
Higher Order Finite Elements for
Relaxed Micromorphic Continua

M.Eng. Adam Sky

Dissertation
to attain the academic degree

Doctor of Engineering (Dr.-Ing.)

at the
Institute of Statics, Dynamics and Structural Mechanics,

Technical University of Dortmund

Supervisors:

Prof.Dr.-Ing. Ingo Muench

Prof.Dr.rer.nat.habil. Patrizio Neff

08.09.2022



”The most important step a man can take. It’s not the first one, is it? It’s the next one. Always the
next step.”

- Brandon Sanderson



Abstract

Metamaterials, being materials with exotic properties due to their artificially designed micro-structure,
are gaining popularity in the engineering community. The ability to design the micro-structure in
order to induce specific material properties is extremely useful and finds its applications in a variety
of fields. For example, band-gap metamaterials can be used to both isolate sounds as well as for
seismic shielding. However, the process of designing metamaterials is no easy task and usually met
with computational constraints. Due to the complex geometry of the micro-structure, viable solutions
require extremely fine discretizations of the displacement field when Cauchy continuum models are
employed. Alternative methods such as multi-scale computations are met with the same limitations
if the micro-structure is either non-periodic or if the computation is non-linear.

An alternative approach can be derived by using enriched continuum models. These theories
extend the kinematics of the material point by adding additional degrees of freedom, thus accounting
for perturbations stemming from the micro-structure. One such model is the relaxed micromorphic
continuum. The model introduces the microdistortion P for each material point, being an affine
deformation field, thus extending the kinematics of the material point with nine additional degrees of
freedom. Consequently, each material point is regarded as an affine deformable micro-body. The model
is unique in its definition of a free energy functional, where the Curl of the microdistortion CurlP
rather than its full gradient DP is applied. A direct consequence of the latter is the reduced continuity
of the microdistortion as well as its compatibility with the space of the deformation gradient, namely
H (Curl). Further, the micro-dislocation, being the Curl of the microdistortion, remains a second
order tensor, whereas DP is represented by a third order tensor. Another consequence is that on
the boundary, only the tangential component of the microdistortion can be controlled. As such, the
theory introduces the consistent coupling condition, which is energetically consistent with the lower
and upper bounds given by equivalent Cauchy continua. The ability of the theory to capture the
behaviour of meta band-gap materials has been shown in multiple works, thus making it an excellent
candidate for the computation of materials with a pronounced microstructure.

The challenge of the relaxed micromorphic model stems from its application of the Curl operator,
which is rather uncommon in the field of structural mechanics. A consequence of the operator is the
definition of the microdistortion in the Hilbert space H (Curl) of tangentially continuous fields. While
the construction of low order conforming subspaces for the Hilbert space H (curl) is well known, the
definition of higher order finite elements remains quite complex. The construction of higher order
finite elements is required in the framework of hp-finite element methods, where both the element size
as well as its polynomial order can be refined in order to obtain exponential convergence of the error
with respect to an analytical solution over the domain.

This dissertation discusses the relaxed micromorphic model, its kinematical reduction to plane
strain and antiplane shear, and its existence and uniqueness in the context of the Lax-Milgram theorem.
Further, several a priori error estimates using Cea’s lemma are derived and subsequently improved
for s-regular problems by the Aubin-Nitsche technique. The thesis also examines the implementation
aspects of low order finite elements and proposes simple solutions to both the orientation problem as
well as for the discrete consistent coupling condition. However, the main novelty of this work lies in its
conception of a new construction methodology for arbitrary order H (curl)-conforming finite elements
for a variety of polynomial bases. A short description of the methodology is as follows: the reference
element is equipped with a polytopal template respecting its geometry. The tensor product of the
template with an H 1-conforming polynomial basis, where the base functions are clearly associated
with the polytopes of the reference element, yields an H (curl)-conforming element, such that the
base functions have a clear association with their polytopes. The biggest advantage of this approach
is that the H (curl)-formulation inherits many of the properties of the underlying H 1-conforming
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polynomial basis. In this work, we rely on Bernstein polynomials yielding optimal complexity through
sum factorization. Thus, we introduce an optimal basis for assembly in hp-finite element analysis.
Further, we discuss efficient methods for computing the base functions and their derivatives by means
of automatic forward differentiation via dual numbers. The newly defined finite elements are used to
investigate the behaviour of the relaxed micromorphic model, find viable approximations, and explore
its relation to micro-structured materials.
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1 Introduction

A continuum theory emerges under the assumption that a medium can be mathematically treated
as a continuum rather than a discrete set. In practice, this approach is feasible down to a certain
scale, where the effects of the micro-structure become too dominant to neglect. Since the structural
engineering community is mostly interested in the description of phenomena at the higher scales, con-
tinuum theories have been prevalent and successfully applied to the design of machines and structures.
Perhaps the most prominent theory of them all is the classical Cauchy continuum theory, where the
assumption of material points with three translational degrees of freedom is made. The continuum is
therefore a collection of an infinite amount of simple material points. While the Cauchy model is still
the dominant model in computational mechanics today, it is reaching its limits when materials with
exotic properties are considered. The exotic properties mentioned are, for example, negative Poisson
ratios [21, 104], band-gaps [28], and solids with zero shear moduli [94]. The common denominator of
such materials is an underlying complex micro-structure arising either naturally or artificially with
specific intent. Examples of natural materials with a micro-structure are porous media, whereas for
artificial ones, namely metamaterials, the possibilities for the geometry of the micro-structure are
limitless.

Attempts to alleviate the modelling limits within the confines of the Cauchy theory can be divided
into two methodologies. The first and most straight-forward one is to fully resolve the underlying
micro-structure in the computational model. This means that each pore and complex geometry in the
model must be fully captured by the geometrical model. In terms of finite element methods, this can
only be done by using extremely fine meshes. As such, it is clear that the latter approach is bound by
computational capacity. The second approach splits the model into a macro and a micro scale. The
different scales are computed separately but are coupled by their respective results. For example, the
effect of the micro-structure can be considered by a separate computational model on each integration
point of the macro-model. In terms of finite element computations, this implies the existence of two
simultaneous discretizations, one for the macro-model and one for the micro-structure. The latter
methodology is commonly known under the name multi-scale methods [1, 36,37,43].

An alternative technique reconsiders the underlying mathematical application of solely the defor-
mation gradient, which restricts the material point to affine deformations. Higher gradient continuum
theories [11, 67, 76] challenge this approach by taking higher order gradients of the displacement field
into account when computing the work of a system. This results in a more complex mathematical
model and higher restrictions on the continuity of the displacement field. In comparison to Cauchy
models where C 0-continuity is required for the displacement field, gradient elasticity for example, ne-
cessitates C 1-continuity. While the development of C 1-continuous computational methods has gained
popularity with the rise of the isogeometrical analysis method (IGA) [48,49], the problem of addressing
volumetric geometries has not been fully resolved as of yet [22]. Further, the assumption of higher
continuity on the displacement field might be counter-productive when considering materials with
a pronounced micro-structure, as the micro-structure may often induce perturbations, implying the
possibility of partially discontinuous solutions in the gradient of the displacement field.

It is to be noted that the main assumption of translational material points in the Cauchy model
also incorporates two major restrictions. Firstly, each material point is irrotational. Secondly, each
material point is non-deformable. Considering the limitations of the discussed approaches it is logical
to introduce new continuum theories, where the continuity of the displacement gradient is preserved
(C 0) and still a more complex mathematical model arises, allowing for intricate kinematical behaviour.
The collection of such models is known under the name generalized continua. The first notable attempt
to alleviate these restrictions is due to the Cosserat brothers [25], who introduced the so-called micro-
polar model [38, 52, 53, 72]. By equipping each material point with non-deformable directors, it was
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possible to attach orientational information to each material point. Effectively, the micro-polar theory
turned each material point into a non-deformable solid sphere, implying the existence of a local moment
of inertia. Another consequence is the introduction of couple tractions, being higher order tractions on
the material point. Today the Cosserat theory is applied in the simulation of granular materials [107]
due to its obvious affinity to the natural behaviour of such media. In terms of energy, it is shown
in [78] that the latter allows for non-conventional displacement modes with lower energies than those
achieved by a straight line during simple shear. Clearly, this indicates the ability of the model to
capture certain micro-effects unaccounted for in Cauchy continua.

The next prominent step in the development of generalized continua is due to Eringen and Mindlin
[39,68], who removed the second restriction on Cauchy continua, namely the non-deformability of the
material point. This was achieved by making the accompanying directors of the Cosserat theory
deformable. The resulting theory is known as the full micromorphic theory. Essentially, the theory
implies that each material point is an affine deformable micro-structure with its own micro-stiffness.
The full micromorphic theory can be seen as a superset of the micro-polar theory and in fact, many
other subsets of micromorphic continua exist, where restrictions are imposed on the deformation modes
of the material point. Common examples are micro-stretch [57, 93] and micro-strain [41, 50]. In the
full micromorphic continuum theory the transformation of an infinitesimal body from the reference to
the current configuration is governed by the deformation gradient as well as by an independent tensor
field called the microdistortion. In energy formulations of the full micromorphic model, the gradient
of the microdistortion is taken into account, implying a minimal C 0-continuity of the microdistortion.
Due to the strong interaction with the gradient of the displacement field and since the effective strain
on the infinitesimal element is defined to be a function of the gradient and of the microdistortion,
it becomes clear that the continuity of the strain is governed by a mixture of both. Observing
that the continuity of the deformation tensor is only tangential implies an increased continuity of
the strain due to the microdistortion. In [101] it is observed that the latter limits the ability of
the formulation to optimally capture C 0-continuous displacement fields. Since the microdistortion
is a second order tensor, its gradient yields a third order tensor, making its implementation and
interpretation more challenging, as for example, a linear constitutive relation to it is given by sixth
order tensors, implying the more material parameters. The influence of the micro-stiffness is usually
governed by a parameter (or multiple parameters) called the characteristic length scale. Taking the
upper limit of the characteristic length in the full micromorphic theory reduces the microdistortion to
a constant field. As shown in [101] this leads to boundary layers if non-constant boundary values are
imposed for the microdistortion.

A remedy to the continuity problem of the strain is proposed in [75] where instead of the full
gradient of the microdistortion, only its skew-symmetric part, being equivalent to its Curl, is assumed
to produce non-negligible energies. Consequently, the regularity assumptions of the microdistortion
are reduced to tangential continuity and are compatible with the deformation gradient. The model is
dubbed the relaxed micromorphic continuum theory [46, 74]. A result of the tangential continuity of
the microdistortion is that only its tangential projection can be controlled on the boundary [99]. Con-
sequently, the theory introduces the so-called consistent coupling condition [27], where the tangential
projection of the gradient of the displacement field and the tangential projection of the microdistor-
tion are set to be equal. The consistent coupling condition is energetically consistent with lower and
upper bounds on the energy of the system given by equivalent macro and micro Cauchy continuum
models. We note that the Curl of the microdistortion remains a second order tensor. Further, tak-
ing the upper limit of the characteristic length scale reduces the microdistortion to a gradient field,
thus circumventing the problem of boundary layers for non-constant boundary conditions on the mi-
crodistortion [101]. The relaxed micromorphic model incorporates the Cosserat model by allowing
for a skew-symmetric stress tensor governed by a rotational coupling modulus [75]. In fact, under
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the assumption of an infinite micro-stiffness the relaxed micromorphic model reduces to a micro-polar
continuum. However, by setting the rotational coupling modulus to zero the relaxed micromorphic
model retrieves a symmetric stress tensor while remaining well-posed [45,100]. Furthermore, analytical
solutions of the model for uniaxial extension [91], cylindrical bending [89], torsion [88], and shear [90]
have been derived, revealing the intrinsic behaviour of the model for boundary value problems. The
theory has been successfully applied in the modelling of acoustic metamaterials for band-gap materi-
als [6, 7, 14, 15, 26, 64, 65, 77] and seismic shielding [92] and such, represents a promising approach for
the computation of micro-structured materials.

Analytical solutions of the relaxed micromorphic model can only be derived for special cases.
Consequently, the need for numerical discretization techniques for the solution of general geometries
and boundary conditions is evident. Amongst a multitude of numerical approximation schemes, the
finite element method (FEM) [16,18,19,23,111] remains the most prominent. The main advantages of
the method are its flexible application to a variety of variational problems, geometries, and boundary
conditions. Further, the method is based on a strong foundation of functional analysis, allowing for
mathematical proof of its effectiveness. The standard low order finite element method (h-FEM) relies
on so called h-refinement in order to approach the analytical solution. This refers to the decrease in
element size, thus yielding a finer discretization of the domain. Commonly, either linear or quadratic
polynomials underline the approximation capacity of each finite element in the mesh. One can show
that h-refinement leads to an algebraic decline in the error over the domain. An alternative approach
to h-refinement is the so-called p-refinement, leading to the so called p-Finite-Element-Method (p-
FEM) [12, 13]. In p-refinement, the elements do not change their size but rather their polynomial
order. In the case of highly smooth solutions, p-refinement leads to exponential convergence with
respect to the error over the domain. However, if the solution is of low regularity the convergence
of p-refinement reduces to an algebraic rate. Consequently, singularities over the domain lead to a
decay of the convergence rate, thus offering no advantage over h-refinement. However, by combining
both h- and p-refinement, such that the area of a singularity is localized by h-refinement, one can
retrieve exponential convergence. This gives rise to the so called hp-Finite-Element-Method (hp-
FEM) [29,31,103,105].

Since the relaxed micromorphic theory introduces the Curl of the microdistortion in its energy
functional, the variational problem is well-posed for P ∈ H (Curl). The development of H (curl)-
conforming finite elements with minimal regularity assumptions is due to Nédélec [70,71] and as such,
they are named after him. Their necessity in allowing to capture C 0-continuous solutions of the
displacement field and the suboptimal convergence obtained by using Lagrangian (C 0) elements in
their place is shown in [97,98,101]. The application of H (curl)-conforming subspaces in finite element
computations is usually found for Maxwell’s equations [69, 96, 110] and is not common in structural
mechanics. However, the appearance of the Curl operator in related works, such as plasticity with
dislocations [24] and micro-curl [35] continua or the novel TDNNS-formulation in elasticity [82, 86]
makes their usage relevant for structural mechanics as well.

The investigation of efficient finite element methods for the relaxed micromorphic model is the
focus of this work and is outlined as follows:

1. First, we introduce classical linear elasticity and its kinematically reduced models. Linear elas-
ticity represents the limit cases for the relaxed micromorphic model and is a crucial component
in the comparison to fully resolved geometries with micro-structures.

2. Secondly, the relaxed micromorphic model is introduced along with comparably reduced kine-
matics to the ones introduced for linear elasticity. We derive the variational and strong form
and discuss limit cases.
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3. Next we show proofs of existence and uniqueness of the relaxed micromorphic model in the
context of the Lax-Milgram theorem.

4. Using the latter proofs we apply Cea’s lemma in order to present a priori error estimates of the
model.

5. This is followed by an introduction of low order Lagrangian and Nédélec elements of the first
and second type on triangles and tetrahedra. The construction along with solutions to the
orientation problem and the discrete consistent coupling condition are demonstrated.

6. Chapter six presents a new methodology for the construction of H (curl)-conforming finite el-
ements, being the main novelty of this work. The method allows for a simple construction of
vectorial finite elements independently of the choice of a polynomial basis. Here we make use of
Bernstein polynomials, thus leading to optimal complexity in the assembly process. Further, we
discuss an efficient approach of computing derivatives of the base functions and explore methods
of applying boundary conditions.

7. In chapter seven we test both the low and higher order finite element formulations for convergence
and accuracy and discuss their behaviour over a variety of examples. A special emphasis is
put on the efficiency of the methods to correctly capture the intrinsic behaviour of the relaxed
micromorphic model and reproduce its ability to interpolate between micro- and macro reactions.

8. Lastly, we draw our conclusions and discuss possibilities of further development.

The culmination of this work is the hp-finite element analysis software Rayse, which is freely
available for Windows 64-bit computers on the PyPi-repository. The computational kernel of the
program is written in the Rust programming language for high performance and implements the
CRAC sparse matrix format [102] for parallel assembly and solution. For convenience and simplicity
of use, the program is controlled through a Python user interface.

1.1 Notation

The following notation is used throughout this work:

• Simple lower case letters are scalars a, λ. Vectors are denoted with bold lower case letters v, φ.
Matrices and second order tensors are indicated by bold capital letters P , Θ. Fourth order
tensors are identified by the blackboard-bold format C, J. Exceptions to this rule, such as the
linear strain tensor ε, are clear from context.

• The symbol 1 ∈ R3×3 represents the second order identity tensor. The fourth order identity
tensor is designated by J ∈ R3×3×3×3.

• The physical domain is denoted by V ⊂ R3 for three-dimensional bodies. Two dimensional
physical domains are given by A ⊂ R2, and one dimensional curves in the physical space by
s ⊂ R. Their respective counterparts on reference domains are Ω ⊂ R3, Γ ⊂ R2 and µ ⊂ R.

• The normal vector on boundaries of physical domains ∂V ⊂ R2 or ∂A ⊂ R, is indicated by n.
On the reference domain ν is used in its stead. Tangent vectors on the physical and reference
domains are denoted by t and τ , respectively.
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• The scalar product operation is denoted by 〈·, ·〉. The operation represents either single con-
traction or higher contraction, in accordance with its argument. The single contraction between
vectors and second order tensors is written without an operator Av ∈ R3, A ∈ R3×3, v ∈ R3.
Likewise, the double contraction between fourth order tensors and second order tensors is implied
as CP ∈ R3×3, C ∈ R3×3×3×3, P ∈ R3×3.

• Norms are indicated by the ‖ · ‖ operator, whereas | · | stands for the absolute value, and [[·]]
represents the jump operator.

• The gradient operator for scalars is implied by ∇λ, the curl operator by curl v = ∇ × v, and
the divergence by div v = 〈∇, v〉. The operator D defines the right-gradient for vectors, and the
Curl-operator applies the vector curl operator row-wise on second order tensors. Analogously,
the Div-operator applies the vector divergence operator row-wise on second order tensors.

