on C,C2, r1, s and the dimension d, as well as

Eqτ ≤ exp
(︂
−τ−4r2/(1−s) + log

C2
1

(qτ)2r1

)︂
≤ exp

(︂
−1

2
τ−4r2/(1−s)

)︂
for all τ ∈ (0, τ0). Setting

hq(τ) = (1− q) exp
(︁
−C3 · τ−4r2/(1−s)

)︁
and choosing 1/2 ≤ q < 1 in such a way that

hq(qτ)

hq(τ)
= exp

(︂
C3 · τ−4r2/(1−s)

(︁
1− q−4r2/(1−s)

)︁)︂
≥ exp

(︂
−1

2
τ−4r2/(1−s)

)︂
we have shown the second part of (3.16). In order to contrive the first part of the
latter, we choose q such that

1− q−4r2/(1−s) ≥ − 1

2C3

or, equivalently, q ≥
(︂ 1

1 + 2C3

)︂(1−s)/4r2
=: q′.

Then, for q0 = max{1/2, q′} we get

Uq0τ

(1− q0)τ
≤ 1

hq0(τ)
and Eq0τ ≤ hq0(q0τ)

hq0(τ)
for τ ∈ (0, τ0),

which establishes (3.16) with h(τ) = hq0(τ). □
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A.1.3. Bounds for powers of the harmonic oscillator. The next lemma
is used in the proof of Lemma 8.3. Here, for simplicity, we set

G =
{︂
f ∈ L2(Rd) : xα∂βf ∈ L2(Rd)∀α, β ∈ Nd

0

}︂
.

Lemma A.5. Let f ∈ G and let H1 = −∆+ |x|2 in L2(Rd). Then

(A.4) ∥(H1 + d)mf∥L2(Rd) ≤ 32m−ddm
∑︂

γ,δ∈Nd

|γ+δ|≤2m

(2m)m−|γ+δ|/2∥xγ∂δxf∥L2(Rd).

This lemma is based on an one-dimensional argument we present next. The
following inequality and its proof is a generalized version of the inequality stated
in [CKP07, Lemma 7.5.2] and of a pointwise equality for powers of the harmonic
oscillator proven explicitly in [MPS22, Eq. (4.9) and (4.11)]. It is more general
then needed in the proof of Lemma A.5, however, the derivation we present shows
precisely why certain factors emerge. Furthermore, this lemma might be of interest
in future research when one is interested in deriving estimates of the form (A.4)
for operators H1 = −∆+ |x|2k with k > 1.

Lemma A.6. Let |εj| ≤ 1 and let f ∈ C∞(R) be such that for all j, l ∈ N0 we
have xj∂lxf ∈ L2(R). Then

(A.5)
⃦⃦⃦[︂ m∏︂

j=1

(εj∂x + xk)
]︂
f
⃦⃦⃦
L2(R)

≤ (k + 2)m
∑︂
j,l∈N

j
k
+l≤m

(km)
km−j−kl

k+1 ∥xj∂lxf∥L2(R).

Proof. The statement is obviously true for m = 1. We proceed by induction
and suppose that the statement holds for m ∈ N. Then⃦⃦⃦[︂m+1∏︂

j=1

(εj∂x+x
k)
]︂
f
⃦⃦⃦
L2(R)

=
⃦⃦⃦[︂ m∏︂

j=1

(εj∂x + xk)
]︂
(εm+1∂x + xk)f

⃦⃦⃦
L2(R)

≤ (k + 2)m
∑︂
j,l∈N

j
k
+l≤m

(km)
km−j−kl

k+1 ∥xj∂lx
[︁
(εm+1∂x + xk)f

]︁
∥L2(R).

Using the Leibniz rule, we compute

∥xj∂lx
[︁
xkf
]︁
∥L2(R) ≤

min{l,k}∑︂
η=0

(km)η∥xj+k−η∂l−ηf∥L2(R).

