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Abstract

Combinatory Logic Synthesis generates data or runnable programs according to formal type

specifications. Synthesis results are composed based on a user-specified repository of com-

ponents, which brings several advantages for representing spaces of high variability. This

work suggests strategies to manage the resulting variations by proposing a domain-specific

brute-force search and a machine learning-based optimization procedure. The brute-force

search involves the iterative generation and evaluation of machining strategies. In contrast,

machine learning optimization uses statistical models to enable the exploration of the design

space. The approaches involve synthesizing programs and meta-programs that manipu-

late, run, and evaluate programs. The methodologies are applied to the domain of motion

planning algorithms, and they include the configuration of programs belonging to different

algorithmic families. The study of the domain led to the identification of variability points

and possible variations. Proof-of-concept repositories represent these variability points and

incorporate them into their semantic structure. The selected algorithmic families involve

specific computation steps or data structures, and corresponding software components repre-

sent possible variations. Experimental results demonstrate that CLS enables synthesis-driven

domain-specific optimization procedures to solve complex problems by exploring spaces of

high variability.
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Zusammenfassung

Combinatory Logic Synthesis (CLS) generiert Daten oder lauffähige Programme anhand von

formalen Typspezifikationen. Die Ergebnisse der Synthese werden auf Basis eines benutzer-

definierten Repositories von Komponenten zusammengestellt, was diverse Vorteile für die

Beschreibung von Räumen mit hoher Variabilität mit sich bringt. Diese Arbeit stellt Strategien

für den Umgang mit den resultierenden Variationen vor, indem eine domänen-spezifische

Brute-Force Suche und ein maschinelles Lernverfahren für die Untersuchung eines Optimie-

rungsproblems aufgezeigt werden. Die Brute-Force Suche besteht aus der iterativen Generie-

rung und Evaluation von Frässtrategien. Im Gegensatz dazu nutzt der Optimierungsansatz

statistische Modelle zur Erkundung des Entwurfsraums. Beide Ansätze synthetisieren Program-

me und Metaprogramme, welche Programme bearbeiten, ausführen und evaluieren. Diese

Methoden werden auf die Domäne der Bewegungsplanungsalgorithmen angewendet und sie

beinhalten die Konfiguration von Programmen, welche zu unterschiedlichen algorithmischen

Familien gehören. Die Untersuchung der Domäne führte zur Identifizierung der Variabilitäts-

punkte und der möglichen Variationen. Entsprechende Proof of Concept Implementierungen

in Form von Repositories repräsentieren jene Variabilitätspunkte und beziehen diese in ihre

semantische Struktur ein. Die gewählten algorithmischen Familien sehen bestimmte Berech-

nungsschritte oder Datenstrukturen vor, und entsprechende Software Komponenten stellen

mögliche Variationen dar. Versuchsergebnisse belegen, dass CLS synthese-getriebene domä-

nenspezifische Optimierungsverfahren ermöglicht, welche komplexe Probleme durch die

Exploration von Räumen hoher Variabilität lösen.
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Chapter 1

Introduction

Motion planning is a fundamental problem in the field of robotics. It is part of robot navigation

and aims to find collision-free paths for robot motions. The trend towards application specific-

planning involves the consideration of domain-specific constraints and objectives. In general,

a motion planning algorithm’s performance and applicability depend on the planning space,

the robot’s space of possible configurations, and the problem instance. An application-specific

problem definition introduces further constraints that affect planning approaches. For in-

stance, planning algorithms can incorporate differential constraints that restrict admissible

velocities and accelerations of robotic systems. Moreover, constrained task planning can

involve uncertainty in planning, robotic states like the charge status of the robot’s battery, or

further aspects of computation such as real-time requirements.

The rising demand for configurable products and manufacturing systems requires efficient

methods for handling variability, and planning workflows benefit from automated planning

techniques. Software systems must adapt to changing requirements, and employed motion

planning algorithms must expose unique characteristics. The different planning objectives

and constraints lead to a broad range of techniques to accomplish distinct tasks during

planning. These aspects and the corresponding requirements of the robotic systems cause

high variability for global motion planning algorithms that build search graphs to represent

the robot-specific accessibility of the planning space.

This thesis deals with the component-based representation of different algorithmic families

targeting global motion planning and path coverage planning. Combinatory Logic Synthesis

can help to describe the space of high variability. It automatically generates variations of

motion planning algorithms, which enables the application of problem-specific brute-force

search or optimization procedures. Multiple proof-of-concept implementations and different

experiments demonstrate the strengths of this approach.
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Chapter 1. Introduction

1.1 Organization of this Thesis

Including this introduction, this thesis consists of seven chapters. The contents are as follows:

• The second chapter outlines the formal background and some practical aspects of the

CLS framework.

• The third chapter explains essential concepts of motion planning and forms the basis

for understanding the domain-specific explanation in the following chapters.

• The fourth chapter presents a study to synthesize variants of combinatorial motion

planning algorithms. It specifies selected variability points and demonstrates the corre-

sponding adaption to a semantic layer of type specifications. Several results illustrate

variations of this algorithmic family.

• Chapter 5 deals with the synthesis of machining strategies from tool path planning

components for milling. The presented work enables a CLS-based brute-force search

procedure and uses a domain-specific semantic layer to reduce the search space with

high variability. Selected results illustrate the generated terms, data structures, and tool

paths with corresponding model transformations. The selection aims to illustrate the

impact of different planning components.

• Chapter 6 describes an approach for the synthesis of sampling-based motion planning

algorithms. A selection of domain-specific variability points provides the basis for the

repository design, and its configuration regulates the synthesis of Scala programs that

generate Python scripts based on templating schemes. These scripts are runnable

Python code that solves the problem instance. A machine learning loop encapsulates

the synthesis and evaluation of planning programs in a black-box function. This way,

CLS enables a synthesis-based optimization procedure.

• The thesis is concluded with Chapter 7, which summarizes the work and gives a short

outlook.
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Chapter 2

Software Synthesis

Software synthesis is the task of discovering a program that corresponds to a user-defined

specification, and it is an active field of study in computer science [40]. The automated search

for programs enables non-expert users without particular software development expertise to

construct programs that meet their requirements.

The distinction of different software synthesis approaches can follow the classification regard-

ing the dimensions of software synthesis identified by Gulwani [38]:

• User intent

• Search space

• Search technique

There are several ways to express the user intent. For instance, input-output examples can im-

pose constraints on the computation results of the required program. The synthesis discipline

that adapt this particular way to express user intent is called programming-by-examples (PBE)

or inductive synthesis. Moreover, statements in an appropriate logical calculus can specify the

synthesis target.

The search space describes the set of possible programs, which often incorporates rules of

program construction. For instance, syntax-guided synthesis suggests a search space that

builds programs based on a context-free grammar.

The search technique defines how the user intent and the definition of search space are

incorporated to find a matching program. Examples are enumerative search, deductive search,

or constraint solving.
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Chapter 2. Software Synthesis

FlashFill [39] is one of the first synthesis techniques, which found commercial use in Microsoft

Excel to fill data in worksheet cells automatically. This work by Gulwani performs string

processing based on input-output examples. An enumerative search yields programs of a

predefined language for string manipulation that includes control structures and operators for

string transformation. Further development led to Blinkfill [88], which uses semi-supervised

learning for recognizing recurring string patterns in the input examples, enabling a better

search performance that works well with fewer examples.

The search techniques involve a deductive search on specifications and eventually led to the

development of PROSE [78], a synthesis framework that works for different domain-specific

languages (DSLs) and has found adaption in several commercial software systems.

PBE allows for a simple presentation of the user intent. However, it comes with the drawback

of underspecification because examples only partially represent a program’s behavior. For this

reason, some PBE techniques make use of data-driven learning to interpret the user intent

and yield the most promising program [8, 35, 49]. Kalyan et al. proposed a PBE approach to

combine the strengths of machine learning and deduction-based search [54], which enables a

real-time search that works well for a small number of examples.

In 2006, Solar-Lezama et al. proposed a program synthesis technique based on sketching [89],

where the developer provides a partial program containing holes. The synthesis resolves these

markers with suitable code according to user-specified assertions. The enumerative search

procedure involves solving a corresponding generalized boolean satisfiability problem.

This work inspired a family of techniques called syntax-guided synthesis (SyGuS, [3]), where

a context-free grammar defines the construction of terms. The SyGuS problem is finding a

program that complies with semantic constraints formulated in the underlying background

theory. The Syntax-Guided Synthesis Competition (SyGuS-Comp) is a yearly program synthesis

competition that compares different program synthesis approaches in a competitive event. It

comes with a language standard [79] which builds upon the SMT-LIB standard [10]. While the

popularity of this competition resulted in a variety of active contributions, these methods are

limited to small-scale programs.

Abstraction refinement [97, 30] is a search technique that makes use of symbolic execution

to find equivalence classes of programs regarding their abstract input-output behavior. These

abstract semantics lead to a reduction of the search space. The search procedure includes a

counterexample-guided abstraction refinement that eventually finds a program that complies

with the given input-output examples.
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2.1. Type-directed Synthesis

2.1 Type-directed Synthesis

The overall goal of synthesis is to produce some well-defined artifact based on a high-level

description, automating as much of the way of production as possible. A particular class of

approaches uses types for the high-level description of programs and conducting the synthesis

process.

Zdancewich et al. [33] interpret input-output examples as refinement types and build a

system that allows the deductive and enumerative search for inhabitants. The type system

includes intersection types and union types, and it can express negation, which enables the

consideration of counterexamples.

SYNQUID [76] performs the synthesis based on liquid type checking and enumeration of

program terms. These terms are built from typed components where the liquid types encode

their functionality. Several other works build upon the synthesis with liquid types [59, 77].

Guo et al. [41] use abstraction refinement in connection with type checking to perform the

search. It involves abstraction over types, where abstract types denote polymorphic types with

free type variables. Selected candidate terms are type-checked, and ill-typed terms trigger the

abstraction refinement to identify well-typed terms.

2.2 Component-based Synthesis with Combinatory Logic

Combinatory Logic Synthesis [80, 13] is a type-based, component-oriented [82] synthesis

approach that incorporates a decade of type-theoretic research. Unlike other techniques that

generate programs from scratch, it synthesizes programs from a repository of user-defined

software components. The components can be large programs or simple operations, which

allows different levels of granularity. A finer granularity leads to a more precise representation

of variability, but the adaptions in the semantic layer result in a more extensive search space.

The combinators’ implementation is use-case-specific and might include heuristics or domain-

specific software solutions. With this approach, it is possible to generate advanced software

products that incorporate third-party libraries.

The component-based approach enables the use in different domains and the reuse of exist-

ing implementations. Semantic type expressions describe features of the components and

their arguments, and the user-defined semantic layer originates from type specifications on

component-level, a semantic taxonomy, and a kinding that guides type substitutions. CLS
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Chapter 2. Software Synthesis

is well-suited to describe solution spaces with high variability and captures the inherent

combinatorial complexity of these spaces.

A logical type specification describes the user intent, the search space is the set of well-formed

terms and the search procedure finds solutions by solving the problem of inhabitation. The

remainder of this section will provide an overview of these aspects. It starts with the definition

of intersection types, provides the rules of the underlying type system, and outlines the

mechanics of the inhabitation algorithm. After that, an example demonstrates the rules of

composition for a set of software components.

2.2.1 Intersection Types

Coppo and Dezani proposed the idea of intersection types in 1980 [24] as an extension of the

λ-calculus. This work is the basis for the corresponding research field, and several scientific

works have covered various aspects of the intersection type discipline since then. The BCD

system introduced in [9] turned out to be the primary reference for intersection type systems.

It was established in 1983 and is named after its creators Barendregt, Coppo, and Dezani.

The structure of intersection types is displayed in Equation 2.1. σ and τ are type expressions

containing function types (→, also called arrow types) or intersection types (∩) whereas a

denotes atomic type constants. The types are commutative, associative, and idempotent con-

cerning the intersection operator. The universal type ω exposes special subtyping properties.

The subtyping relation ≤ is the least reflexive and transitive relation that is closed under the

following axioms:

σ,τ ::=ω | a | σ→ τ | σ∩τ (2.1)

τ≤ω ω≤ω→ω τ≤ τ∩τ σ∩τ≤σ σ∩τ≤ τ
(σ→ ρ)∩ (σ→ τ) ≤σ→ (ρ∩τ)

σ′ ≤σ,τ≤ τ′ ⇒σ→ τ≤σ′ → τ′
(2.2)

Equation 2.2 establishes the distributivity property in Equation 2.3, and Equation 2.4 defines

the equivalence relation ∼ as the symmetric closure of ≤.
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2.2. Component-based Synthesis with Combinatory Logic

σ≤σ′,τ≤ τ′ ⇒σ∩τ≤σ′∩τ′ (2.3)

σ∼ τ⇔σ≤ τ≤σ (2.4)

As a convention, intersections bind stronger than arrows, and arrows associate to the right, as

shown in Equation 2.5.

A∩B →C ∩D = (A∩B) → (C ∩D)

A → B →C = A → (B →C )
(2.5)

2.2.2 Typed Terms

Combinatory Logic Synthesis aims to build applicative terms from a set of typed components.

A definition for these terms is shown in Equation 2.6. Equation 2.7 defines repositories,

denoted as Γ, which contain components and their affiliated types. Intersection types can

express feature vectors of a program or software component. Moreover, the types express the

rules of composition as they declare the types of the components arguments. They consist

of semantic types that describe properties of components and native types representing the

component’s data type in the underlying programming language.

M , N ::= x | (M N ) (2.6)

Γ= {(x1 : τ1), ..., (xn : τn)} with xi ̸≡ x j for i ̸= j (2.7)

The typing of terms follows the rules of Finite Combinatory Logic (FCL) with intersection

types [81], that are shown in Equation 2.8. The (var) rule allows a type judgment according

to the information held in the repository, where Γ, x : τ describes a repository holding the

information that x has the type τ. The (→E ) rule states that the composition of terms requires

matching types. With M and N representing arbitrary terms according to Equation 2.6, the

application of M to N is possible iff M has an arrow type τ→σ, and Γ⊢ N : τ holds. The (≤)

rule incorporates the subtyping relation defined in 2.2 and shows its effect on type judgments.

The properties of a type system directly impact the theoretical complexity bounds for the

corresponding inhabitation problem. For instance, the inhabitation problem for intersection

types in the λ-calculus is undecidable unless further restrictions on the types are considered
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Chapter 2. Software Synthesis

[95, 96]. For this reason, Bounded Combinatory Logic (BCL, [28]) involves restrictions on

the depth of substitutions for type variables. The relativized inhabitation problem for the

k-bounded combinatory logic BC Lk is (k+2)-EXPTIME complete. In contrast, inhabitation in

FCL with intersection types does not involve type schemas on variables, and it is EXPTIME

complete.

Γ, x : τ⊢ x : τ
(var)

Γ⊢ M : τ→σ Γ⊢ N : τ

Γ⊢ M N :σ
(→E )

Γ⊢ M : τ τ≤σ
Γ⊢ M :σ

(≤ ) (2.8)

2.2.3 Inhabitation

The algorithm implementing CLS synthesizes terms by solving the type-theoretic problem of

inhabitation:

Γ ⊢ ? : τ

Given Γ and τ, is there a term M such that Γ⊢ M : τ?

CLS solves the inhabitation problem by performing a backward search according to the rules

defined in Equation 2.8. A term M is called an inhabitant of type τ if the corresponding type

judgment holds: Γ⊢ M : τ. From a logical perspective, the terms are proof for the type in the

context Γ, and therefore arrow types correspond to the implication. The →E rule describes the

modus ponens, and the components represent logical combinators.

For the problem Γ⊢ M : τ0, the inhabitation algorithm searches for applicative compositions

by selecting a combinator (X :σ) from the repository Γ. Provided that σ has the form σ= τ1 →
... → τm → τ0, the algorithm tries to find matching terms M1, ..., Mm such that Γ⊢ Mi : τi for i

in [1, ...,m]. τ0 is called the target of σ or the target type of the corresponding combinator, and

X applied to the determined terms will yield an inhabitant of τ0.

2.3 CLS Framework

The CLS framework 1 allows practical use of the synthesis approach, and the dissertation of

Jan Bessai contains a detailed description of its theoretical foundations [11]. The framework

uses algebraic specifications through type signatures to achieve language independence. The

underlying algebra allows abstraction over different calculi and systems. This specification

allows constructing a combinatory logic context Γ that is used for synthesis. While the un-

1https://github.com/combinators/cls-scala
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derlying type system is built upon the definitions in Sections 2.2.1 and 2.2.2, it also includes

constructor types and product types.

The framework implements an algorithm for solving the inhabitation enumeration question.

It employs a tree-based enumeration strategy to return a list of inhabitants instead of just

answering the decision problem for inhabitation. More precisely, it builds a grammar that

helps to perform a lazy enumeration of inhabitants. This way, also infinite solution spaces can

be represented.

The implementation language Scala allows the integration of a broad range of JVM libraries to

support the framework and the definition of Scala-based combinators. CLS has been used in a

variety of scientific works. Domains of applications cover planning workflows [100], factory

planning [101], business process generation [14], health care processes [85], applications in

logistics [15], and generation of simulation models [98, 52, 53].

2.3.1 Kinding and Taxomomy

With type variables, CLS allows the specification of type schemes that transform into intersec-

tion types with a user-defined substitution map. A corresponding kinding uses a substitution

map to provide variable substitutions. CLS uses suitable substitutions for the type variables of

every combinator and builds an intersection type that captures all possible variations.

The framework resolves the different variable assignments to form corresponding closed

sorts, i.e., specifications without type variables. Therefore, after performing the substitution,

the inhabitation algorithm does not need to consider type variables. Hence, the resulting

inhabitation problem corresponds to the FCL inhabitation problem for component-based

synthesis, which can increase performance. The user-defined restriction of valid substitutions

can be considered a modeling feature.

A partial application of a substitution for a type variable to a type scheme is not admissible.

That means that, given a type scheme α→ α and a substitution map S = {α ↦→ (τ,σ)}, the

translated intersection type will be (τ→ τ)∩ (σ→σ). The substituted type will not contain the

types σ→ τ or τ→σ.

2.3.2 Repository Construction

The construction of a repository can involve a compile-time static reflection mechanism

or the dynamic addition of combinators. The CLS framework offers a convenient way to

define combinators containing Scala code. The framework employs the Scala reflection API
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Chapter 2. Software Synthesis

to investigate traits representing the repository specification and builds a corresponding

reflective repository. The annotation @combinator signals the relevance of a combinator

for the construction of the repository. The apply method provides the native type signature

and the wrapped code, and the value semanticType holds the combinator’s semantic type

specification.

Alternatively, dynamic construction of the repository is possible. The CLS API provides the

addCombinator method, which includes a component in the synthesis. The added Scala

object must have an apply function and a value semanticType. A Scala program can use this

operation to implement a flexible repository construction suited to a given use case.

2.3.3 Example

The following example illustrates how CLS synthesizes terms from a repository and how

semantic types can describe the properties of components. It features a basic repository for

the generation of machining operations with corresponding tool usage. Table 2.1 shows the

collection of available components and their types.

Combinator Name Type
DrillingToolComponent tool ∩dr i l l i ng
MillingToolFinishing tool ∩ f i ni shi ng
MillingToolRoughing tool ∩ r oug hi ng
DrillingOperation tool ∩dr i l l i ng → machi ni ngOp ∩dr i l l i ng
MillingOperation tool ∩mi l l i ng → machi ni ngOp ∩mi l l i ng
MillingOperationVar tool ∩al pha → machi ni ngOp ∩al pha
MachiningProcess tool ∩dr i l l i ng → tool ∩mi l l i ng →

machi ni ng Pr ocess

Table 2.1: Example Repository: Machining

The type tool describes an arbitrary tool, and machi ni ngOp denotes a machining operation.

machi ni ngOp ∩dr i l l i ng annotates drilling operations, and correspondingly, the semantic

type tool ∩dr i l l i ng denotes a tool for drilling operations. The semantic types f i ni shi ng

and r oug hi ng describe special milling operations. The semantic taxonomy introduces a

subtyping relation which expresses that f i ni shi ng and r oug hi ng are subtypes of mi l l i ng ,

i.e., f i ni shi ng ≤ mi l l i ng and r oug hi ng ≤ mi l l i ng . Moreover, to demonstrate the function

of type variables, the variable α can be substituted with the types f i ni shi ng and r oug hi ng ,

i.e., the substitution map is S = {α ↦→ ( f i ni shi ng ,r oug hi ng )}.

The combinator MillingOperation works with subtyping. Therefore, it accepts any kind of

milling tool as an argument and yields a milling operation. Equations 2.12 and 2.13 show that
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2.3. CLS Framework

the subtyping rule allows the given terms to inhabit the more general type machi ni ngOp.

However, the MillingOperation can only yield the type machi ni ngOp∩mi l l i ng as shown

in Equation 2.11 and is therefore not considered in an inhabitation request that asks for a

particular kind of milling operation, such as Γ⊢? : machi ni ngOp ∩ r oug hi ng (see Equation

2.10).

The type scheme of combinator MillingOperationVar is resolved to the intersection type

shown in Equation 2.9. It can therefore construct terms that describe machining operations

more precisely, as shown in Equations 2.14 and 2.15.

(tool ∩ r oug hi ng → machi ni ngOp ∩ r oug hi ng ) ∩
(tool ∩ f i ni shi ng → machi ni ngOp ∩ f i ni shi ng )

(2.9)

The component MachiningProcess requires two different tools, and its type includes two

arguments. The first argument a1 must satisfy the type judgmentΓ⊢ a1 : tool∩dr i l l i ng while

the second term a2 must satisfyΓ⊢ a2 : tool∩mi l l i ng . According to the (→E ) rule in Equation

2.8, this component can only yield a term that inhabits its target type machi ni ng Pr ocess if

the inhabitation algorithm finds well-typed terms for both argument positions.