• For the remainder of this work, unless stated otherwise, vectors and higher order
tensors are defined using the Cartesian basis {e1, e2, e3}.
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Figure 2.1: The parametric domain, reference configuration and current configuration connected by
their respective mappings.

2 Linear Elasticity

This section is devoted to the introduction of the theory of linear elasticity [8, 56]. The theory can
be considered as a subclass of the relaxed micromorphic continuum and is retrieved for certain limit
cases of the relaxed micromorphic model. Further, we employ the theory for comparisons with discrete
micro-structured geometries.

2.1 Kinematics

Let V0 ⊂ R3 be an open and bounded domain with a sufficiently smooth boundary ∂V0, then the
reference configuration of a body can be defined by V 0 = V0 ∪ ∂V0. Further, for computational
purposes we assume that the reference configuration is mapped from some parametric space Ω with
Ω ⊂ R3 such that

x : Ω→ V 0 . (2.1)

The current configuration of the body V is given by the vector field (see Fig. 2.1)

ϕ : V 0 → V ⊂ R3 , (2.2)

and consequently, the displacement field is extracted from the difference

u(x) = ϕ(x)− x . (2.3)

At each material point, the deformation gradient F is given by the displacement field

F = Dϕ = 1+ Du , Du =

∇u1

∇u2

∇u3

 =

u1,x u1,y u1,z

u2,x u2,y u2,z

u3,x u3,y u3,z

 , ∇u =

u,xu,y
u,z

 , (2.4)
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where D(·) and ∇(·) define the gradient operator for vectors and scalars, respectively. The deformation
gradient contains both deformations and rigid body motions. The metric of the current configuration
is represented by the Cauchy-Green strain tensor

C = F TF , ‖dϕ‖2 = 〈F dx, F dx〉 = 〈dx, C dx〉 , (2.5)

and does not capture rigid body motions since

C = 1 ⇐⇒ ϕ = a +Qx , a ∈ R3 ,Q ∈ SO(3) , (2.6)

where SO(3) is the space of special orthogonal second order tensors. As such, the strain can be
measured by taking the difference between the metric of the current and reference configurations

‖dϕ‖2 − ‖dx‖2 = 〈dx, C dx〉 − 〈dx, I dx〉 = 〈dx, (C − I) dx〉 = 〈dx, 2E dx〉 ,

E =
1

2
(C − 1) =

1

2
(F TF − 1) =

1

2
([Du]TDu + [Du]T + Du) , (2.7)

which is represented by the Green-Lagrange strain tensor E. Linearisation of the Green-Lagrange
strain tensor with respect to u results in

ε = sym Du =
1

2
([Du]T + Du) , Du = sym Du + skew Du , (2.8)

being the so called engineering strains that are applicable to problems with small strains ‖ε‖F � 1
and small rotations ‖ skew Du‖F � 1. Here ‖ · ‖F denotes the matrix Frobenius norm and skew(·) the
extraction of a skew symmetric matrix

‖P ‖F =
√
〈P , P 〉 , skewP =

1

2
(P − P T ) . (2.9)

2.2 Constitutive equations

The relation between stresses and strains is given by constitutive equations. Deformation stems from
mechanical loads acting on the body. Elastic bodies return to their undeformed state after load
removal. Therefore, an hyperelastic material law can be defined by considering an energy density
function W of strains

E =

∫
V
W (E) dV , (2.10)

where E represents the total elastic energy of the body. A material is called isotropic if it exhibits
the same stress-strain relation in all directions. The latter implies that the energy density function is
invariant to rotations of its argument such that

W (E) = W (QTEQ) , Q ∈ SO(3) . (2.11)

Since F is assumed to be invertible (to prevent self-intersection of material points during deformation)
and real, the strain tensor E is symmetric positive definite and the energy density can be described
using solely its eigenvalues Λ

W (E) = W (V ΛV T ) = W (Λ) , V ∈ SO(3) , (2.12)
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where E = V ΛV T is the spectral decomposition. Commonly, the main invariants are used instead of
directly acting on each eigenvalue

W (E) = W (I, II, III) = W (trE, (1/2)[(trE)2 − tr(E2)], detE) . (2.13)

Development of the energy density functional into a Taylor series yields

W (E) = W0 + 〈∇W, ∆I〉+
1

2
〈D∇W, ∆I⊗∆I〉+O(‖I‖3) , I =

[
I II III

]T
. (2.14)

Since W (E) describes an hyperelastic material we assume the global minimum W = 0 at E = 0 while
dropping higher order terms, such that the Taylor series reduces to

Ŵ (E) =
1

2

∂2W

∂I2
(trE)2 +

∂W

∂II
trE2 . (2.15)

Setting the Lamé constants

∂2W

∂I2
= λ ,

∂W

∂II
= µ , (2.16)

yields Hooke’s law

Ŵ (E) =
λ

2
(trE)2 + µ‖E‖2F , σ =

∂Ŵ

∂E
= λ(trE)1+ 2µE . (2.17)

The constitutive equation can also be described using higher dimensional tensors

σ = CE , C = λ1⊗ 1+ 2µ J ∈ R3×3×3×3 , (2.18)

where J is the fourth-order identity tensor. In the linear theory of elasticity the material tensor C is
applied to the engineering strains σ = C ε.

2.3 Variational formulation

In the following we consider only the geometrically linear theory of elasticity, i.e., engineering strains
are employed and integration is performed over the reference configuration. The total energy of the
system is determined by the deformation energy and the work performed by volume forces

I(u) =

∫
V
W (Du) dV −

∫
V
〈u, f〉dV → min w.r.t. u , (2.19)

where equilibrium is defined as a minimizer with respect to the displacement field u, since it asserts
the equality of internal and external work. Taking variations with respect to the displacement field u
yields

δI(u) =

∫
V
〈sym(Dδu), C sym(Du)〉 dV −

∫
V
〈δu, f〉 dV = 0 . (2.20)

Using the Green-type formula∫
V
〈Dv, T 〉dV =

∫
∂V
〈v, Tn〉dA−

∫
V
〈v, DivT 〉dV v ∈ [C∞(V )]3 , T ∈ [C∞(V )]3×3 , (2.21)

8



x

y

n

fV

AD

AN

Figure 2.2: The domain with Dirichlet and Neumann boundaries under internal forces.

partial integration of Eq. (2.20) results in

−
∫
V
〈δu, Div[C sym(Du)]〉dV +

∫
∂V
〈δu, [C sym(Du)] n〉dA−

∫
V
〈δu, f〉 dV = 0 , (2.22)

from which we extract the elastostatic Navier-Cauchy equations and the boundary conditions

−Div[C sym(Du)] = f in V , (2.23a)

[C sym(Du)] n = 0 on AN , (2.23b)

u = ũ on AD , (2.23c)

where the boundary has been split to ∂V = AN ∪ AD and AN ∩ AD = ∅ (see Fig. 2.2) and the
divergence operator for second order tensors reads

DivP =

div(
[
P11 P12 P13

]
)

div(
[
P21 P22 P23

]
)

div(
[
P31 P32 P33

]
)

 , div p = 〈∇, p〉 . (2.24)

Here, div(·) defines the divergence operator for vectors. The prescribed displacement ũ is set on the
Dirichlet boundary AD and the natural Neumann boundary condition of zero tractions is employed
on AN . From Eq. (2.20) one extracts the bilinear and linear forms

a(δu,u) =

∫
V
〈sym(Dδu), C sym(Du)〉 dV , (2.25a)

l(δu) =

∫
V
〈δu, f〉dV . (2.25b)

2.4 Reduced kinematics

The three-dimensional variational formulation introduced in Eq. (2.25) can be reduced to two-dimensional
formulations by making some assumptions regarding the kinematics of the model. In the following we
reduce the model to models of plane strain and antiplane shear.
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2.4.1 Plane strain

In the plane strain model we assume a two-dimensional domain A ⊂ R2 where the strain in the third
direction is set to zero. This implies no deformation can take place outside the plane

u =

[
u
v

]
, ε =

[
u,x 1/2(u,y + v,x)

1/2(u,y + v,x) v,y

]
. (2.26)

Although the stress tensor does contain out-of-plane components, they do not produce work as their
strain counterparts are set to zero. Consequently, the material tensor can be reduced to C ∈ R2×2×2×2.

Remark 2.1
The reduction of the material tensor in the latter case applies only to the energy functional and the
bilinear form. Computation of the stress tensor requires a different approach where the out-of-plane
components are considered.

As such, one can formulate the reduced problem as

−Div[C sym(Du)] = f in A , (2.27a)

[C sym(Du)] n = 0 on sN , (2.27b)

u = ũ on sD , (2.27c)

where the boundary is reduced to the curve ∂A = s = sD ∪ sN . The corresponding energy functional
reads

I(u) =
1

2

∫
A
〈sym Du, C(sym Du)〉dA−

∫
A
〈u, f〉 dA→ min w.r.t. u , (2.28)

and the bi-/ linear forms are given by

a(δu,u) =

∫
A
〈sym(Dδu), C sym(Du)〉 dA , (2.29a)

l(δu) =

∫
A
〈δu, f〉dA . (2.29b)

2.4.2 Antiplane shear

An alternative reduction of the model is achieved when considering antiplane shear [106]. In this
case, only out-of-plane displacements can occur. Consequently, the displacement vector is reduced to
a scalar and the strain tensor is given by a two-dimensional vector ε = ∇u. Further, the material
tensor is reduced to the shear modulus constant µ. The energy functional takes the form

I(u) =
1

2

∫
A
µ‖∇u‖2 dA−

∫
A
u f dA→ min w.r.t. u . (2.30)

Variation leads to the bilinear and linear forms

a(δu, u) =

∫
A
〈∇δu, µ∇u〉 dA , (2.31a)

l(δu) =

∫
A
δu f dA . (2.31b)
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Partial integration with the Green-type formula∫
A
〈∇q, v〉 dA =

∫
∂A
q 〈v, n〉ds−

∫
A
q div v dA , q ∈ C∞(A), v ∈ [C∞(A)]2 , (2.32)

yields ∫
∂A
µ δu 〈∇u, n〉 ds−

∫
A

(δu)µ∆udA−
∫
A
δu f dA = 0 , (2.33)

from which one extracts the strong form

−µ∆u = f in A , (2.34a)

〈∇u, n〉 = 0 on sN , (2.34b)

u = ũ on sD , (2.34c)

representing a classical Poisson problem. The boundary of the domain is split into Dirichlet and
Neumann boundaries ∂A = sD ∪ sN .

11



3 Relaxed Micromorphic Continua

This chapter is dedicated to the introduction of the relaxed micromorphic model [75]. The full three-
dimensional model is introduced and subsequently reduced to models of plane strain and antiplane
shear. Further, edge cases with respect to the characteristic length Lc are expanded upon.

3.1 The relaxed micromorphic model

The relaxed micromorphic continuum is governed by a free energy functional, incorporating the gra-
dient of the displacement field Du, the microdistortion P and the Curl of the microdistortion, namely
the micro-dislocation

I(u,P ) =
1

2

∫
V
〈sym(Du− P ), Ce sym(Du− P )〉+ 〈symP , Cmicro symP 〉

+ 〈skew(Du− P ), Cc skew(Du− P )〉+ µmacroL
2
c‖CurlP ‖2 dV

−
∫
V
〈u, f〉+ 〈P ,M〉 dV → min w.r.t. {u,P } , (3.1)

where the Curl operator for second order tensors is defined row-wise as

CurlP =

curl(
[
P11 P12 P13

]
)

curl(
[
P21 P22 P23

]
)

curl(
[
P31 P32 P33

]
)

 =

P13,y − P12,z P11,z − P13,x P12,x − P11,y

P23,y − P22,z P21,z − P23,x P22,x − P21,y

P33,y − P32,z P31,z − P33,x P32,x − P31,y

 ,
curl p = ∇× p , p : V ⊂ R3 → R3 , (3.2)

and curl(·) is the vectorial curl operator. The displacement field and the microdistortion field are
functions of the reference domain

u : V ⊂ R3 → R3 , P : V ⊂ R3 → R3×3 . (3.3)

The tensors Ce,Cmicro ∈ R3×3×3×3 are standard fourth order material tensors. For isotropic materials
they take the same form as Eq. (2.18)

Ce = λe1⊗ 1+ 2µe J , Cmicro = λmicro1⊗ 1+ 2µmicro J . (3.4)

The fourth order tensor Cc ∈ R3×3×3×3 is a positive semi-definite material tensor related to Cosserat
micro-polar continua and accounts for infinitesimal rotations Cc : so(3) → so(3), where so(3) is the
space of skew-symmetric matrices. Consequently, one way to define the tensor for isotropic materials
is by using the fourth order anti-symmetry tensor (see Appendix A)

Cc = 2µcA ∈ R3×3×3×3 , A : R3×3 → so(3) . (3.5)

The macroscopic shear modulus is denoted by µmacro and Lc represents the characteristic length scale
motivated by the geometry of the microstructure. The forces and micro-moments are given by f and
M , respectively.

Equilibria are found at minima of the energy functional. As such, we consider variations with
respect to its parameters, namely the displacement and the microdistortion. Taking variations of the
energy functional with respect to the displacement field u yields

δuI =

∫
V
〈sym Dδu, Ce sym(Du− P )〉+ 〈skew Dδu, Cc skew(Du− P )〉 − 〈δu, f〉 dV = 0 . (3.6)
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The variation with respect to the microdistortion P results in

δP I =

∫
V
〈sym δP , Ce sym(Du− P )〉+ 〈skew δP , Cc skew(Du− P )〉

− 〈sym δP , Cmicro symP 〉 − µmacroL
2
c〈Curl δP , CurlP 〉+ 〈δP ,M〉 dV = 0 . (3.7)

From the total variation we extract the bilinear form

a({δu, δP }, {u,P }) =

∫
V
〈sym(Dδu− δP ), Ce sym(Du− P )〉+ 〈sym δP , Cmicro symP 〉

+ 〈skew(Dδu− δP ), Cc skew(Du− P )〉+ µmacroL
2
c〈Curl δP , CurlP 〉dV ,

(3.8)

and linear form of the loads

l({δu, δP }) =

∫
V
〈δu, f〉+ 〈δP ,M〉 dV . (3.9)

Applying integration by parts to Eq. (3.6) using Eq. (2.21) yields∫
∂V
〈δu , [Ce sym(Du− P ) + Cc skew(Du− P )] n〉 dA

−
∫
V
〈δu ,Div[Ce sym(Du− P ) + Cc skew(Du− P )]− f〉 dV = 0 . (3.10)

Likewise, integration by parts of Eq. (3.7) using the Green-type formula∫
V
〈CurlT , Q〉 dV =

∫
∂V
〈T , Q× n〉 dA+

∫
V
〈T , CurlQ〉 dV , T ,Q ∈ [C∞(V )]3×3 , (3.11)

results in∫
V
〈δP , Ce sym(Du− P ) + Cc skew(Du− P )− Cmicro symP − µmacroL

2
c Curl CurlP +M〉 dV

− µmacroL
2
c

∫
∂V
〈δP , CurlP × n〉dA = 0 . (3.12)

The strong form is extracted from Eq. (3.10) and Eq. (3.12) by splitting the boundary

A = AD ∪AN , AD ∩AN = ∅ , (3.13)

into a Dirichlet boundary with embedded boundary conditions and a Neumann boundary with natural
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Figure 3.1: The domain in the relaxed micromorphic model with Dirichlet and Neumann boundaries
under internal forces and micro-moments. The Dirichlet boundary of the microdistortion is given by
the consistent coupling condition. The model can capture the complex kinematics of an underlying
micro-structure.

boundary conditions, such that no tractions are defined on the Neumann boundary

−Div[Ce sym(Du− P ) + Cc skew(Du− P )] = f in V ,
(3.14a)

−Ce sym(Du− P )− Cc skew(Du− P ) + Cmicro symP + µmacro L
2
c Curl CurlP = M in V ,

(3.14b)

u = ũ on AuD ,
(3.14c)

P × n = P̃ × n on APD ,
(3.14d)

[Ce sym(Du− P ) + Cc skew(Du− P )] n = 0 on AuN ,
(3.14e)

CurlP × n = 0 on APN .
(3.14f)

We observe that the Dirichlet boundary condition for the microdistortion controls only its tangential
components. It is unclear, how to to control the micro-movements of a material point without also af-
fecting the displacement. As such, the relaxed micromorphic model introduces the so called consistent
coupling condition [27]

P × n = Dũ× n on APD , (3.15)

where the prescribed displacement on the Dirichlet boundary ũ automatically dictates the tangential
component of the microdistortion on that same boundary. Consequently, the consistent coupling
condition enforces the definitions AD = AuD = APD and AN = AuN = APN (see Fig. 3.1). Further, the
consistent coupling condition substitutes Eq. (3.14d).

3.1.1 Lower limit of the characteristic length scale parameter Lc → 0

In the relaxed micromorphic model the characteristic length Lc takes the form of a scaling parameter
between the macro and the micro scales. This characteristic allows the theory to iterate between
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materials with a pronounced micro-structure and fully homogeneous materials, thus relating the char-
acteristic length scale parameter Lc to the size of the micro-structure in metamaterials. In the lower
limit Lc → 0 the continuum is fully homogeneous and the solution of the classical Cauchy continuum
theory is retrieved [7, 73]. This can be observed by reconsidering Eq. (3.14b)

−Ce sym(Du− P )− Cc skew(Du− P ) + Cmicro symP = M , (3.16)

which can now be used to express the microdistortion P algebraically

symP = (Ce + Cmicro)−1(symM + Ce sym Du) , (3.17a)

skewP = C−1
c skewM + skew Du . (3.17b)

Setting M = 0 corresponds to Cauchy continua, where micro-moments are not accounted for. Thus,
one finds

Cc skew(Du− P ) = 0 , Ce sym(Du− P ) = Cmicro symP , symP = (Ce + Cmicro)−1Ce sym Du .
(3.18)

Applying the upper results to Eq. (3.14a) yields

−Div[Ce sym(Du− P )] = −Div[Cmicro(Ce + Cmicro)−1Ce sym Du] = −Div[Cmacro sym Du] = f ,
(3.19)

where the definition Cmacro = Cmicro(Ce + Cmicro)−1Ce relates the meso- and micro-elasticity tensors
to the classical macro-elasticity tensor of the Cauchy continuum. In fact, Cmacro contains the material
constants that arise from standard homogenization for large periodic structures [7,73] and Eq. (3.19)
is equivalent to Eq. (2.23). For isotropic materials one can directly compute the macro parameters

µmacro =
µe µmicro

µe + µmicro
, 2µmacro + 3λmacro =

(2µe + 3λe)(2µmicro + 3λmicro)

(2µe + 3λe) + (2µmicro + 3λmicro)
. (3.20)

We note that by Eq. (3.17) even if the micro-moments are given by a gradient field M = Dm for
some vector m, it does not imply P = Dv for some vector v. In other words, in the general case the
microdistortion field is not a gradient.