Combining this estimate with the triangle inequality we obtain

∥xj∂lx
[︁
(εm+1∂x + xk)f

]︁
∥L2(R) ≤ ∥xj∂l+1

x f∥L2(Rd) +

min{l,k}∑︂
η=0

(km)η∥xj+k−η∂l−ηf∥L2(R).
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For each of the at most (k + 1)-terms in the second sum we have

(km)
km−j−kl

k+1 (km)η∥xj+k−η∂l−ηf∥L2(R) = (km)
k(m+1)−j̃−kl̃

k+1 ∥xj̃∂ l̃f∥L2(R)

with j̃ = j + k − η and l̃ = l − η. The first term can be bounded in a similar way
and since we have (k + 2)-terms in total this shows

(k + 2)m
∑︂
j,l∈N

j
k
+l≤m

(km)
km−j−kl

k+1 ∥xj∂lx
[︁
(εm+1∂x + xk)f

]︁
∥L2(R)

≤ (k + 2)m+1
∑︂
j̃,l̃∈N

j̃
k
+l̃≤m+1

(︁
k(m+ 1)

)︁ k(m+1)−j̃−kl̃
k+1 ∥xj̃∂ l̃xf∥L2(R),

which concludes the induction step. □

We now apply the last lemma with k = 1.

Proof of Lemma A.5. Define the differential expressions S±
j = ±∂xj

+xj for
j = {1, . . . , d}. Then S±

j leaves G invariant and are pairwise commuting. Moreover,
(∂2xj

+ x2j + 1)f = S+
j S

−
j f and, therefore,

⃦⃦
(H1 + d)mf

⃦⃦
L2(Rd)

≤
∑︂
ω∈Nd

0
|ω|=m

(︃
m

ω

)︃⃦⃦
(S+

1 S
−
1 )

ω1 . . . (S+
d S

−
d )

ωdf
⃦⃦
L2(Rd)

for f ∈ G. By Lemma A.6 and Fubini’s theorem we have

∥(S+
j S

−
j )

ωjg∥L2(Rd) ≤ 32ωj−1
∑︂

ν(j)∈N2
0

|ν(j)|≤ωj

ω
(ωj−|ν(j)|)/2
j ∥xν

(j)
1 ∂ν

(j)
2

x g∥L2(Rd)

for g ∈ G and all j ∈ {1, . . . , d}. Applying this estimate repeatedly we obtain

∥(S+
1 S

−
1 )

ω1 . . . (S+
d S

−
d )

ωdf∥L2(Rd) ≤ 32m−d
∑︂

γ,δ∈Nd
0

γ+δ≤2ω

(2m)m−|γ+δ|/2∥xγ∂δxf∥L2(Rd)

and replacing the condition γ + δ ≤ 2ω (where the inequality is understood
entrywise) by the weaker bound |γ + δ| ≤ 2m we get rid of the dependence on ω.
Hence,

∥(H1 + d)mf∥L2(Rd) ≤ 32m−ddm
∑︂

γ,δ∈Nd
0

|γ+δ|≤2m

(2m)m−|γ+δ|/2∥xγ∂δxf∥L2(Rd). □
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Remark A.7. A completely analogous proof shows that for the operator
H =

∑︁
j(−∂xj

+ xkj )(∂xj
+ xkj ) we have the bound

(A.6) ∥Hnf∥L2(Rd) ≤ (k + 2)2ndn
∑︂

α,β∈Nd
0

|α|
k
+|β|≤2n

(2kn)
2kn−|α|−k|β|

k+1 ∥xα∂βf∥L2(Rd)

for all f ∈ G and all n ∈ N.

A.1.4. Analyticity. We now establish that functions in the range of a semi-
group that is smoothing in a Gelfand-Shilov space Sµ

ν (Rd) with 0 ≤ µ < 1 are
analytic. This is required in order to follow the complex analytic approach discussed
in Section 7.3.

Lemma A.8 (see [DS22, Lemma A.1]). Let f ∈ C∞(Rd) be such that

∥∂βf∥L2(Rd) ≤ C1C
|β|
2 β! for all β ∈ Nd

0

with some constants C1, C2 > 0. Then, f is analytic in Rd.