Γ⊬MillingOperation(MillingToolRoughing) : machi ni ngOp ∩ r oug hi ng (2.10)

Γ⊢MillingOperation(ToolFinishing) : machi ni ngOp ∩mi l l i ng (2.11)

Γ⊢MillingOperation(ToolFinishing) : machi ni ngOp (2.12)

Γ⊢MillingOperation(ToolRoughing) : machi ni ngOp (2.13)

Γ⊢MillingOperationVar(ToolRoughing) : machi ni ngOp ∩ r oug hi ng (2.14)

Γ⊢MillingOperationVar(ToolFinishing) : machi ni ngOp ∩ f i ni shi ng (2.15)
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Chapter 3

Motion Planning

This work includes three CLS repositories which represent algorithmic families and allow

synthesizing corresponding planning algorithm variations. These algorithmic families are:

• Combinatorial Motion Planning

• Sampling-based Motion Planning

• Domain-Specific Coverage Path Planning

The Chapters 4, 5, and 6 demonstrate how components cover variability points of the particular

planning domain and how component-based synthesis can configure possible algorithm

variations. This automated configuration with CLS leads to new methods of finding solutions

for complex planning tasks.

This chapter will define the motion planning problems and introduce the basic notions. There

is a wide range of literature covering the field of motion planning. In particular, LaValle [61]

and Latombe [60] provide a remarkable introduction to the relevant concepts and algorithms.

The planning tasks in this thesis are limited to global planning, which means that the planning

environment is static and known. Global planning algorithms can calculate results a priori,

which can further support application-specific planning tasks.

3.1 The general Piano Movers Problem

• LetW be a world or workspace in which the robotic system operates

• LetO be a set of obstacles
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Chapter 3. Motion Planning

• Let C be a configuration space, which describes possible robot configurations

• Let R be a representation of the the robot model, which is either a semi-algebraic space

or a point

• Let q0 ∈C be a start configuration and qG ∈C a goal configuration of the robotic system

• Let tR: C →W be a robot-specific transform function that yields a geometric represen-

tation inW for every configuration c

The general Piano Movers Problem is finding a continuous path from the start configuration

q0 to the goal configuration qG of the robot. The workspace W is usually bounded, and it

corresponds to the operational area for the given navigation task. Thus, every point of the

continuous result path must map to a geometric space contained in the workspace for a given

robot geometry R and its transform function tR. Moreover, a path must be collision-free, i.e.,

there is no contact of the robot model with the obstaclesO.

3.2 Geometric Representation

The workspace is a continuous geometric space that is usually bounded, and it prescribes

the planning domain. An essential factor for the applicability of an algorithm is the planning

dimension. Moreover, the properties and the representation of contained geometries influence

the applicability of a motion planning algorithm. This work assumes that a semi-algebraic

model representation describes environment obstacle regions and the robot shape. From

a practical perspective, the most common semi-algebraic data structures are polygons and

polyhedra.

A standard encoding of polygons consists of vertices that form a ring in a predefined order.

This order can specify either the enclosed or outside spaces as part of the polygon. That way,

a formulation of polygons with holes is possible, as shown in Fig. 3.1. The arrows illustrate

the order of the sequence, and in this example, a counter-clockwise order encloses a space

while the clockwise order excludes a space from the geometry. The same principle applies to

polyhedra, where the normal vectors of its facets distinguish semi-algebraic spaces.

Motion planning algorithms differ in their robustness regarding geometric flaws, such as

overlapping geometries or self-intersections. Moreover, some algorithms only work for convex

shapes as their technique does not apply to non-convex forms. Hence, the geometric proper-

ties of the planning problem directly impact the applicability of algorithms and algorithmic

families.
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3.2. Geometric Representation

Figure 3.1: Polygon with holes defined by ordered sequences of points, taken from [61]

An affine transformation can produce concrete vertex positions upon application to geo-

metric primitives. For convex primitives, the affine transformation will always yield convex

objects because it can only describe translation, rotation, reflection, shearing, and scaling.

Consequently, the obstacle region of convex shapes can be described by the convex hull of the

given vertices.

3D volumetric meshes built from voxels are a common format to encode polyhedrons of

complex geometric objects. Alternatively, these objects can also be described by surface

meshes. Both mesh formats usually hold a list of points in R3 and a set of either tetrahedra

or triangles defined by list indices. They often come in a data format transferable to other

domains such as CAD software, 3D graphic engines, or simulations.

Another approach to describe objects is constructive solid geometry (CSG). The application

of intersection, union, and difference operations to geometric primitive leads to complex

objects. A CSG tree is a possible encoding of a series of operations, and CSG frameworks

usually offer means to transfer this tree to a mesh that approximates the resulting shape.

3.2.1 Continuous Path Representation

Given a start configuration q0 and a goal configuration qG , the solution of the generalized

piano movers problem is a continuous map r : [0,1] →C , with r (0) = q0 and r (1) = qG . For a

valid path, the codomain is C f r ee so that every configuration in the image of r transforms to a

collision-free geometry in the workspace.
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Most motion planning algorithms yield a sequence of configurations that forms a series of

path segments. In this case, a linear interpolation transforms these segments to a continu-

ous solution path. Given two points p1, p2 ∈ R3, the points of the connecting path can be

calculated from the parametric equation for a line segment, which is shown in Equation 3.1.

x =

⎡⎢⎢⎣
p1x

p1y

p1z

⎤⎥⎥⎦+ t

⎡⎢⎢⎣
p2x −p1x

p2y −p1y

p2z −p1z

⎤⎥⎥⎦ for 0 ≤ t ≤ 1 (3.1)

3.3 Configuration Space

The configuration space C is an abstract notion for the space of all configurations for a

particular robot system, which is also called C-space. The robot system’s degrees of freedom

(DOF) specify the dimensions of this configuration space, and any particular configuration,

denoted q , is a point in the robot’s state system.

Fig. 3.2 shows a simple example of such a configuration space. It represents a robot with two

degrees of freedom, θ1 and θ2. A transformation to a 2D representation involves separating the

space along the lines suggested in the left figure. This operation maps points on the surface to

the new configuration space, and the positions R,P,F , and G are orientation marks. As the

resulting dimensions represent angles, the dimensions span from 0 to 2π.

Figure 3.2: Workspace covered by different robot configurations, taken from [22]

Fig 3.3 displays the corresponding transformations and the area describing the attainable

points of the effector. It can reach any point in the circle by choosing a corresponding point of

the robot’s configuration space that specifies suitable values for θ1 and θ2. The mathematical

process to calculate the joint positions and angles that are needed to place a robot’s end-

16



3.4. Transformations

effector at a specific position and orientation is called inverse kinematics. Inverse kinematics

usually involves the formulation of an equation system based on the transformations imposed

by the variables of the configuration system. The equations include the desired effector

position as an additional constraint. The corresponding system must consider the robot’s

shapes and degrees of freedom. Therefore, inverse kinematics solvers are specifically designed

for a particular robot or families of robotic systems.

Figure 3.3: Representation for a configuration space, taken from [22]

3.4 Transformations

Transformations are complete bijective functions that map geometric objects to a set of points.

They describe the position, orientation, and shape of geometric objects in the environment or

encode a change of an object’s pose. When applied to geometric primitives, these functions

help to define semi-algebraic spaces that characterize obstacles’ placement and shape. In

motion planning algorithms, transformations describe a change of the robot’s position and

orientation. The robot’s model is a geometric shape that comes with its own coordinate system,

which is also called frame of a robot.

The robot-specific transformation tR applied to a configuration q ∈C yields a geometric space

that can be checked for overlaps with obstacles O. The affine transformation can always

specify a rotation and a translation at the same time. As the rotation part is intended to
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describe the robot’s orientation, a suitable origin of the coordinate system for the given robot

frame could be its center of mass.

3.4.1 Rotation

Fig. 3.4 shows an example for a rotation that transforms a two-dimensional workspace. This

operation rotates the object given by the points A,P , and Q about the point A through the

positive angleα. The resulting object is enclosed by the points AP ′Q ′. A rotation is an isometric

operation, i.e., it preserves the distance between two points. As a consequence, the angles β

and γ are equal. The 2D rotation matrix R2d for rotations about the coordinate system’s origin

through the angle α is shown in Equation 3.2. For every point p ∈ R2 , the rotation yields a new

p ′ given by the matrix multiplication (R2d (α))pT .

Figure 3.4: Rotation in 2d about point through angle alpha, taken from [43]

The principle is transferable to the three-dimensional space, but instead of selecting a ref-

erence point, a rotation now refers to an axis. Any possible rotation consists of a series of

non-associative rotations over angles about the x, y, and z-axes. To fully describe a rotation,

such a parameterization with Euler angles refers to either the intrinsic axis of the object or

the fixed axes of the workspace. Moreover, the corresponding rotations must apply to an axis

in conjunction with a predefined rotation order. The matrix representation for rotations about

the x, y, and z-axes are displayed in Equations 3.3 to 3.5. While Euler angles are a comprehen-

sible illustration of 3D rotations and allow for easy encoding in matrices, they have several

drawbacks. For instance, this system can lead to the loss of a dimension, called a gimbal lock,

which can occur when two axes align due to preceding rotations. This property limits the

applicability of this principle to motion planning algorithms as it restricts the composition of

rotations and interpolation capabilities.

The axis–angle representation is more suitable for the given domain. In this case, a complete

rotation description consists of a normalized vector and an angle. The corresponding rotation

follows the right-hand rule, and the rotation axis is called the Euler axis.
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3.4. Transformations

R2d (α) =
(︄

cos(α) −si n(α)

si n(α) cos(α)

)︄
(3.2)

Rx (α) =

⎛⎜⎜⎝
1 0 0

0 cos(α) si n(α)

0 −si n(α) cos(α)

⎞⎟⎟⎠ (3.3)

Ry (α) =

⎛⎜⎜⎝
cos(α) 0 −si n(α)

0 1 0

si n(α) 0 cos(α)

⎞⎟⎟⎠ (3.4)

Rz (α) =

⎛⎜⎜⎝
cos(α) si n(α) 0

−si n(α) cos(α) 0

0 0 1

⎞⎟⎟⎠ (3.5)

Quaternions are 4-tuples, and their applicability to rotations originates from an extensive

mathematical framework that exceeds the scope of this work. However, from a practical

perspective, quaternions expose different strengths that favor their utilization in motion

planning. For instance, they come with a compact data representation that allows memory-

efficient storage. Moreover, quaternions can express sequences of rotations with simple

mathematical operations, which is more efficient than applying different rotations in sequence

to geometric objects.

The different approaches can be converted to an affine transformation matrix representation.

A summary of different data structures for rotations and their conversions can be found in

[26]. The corresponding matrix represents an element of the special orthogonal group SO(3),

an algebraic group of distance preserving transformations of a three-dimensional Euclidean

space.

19



Chapter 3. Motion Planning

3.4.2 3D Rigid Body Planning

Given a 3×3 rotation matrix R ∈ SO(3) and a translation vector defined by p ∈ R3 , the matrix

displayed in Equation 3.6 describes the complete affine transformation which can calculate

the new points of a rigid body.

T =

⎛⎜⎜⎜⎜⎝
R11 R12 R13 p1

R21 R22 R23 p2

R31 R32 R33 p3

0 0 0 1

⎞⎟⎟⎟⎟⎠ ∈ SE(3) (3.6)

The corresponding transformation is part of the special Euclidean group SE(3) for the three-

dimensional Euclidean space. The transformation adapts the properties of SO(3) and extends

the group by translation. Therefore, it does not cover reflection, shearing, or scaling and

describes only the transformations applicable to rigid body planning (i.e., a robot without

movable parts) as intended by the piano movers problem. This matrix applied to the semi-

algebraic shape describing the robot will yield a new shape with updated position and orienta-

tion. The transformations allow mapping the configuration space to spaces of the workspace,

which can be checked for validity by the planning algorithms.

Following the same principle, robot-specific transformations can apply to different movable

parts of the robot. In the case of a robot described in Section 3.3, one might not only be

interested in the position of the effector but also in the position and orientation of the robot’s

arm segments. With this information, motion planning can also avoid collisions between

obstacles and the robot’s arm. The resulting robot-specific transformation must adapt to the

configuration space. Here, θ1 determines the orientation of the first robot arm and, therefore,

the link’s position between the segments. The second arm must be translated accordingly, and

its orientation depends on the orientation of the first arm and the value of θ2.

While an extension of the planning space is generally possible, the planning problems in this

thesis are limited to rigid body planning and transformations in SE(3).

3.5 Combinatorial Motion Planning

Combinatorial motion planning algorithms work with explicit geometric representations of

the obstacles, from which they conclude the free configuration space of the robot. In practice,

the representation of these obstacles uses polygons or polyhedra. A spatial segmentation
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3.6. Sampling-Based Motion Planning

procedure analyzes C and aims to find subspaces, called free cells. These non-overlapping

cells usually completely cover C f r ee . Correspondingly, for a given convex cell, the connection

of two contained points is also in C f r ee and therefore a valid path segment. The algorithmic

family uses roadmaps to represent the connectivity between free cells, and the traversal of this

graph can solve the motion planning problem.

Combinatorial motion planning algorithms are often exact, i.e., the decomposed free config-

uration space exactly covers C f r ee . Consequently, these algorithms are complete, meaning

they will find a path if such a path exists. These properties, however, directly depend on the

decomposition techniques employed.

Some techniques, such as the vertical cell decomposition, are limited to two-dimensional

planning problems. While the extension to higher dimensional spaces is theoretically possible

with plane sweeps, the algorithms and decomposition techniques do not scale well. Moreover,

a high-dimensional configuration space can require incorporating information about the

robot during the cell decomposition. Such robot-specific decomposition methods further

limit the applicability of these algorithms.

3.6 Sampling-Based Motion Planning

Sampling-based motion planning is a class of heuristics that operates by relaxing the com-

pleteness property (finding a path if such path exists) to probabilistic completeness (finding a

path if such path exists when executing infinite iterations). The planning discipline is capable

of solving challenging problems in practical applications with high-dimensional planning

domains. This family of planning algorithms performs the search by generating samples in

the robot’s configuration space, checking their validity for a known, static environment, and

building a graph representing the free configuration space.

Sampling-based motion planning algorithms can be classified by the incorporated graph

structure, which allows for the distinction between tree-based planners and roadmap planners.

A tree construction starts from the root node and considers samples as leaves. Therefore,

cycles can not occur in trees, but they may be part of roadmaps. As in combinatorial motion

planning, the graph includes undirected, weighted edges with positive weights that describe

the distance between two states.

Figure 3.5 shows the graph construction, where a sample α(i ) helps to extend the graph

structure. The tree root is the configuration state q0, and a former iteration has connected

the node qn to q0. The sample α(i ) is located in the infeasible area Cobs . A heuristic selects

the tree node qn and handles the invalid sample by finding qs . The resulting roadmap allows
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Chapter 3. Motion Planning

Figure 3.5: Adding samples to the graph, taken from [61]

solving the planning problem with a graph search algorithm like the A* algorithm. This outline

already gives a rough idea that the algorithmic family of sampling-based motion planning

algorithms is a space with high variability. Possible variability points include different data

structures, the determination of connecting nodes, sampling strategy, and treatment of invalid

samples.

Sampling-based methods use functions that determine if any given point or path segment

collides with any obstacle. However, these algorithms are not limited to geometric represen-

tations and can work with arbitrary definitions of valid states. Thus, robot-specific validity

models can be incorporated with an adaption of corresponding validity functions. The algo-

rithmic family scales well with higher dimensions and can incorporate different configuration

spaces. Sampling-based motion planning algorithms work for a broad range of robots with

different degrees of freedom and adapt well to practical planning challenges.

Sampling-based motion planning algorithms are, in theory, asymptotically optimal as the

solution path converges to a global optimum with a growing number of iterations. In practice,

limited computation time due to real-time requirements or problem-specific limitations

prevents optimal planning results. Aiming for a lower computation time, some planners

involve termination upon finding a feasible path rather than optimizing the result. Local

planning techniques can supplement these initial results to smooth and simplify paths [36] or

account for dynamic changes in the environment [20].

3.7 Coverage Path Planning

The field of path planning originated in robotics and has a broad spectrum of applications

that includes floor cleaning, harvesting or spraying in agriculture, demining, or painting. With

drones and rising applications for autonomous robots, this planning discipline finds increasing

interest in the scientific community. The planning techniques aim to find a continuous path
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3.7. Coverage Path Planning

that passes a sensor with a particular field of view, a tool, or an abstract geometric shape over

a specified area so that every point of the area is covered. The application to real-life planning

scenarios usually comes with additional domain-specific optimality objectives or planning

constraints.

A planner is complete when it is guaranteed to find a path if such a path exists. Due to

the domain of interest, this property is a crucial characteristic of a coverage path planning

algorithm. Another planning criterion is the admissibility of overlapping paths, which must

find domain-specific consideration.

Coverage path planners often use heuristics to cover a given area. These heuristics may,

however, not apply to more complex geometric forms. Hence, many coverage planning

approaches involve decomposing the target space to break down the planning task to cover

simple cells. Eventually, a continuous path can be determined by traversing every cell and

connecting the respective paths.

23



Chapter 3. Motion Planning

24



Chapter 4

Composition of Combinatorial Motion

Planning Algorithms

This chapter introduces a repository to synthesize combinatorial motion planning algorithms

that solve planning problems for a point robot in two-dimensional and three-dimensional

workspaces. It demonstrates how the semantic types specify a configuration for this algorith-

mic family. For this purpose, a customized variable substitution map reduces the space of

inhabitants, managing the otherwise extensive runtime for inhabitation. Type variables repre-

sent the variability points, and they are part of the specified arguments and the target type of

a top-level combinator. The repository contains software components that implement the

corresponding variations. It consists of 68 combinators, and 10 type variables can configure

more than 28.880 unique algorithm variations. Hence, a program and its different mechanics

can be precisely specified.

Moreover, different data structures handle different geometric representations of environ-

ments and obstacles. As algorithms or parts of algorithms require a specific geometric data

structure, the repository contains corresponding data types and transformation functions,

which must comply with the dimensionality of the workspace. For instance, obstacles can be

cubes equipped with an affine transformation matrix or a representation of a surface mesh

consisting of vertex lists and triangles.

The repository contains components that use Python scripts, Scala Code, and Java frameworks.

An interface to the Unity1 game engine allows for an easy specification of 2D and 3D motion

planning problems. In Unity, the user can create obstacles in a scene and apply transforma-

1https://unity.com
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Chapter 4. Composition of Combinatorial Motion Planning Algorithms

tions to manipulate their shape. The repository also contains components that read 3D model

data files for the environment and robot model.

The MQTT protocol permits the transfer of the workspace with contained obstacles to the

Scala program, where a listener waits for messages to initiate the inhabitation and starts

solving the motion planning problem upon receiving matching arguments over the specified

MQTT topic.

Equation 4.1 shows the semantic type of the top-level combinator. Such a combinator con-

structs the resulting program, and the inhabitation algorithm attempts to resolve its argu-

ments. First, the combinator’s implementation transforms the environment geometry to

the corresponding data format using the supplied transform function. After that, the cell

decomposition function is applied, which yields a planning environment object containing a

cell segmentation. The function for the graph construction uses this intermediate result for its

computation.

The resulting graph represents the roadmap that provides the basis for the graph traversal,

which finds the overall result for the specified motion planning problem. The repository

supports the customizable construction of the roadmap, specified by semantic types.

(sd_uni t y_scene_t y pe → sd_pol y g on_scene_t y pe) ∩ di mensi onal i t y_var →
cmp_sceneSeg F ct_t y pe ∩ sd_pol y_scene_cel l _seg ment ati on_var ∩

di mensi onal i t y_var →
cmp_cel l _g r aph_ f ct_t y pe ∩ r mc_cel l Node AddF ct_var ∩

r mc_st ar tGoalF ct_var ∩ r mc_usi ngCentr oi d s_var ∩
r mc_centr oi dF ct_var ∩ sd_cel l _t y pe_var ∩ r mc_cel lGr aph_var ∩
r mc_connector Nodes_var ∩ di mensi onal i t y_var →

cmp_g r aph_al g or i thm_var →
cmp_al g or i thm_t y pe ∩ cmp_g r aph_al g or i thm_var ∩

r mc_connector Nodes_var ∩ r mc_centr oi dF ct_var ∩ r mc_cel lGr aph_var ∩
sd_cel l _t y pe_var ∩ sd_pol y_scene_cel l _seg ment ati on_var ∩
di mensi onal i t y_var ∩ r mc_cel l Node AddF ct_var ∩
r mc_st ar tGoalF ct_var ∩ r mc_usi ngCentr oi d s_var

(4.1)
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4.1. Data Structures and Native Types

4.1 Data Structures and Native Types

The top-level combinator builds a data object that contains the individual result of each

planning step. The corresponding class represents a segmented environment, the roadmap,

and the resulting path. For this reason, the data structure contains the following fields:

• Vertices

A list of vertices represents the global points in the workspace. The R2 or R3 position of

each vertex is stored in a list of float values.

• Obstacles

This list describes the obstacles in the environment. Each obstacle is a list of integers,

and these values can resolve to R3 points by referencing the corresponding element of

the vertex array. For the given segmentation techniques, obstacles are convex shapes.

Therefore, an unordered list is a sufficient representation for obstacle regions.

• Boundaries

A list of three float values describes the size of the planning dimensions. The origin of

the coordinate system represents the center of the planning environment.

• Free Cells

The free cells are the result of the cell decomposition. Following the same principle as

described for obstacles, this field is a nested list of integer values.

• Roadmap

The roadmap is a Graph for Scala2 object with undirected, weighted edges with positive

values. The labeled nodes represent points in the workspaceW, and the edge weights

denote the Euclidean distance between points.