3.1.2 Upper limit of the characteristic length scale parameter Lc → +∞

In the upper limit Lc → +∞, the stiffness of the micro-body becomes dominant. As the characteristic
length Lc can be viewed as a zoom-factor into the microstructure, the state Lc → +∞ can be inter-
preted as the entire domain being the micro-body itself. However, this is only theoretically possible
as in practice, the limit is given by the size of one unit cell. Since the energy functional is being
minimized, on contractible domains this implies the reduction of the microdistortion to a gradient
field P → Dv due to the classical identity

Curl Dv = 0 ∀v ∈ [C∞(V )]3 , (3.21)

thus asserting finite energies of the relaxed micromorphic model for large characteristic length values.
Since only the micro-body is considered, one sets f = 0 to find

−Div[Ce sym(Du− P ) + Cc skew(Du− P )] = 0 , (3.22)
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for Eq. (3.14a). As such, taking the divergence of Eq. (3.14b) yields

Div(Cmicro sym Dv) = DivM . (3.23)

The divergence of the micro-moments DivM can be interpreted as the micro body-forces. The latter
implies that the limit Lc → +∞ defines a classical Cauchy continuum with a finite stiffness governed by
Cmicro, representing the upper limit of the stiffness for the relaxed micromorphic continuum. Further,
note that due to Eq. (3.22) and the consistent coupling condition Eq. (3.15) there holds v = u since
the solution is unique.

Remark 3.1
If we assume Cmicro → ∞ then there follows P ∈ so(3) for finite energies such that the material
point becomes non-deformable and the relaxed micromorphic model reduces to an equivalent Cosserat
micro-polar model [75].

3.2 Reduced kinematics

In the following we introduce analogues to the plane strain and antiplane shear models of linear elastic-
ity for the relaxed micromorphic model. The reduction follows the assertion that the microdistortion
field has as many components as the gradient of the displacement field. Further, the reduction makes
use of the two-dimensional versions of the curl operator

div(Rp) = p2,x − p1,y , R∇p =

[
p,y
−p,x

]
, R =

[
0 1
−1 0

]
, (3.24)

for vectorial and scalar fields, respectively. The operators arise by considering bivariate fields on a the
(x, y)-plane in the R3-space, where vectors are written using the first and second components, and
scalars are in the third position of a vector.

3.2.1 Plane strain

Analogous to Section 2.4.1 plane strain assumes the displacement field u =
[
u v

]T
, such that the

gradient and the microdistortion read

Du =

[
u,x u,y
v,x v,y

]
, P =

[
P11 P12

P21 P22

]
. (3.25)

The material tensors are reduced to Ce,Cc,Cmicro ∈ R2×2×2×2.

Remark 3.2
Note that the material tensors are only used in the energy functional and the bilinear form. Compu-
tation of out-of-plane stress components requires a different approach.

While the energy functional

I(u,P ) =
1

2

∫
A
〈sym(Du− P ), Ce sym(Du− P )〉+ 〈symP , Cmicro symP 〉

+ 〈skew(Du− P ), Cc skew(Du− P )〉+ µmacroL
2
c‖CurlP ‖2 dA

−
∫
A
〈u, f〉+ 〈P ,M〉 dA→ min w.r.t. {u,P } . (3.26)

16



and the (bi)linear forms

a({δu, δP }, {u,P }) =

∫
A
〈sym(Dδu− δP ), Ce sym(Du− P )〉+ 〈sym δP , Cmicro symP 〉 (3.27a)

+ 〈skew(Dδu− δP ), Cc skew(Du− P )〉+ µmacroL
2
c〈Curl δP , CurlP 〉dA ,

l({δu, δP }) =

∫
A
〈δu, f〉+ 〈δP ,M〉dA , (3.27b)

maintain their notation with the exception of the adaption to a two dimensional domain, we note
that by Eq. (3.24) CurlP now reads

CurlP =

[
div(R

[
P11 P12

]
)

div(R
[
P21 P22

]
)

]
=

[
P12,x − P11,y

P22,x − P21,y

]
, (3.28)

such that a vector is produced by the operator. Furthermore, in two dimensions the Curl-Curl oper-
ation is a combination of the two two-dimensional curl operators (see Eq. (3.24)) and yields

Curl CurlP =

[
R∇div(Rp1)
R∇div(Rp2)

]
=

[
P12,xy − P11,yy P11,yx − P12,xx

P22,xy − P21,yy P21,yx − P22,xx

]
, (3.29)

such that the strong form with boundary conditions adapted to two dimensions reads

−Div[Ce sym(Du− P ) + Cc skew(Du− P )] = f in A ,
(3.30a)

−Ce sym(Du− P )− Cc skew(Du− P ) + Cmicro symP + µmacro L
2
c Curl CurlP = M in A ,

(3.30b)

u = ũ on suD ,
(3.30c)

P t = P̃ t on sPD ,
(3.30d)

[Ce sym(Du− P ) + Cc skew(Du− P )] n = 0 on suN ,
(3.30e)

〈CurlP , t〉 = 0 on sPN .
(3.30f)

Here the boundary is reduced to the curve ∂A = s = sD ∪ sN .

3.2.2 Antiplane shear

We introduce the relaxed micromorphic model of antiplane shear by reducing the displacement field
to

u =

0
0
u

 , (3.31)
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such that u = u(x, y) is a function of the x− y-plane. Consequently, its gradient reads

Du =

 0 0 0
0 0 0
u,x u,y 0

 . (3.32)

The structure of the microdistortion tensor is chosen accordingly

P =

 0 0 0
0 0 0
p1 p2 0

 . (3.33)

Analogously to the displacement field u, the microdistortion P is also set to be a function of the
{x, y}-variables P = P (x, y). We observe the following sym-skew decompositions of the gradient and
microdistortion tensors

symP =
1

2

 0 0 p1

0 0 p2

p1 p2 0

 , sym(Du− P ) =
1

2

 0 0 u,x − p1

0 0 u,y − p2

u,x − p1 u,y − p2 0

 ,
skew(Du− P ) =

1

2

 0 0 p1 − u,x
0 0 p2 − u,y

u,x − p1 u,y − p2 0

 . (3.34)

Clearly, there holds

tr[symP ] = tr[sym(Du− P )] = tr[skew(Du− P )] = 0 , (3.35)

such that the contraction with the material tensors reduces to

Ce sym(Du− P ) = 2µe sym(Du− P ) , Cmicro sym(Du− P ) = 2µmicro symP ,

Cc skew(Du− P ) = 2µc skew(Du− P ) . (3.36)

As such, the quadratic forms of the energy functional are given by

〈sym(Du− P ), Ce sym(Du− P )〉 = 2µe〈sym(Du− P ), sym(Du− P )〉

=
2µe

4
([u,x − p1]2 + [u,y − p2]2 + [u,x − p1]2 + [u,y − p2]2)

= µe‖∇u− p‖2 , (3.37a)

〈skew(Du− P ), Cc skew(Du− P )〉 = 2µc〈skew(Du− P ), skew(Du− P )〉

=
2µc

4
([p1 − u,x]2 + [p2 − u,y]2 + [u,x − p1]2 + [u,y − p2]2)

= µc‖∇u− p‖2 , (3.37b)

〈symP , Cmicro symP 〉 = 2µmicro〈symP , symP 〉

=
2µmicro

4
(p2

1 + p2
2 + p2

1 + p2]2

= µmicro‖p‖2 , (3.37c)
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with the definitions

∇u =

[
u,x
u,y

]
, p =

[
p1

p2

]
. (3.38)

The resulting energy functional for antiplane shear reads

I(u,p) =
1

2

∫
A

(µe + µc)‖∇u− p‖2 + µmicro‖p‖2 + µmacroL
2
c‖div(Rp)‖2 dA−

∫
A
u f + 〈p, m〉dA .

(3.39)

In order to maintain consistency with the three-dimensional model we must choose µc = 0. The
reasoning for this choice is explained upon in Remark 3.3. Consequently, the energy functional is
given by

I(u,p) =
1

2

∫
A
µe‖∇u− p‖2 + µmicro‖p‖2 + µmacroL

2
c‖div(Rp)‖2 dA

−
∫
A
u f + 〈p, m〉 dA→ min w.r.t. {u,p} . (3.40)

Taking variations with respect to the displacement field results in

δuI =

∫
A
µe〈∇δu, ∇u− p〉 − δu f dA = 0 , (3.41)

and variation with respect to the microdistortion yields

δpI =

∫
A
µe〈δp, ∇u− p〉 − µmicro〈δp, p〉 − µmacroL

2
cdiv(Rδp)div(Rp) + 〈δp, m〉 dA = 0 . (3.42)

Consequently, one finds the bilinear and linear forms

a({δu, δp}, {u,p}) =

∫
A
µe〈∇δu− δp, ∇u− p〉+ µmicro〈δp, p〉+ µmacroL

2
cdiv(Rδp)div(Rp) dA ,

(3.43a)

l({δu, δp}) =

∫
A
δu f + 〈δp, m〉 dA . (3.43b)

Partial integration of Eq. (3.41) using Eq. (2.32) results in∫
∂A
δu 〈µe(∇u− p), n〉ds−

∫
A
δu [µe div(∇u− p) + f ] dA = 0 . (3.44)

Applying the Green-type formula∫
A

div(Rv) q dA =

∫
∂A
〈v, t〉 q ds+

∫
A
〈v, R∇q〉dA , v ∈ [C∞(A)]2, q ∈ C∞(A) , (3.45)

to Eq. (3.42) yields∫
A
〈δp, µe(∇u− p)− µmicro p− µmacroL

2
cR∇div(Rp) + m〉 dA−

∫
∂A
〈δp, µmacroL

2
cdiv(Rp) t〉ds = 0 .

(3.46)
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Consequently, the strong form reads

−µe div(∇u− p) = f in A , (3.47a)

−µe(∇u− p) + µmicro p + µmacroL
2
cR∇div(Rp) = m in A , (3.47b)

u = ũ on suD , (3.47c)

〈p, t〉 = 〈p̃, t〉 on sPD , (3.47d)

〈∇u, n〉 = 〈p, n〉 on suN , (3.47e)

div(Rp) = 0 on sPN . (3.47f)

3.2.3 Limits of the characteristic length scale parameter Lc in antiplane shear

We reconsider the case of a homogeneous material by setting Lc → 0 in the reduced model for antiplane
shear. Thus, we find the algebraic identity

−µe(∇u− p) + µmicro p = m , (3.48)

derived by using Eq. (3.47a) and Eq. (3.47b). Note that if m = ∇m for some scalar field m one finds

p = ∇
(

m+ µe u

µe + µmicro

)
. (3.49)

In other words, the microdistortion is reduced to a gradient field if the right hand side given by the
micro-moment has a scalar potential and the characteristic length vanishes. Setting m = 0 leads to
the Poisson equation

−div

(
µeµmicro

µe + µmicro
∇u
)

= −
(

µeµmicro

µe + µmicro

)
∆u = −µmacro∆u = f , (3.50)

where the first identity in Eq. (3.20) is used for the definition of the macro parameter.

Remark 3.3
The latter identity forces to choose µc = 0 in the antiplane shear model, since otherwise the result
would read

−
(
µmicro[µe + µc]

µe + µc + µmicro

)
∆u = f , (3.51)

where the relation to the macro parameter µmacro in Eq. (3.20) is lost. Further, the limit defined in
Eq. (3.17) with M = 0 yields the contradiction

symP = (Ce + Cmicro)−1Ce sym Du , Cc skewP = Cc skew Du , (3.52)

since the equations degenerate to

p =
µe

µe + µmicro
∇u , µcp = µc∇u . (3.53)
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Choosing µmicro = 0 leads to a loss of structure in the strong form Eq. (2.34), while satisfying Eq. (3.53).
As such, we choose µc = 0, thus preserving the structure of the equations and satisfying both Eq. (3.20)
and Eq. (3.53).

Although the relaxed micromorphic model includes the Cosserat model as a singular limit for
µmicro → ∞, it is impossible to deduce the Cosserat model of antiplane shear as a limit of the re-
laxed micromorphic model, since one needs to satisfy Eq. (3.53) for µc > 0 and µmicro →∞, which is
impossible.

Taking the upper limit of the characteristic length Lc →∞ implies

p = ∇p , (3.54)

on contractible domains, thus ensuring finite energies. By setting f = 0 in Eq. (3.47b) and taking the
divergence of Eq. (3.47a) one finds the Poisson equation

µmicro∆p = div m , (3.55)

where div m can be interpreted as the volume force acting on the micro-body.
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4 Variational Framework

This chapter is dedicated to the introduction of the natural function spaces [69] for the variational
formulation of relaxed micromorphic models, and the demonstration of the well-posedness of the
models via classical existence and uniqueness theorems.

4.1 Hilbert spaces

The common differential operators are usually not defined for finite elements due to jumps in the
continuity of piece-wise approximations. As such, we introduce the generalized differential operators
[110] by using test functions on elements of the Lebesgue space

L2(V ) = {u : V → R | ‖u‖L2(V ) <∞} , ‖u‖2L2(V ) = 〈u, u〉L2(V ) =

∫
V
u2 dV , (4.1)

denoting finite square integrable functions on the domain. The operators are defined using continuous
test functions with compact support

C∞0 (V ) =

{
q ∈ C∞(V ) | q

∣∣∣∣
∂V

= 0

}
. (4.2)

Definition 4.1 (Generalized differential operators)
The generalized differential operators are defined as follows:

1. Let u ∈ L2(V ), we define v = ∇u to be its generalized gradient if there holds

−
∫
V
udiv q dV =

∫
V
〈v, q〉 dV ∀q ∈ [C∞0 (V )]d ,

where d ∈ {2, 3} is according to the dimensionality of v.

2. Let u ∈ [L2(A)]2, its generalized two-dimensional curl, v = div(Ru), is defined if there holds∫
A
〈u, R∇q〉 dA =

∫
A
v q dA ∀ q ∈ C∞0 (A) ,

3. Let u ∈ [L2(V )]3, its generalized curl is given by v = curl u if there holds∫
V
〈u, curl q〉dV =

∫
V
〈v, q〉dV ∀q ∈ [C∞0 (V )]3 .

4. Let u ∈ [L2(V )]3, one can define its generalized divergence with v = div u if there holds

−
∫
V
〈u, ∇q〉dV =

∫
V
v q dV ∀ q ∈ C∞0 (V ) .

Next we define Hilbert spaces with norms based on scalar products, where the differential operators
are understood in the generalized sense. The following Hilbert spaces are based on the Lebesgue space
and define scalar products and norms derived from it

H 1(V ) = {u ∈ L2(V ) | ∇u ∈ [L2(V )]d} , ‖u‖2H 1(V ) = ‖u‖2L2 + ‖∇u‖2L2 , (4.3a)

H (divR, A) = {u ∈ [L2(A)]2 | div(Ru) ∈ L2(A)} , ‖u‖2H (divR,A) = ‖u‖2L2 + ‖div(Ru)‖2L2 , (4.3b)

H (curl, V ) = {u ∈ [L2(V )]3 | curl u ∈ [L2(V )]3} , ‖u‖2H (curl,V ) = ‖u‖2L2 + ‖ curl u‖2L2 , (4.3c)

H (div, V ) = {u ∈ [L2(V )]3 | div u ∈ L2(V )} , ‖u‖2H (div,V ) = ‖u‖2L2 + ‖ div u‖2L2 . (4.3d)
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R id
H 1(V )

∇
H (curl, V )

curl
H (div, V )

div
L2(V )

R id
H 1(A)

∇
H (divR, A)

divR
L2(A)

Figure 4.1: Classical de Rham exact sequences for three- and two-dimensional contractible domains.
The range of each operator is exactly the kernel of the next operator in the sequence.

Using the vectorial space H (curl, V ) we also introduce the tensor-valued H (Curl, V ) space

H (Curl, V ) = {P ∈ [L2(V )]3×3 | CurlP ∈ [L2(V )]3×3} , (4.4)

where each row of P is an element of H (curl, V ). On contractible domains the Hilbert spaces are
connected by exact de Rham sequences [32,85], see Fig. 4.1. The exact de Rham sequence compactly
portrays the following relations

∇H 1(V ) = ker(curl) ∩H (curl, V ) , (4.5a)

curl[H (curl, V )] = ker(div) ∩H (div, V ) , (4.5b)

div[H (div, V )] = L2(V ) , (4.5c)

for the three-dimensional case. In two dimensions there holds

∇H 1(A) = ker(divR) ∩H (divR, A) , (4.6a)

div[RH (divR, A)] = L2(A) . (4.6b)

In this work, the sequence is used in the embedding of appropriate boundary conditions and the
construction of conforming finite elements.

For the following results, a restriction of the domain to a Lipschitz domain is required.