Proof. Choose σ ∈ (0, 1] with 2C2σ < 1. Let y ∈ Rd, and let B = B(y, τ)
with τ < σ/d. We show that the Taylor series of f around y converges in B and
agrees with f there. To this end, it suffices to establish

(A.7)
∑︂
α∈N0

∥∂αf∥L∞(B)

α!
τ |α| <∞;

cf. [KP92, Theorem 2.2.5 and Proposition 2.2.10].
We proceed similarly as in the proof of [ES21, Lemma 3.2]: Since B satisfies the

cone condition, by Sobolev embedding there exists a constant C > 0, depending
only on τ and the dimension, such that ∥g∥L∞(B) ≤ C∥g∥W d,2(B) for all g ∈ W d,2(B),
see, e.g., [AF03, Theorem 4.12]. Applying this to g = ∂αf |B with |α| = m ∈ N0,
we obtain

∥∂αf∥2L∞(B) ≤ C2∥∂αf∥2W d,2(B) ≤ C2∥∂αf∥2W d,2(Rd)

= C2
∑︂
|β|≤d

∥∂β+αf∥2L2(Rd) ≤ C2

m+d∑︂
k=m

∑︂
|β|=k

∥∂βf∥2L2(Rd).

Taking the square root and using the hypothesis gives

∥∂αf∥L∞(B) ≤ C
m+d∑︂
k=m

∑︂
|β|=k

∥∂βf∥L2(Rd) ≤ CC1

m+d∑︂
k=m

Ck
2

∑︂
|β|=k

β!.

We clearly have ∑︂
|β|=k

β! ≤ k! ·#{β ∈ Nd
0 | |β| = k} ≤ k!2k+d−1.
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In view of the choice of σ, we thus further estimate

∥∂αf∥L∞(B) ≤ 2d−1CC1

m+d∑︂
k=m

(2C2)
kk! ≤ 2d−1CC1

(m+ d)!

σm+d

m+d∑︂
k=m

(2C2σ)
k

≤ 2d−1CC1

σd

∞∑︂
k=0

(2C2σ)
k · (m+ d)!

σm
=: C0 ·

(m+ d)!

σm
.

Now, ∑︂
|α|=m

∥∂αf∥L∞(B)

α!
≤ C0

(m+ d)!

σm

∑︂
|α|=m

1

α!
= C0

(︂d
σ

)︂m (m+ d)!

m!

≤ C0

(︂d
σ

)︂m
(m+ d)d,

and since τ is chosen such that dτ/σ < 1, this shows (A.7) and, hence, completes
the proof. □

A.1.5. Remarks on ghost dimension. In the proof of Lemma 6.16 we used
that the extended function F is infinitely weakly differentiable. In order to see this,
we let F be as in (6.18) where the corresponding function f satisfies f ∈ RanPλ(H).
The proof of the following lemma is essentially taken from [DRST, Lemma A.1].

Lemma A.9. F is infinitely weakly differentiable with respect to t, and the
corresponding weak derivatives coincide with their L2(Rd) analogues. The derivatives
of F are given by the formula in equation (6.20).

Proof. First we show that

lim
h→0

∫︂
J

⃦⃦⃦
∂k+1
t F (·, t)− ∂kt F (·, t+ h)− ∂kt F (·, t)

h

⃦⃦⃦2
L2(Rd)

dt = 0

for each bounded interval J ⊂ R and each k ∈ N0, where ∂kt F (·, t) is given by (6.20).
To this end, it suffices to observe that⃦⃦⃦

∂k+1
t F (·, t)− ∂kt F (·, t+ h)− ∂kt F (·, t)

h

⃦⃦⃦2
L2(Rd)

=

∫︂
[κ,E]

⃓⃓⃓
∂k+1
t st(λ)−

∂kt st+h(λ)− ∂kt st(λ)

h

⃓⃓⃓2
d⟨PH(λ)f, f⟩

≤ Ch∥f∥2L2(Rd)

with
C = sup

(t,λ)∈J̃×[κ,λ]

|∂k+2
t st(λ)|2 <∞, J̃ = {t± |h| : t ∈ J},

where we have taken into account the mean value theorem of differential calculus.
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Now, let φ ∈ C∞
c (Rd × R). The above then implies by Fubini’s theorem and

Cauchy-Schwarz inequality that∫︂
Rd×R

(∂k+1
t F )(x, t)φ(x, t) d(x, t)

= lim
h→0

∫︂
Rd×R

(∂kt F )(x, t+ h)− (∂kt F )(x, t)

h
φ(x, t) d(x, t).