• Path

The path is the overall result of the combinatorial motion planning algorithm, and this

list of points describes a continuous path from the start node to the end node.

The repository works with data structures containing only a subset of these fields. These native

types encode the availability of partial results such as free cells or the roadmap.

2http://scala-graph.org/
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4.2 Cell Segmentation

The repository covers the following segmentation variations:

• Vertical cell decomposition

• Grid-based cell approximation

• Triangulation and tetrahedralization

The vertical cell decomposition and the grid-based approximation have been implemented in

Scala, while triangulation and tetrahedralization make use of Python scripts.

4.2.1 Grid-Based Cells

The grid-based approach to represent C f r ee leads to an approximation of the free configura-

tion space, and the resulting algorithm configuration is therefore not complete.

The grid resolution is configurable and given as the number of cells per dimension. The divi-

sion of the planning space by the maximum number of cells in the corresponding dimension

yields the vertical and horizontal distances of neighboring tiles. Grid-based cells allow for the

easy identification of neighboring cells which helps the construction of the roadmap.

A grid cell is only valid when it does not overlap with any obstacle, and the roadmap connects

only adjacent valid cells. Fig. 4.1 shows free cells constructed by a grid-based approximation

of C f r ee . The red dots represent the start point and endpoint, gray quadrangles are obstacles,

and green lines illustrate the determined cells.

4.2.2 Triangulation and Tetrahedralization

Delaunay triangulation and Delaunay tetrahedralization can divide a 2D space into triangles

or a 3D space into tetrahedrons. The application of these operations to the free configuration

space C f r ee yields geometric primitives that represent free cells for the construction of the

roadmap.

The repository makes use of the Python library PyMesh3 to perform these operations. For

this reason, these decomposition variations have to transform obstacles into strings repre-

senting PyMesh mesh data objects and generate Python scripts accordingly. The C f r ee mesh

3https://github.com/PyMesh/PyMesh
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4.2. Cell Segmentation

Figure 4.1: Free cells formed by a grid-based approximation of C f r ee

data is formed by subtracting obstacles from a box mesh that complies with the dimension

boundaries. The triangles of this resulting mesh resemble free cells, as they cover C f r ee

completely.

Triangles can also be formed by explicitly calling triangulation functions of PyMesh with a

given parameterization. The repository includes a parameterized triangulation to allow a

maximal triangle area of 1000 arbitrary area units and minimal admissible interior angles

of 20°. The execution of the generated Python scripts yields a JSON representation of the

results that incorporates the vertices as float lists and the cells represented by a list of integers,

respectively.

The unparameterized triangulation can cause irregular shapes, for which the link between

centroids of neighboring triangles can lead to invalid paths. The semantic layer has therefore

been adapted to express the requirement for additional graph nodes. Fig. 4.2 shows the cells,

the resulting graph, and the path for a parameterized triangulation.
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Figure 4.2: Decomposition of C f r ee using parameterized triangulation

4.2.3 Vertical Cell Decomposition

The vertical cell decomposition is a line-sweep algorithm that aims to build trapezoid cells by

introducing vertical lines. These lines intersect with at least one obstacle and separate two cells,

which can help to construct the roadmap. The algorithm moves through the environment in x-

direction while opening and closing cells in the process. For this reason, the algorithm includes

sorting of the vertices in ascending order concerning the x-value. Thus, the segmentation

includes an obstacle-preserving transformation into an environment representation with

sorted vertices.

The segmentation technique considers vertical lines for every vertex of the environment, and

the construction of lines corresponds to the different cases displayed in Fig. 4.3. The procedure

builds extending lines in positive or negative y-direction, according to the geometric case.

The sweep algorithm forms cells based on these lines by keeping track of opened cells, i.e.,

cells that require a closing line. A cell can be opened or closed by multiple horizontal lines,

and it holds information about the enclosing obstacles to assign lines to cells. During sweep

in the positive x-direction, there can be multiple opened cells with distinct pairs of bounding

obstacles. Segmentation lines can also border on the upper and lower boundaries of the
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planning space. For this reason, the vertical cell decomposition regards the corresponding

boundary lines as obstacles.

Fig. 4.4 shows an example for the resulting free cells. This particular cell decomposition

technique results in cells that are often irregular. As a consequence, the generated roadmap

does not cover the free configuration space with consistent density.

Figure 4.3: Cases for line construction in vertical cell decomposition, taken from [61]

4.3 Graph Construction

Based on the developed free cells, there are several ways to generate the roadmap which

describes C f r ee by capturing the connectivity between free cells.

The graph construction components include type variables to precisely define this roadmap,

and the corresponding roadmap combinator has the semantic type displayed in Equation 4.2.

The use of type variables allows the roadmap construction to consider every aspect specified

by a user-provided substitution map. The component requires the six functions as arguments

supplied by the inhabitation algorithm according to the given kinding. These arguments

represent variability points of roadmap construction, and they take care of the following tasks:

• Finding neighboring cells for every cell

• Computing the centroid for a cell

• Finding cell vertices
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Figure 4.4: Vertical cell decomposition as an example for a 2D segmentation strategy

• Introducing additional nodes on edges that delimit at least two neighboring cells

• Building edges connecting graph nodes for single cells

• Connecting neighboring cells based on the respective cell graphs

• Adding start and goal nodes to the complete roadmap

Several components implement functions that perform these tasks and manipulate a graph

object in the process. A higher-level roadmap component runs these functions for the given

planning environment, determines the nodes, and builds a graph for every cell. The corre-

sponding components collect nodes and edges for free cells or manipulate the overall graph

directly.

This graph can include centroid nodes, the vertices that delimit the cell, or additional nodes on

the boundaries of a cell. Corresponding components in the repository represent variations and

provide the selection of these nodes. For instance, there are several ways to define centroids,

depending on the geometry of the cell. Triangle cells can utilize the triangle’s incenter point,

while other shapes might require computing the center of mass or using the center of the

axis-aligned bounding box of the cell.
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Semantic types describe the absence of a feature explicitly. For instance, the use of centroid

nodes is specified by the type variable r mc_usi ngCentr oi d s_var which can resolve to the

semantic types r m_wi thCentr oi d s_t y pe or r m_wi thoutCentr oi d s_t y pe. This explicit

typing is necessary because the negation of a feature is not inherently expressible with inter-

section types. The existence of centroids requires consideration in several other arguments of

the higher-level combinator, such as subgraph construction and connection of neighboring

nodes.

The integration of start and goal nodes can determine an edge to the nearest node of the graph,

the nearest centroid of the graph, or the nearest node of the containing cell. This function

must comply with the preceded roadmap construction.

r mc_nei g hbour F ct_t y pe ∩ di mensi onal i t y_var →
r mc_centr oi dF ct_t y pe ∩ r mc_usi ngCentr oi d s_var ∩

r mc_centr oi dF ct_var ∩ sd_cel l _t y pe_var ∩ di mensi onal i t y_var →
r mc_cel l Node AddF ct_t y pe ∩ r mc_cel l Node AddF ct_var →
r mc_connector NodeF ct_t y pe ∩ r mc_connector Nodes_var →
r mc_ed g e Add_t y pe ∩ r mc_cel lGr aph_var →
r mc_st ar tGoalF ct_t y pe ∩ r mc_st ar tGoal F ct_var ∩

r mc_cel lGr aph_var ∩ di mensi onal i t y_var →
cmp_cel l _g r aph_ f ct_t y pe ∩ r mc_cel l Node AddF ct_var ∩

r mc_st ar tGoal F ct_var ∩ r mc_usi ngCentr oi d s_var ∩
r mc_centr oi dF ct_var ∩ sd_cel l _t y pe_var ∩ r mc_cel lGr aph_var ∩
r mc_connector Nodes_var ∩ di mensi onal i t y_var

(4.2)
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4.4 Graph Traversal and Graph Search

The road map yields an undirected weighted graph, as described in Section 4.1. The graph is a

Graph for Scala data structure, and the result of the graph traversal is a sequence of points.

The native type of a shortest path graph search is

(Graph[List[Float], WUnDiEdge], MpTaskStartGoal) => Seq[List[Float]],

where MpTaskStartGoal denotes a data type that contains start state q0 and goal state qG for

the motion planning problem. Five combinator implementations represent different graph

traversal techniques. The type variable cmp_g r aph_al g or i thm_var covers this particu-

lar variability point, and the repositories kinding allows the substitution with the following

semantic types:

• cmp_g r aph_di j kstr a_t y pe

• cmp_g r aph_ f w_t y pe

• cmp_g r aph_a_st ar _t y pe

• cmp_g r aph_mst_t y pe

• cmp_g r aph_t sp_t y pe

This repository contains three shortest path graph traversal algorithms, and two of them

use SciPy4 graph tools. For that reason, the repository contains transformation functions to

translate graph data structures into a string representing a SciPy distance matrix. This string is

inserted into a template, forming a runnable python script enriched with data. After executing

the generated script, a parser analyzes the string from the console output to extract the result.

The Dijkstra algorithm [27] is a greedy algorithm that traverses the graph by selecting nodes

from a set of unvisited nodes. These nodes hold a distance value that describes the shortest

distance to the initial node. During initialization, these values are set to positive infinity while

the start node holds the value 0. A node selection is made by choosing the lowest distance

value, consequently removing it from the set of unvisited nodes. As this algorithm requires

positive edge weights, the weight of the selected node is guaranteed to correspond to the

shortest path length to the initial node. For every unvisited neighbor of the selected node,

the distance value to the initial node updates if the path length of the current node added

to the weight of the connecting edge is shorter than the currently held value. The algorithm

terminates when the goal node is marked as visited. The combinator for this shortest path

algorithm makes use of the Dijkstra implementation provided by the Graph for Scala library.

4https://www.scipy.org/
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The Floyd–Warshall algorithm [31] was published in 1962 by Robert Floyd. The result of this

algorithm contains the shortest path lengths between all pairs of nodes. The basic concept is

estimating the shortest path length for vertex pairs that is incrementally improved until the

estimate is optimal. For a given vertex pair, the estimate identifies irrelevant edges, and the

calculations only incorporate edges that could be part of the shortest paths.

Hart, Nilsson, and Raphael first published the A* algorithm in 1968 [42]. A* is an informed

shortest path algorithm that uses a heuristic function to choose the edges and nodes for

evaluation. The algorithm is well-suited for routing problems [104], and the most prominent

example for such a heuristic is the Euclidean distance function to the goal state. That way, A*

incorporates geometric information to prioritize the evaluation of nodes that are closer to the

goal node. Moreover, the function result can rule out that some nodes are part of the shortest

path, which allows for an efficient implementation of a complete search algorithm.

The introduction of graph search algorithms that do not look for the shortest path extends

the algorithmic family of combinatorial motion planning algorithms to work for further fields

of application, such as routing. For instance, a minimum spanning tree (MST) computation

finds a subgraph that allows access to every cell of the free configuration space. Hence, a

depth-first traversal of the tree can produce the resulting path, which can eventually allow the

visitation of every cell. A possible field of application could be supply chain routing problems.

Figure 4.5 shows the resulting MST for a roadmap generated from triangle centroids.

Correspondingly, the graph structure can also be the basis to solve the relaxed traveling

salesman problem (TSP) [6]. The resulting path allows the robot to visit every cell and even-

tually return to the initial starting point. In this repository, the corresponding graph search

combinator transforms the graph to a distance matrix and applies the TSP solver of Google

OR-Tools5.

4.5 Variations and Results

The following results demonstrate different algorithm configurations with varying segmen-

tation and roadmap generation techniques. Therefore, the kinding and the outcome are

displayed in each case. Additionally, the Appendix A contains textual representations of the

inhabitant trees.

Fig. 4.6 results from the type variable substitution in Equation 4.3 and uses a grid-based

approximation to find free cells. The graph construction is based on cell centroids. Fig. 4.7

and Equation 4.4 represent a cell decomposition by triangulation and a graph construction

5https://github.com/google/or-tools
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Figure 4.5: An example for a minimum spanning tree computed from the roadmap

that introduces connecting nodes between cells. The type variable assignment in Equation 4.5

leads to the result illustrated in Fig. 4.8. Vertical cell decomposition forms free cells, and the

corresponding cell subgraphs contain centroids, cell vertices, and connecting nodes.
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S = {

r mc_connector Nodes_var ↦→ r mc_cn_wi thoutConnector Nodes

r mc_cel l Node AddF ct_var ↦→ r mc_cna_wi thoutCel l Nodes_t y pe

r mc_cel lGr aph_var ↦→ r mc_cg _centr oi d sOnl y

r mc_usi ngCentr oi d s_var ↦→ r m_wi thCentr oi d s_t y pe

r mc_st ar tGoalF ct_var ↦→ r mc_st ar tGoal _nn_t y pe

cmp_g r aph_al g or i thm_var ↦→ cmp_g r aph_di j kstr a_t y pe

r mc_centr oi dF ct_var ↦→ cF ct_centr oi d s_nai ve_t y pe

di mensi onal i t y_var ↦→ di mensi onal i t y_t wo_d_t

sd_pol y_scene_cel l _seg ment ati on_var ↦→ sd_seg _g r i d_t y pe

sd_cel l _t y pe_var ↦→ sd_cel l _ver t i cal _t y pe

}

(4.3)

Figure 4.6: A grid-based approximation of C f r ee with a roadmap built from centroids
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S = {

r mc_connector Nodes_var ↦→ r mc_cn_wi thConnector Nodes

r mc_cel l Node AddF ct_var ↦→ r mc_cna_wi thoutCel l Nodes_t y pe

r mc_cel lGr aph_var ↦→ r mc_cg _centr oi dCel lV er t i ces

r mc_usi ngCentr oi d s_var ↦→ r m_wi thCentr oi d s_t y pe

r mc_st ar tGoalF ct_var ↦→ r mc_st ar tGoal _nn_t y pe

cmp_g r aph_al g or i thm_var ↦→ cmp_g r aph_di j kstr a_t y pe

r mc_centr oi dF ct_var ↦→ cF ct_centr oi d s_nai ve_t y pe

di mensi onal i t y_var ↦→ di mensi onal i t y_t wo_d_t

sd_pol y_scene_cel l _seg ment ati on_var ↦→ sd_seg _tr i ang les_par a_t y pe

sd_cel l _t y pe_var ↦→ sd_cel l _tr i ang le_t y pe

}

(4.4)

Figure 4.7: Cell decomposition by triangulation and graph construction with connecting nodes
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S = {

r mc_connector Nodes_var ↦→ r mc_cn_wi thConnector Nodes,

r mc_cel l Node AddF ct_var ↦→ r mc_cna_wi thCel l Nodes_t y pe,

r mc_cel lGr aph_var ↦→ r mc_cg _al lV er t i ces,

r mc_usi ngCentr oi d s_var ↦→ r m_wi thCentr oi d s_t y pe,

r mc_st ar tGoal F ct_var ↦→ r mc_st ar tGoal_nn_t y pe,

cmp_g r aph_al g or i thm_var ↦→ cmp_g r aph_di j kstr a_t y pe,

r mc_centr oi dF ct_var ↦→ cF ct_centr oi d s_nai ve_t y pe,

di mensi onal i t y_var ↦→ di mensi onal i t y_t wo_d_t ,

sd_pol y_scene_cel l _seg ment ati on_var ↦→ sd_ver t i cal _cel l _decomposi t i on_t y pe,

sd_cel l _t y pe_var ↦→ sd_cel l _ver t i cal _t y pe

}

(4.5)

Figure 4.8: Vertical cell decomposition with centroids and connecting nodes. The cells’ sub-
graphs contain edges from cell vertices to connecting nodes and centroids.
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4.6 Discussion

The cell segmentation subroutines form free cells based on the obstacles’ vertexes. Vertical

cell decomposition illustrates that the cell formation depends on the planning environment

geometries and can produce irregular cells resulting in imbalanced graph node density. More-

over, cell decomposition and graph construction cover regions that might not be relevant to

the planning problem. However, the steps produce a complete roadmap, which allows for

multiple motion planning queries.

Vertex-based cell segmentation techniques prohibit some geometric representations. For

instance, a semi-algebraic definition of a circle by a center point and radius must be approxi-

mated with a polygon, undermining the completeness property. Moreover, the segmentation

strategies are vulnerable to geometric flaws, such as overlapping obstacles, obstacles that

exceed the planning boundaries, or non-manifold topologies. For this reason, the component

for vertical cell decomposition employs a function to cut obstacles so that their vertices are

within the planning boundaries.

The incorporation of robot models in combinatorial motion planning algorithms is only

possible to some extend. For instance, robot geometries with a fixed orientation can be

regarded by replacing obstacles with the Minkowski sum of obstacles and the robot shape.

However, this algorithmic family does not support higher-dimensional configuration spaces.

While the analysis of combinatorial motion planning is interesting from an algorithmic per-

spective, it exposes limitations for the application in real-life planning scenarios.
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Chapter 5

Component-Based Synthesis for Tool

Path Planning

The contents of this chapter have been partially published in [86]. Further remarks on this

publication are included in the Appendix B.

The ongoing trend for the customization of products and production systems enforces the

necessity for adaptable process planning, which the scientific community acknowledged [70].

New automated manufacturing methods must deal with these requirements. The compen-

sation of the shortage of skilled workers is an essential aspect of digitalization that requires

automated workflows requiring little human interaction.

In machining, Computer-Aided Manufacturing (CAM) systems support the planning per-

sonnel by semi-automated means. With the rising variety of workpiece shapes and part

requirements, this planning support is insufficient as it still involves the manual operation

of trained technicians. For instance, this CAM planning includes manually selecting process

parameters, such as tooling, and assigning tool path planning patterns to selected workpiece

shapes.

The milling of complex parts is a domain that exhibits variability and works well with the

component-based principle of CLS. This chapter presents a technique to find different ma-

chining strategies, consisting of machining operations that use different tools. The approach

uses CLS to compose individual planning components to form machining strategies.

The applicability of a machining operation (i.e., planning program) depends on the targeted

geometry. For instance, some planning components require an accessible area that allows an

initial positioning of the tool. The result of a single planning step is a single connected tool

41



Chapter 5. Component-Based Synthesis for Tool Path Planning

path. The order in which planning components are applied matters, as they lead to different

machined areas, machining time, and tool wear. The tool selection also influences these

aspects. For instance, narrow areas might only be accessible for tools with a small diameter.

CLS synthesizes path planning programs from a repository of domain-specific software com-

ponents. These components can be classified as:

• Planning components

• Model transformations without tool interaction

• Predefined machining sequences

• Tool data

An inhabitation request yields any planning program that matches a user-provided config-

uration. The generated programs expose high structural variability, and they translate to a

sequence of machining operations with a corresponding evaluation procedure. Each inhabi-

tant represents one path planning program that applies machining operations to a geometric

shape in a specific order. The generated programs transform the geometric model that consid-

ers the machining task, the machined area, the left-over material, and workpiece boundaries.

The result of program execution is a series of tool paths and a transformed model.

This work generates tool planning programs fitted to different materials, namely aluminum

and steel. The semantic layer of the repository is an encoding of this domain knowledge.

Corresponding type specifications determine the suitability of a tool for a given material and

the material-specific applicability of a planning component. The machining of steel exposes

higher forces on the machining center and the tool, and correspondingly, the methodology

avoids planning components that might include temporary demanding tool engagements.

With consideration of these aspects, it is possible to reduce the cost of tooling and machine

maintenance.

This technique performs process planning and tool path planning to produce precise descrip-

tions of manufacturing steps. The elements of the result set are evaluated in multiple stages to

find a set of solution candidates that can facilitate planning workflows. Further processing

could incorporate simulations, the use of expert systems, or optimization techniques. Also,

the generated tool paths could help to improve the efficiency of semi-automated planning

with CAM software.

It is possible to encode principles of process planning in the semantic layer of the repository.

The repository contains domain knowledge such as the incorporation of roughing and finish-

ing machining operations. Roughing aims to remove large amounts of material quickly, while
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finishing aims to produce high-quality surfaces. Some combinators represent predefined ma-

chining sequences that consist of matching roughing and finishing operations. This encoding

efficiently narrows down the search space for the brute-force approach.

This work benefits from the enumeration capabilities of CLS, which incorporates a lazy re-

trieval of inhabitants from an infinite result set. The search on this result set only considers

well-typed terms that fit the target specification, and correspondingly, the search space is the

space of inhabitants. Due to the discrete space of inhabitants and the candidate selection

procedure, the methodology resembles a well-typed brute-force technique to find suitable

machining strategies.

5.1 Planning Problem Instance

Tool path planning extends the coverage planning problem described in Section 3.7 with

domain-specific constraints. This work targets three-axis end milling tasks, which allow the

positioning of the tool center in R3 . In machining, a common technique to plan tool paths

for 3D volumes is the projection to horizontal planes. The corresponding surface is called

2.5D, and the milling tool is positioned perpendicular to this XY plane. This projection causes

a reduction of the planning space to two dimensions, allowing the use of two-dimensional

coverage path planning patterns. The experiments conducted in this chapter consider a depth

of cut of 3 millimeters and involve only single-layered operations. However, extending this

methodology to more complex three-dimensional shapes is possible by slicing volumes in the

z-direction, yielding an individual planning task for each resulting layer.

An initial rectangular workpiece shape describes the planning space, and the planning task

is given by a target shape that must be machined. The intended final workpiece consists of

shapes that may not be machined and correspond to obstacle regions. Thus, the planning

space is a two-dimensional, bounded, Euclidean workspace that contains polygonal obstacles.

The initial path coverage planning is considered holonomic, i.e., the planning components do

not take machine dynamics into account. However, the evaluation procedure for machining

sequences considers this aspect in a post-processing step.

The tool is the object following the resulting path, and its geometric representation is a disk

that matches the tool’s diameter. Correspondingly, the planning aim is to find a tool path,

such that every point of the target geometry was at some time covered by the tool geometry.