Definition 4.2 (Lipschitz domain)
A domain V is called Lipschitz if its boundary ∂V is given by a Lipschitz continuous function or by
the finite union of piece-wise Lipschitz continuous functions ∂V =

⋃
iAi with Ai ∩ Aj = ∅ for i 6= j,

where a Lipschitz continuous function is defined as

∃ k > 0 : |f(x2)− f(x1)| ≤ k|x2 − x1| ∀x1, x2 ∈ R . (4.7)

The usage of a Lipschitz boundary allows for the definition of the outer surface normal almost
everywhere on the boundary ∂V . Further, for Lipschitz domains one can define the Hilbert spaces by
density as

H 1(V ) = C∞(V )
‖·‖H1

, H (divR, A) = [C∞(A)]2
‖·‖H (divR)

,

H (curl, V ) = [C∞(V )]3
‖·‖H (curl)

, H (div, V ) = [C∞(V )]3
‖·‖H (div)

, (4.8)

thus allowing to extend properties of the continuous spaces onto the Hilbert spaces.
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4.2 Trace theorems

The embedding of boundary conditions into variational problems depends on so called trace theorems
[47]. The latter extend the well known Green type formulas to Hilbert spaces. The following traces
are defined for a Lipschitz domain with V ⊂ Rd where d ∈ {2, 3}.

Theorem 4.1 (Traces)
The traces are defined for each Hilbert space as follows:

1. The trace of the function u ∈ H 1(V ) is defined by the linear bounded operator

tr∂V u = u

∣∣∣∣
∂V

∈ H 1/2(∂V ) , ∃ c > 0 : ‖ tr∂V u‖H 1/2(∂V ) ≤ c‖u‖H 1(V ) ∀u ∈ H 1(V ) . (4.9)

Thus, the trace of the field tr∂V u considers its values only on the boundary of the domain.

2. The trace of the H (divR, A) space is given by the restriction of a function to the boundary while
considering solely its tangential projection

trt
∂A u = 〈t, u〉

∣∣∣∣
∂A

∈ H−1/2(∂A) ,

∃ c > 0 : ‖ trt
∂A u‖H−1/2(∂A) ≤ c‖u‖H (divR,A) ∀u ∈ H (divR, A) . (4.10)

3. The trace of the H (curl, V ) space is similar to the previous trace. However, on a surface the
tangent vector is not unique, and as such the projection is defined using the normal vector and
the cross product

trt
∂V u = n× u

∣∣∣∣
∂V

∈ [H−1/2(∂V )]3 ,

∃ c > 0 : ‖ trt
∂V u‖H−1/2(∂V ) ≤ c‖u‖H (curl,V ) ∀u ∈ H (curl, V ) . (4.11)

4. Lastly, the trace of the H (div, V ) space is defined by the normal projection at the boundary

trn
∂V u = 〈n, u〉

∣∣∣∣
∂V

∈ H−1/2(∂V ) ,

∃ c > 0 : ‖ trn
∂V u‖H−1/2(∂V ) ≤ c‖u‖H (div,V ) ∀u ∈ H (div, V ) . (4.12)

The positive fractional Hilbert space is given by

H 1/2(∂V ) = {v ∈ L2(∂V ) | ∃u ∈ H 1(V ) : tr∂V u = v} , (4.13)

and the negative fractional Hilbert space is its dual. A general derivation of fractional Sobolev spaces
is given in [33].

With the latter traces at hand one can define the classical Green-type formulas for Hilbert spaces.
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H0(curl, V )
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H0(div, V )
div
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0 (A)
∇
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divR

L2
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Figure 4.2: De Rham exact sequences for Hilbert spaces with vanishing traces. The Lebesgue zero-
space is characterized by functions with a vanishing integral over the domain.

Theorem 4.2 (Integration by parts)
The following integration by parts formula hold with the trace operators defined in Theorem 4.1 for
Lipschitz domains∫

V
〈∇u, q〉dV =

∫
∂V

(tr∂V u) trn
∂V q dA−

∫
V
u div v dV ∀u ∈ H 1(V ), ∀v ∈ H (div, V ) ,

(4.14a)∫
A

div(Ru) q dA =

∫
∂A

(trt
∂A u) tr∂V q ds+

∫
A
〈u, R∇q〉dA ∀u ∈ H (divR, A), ∀ q ∈ H 1(A) ,

(4.14b)∫
V
〈curl u, q〉dV =

∫
∂V
〈trt

∂V u, tr∂V q〉dA+

∫
V
〈u, curl q〉 dV ∀u ∈ H (curl, V ), ∀q ∈ [H 1(V )]3 .

(4.14c)

Furthermore, using the trace operators one can define Hilbert spaces with vanishing traces

L2
0(V ) = {u ∈ L2(V ) |

∫
V
udV = 0} , (4.15a)

H 1
0 (V ) = {u ∈ H 1(V ) | tr∂V u = 0} , (4.15b)

H0(divR, A) = {u ∈ H (divR, A) | trt
∂A u = 0} , (4.15c)

H0(curl, V ) = {u ∈ H (curl, V ) | trt
∂V u = 0} , (4.15d)

H0(div, V ) = {u ∈ H (div, V ) | trn
∂V u = 0} . (4.15e)

Subsequentially, these spaces are used to define Dirichlet boundary conditions. The spaces with
vanishing traces are also connected by a de Rham complex, see Fig. 4.2. In other words, applying the
differential operator on a function with a vanishing trace in one Hilbert space leads to a function with
a vanishing trace in the kernel of the next space, as defined by the differential operator. Finally, the
traces are used to identify finite element spaces by interface conditions [81,103].

Theorem 4.3 (Interface conditions)
A finite element space is a conforming subspace of a Hilbert space if and only if the jump of the trace of
its elements vanishes for all arbitrarily defined interfaces Ξij = Vi ∩ Vj , i 6= j where V = Vi ∪ Vj ⊂ R3

and Ξij ⊂ R2 (and analogously for two-dimensional domains)

u ∈ H 1(V ) ⇐⇒ [[tr∂V u]]

∣∣∣∣
Ξij

= 0 ∀Ξij = Vi ∩ Vj , (4.16a)

u ∈ H (divR, A) ⇐⇒ [[trt
∂A u]]

∣∣∣∣
Ξij

= 0 ∀Ξij = Ai ∩Aj , (4.16b)
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u ∈ H (curl, V ) ⇐⇒ [[trt
∂V u]]

∣∣∣∣
Ξij

= 0 ∀Ξij = Vi ∩ Vj , (4.16c)

u ∈ H (div, V ) ⇐⇒ [[trn
∂V u]]

∣∣∣∣
Ξij

= 0 ∀Ξij = Vi ∩ Vj . (4.16d)

4.3 Existence and uniqueness

The relaxed micromorphic model defines a symmetric positive definite bilinear form. As such, its
existence and uniqueness can be shown using the Lax-Milgram theorem [18,19].

Theorem 4.4 (Lax-Milgram)
Let X be a Hilbert space equipped with the norm ‖ · ‖X ,

1. if a bilinear form a : X ×X → R is bounded (and therefore continuous)

∃α > 0 : a(u, q) ≤ α‖u‖X ‖q‖X ∀u ∈ X , ∀q ∈ X , (4.17)

2. and is strongly coercive

∃β > 0 : a(u, u) ≥ β‖u‖2X ∀u ∈ X , (4.18)

3. then by the Lax-Milgram theorem there exists a unique solution for every right hand side f ∈ X ′

with the stability estimate

‖u‖X ≤
1

β
‖f‖X ′ , (4.19)

where X ′ is the dual space of X and ‖ · ‖X ′ is the corresponding dual norm.

4.3.1 Inequalities

In the following we state several classical inequalities [18,19] used in our proofs.

Lemma 4.1 (Cauchy-Schwarz inequality)
Let X be a vector space equipped with a scalar product, then there holds

〈x, y〉X ≤ ‖x‖X ‖y‖X ∀x, y ∈ X . (4.20)

Lemma 4.2 (Triangle inequality )
Let X be a normed vector space, then there holds

‖x+ y‖X ≤ ‖x‖X + ‖y‖X ∀x, y ∈ X . (4.21)

Lemma 4.3 (Young’s inequality)
Let X be a vector space endowed with a scalar product, then there holds

〈x, y〉X ≤
‖x‖2X

2 ε
+
ε ‖y‖2X

2
∀
{
x, y ∈ X
ε > 0

. (4.22)
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Lemma 4.4 (Poincaré-Friedrich’s inequality)
Let V be a connected and bounded Lipschitz domain with non-vanishing Dirichlet boundary AD ⊂ ∂V
with |AD| > 0, then there holds

∃ cF > 0 : ‖u‖L2 ≤ cF ‖∇u‖L2 ∀u ∈ H 1
AD

(V ) , (4.23)

such that cF depends only on V and AD.

Lemma 4.5 (Korn’s inequality)
Let V be a connected and bounded Lipschitz domain with AD ⊂ ∂V and |AD| > 0, then there holds

∃ cK > 0 : ‖Du‖L2 ≤ cK‖ sym Du‖L2 ∀u ∈ [H 1
AD

(V )]3 , (4.24)

such that cK depends only on V and AD.

We note that specifically for the relaxed micromorphic model, the generalized Korn’s inequality
[60–62, 79] is crucial for existence and uniqueness in the case of a semi-positive-definite rotational
coupling tensor Cc.

Lemma 4.6 (Generalized Korn’s inequality)
Let V be a connected and bounded Lipschitz domain with AD ⊂ ∂V and |AD| > 0, then there holds

∃ cG > 0 : ‖P ‖2L2 + ‖CurlP ‖2L2 ≤ cG(‖ symP ‖2L2 + ‖CurlP ‖2L2) ∀P ∈ HAD
(Curl, V ) , (4.25)

such that cG depends only on V and AD.

4.3.2 Antiplane shear

We start proofs of existence and uniqueness of the relaxed micromorphic model for antiplane shear [101]
and postpone the treatment of more complex models to the subsequent subsections.

Theorem 4.5 (Well-posedness for antiplane shear)
Let the material constants µe, µmicro, µmacro, Lc > 0, then the problem

a({δu, δp}, {u,p}) = l({δu, δp}) ∀{δu, δp} ∈ X (A) , (4.26)

where the bilinear and linear forms are according to Eq. (3.43), has a unique solution

{u,p} ∈ X (A) = H 1
0 (A)×H (divR, A) , ‖{u,p}‖X = ‖u‖H 1 + ‖p‖H (divR) , (4.27)

and there holds the stability estimate

‖{u,p}‖X ≤
1

β
(‖f‖L2 + ‖m‖L2) , f ∈ L2(A), m ∈ [L2(A)]2 , (4.28)

with β = β(µe, µmicro, µmacro, Lc) > 0.
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Proof. The continuity of the bilinear form can be shown by employing the Cauchy-Schwarz and triangle
inequalities

a({δu, δp}, {u,p}) = µe〈∇δu− δp, ∇u− p〉L2 + µmicro〈δp, p〉L2 + µmacroL
2
c〈div(Rδp), div(Rp)〉L2

CS
≤ µe‖∇δu− δp‖L2‖∇u− p‖L2 + µmicro‖δp‖L2‖p‖L2

+ µmacroL
2
c‖div(Rδp)‖L2‖div(Rp)‖L2

≤ c1[‖∇δu− δp‖L2‖∇u− p‖L2 + ‖δp‖L2‖p‖L2 + ‖div(Rδp)‖L2‖div(Rp)‖L2 ]

T
≤ c1[(‖∇δu‖L2 + ‖δp‖L2)(‖∇u‖L2 + ‖p‖L2) + ‖δp‖L2‖p‖L2

+ ‖div(Rδp)‖L2‖div(Rp)‖L2 ]

≤ 3 c1‖{δu, δp}‖X ‖{u,p}‖X ∀{δu, δp}, {u,p} ∈ X (A) , (4.29)

where c1 = max{µe, µmicro, µmacroL
2
c} such that the continuity constant reads α = 3 c1.

In order to prove coercivity we use Young’s, and Poincaré-Friedrich’s inequalities

a({u,p}, {u,p}) = µe‖∇u− p‖2L2 + µmicro‖p‖2L2 + µmacroL
2
c‖div(Rp)‖2L2

= µe(‖∇u‖2L2 − 2〈∇u, p〉2L2 + ‖p‖2L2) + µmicro‖p‖2L2 + µmacroL
2
c‖div(Rp)‖2L2

Y
≥ µe(‖∇u‖2L2 − ε‖∇u‖2L2 −

1

ε
‖p‖L2 + ‖p‖2L2) + µmicro‖p‖2L2 + µmacroL

2
c‖div(Rp)‖2L2

≥ c2(‖∇u‖2L2 + ‖p‖2L2 + ‖div(Rp)‖2L2)

PF
≥ c2(

1

2 c2
F

‖u‖2L2 +
1

2
‖∇u‖2L2 + ‖p‖2L2 + ‖div(Rp)‖2L2)

≥ c2

2
(

1

c2
F

‖u‖2L2 + ‖∇u‖2L2 + ‖p‖2L2 + ‖div(Rp)‖2L2)

≥ c2 c3(‖u‖2L2 + ‖∇u‖2L2 + ‖p‖2L2 + ‖div(Rp)‖2L2)

Y
≥ c2 c3

cX
‖{u,p}‖2X ∀ {u,p} ∈ X (A) , (4.30)

with the constants

c2 = min{µe(1− ε), µe(1−
1

ε
) + µmicro, µmacroL

2
c} , c3 =

1

2
min{1, 1

c2
F

} , cX = 2 max{1, 1

2e
,
e

2
} .

(4.31)

Note that due to c2 the constant ε must satisfy

µe

µe + µmicro
< ε < 1 , (4.32)

which is always possible for µe, µmicro > 0. Therefore, the coercivity constant is given by β =
c2 c3

cX
.

The continuity of the linear form l({δu, δp}) is obvious and thereby omitted.

In the case of antiplane shear we can show, that the microdistortion p reduces to a gradient field
whenever the right hand side is given by a scalar potential.
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Theorem 4.6 (Gradient condition)
Let the micro-moment take the form m = ∇m for some scalar field m ∈ H 1(A), then the microdistor-
tion field is compatible

∃ p ∈ H 1(A) : p = ∇p , (4.33)

and independent of the characteristic length scale parameter Lc.

Proof. We make the ansatz p = ∇p with p ∈ H 1(A) and insert it into Problem. 4.26 while choosing
δu = 0 to find∫

A
µe〈δp, ∇p−∇u〉+ µmicro〈δp, ∇p〉dA =

∫
A
〈δp, ∇m〉 dA ∀ δp ∈ H (curl, A) . (4.34)

As such, we can express ∇p in the form

∇p =
1

µe + µmicro
∇(m+ µeu) . (4.35)

Inserting the latter result into Problem. 4.26 while setting δp = 0 yields the Poisson problem∫
A

µmicro

µe + µmicro
〈∇δu, ∇u〉dA =

∫
A
δu f +

µe

µe + µmicro
〈∇δu, ∇m〉dA ∀ δu ∈ H 1(A) , (4.36)

which is uniquely solvable. Since by the Lax-Milgram theorem the solution is unique, it follows that
p = ∇p and the resulting displacement field u are the only possible solutions.

The case Lc = 0 is also of interest, since it represents the scenario of a completely homogeneous
domain.

Theorem 4.7 (Homogeneous antiplane continuum)
Let µe, µc > 0 and Lc = 0, then Problem. 4.26 has a unique solution in X (A) = H 1(A)× [L2(A)]2.

Proof. The proof of continuity follows the same lines as Eq. (4.29). The curl term is dropped such
that the continuity constant is given by

α = 2 c1 , c1 = min{µe, µmicro} . (4.37)

The proof of coercivity is analogous to Eq. (4.30) where the dependence on µmacroL
2
c is dropped in

c2.

Remark 4.1
Note that if Lc = 0 and m = ∇m it follows by Theorem 4.6 that

p = ∇p ⊂ ker(divR) ∩H (divR, A) ⊂ H (divR, A) ⊂ [L2(A)]2 , (4.38)

such that the problem remains well-posed in X (A) = H 1
0 (A)×H (divR, A).
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4.3.3 Three-dimensional model

For the proof of the three-dimensional model [100] we first define the bounds of the material tensors
on their respective spaces

∃ ke, ce > 0 : ke‖T ‖2 ≤ 〈T , Ce T 〉 ≤ ce‖T ‖2 ∀T ∈ R3×3 , (4.39a)

∃ kmicro, cmicro > 0 : kmicro‖T ‖2 ≤ 〈T , Cmicro T 〉 ≤ cmicro‖T ‖2 ∀T ∈ R3×3 , (4.39b)

∃ kc, cc > 0 : kc‖T ‖2 ≤ 〈A, CcA〉 ≤ cc‖A‖2 ∀A ∈ so(3) , (4.39c)

where the positive definiteness of Cc on so(3) is assumed for the first part of the proof. This restriction
is later relaxed to semi-positive-definiteness on so(3) using the generalized Korn’s inequality.

Theorem 4.8 (Well-posedness three-dimensional model I)
Let µmacro, Lc > 0 and Ce,Cmicro be positive definite on R3×3. Further let Cc be positive definite on
so(3), then the problem

a({δu, δP }, {u,P }) = l({δu, δP }) ∀{δu, δP } ∈ X (V ) , (4.40)

where the bilinear and linear forms are according to Eq. (3.8) and Eq. (3.9), has a unique solution

{u,P } ∈ X (V ) = [H 1
0 (V )]3 ×H (Curl, V ) , ‖{u,P }‖X = ‖u‖H 1 + ‖P ‖H (Curl) , (4.41)

and there holds the stability estimate

‖{u,P }‖X ≤
1

β
(‖f‖L2 + ‖M‖L2) , f ∈ [L2(V )]3,M ∈ [L2(V )]3×3 , (4.42)

with β = β(Ce,Cmicro,Cc, µmacro, Lc) > 0.