On the other hand, by change of variables with respect to t, we obtain∫︂
Rd×R

(∂kt F )(x, t+ h)− (∂kt F )(x, t)

h
φ(x, t) d(x, t)

=

∫︂
Rd×R

(∂kt F )(x, t)
φ(x, t− h)− φ(x, t)

h
d(x, t)

−−−→
h→∞

−
∫︂
Rd×R

(∂kt F )(x, t)(∂tφ)(x, t) d(x, t),

where for the latter we have taken into account Lebesgue’s dominated convergence
theorem. The claim then follows by induction over k. □

A.1.6. Scaling. We now give the details of the scaling procedure that were left
out in the proof of Theorem 4.10 (the spectral inequality for Schrödinger operators
with singular admissible potentials). To this end, recall that V is admissible
and suppose that ω is (G, δ)-equidistributed, that is, each intersection ΛG(k) ∩ ω,
k ∈ (GZ)d, contains a ball of radius δ ∈ (0, G/2). Let us denote the centers of
these balls by zk, k ∈ (GZ)d, so that ω ⊃

⋃︁
k B(zk, δ). Define SG : Rd → Rd by

SG(x) = Gx. Then

ω̃ := S−1
G ω ⊃

⋃︂
k∈(GZ)d

B(zk/G, δ/G) ⊃
⋃︂
j∈Zd

B(yj, δ/G)

where yj = zGj/G ∈ Λ1(j) for j ∈ Zd. Thus, ω̃ is (1, δ/G)-equidistributed.
Let Ṽ = G2V ◦ SG. Clearly Ṽ is admissible and for f ∈ H1(Rd) we have

f ◦ SG ∈ H1(Rd). Using that V is admissible we calculate

∥Ṽ f∥2L2(Rd) = G4−d∥V
(︁
f ◦ SG

)︁
∥2L2(Rd)

≤ G4−d
(︁
λ1∥∇(f ◦ SG)∥2L2(Rd) + λ2∥f ◦ S−1

G ∥2L2(Rd)

)︁
= G2λ1∥∇f∥2L2(Rd) +G4λ2∥f∥2L2(Rd)

and set λ̃1 = G2λ1 and λ̃2 = G4λ2.
If H̃ = −∆+ Ṽ then the transformation formula for spectral measures implies

that for f ∈ RanPλ(H̃) we have f ◦ S−1
G ∈ RanPG2λ(H). Applying the theorem

with f ◦ S−1
G and with λj replaced by λ̃j, j ∈ {1, 2}, gives the asserted inequality.
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A.2. Geometric properties of sensor sets

Here we give some simple additional results and calculations that relate to properties
of sensor sets and that were left out in the main body of this work.

A.2.1. Different notions of thickness. We first show that it is irrelevant
whether the notion of thickness is defined with respect to balls or cubes.

Lemma A.10. Let γ ∈ (0, 1] and ρ > 0. If a measurable set ω ⊂ Rd is
(γ, ρ/2)-thick in the sense of Definition 4.2, then it satisfies

|ω ∩ Λρ(x)|
|Λρ(x)|

≥ γ · τd
2d

for all x ∈ Rd.

Conversely, if ω satisfies
|ω ∩ Λρ(x)|
|Λρ(x)|

≥ γ for all x ∈ Rd,

then it is (2dγ/(dd/2τd), ρ
√
d/2)-thick in the sense of Definition 4.2.

Proof. We have B(x, ρ/2) ⊂ Λρ(x) and therefore
|ω ∩ Λρ(x)|
|Λρ(x)|

≥ |ω ∩B(x, ρ/2)|
|B(x, ρ/2)|

· |B(x, ρ/2)|
|Λρ(x)|

≥ γ · τd
2d
.

The second statement follows analogously using Λρ(x) ⊂ B(x, ρ
√
d/2). □

A.2.2. Calculations for Example 4.18. Recall d = 1 and ρ(x) = (1+x2)1/4.
We set xn = 100n3 for n ∈ N and we aim to show that the set ω = R \ B(xn, n)
satisfies

|B(x, ρ(x)) ∩ ω|
|B(x, ρ(x))|

≥ 1

4
.