A tool position describes the center point of the disk geometry representing the tool. The

problem-specific validity of a tool position depends on the current configuration, the tool

parameterization, and the planning environment given by the workpiece.
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Contrary to conventional coverage path planning techniques, this approach does not use

decomposition strategies and does not aim to find a single continuous path. It aims to find

machining sequences that consist of different machining operations with different tools. The

proof-of-concept considers two tools per material, one for roughing and one for finishing.

The integration of additional tools or parameter sets for existing tools is possible and requires

only little effort.

5.1.1 Assessment of Tool Engagements

The evaluation of machining strategies considers different aspects of productivity. The most

important criterion is the successful completion of the planning task, i.e., the trajectory of the

tool must cover every point of the target geometry while respecting workpiece constraints.

Another primary criterion for the evaluation of machining strategies is the overall machining

time to produce the outcome. The machining time affects the overall energy consumption

and the required amount of cooling fluids or the utilization of pressurized air. As planning

primitives expose different material removal rates, the selection of planning components

impacts the cost-efficiency of a machining process. A summarization of the different factors

for the energy demand of machining operations with special regard to tool paths can be found

in [7].

While a calculation of the running time of a machining sequence is possible, the analysis

of tool wear is not trivial and subject to ongoing research. An automated measurement or

quantification of tool wear is therefore not integrated as a numeric criterion.

An excessive tool temperature reduces the wear resistance of the tool’s material and facilitates

damage at the cutting edges due to cut forces (see [75], p. 46). The chip formation and the

chip evacuation behavior have an impact on the tool temperature because chips carry away

a significant share of the heat (see [21]) that originates in the primary and secondary shear

zones (see Fig. 5.1). Another notable factor for tool wear is the tool engagement angle, an

angular measurement that describes the partition of the tool’s circumference that is in contact

with the material. Small tool engagement angles reduce spindle load and allow higher feed

rates while increasing the overall machining time. Fig. 5.2 shows the different engagement

angles for conventional milling and trochoidal milling, where the tool progression involves

circular motions that are illustrated in the bottom right corner of the figure.

Fig. 5.3 shows a selection of machining parameters for a side milling process, and the set of

parameters complies with the end milling operations used in this chapter. The tool’s cut width

ae , spindle speed n, number of teeth z, and feed rate v f result in a particular feed per tooth

fz and a corresponding chip thickness. For this work, the compliance of a tool engagement
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Figure 5.1: Chip formation and shear zones, taken from [87]

Figure 5.2: Tool engagement angle for conventional and trochoidal milling, taken from [58]
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with these tool parameters is assumed to ensure stable cutting conditions. Consequently, this

avoids unfavorable engagement effects such as chip thinning.

The characteristics of tool engagement situations also have an impact on the stability of the

cutting process. Unplanned tool engagements might lead to oscillations which can cause

higher tool wear, tool damage, and excess material removal. In worst-case scenarios, fatal tool

damage can affect the machining center, workpiece, and workplace environment.

Figure 5.3: Machining parameters, taken from [75]

The tool parameterization also significantly impacts tool path planning, and it predetermines

the planning parameters for the corresponding path coverage problem. The planning com-

ponents, which were designed for this study, follow the parameterization. As such, the tool

engagement preferably considers the cut width while moving at the desired feed rate. However,

in corner cases, the path planning heuristics do not entirely conform to these parameters for

the benefit of faster material removal, higher applicability to geometries, or ease of implemen-

tation.

This aspect affects the suitability of a motion plan for different materials, as the machining of

hard materials imposes higher forces on the tool. Correspondingly, the planning components

for these materials should emphasize compliance with the given parameterization. This

study proposes different path planning components that favor either short machining time or

reduction of tool wear.

5.1.2 Tool Parameterization

The tool selection must consider several aspects, such as the suitability for a material, depth of

cut, the tool diameter, number of teeth, and the tool’s price. The different tool properties affect

its suitability for specific machining operations like finishing and roughing. The parameters
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for tool engagement are well-matched, and compliance with these parameters leads to stable

processes, constant chip evacuation, and controlled temperature development.

The component-based approach to synthesize machining operations involves selected tools

with predefined parameters that trained professionals determined. The parameterization

stems from previous work done by other researchers who integrated experimental force

models in a geometric physically-based simulation system.

The corresponding tool components have semantic types that describe the tool’s suitability

for a milling operation (i.e., roughing or finishing processes) and the suitability for a material.

This study uses the following tools and parameters.

Aluminum roughing:

Diameter ⊘: 12.0 mm

Width of cut ae : 3.0 mm

Feed rate v f : 3990.0 mm/mi n

Number of teeth z: 2

Corner radius rc : 2.0 mm

Spindle speed n: 13300 mi n−1

Aluminum finishing:

Diameter ⊘: 8.0 mm

Width of cut ae : 4.0 mm

Feed rate v f : 1280.0 mm/mi n

Number of teeth z: 2

Corner radius rc : 0.0 mm

Spindle speed n: 8000 mi n−1

Steel roughing:

Diameter ⊘: 10.0 mm

Width of cut ae : 6.0 mm

Feed rate v f : 1948.0 mm/mi n

Number of teeth z: 4

Corner radius rc : 1.0 mm

Spindle speed n: 4775 mi n−1
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Steel finishing:

Diameter ⊘: 5.0 mm

Width of cut ae : 0.5 mm

Feed rate v f : 380.0 mm/mi n

Number of teeth z: 4

Corner radius rc : 0.0 mm

Spindle speed n: 6365 mi n−1

5.2 Literature Review

5.2.1 Optimization-based Tool Path Generation

Machining is often an optimization problem with several opposing objectives. As an example,

the multi-objective optimization of milling parameters in [103] considers the trade-off be-

tween energy, production rate, and cutting quality. The following works employ optimization

techniques for specific applications by introducing adapted parameter sets and optimization

criteria.

In [57], a multi-objective evolutionary algorithm is employed to optimize the tool orientation

for five-axis milling. This approach aims to smooth tool paths that expose tool positions

that match the surface normals. That way, potential surface defects can be avoided. In

[32], process parameters are tuned for different machining operations with fixed tool paths.

The incorporated objectives are machining time, left-over material, and machining error as

the deviation between the modeled and machined surface. The method yields optimized

parameters that describe tool selection, tool parameterization, and geometric constraints

such as admissible scallop height. These parameters have an impact on the path generation

according to a predefined tool path pattern.

In [65], Lu et al. propose a differential evolution algorithm with gradient-based mutation to

produce smooth tool paths for five-axis flank milling, which enables the machining of narrow

objects like turbine blades. For that reason, the objective function is a mathematical notion

for surface smoothness, while geometric deviations are constraint functions. The result is

a smooth tool path described by a sequence of tool positions and orientations. Hsieh and

Chu propose a different optimization procedure for the same domain [44]. They use variants

of particle swarm optimization to minimize an estimate for the machining error. Another

application of particle-swarm optimization allows the tuning of feed rate and spindle speed

for existing tool paths [93]. The problem formulation consists of constraints describing the
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machining conditions and a formula for the production cost as the objective function. These

metrics allow the formulation of the overall production cost, which involves the machining

time and a tool life estimate based on experimental findings.

In [1], a modified ant colony optimization approach is used to machine separated pieces

of left-over material from a preceding contour-parallel machining operation. That way, the

resulting machining sequence covers the complete machining task.

These works optimize machining conditions based on existing tool paths that entail construc-

tion with CAM software. This requirement reduces the potentially available solutions and

limits the automated search for machining strategies. Methodologies that build paths from

scratch target small planning tasks consisting of a single machining step, as the extensive

search space does not allow generating sequences of machining operations.

In contrast, the methodology proposed in this work produces machining strategies with

corresponding tool path patterns. As such, it covers the fields of process planning and tool

path planning.

5.2.2 Formal Methods in Machining

In [72, 2], an approach for the modeling of manufacturing operations and geometric shapes

uses formal methods, namely the Z notation. The formalism allows for representing ge-

ometries with semi-algebraic spaces and the encoding of operations by preconditions and

postconditions. The Z notation primarily consists of the first-order predicate calculus with

types.

In [73], this logical framework describes process planning by considering planning as an

optimization problem. The corresponding formulation minimizes a problem-specific property

under the constraints imposed by other formulas. The work shows how the notion can describe

a process planning objective that aims to minimize energy consumption.

The application of this formalization in an actual planning program is not part of the pro-

posal. However, a reasoner to construct formulas that describe sequences of manufacturing

processes could implement a corresponding process planning methodology.

Process planning is on a higher abstraction level that does not include the planning of tool

paths. While the formal description of machining operations with Z could be appropriate

for process planning, the intersection type system of CLS specifies the rules of composition.

Types express features of software components, effectively guiding automatic composition
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on a combinator level, which allows the generation of large-scale machining sequences that

provide the corresponding tool plans.

5.2.3 Conventional Planning Methods

Early tool path planning approaches make use of the general coverage path planning principles

pointed out in Section 3.7. In [63], the tool path generation for free-form surfaces uses a grid

representation of the target geometry. This method is essentially a projection of the 3D shape

onto a two-dimensional planning space. An application-specific cost map describes the

changes in the z-direction, and a corresponding weighted graph helps to find minimum cost

connections. Eventually, these subgraphs enable a continuous tool path calculation using a

minimum spanning tree (MST).

In [48], the medial axis, a subset of the Voronoi diagram, is used to identify critical regions that

might expose unfavorable tool engagement situations when machined with a contour-parallel

pattern. These regions are machined with a trochoidal grooving operation, segmenting the

geometric space into smaller areas that are easier to machine. From a planning perspective,

this operation corresponds to a cell decomposition, a common approach to path coverage

planning.

5.2.4 Constant Tool Engagement

Several scientific works are motivated by the requirement for constant tool engagement. Early

work by Uddin et al. identifies this problem and proposes a tool displacement strategy for

machining corner regions [94]. A similar approach addresses long curved tool paths, and

it performs the tool path modification with an offset curve [25]. Both approaches rely on

initial tool paths for their computations. Therefore, these methods are tool path modification

techniques rather than tool path planning approaches.

A planning approach that takes this aspect into account uses a contour parallel algorithm

that iteratively checks tool engagement angles [29]. A path displacement is performed during

computation when engagement angles exceed the predefined range of admissible values.

5.2.5 Planning with Feature Extraction

Several works propose process planning methods with feature-based methods to recognize

geometric features and assign corresponding manufacturing processes. The primary purpose

of process planning is to find a sequence of abstract manufacturing processes. In an early
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work from 2002, Sadaiah et al. used feature extraction to implement a generative process

planning system. They identify contained geometric primitives for complex geometries and

provide a mapping to machining operations.

Huang et al. [47] present a multi-level structuralized model representation that holds infor-

mation about the geometry and derives machining-specific features for manufacturing. The

incorporated tree model is comparable to the CSG approach, and feature extraction helps

to identify reusable subparts. Complete tool paths for complex geometries are built from

user-defined paths for subparts, resulting in a semi-automated approach that reduces human

interaction.

Xu and Hinduja [102] make use of feature recognition to assign roughing, finishing, and

semi-finishing operations to surfaces. In contrast to the work presented in this thesis, they

assign operations without tool path generation. Therefore, the planning domain exhibits a

higher level of abstraction. The geometries consider 2.5D planning with multiple layers that

approximate volumes. They use fuzzy logic to mitigate errors in feature recognition and use an

iterative approach that considers intermediate states of the volume. The methodology involves

a sub-division of the model to geometric primitives, similar to the subtractive operations on

geometric models employed in this thesis.

51



Chapter 5. Component-Based Synthesis for Tool Path Planning

5.3 Brute-Force Search
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Figure 5.4: Synthesis of machining strategies and search procedure

Fig. 5.4 shows the procedure to find candidate solutions for a given machining problem

instance. It involves a brute-force search that utilizes the inhabitant enumeration of the CLS

framework.

The repository contains planning components, tool components, and components that per-

form additional model transformations or allow the composition of planning steps. The

initial configuration of the repository considers the distinction between steel and aluminum

experiments. The problem configuration arranges the kinding (i.e., the substitution of type

variables) and the inhabitation target accordingly. Moreover, the experimental setup allows

addressing open pocket or closed pocket milling tasks. Closed pockets will require machining

sequences that start with a dive-in motion in the z-direction.
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CLS enumerates the infinite set of synthesis results, and the found inhabitants are data

structures representing the path coverage programs. The programs’ execution starts with

applying the planning functions to a geometric model and a planning configuration. The

inhabitants are filtered by examination of the resulting updated model and the sequence of

tool paths. In general, not every sequence of machining operations is guaranteed to fulfill any

machining task. For this reason, the first filter criterion uses the remaining target geometry of

the updated model to check if the current machining strategy completes the machining task.

Further computation is performed only for programs that remove a specific percentage of the

initial target area.

For selected planning programs, a post-processing step computes the tool feeds for every

machining operation. This data forms the basis for estimates of the total processing time of

machining strategies. A customizable filter criterion on the estimated time leads to a set of

solution candidates for further investigation.

The brute-force search will continue enumerating and evaluating inhabitants until it finds

a predefined number of solution candidates. Additional filtering leads to a refined set of

candidate solutions that can be supplied to the planning personnel. Further evaluation

of candidate solutions could include using geometric physically-based simulation systems,

optimization techniques, or decision support systems.

This work uses the LocationTech JTS Topology Suite1 for representation and manipulation of

geometries. The implementation of several data types and functions supports the construction

and evaluation of tool path planning. The corresponding native types are Scala classes that

hold the information required to determine tool paths. The remainder of this section describes

these data structures in detail.

5.3.1 CNC Model Representation

The model is a representation of the machining process at hand and is contained in the class

Cnc2DModel. This model data type is sufficient to represent a 2D machining task and also

intermediate geometric states. It contains the following fields:

• Planning Boundaries

A list of float values represents the planning domain boundaries. It holds values

for intervals given by minimal and maximal values for each geometric dimension

(xmi n , xmax , ymi n , ymax ).

1https://locationtech.github.io/jts/
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• Target Area

The target area denotes the geometry which the machining sequence must subtract

to fulfill the specification. The final workpiece is the difference between the boundary

rectangle and the targeted area.

• Machined Area

A list of machined geometric objects represents the areas that were removed by pre-

ceding machining steps. This list describes the evolution of a model that can help to

evaluate different steps of the machining sequence. A complete representation of the

machined area can be determined by unionizing the elements of the list. The process

terminates when the machined area equals the target area, and the result equals the

specification.

• Remaining area

This property is a list of geometric objects that must be subtracted from the model to

complete the machining task, representing the remaining area that must be machined.

In contrast to the target area, every planning step includes an update of this field.

Therefore, it describes the current state of the remaining machining task.

The class Cnc2DModel includes several functions to manipulate its geometric models. These

functions update the machined area and the remaining geometry, using several geometric

operations to ensure robust computations.

5.3.2 Path Coverage Step

A successive application of path coverage functions manipulates the Cnc2DModel. These

functions are wrapped in the class PathCoverageStep. It contains the following fields:

• Path Coverage Function

A planning function has the native type (Cnc2DModel, PathCoverageStepConfig)→
(List[List[List[Float]]], Cnc2DModel). It receives a Cnc2DModel object and a

set of configuration parameters as input, and generates a manipulated model and a

sequence of paths. The updated Cnc2DModel includes a new geometric representation

of the machined area and the remaining geometries.

• CNC Tool

The tool parameters directly impact the resulting path as they configure the planning

function, which uses the tool diameter and its cut width to find valid paths.
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• Path Coverage Steps

This list of machining operations contains child nodes of this path coverage step. The

resulting tree structure resolves to a machining sequence by using an evaluation proce-

dure.

• Description

The description identifies the current planning component. The string can help to

debug and denote machining instructions for export. The description states the name

of the motion primitive and an identifier of the CNC tool.

With this data, a PathCoverageStep object can represent a single machining step and ma-

chining strategies consisting of multiple path coverage steps. A nested PathCoverageStep

can contain several processing steps with different tools.

5.3.3 Path Coverage Configuration

The PathCoverageConfiguration object contains a set of parameters that allow tuning of

the different steps that are required to execute a planning program and evaluate the result.

The following fields configure the path generation behavior of planning components:

• Minimal path node clearance

This value defines the minimal clearance between two consecutive points of a result path.

Concatenation of different motion primitives or rounding errors in geometric operations

can introduce close points, which can be problematic for the further evaluation of the

tool path. Therefore, a violation of the minimal clearance constraint results in the

collapse of two points by removing one point from the tool path. The default value for

minimal clearance is 0.01 mm, corresponding to the tool deflection’s order of magnitude

caused by process dynamics.

• Area ignore threshold

This technical parameter allows ignoring geometric artifacts under a given threshold.

Planning components can include this value in a filter based on area size to disregard

small areas. This way, geometric artifacts that result from rounding errors can be

ignored.
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• Path ignore threshold

This parameter is in the sub-millimeter range and allows discarding path segments

that result from rounding errors or limited applicability of planning components. Path

coverage functions evaluate their resulting path length and only return planning results

if the length of the determined path is greater than this threshold.

5.3.4 Path Coverage Result

The PathCoverageResult data structure contains the results of a planning program execu-

tion, and it is used for evaluation and debugging purposes. It can help to analyze the outcome

of a sequence of machining operations by holding the geometric representation of the ma-

chined area model. The class offers utility functions to export the overall result for a machining

step to XML files.

The evaluation procedure applies the planning functions of the given PathCoverageStep

object to a model and a planning configuration. Upon application of the function to suitable

arguments, the path and transformed model are built.

The evaluation of PathCoverageStep object corresponds to a depth-first traversal of this tree

with pre-order. Each node will be supplied with the accumulated result of the preceding path

coverage functions and performs its calculation based on the most current model state. For

a given node, the evaluation procedure is implemented with a fold over the list of children,

accumulating their partial results and applying their path planning functions to the updated

list of models and paths. The outcome of a node corresponds to its result concatenated with

the results of its children.

5.4 Path Planning Primitives

Every path planning primitive makes use of the data structures presented in Section 5.3. These

primitives require a CnCTool object to determine the tool machining parameters such as cut

width and tool diameter. The following collection of path planning primitives is not complete

and can be further extended. However, this initial assembly of planning components shows

that this technique can find candidate solutions for complex machining tasks.
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5.4.1 Zig-Zag Patterns

The zig-zag and zig motions (Fig. 5.5) are seemingly simple machining patterns that employ

straight, parallel tool paths. However, several variability points allow for different configu-

rations of these motion primitives. These variability points may impact the suitability of a

machining strategy for a given machining task. The zig pattern involves repositioning motions

without tool engagement. While this behavior results in a lower overall material removal rate,

the generated path can exclusively incorporate climb milling or conventional milling. By

contrast, zig-zag alternates between climb milling and conventional milling.

The first stage of planning involves the construction of parallel lines according to the machin-

able target geometry. A geometric buffer applied to the final workpiece with a distance given

by the tool radius yields the space of valid tool positions, i.e., the points that do not violate the

final workpiece geometry. The geometric envelope of this shape intersected with the left-over

material is the frame for the generation of vertical lines. The line displacement is based on the

tool’s cut width ae to generate tool paths compliant with tool parameterization.

For these lines, the intersection with the geometry of the remaining area represents relevant

tool path segments. In the most trivial case, those intersections match the original lines or

contain one line per x-coordinate. However, this step can also generate multi-line patterns,

i.e., multiple lines for a particular x-coordinate, as candidates for the zig-zag pattern. A loop

iterates over these lines in ascending x-direction to decide if they can be considered in the tool

path. In the case of a multi-line geometry, the planning component must select a line from

the set of candidates for a given x-coordinate.

A function that computes a full tool path must connect the selected lines. The zig-zag pattern

introduces alternating connections between the top and bottom nodes. On the other hand,

the zig pattern connects either the bottom or top nodes of the lines. Therefore, these patterns

are variations of the same program with different approaches for connecting consecutive lines.

The connection of nodes first conducts a validity check for a straight connection between

selected nodes. This test validates if the tool path is within the space of valid tool positions,

i.e., it does not violate workpiece boundaries. If a collision was detected, several horizontal

connecting lines are generated over the y-interval that both lines share. They are checked for

conformity with the constraints iteratively, and a valid connection segment is introduced by

adding new nodes to the path.

This family of planning programs generates results that employ sudden changes of the tool’s

motion, which can be unfavorable for the machining center and the tool. The corresponding

deceleration and acceleration phases affect chip evacuation, heat development, stress on

the machining center, chatter characteristics, and machining time. It would be possible to
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mitigate these effects by introducing an alternative connection routine that produces rounded

corners. An additional finishing step could handle the additional leftover material.

The admissibility of higher tool engagement angles that do not comply with tool parameters is

another variability point of this planning component. Such a tool engagement situation is

demanding for the tool, resulting in higher tool wear. These patterns apply to a more extensive

set of geometries but are not suitable for hard materials.

The compliance with tool parameterization can also be affected at the end of paths. The tool

engagement angle rises at the end of the straight tool paths as it also removes leftover material

ahead of the tool in the feed direction. The same principle applies to the connection of line

segments.

Additional planning components can address these particular situations. While further con-

siderations can benefit the tool engagement angle and lead to more constant forces, it limits

the applicability to a target geometry. Corresponding implementations likely require sup-

plementation by other path planning primitives, e.g., precedence of a trochoidal slot milling

along the specimen contour.

Figure 5.5: (a) Zig-zag pattern, (b) Zig pattern

5.4.2 Contour-Parallel Tool Paths

Contour-parallel tool paths (Fig. 5.6b) can orient themselves to the contour of the remaining

geometry or the contour of the workpiece. The planning component iteratively determines

paths to remove one material lane, and an iteration returns the updated machined area and a
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new target polygon as a result. The overall result is built by connecting the iteration results

with a domain-specific bug algorithm.