Proof. Continuity of the bilinear form follows from the Cauchy-Schwarz and triangle inequalities

a({δu, δP }, {u,P })
CS
≤ ce‖ sym(Dδu− δP )‖L2‖ sym(Du− P )‖L2 + cmicro‖ sym δP ‖L2‖ symP ‖L2

+ cc‖ skew(Dδu− δP )‖L2‖ skew(Du− P )‖L2 + µmacroL
2
c‖Curl δP ‖L2‖CurlP ‖L2

≤ c1 [‖ sym(Dδu− δP )‖L2‖ sym(Du− P )‖L2 + ‖ sym δP ‖L2‖ symP ‖L2

+ ‖ skew(Dδu− δP )‖L2‖ skew(Du− P )‖L2 + ‖Curl δP ‖L2‖CurlP ‖L2 ]

T
≤ c1 [(‖ sym Dδu‖L2 + ‖ sym δP ‖L2)(‖ sym Du‖L2 + ‖ symP ‖L2) + ‖ sym δP ‖L2‖ symP ‖L2

+ (‖ skew Dδu‖L2 + ‖ skew δP ‖L2)(‖ skew Du‖L2 + ‖ skewP ‖L2)

+ ‖Curl δP ‖L2‖CurlP ‖L2 ]

≤ c1 [2 (‖Dδu‖L2 + ‖δP ‖L2)(‖Du‖L2 + ‖P ‖L2) + ‖δP ‖L2‖P ‖L2

+ ‖Curl δP ‖L2‖CurlP ‖L2 ]

≤ 2 c1 [(‖Dδu‖L2 + ‖δP ‖L2)(‖Du‖L2 + ‖P ‖L2) + ‖δP ‖L2‖P ‖L2

+ ‖Curl δP ‖L2‖CurlP ‖L2 ]

≤ 6 c1 ‖{δu, δP }‖X ‖{u,P }‖X ∀ {δu, δP }, {u,P } ∈ X (V ) , (4.43)
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with the constant c1 = max{ce, cmicro, cc, µmacroL
2
c}. The continuity constant reads α = 6 c1.

Coercivity is shown using Young’s, Korn’s, and Poincaré-Freidrich’s inequalities

a({u,P }, {u,P }) ≥ ke(‖ sym Du‖2L2 − 2〈sym Du, symP 〉L2 + ‖ symP ‖2L2) + kmicro‖ symP ‖2L2

+ kc(‖ skew Du‖2L2 − 2〈skew Du, skewP 〉L2 + ‖ skewP ‖2L2) + µmacroLc‖CurlP ‖2L2

Y
≥ ke(‖ sym Du‖2L2 − ε‖ sym Du‖2L2 −

1

ε
‖ symP ‖2L2 + ‖ symP ‖2L2) + kmicro‖ symP ‖2L2

+ kc(‖ skew Du‖2L2 − ε‖ skew Du‖2L2 −
1

ε
‖ skewP ‖2L2 + ‖ skewP ‖2L2)

+ µmacroLc‖CurlP ‖2L2

*
≥ ke(‖ sym Du‖2L2 − ε‖ sym Du‖2L2 −

1

ε
‖ symP ‖2L2 + ‖ symP ‖2L2) + kmicro‖ symP ‖2L2

+ kc(‖Du‖2L2 − ε‖Du‖2L2 −
1

ε
‖ skewP ‖2L2 + ‖ skewP ‖2L2)

+ µmacroLc‖CurlP ‖2L2

K
≥ ke(

1

c2
K

[‖Du‖2L2 − ε‖Du‖2L2 ]− 1

ε
‖ symP ‖2L2 + ‖ symP ‖2L2) + kmicro‖ symP ‖2L2

+ kc(‖Du‖2L2 − ε‖Du‖2L2 −
1

ε
‖ skewP ‖2L2 + ‖ skewP ‖2L2) + µmacroLc‖CurlP ‖2L2

≥ c2 (‖Du‖2L2 + ‖P ‖2L2 + ‖CurlP ‖2L2)

PF
≥ c2 (

1

2 c2
F

‖u‖2L2 +
1

2
‖Du‖2L2 + ‖P ‖2L2 + ‖CurlP ‖2L2)

≥ c2 c3 (‖u‖2L2 + ‖Du‖2L2 + ‖P ‖2L2 + ‖CurlP ‖2L2)

Y
≥ c2 c3

cX
‖{u,P }‖2X ∀ {u,P } ∈ X (V ) , (4.44)

where we used the orthogonality of sym-skew scalar products. The star * indicates the definition
1− ε < 0. Consequently, the constants read

c2 = min{(1− ε) ke

c2
K

+ (1− ε)kc, (1− 1

ε
)ke + kmicro, (1− 1

ε
)kc, µmacroL

2
c } , c3 =

1

2
min{1, 1

c2
F

} ,

cX = 2 max{1, 1

2e
,
e

2
} . (4.45)

Further, one finds

ke

ke + kmicro
< ε < 1 +

(1− ε)kc c
2
K

ke
, 1 < ε < 1 +

(
1− ke

ke + kmicro

)
ke

kc c2
K

, (4.46)

which is always satisfied for kmicro, kc > 0. The coercivity constant reads β =
c2 c3

cX
.

For the second part of the proof we assume positive semi-definiteness such that Cc = 0 is allowed
as long as the Dirichlet boundary of the microdistortion does not vanish APD 6= ∅. Note that due to
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the definition of the consistent coupling condition this is always the case, since a Dirichlet boundary
for the displacement field u is always required.

Theorem 4.9 (Well-posedness three-dimensional model II)
Let µmacro, Lc > 0 and Ce,Cmicro be positive definite on R3×3. Further let Cc = 0 and APD 6= ∅, then
the problem

a({δu, δP }, {u,P }) = l({δu, δP }) ∀{δu, δP } ∈ X (V ) , (4.47)

where the bilinear and linear forms are according to Eq. (3.8) and Eq. (3.9), has a unique solution

{u,P } ∈ X (V ) = [H 1
0 (V )]3 ×H0(Curl, V ) , ‖{u,P }‖X = ‖u‖H 1 + ‖P ‖H (Curl) , (4.48)

and there holds the stability estimate

‖{u,P }‖X ≤
1

β
(‖f‖L2 + ‖M‖L2) , f ∈ [L2(V )]3,M ∈ [L2(V )]3×3 , (4.49)

with β = β(Ce,Cmicro, µmacro, Lc) > 0.

Proof. The continuity of the bilinear form follows the same lines as in Eq. (4.43). The skew-symmetric
part is dropped and the continuity constant results in α = 3 c1.

In order to prove coercivity we make use of Young’s, Korn’s, Generalized Korn’s, and Poincaré-
Friedrich’s inequalities

a({u,P }, {u,P }) ≥ ke(‖ sym Du‖2L2 − 2〈sym Du, symP 〉L2 + ‖ symP ‖2L2)

+ kmicro‖ symP ‖2L2 + µmacroLc‖CurlP ‖2L2

Y
≥ ke(‖ sym Du‖2L2 − ε‖ sym Du‖2L2 −

1

ε
‖ symP ‖2L2 + ‖ symP ‖2L2)

+ kmicro‖ symP ‖2L2 + µmacroLc‖CurlP ‖2L2

≥ c2 (‖ sym Du‖2L2 + ‖ symP ‖2L2 + ‖CurlP ‖2L2)

K
≥ c2 (

1

c2
K

‖Du‖2L2 + ‖ symP ‖2L2 + ‖CurlP ‖2L2)

GK
≥ c2 (

1

c2
K

‖Du‖2L2 +
1

cG
[‖P ‖2L2 + ‖CurlP ‖2L2 ])

PF
≥ c2 (

1

c2
K

[
1

2 c2
F

‖u‖2L2 +
1

2
‖Du‖2L2 ] +

1

cG
[‖P ‖2L2 + ‖CurlP ‖2L2 ])

≥ c2 c3 (‖u‖2L2 + ‖Du‖2L2 + ‖P ‖2L2 + ‖CurlP ‖2L2)

Y
≥ c2 c3

cX
‖{u,P }‖2X ∀ {u,P } ∈ X (V ) . (4.50)

The corresponding constants read

c2 = min{(1− ε)ke, (1− 1

ε
)ke + kmicro, µmacroL

2
c} , c3 =

1

2
min{1, 1

c2
K c

2
F

,
1

cG
} ,

cX = 2 max{1, 1

2e
,
e

2
} , (4.51)
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with

ke

ke + kmicro
< ε < 1 . (4.52)

The coercivity constant is given by β =
c2 c3

cX
.

The case of Lc = 0 yields a loss in regularity for the microdistortion P ∈ [L2(V )]3×3. Unlike in
the reduced model of antiplane shear, this does not imply P = Dv for some vector field v ∈ [H 1(V )]3,
such that the H (Curl)-space does not guarantee well-posedness.

Theorem 4.10 (Homogeneous relaxed micromorphic continuum)
Let Ce,Cmicro,Cc be positive definite, Lc = 0 and X = [H 1(V )]3 × [L2(V )]3×3 then Problem. 4.40 is
uniquely solvable.

Proof. The proof of continuity and coercivity is analogous to Theorem 4.8 with the modification of
the constants to

α = 3 c1 c1 = max{ce, cmicro, cc} , c2 = min{(1− ε) ke

c2
K

+ (1− ε)kc, (1− 1

ε
)ke + kmicro, (1− 1

ε
)kc} ,

(4.53)

where the coercivity constant follows accordingly.

Remark 4.2
Note that the semi positive-definite case Cc = 0 is no longer well-posed since the space L2(V ) does not
allow for boundary conditions, such that the lower limit cannot be bound using the generalized Korn
inequality. Setting Lc = 0 and Cc = 0 results in a loss of control over the skew-symmetric part of the
microdistortion skewP leading to unstable results. Consequently, only the gradient of the displacement
field Du remains controllable.

Remark 4.3
In [58, 83] it is shown that for certain sufficiently smooth data, the regularity of the microdistortion
can yet be improved to P ∈ [H 1(V )]3×3.

4.3.4 Plane strain

The proof of well-posedness of the plane strain model is analogous to the proof of the full three-
dimensional model.

Theorem 4.11 (Well-posedness plane strain I)
Let µmacro, Lc > 0 and Ce,Cmicro be positive definite on R2×2. Further let Cc be positive definite on
so(2), then the problem

a({δu, δP }, {u,P }) = l({δu, δP }) ∀ {δu, δP } ∈ X (A) , (4.54)

where the bilinear and linear forms are according to Eq. (3.27), has a unique solution

{u,P } ∈ X (A) = [H 1
0 (A)]2 ×H (Curl, A) , ‖{u,P }‖X = ‖u‖H 1 + ‖P ‖H (Curl) , (4.55)

and there holds the stability estimate

‖{u,P }‖X ≤
1

β
(‖f‖L2 + ‖M‖L2) , f ∈ [L2(V )]2,M ∈ [L2(V )]2×2 , (4.56)

with β = β(Ce,Cmicro,Cc, µmacro, Lc) > 0.
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Proof. The proof follows the same lines as Theorem 4.8 with an adaption of the space and boundary
conditions for two-dimensional domains.

Theorem 4.12 (Well-posedness plane strain II)
Let µmacro, Lc > 0 and Ce,Cmicro be positive definite on R2×2. Further let Cc = 0 and sPD 6= ∅, then
the problem

a({δu, δP }, {u,P }) = l({δu, δP }) ∀{δu, δP } ∈ X (A) , (4.57)

where the bilinear and linear forms are according to Eq. (3.27), has a unique solution

{u,P } ∈ X (A) = [H 1
0 (A)]2 ×H0(Curl, A) , ‖{u,P }‖X = ‖u‖H 1 + ‖P ‖H (Curl) , (4.58)

and there holds the stability estimate

‖{u,P }‖X ≤
1

β
(‖f‖L2 + ‖M‖L2) , f ∈ [L2(A)]2,M ∈ [L2(A)]2×2 , (4.59)

with β = β(Ce,Cmicro, µmacro, Lc) > 0.

Proof. The proof follows the same lines as Theorem 4.9 with an adaption of the space and boundary
conditions. Specifically, the tangential projection is computed using the scalar product instead of the
cross product.

The case of Lc = 0 follows analogously to the three-dimensional case.

Theorem 4.13 (Homogeneous plane strain model)
Let Ce,Cmicro,Cc be positive definite, Lc = 0 and X = [H 1(A)]2 × [L2(A)]2×2 then Problem. 4.54 is
uniquely solvable.

Proof. The proof is the same as in Theorem 4.10 and only holds for a positive definite Cc on so(2).
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5 The Finite Element Method

The finite element method [18, 19, 23, 111] is a specific approach for computing discrete solutions for
partial differential equations using Galerkin projections

Find u ∈ X : a(u, v) = f(v) ∀ v ∈ X , (5.1)

such that the discrete problem reads

Find uh ∈ X h : a(uh, vh) = f(vh) ∀ vh ∈ X h , (5.2)

and the discrete space X h is spanned by so called finite elements, leading to a system of algebraic
equations. This work deals with conforming finite elements such that X h ⊂ X . Under certain
assumptions, one can show that the discrete solution uh converges towards the analytical solution u
for an element size tending to zero h→ 0.

This chapter is devoted to the introduction of the theory of finite element approximations. Further,
this chapter demonstrates a priori convergence estimates for relaxed micromorphic continua.

5.1 Triangulations

A preparatory step in the finite element method with triangular elements is the so called triangulation
also known as meshing [44, 66, 95]. The domain is decomposed into a finite number of triangles in
two dimensions or tetrahedra in three dimensions (other geometric forms such as quads, hexahedra,
prisms, or pyramids are also used but can be represented by triangles or tetrahedra).

Definition 5.1 (Regular triangulation)
A triangulation Ah of A is called regular if

1. The elements are non-overlapping and their intersection is either an edge sij or a vertex vij

Ai ∩Aj =

{
vij
sij

, Ai, Aj ∈ Ah , i 6= j . (5.3)

2. The domain is given by the finite union of the elements

A =

n⋃
e=1

Ae , Ae ∈ Ah . (5.4)

For affine maps each triangle is mapped from the reference domain Γ into the physical domain Ae
by the barycentric mapping

x(ξ, η) = (1− ξ − η)x1 + η x2 + ξ x3 , x : Γ→ Ae , Γ = {(ξ, η) ∈ [0, 1]2 | ξ + η ≤ 1} , (5.5)

where xi represent the coordinates of the vertices of one triangle in the physical domain, see Fig. 5.1.
The corresponding Jacobi matrix reads

J = Dx =
[
x3 − x1 x2 − x1

]
∈ R2×2 . (5.6)

Analogously, one defines a regular tetrahedralization.

Definition 5.2 (Regular tetrahedralization)
A tetrahedralization V h of V is called regular if
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Figure 5.1: Barycentric mapping of the reference triangle to an element in the physical domain.
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Figure 5.2: Barycentric mapping of the reference tetrahedron to an element in the physical domain.

1. The elements are non-overlapping and their intersection is either a surface Aij, an edge sij or
a vertex vij

Vi ∩ Vj =


vij
sij
Aij

, Vi, Vj ∈ V h , i 6= j . (5.7)

2. The domain is given by the finite union of the elements

V =
n⋃
e=1

Ve , Ve ⊂ V h . (5.8)

The tetrahedra are mapped from the reference tetrahedron by the three-dimensional barycentric
coordinates (see Fig. 5.2)

x(ξ, η, ζ) = (1− ξ − η − ζ)x1 + ζ x2 + η x3 + ξ x4 , x : Ω→ Ve ,

Ω = {(ξ, η, ζ) ∈ [0, 1]3 | ξ + η + ζ ≤ 1} . (5.9)

and the corresponding Jacobi matrix reads

J = Dx =
[
x4 − x1 x3 − x1 x2 − x1

]
∈ R3×3 . (5.10)

Remark 5.1
An important consequence of affine maps is that the polynomial space is preserved on the physical
domain, thus allowing for error estimates based on polynomials [110].
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Remark 5.2
The introduced orientation of the element is clockwise. This is a deviation from the classical counter-
clockwise approach but is intrinsic to the subsequent construction of higher order elements based on
Bernstein polynomials.

The Frobenius norm of the Jacobi matrix is an indicator of the change in size from the triangle on
the reference domain to the triangle on the physical domain such that

h = ‖J‖F , hV = max
h∈Ah

h(A) , (5.11)

where hV represents the maximum size of an element of the discretization. The following definitions
of shape regularity and uniformity arise accordingly [19]

Definition 5.3 (Shape regularity and uniformity)

1. A triangulation is called shape-regular if the condition number of the mapping is bounded for all
elements

∃ c1, c2 > 0 : c1 ≤ ‖J‖F ‖J−1‖F ≤ c2 ∀Ae ∈ Ah . (5.12)

2. The triangulation is quasi-uniform if

∃ c1, c2 > 0 : c1 h ≤ hV ≤ c2 h ∀h ∈ span{h(x ∈ A)} . (5.13)

3. The triangulation is uniform if

∃h > 0 : h = he ∀he ∈ span{h(x ∈ A)} . (5.14)

The definition can be applied analogously to tetrahedra.
In shape regular triangulations the elements do not degenerate for h → 0, meaning the angles

of the triangles are bound away from 0 and 180 degrees. A quasi-uniform triangulation implies the
elements have a nearly uniform size throughout the domain. In a uniform triangulation, every element
has the same size.

Next, we introduce the definition of a finite element according to Ciarlet [23].

Definition 5.4 (Finite Element)
The triplet {Ω,S ,D} is called a finite element if

1. the element’s domain Ω ⊂ R3 is a bounded and closed set with a non-empty interior and a
piece-wise smooth boundary,

2. the space of shape functions S is finite dimensional,

3. the set of degrees of freedom spans the dual space of S

span{d1, d2, ... , dn} = S ′ , d1, d2, ... , dn ∈ D . (5.15)

With the definition of the triangulation and the finite element we can define the finite element
space.

Definition 5.5 (Finite element space)
Let Ah be a regular triangulation on A ⊂ R2 where each triangle is equipped with a finite element
{Ae,S (Ae),D(Ae)}, the finite element space is given by

X h = {u ∈
⋃

Ae∈Ah

S (Ae) | D(u)

∣∣∣∣
Ai

= D(u)

∣∣∣∣
Aj

∀D ∈ D(Ai) ∩ D(Aj)} , (5.16)

where the degrees of freedom shared between elements coincide.
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5.2 A priori convergence estimates

In this section we give a priori convergence estimates for relaxed micromorphic continua models.
Although the relaxed micromorphic model is proved to be well-posed using the Lax-Milgram theorem,
such that the employment of the de Rham complex is not strictly necessary (the relaxed micromorphic
model is not a mixed formulation and does rely on kernel coercivity), we note that both the consistent
coupling condition and convergence estimates can be treated with its apparatus. In fact, the consistent
coupling condition can only be exactly satisfied in the general sense by using polynomial sequences.
Further, the error estimates are bound by the convergence of the displacement field, such that using a
higher order polynomial for the microdistortion in comparison to the displacement does not improve
the convergence rate. Further, re-stabilization of the formulation with respect to the characteristic
length parameter Lc can be done with mixed formulations relying on the de Rham complex [100,101].