To this end, we estimate ρ(xn) ≥
(︁
100n3

)︁1/2 ≥ 10n and using the binomial formula
we see that xn+1 ≥ xn + 4x

1/2
n+1 ≥ xn + 4ρ(xn+1). Hence, for all a ∈ B(xn, ρ(xn))

and all b ∈ B(xn+1, ρ(xn+1)) we have

b− a ≥ xn+1 − ρ(xn+1)− (xn + ρ(xn)) ≥ xn+1 − xn − 2ρ(xn+1) ≥ 2ρ(xn+1).

Therefore,
⋂︁

n∈NB(xn, ρ(xn)) = ∅. Now, for every x ∈ R with |x| ≥ 1 there is at
most a single n ∈ N such that B(x, ρ(x)) ∩ B(xn, ρ(xn)) ̸= ∅ and in this case we
have x + ρ(x) > xn − n and x − ρ(x) < xn − n which implies x > (xn − n)/2 as
well as x < 2(xn + n). Using these bounds we calculate

|B(x, ρ(x)) ∩ ω|
|B(x, ρ(x))|

≥ |B(x, ρ(x))| − |B(xn, n)|
|B(x, ρ(x))|

≥ |x|1/2 − n

|x|1/2

≥
(︁
xn−n

2

)︁1/2 − n(︁
2(xn + n)

)︁1/2 ≥ 6n3/2 − n

12
√
2n3/2

≥ 5

12
√
2
≥ 1

4
.
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This proves the desired bound.

A.2.3. Equidistributed and thick sets. Let us now compare the two differ-
ent assumptions we imposed on our sensor sets ω ⊂ Rd. For simplicity, we consider
only the situation where for some α ≥ 0, δ ∈ (0, 1/2), and γ ∈ (0, 1] we have

(i) each intersection ω ∩ Λ1(k), k ∈ Zd, contains a ball of radius δ1+|k|α , or
(ii) the measure of each intersection ω ∩ Λ1(k), k ∈ Zd, is at least γ1+|k|α .

Here, clearly, the situation in (ii) is more general. In fact, even for α = 0 there
are sets which satisfy (ii) but not (i); consider, e.g., the set ω =

⋃︁
k∈Z(k +M) ⊂ R,

where M ⊂ [−1/2, 1/2] is a measurable set with positive Lebesgue measure which
has empty interior, for instance a Smith–Volterra–Cantor set [Smi75]. Moreover,
let us also mention that α in (ii) might be chosen smaller then in (i) which might
change the situation drastically since we encountered upper bounds for α in our
main results. As an example, let β > 1 and suppose that ω is a set such that each
intersection ω ∩ Λ1(k) with k ∈ Zd contains a disjoint union of e1+|k|β -many balls
of radius e−(1+(1+|k|)β). Then, clearly, each of these intersections contains a ball of
radius e−(1+(1+|k|)β) while the measure of the intersection satisfies

|ω ∩ Λ1(k)| = τde
d·(|k|β−(1+|k|)β) ≳d e

−β(1+|k|β−1).

Hence, while in case (i) we need to choose α = β, in case (ii) we may choose
α = β − 1.

On the other hand, for every set ω that satisfies (i) we have

|Λ1(k) ∩ ω| ≥ τdδ
d·(1+|k|α) ≥

(︄
δd

2d
d+1
2

)︄1+|k|α

=: γ1+|k|α

using the asymptotic formula for τd. Hence, ω satisfies (ii) with this choice for γ.



APPENDIX B

Unique continuation for the gradient

In this excursus we argue that the gradients of eigenfunctions of a second-order
elliptic operator satisfy some quantitative unique continuation estimate. We also
present an application in the theory of random divergence-type operators, i.e.,
second-order elliptic operators where the second order term is random. This depicts
another scope of applications for quantitative unique continuation estimates. Since
we do not go into detail here, we refer the reader to the books [Sto01, Ves08] for
an overview of the theory of random divergence-type and random Schrödinger
operators.