According to the tool’s parameters, this planning primitive first finds the subtractable area for a

selected target geometry. For this purpose, applying a geometric buffer operation expands the

machined area by the tool’s cut width. The workpiece geometry must be subtracted from this

new polygon to avoid a violation of the workpiece boundaries. The tool path’s computation

selects a target area from the resulting geometry and uses a series of buffer and distance

filtering operations to find the corresponding tool path.

Figure 5.6: (a) Spiral roughing, (b) Contour-parallel tool path

Update of the Target Geometry

Each iteration, the latest contour path is buffered by the tool radius and removed from the

remaining geometry. This operation might split the geometry into multiple parts. In that case,

the planning primitive selects the remaining polygon with the largest area and continues the

loop with an updated target geometry.

Every planning primitive contains a termination condition. For contour-based patterns, the

calculation stops when an iteration fails to find a valid tool path or the selected remaining

geometry is empty, i.e., the planning sequence completed the machining task.
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Connecting Paths

Each iteration of this path planning function yields a single path, while the overall result of

the planning component must be a connected path. Thus, a motion planning procedure

ensures that the connecting tool path segments are collision-free concerning the remaining

material. These repositioning motions must be located in the area of tool positions without

tool engagement based on the current machined area.

A geometric buffer operation with a negative tool radius value applied to the machined

area finds the space of admissible tool positions, which is also C f r ee for the given motion

planning task. First, a validity check tests the straight line connecting the aggregated path’s

last point and the new path. If this trivial solution fulfills the planning problem, the result is

the concatenation of the path segments.

If this is not possible, the tool path is computed based on the sequence of line segments that

follows the contour of the leftover material. For this reason, two points in the machined area

are selected by their minimal distance to the nodes of the tool paths, and the connecting

path follows the exterior ring of the machined area shape. The function to connect path

segments can be considered a domain-specific adaption of the bug algorithm [66, 67]. With

this approach, the contour-parallel tool path planning component can produce valid paths for

non-convex, irregular geometries with isles. The bug algorithm cannot find a connecting path

for corner cases where the selected points are on separate polygons of the machined area. In

this case, the planning component aborts the loop and returns the accumulated path.

Contour-Parallel Paths based on the Specimen

In this particular contour-parallel planning step, machining operations consist of a single step

targeting the workpiece boundaries. This motion checks if it is possible to follow the workpiece

contour while staying within tool parameters, i.e., the removed area must comply with the

tool’s cut width. With leftover material smaller than the tool’s cut width, contour-parallel paths

regarding workpiece and remaining target area will have the same outcome. This plan works

well even if there are many separate leftover areas in the proximity of the workpiece boundaries

(e.g., scallops). Instead of searching a planning primitive for each area, the contour-parallel

path based on the specimen is one continuous path from a single planning step. Moreover, a

finishing operation based on this planning component can account for the corner radius of

the roughing tools.
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5.4.3 Directed Trochoidal Slot Milling

In certain situations, milling with maximal tool engagement is not applicable. The directed

trochoidal slot milling program, depicted in Fig. 5.7b, results in a straight slot in the y-direction,

formed by a trochoidal base motion. First, an examination of the target geometry’s vertices

bordering the machined area finds the parameters of this machining operation. It determines

the nodes adjacent to the machined area and uses a bounding ball to find the parameters

for the circling motion, i.e., center position and radius. Based on these nodes, the planning

primitive determines the first circle and selects points in the vicinity of the targeted polygon

for the tool path construction. The planning component works iteratively and investigates

circular tool paths displaced in the positive y-direction by the tool’s cut width. It terminates

when the new tool path contains infeasible points that violate the workpiece boundaries.

5.4.4 Contour-Parallel Trochoidal Slot Milling

Fig. 5.7a shows a planning primitive which generates a channel that follows the boundary of

the workpiece. It can provide an initial machining step for a closed pocked machining task as

it is preceded by a spiral dive-in motion that moves into the material in the z-direction.

The planning component traverses boundary lines of the selected workpiece shape, starting

from the leftmost position. This way, it determines two lines that follow the upper and lower

boundaries of the target geometry, which enclose a possibly non-convex polygon. The tool

path generation involves the tool-specific arrangement of circles along the lines because

the tool’s cut width designates the distance of adjacent circles. A similar planning approach

could involve a continuous progression along the boundary region with a parameterized over-

loaded rotary motion. This formulation, however, would produce scallops on the workpiece

boundaries.

As with other trochoidal planning primitives, this planner produces paths that expose constant

tool forces while causing a longer overall machining time. The channel works as an enabler for

motion primitives that require a machined area, such as zig-zag without full tool engagement.

5.4.5 Spiral Roughing

The spiral tool motion is displayed on the left side of Fig. 5.6 and is a very efficient roughing

pattern that removes the material with circular motions. The benefits of this motion plan

are the constant tool engagement and cut forces that result from smooth motions. It offers a

high material removal rate within the constraints given by the tool parameters. However, it
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Figure 5.7: (a) Trochoidal channel, (b) Trochoidal slot

has limited applicability to irregular geometries. The curvilinear tool path method proposed

by Bieterman and Sandstorm [16] addresses this drawback. It builds a spiral motion that

starts from the center region of the target geometry and gradually adapts itself to the outer

workpiece geometry.

The planning component to generate regular spiral motions finds the largest inscribed circle

for a given geometry and selects the target area accordingly. This way, a starting point and a

maximal radius are given. The tool’s cut width specifies the step size corresponding to the

radius increase per full circle motion. A z-directional dive-in step precedes this operation, and

it concludes with a full circle motion with a constant radius.

5.4.6 Dive-in Motions

Machining tasks for closed pockets require motion primitives to enter the material in the

z-direction. For this purpose, a rotary tool path primitive implements a linear decrease of

the z-coordinate. The tool progresses in a radial trajectory with a fixed radius. The z-velocity

corresponds to the allowed depth of cut ap for the given tool. Similarly, a straight movement

with a linear decline of the z-coordinate can accomplish a dive-in motion.

5.5 Repository Structure and Combinators

CLS is used to synthesize machining strategies by composing PathCoverageStep objects.

The tables 5.5 and 5.6 contain the combinators and their types.
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Combinator Name Type
AluminumRoughing CncTool∩ r oug hi ng ∩al umi num ∩atomi cStep
AluminumFinishing CncTool∩ f i ni shi ng ∩al umi num
SteelRoughing CncTool∩ r oug hi ng ∩ steel
SteelFinishing CncTool∩ f i ni shi ng ∩ steel
GenericCompositionPcStep PathCoverageStep∩α∩pcF ct →

PathCoverageStep∩α∩pcF ct ∩atomi cStep →
PathCoverageStep∩α∩pcF ct

RotateModelPcs PathCoverageStep∩α∩pcF ct →
PathCoverageStep∩α∩pcF ct

ConvexHullPcs PathCoverageStep∩α∩pcF ct →
PathCoverageStep∩α∩pcF ct

Table 5.5: Components representing tools, model transformations and composition of plan-
ning steps

Combinator Name Type
SpiralRoughing CncTool∩α→ PathCoverageStep∩α∩pcF ct →

PathCoverageStep∩α∩pcRoot
SpecimenContour CncTool∩α→

PathCoverageStep∩pcF ct ∩α∩atomi cStep
SpecimenContourFinishing (CncTool∩α∩ f i ni shi ng →

PathCoverageStep∩α∩pcF ct →
PathCoverageStep∩α∩pcF ctW i thF i ni shi ng )∩
(CncTool∩α∩ f i ni shi ng →
PathCoverageStep∩α∩pcF ctRoot →
PathCoverageStep∩α∩pcF ctRootW i thF i ni shi ng )

ContourRoughing CncTool∩ r oug hi ng ∩al umi num →
PathCoverageStep∩al umi num ∩pcF ct ∩atomi cStep

ContourFinishing CncTool∩ f i ni shi ng ∩al umi num →
PathCoverageStep∩al umi num ∩pcF ct ∩atomi cStep

ContourMultiTool CncTool∩ r oug hi ng ∩al umi num →
CncTool∩ f i ni shi ng ∩al umi num →
PathCoverageStep∩al umi num ∩pcF ct ∩atomi cStep

ZigSteel CncTool∩ steel ∩ r oug hi ng →
PathCoverageStep∩ steel ∩pcF ct ∩atomi cStep

ZigZagAlu CncTool∩al umi num ∩ r oug hi ng →
PathCoverageStep∩al umi num ∩pcF ct ∩atomi cStep

TrochoidalChannel CncTool∩ steel ∩ r oug hi ng →
PathCoverageStep∩ steel ∩pcF ct →
PathCoverageStep∩ steel ∩pcF ctRoot

TrochoidalSlot CncTool∩ steel →
PathCoverageStep∩ steel ∩pcF ct ∩atomi cStep

Table 5.6: Planning components for tool path planning.
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The semantic types of the combinators were defined to distinguish between path planning

programs that aim to reduce tool wear and programs to find fast machining operations. The

type variable α distinguishes between materials and can take the values steel or al umi num.

Correspondingly, the repository contains the four tool combinators AluminumRoughing,

AluminumFinishing, SteelRoughing, and SteelFinishing.

Some path planning primitives only apply to specific materials, assuming that tool wear is

a higher priority for steel plans while aluminum planning components have a bias towards

machining time. For this reason, steel path planning avoids machining operations with

full tool engagement, whereas these are allowed in aluminum motion plans. The semantic

structure ensures that only suitable tools and motion primitives will be considered to generate

machining strategies.

The semantic types pcF ct , pcF ctRoot , and pcF ctRootW i thF i ni shi ng allow the user to

specify constraints on the root element of the inhabitant tree. For closed pocket machining

tasks, the terms must include a dive-in step at the beginning of the machining sequence,

described by pcF ctRoot . pcF ctRootW i thF i ni shi ng indicates that the combinator ap-

pends a finishing step at the end of the machining sequence by building a corresponding

PathCoverageStep object, which holds the finishing path planning step as its last child

element.

5.5.1 Generic Composition

The combinator GenericCompositionPcStep composes two PathCoverageStep objects. Its

type states that it can yield an object typed PathCoverageStep∩α when inhabitation can

determine two arguments that comply with the specified type PathCoverageStep∩pcF ct∩α.

Moreover, the second argument requires terms that have the type atomi cStep, which denotes

a single planning component. It reduces redundant representations of a particular machining

sequence by different inhabitant trees, significantly narrowing the search space for the brute-

force procedure.

This combinator causes the inhabitation result to be infinite since a nested composition of ar-

bitrary depth is possible. The implementation of the combinator builds a PathCoverageStep

object with a children list holding the arguments. This path coverage step does not contain

tool data or a path coverage function but expects the children to supply this information. Thus,

an evaluation procedure must analyze this data and execute the embedded path coverage

steps in the correct order.
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5.5.2 Convex Hulls

A convex hull operation can lead to better handling of material isles, such as depicted in Fig.

5.20a. It uses model transformations to block partitions of the model that are inside the convex

hull of isles. That way, the following planning components will consider these isles as convex,

leading to better applicability of planning primitives.

Usually, a planning component transforms the model based on the generated tool path. The

corresponding transformation can be determined by applying a geometric buffer to the tool

path and adding the resulting polygon to the machined area of the new model. This convex

hull component, however, manipulates the model without tool interaction. The changes are

revoked later in the program to ensure that the convex hull operation does not influence the

model directly.

The corresponding PathCoverageStep data contains three children, and the combinator in-

terposes its argument between two model transformations. It applies a model transformation,

executes the arbitrary planning component supplied by the argument, and retransforms the

resulting model.

In order to prevent subsequent planning components from machining the blocked area, the

geometry is considered part of the specimen and removed from the remaining area. When

the argument planning strategy completes, a model retransformation releases the blocked

geometry. That way, embedded planning strategy respects the convex hull, and from an

outside perspective, there is no manipulation without tool interaction. Thus, after evaluation

of the complete model, the resulting model contains the original non-convex isles. The

Cnc2dModel data structure keeps track of changes, and a stack of model transformations

holds the geometric information required to compute the corresponding retransformation.

Based on this information, several fields of the model data are updated.

5.5.3 Model Rotation

The combinator for model rotations is another example of a model transformation without tool

path generation. It further boosts the applicability of path coverage functions with heuristics

based on a fixed direction, eliminating the need to implement these components with variable

orientation. Instead, this combinator composes variations of planning steps that include

rotated models.

More precisely, it applies a rotation by 90◦ to the model and then performs the embedded

planning sequence provided by the synthesis algorithm. After evaluating this sequence, the
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model and the accumulated results are retransformed to the initial geometries by applying a

−90◦ rotation. The nesting of this combinator can also yield 180◦ and 270◦ rotations.

This operation uses an affine transformation matrix that alternates every geometry of the

model. The transformation applies to the model’s boundaries, machined areas, left-over

material, target geometry, target workpiece, and the accumulated paths. The type specification

of this combinator is similar to the type of convex hulls.

5.6 Numerical Evaluation of Tool Paths

Coverage path problems such as the generation of tool paths are generally solved based on

heuristics. The corresponding components incorporate planning patterns that might involve

abrupt changes to the tool progression. As such, they often consist of a series of connected path

segments. However, these linear segments are not inherently differentiable, and the machining

center resolves the machining process by applying directed forces to the tool, incorporating

control routines. Consequently, every directional change might require a deceleration and

acceleration of the tool center, which impacts the overall machining time and the compliance

with tool parameters.

In general, a tool path can prescribe a set of control instructions for a machine or robot.

The planning results are sequences of three-dimensional points, which can be translated

into machine instructions to guide the tool. A machining center can handle a sequence of

coordinates to position the tool center with a given target feed.

For this experiment, the generation of machining instructions will consider feed rates that

comply with the computed path and an acceleration model to describe machine dynamics.

The incorporation of machine dynamics yields paths that are likely to match the desired

outcome.

5.6.1 Acceleration Model for Machine Dynamics

Using tool feeds, an estimate for the machining time is possible, which allows a more precise

evaluation of machining sequences. This proof-of-concept uses a numerical acceleration

model that results from the work of Freiburg et al. [34]. They use a physically-based geometric

simulation system to find differential equations for the tool velocity vector and evaluate this

representation of machine dynamics with experiments.
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After executing the planning sequence based on components, a post-processing step uses this

particular model to compute feed rates along the resulting path. For this purpose, the target

feed v f is determined for every path segment considering the machining centers’ dynamic

constraints. It describes the velocity of the tool’s motion towards the target node and is part of

the machine instructions.

The model approximates the acceleration as a function of the feed rate. A machining center

exposes a different acceleration behavior for x, y, and z-direction, and Equations 5.1 - 5.3 show

the corresponding functions. Therefore, a velocity vector is set up for every path segment (i.e.,

pair of path nodes) to determine admissible x- and y-velocities.

ax (v f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0,0624 · v2
f

+0.2603 · v f

+0.0216,

if 0 < v f < 1

−0.0027 · v2
f

+0.0880 · v f

+0.1536,

otherwise

(5.1)

ay (v f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.1979 · v2
f

+0.3970 · v f

+0.0184,

if 0 < v f < 1

−0.0036 · v2
f

+0.0967 · v f

+0.1427,

otherwise

(5.2)

az (v f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.1429 · v2
f

+0.3411 · v f

+0.0263,

if 0 < v f < 1

−0.0041 · v2
f

+0.1090 · v f

+0.1280,

otherwise

(5.3)

v f ,max (ω) =

⎧⎪⎨⎪⎩
−14.8311 · 1/ω2

+28.4664 · 1/ω
−0.1496,

ω> 1◦ω< 180◦ (5.4)
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5.6.2 Construction of Lookup Tables

The computation of the feed rates involves a trade-off between accuracy and run-time. The

functions in Equations 5.1 - 5.3 were transformed into different lookup tables by sampling the

values with a configurable time increment (0.01 s) to avoid redundant calculations.

Let v denote the feed rate, t the time progression, and s the traveled distance for an accelerated

motion. The progression of the velocities and the corresponding positions are determined by

si+1 = si + v f ,i ·∆t and vi+1 = vi +a(vi ) ·∆t . A table for a given starting feed rate v0 is defined

for v0 < v < v f ,tool , and it represents an accelerating motion.

A sequence of tuples (v, t , s) is built incrementally by solving the differential equations and

using a small∆t to determine the updated velocity. A lookup table for a given feed rate v0 takes

its entries from an initial table that contains acceleration motions starting at 0.0mm/mi n. For

every tuple of the new table, offsets adjust the values of t and s according to v0. That way, a

series of points can be retrieved for a given starting velocity, yielding a precomputed, discrete

representation of accelerating and decelerating motions.

Another lookup table represents the function in Equation 5.4 which describes the maximal

admissible feed rate for a given directional change of the tool motion. The table’s initialization

happens at the beginning of a brute-force search, and it allows to find values with a angle

resolution of 1°. The determination of feed rates includes transforming angles to be in (0, 180)

and performing a query on the lookup table.

5.6.3 Calculation of Feed Rates

Listing 1 shows the main function for the calculation of feed rates for a given path and a

tool. The path representation is a sequence of points, each represented by a sequence of

numeric values. For the list named path, pathi denotes the element at position i of the list

and path.si ze describes the number of contained elements.

A first step (lines 6 - 8) determines the maximal feasible feed rate for the angles between

consecutive path segments and concatenates this value to the connecting node. For this

purpose, the function CALCULATEFEEDFORANGLES in Listing 2 constructs vectors representing

the enclosing path segments, calculates the angle, and performs a lookup for the angle using a

table representing Equation 5.4.

Acceleration and deceleration phases are represented by introducing new segments for ev-

ery part of the path. The given acceleration model can be used to determine the possible

acceleration and deceleration behavior, and both have to be determined to find an accurate
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1: function CALCULATEPATHFEEDS(path, tool )
2: vmax ← tool .v f

3: A ← empty list
4: D ← empty list
5: P ← empty list
6: for i in 1...path.si ze −2 do
7: vα← CALCULATEFEEDSFORANGLES(pathi−1, pathi , pathi+1)
8: pathi ← pathi + vα

9: for i in 0...path.si ze −2 do
10: a ← BUILDACCSEQ(pathi , pathi+1)
11: pathi+1.v ← MIN(pathi+1.v, al ast .v)
12: A ← A+a
13: r ever sedPath ← REVERSELIST(path)
14: for i in 0...r ever sedPath.si ze −2 do
15: d ← BUILDACCSEQ(r ever sedPathi ,r ever sedPathi+1)
16: r ever sedPathi+1.v ← MIN(r ever sedPathi+1.v,dl ast .v)
17: D ← D +d
18: D ← REVERSELIST(D)
19: for i in 0...path.si ze −2 do
20: r esol vedLi st ← RESOLVEACCLIST(pi , pi+1, Ai ,Di )
21: p ← COMPUTEPATHSEGMENT(pi , pi+1,r esol vedLi st )
22: P ← P +p

23: return P

Listing 1: Calculation of Feed Rates for a Tool Path

1: function CALCULATEFEEDSFORANGLES(p1, p2, p3)
2: s1 ← VECTORFROM(p1, p2)
3: s2 ← VECTORFROM(p2, p3)
4: α← ANGLEBETWEEN(s1, s2)
5: v f ← LOOKUPFEED(α)
6: return v f

7: function BUILDACCSEQUENCE(p1, p2, v0, vmax )
8: Aacc ← GETLOOKUPTABLE(v0, vmax )
9: s0 ← Aacc,0.s

10: di st ancep1,p2 ← DISTANCE(p1, p2)
11: for a in Aacc do
12: a.s ← a.s − s0

13: Aacc ← Aacc .filter(a.s < di st ancep1,p2)
14: return Aacc

Listing 2: Feed-Rate Lookup for Angles and Construction of Acceleration Sequences
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1: function RESOLVEACCLIST(p1, p2, A,D)
2: if DISTANCE(p1, p2) > A.l ast .s +D.l ast .s then
3: return p1 + A+D +p2

4: else
5: return RESOLVEACCLISTOVERLAP(p1, p2, A,D)

6: function RESOLVEACCLISTOVERLAP(p1, p2, A,D)
7: Au ← empty list
8: Du ← empty list
9: for a in A do

10: if ∃d ∈ D : d.s < a.s∧d.v > a.v then
11: Au ← Au +a
12: else
13: break
14: for d in D do
15: if d .s > Au .last.s then
16: Du ← Du +d
17: else
18: break
19: return p1 + Au +Du +p2

Listing 3: Resolving Acceleration Motions

tool trajectory. Thus, the traversal of the path in lines 9-18 of Listing 1 constructs accel-

eration and deceleration sequences for every path segment. The corresponding function

BUILDACCSEQUENCE in Listing 2 extracts subsets of a precomputed lookup table.

The procedure builds these acceleration sequences for the x- and y-direction. However, this is

omitted in the pseudo-code for clarity. Given these sequences, comparing the dimension’s

time value of the last contained tuples enables the identification of the limiting dimension. The

projection of the corresponding sequence onto the path segment vector yields the resulting

acceleration sequence with updated distances and velocities.

The given model considers a deceleration as a negative acceleration. Therefore, the traversal

of the reversed path will find the admissible feeds limited by deceleration for the path nodes

(lines 13 - 17 in Listing 1).

A final step resolves possibly overlapping acceleration and deceleration sequences for each

path segment. The function RESOLVEACCLISTOVERLAP in line 6 of Listing 3 selects elements

from the acceleration sequence until a deceleration is necessary, and the selection involves the

comparison of the respective feed rates along the path. The subsequence of the deceleration

table Du is built in conjunction with the last element of Au (line 15). The resulting path

segment consists of the starting point, the selected acceleration and deceleration motions,

and the endpoint (line 19). Thus, this procedure also works for path segments without any
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acceleration or deceleration because both sequences can be empty. The procedure thus aims

to select the maximal feed rate while remaining in the feasible regions of the acceleration

model. The resulting entries for the description of dynamics are mapped to the path segments,

consisting of a list of points with feed rates.

5.7 Experiments and Results

This section presents several experiments and selected solution candidates produced by the

proposed methodology.