The basis for the following estimates is Cea’s lemma [19], which can be applied due to the proofs
of existence and uniqueness using the Lax-Milgram theorem.

Lemma 5.1 (Cea’s quasi-best approximation)
Let X be a Hilbert space, u ∈ X be the analytical solution and uh ∈ X h the finite subspace approx-
imation. Further, let the corresponding bilinear form satisfy the Lax-Milgram theorem, then there
holds

‖u− uh‖X ≤
α

β
inf
q∈Xh

‖u− q‖X , (5.17)

where α and β are the continuity and coercivity constants, respectively.

Further, a few results of interpolation theory are required in order to frame the convergence rate
with respect to the element’s size and polynomial power.

Lemma 5.2 (H 1-interpolation estimates)
Let Πp

g be an element-wise projection-based interpolant from H 1(V ) to a subspace of piece-wise poly-
nomials with global C 0-continuity, then there holds [110]

∃ c > 0 : ‖u−Πp
gu‖H r ≤ c hp+1−r|u|H p+1 , r ∈ {0, 1} , p ∈ N , (5.18)

for a uniform and regular triangulation where the constant is not a function of element size or the
analytical solution c 6= c(h, u). The latter is a consequence of the Bramble-Hilbert lemma.

Lemma 5.3 (H (curl)-interpolation estimates)
Let Πp

c be an element-wise projection-based interpolant from H (curl, V ) to N p
I , then there holds (see

[70, 71])

∃ c > 0 : ‖p−Πp
cp‖L2 ≤ c hp+1|p|H p+1 , p ∈ N0 , (5.19)

for a uniform and regular triangulation such that the constant does not depend on the element size or
the analytical solution c 6= c(h,p).

Lemma 5.4 (H (div)-interpolation estimates)
Let Πp

d be an element-wise projection-based interpolant from H (div, V ) to RT p (see [87]), then there
holds

∃ c > 0 : ‖p−Πp
dp‖L2 ≤ c hp+1|p|H p+1 , p ∈ N0 , (5.20)

for a uniform and regular triangulation with c 6= c(h,p).
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Lemma 5.5 (L2-interpolation estimates)
Let Πp

o be an element-wise projection-based interpolant from L2(V ) to Pp(V ), then there holds [110]

∃ c > 0 : ‖u−Πp
ou‖L2 ≤ c hp+1|u|H p+1 , p ∈ N0 , (5.21)

for a uniform and regular triangulation such that c 6= c(h, u).

We employ the projection-based interpolants based on the works of [20, 30, 70, 71, 87] for the
application of Dirichlet boundary conditions. The corresponding degrees of freedom are specified in
the following sections. The interpolants commute on the de Rham complex for contractible domains
and sufficiently smooth functions. The first complex is based on the Nédélec elements of the first
type and Raviart-Thomas elements, see Fig. 5.3. An alternative construction of the complex can be
achieved with Nédélec elements of the second type and Brezzi-Douglas-Marini elements, see Fig. 5.4.
One can also introduce complexes where the element types are mixed.

Remark 5.3
The canonical interpolation operators assume additional smoothness on the function spaces, as for
example point evaluation is not well-defined for u ∈ H 1(V ). As such, for our theoretical convergence
proofs we make use of the L2-bounded commuting projections recently introduced in [10] whereas the
usual projection operators are employed in the finite element implementation.

The degree reduction of the polynomial spaces is given by the exact polynomial sequences (see
Fig. 5.5), where P(V ) and P̃(V ) are the respective spaces of polynomials and homogeneous polynomials
on the domain

Pp(V ) = span{xiyjzk | i, j, k ∈ N0 , i+ j + k ≤ p} ,

P̃p(V ) = span{xiyjzk | i, j, k ∈ N0 , i+ j + k = p} . (5.22)

The diagrams commute if for sufficiently smooth functions there hold the relations

∇Πgu = Πc∇u ∀u ∈ H 1(V ) ,

curl Πcp = Πd curl p ∀p ∈ H (curl, V ) ,

div Πdd = Πo div d ∀d ∈ H (div, V ) , (5.23)

in three-dimensions. In two dimensions the curl operator maps directly to the Lebesgue space

div(RΠcp) = Πodiv(Rp) ∀p ∈ H (divR, A) . (5.24)

5.2.1 Antiplane shear

We state the convergence estimate for the reduced relaxed micromorphic model of antiplane shear [101].

Lemma 5.6 (Antiplane shear convergence)
Let {u,p} ∈ H p+1(A)×H p(divR, A) be a smooth exact solution with H p(divR, A) = {p ∈ [H p(A)]2 | div(Rp) ∈
H p(A)}. Further, let X h(A) = U p(A) × N p−1

I (A) ⊂ X (A), then the approximate solution converges
at an optimal rate

‖{u,p} − {uh,ph}‖X ≤ c hp (|u|H p+1 + |p|H p + |div(Rp)|H p) , c = c(µe, µmicro, µmacro, L
2
c) , (5.25)
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R id
H 1(V )

∇
H (curl, V )

curl
H (div, V )

div
L2(V )

Πp
g Πp−1

c Πp−1
d Πp−1

o

R U p(V )
∇

N p−1
I (V )

curl
RT p−1(V )

div
Pp−1(V )

(a)

R id
H 1(A)

∇
H (divR, A)

divR
L2(A)

Πp
g Πp−1

c Πp−1
o

R U p(A)
∇

N p−1
I (A)

divR
Pp−1(A)

(b)

Figure 5.3: De Rham complexes for (a) three- and (b) two-dimensional domains using Nédélec elements
of the first type and Raviart-Thomas elements. The differential and interpolation operators commute
between the continuous and discrete spaces.

R id
H 1(V )

∇
H (curl, V )

curl
H (div, V )

div
L2(V )

Πp
g Πp−1

c Πp−2
d Πp−3

o

R U p(V )
∇

N p−1
II (V )

curl
BDMp−2(V )

div
Pp−3(V )

(a)

R id
H 1(A)

∇
H (divR, A)

divR
L2(A)

Πp
g Πp−1

c Πp−2
o

R U p(A)
∇

N p−1
II (A)

divR
Pp−2(A)

(b)

Figure 5.4: De Rham complexes for (a) three- and (b) two-dimensional domains using Nédélec elements
of the second type and Brezzi-Douglas-Marini elements. The differential and interpolation operators
commute between the continuous and discrete spaces.
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Pp(V )
∇

[Pp−1(V )]3 ⊕ x× [P̃p−1(V )]3
curl

[Pp−1(V )]3 ⊕ P̃p−1(V ) x
div

Pp−1(V )

(a)

Pp(V )
∇

[Pp−1(V )]3
curl

[Pp−2(V )]3
div

Pp−3(V )

(b)

Pp(A)
∇

[Pp−1(A)]2 ⊕R P̃p−1(A) x
divR

Pp−1(A)

(c)

Pp(A)
∇

[Pp−1(A)]2
divR

Pp−2(A)

(d)

Figure 5.5: Polynomial sequence of first type Nédélec and Raviart Thomas spaces (a) followed by
the polynomial sequence of second type Nédélec and Brezzi-Douglas-Marini spaces (b) on three-
dimensional domains. (c) and (d) depict the polynomial sequences of the first and second type Nédélec
spaces on two-dimensional domains, respectively.

Proof. By using Cea’s lemma, Young’s inequality and inserting the interpolation operators of the
commuting diagram one finds

‖{u,p} − {uh,ph}‖2X ≤ c inf
{δuh,δph}∈Xh

‖{u,p} − {δuh, δph}‖2X

≤ c (‖u−Πp
gu‖H 1 + ‖p−Πp−1

c p‖H (divR))
2

Y
≤ c (‖u−Πp

gu‖2H 1 + ‖p−Πp−1
c p‖2H (divR))

= c (‖u−Πp
gu‖2H 1 + ‖p−Πp−1

c p‖2L2 + ‖div(Rp)− div(RΠp−1
c p)‖2L2)

= c (‖u−Πp
gu‖2H 1 + ‖p−Πp−1

c p‖2L2 + ‖(id−Πp−1
o )div(Rp)‖2L2)

≤ c (h2(p+1)|u|2H p+1 + h2p|p|2H p + h2p|div(Rp)|2H p)

≤ ch2p (|u|2H p+1 + |p|2H p + |div(Rp)|2H p) , (5.26)

where | · |H p denotes a Sobolev semi-norm.

If the Nédélec space of the second type NII is employed instead of the Nédélec space of the first
type NI , then the next interpolant in the sequence becomes Πp−2

o and one order of convergence is lost
in the curl term. However, as shown in Section 3.2.3, several cases reduce the microdistortion to a
gradient field p = ∇p such that optimal convergence is maintained.

5.2.2 Three-dimensional model

Next we consider the convergence of the full three-dimensional relaxed micromorphic model [100].

Lemma 5.7 (Relaxed micromorphic model convergence)
Let {u,P } ∈ [H p+1(V )]3 × H p(Curl, V ) be an exact and smooth solution. Further, let {uh,P h} ∈
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[U p(V )]3 × [N p−1
I (V )]3 ⊂ [H p+1(V )]3 × H p(Curl, V ), then the discrete solution {uh,P h} ∈ X h con-

verges at the optimal rate

‖{u,P } − {uh,P h}‖X ≤ c hp(|u|H p+1 + |P |H p + |CurlP |H p) , c = c(Ce,Cmicro,Cc, µmacro, Lc) .
(5.27)

Proof. We apply Cea’s lemma, Young’s inequality and the commuting interpolants to find

‖{u,P } − {uh,P h}‖2X ≤ c inf
{δuh,δP h}∈Xh

‖{u,P } − {δuh, δP h}‖2X

≤ c (‖u−Πp
gu‖H 1 + ‖P −Πp−1

c P ‖H (Curl))
2

Y
≤ c (‖u−Πp

gu‖2H 1 + ‖P −Πp−1
c P ‖2H (Curl))

= c (‖u−Πp
gu‖2H 1 + ‖P −Πp−1

c P ‖2L2 + ‖CurlP − Curl Πp−1
c P ‖2L2)

= c (‖u−Πp
gu‖2H 1 + ‖P −Πp−1

c P ‖2L2 + ‖(id−Πp−1
d ) CurlP ‖2L2)

≤ c (h2(p+1)|u|2H p+1 + h2p|P |2H p + h2p|CurlP |2H p)

≤ ch2p (|u|2H p+1 + |P |2H p + |CurlP |2H p) , (5.28)

relating to the Sobolev semi-norms.

The application of the Nédélec element of the second type instead of the first type leads to a
lower order of convergence in the Curl terms (Πp−2

d CurlP ) when the microdistortion P is not a
gradient field. Unlike in antiplane shear, there are fewer scenarios for which the microdistortion field
is reduced to a gradient field. As such, we take a closer look at the convergence behaviour. We start
by considering an s-regular problem.

Definition 5.6 (s-regularity)
We call Problem. 3.14 s-regular if there holds for the solution {u,P } ∈ X

|u|H s+1 + ‖P ‖H s(Curl) ≤ ‖f‖L2 + ‖M‖L2 , (5.29)

with s ∈ (0, 1] and

‖P ‖2H s(Curl) = ‖P ‖2H s + ‖CurlP ‖2H s , (5.30)

such that an improved stability estimate is found.

We can now introduce an improved convergence estimate for the s-regular problem with an Aubin-
Nitsche technique using the Nédélec elements of the second type.

Lemma 5.8 (Improved convergence estimate I)
Let {u,P } ∈ [H p+1(V )]3×H p(Curl, V ) be an exact smooth solution for the s-regular problem and X h =
[U p(V )]3× [N p−1

II (V )]3 ⊂ [H p+1(V )]3×H p(Curl, V ) then the discrete solution {uh,P h} converges with

‖u− uh‖H 1 + ‖P − P h‖L2 ≤ c hp−1+s(|u|H p+1 + |P |H p + |CurlP |H p−1) , s ∈ (0, 1] . (5.31)
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Proof. In order to prove the improved estimate we formulate a dual problem. We define the right
hand side as

f = u− uh , M = P − P h . (5.32)

As such, the dual problem reads: find {v,Q} ∈ X such that

a({δv, δQ}, {v,Q}) =

∫
V
〈δv, u− uh〉+ 〈δQ, P − P h〉 dV ∀ {δv, δQ} ∈ X , (5.33)

where the bilinear form of the three-dimensional relaxed micromorphic model Eq. (3.8) is employed.
By using the Galerkin orthogonality with the test functions {δv, δQ} = {u− uh,P − P h}

a({u− uh,P − P h}, {v −Πp
gv + Πp

gv, Q−Πp−1
c Q+ Πp−1

c Q})

= a({u− uh,P − P h}, {v −Πp
gv, Q−Πp−1

c Q}) , (5.34)

the continuity of the bilinear form and the improved stability estimate one finds

‖u− uh‖2L2 + ‖P − P h‖2L2
GO
= a({u− uh,P − P h}, {v −Πp

gv, Q−Πp−1
c Q})

C
≤ α‖{u− uh,P − P h}‖X (‖v −Πp

gv‖H 1 + ‖Q−Πp−1
c Q‖H (curl))

≤ αhs‖{u− uh,P − P h}‖X (|v|H s+1 + ‖Q‖H s(Curl))

S
≤ αhs‖{u− uh,P − P h}‖X (‖u− uh‖L2 + ‖P − P h‖L2) , (5.35)

where the term on the left is the right hand side of the dual problem. The right hand side can be
estimated using Young’s inequality

‖u− uh‖2L2 + ‖P − P h‖2L2 = (‖u− uh‖L2 + ‖P − P h‖L2)2 − 2‖u− uh‖L2‖P − P h‖L2

Y
≥ (‖u− uh‖L2 + ‖P − P h‖L2)2 − ‖u− uh‖2L2 − ‖P − P h‖2L2

= 2‖u− uh‖L2‖P − P h‖L2

Y
≥ 1

2
(‖u− uh‖L2 + ‖P − P h‖L2)2 . (5.36)

Thus, we can reformulate to find

(‖u− uh‖L2 + ‖P − P h‖L2)2 ≤ 2αhs‖{u− uh,P − P h}‖X (‖u− uh‖L2 + ‖P − P h‖L2) . (5.37)

Dividing by the error estimate and applying the convergence estimate for ‖{u−uh,P −P h}‖X yields

‖u− uh‖L2 + ‖P − P h‖L2 ≤ 2αhs‖{u− uh,P − P h}‖X

≤ 2αhp−1+s(|u|2H p+1 + |P |2H p + |CurlP |2H p−1) , (5.38)

completing the claim for the L2-norm of u and P . The improvement to the H 1-norm of the displace-
ment u follows by first considering the Galerkin orthogonality over a vanishing δP -test field

a({δuh, 0}, {u− uh,P − P h}) =

∫
V
〈sym Dδuh, Ce sym[D(u− uh)− (P − P h)]〉

+ 〈skew Dδuh, Cc skew[D(u− uh)− (P − P h)]〉dV = 0 .
(5.39)
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We shorten the form by defining C̃e = CeS with S : R3×3 → Sym(3) and using Cc = µcA with
A : R3×3 → so(3). Further, we add and subtract Πp

gu to find

a({δuh, 0}, {u−Πp
gu + Πp

gu− uh,P − P h}) =

∫
V
〈Dδuh, (C̃e + Cc)[D(u−Πd

gu + Πp
gu− uh)− (P − P h)]〉 dV

= a({δuh, 0}, {u−Πp
gu,P − P h})

+

∫
V
〈Dδuh, (C̃e + Cc)D(Πp

gu− uh)〉 dV = 0 . (5.40)

Consequently, we can formulate√∫
V
〈D(Πgu− uh), (C̃e + Cc)D(Πgu− uh)〉dV = sup

δuh∈U p

∫
V 〈Dδu

h, (C̃e + Cc)D(Πp
gu− uh)〉dV√∫

V 〈Dδuh, (C̃e + Cc)Dδuh〉 dV

= sup
δuh∈U p

−a({δuh, 0}, {u−Πp
gu,P − P h})√∫

V 〈Dδuh, (C̃e + Cc)Dδuh〉dV
.

(5.41)

We estimate the numerator with the Cauchy-Schwarz and triangle inequalities

−a({δuh, 0}, {u−Πp
gu,P − P h}) = −

∫
V
〈Dδuh, (C̃e + Cc)[D(u−Πp

gu)− (P − P h)]〉dV

=

∫
V
〈Dδuh, (C̃e + Cc)[D(Πp

gu− u) + (P − P h)]〉dV

CS
≤ ‖Dδuh‖L2‖(C̃e + Cc)[D(Πp

gu− u) + (P − P h)]‖L2

≤ c1 ‖Dδuh‖L2‖D(Πp
gu− u) + (P − P h)‖L2

T
≤ c1 ‖Dδuh‖L2(‖D(Πp

gu− u)‖L2 + ‖P − P h‖L2)

≤ c1 ‖Dδuh‖L2(‖Πp
gu− u‖H 1 + ‖P − P h‖L2) . (5.42)

The denominator is estimated using the infimum of the material tensors√∫
V
〈Dδuh, (C̃e + Cc)Dδuh〉 dV ≥

√∫
V
c2 〈Dδuh, Dδuh〉dV = c2 ‖Dδuh‖L2 . (5.43)

Thus, we can reduce Eq. (5.41) to

‖Πp
gu− u‖H 1 + ‖P − P h‖L2 ≤

c2

c1
‖{u,P } − {uh,P h}‖X ≤ c hp−1+s|{u,P }|H p+1 , (5.44)

completing the proof for the case of a positive definite material tensor Cc. In case of a semi positive
definite Cc the proof follows by using the generalized Korn’s inequality for incompatible tensor fields.