Let us now briefly motivate the findings of the authors articles [DV, Dic21]. Let
L ∈ N, ΛL = ΛL(0), and let A = (aj,k)

d
j,k=1 : ΛL → Sym(Rd) be a matrix function

that is uniformly elliptic. Consider the divergence-type operator

HD
ΛL
(A) : L2(ΛL) ⊃ D

(︁
HD

ΛL
(A)
)︁
→ L2(ΛL)

with coefficients given by the matrix function A and with Dirichlet boundary
conditions. This operator is defined as the unique selfadjoint operator associated
to the lower semibounded form

hΛL
(A) : H1

0 (ΛL)×H1
0 (ΛL) → L2(Rd), hL[f, g] =

∫︂
ΛL

∇f · A∇g.

The operator HD
ΛL

(A) has compact resolvent and therefore purely discrete spectrum.
Moreover, in the sense of quadratic forms we have HD

ΛL
(A) = −divA∇|ΛL

, where
the right-hand side is understood as the restriction of the differential expression
with Dirichlet boundary conditions.

The guiding question in this excursus is the following: If W : ΛL → [0,∞) is a
function such that W ≥ 1ω for some measurable set ω ⊂ ΛL, under what conditions
on ω do the eigenvalues of the operator HD

ΛL
(A + t · W ) increase in t > 0? If

the eigenvalues do increase in t we say that we have an eigenvalue lifting. These
eigenvalue liftings are of interest in the theory of random operators, since they can
be used to prove so-called initial length scale and Wegner estimates. These, in turn,
imply Anderson localization via the multi-scale analysis, see, e.g., the literature
cited in [NTTV20b, ST20, Dic21].

In the present setting, eigenvalue liftings follow from suitable quantitative lower
bounds for the derivatives of t ↦→ En(H

D
ΛL
(A + t ·W )), where the latter denotes

the n-th eigenvalue of the operator (enumerated non-decreasingly and counting
131
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multiplicities). These derivatives can computed explicitly: With a normalized
eigenfunction fn(t) corresponding to this eigenvalue we have

(B.1) ∂tEn

(︁
HD

ΛL
(A+ t ·W )

)︁
= ∥W∇fn(t)∥2L2(ΛL)

≥ ∥∇fn(t)∥2L2(ω∩ΛL)

for all except finitely many t ∈ [0, 1] if W ≥ 1ω. In particular, a t-independent
lower bound for the right-hand side implies by the fundamental theorem of calculus
that the eigenvalues increase. The unique continuation estimate for the gradient
we present in Corollary B.3 below provides exactly this lower bound.

An unique continuation estimate for divergence-type operators has been estab-
lished in [TV20]. Here the matrix function needs to be Lipschitz-continuous, which
is expected since for merely Hölder-continuous coefficients unique continuation
may fail, see [Pli63, Mil73, Man98]. Furthermore, it needs to satisfy an additional
technical assumption (Dir) that is required for certain extension arguments (closely
related to the procedure described in Remark 6.17 above) needed in the proof.
However, it is quite possible that by using a different technique the assumption
(Dir) is no longer required.

In what follows, we let ϑE ≥ 1 and ϑL ≥ 0 be the ellipticity resp. Lipschitz
constant of A and we let G > 0. We now present a result from [TV20]. Let us
emphasize that the statement in [TV20] is more general than expressed in the next
theorem as it also allows the operator HD

ΛL
(A) to have lower order terms.

Theorem B.1 ([TV20, Corollary 2.8]). Let L ∈ GN and suppose that

(Dir) ∀j ̸= k, x ∈ ΛL ∩ ΛL + Lek : aj,k(x) = ak,j(x) = 0.

Then for all δ ∈ (0, G/2), all (G, δ)-equidistributed sets ω, and all eigenfunctions
f ∈ D(HD

ΛL
(A)) corresponding to an eigenvalue λ ≥ 0 we have

∥f∥L2(ω∩ΛL) ≥
(︂ δ
G

)︂C·(1+λ2/3)

∥f∥L2(ΛL),

where C > 0 is a constant depending only on ϑE, GϑL, and the dimension d.

The next lemma was proven in the authors joint work with Ivan Veselić [DV].

Lemma B.2. Let 0 < E− and let r > 0. Then for all balls B(x0, 2r) ⊂ ΛL and
all eigenfunctions f ∈ D(HD

ΛL
(A)) associated to an eigenvalue λ ≥ E− we have

∥∇f∥2L2(B(x0,2r))
≥
r2E2

−

16ϑE

∥f∥2L2(B(x0,r))
.