The synthesized programs are terms that are composed of components, and the Appendix

C contains the inhabitant trees for these planning programs. The trees are bipartite graphs

with directed edges and have been generated by the CLS IDE [12]. One vertex set represents

type specifications with yellow boxes, and the opposite one contains combinators symbolized

by blue circles. A combinator with a directed edge to a type node means that this combinator

requires an argument with the specified type. The labeling of these edges indicates the position

of the argument. A directed edge from a type node to a combinator node means that the term

represented by the appending subtree covers the corresponding argument position.

Upon evaluation, the PathCoverageStep tree is built and evaluated by using the data struc-

ture PathCoverageResult. The representation of PathCoverageStep trees allows for a more

comprehensible interpretation of the resulting machining strategies. The machining opera-

tions, i.e., the steps that contain a path coverage function and perform the removal of material,

are highlighted with a green background. Furthermore, a node’s label states the name of

the machining operation and the used tool, where (R) designates a roughing tool and (F) a

finishing tool. The directed edges express the parent-child relationship between nodes.

The resulting tool paths are transformation operations on the Cnc2dModel object. Therefore,

the representation of a machining strategy contains the target geometry, the tool paths, and the

accumulated machined area of each machining operation. The target geometry corresponds to

the blue polygon, the machined area is a red polygon, and the tool path is a red line within the

machined area. A single process step displays only the current tool path, while the machined

area also includes the removed geometries from previous steps. This way, the machining

operations of a machining strategy can be recognized as modifications of the Cnc2dModel.

The feed rates are visualized with colorized paths where the colors scale linearly with the feed

rate. Green path segments indicate a motion with the tool’s maximal feed rate v f , whereas

red path segments show slowed tool movements due to the machining centers’ acceleration

constraints. For a machining sequence consisting of multiple paths, a single figure contains
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all paths. The start and endpoints of each machining operation have a minimal target feed

rate of 50.0 mm/mi n.

5.7.1 Experiment 1: Open Pocket

The first experiment is a small open pocket machining task with an irregular target geometry.

The brute-force procedure can find complex machining strategies consisting of different

machining steps and is suitable for complex geometries. However, this experiment shows that

the procedure works well for simple machining tasks. Open pocket plans are obligated not to

include planning components with a dive-in step. Instead, the tool paths must start outside

the target geometry and move into the material. The corresponding Cnc2dModel includes an

initial area that is accessible for the tool. In this case, it is depicted as the rectangular area

below the target geometry.
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Solution Candidate 1.1

The brute-force search strategy determined the first candidate for an aluminum setup which

consists of a zig-zag step (Fig. 5.9a) with the aluminum roughing tool and a contour finishing

step (Fig. 5.9b). Fig. C.1 shows the inhabitant tree and Fig. 5.8 displays the associated

PathCoverageStep tree. The aluminum planning components assume that a machining step

with a 180° tool engagement angle is not strictly prohibited. Therefore, the first path segment

of the zig-zag step is valid, although it comes with a high tool engagement angle. Due to the

geometric properties of the model, this zig-zag step resembles a zig pattern. The feed rates for

the solution candidate 1.1 are shown in Fig. 5.14a.

Contour Finishing (F)

Generic

Composition

Zig-Zag (R)

Figure 5.8: PathCoverageStep tree representation of candidate 1.1

(a) Result 1.1a (b) Result 1.1b

Figure 5.9: Generated tool paths and geometric models for candidate 1.1, steps a and b
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Solution Candidate 1.2

The inhabitant for the second candidate solution is displayed in Fig C.2, and Fig. 5.10 shows

the corresponding data structure. The solution uses a predefined contour planning sequence

consisting of a multi-contour roughing step (Fig. 5.11a) and a finishing step (Fig. 5.11b). The

roughing operation removes a large amount of material and involves several repositioning

steps of the tool. The finishing step is required because of the edge radius of the roughing tool.

Fig. 5.14b displays the resulting feed rates.

Contour Roughing (R)

Contour Finishing (F)

Figure 5.10: PathCoverageStep tree representation of candidate 1.2

(a) Result 1.2a (b) Result 1.2b

Figure 5.11: Generated tool paths and geometric models for candidate 1.2, steps a and b
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Solution Candidate 1.3

Candidate 1.3 is a solution for a steel configuration, and it demonstrates the differences in

machining strategies for aluminum and steel. The inhabitant is represented by Fig. C.3 and

the resulting data object by Fig. 5.12. This planning sequence starts with directed, trochoidal

slot milling (Fig. 5.13a), as steel prohibits moving into the material with a maximal tool

engagement angle. After that, a 90° rotation transforms the model (Fig. 5.13b). Fig 5.13c

shows that the embedded machining step, another directed slot milling step, can remove the

remaining material of the rotated model.

The implementation of this machining step only progresses into the material in the positive

y-direction. With the rotation combinator, this combinator can be applied to a broader range

of geometries. The machining sequence concludes with two contour-parallel steps consisting

of a roughing step and a finishing step (Fig. 5.13e, Fig. 5.13f).

The tool feeds are illustrated in Fig. 5.15. Due to the trochoidal tool paths, the feed rates mostly

comply with the given tool feed rate. The few motions with decreased feed rate do not occur

during tool engagement.

Trochoical Slot 

Roughing (R)

Trochoical Slot 

Roughing (R)

Generic

Composition

Generic

Composition
Contour Roughing (R)

Contour Finishing (F)Rotation Wrapper

Model Rotation +90° Model Rotation -90°

Figure 5.12: PathCoverageStep tree representation of candidate 1.3
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(a) Result 1.3a (b) Result 1.3b

(c) Result 1.3c (d) Result 1.3d

(e) Result 1.3e (f) Result 1.3f

Figure 5.13: Generated tool paths and geometric models for candidate 1.3, steps a-f

76



5.7. Experiments and Results

(a) Feed rates, candidate 1.1 (b) Feed rates, candidate 1.2

Figure 5.14: Feed rate visualization for candidates 1.1 and 1.2

Figure 5.15: Feed rate visualization for candidate 1.3
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5.7.2 Experiment 2: Closed Pocket

This aluminum experiment is a nontrivial closed pocket milling task with a large non-convex

irregular center area with an adjacent irregular pocket. The target geometry and the machining

steps of this candidate are displayed in Fig. 5.17. Fig. 5.18 illustrates the feed rates, Fig. C.4

shows the inhabitant tree, and the data structure is depicted in Fig. 5.16.

The machining strategy starts with a radial dive-in step and a spiral roughing operation

displayed in Fig. 5.17b. It is then followed by two zig-zag patterns (Fig. 5.17c, Fig. 5.17d)

and a contour-based roughing operation (Fig. 5.17e). The specimen contour finishing step

in Fig. 5.17f removes material in the proximity of the specimen, where it also clears material

that remained due to the edge radius of the roughing tool. This particular finishing operation

follows the contour of the final specimen instead of the remaining material.

Spiral Roughing (R)

Finishing Step

Composition

Spiral Roughing

Sequence

Specimen Contour

Finishing (F)

Contour Roughing (R)

Generic

Composition

Zig-Zag (R)

Generic

Composition

Zig-Zag (R)

Figure 5.16: PathCoverageStep tree representation of candidate 2.1
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(a) Result 2.1a (b) Result 2.1b

(c) Result 2.1c (d) Result 2.1d

(e) Result 2.1e (f) Result 2.1f

Figure 5.17: Generated tool paths and geometric models for candidate 2.1, steps a-f
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Figure 5.18: Feed rate visualization for candidate 2.1
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5.7.3 Experiment 3: Isles

The third experiment incorporates a workpiece that contains two free-form isles (Fig. 5.20a).

With the introduction of corresponding combinators, the generated motion planning pro-

grams can handle this new class of geometries, which helps to improve the quality of candidate

solutions. Moreover, this experiment shows that the brute-force search on synthesized plan-

ning programs can manage large-scale strategies.

Solution Candidate 3.1

The machining sequence of solution candidate 3.1 is built from the inhabitant in Fig. C.5

and the corresponding PathCoverageStep object in Fig. 5.19. It starts with a zig-zag step

(Fig. 5.20b). Due to the non-convex form of the upper isle, the connecting paths of this step

resemble repositioning steps. After the first roughing step, a 90° rotation transforms the model,

and another zig-zag pattern is applied (Fig. 5.21a, Fig. 5.21b).

The rotation changes the applicability of the following zig-zag planning component for the

given geometry. After retransformation in Fig. 5.21c and the machining of the workpiece

boundaries (Fig 5.21d), the contour-based planning step in Fig. 5.21e selects and removes

the largest remaining area around the lower isle. The machining strategy concludes with a

finishing step based on the contour of the specimen and its isles (Fig. 5.21f). The feed rates for

this machining strategy are shown in Fig. 5.25a.

Solution Candidate 3.2

The second solution candidate for this experiment starts with a convex hull model transfor-

mation that determines and blocks the convex hulls of the two contained isles (Fig. 5.23a).

The contour-parallel machining step in Fig. 5.23b targets the upper isle and causes the first

tool interaction. After that, the retransformation of the convex hull operation releases the

blocked areas (Fig. 5.24a). The next step in Fig. 5.24b performs a contour-parallel tool path

that starts from the machined area and removes most of the remaining geometry. Fig. 5.24c

and Fig. 5.24d show the conclusion of the machining sequence with contour-parallel finishing

steps that guide the tool alongside the isles and the workpiece boundaries. Fig.5.25b displays

the feed rates for the resulting tool paths.

81



Chapter 5. Component-Based Synthesis for Tool Path Planning

Finishing Step

Composition

Generic

Composition

Generic

Composition

Contour-based

Machining Step (R)

Generic

Composition
Contour-based

Machining Step (F)

Specimen Contour

Finishing (F)

Zig-Zag (R) Rotation Wrapper

Model Rotation +90° Zig-Zag (R) Model Rotation -90°

Figure 5.19: PathCoverageStep tree representation of candidate 3.1

(a) Result 3.1a (b) Result 3.1b

Figure 5.20: Generated tool paths and geometric models for candidate 3.1, steps a and b
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(a) Result 3.1c (b) Result 3.1d

(c) Result 3.1e (d) Result 3.1f

(e) Result 3.1g (f) Result 3.1h

Figure 5.21: Generated tool paths and geometric models for candidate 3.1, steps c-h
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Finishing Step

Composition

Generic

Composition

Convex Hull 

Wrapper

Contour-based

Machining Step (R)

Convex Hull 

Block Operation
Convex Hull Release 

Operation
Specimen Contour (R)

Contour-based

Machining Step (F)

Specimen Contour

Finishing (F)

Figure 5.22: PathCoverageStep tree representation of candidate 3.2

(a) Result 3.2a (b) Result 3.2b

Figure 5.23: Generated tool paths and geometric models for candidate 3.2, steps a and b
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(a) Result 3.2c (b) Result 3.2d

(c) Result 3.2e (d) Result 3.2f

Figure 5.24: Generated tool paths and geometric models for candidate 3.2, steps c-f
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(a) Feed rates, candidate 3.1 (b) Feed rates, candidate 3.2

Figure 5.25: Feed rate visualization for candidates 3.1 and 3.2

5.7.4 Generation of Machine Control Instructions

Machining instructions can accomplish the programming of CNC machining centers. In

this work, these machining instructions bridge the gap between planning algorithms and

practical machining applications. For this purpose, machining strategies consisting of multiple

machining operations are translated to instruction sets, using the Heidenhain Klartext format.

The concatenation of different machining operations involves repositioning the tool in the

z-direction to avoid tool engagement. Additional path segments with a corresponding pre-

defined z-coordinate connect the different machining steps. However, this principle does

not apply to machining operations that use different tools or involve dive-in machining steps.

Listing 5.1 demonstrates a Heidenhain Klartext output with instructions containing x, y, z-

coordinates, and the targeted feed rate. Tool positioning without material engagement is

performed with maximum tool speed FMAX, and motions in z-direction use a predefined feed

rate of 500 mm/mi n.
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1 BEGIN PGM Single MM
2 TOOL CALL 2 ; Alu finishing , 8mm , cut width 4mm , vf 1430 mm/min , n

11935
3 L X16 .0 Y6 .0097966 Z20 .0 FMAX
4 L X16 .0 Y6 .0097966 Z0.0 F500 .00000074505806
5 L X16 .0 Y18 .009188 F164 .88254070281982
6 L X23 .986914 Y18 .009998 F1430
7 L X24 .0493 Y18 .009745 F1430
8 L X24 .11168 Y18 .008974 F1430
9 (...)

Listing 5.1: Example Klartext output

5.8 Discussion

5.8.1 Brute-Force Search Strategy

The idea of this work does not intend to use types for an exact specification of sequences

motion planning steps. Rather, types specify a wide range of terms with high structural

variability representing different machining sequences. The inhabitation algorithm yields

every composable data structure that complies with the machining task configuration. Due to

a general composition of machining operations, the result set is infinite.

A corresponding evaluation technique translates these data structures into machining se-

quences. CLS enables the brute-force search because it handles the variability of the search

space and limits the results to the set of well-typed terms. The procedure has shown to be

viable due to the restrictions imposed by the semantic structure. Combinators encode prede-

fined sequences of machining operations, which allows handling complex 2.5D machining

tasks.

The brute-force search creates a variety of unique geometric shapes caused by distinctive

updates of target areas and machined areas after specific machining operations. The planning

components use geometric operations, which can cause runtime errors if the geometric model

is flawed. Consequently, the procedure imposes immense robustness requirements on the

employed planning components. The identification and extensive logging of runtime errors

facilitate a sophisticated test suite.

The caching of partial tree results could lead to further improvement of the overall search

performance. As trees evaluate to sequences of machining operations, a caching mechanism
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could store intermediate results of sequences for reuse in successive iterations of the brute-

force search.

A corresponding model-specific data structure could map a suitable representation of ma-

chining sequences to the adapted model and the accumulated tool paths. The evaluation

procedure must incorporate a lookup for the given planning task and only performs the

computation when the cache does not contain a corresponding entry. This way, redundant

computations can be avoided, leading to a speed-up of the search.

5.8.2 Holonomic and Non-holonomic Planning

The planning components in this work assume holonomic tool positioning, and the search

procedure incorporates the machine dynamics in a post-processing step. A different approach

to the planning task is non-holonomic planning, which uses machine dynamics during the

tool path planning to retrieve viable path segments. With this approach, planning compo-

nents could use optimization methods and yield results that strictly comply with the tool

parameterization. These methods, however, lead to a significant increase in planning cost,

which limits the applicability of the multi-layered filtering techniques and therefore obstructs

the scaling to more complex forms.

In the proposed methodology, the planning components encode the principles of tool motion,

and a post-processing step only enriches viable solutions with feed rates. This concept enables

the synthesis of complex machining strategies while ensuring a close match between planning

outcome and actual machining results.

5.8.3 Further Planning Primitives

While this work focuses on the composition of suitable planning primitives, these planning

components can also expose variability that CLS can address. One possible example is the

incorporation of post-processing to improve tool paths further.

Milling operations in corners tend to show higher tool engagement angles which can cause

higher tool wear. Corner slicing is one possible post-processing technique that aims to miti-

gate these effects. This approach slices the corner region into multiple layers and calculates

the corresponding operations to subtract the material. It produces longer tool paths with

lower tool engagement angles.
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The application of this strategy is also a variability point. It can apply to every tool path corner

that exceeds a specified angle in the tool path direction. An alternative is a limitation to

proximity regions of the workpiece to ensure the final workpiece’s shape accuracy.

While this work focuses on synthesizing machining sequences with valid tool assignments

based on material-specific planning components, CLS could also generate variations of plan-

ning primitives. For instance, the following variability points are possible for zig-zag patterns:

• Admissibility of high tool engagement angles

This aspect affects the construction of vertical lanes, as described in Section 5.4.1. One

policy could strictly avoid tool engagement situations that do not comply with the

tool parameterization. However, this method limits the applicability of this planning

component. A possible relaxation of this constraint could apply to the end regions of a

vertical lane or the advancement into a new lane.

• Connection of straight lines

There are different variations for the connection of the vertical lanes. A special kind of

motion planning primitives can represent these variations and generate tool paths for

this particular motion. The corresponding variability point would also incorporate tool

repositioning. Consequently, this variability point can express tool patterns that are

restricted to conventional or climb milling, and it allows the distinction between zig-zag

and zig patterns.

• Selection of partial geometries

In some cases, the planning component must select a particular geometry among

potential areas to process during the planning process. Selection policies could select

the geometry closest to the latest tool position, by the highest or lowest y-value, or by

the maximal machinable area.

• Post-processing

This variability point accounts for an optional manipulation of the resulting path. Pos-

sible variations are the aforementioned corner slicing strategies or functions for path

smoothing. A post-processing function can also expose variability as it may involve the

sequential application of several different post-processing techniques.

With the corresponding component design, CLS could regulate the behavior of the synthesized

planning component.
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Chapter 6

Design Space Exploration for

Sampling-Based Motion Planning

The requirements of real-life applications and the high-dimensional configuration space of

robotic systems form the need for configurable motion planning solutions. There is a tendency

to adapt planning algorithms with application-specific constraints or optimization objectives.

While the configuration of algorithms and management of heterogeneous components in-

creases in importance, this work also presents a systematic examination for the resulting

space of high variability, demonstrated for the algorithmic family of sampling-based motion

planning algorithms.

A feature vector represents points in the feature space of sampling-based motion planning

programs. Combinatory Logic Synthesis resolves these points by synthesizing programs that

comply with the given algorithm configuration. While CLS can represent spaces with high

variability, the user intent is often not expressible as a precise algorithm specification. Similar

to the planning task in Chapter 5, a user aims to solve a problem without knowing which

configuration yields the best results. This inspired the development of a systematic, CLS-based

design space exploration methodology using machine learning.

Fig. 6.1 shows the corresponding optimization procedure, which analyzes a specific problem

instance with a machine-learning technique that is capable of black-box optimization and

supports categorical input parameters. The Hypermapper optimization tool [71] guides the

design space exploration for single query planning tasks, using CLS to synthesize runnable

programs that comply with selected algorithmic configurations.
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Therefore, the experimental setup involves the definition of optimization objectives and the

definition of the design space. The matching problem-specific synthesis and the evaluation of

programs are an essential part of the black-box function used by the optimization tool.

Black-box Function

Program Synthesis (CLS)

Combinator
Implementation as

Scala Code

Definition of
Algorithmic

Feature Space

Selected Algorithm
Configuration x ∈ X

Algorithm Feature 
Model

Inhabitation Result

Hypermapper: Design of Experiment,
Active Learning Loop

Inhabitation Request
Γ ˫ ? : 𝜏

Program Execution

Generated Python 
Program: OMPL 

Planning Program
Code Templates and

Configuration

Execution of
Multiple Program

Instances

Result Vector

Tabular Evaluation 
Report

Result Parsing

𝜏

Γ

Customized
Repository 

Figure 6.1: Architectural Overview for the Machine Learning Procedure

The optimization procedure aims to find the Pareto-front, and the overall results of an opti-

mization run can also help to analyze algorithmic variations’ strengths for a given problem

instance.

A repository of components was established based on a selection of variability points that this

particular algorithmic family exposes. This CLS repository is the foundation for exploring the

space of planning programs, and its automated configuration involves a domain-specific dy-

namic construction of adjusted repositories to handle the complex search space. Comparable

to the approach in Chapter 4, this work also includes generating programs that manipulate

and execute code of Python scripts, and analyze the outcome. The sampling-based motion

planning programs in Python make use of the Open Motion Planning Library (OMPL, [91]),

and the repository is a set of combinators representing planners, samplers, collision detection

procedures, and additional code required to set up executable planning programs.
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6.1 Motion Planning as a Multi-Objective Optimization Problem

The multi-objective optimization problem (MOP) describes a class of optimization problems

with multiple objective functions. These are often conflicting objectives in real-life applica-

tions, and solving a MOP problem involves finding solutions for these criteria simultaneously.

For a multi-objective optimization problem, it is assumed that there are n criteria that can be

expressed by a numeric value. Let fi be an objective function mapping the design space X to

one individual objective i . Following the notion in [23], the optimization function F with m

objectives maps a point x ∈X to Rm :

F (x) = ( f1(x), . . . , fm(x)) (6.1)

The MOP is finding x ∈X to minimize this function. However, due to conflicting criteria, it

is unlikely to find only one ideal x. Instead, a MOP can be considered the search for Pareto

optimal points. A specific point is called Pareto optimal if it is not dominated by any other

point. For minimization problems, a vector u = F (x) = ( f1(x), . . . , fm(x)) is said to Pareto-

dominate the vector v = F (x ′) = ( f1(x ′), . . . , fm(x ′)), if and only if:

∀i ∈ {1, . . . ,m},ui ≤ vi and
∃ j ∈ {1, . . . ,m} : u j < v j .

(6.2)

The set of Pareto optimal points in X is called Pareto set and F applied to these points yields

the Pareto front in Rm .

The examination of sampling-based motion planning assumes the following dimensions for

the design space X:

• Planner

• Sampler

• Motion validator

• Maximal allowed planning time
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The optimization aims to minimize the following objectives:

• Averaged solution path length

• Averaged computation time

• Number of failed computation attempts

Categorical variables for the configuration of a planner, sampler, and motion validator rep-

resent feature dimensions. The admissible planning time, on the other hand, is a numerical

variable. It finds use in the termination condition that will cause an optimizing planner to

stop the execution after the given amount of time. This variable enables the comparison of

optimizing planners and geometric planners that terminate instantly upon finding a solution.

This particular formulation of the optimization problem does not allow the incorporation of

analytical methods to solve the problem. There is no information to compute derivatives for

dimensions that directly represent the variability points. Here, the points of these dimensions

are the variations of the corresponding variability point. For this reason, this particular opti-

mization problem requires black-box optimization, also called derivative-free optimization or

model-free optimization, and the algorithmic feature space of motion planning algorithms

builds upon different possible features for predefined variability points. The design space

definition uses a map from a set of categorical input parameters to the corresponding feature

of the respective dimension.