Remark 5.4
From the proof it is clear that the convergence rate of the displacement field uh is not better for the
L2-norm in comparison with H 1-norm.
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Remark 5.5
The s-regularity of Eq. (3.8) is not discussed in this work. However, we mention that for both the
Laplace as well as Maxwell’s equations there holds s = 1 for convex domains V .

The s-regularity of the problem also allows us to improve the error estimates for the formulation
using the Nédélec element of the first type.

Corollary 1 (Improved convergence estimate II)
Let {u,P } ∈ [H p+1(V )]3×H p(Curl, V ) be an exact smooth solution for the s-regular problem and X h =
[U p(V )]3× [N p−1

I (V )]3 ⊂ [H p+1(V )]3×H p(Curl, V ) then the discrete solution {uh,P h} converges with

‖u− uh‖H 1 + ‖P − P h‖L2 ≤ c hp+s(|u|H p+1 + |P |H p + |CurlP |H p) , s ∈ (0, 1] . (5.45)

Proof. The proof follows the same lines of the proof for Lemma 5.8, where the interpolation error in
Curl of the microdistortion CurlP is now estimated with the Nédélec element of the first type, thus
retrieving Lemma 5.7.

5.3 Low order triangular elements

5.3.1 Linear and quadratic Lagrange elements

For the lowest order H 1-conforming subspace we consider Lagrangian elements [16, 111]. Lagrangian
elements are defined using the point-evaluation degrees of freedom

lij(u) = δiju

∣∣∣∣
ξj

, (5.46)

and the polynomial space Pp over some triangular domain. Consequently, the Lagrangian finite
element in the reference domain is defined by the triplet Lp = {Γ,Pp, span{lij}} with Γ = {(ξ, η) ∈
[0, 1]2 | ξ + η ≤ 1}. The evaluation points ξj on the boundary of the element are shared with
neighbouring elements to enforce C 0-conformity. In the lowest order p = 1, the resulting base functions
are simply the barycentric functions

n1(ξ, η) = 1− ξ − η , n2(ξ, η) = η , n3(ξ, η) = ξ . (5.47)

Taking the polynomial degree p = 2 and choosing the edge middle points as additional evaluation
points yields the base functions of the quadratic Lagrangian triangle element

n1(ξ, η) = (η + ξ − 1)(2η + 2ξ − 1) , n2(ξ, η) = 2η(η − 1) , n3(ξ, η) = 2ξ(ξ − 1) ,

n4(ξ, η) = 4η(1− η − ξ) , n5(ξ, η) = 4ξ(1− η − ξ) , n6(ξ, η) = 4ηξ . (5.48)

Due to the simple nature of the degrees of freedom, the projection of a continuous function reduces
to an evaluation of the function at the element’s nodes. A sample of the barycentric and Lagrangian
base functions is depicted in Fig. 5.6.
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(a) (b) (c)

Figure 5.6: The first barycentric base function (a), the first quadratic Lagrangian vertex base function
(b) and the quadratic Lagrangian edge base function (c).

5.3.2 Linear Nédélec elements of the second type

The lowest order Nédélec elements of the second type [71] are characterized by degrees of freedom of
tangential projections on edges of the triangle element

lij(p) =

∫
µi

qj〈τ , p〉 dµ , qj ∈ P1(µi) . (5.49)

Here, the degrees of freedom are formulated on the reference domain, see Fig. 5.1. Consequently, the
finite element triplet reads N 1

II = {Γ,P1, span{lij}}. We note that the resulting base functions are
directly dependent on the choice of test functions qj . Choosing the test functions

q1(µ) = 4− 6µ , q2(µ) = 6µ− 2 , (5.50)

on the left and bottom unit edges with µ ∈ [0, 1] , and

q1(µ) = 2
√

2− 3µ , q2(µ) = 3µ−
√

2 , (5.51)

on the right slanted edge with µ ∈ [0,
√

2], results in the Lagrange-Nédélec basis

ϑ1(ξ, η) =

[
0

1− ξ − η

]
, ϑ2(ξ, η) =

[
η
η

]
, ϑ3(ξ, η) =

[
1− ξ − η

0

]
,

ϑ4(ξ, η) =

[
ξ
ξ

]
, ϑ5(ξ, η) =

[
η
0

]
, ϑ6(ξ, η) =

[
0
−ξ

]
. (5.52)

The base functions for the first edge ϑ1 and ϑ2 are depicted in Fig. 5.7.

5.3.3 The lowest order Nédélec elements of the first type

The lowest order Nédélec elements of the first type [70] contain the space NII with a minimal en-
richment of solenoidal polynomials, such that the discrete kernel of the next polynomial space in the
sequence is complete. The corresponding degrees of freedom are given by

li(p) =

∫
µi

〈τ , p〉 dµ , (5.53)

with the polynomial space on the reference element

[P0(Γ)]2 ⊕RP̃0(Γ)ξ = [P0(Γ)]2 ⊕Rξ = span{
[
1
0

]
,

[
0
1

]
,

[
η
−ξ

]
} . (5.54)
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(a) (b)

Figure 5.7: The first (a) and second (b) base functions for the Lagrange-Nédélec element of the second
type, belonging to the first edge.

(a) (b) (c)

Figure 5.8: The base functions of the lowest order Nédélec element of the first type on the reference
triangle belonging to the left (a), bottom (b) and slanted (c) edges.

Consequently, the lowest order Nédélec element reads N 0
I = {Γ, [P0]2 ⊕Rξ, span{li}}. Applying the

degrees of freedom to the reference triangle results in the base functions

ϑ1(ξ, η) =

[
η

1− ξ

]
, ϑ2(ξ, η) =

[
1− η
ξ

]
, ϑ3(ξ, η) =

[
η
−ξ

]
, (5.55)

depicted in Fig. 5.8.

Remark 5.6
Note that the base functions are in fact linear combinations of the base functions of N 1

II , such that
ϑI1 = ϑII1 + ϑII2 , ϑI2 = ϑII3 + ϑII4 and ϑI3 = ϑII5 + ϑII6 .

5.4 Low order tetrahedral elements

5.4.1 Linear and quadratic Lagrange elements

In three-dimensions one can construct a low-order H 1-conforming subspace using the same Lagrangian
degrees of freedom as for triangles

lij(u) = δiju

∣∣∣∣
ξj

. (5.56)
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Figure 5.9: The barycentric function of the first vertex on the reference tetrahedron.

In three-dimensions the result of the linear polynomial space are the barycentric coordinates (see
Fig. 5.9)

n1(ξ, η, ζ) = 1− ξ − η − ζ , n2(ξ, η, ζ) = ζ , n3(ξ, η, ζ) = η , n4(ξ, η, ζ) = ξ . (5.57)

Taking the quadratic polynomial degree p = 2 and choosing the midpoints of the edges as additional
evaluation points yields the quadratic Lagrangian base functions

n1(ξ, η, ζ) = (1− η − ξ − ζ) (1− 2η − 2ξ − 2ζ) , n2(ξ, η, ζ) = ζ (2ζ − 1) ,

n3(ξ, η, ζ) = η (2η − 1) , n4(ξ, η, ζ) = ξ (2ξ − 1) ,

n5(ξ, η, ζ) = 4ζ (1− ξ − η − ζ) , n6(ξ, η, ζ) = 4η (1− ξ − η − ζ) ,

n7(ξ, η, ζ) = 4ξ (1− ξ − η − ζ) , n8(ξ, η, ζ) = 4ηζ ,

n9(ξ, η, ζ) = 4ξζ , n10(ξ, η, ζ) = 4ηξ . (5.58)

Evaluation of boundary conditions is done by computing the value of the function at each node.

5.4.2 Linear Nédélec elements of the second type

The degrees of freedom of the lowest order Nédélec element of the second type are same as for triangles,
see Eq. (5.49). However, the reference domain changes to the unit tetrahedron such that the finite
element is given by the triplet N 1

II = {Ω,P1, span{lij}} with Ω = {(ξ, η, ζ) ∈ [0, 1]3 | ξ + η + ζ ≤ 1}.
Using the test functions from Eq. (5.50) and Eq. (5.51) for the straight and slanted edges, respectively,
yields the base functions

ϑ1(ξ, η, ζ) =

 0
0

1− ξ − η − ζ

 , ϑ2(ξ, η, ζ) =

ζζ
ζ

 , ϑ3(ξ, η, ζ) =

 0
1− ξ − η − ζ

0

 ,
ϑ4(ξ, η, ζ) =

ηη
η

 , ϑ5(ξ, η, ζ) =

1− ξ − η − ζ
0
0

 , ϑ6(ξ, η, ζ) =

ξξ
ξ

 ,
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(a) (b)

Figure 5.10: The first (a) and second (b) base function for the Lagrange-Nédélec element of the second
type on the reference tetrahedron. The base functions belong to the first edge.

ϑ7(ξ, η, ζ) =

0
ζ
0

 , ϑ8(ξ, η, ζ) =

 0
0
−η

 , ϑ9(ξ, η, ζ) =

ζ0
0

 ,
ϑ10(ξ, η, ζ) =

 0
0
−ξ

 , ϑ11(ξ, η, ζ) =

η0
0

 , ϑ12(ξ, η, ζ) =

 0
−ξ
0

 . (5.59)

The base functions of the first edge are depicted in Fig. 5.10.

5.4.3 The lowest order Nédélec elements of the first type

The degrees of freedom of the lowest order Nédélec element of the first type for tetrahedra are analogous
to Eq. (5.53) with the adjustment of the polynomial space to

[P0(Ω)]3 ⊕ ξ × [P̃0(Ω)]3 = span{

1
0
0

 ,
0

1
0

 ,
0

0
1

 ,
 0
ζ
−η

 ,
−ζ0
ξ

 ,
 η
−ξ
0

} . (5.60)

Applying the degrees of freedom to the unit tetrahedron Ω = {(ξ, η, ζ) ∈ [0, 1]3 | ξ + η + ζ ≤ 1} yields
the lowest order base functions (see Fig. 5.11)

ϑ1(ξ, η, ζ) =

 ζ
ζ

1− ξ − η

 , ϑ2(ξ, η, ζ) =

 η
1− ξ − ζ

η

 , ϑ3(ξ, η, ζ) =

1− η − ζ
ξ
ξ

 ,
ϑ4(ξ, η, ζ) =

 0
ζ
−η

 , ϑ5(ξ, η, ζ) =

 ζ
0
−ξ

 , ϑ6(ξ, η, ζ) =

 η
−ξ
0

 . (5.61)

Remark 5.7
Here too, the base functions are in fact linear combinations of the base functions of the N 1

II-space,
such that

ϑI1 = ϑII1 + ϑII2 , ϑI2 = ϑII3 + ϑII4 , ϑI3 = ϑII5 + ϑII6 ,

ϑI4 = ϑII7 + ϑII8 , ϑI5 = ϑII9 + ϑII10 , ϑI6 = ϑII11 + ϑII12 .
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(a) (b) (c)

(d) (e) (f)

Figure 5.11: The base functions of the lowest order Nédélec element of the first type on the reference
tetrahedron, belonging to their corresponding edges: (1-6):(a-f).

5.5 Consistent transformations

5.5.1 Piola transformations

In this work, base functions are defined on the reference elements. Consistent transformations are
employed to map the base functions from the reference element to the physical element [69], and every
element in the physical domain is mapped from the same reference domain. Since the mapping of
the physical space is achieved via barycentric functions, the polynomial degree is maintained across
transformations.

The scalar base functions transform via

n(x) = n ◦ [x−1(ξ)] , ∇xn = J−T∇ξn , (5.62)

where the result concerning the Jacobi matrix is a direct consequence of the chain rule.
Nédélec elements are defined via their action on the tangent vectors of the element. Consequently,

a consistent transformation is given by the equality

〈θ, t〉ds = 〈θ, ds〉 = 〈θ, Jdµ〉 = 〈ϑ, dµ〉 = 〈ϑ, τ 〉dµ ⇐⇒ θ = J−Tϑ , (5.63)

known as the covariant Piola transformation. This is the same transformation as for gradients, thus
respecting the commuting property Eq. (5.23). Further, due to

∇x × J−T = ∇x ×∇xξ = 0 , (5.64)
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vectors mapped by the covariant Piola transformation exhibit the following transformation of the curl
operator

curlx θ = ∇x × θ = (J−T∇ξ)× (J−Tϑ) = cof(J−T )(∇ξ × ϑ) =
1

detJ
J curlξ ϑ , (5.65)

being the so called contravariant Piola transformation. For two-dimensional domains the formula
reduces to

divx(Rθ) =
1

detJ
divξ(Rϑ) , R =

[
0 1
−1 0

]
, (5.66)

since the two-dimensional curl operator transforms via∫
A
q divx(Rθ) dA =

∮
∂A
q 〈θ, t〉 ds+

∫
A
〈R∇xq, θ〉 dA

=

∮
∂Γ
q̂ 〈J−Tϑ, Jτ 〉 dµ+

∫
Γ
〈RJ−T∇ξ q̂, J−Tϑ〉 detJ dΓ

=

∮
∂Γ
q̂ 〈J−Tϑ, Jτ 〉 dµ+

∫
Γ
〈 1

detJ
JR∇ξ q̂, J−Tϑ〉detJ dΓ

=

∮
∂Γ
q̂ 〈ϑ, τ 〉 dµ+

∫
Γ
〈R∇ξ q̂, ϑ〉 dΓ

=

∫
Γ
q̂ divξ(Rϑ) dΓ =

∫
A
q divξ(Rϑ)

1

detJ
dA ∀ q ∈ C∞(A) , (5.67)

with the special identity in two dimensions

cof J = (detJ)J−T = RTJR , J ∈ R2×2 . (5.68)

The contravariant Piola transformation is compatible with the commuting diagram and preserves
normal projections on the element’s boundary. To see this characteristic define the base function φ in
the reference domain and ϕ in the physical domain and equate their normal projections on the outer
surface of both domains

〈ϕ, n〉dA = 〈ϕ, dA〉 = 〈ϕ, cof(J)dΓ〉 = 〈φ, dΓ〉 = 〈φ, ν〉dΓ ⇐⇒ ϕ =
1

detJ
Jφ . (5.69)

5.5.2 The orientation problem

Due to differing edge and face mappings between neighbouring elements the co- and contravariant
Piola transformations do not suffice to assert the consistent orientation of the tangential or normal
projections of the base functions. The transformations control the size of the projections, but not
whether these are parallel or anti-parallel with respect to neighbouring elements. Consistent projec-
tions are a key requirement in ensuring no jumps occur in the trace of the respective space and as
such, there exist various methods for dealing with this so called orientation problem such as correc-
tion functions, reparametrization, and multiple reference elements [4, 9, 42, 101, 110]. In this work we
present a solution based on the sequencing of vertices and the separation of orientational data. We
define the following rule for the orientation of edges

e = {vi, vj} s.t. i < j . (5.70)
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This means each edge starts at the lower vertex index and ends at the higher vertex index. This
definition determines the orientation of the edge tangent vector, compare Fig. 5.12, and consequently,
the tangential projection of the Nédélec base functions. Analogously, for surfaces we define

f = {vi, vj , vk} s.t. i < j < k , (5.71)

such that each surface is given by a sequence of increasing vertex indices. The orientation of the
surface normal is given according to the left-hand rule. In other words, the direction of the normal is
determined by the cross product of the vectors arising from the edges {vi, vj} and {vi, vk}

nijk = tij × tik . (5.72)

The orientation of the Nédélec base functions is according to these rules. Consequently, in order
to map each tetrahedron in the mesh to this orientation, we define each element as an increasing
vertex-index sequence

T = {vi, vj , vk, vl} s.t. i < j < k < l , (5.73)

as depicted in Fig. 5.12. The latter ensures the consistent orientation of the base functions, since
they are all mapped from the same reference domain. However, integration in the reference element
is achieved using the determinant of the Jacobi matrix∫

Ve

dV =

∫
Ω

detJ dΩ , (5.74)

which may become negative if the mapping from the reference to the physical domain contains a
reflection. This can be circumvented by taking only the absolute value of the determinant∫

Ve

dV =

∫
Ω
| detJ | dΩ . (5.75)

Consequently, consistency is guaranteed by mapping from a single reference element such that, cor-
rection functions or considerations of neighbouring elements are not required.

Remark 5.8
The absolute value | detJ | is only used for the integration over the element. In all other use-cases,
the information of the sign is necessary and detJ is employed.

5.6 Embedding of boundary conditions

The Dirichlet boundary conditions of the displacement are applied using the point-wise evaluation of
the Lagrangian functionals Eqs. (5.46) and (5.56). As such, on each edge of the Dirichlet boundary
there exists the following parametrization for α ∈ [0, 1]

(Π1
gu) ◦ α

∣∣∣∣
s

= ũ

∣∣∣∣
v1

n1(α) + ũ

∣∣∣∣
v2

n2(α)

= ũ

∣∣∣∣
v1

(1− α) + ũ

∣∣∣∣
v2

α , (5.76a)

(Π2
gu) ◦ α

∣∣∣∣
s

= ũ

∣∣∣∣
v1

n1(α) + ũ

∣∣∣∣
vm

nm(α) + ũ

∣∣∣∣
v2

n2(α)

= ũ

∣∣∣∣
v1

(2α− 1)(α− 1) + ũ

∣∣∣∣
vm

4α(1− α) + ũ

∣∣∣∣
v2

α(2α− 1) , (5.76b)

52



v1

v2

v3

v4

v2

v3

(a)

f1 = {v1, v2, v3}

f2 = {v2, v3, v4}

v1

v3

v4

v2

v3

v1

v5

v2

(b)

T1 = {v1, v2, v3, v4}

T2 = {v1, v2, v3, v5}

Figure 5.12: Consistent orientations on two-dimensional (a) and three-dimensional domains (b) using
vertex sequences. Edges are oriented from the lower to the higher vertex and faces according to the
left-hand rule starting from the lowest vertex across the middle to the highest. On two-dimensional
domains the orientation of the surface normal is determined by a rotation of the edge tangent. On
three-dimensional domains the cross product of the surface tangents belonging to the lowest sequences
determines the orientation of the surface normal.
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where the first equation is the linear case and the second equation is the quadratic case. The vertices
v1 and v2 represent the start and the end of the edge, respectively. The midpoint of the edge is given
by vm.