In the last mentioned article, the last two results were combined in order to
obtain an unique continuation estimate for the gradient of an eigenfunction of the
divergence-type operator HD

ΛL
(A).

Corollary B.3. Let L ∈ GN and suppose (Dir). Then for all δ ∈ (0, G/2), all
(G, δ)-equidistributed sets ω ⊂ Rd, and all eigenfunctions f ∈ D(HD

ΛL
(A)) associated
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to an eigenvalue λ ∈ [E−, E+] ⊂ (0,∞) we have

(B.2) ∥∇f∥L2(ω∩ΛL) ≥ E2
− ·
(︂ δ
G

)︂C·(1+E
2/3
+ )

∥f∥L2(ΛL),

where C > 0 is a constant depending only on ϑE, ϑL, and the dimension d.

The constant on the right-hand side of (B.2) depends only on the energy interval
[E−, E+] and not on the particular eigenvalue. In this sense, the estimate holds
uniformly over the energy interval. This guarantees that the lower bound for the
right-hand side of (B.1) is independent from t.

Making the bound stated in (B.1) precise and combining it with the last corollary,
one concludes the eigenvalue lifting if W ≥ 1 at least on a (G, δ)-equidistributed
set. This was proven in [DV, Theorem 4.1].

Lemma B.4. Let N > 0, L ∈ GN, and suppose (Dir). Then for all δ ∈ (0, G/2),
all (G, δ)-equidistributed sets ω, all Lipschitz-continuous W with Lipschitz constant
at most N satisfying 1ΛL

≥ W ≥ 1ω, all 0 < E− < E+ < ∞, and all n ∈ N such
that

E− ≤ En

(︁
HD

ΛL
(A)
)︁
≤ En

(︁
HD

ΛL
(A+W )

)︁
≤ E+,

we have

En

(︁
HD

ΛL
(A+ t ·W )

)︁
≥ En

(︁
HD

ΛL
(A)
)︁
+ t · E2

−

(︂ δ
G

)︂C·(1+E
2/3
+ )

, t ∈ [0, 1],

where C > 0 is a constant that depends only on θE, θL, and N .

In order to present an application of the eigenvalue lifting we recall the Wegner
estimate proven by the author in [Dic21] in a simple setting. To this end, let
v(x) := (1 − |x|)+ on Rd and let Y = (Yj)j∈Zd be a sequence of independent,
uniformly distributed random variables taking values in the interval [1/4, 3/4].
Consider the random perturbation VY (x) =

∑︁
j v((x − j)/Yj) and the random

divergence-type operator

(B.3) HL
Y := HD

ΛL
(1 + VY ) = −div

[︁
(1 + VY )∇

]︁
|ΛL

.

The Wegner estimate shows that the expected number of eigenvalues in an interval
decreases with its length. In particular, it requires the eigenvalues to move under
the influence of randomness, as otherwise the inequality in the theorem below fails.
The next result is stated in [Dic21, Theorem 1.1].

Theorem B.5. There is ε̃ > 0 depending only on the dimension d, such that
for all 0 < E− < E+ < ∞, all L ∈ N, all ε ∈ (0, ε̃], and all E > 0 satisfying
[E − 3ε, E + 3ε] ⊂ [E−, E+] we have

E
(︁
#{eigenvalues of HL

Y in [E − ε, E + ε]}
)︁
≲d E

d/2
+ ε[Kd·(1+|logE−|+E

2/3
+ )]−1 |ΛL|2.
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In Theorem B.5 we not only need to remove high energies (as is the case for
random Schrödinger operators), but also energies close to zero. The reason for
that is, that zero is not a so-called spectral fluctuation boundary for the random
divergence-type operators; cf. the discussion after Theorem 1.1 in [Sto98] and
the dependence on E− that was obtained in Theorem B.5 above. Theorem B.5
is proven for quite general random divergence-type operators with breather-type
perturbations in [Dic21, Theorem 2.1]. The main upshot of this compared to
the Wegner estimate in [DV, Theorem 4.7] is that the dependence of the random
perturbation VY on the random variables Y might be non-linear.
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