For this study, HyperMapper guides the exploration of the search space. The framework

determines the Pareto front for a given multi-objective function using multiple random forests

to learn a model abstracting the MOP function. Based on this model, the active learning

loop selects a point in the design space. The black-box function evaluates the point, and the

optimization framework updates the internal models according to the results.

An optimization run starts with a Design of Experiment (DoE) phase. There is no significant

model available during this phase, so this procedure must collect data unbiased. Possible

search heuristics include random search, grid search, Standard Latin Hypercube samples, or K

Latin Hypercube samples [92].

6.2 Experimental Setup

An optimization run solves the multi-optimization problem for one planning problem instance

at a time. The planning problems include 3D models for the environment, the robot model,
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and the motion planning task defined by start and goal state. The experiments employ the

problem instance examples of the OMPL.

The motion planning instance represents holonomic rigid body planning in the special Eu-

clidean group SE(3), consisting of a R3 component and a SO(3) part for robot orientation.

Selected planners include geometric planners, planners suitable for multi-query and single-

query usage, and optimizing planners.

The experiments consist of a DoE phase with 50 randomly sampled algorithm configurations

and 50 active learning iterations. The input value for the maximal computation time was

defined to be in the range of 2.0 to 90.0 seconds, which matches the expected time for given

problem instances. A failure to find an exact solution after a given time is considered an

unsuccessful program execution, and the corresponding result vector is empty. Moreover,

the solution paths of the sampling-based motion planning programs are subjected to a post-

processing step using the OMPL integrated simplification procedures. The simplification has

a maximal allowed time of 2.0 seconds.

6.2.1 Communication Protocol

The black box function has been implemented in Python. It takes a point in the configuration

space as a parameter and produces a result vector. The communication between Python

and Scala uses the MQTT protocol. For this reason, a corresponding Scala MQTT endpoint

designed for this experiment ensures robust communication with the Python script. A broker

connects the Scala endpoint and the Python-based client. The Python function can initiate

the synthesis and execution of the generated Scala program and receive the result vector. The

following communication procedure ensures the robust evaluation of a given point in the

design space for this study.

The evaluation of a given algorithm configuration involves several communication steps for

this experiment. Every call of the black-box function involves generating a unique identifier

to distinguish messages by setting up separate communication channels. First of all, the

optimization script checks if the Scala inhabitation service is accessible over MQTT. The

algorithm configuration is then built according to the selected point in the design space,

encoded as a JSON string, and sent to the Scala listener. This call causes the initialization with

the algorithm configuration and the unique ID. It uses a handshake procedure, ensuring that

both actors agree on communication channels. The step also triggers the dynamic repository

construction and starts the program synthesis. If CLS cannot find an inhabitant, e.g., when

the given planner and the sampling strategy do not match, an error response will cause the

black-box function to signal the learning loop that the supplied configuration was invalid.
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1 {
2 "planner" : "sbmp_planner_RRTConnect",
3 "sampler" : "sbmp_max_clearance_valid_state_sampler",
4 "stateValidator" : "sbmp_fcl_validator",
5 "motionValidator" : "sbmp_discrete_motion_validator",
6 "costs" : "not_specified",
7 "optObjective" : "not_specified",
8 "simplification" : "sbmp_no_simplification",
9 "sceneInput" : "scene_input_data_file",

10 "dimensionality" : "dimensionality_three_d_t",
11 "id" : "fff0681f-442c-4402-bb0f-21db7b833389",
12 "configurableAlg" : true,
13 "withStates" : false
14 }

Listing 4: JSON example

Listing 4 shows a JSON string for an algorithm configuration that uses an RRT Connect planner,

maximum clearance sampling and discrete motion validation. For the machine learning

experiment, the experimental design predefines the additional fields. The protocol provides

the maximum allowed computation time in a separate message as it is supplied as an argument

to the synthesized program.

Upon successful inhabitation, the following communication steps are required to find the

result vector:

• Supply of arguments for program execution

• Start request for program execution

• Transmission of the result vector

The communication makes use of three separate MQTT topics, which contain the UUID in

their name. For all steps, timeout value and retry mechanisms ensure to handle communica-

tion problems and runtime errors.

6.2.2 Open Motion Planning Library

The Open Motion Planning Library (OMPL) is an open-source library for sampling-based mo-

tion planners. It contains several planner implementations, which cover geometric planners,
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control-based planners, and optimizing planners. OMPL provides data structures to build

planning programs from a predefined set of planners and sampling strategies or develop new

planners. The library is written in C++, and integration in Python is possible by using the

corresponding Python bindings.

OMPL is a state-of-the-art motion planning library, and it is best known to play an essential

role in the MoveIt!1 motion planning framework, which is part of the Robot Operating System

(ROS)2. MoveIt! incorporates different planning approaches and handles the practical aspects

of motion planning such as manipulation, 3D perception, robot control, kinematics, and

navigation.

6.2.3 Generation of Python Scripts

The synthesized planning program generates Python scripts from template files. The tem-

plating mechanism of the synthesized Scala program substitutes designated code fragments

based on the substitution map held by the combinators. The current planning task entails

substitutions for the definition of the planning space (SE(3)), the boundaries of the planning

dimensions, goal state, and target states. Moreover, the Python program loads the environ-

ment and the robot models from files based on the Scala program’s arguments. Predefined

methods load the model data from files and provide access to the mesh data with global

variables.

The combinators make sure that all occurrences in the template are substituted and produce

runnable Python code. For that reason, they map predefined placeholders to substituting

values and encode the associated template and output files. The main script contains the

problem setup code, the planning dimensions, sampling strategy, and the definition of the

motion- and state validators that use the collision detection libraries. The Scala program saves

the generated files in a source directory and executes the main script over SSH commands.

The Scala planning program contains a parsing function that extracts the result data from

the console output of the Python scripts. This result is a Scala value which the evaluation

procedure can further analyze according to the experimental setup.

6.2.4 Examination of Randomized Algorithms

The randomness of the samples affects the quality of the planning results and the algorithms’

runtime. This aspect has to be addressed in the experimental design to raise the significance

1https://moveit.ros.org/
2https://ros.org
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of evaluating a configuration. For that reason, the execution of multiple planning program in-

stances admits the computation of the average-case running time and path length, mitigating

the variations of result values caused by randomized algorithms.

In OMPL, there are two general kinds of planners that expose a different termination condition

that directly impacts the path length and runtime of the algorithm. While geometric planners

terminate as soon as they find a feasible solution, the optimizing planners try to improve the

result by refining their internal graph structure with additional iterations. For this reason,

an optimization run determines the percentage of successful runs for a given time limit.

Moreover, the different termination conditions lead to a different number of samples for

these algorithmic families. For this reason, the experiments use path simplification as a post-

processing step to reduce the impact of samples and roadmap construction on the resulting

path length.

6.3 A Repository for Sampling Based Motion Planning Programs

The sampling-based motion planning programs expose variability points that exceed the

configurable parameters for this study. The repository covers the following aspects, and each

variability point can form at least two different variations:

• Planning space

• State cost, distance metrics, and optimization objective

• Input data type and result type

• Planner type

• Sampling strategy

• Collision detection technique

• Path simplification and its parameterization

For this study, the planning space is determined to be SE(3) without state cost and Euclidean

distances for the robot’s position. The optimization objective refers to the default optimization

objective of optimizing planners, which is the path length. A post-processing step modifies

the resulting paths using OMPL’s integrated simplification functions. The repository for the

component-based synthesis of sampling-based motion planning programs contains software

components implemented as CLS combinators. It includes 24 planner combinators, six
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sampler combinators, and three state and motion validation combinators. Appendix D.1 and

D.2 provide an overview of the range of planners and samplers employed in this chapter.

6.3.1 Top-level Combinator

OmplPlannerCombinator[A,B] :
PlanningSchema[B]∩any_sbmp_pl anner _t y pe →
SubstitutionSchema∩any_sbmp_st ate_val i d ator _t y pe →
SubstitutionSchema∩any_sbmp_moti on_val i d ator _t y pe →
SubstitutionSchema∩any_sbmp_si mpl i f i cati on_t y pe →
(A → SubstitutionSchema)∩ sbmp_i nput_d at a ∩any_di mensi onal i t y_t y pe →
OmplPlanner[A, B]∩ sbmp_pl anni ng _al g or i thm

(6.3)

A top-level combinator constructs the specified Scala program. For the given experiments, it

will yield a function typed ProblemDefinitionFile→ List[List[Float]] which loads an

OMPL configuration file, performs the substitution, and subsequently executes the generated

motion planning program. It extends a Scala trait with two type parameters. These param-

eters denote the native types of the argument and the result type of the evaluated program,

i.e., the extension of this trait yields a combinator with corresponding native types. This

approach allows for an easy setup of top level-combinators with different types. The type

expression in Equation 6.3 shows the parametric type expression. For the given experiments,

CLS uses a planning combinator with target type OmplPlanner[ProblemDefinitionFile,

List[List[Float]]] to compose planning programs.

The native data type of the planning result is List[List[Float]], where the inner list of

values denotes a point in the n-dimensional planning space. Parametric quaternions encode

the orientation of the robot. A point in SE(3) starts with three float values representing the

position given by the Cartesian axes, followed by four list elements for the rotation representa-

tion using the x, y, z-components of the quaternion vector, followed by its scalar value. Using

linear interpolation, one can compute a continuous path based on this list of states.

The repository makes use of the subtyping relation for semantic types by using a semantic

taxonomy. For instance, the semantic types any_pl anner _t y pe and any_sampler _t y pe in

Equation 6.3 are base types that match every semantic type describing a planner or sampler,

respectively.

A data substitution schema is produced based on the input type and has the signature

A → SubstitutionSchema. For this study, this function loads the problem-specific data
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based on the information held in the provided configuration file. The resulting scheme

contains Python code to specify the planning space and integrates the start and goal state.

Moreover, the code generation introduces the problem-specific references to the geometric

models for the environment and the robot model. The corresponding geometries are loaded

as bounding volume hierarchy objects using the Flexible Collision Library (FCL, [74]), which

enables collision checks for the state and motion validator implementations. The correspond-

ing combinators handle the allocation of correct state and motion validators for the OMPL

planning instance.

The repository offers further configurations not used for the experiments. For instance, it

can configure programs that read the samples from OMPL programs. This function requires

different data structures and parsing functions and can help to analyze the sampling behav-

ior for an algorithm configuration. Moreover, the adaption of the planning space involves

different geometric transform functions for collision checks, search space definitions with

corresponding state representation, and parsing functions.

While these variability points are not immediately relevant for the work in this chapter, they

show how CLS can help to configure and analyze the performance of a given algorithm or

family of algorithms.

6.3.2 Dynamic Construction of the Repository

A large number of combinators and variability points would lead to many inhabitants. More-

over, solving the inhabitation for the complete repository would entail an extensive search.

Accordingly, this work does not use the reflection feature of CLS, and the dynamically con-

structed repository contains only combinators matching the algorithm configuration. Based

on this configuration, the combinator objects are built and dynamically added to the repos-

itory. This principle leads to a semantic structure that yields fast inhabitation results even

for large feature spaces. The configuration also helps to determine the native and semantic

target types for the inhabitation request that yields one inhabitant for the specified type. The

algorithm configuration class incorporates default values for algorithm configuration to allow

partial specifications.

6.4 Planners

Continuous efforts of the scientific community resulted in a wide variety of planning ap-

proaches, and the repository includes numerous components for planning algorithms pro-

vided by the Open Motion Planning Library. Due to the large number of planners, this section
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will not cover all of them in detail. However, for the analysis of the experimental results of

this work, it is helpful to understand some basic principles of established planners. For this

reason, this section will provide a short overview of selected sampling-based motion planning

algorithms.

6.4.1 Probabilistic Roadmap Method

The probabilistic roadmap algorithm (PRM, [56]) is one of the most prominent planning

algorithms. It was established in 1996 by Kavraki et al. [55] and is one of the earliest and most

influential works in sampling-based motion planning. As the name suggests, the planner

constructs a roadmap of the entire environment that can be used for multiple queries. A node

of this roadmap is a valid sample, and an edge represents a feasible direct path between these

samples. Variations of the PRM planner implement lazy collision checking (LazyPRM, [17]) or

optimizing planning (PRM*, [56]).

6.4.2 Tree-based Planners

The Rapidly-exploring Random Tree (RRT [62]) algorithm is a renowned tree based planner

developed by LaValle. This iterative algorithm focuses on a fast expansion of the tree into the

unexplored regions of the free configuration space. It is intended for single-queries as it starts

from the root, i.e., the graph is problem-specific and not suitable for multiple queries. The

algorithm checks if the goal state is reachable from the tree for every iteration. For this reason,

RRT allows "anytime" planning as it finds feasible paths fast, or it can yield approximate

solutions otherwise. In contrast, the PRM in its initial design uses an a priori sampling phase.

The Expansive Space Trees algorithm (EST, [45]) builds trees from the start and the goal state,

therefore resembling a bidirectional planning approach. It assigns a weight to the tree nodes

based on the inverse of the number of samples in its neighborhood, defined by a configurable

distance metric. As a result, areas with a low sample density are more likely to be explored.

The algorithm returns a path when the trees originating from the goal and start states can be

connected.

The Single-Query Bi-Directional Probabilistic Roadmap Planner (SBL) [84] also builds trees

that originate from the start and end state. The idea of this planner is to use a lazy evaluation

strategy for connectivity paths. It initially assumes that every node and edge of the trees

are valid. Under this assumption, it tries to find a result path and then tests it for validity.

Detection of a collision leads to removing the corresponding node or edge from the graph,

and the next iteration will further expand and test the tree. The algorithm in its initial design

101



Chapter 6. Design Space Exploration for Sampling-Based Motion Planning

also incorporated a multiple-stage collision checking strategy with different resolutions and a

corresponding priority queue for motion validation. Moreover, the sampling strategy uses a

density metric for regions to avoid oversampling.

6.5 Sampling Strategies

Hsu et al. introduced a study to confirm the intuition that sampling strategies can have a clear

impact on the performance of planners [46]. Using the PRM as an example, they argue that

a visibility property of the environment called expansiveness ([45]) explains the algorithm’s

particular good performance for specific planning tasks. They conducted experiments and

presented a formal way to classify geometric shapes. Based on experiments, they argue that

PRM learns connectivity in C f r ee , which usually exposes non-uniform visibility over the

geometric space. Therefore, using non-uniform samplers can benefit the overall planner

performance by identifying and focusing on these hard-to-learn areas. They explained how a

sampling strategy influences the planning results by increasing the samples’ chances to find

connectivity to the graph.

Many strategies deal with particular challenges in planning with different ideas. For this reason,

the repository includes some of the most prominent and established sampling strategies to

represent this vital variability point. This section introduces these sampling strategies with

their core concepts, mechanics, and strengths.

6.5.1 Uniform Sampling

An obvious strategy for the generation of samples is a random uniform sampling of the

workspace. This approach was the incorporated sampling strategy of the initial publication of

the PRM [56]. For this particular planner, the concept of valid state samplers was established

to speed up the planner’s performance. A uniform generation of state samples does not

guarantee a uniform density of samples across the space. For this reason, uniform sampling

is also performed with the Halton sequence [19], which leads to a quasi-random uniform

distribution of Halton points in n-dimensional spaces. The left side of Fig. 6.2 shows a

roadmap constructed with Halton sampling.

6.5.2 Gaussian Valid State Sampling

Boor, Overmars, and van der Stappen presented the Gaussian sampling strategy in 1999 [18].

This sampling strategy intends to cover the difficult parts of the free configuration space. It
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Figure 6.2: Halton Sampling and Gauss Sampling

makes use of elementary operations to find valid samples near objects. The right side of

Fig. 6.2 illustrates the outcome of Gaussian valid state sampling. These samples are more

likely to find paths close to objects, ignoring the uninteresting parts of large free spaces. The

strategy starts sampling by randomly selecting a first sample and a random distance value

based on a Gauss distribution. A second sample is generated at this particular distance to the

first sample. If the constructed sample pair contains one valid and one invalid sample, the

sampling strategy returns the valid sample but discards both samples otherwise. The standard

deviation of the distribution is an important parameter to tune the behavior of the sampling

strategy as it determines the sample density in the spaces close to the obstacles. A small value

will lead to sample points near the obstacles’ surfaces but will likely cause more unsuccessful

sampling attempts. While the initial paper only presented a two-dimensional experiment,

later work describes the extension of this sampling strategy to a three-dimensional planning

problem in which the robot has six degrees of freedom [18]. The strategy has also been shown

to handle industrial-scale problem instances containing hundreds of partially overlapping

obstacles.

6.5.3 Obstacle-Based sampling

The obstacle-based sampling (Fig. 6.3) was introduced by Amato et al. [4, 5] and it shares

the principle idea with the Gaussian valid state sampler. It aims to target critical regions

of a configuration space by looking for samples in the vicinity of obstacles. However, this

sampling strategy does not use a Gaussian distribution but a different approach to find these

samples. Moreover, a single sampling iteration of this strategy yields multiple valid samples.

103



Chapter 6. Design Space Exploration for Sampling-Based Motion Planning

A sampling iteration starts by finding a point inside an obstacle, from which multiple rays

advance in random directions of the configuration space. After that, a binary search on these

rays finds collision-free states, i.e., the robot’s configurations in C f r ee . The resulting set of

valid configurations then helps to find an even distribution over the obstacle’s surface, using

the distance between neighboring points to identify improvable regions and introducing new

samples accordingly. This sampling strategy suitable for workspaces that include a lot of

narrow passages and for which C f r ee represents only a small share of the overall planning

space. These cluttered spaces expose a higher chance of finding samples inside of obstacles,

which are the starting point for the sampling procedure. Experiments in [4, 5] show that this

approach is suitable for 3-dimensional workspaces.

Figure 6.3: Obstacle based roadmap example, taken from [4]

6.5.4 Maximum Clearance Sampling

Wilmarth, Amato, and Stiller proposed the maximum clearance state sampling in 1999 [99].

The strategy aims to mitigate the degradation in performance in narrow spaces by producing

samples with higher clearance to the bounding objects, as illustrated in Fig. 6.4. For this

reason, samples are retracted to the middle-axis of the free configuration space after their

initial random generation. As a result, a sample is usually equidistant to at least two geometries,

and these samples are more likely to be connectable to other valid samples. This approach

improves the planner’s performance for problems that require the traversal of long, narrow

passages.
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Figure 6.4: Example for a maximum clearance path, taken from [36]

6.6 Assignment of Planners and Samplers

CLS semantic types encode the rules of composition and can thus capture domain knowledge.

The repository’s semantic layer expresses which specific planners can use samplers and opti-

mization objectives. The semantic types displayed in Equation 6.4 contain this information

for the OMPL implementations of the two planners Probabilistic Roadmap Star (PRM*, [55])

and Expansive Space Trees (EST, [45]).

Γs = {
PRMStarSchema :
(any_opt_ob j → sampler _space → PRMSt ar ) ∩
(any_opt_ob j → sampler _val i d_st ate → PRMSt ar ) ∩
(any_opt_ob j → sampler _i n f or med → PRMSt ar ),

ESTSchema :
ob j _path → sampler _val i d_st ate → EST,
[...]
}

(6.4)

PRM* is capable of utilizing space samplers or valid state samplers. Hence, it can incorporate

informed samplers, which are a subclass of space samplers. The semantic type also encodes

that PRM* is an optimizing planner that can consider various OMPL optimization objectives

(e.g., path clearance or state cost integral). On the other hand, the EST planner only supports
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the path length optimization objective and requires a valid state sampler. These encodings

were manually collected for all considered planners and formulated as type expressions.

Planner schemes include the templating schemes for the planner’s definition and the configu-

ration of the sampling strategy. Suppose the inhabitation algorithm can not find a matching

argument term for the planner combinator. In that case, it will not assemble a planner scheme,

and CLS will fail to find result terms. This situation indicates an invalid combination of plan-

ner and sampler, and the active learning loop will consider this information for successive

iterations of the optimization run.

6.7 Collision Detection

For sampling-based motion planning, collision detection is used for mainly two tasks. These

are validity checks for a given state and a motion, represented by linear interpolation of one

start state to a target state. The validation of a state incorporates applying a corresponding

transformation to the robot model, and the state validity arises from the collision situation

of this transformed object regarding the environment model. The basis of motion validation

is either a discrete motion validation or continuous motion detection. A discrete motion

validator uses the state validation at a specified resolution. It evaluates motions by validating

interpolated states and yielding the overall result.

For the continuous collision detection (CCD) of motions, libraries use multi-staged collision

detection procedures based on geometric properties. For this reason, there is a broad phase

and a narrow phase collision detection. The broad-phase computation uses space partitioning

techniques and data structures, such as bounding boxes, that allow rapid assessment of states

and motions. These data structures can detect if a collision is not imminent because objects

are not close to each other. This step can also provide a rough estimate for motion intervals that

require more thorough collision checks. On the other hand, narrow-phase collision detection

is a precise computation that can detect and analyze collisions, for instance, by exposing the

intersecting volumes. Some strategies for narrow-phase collision detection include bounding

volume hierarchies, proximity queries, or feature tracking algorithms such as the Lin-Canny

method [64] or V-Clip [68]. These techniques usually come with an additional computational

cost.

While validations of motions are usually more costly, they expose additional information that

the planner might use. For instance, the collision detection for a motion often includes the

determination of the point of impact. Some planners can regard this information in learning

the connectivity of C f r ee .
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The Flexible Collision Library integrates various data structures and algorithms for collision

detection. It has been well known in the robotics community since it was part of ROS, and it is

now an active constituent of the MoveIt! library. For this work, the motion and state validators

use the Python-FCL library, an unofficial Python interface for the Flexible Collision Library.

Motion validation with continuous collision detection can lead to false negatives, i.e., it

wrongly considers invalid motions collision-free, resulting in incorrect paths. Apart from bugs

in the collision detection framework, a coarse collision detection resolution can be the source

of error. Therefore, an additional evaluation after computation checks the resulting paths with

a discrete collision detection with a high resolution. This evaluation step does not contribute

to the measured computation time of the algorithm configuration.

6.8 State Cost and Optimization Objectives

While path length has been the primary objective for the quality of motion planning results

for a long time, the focus of research shifted towards a differentiated evaluation with growing

maturity. An early adaption of this principle was finding minimum clearance paths [37]. In

this work of Geraerts and Overmars, a post-processing step manipulates the nodes of the

resulting path, aiming to respect a given minimum clearance constraint.

Optimizing planners often use customized state cost functions that map a state of the con-

figuration space to a numeric value. The D* algorithm featured an early proposition of this

concept [90]. Jaillet, Cortés, and Siméon presented a general adaption to sampling-based

motion planning in 2010 [50]. They proposed the use of a cost map and a corresponding state

transition cost to optimize planning results. This cost map described cluttered terrain, and

the state transition cost represented difficult travel conditions for the robot.

The introduction of a cost map requires the adaption of the planning algorithm’s optimization

objective. One example is minimizing the integrated state cost over a path.
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6.9 Results

6.9.1 Problem instance "Abstract"

The problem instance "Abstract" in Fig. 6.5 is an unordered composition of simple geometric

forms. The robot is an L-shaped 3D rigid body that has to move from one tube to another. In

this particular environment, there are many geometric homotopy classes of solution paths.

Moreover, the starting point resides in a narrow space that puts high requirements on the plan-

ner as it demands a sequence of translations with simultaneous rotations. The environment

also incorporates a large free space that can impact the performance of planners.

Figure 6.5: Problem instance "Abstract"

Fig. 6.6 shows the most relevant data of successful computations for an optimization run. Every

point represents a single iteration result, i.e., the averaged result of 10 program instances for a

specified algorithm configuration. The position of a measurement illustrates the optimization

criteria computation time and path length while the shape and color depict the selected

planner and sampling strategy. The result only considers valid algorithm configurations that

yielded exact solutions, i.e., approximate solutions are assessed as a failure.
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Figure 6.6: Result for the Problem instance "Abstract"

The minimal observed averaged length of simplified paths is 580 length units, corresponding

to the lower spectrum of the results documented in the OMPL Planner Arena3, an OMPL-

provided benchmark database. The minimum time to solve the planning task is at least

7 seconds, including simplification. However, the measured times are not comparable to

the OMPL planner arena data due to differences in the experimental setup, such as utilized

hardware and collision detection parameterization.

For the given experimental setup, the machine learning procedure determined the planners,

Expansive Space Trees (EST, [45]) and SBL ([84]) to be well-performing for the given planning

problem. The common characteristic of these planners is the lazy evaluation of motion validity.

In this experiment, the discrete motion validator has a sample resolution of 0.15 length units.

Accordingly, the admissible point of collision error for the continuous collision detection is

0.15 length units. Due to this high resolution, motion validity is a precise calculation that is

costly regarding computation time. This influence of the motion detection parameterization

explains why these planners gain an advantage over other planner implementations. The

result also shows the impact of the selected sampling strategy. Gaussian valid state sampling

positively impacts computation times, while maximum clearance valid state sampling and

uniform valid state sampling expose good results regarding the path length.

3http://plannerarena.org/
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6.9.2 Problem instance "Alpha 1.5"

The problem instance "Alpha 1.5" resembles a geometric puzzle (Fig. 6.7). The aim is to

disengage the red shape from the yellow object using a collision-free path. For these shapes,

the rotation of the movable object has a high impact on the validity of a state. Thus, the

resulting path in C f r ee traverses a long narrow passage that leads to a large free area.

Figure 6.7: Problem instance "Alpha 1.5"

Fig. 6.8 shows the plot for this second experiment. Here, the planning algorithms EST and SBL

are prevalent for the same reasons as for the Abstract problem instance. The utilization of SBL

leads to the detection of the shortest paths. Moreover, the STRIDE planner also yielded strong

results. It appears to find solutions in a short amount of time but with a longer path length.

While planners seem to impact the path length and computation time, the sampling strategy

does not significantly influence the outcome of a motion planning program.

Figure 6.8: Result for the Problem instance "Alpha"
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6.9.3 Problem instance "Home"

Fig. 6.9 depicts the problem instance "Home," in which a result path has to represent a

collision-free transport of the red table. The resulting path is a long, narrow path that involves

rotation to avoid collisions. This experiment incorporates different collision detection param-

eters that allow a lower collision detection resolution of 1.0 length units. Moreover, the motion

validator implementation performs a simplified motion check as a first step, using a sphere

with a fixed radius of 1.0 length units instead of the robot model. If the motion validator does

not detect a collision, it transforms the robot’s collision detection data structure for a precise

collision detection query.

Figure 6.9: Problem instance "Home"

The result in Fig. 6.10 shows that the family of PRM-based planners performed well. The

active learning loop has no initial information about the conceptual proximity of the plan-

ners PRM, PRM*, and Lazy PRM*. Just as in the previous results, this permits conclusions

regarding planners’ operational strengths and similarities for a given planning problem. The

results show that the machine learning procedure can identify families of planning algorithms

without explicit knowledge of the design space. Moreover, the experimental design enables

the comparative analysis of optimizing planners (PRM*, Lazy PRM*) and geometric planners

(PRM).
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Figure 6.10: Result for the Problem instance "Home"

6.9.4 Success Rate

The probability of finding a feasible program configuration is an indicator for the positive

impact of the applied optimization techniques. Each iteration executes and evaluates 10

generated program instances. The number of successful path computations per iteration

is computed based on the output and evaluated as a success percentage. A simple moving

average is calculated for every optimization run, using the unweighted mean value of 10

previous iterations. That way, the probabilistic nature of the algorithmic family of sampling-

based motion planning algorithms can be mitigated. Fig. 6.11 illustrates the trend of the

success rate for multiple optimization runs.

Figure 6.11: Moving average over the success rates of the iterations for multiple optimization
runs
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The results show a significantly growing success rate at the end of the DoE phase after 50

iterations. This finding suggests that the employed methodology works in the domain of

sampling-based motion planning. The exploration involves sampling unknown, possibly

invalid, algorithm configurations, which leads to a success rate lower than 100%. The "Home"

planning problem is challenging due to the long solution path and narrow passages. Thus, the

maximal allowed planning time of up to 90 seconds results in a lower success rate.

6.9.5 Parameter Importance

The utilized optimization framework can inform about the importance of the features. Table

6.1 shows a corresponding overview of the impact of the parameter selection for given objec-

tives. This metric covers a complete optimization run for the problem instance "Abstract" as

described in Section 6.9.1. As expected, the planner selection has the biggest impact on the

different optimization objects. The low importance of the motion validator selection states

that both variants, i.e., continuous motion validation and discrete motion validation, work

equally well for the given problem. Therefore, this value confirms the benefits of the planners’

sparse use of collision checks for motions.

objective planner sampler motion validator max. planning time

path length 0.60 0.15 0.04 0.21
computation time 0.50 0.19 0.02 0.29
failures 0.44 0.28 0.03 0.24

Table 6.1: Parameter importance for the problem instance "Abstract"

6.10 Related Work

In a recent work from 2019, Jamshidi et al. presented a concept to explore the configura-

tion space for self-adapting robots [51]. An offline machine learning phase determines the

set of Pareto optimal configurations concerning localization error and energy consumption

estimates. The robotic system’s configuration points include sensor usage or localization

algorithms with a configurable number of particles, and the performance for selected configu-

rations is measured.

The findings from the offline learning phase enable the robotic system to adapt to changes in

the environment or inaccurate measurements of the battery state. The work demonstrates the

integration in a task planning context in which energy consumption and timeliness of task

completion are the primary planning objectives. Model-checking determines the selection of
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the robot configurations during run-time. For instance, a robot may switch to a configuration

with a decreased localization accuracy to preserve the battery.

The work shows that incorporating machine learning is a viable approach to handle highly

configurable systems. The general idea of the offline learning phase has similarities to the

methodology presented in this chapter. However, the work focuses on task planning, i.e.,

motion decisions based on tasks and adaption to changes in the robotic systems state or

the environment. The study assumes the availability of a weighted graph representing the

environment.

Morales et al. select suitable sampling-based motion planning algorithms for environments

by incorporating geometric feature extraction [69]. Based on recognized features, they use

machine learning to assign planners accordingly. The approach aims to yield a general-

purpose planner, which divides the planning environment into subregions. The corresponding

partial roadmaps are connected to form an overall roadmap for graph traversal. However, their

work covers only a small space of possible planner variations as it uses PRM [56] for accessible

spaces and OBPRM [5] for cluttered regions.

In [83], Saeedi et al. use a domain-specific framework for the design space exploration of

simultaneous localization and mapping (SLAM) systems, a subdomain of robot navigation.

The set of design parameters describes the algorithmic configuration, compiler settings, or

hardware properties. The study considers the absolute trajectory error and execution time as

optimization objectives.

6.11 Discussion

CLS is used to generate Python scripts, and the methodology is extendable to further program-

ming languages. It is language-agnostic as the code of any programming language can be

produced and manipulated with synthesized Scala programs. The support of C++ planning

programs could benefit a broad range of developers and allow access to various planning

instruments such as further collision detection libraries.

The repository for sampling-based motion planning algorithms consists of 70 combinators,

and it supports algorithm configuration with dynamic repository construction or the use of

type variables. Seven type variables yield a substitution space with 6.912 distinct variable

assignments, which allows estimating the number of synthesizable programs. The subset of

the repository for this study represents a space consisting of 264 unique feature configurations.

While currently limited to OMPL programs for rigid body planning, additional combinators

that emerge from real-life scenarios can extend this repository, allowing the applicability to a
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broader range of problems and robot models. The exploration of different design spaces, e.g.,

similar to those considered in [83], could study the general applicability of this methodology.

This requires the adaption of the algorithm feature space, combinators, algorithm feature

model, and Python templates. At the same time, the structure of the approach remains as

depicted in Fig. 6.1. CLS components are reusable and can provide a fast setup of experimental

evaluation procedures. This way, the learning-based exploration of the algorithmic feature

space could help to develop and evaluate planners, sampling strategies, or collision detection

techniques.

While Hypermapper offers a great range of functionality that benefits the given experimental

design, it is possible to use different optimization frameworks by setting up framework-specific

black-box functions or by formulating models that integrate a synthesis-based evaluation. The

loose coupling between black-box function, inhabitation, and evaluation facilities supports

alternative optimization techniques. Due to this flexibility, the methodology is transferable to

other domains with inherent variability.

The machine learning-based approach demonstrates the exploration of the design space

of algorithmic families. Moreover, this procedure allows a hybrid search that considers the

parameterization of the generated programs by specifying the maximal allowed computation

time. An assessment of numerical parameters is also possible by introducing different com-

binators with preset parameters. In this work, this principle allowed different values for the

collision detection resolution. These results can form the basis of an automated exploration

and exploitation approach. The first step (exploration) collects a set of candidate solutions

from the design space. In a second step, a candidate-specific optimization improves the

parameterization of this particular algorithmic configuration.
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Chapter 7

Conclusion

This work builds and analyzes algorithmic spaces with component-based Combinatory Logic

Synthesis. Motion planning algorithms were selected as the field of study, and CLS’s ability to

handle structural variability permits the configuration of algorithmic variants.

Application-specific requirements and constraints drive innovations in this particular field of

robotics. Moreover, planning plays an essential role in digitalization processes, and it benefits

from automation. The corresponding demand for configurable software solutions arises from

problem-specific constraints, objectives, performance indicators, and the algorithmic design

space with high variability.

There are several reasons which motivate the selection of motion planning as the domain of

interest. The domain comprises several sub-problems that expose different requirements.

Moreover, the algorithmic family builds upon several years of research, which resulted in

various available techniques. The fields of application have been selected accordingly, and

the problem-specific generation of runnable programs led to the design of methodologies to

handle spaces of high variability.

The work covers the planning problem subdomains of sampling-based motion planning and

path coverage planning with domain-specific constraints. Both domains expose a rich set of

variations. While motion planning exposes algorithmic variations, the variations in the tool

path planning work represent particular sequences of planning operations.
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7.1 Results

This work includes three proof-of-concept studies that use CLS in the following ways to

generate runnable programs:

• Configuration of algorithms by precise specification with type variables

• Incorporation of general type specifications that lead to a space with high structural

variability

• Configuration of algorithms by building a problem-specific repository

Every study included in this work yielded promising results. The substitution of variables

precisely guides the synthesis results for combinatorial motion planning algorithms. The

brute-force search for machining strategies can handle complex shapes and consider differ-

ent planning problem objectives. The semantic layer of the repository encodes predefined

machining sequences and the suitability of planning components for different materials.

The machine learning approach handles the generation of sampling-based motion planning

algorithms and effectively samples the design space. It can manage hard planning problems,

and the user is no longer required to implement programs manually to find a well-suited

configuration for a given problem. The optimization results give an insight into the planning

problem at hand and the influence of particular elements of the planning program.

7.2 Combinatorial Complexity

The component-based approach of CLS allows the definition of spaces with high variability

based on combinators. This work includes several ways of managing the resulting combinato-

rial complexity to achieve viable inhabitation runtimes. For instance, a restrictive substitution

of type variables can reduce the search space. Moreover, including only relevant components

for a specific inhabitation request helps to speed up the synthesis, and the dynamic config-

uration of the repository can significantly reduce the search space for the inhabitation. An

alternative approach allows the use of general type specifications that yield a considerable

number of inhabitants. It applies the framework-provided lazy enumeration function to

implement a brute-force search.

The experiments demonstrated several ways to manage a large number of variations. With

Combinatory Logic Synthesis, the developer can fine-tune the granularity of the components,

encapsulating multiple terms or building more significant predefined terms that are likely to fit
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the current problem. This aspect could inspire a multi-staged synthesis approach in which the

first step generates components that form the basis for a consecutive synthesis procedure. For

instance, a preceding synthesis step for the machining experiment could involve generating

planning components with particular properties regarding tool wear.

7.3 Incorporated Methods

This work presents methodologies to use CLS in optimization contexts, using machine learn-

ing or an automated domain-specific brute-force search. Both approaches benefit from CLS’s

capability to capture the variability of selected subdomains. The applicability and perfor-

mance of different planning algorithms concerning the planning environment inspired the

development of a machine learning approach with CLS, and this principle is transferable to

other planning domains.

The identification of the domain’s variability points directed the implementation of corre-

sponding combinators. The design of the repositories that generate synthesis goals according

to types must match the given planning problem. The problem-specific evaluation of inhabi-

tants involves running the resulting programs and analyzing the result.

This work demonstrated that CLS could handle large spaces with the support of appropriate

methods. Moreover, meta-programs can profit from a heterogeneous set of libraries from

different programming languages, including Java, Scala, Python, and C++.

7.4 Outlook

The proposed concepts can inspire a sophisticated optimization framework that considers

algorithmic families’ design space and numeric parameterization. While this work presented

a straightforward method to map a selected point in the problem domain to a corresponding

point in the design space of algorithms, this principle can be adapted further, allowing the

integration of alternative optimization procedures or design of a multi-layered optimization

approach. A CLS-based framework should allow easy adaption to new problem instances and

should incorporate different optimization procedures.

The developed concepts can extend to other domains of interest. While motion planning

is an appealing domain from an algorithmic perspective, integrating task planning from

logistics or manufacturing can benefit practical applications. For instance, the generation of

simulation models and an automated evaluation procedure could adapt the machine learning
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procedure proposed in this work. The application to real-life problems can require the design

of methodologies to integrate parameterizable components or weighted objectives.

The approaches in this work relate to some of the search strategies employed in other synthesis

techniques, such as enumerative search or data-driven learning. Further methods from this

research field could inspire a search technique for the result set of inhabitants based on the

CLS-generated grammar. Such an approach would no longer rely on the enumeration of

terms and could use machine learning methods to determine a problem-specific ranking for

inhabitants.
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Appendix A

Inhabitant Trees for the Examples in

Section 4.5

A.1 Tree for the Grid Approximation Example

AkkaGraphSceneSeg

UnityMqttAkkaSourceScene

UnityMqttAkkaSourceTask2D

CmpTopLevelCombinator

SceneToScenePoly

CubeToPoly

RectangleVertices2D

ApplyAffineTransform2DVertexList

ObstacleSceneBoundingCut2D

GridCombinator

RoadmapCombinator

Neighbours2D

CellToCentroidCellNaive

WithoutNewNodes

WithoutNewNodes

EdgesCentroidOnly

NodesEdgesStartEndNearest

DijkstraSpCombinator

UnityMqttAkkaSinkSceneSegGraphPath
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A.2 Tree for the Triangulation Example

AkkaGraphSceneSeg

UnityMqttAkkaSourceScene

UnityMqttAkkaSourceTask2D

CmpTopLevelCombinator

SceneToScenePoly

CubeToPoly

RectangleVertices2D

ApplyAffineTransform2DVertexList

ObstacleSceneBoundingCut2D

TriangulatePolyParametrized

RoadmapCombinator

Neighbours2D

CellToCentroidCellNaive

WithoutNewNodes

WithConnectorNodes

EdgesCentroidToCellVertices

NodesEdgesStartEndNearest

DijkstraSpCombinator

UnityMqttAkkaSinkSceneSegGraphPath
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A.3 Tree for the VCD Example in Section 4.5

AkkaGraphSceneSeg

UnityMqttAkkaSourceScene

UnityMqttAkkaSourceTask2D

CmpTopLevelCombinator

SceneToScenePoly

CubeToPoly

RectangleVertices2D

ApplyAffineTransform2DVertexList

ObstacleSceneBoundingCut2D

VcdLineSweepJTS

RoadmapCombinator

Neighbours2D

CellToCentroidCellNaive

WithCellVertices

WithConnectorNodes

EdgesAllCellVertices

NodesEdgesStartEndNearest

DijkstraSpCombinator

UnityMqttAkkaSinkSceneSegGraphPath
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Appendix B

Remarks on Published Work

Title:

A Synthesis-based Tool Path Planning Approach for Machining Operations

Authors:

Tristan Schäfer, Jim A. Bergmann, Rafael Garcia Carballo, Jakob Rehof, Petra Wiederkehr

Published in:

Procedia CIRP 104C (2021) pp. 917-922

Contribution of the author:

The author is responsible for the initial idea of the component-based tool path planning

approach and implemented the software system. This includes selecting and implementing

planning components, data structures, brute-force search, evaluation procedure, generation

of machining instructions, and the Scala implementation of the acceleration model and

calculation of machining times for resulting paths. The author performed the experiments,

data visualization, and the design and transformation of geometric models to suitable data

representations.

The author did not participate in determining the tool parameterization and the selection

of materials used in the paper. Moreover, the author did not conduct the validation with the

geometric physically-based simulation system.

Comparison to Chapter 5 of this dissertation:

This dissertation further addresses the mechanics of planning components, the underlying

data structure, the semantic layer of the repository, and the incorporation of the acceleration

model and the evaluation procedure. Moreover, it contains additional experimental results

and a more precise visualization of the resulting machining strategies.
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Appendix B. Remarks on Published Work

The work done by other researchers was not included in this thesis unless it was necessary for

understanding the experimental setup. In the case of tool parameterization, a remark in the

corresponding section indicates the work of other researchers.
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Appendix C

Inhabitant Trees for the Machining

Experiments in Section 5.7

Figure C.1: Inhabitant tree structure for solution candidate 1.1
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Figure C.2: Inhabitant tree structure for solution candidate 1.2
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Figure C.3: Inhabitant tree structure for solution candidate 1.3
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Figure C.4: Inhabitant tree structure for solution candidate 2.1
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Figure C.5: Inhabitant tree structure for solution candidate 3.1
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Figure C.6: Inhabitant tree structure for solution candidate 3.2
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Appendix D

Planners and Samplers used in

Chapter 6

D.1 List of Planners

• Probabilistic Roadmap Method (PRM)

• Probabilistic Roadmap Star (PRMStar)

• Lazy Probabilistic RoadMap Planner (LazyPRM)

• Lazy Probabilistic RoadMap Star Planner (LazyPRMStar)

• Rapidly-exploring Random Trees (RRT)

• Optimal Rapidly-exploring Random Trees (RRTStar)

• Lazy RRT (LazyRRT)

• Lower Bound Tree RRT (LBTRRT)

• Transition-based RRT (TRRT)

• RRT-Connect (RRTConnect)

• Sparse Stable RRT (SST)

• Expansive Space Trees (EST)

• Single-query Bi-directional Lazy collision checking planner (SBL)

• Kinematic Planning by Interior-Exterior Cell Exploration (KPIECE1)

• Lazy Bi-directional KPIECE (LBKPIECE1)
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• Bi-directional KPIECE (BKPIECE1)

• Search Tree with Resolution Independent Density Estimation (STRIDE)

• Path-Directed Subdivision Trees (PDST)

• Fast Marching Tree Algorithm (FMT)

• Bidirectional Fast Marching Tree Algorithm (BFMT)

• Optimal Rapidly-exploring Random Trees Maintaining An Optimal Tree (RRTsharp)

• Optimal Rapidly-exploring Random Trees Maintaining A Pseudo Optimal Tree (RRTXstatic)

• Informed RRTstar (InformedRRTstar)

• Batch Informed Trees (BITstar)

D.2 List of Samplers

• Uniform Valid State Sampler

• Obstacle-based Valid State Sampler

• Gaussian Valid State Sampler

• Maximum Clearance Valid State Sampler

• Uniform Space Sampler

• Gaussian Space Sampler
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