In order to exactly satisfy the consistent coupling condition in the discrete setting, we first build
the Lagrangian interpolation of the displacement field on the Dirichlet boundary. The gradient of the
discrete displacement field is then used to construct the boundary condition of the microdistortion

〈t, p̃h〉
∣∣∣∣
AD

= 〈t, Πc(∇Πgũ)〉
∣∣∣∣
AD

, (5.77)

where we consider one row of the displacement and the microdistortion fields at a time. Each edge of
the finite element mesh is mapped from the unit domain by the barycentric coordinates (see Fig. 5.13,-
the same is valid in three dimensions)

x(α) = λ1x1 + λ2x2 = (1− α)x1 + αx2 . (5.78)

For the purpose of consistency, we apply this also for the reference element such that

ξ(α) = λ1ξ1 + λ2ξ2 = (1− α)ξ1 + αξ2 . (5.79)

Consequently, the chain rule yields

d

dα
(u ◦ x ◦ ξ)(α) = 〈∇ξu, τ 〉 = 〈∇xu, t〉 , (5.80)

such that the consistent coupling condition reduces to

〈p̃h, t〉
∣∣∣∣
AD

=
d

dα
Πgũ

∣∣∣∣
AD

. (5.81)

In case of the lowest order sequence L1 ∇→ N 0
I the Nédélec base functions yield a constant tangential

projection of unity on the edges and the evaluation simplifies to

c1 : 〈ph, t〉
∣∣∣∣
si

= 〈c1 θ1, t〉
∣∣∣∣
si

= c1 =
d

dα
Πgũ

∣∣∣∣
si

=
d

dα

(
ũ

∣∣∣∣
v1

(1− α) + ũ

∣∣∣∣
v2

α

)
= ũ

∣∣∣∣
v2

−ũ
∣∣∣∣
v1

,

(5.82)

for each edge si in AD. Thus, on each edge of the Dirichlet boundary we find

〈t, Πcp〉
∣∣∣∣
si

= 〈t, c1 θ1〉
∣∣∣∣
si

. (5.83)

In the quadratic sequence L2 ∇→ N 1
II on each vertex of an edge, the Nédélec base functions produce a

tangential projection of unity. As such, the evaluation can be carried out via

c1 : 〈ph, t〉
∣∣∣∣
v1

= 〈c1 θ1, t〉
∣∣∣∣
v1

= c1 =
d

dα

(
ũ

∣∣∣∣
v1

(2α− 1)(α− 1) + ũ

∣∣∣∣
vm

4α(1− α) + ũ

∣∣∣∣
v2

α(2α− 1)

)∣∣∣∣
v1

= −3ũ

∣∣∣∣
v1

+4ũ

∣∣∣∣
vm

−ũ
∣∣∣∣
v2

, (5.84)

c2 : 〈ph, t〉
∣∣∣∣
v2

= 〈c2 θ2, t〉
∣∣∣∣
v2

= c2 =
d

dα

(
ũ

∣∣∣∣
v2

(2α− 1)(α− 1) + ũ

∣∣∣∣
vm

4α(1− α) + ũ

∣∣∣∣
v2

α(2α− 1)

)∣∣∣∣
v2

= ũ

∣∣∣∣
v1

−4ũ

∣∣∣∣
vm

+3ũ

∣∣∣∣
v2

, (5.85)
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ξ2
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t
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Figure 5.13: Barycentric mapping of edges from the unit domain to the reference triangle and onto
the physical domain.

for each edge si in AD. The microdistortion on each edge of the Dirichlet boundary is therefore given
by

〈t, Πcp〉
∣∣∣∣
si

= 〈t, c1 θ1 + c2 θ2〉
∣∣∣∣
si

. (5.86)

5.7 Assembly of element matrices

The base functions on the physical element allow for the element-wise computation of stiffness matrices
[16]. These matrices are then assembled into a global (sparse) matrix, representing the total stiffness
of the system. The assembly process is derived from the definition of the trial and test functions as

uh(x, y, z) =
n⋃
e=1

uhe , δuh(x, y, z) =
n⋃
e=1

δuhe , (5.87)

such that the global stiffness matrix and load vector read

K =
n⋃
e=1

Ke , fd =
n⋃
e=1

fe , (5.88)

where (·)d represents discrete values. The correspondence between the local and global stiffness terms
is derived from node sequencing. Following the assembly, the solution of the discrete system

ud = K−1fd , (5.89)

can then be computed.

Remark 5.9
In the hp-FEA software Rayse the conjugate gradient method is employed to compute the solution, since
both linear elasticity and the relaxed micromorphic model induce symmetric positive definite bilinear
forms.

5.7.1 Element matrix

We define the element-wise interpolation operators as matrices of the base functions. For antiplane
shear this results in

ue(ξ, η) = N(ξ, η)ude , pe(ξ, η) = Θ(ξ, η)pde , (5.90)
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where the matrices are given by

N =
[
n1 n2 . . . nm

]
, ∇N =

[
∇n1 ∇n2 . . . ∇nm

]
,

Θ =
[
θ1 θ2 . . . θm

]
, curl Θ =

[
curlθ1 curlθ2 . . . curlθm

]
, (5.91)

such that the element stiffness matrix and load vector read

Ke =

∫
Ae

µe(∇N −Θ)T (∇N −Θ) + µmicroΘ
TΘ + µmacroL

2
c(curl Θ)T (curl Θ) dA ,

fe =

∫
Ae

fNT + ΘTm dA . (5.92)

In case of the full three-dimensional model one finds

ue(ξ, η, ζ) = N(ξ, η, ζ)ude , P e(ξ, η, ζ) = Θ(ξ, η, ζ)P d
e , (5.93)

with

N =
[
n1I n2I . . . nmI

]
,

DN =

∇n1 o o ∇nn o o
o ∇n1 o · · · o ∇nm o
o o ∇n1 o o ∇nm

 ,
Θ =

θ1 o o θm o o
o θ1 o · · · o θm o
o o θ1 o o θm

 ,
Curl Θ =

curlθ1 o o curlθm o o
o curlθ1 o · · · o curlθm o
o o curlθ1 o o curlθm

 , (5.94)

where o ∈ R3 is a vector of zeros and I ∈ R3×3 is the identity matrix.
The material tensors are reinterpreted as nine dimensional matrices and the symmetry and matrix-

trace operators are directly embedded in their definition (see Appendix A)

(λ1⊗ 1+ 2µ J) symP = (λ1⊗ 1+ 2µ J)SP = (λ1⊗ 1+ 2µS)P = CP . (5.95)

Consequently, the element stiffness matrix and load vector are given by

Ke =

∫
Ve

(DN −Θ)T (Ce + Cc)(DN −Θ) + ΘTCmicroΘ + µmacroL
2
c(Curl Θ)T (Curl Θ) dV ,

fe =

∫
Ve

NT f + ΘTM dV . (5.96)

The stiffness matrix and load vector for the case of plane strain is analogous to the three-
dimensional case but reduces of the dimensions of the matrices.
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5.7.2 Partitioning

In general, the global stiffness matrix contains terms related to the boundary conditions. This a result
of the embedding

u = û + ũ , (5.97)

where u is the total displacement field, û is the unknown displacement field and ũ is the prescribed
displacement field on the Dirichlet boundary. This leads to a natural partition of an element’s discrete
displacement vector and stiffness matrix

ue =

[
uf
up

]
, Ke =

[
Kff Kfp

Kpf Kpp

]
. (5.98)

There are various approaches to deal with the partition such as assembling multiple global matrices or
using only parts of the total global matrix. In this work we apply the partition directly at the element
level such that

Kffuf = f∗f , f∗f = ff −Kfpup . (5.99)

Thus, the procedure follows by assembling a single global stiffness matrix for Kff and a single global
load vector for ff .
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6 Higher Order Finite Elements

The previous chapter introduced the classical finite element method, where convergence is achieved
by mesh-refinement, i.e., h-refinement. As per the error estimates, h-refinement yields algebraic con-
vergence. An alternative methodology suggests increasing the polynomial degree instead, being the so
called p-refinement [12, 13]. Reconsidering the error estimates, it becomes clear the latter implies ex-
ponential convergence for highly smooth fields [110]. If the solution is piece-wise smooth and contains
singularities, p-refinement yields algebraic convergence [110]. The idea of hp-FEM [29,31, 103,105] is
essentially the combination of both refinement methods, thus allowing to recover exponential conver-
gence.

In this section we introduce methods for the construction of efficient higher order finite elements
for classical Hilbert spaces. The methods represent a general approach, independent of the polynomial
basis and a specification of degrees of freedom. Further, a clear split of the base functions between
the kernel and range of the corresponding space with the exception of the lowest-order base functions
is possible with the method and derived intuitively.

Since the construction is introduced independently of degrees of freedom, the degrees of freedom
from [30] are used to embed boundary conditions and uphold exact sequence properties.

This work relies on Bernstein polynomials and Bézier triangles and tetrahedra for the definition
of higher order finite elements. In [2] it is shown that Bernstein polynomials allow for optimal com-
plexity in the assembly procedure of finite element programs. This feature is a result of their natural
factorization by the Duffy transformation. For a thorough treatment of Bernstein polynomials we
recommend [59].

6.1 Preliminaries

Traditionally, higher order finite elements are constructed using hierarchical polynomials [103, 110].
The latter has the advantage that the basis does not change between p-refinements, but rather a
new base function is added to the previously employed basis. Further, the Legendre polynomial
basis for example, is orthogonal in the L2-scalar product over the domain [−1, 1] and as such, yields
better matrix condition numbers. However, this characteristic is restricted to problems with constant
coefficients. In addition, the hierarchical basis is not intrinsically nodal (in the sense of symmetry) in
contrast to the Lagrangian and the Bernstein polynomials used in this work.

6.1.1 Bernstein polynomials

Bernstein polynomials of order p are given by the binomial expansion of the barycentric representation
of the unit line

1 = (λ1 + λ2)p = ((1− ξ) + ξ)p =

p∑
i=0

(
p
i

)
ξi(1− ξ)p−i =

p∑
i=0

p!

i!(p− i)!
ξi(1− ξ)p−i , (6.1)

where ξ ∈ [0, 1]. The Bernstein polynomial reads

bpi (ξ) =

(
p
i

)
ξi(1− ξ)p−i . (6.2)
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b40(ξ)

b41(ξ)
b42(ξ)
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0 11/2
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Figure 6.1: Bernstein base functions of degree p = 4 on the unit domain. Their sum forms a partition
of unity. The base functions are symmetric for ξ = 0.5 with respect to their indices and always
positive.

A direct result of the binomial expansion is that Bernstein polynomials form a partition of unity (see
Fig. 6.1)

p∑
i=0

bpi (ξ) = 1 . (6.3)

Another consequence is that Bernstein polynomials are non-negative and smaller equal one

0 ≤ bpi (ξ) ≤ 1 , ξ ∈ [0, 1] . (6.4)

A necessary condition for the use of Bernstein polynomials in finite element approximations is for
them to span the entire polynomial space.

Theorem 6.1 (Span of Bernstein polynomials)
The span of Bernstein polynomials forms a basis of the one-dimensional polynomial space

Pp(s) = span{bpi } , s ⊆ R . (6.5)

Proof. First we observe

dim(span{bpi }) = dim Pp(s) = p+ 1 . (6.6)

The proof of linear Independence is achieved by contradiction. Let the set span{bpi } with 0 < i ≤ p
be linearly dependent, then there exists some combination with at least one non-zero constant ci 6= 0
such that

p∑
i=1

cib
p
i (ξ) = 0 ,

d

dξ

p∑
i=1

cib
p
i (ξ) = 0 . (6.7)

However, by the partition of unity property Eq. (6.3), only the full combination (0 ≤ i ≤ p) generates
a constant and by the exact sequence property the kernel of the differentiation operator is exactly the
space of constants ker(∂) = R. The linear independence of the full span also follows from the partition
of unity property, since constants cannot be constructed otherwise.
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On the unit domain, the integral of Bernstein polynomials reads∫ 1

0
bpi (ξ)dξ =

1

p+ 1
∀ bpi ∈ span{bpi } , (6.8)

thus allowing for fast evaluation of integrals with constants. Further, the multiplication of two Bern-
stein polynomials

bpi (ξ)b
q
j(ξ) =

(
i+ j
i

)
(
p+ q
p

)bp+qi+j (ξ) , (6.9)

yields a scaled Bernstein polynomial. The derivative of a Bernstein polynomial is given by the linear
combination of two Bernstein polynomials of a lower degree

d

dξ
bpi (ξ) = p (bp−1

i−1 (ξ)− bp−1
i (ξ)) . (6.10)

Lastly, Bernstein polynomials can be evaluated using the recursive formula

bp0(ξ) = (1− ξ)p , bpi+1(ξ) =
(p− i)ξ

(p+ 1)(1− ξ)
bpi (ξ) , i ∈ {0, 1, ..., p− 1} , (6.11)

which allows for fast evaluation of the base functions.

Remark 6.1
Note that the formula implies limξ→1 b

p
i+1(ξ) =∞. As such, evaluations using the formula are required

to use ξ < 1 preferably with an additional tolerance. The limit case ξ = 1 is zero for all Bernstein
function aside from the last function belonging to the vertex, which simply returns one.

6.1.2 Dual numbers

Dual numbers [40] define an augmented algebra, where the derivative of a function can be computed
simultaneously with the result of the function. This enhancement is also commonly used in forward
automatic differentiation [17, 80], not to be confused with numerical differentiation, since unlike in
numerical differentiation, automatic differentiation is no approximation and yields the exact derivative.
The latter represents an alternative method to finding the derivatives of base functions, as opposed
to explicit formulas or approximations. Dual numbers augment the classical numbers by adding a
non-zero number ε with a zero square ε2 = 0 (this is analogous to how complex numbers add i in
order to allow for i2 = −1).

Definition 6.1 (Dual number)
The dual number is defined by

x+ x′ε , ε� 1 , (6.12)

where x′ is the derivative (only in automatic differentiation), ε is an abstract number (infinitesimal)
and ε2 = 0.

The augmented algebra results automatically from the definition of the dual number.

Definition 6.2 (Augmented dual algebra)
The standard algebraic operations take the following form for dual numbers
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1. Addition and subtraction

(x+ x′ε)± (y + y′ε) = x± y + (x′ ± y′)ε . (6.13)

2. Multiplication

(x+ x′ε)(y + y′ε) = xy + (xy′ + x′y)ε , (6.14)

since ε2 = 0.

3. Division is achieved by first defining the inverse element

(x+ x′ε)(y + y′ε) = 1 ⇐⇒ y =
1

x
, y′ = − x

′

x2
, (6.15)

such that

(x+ x′ε)/(y + y′ε) = x/y + (x′/y − xy′/y2)ε . (6.16)

Application of the above definitions to polynomials

p(x+ ε) =
∞∑
i=0

ci(x+ ε)i =
∞∑
i=0

1∑
j=0

ci

(
i
j

)
xi−jεj =

∞∑
i=0

cix
i + ε

∞∑
i=1

i cix
i−1 = p(x) + p′(x)ε , (6.17)

allows the extension to various types of analytical functions with a power-series representation (such
as trigonometric or hyperbolic).

Definition 6.3 (General dual numbers function)
A function of a dual number is defined generally by

f(x+ ε) = f(x) + f ′(x)ε , (6.18)

being the fundamental formula for forward automatic differentiation.

The definition of dual numbers makes them directly applicable to the general rules of differentiation,
such as the chain rule or product rule, in which case the derivative is simply the composition of previous
computations with ε.

The logic of dual numbers can be understood intuitively by the directional derivative

d

dx
f(x) = ∂x′f(x) =

d

dε
f(x+ x′ε)

∣∣∣∣
ε=0

= lim
ε→0

f(x+ x′ε)− f(x)

ε
, (6.19)

where dividing by ε and setting ε = 0 are deferred to the last step of the computation, being the
extraction of the derivative and equivalent to the operation f(x + ε) − f(x) with the augmented
algebra of dual numbers.

Remark 6.2
In the implementation of the finite element software Rayse the Bernstein polynomials and their deriva-
tives are computed simultaneously using the recursive formula with dual numbers.
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6.1.3 Polytopal functions

In the following section the construction of higher order H 1- and H (curl)-conforming spaces is pre-
sented. The construction is based on a polytopal association of base functions. The following defini-
tions are employed

Definition 6.4 (Polytopal base functions)
Each base function is associated with its respective polytope and the underlying Hilbert space as follows:

1. A vertex base function has a vanishing trace on all other vertices and non-neighbouring edges
and faces.

2. An edge base function has a vanishing trace on all other edges and non-neighbouring faces.

3. A face base function has a vanishing trace on all other faces.

4. A cell base function has a vanishing trace on the entire boundary of the element.

The latter definition is general and the respective trace may change according to the corresponding
Hilbert space.

6.1.4 Commuting interpolants

We state the degrees of freedom introduced in [30]. A slightly modified version of the degrees of
freedom is used to embed Dirichlet boundary conditions into the respective spaces.

Definition 6.5 (The H 1-interpolant)
The H 1-conforming interpolant is defined using the following degrees of freedom.

1. Vertex point evaluation functionals

li(u) = u

∣∣∣∣
vi

. (6.20)

2. The edge functionals read

lij(u) =

∫
si

∂u

∂s

∂qj
∂s

ds ∀ qj ∈ Pp
0 (s) . (6.21)

3. On each face the degrees of freedom are given by

lij(u) =

∫
Ai

〈∇fu, ∇fqj〉 dA ∀ qj ∈ Pp
0 (A) , (6.22)

where ∇f represents the surface gradient.

4. Lastly, the cell functionals are tests of gradients

li(u) =

∫
V
〈∇u, ∇qi〉 dV ∀ q ∈ Pp

0 (V ) . (6.23)

The degrees of freedom define an H 1-conforming finite element and can be used to construct the
interpolant Πg : H 1 → U h.

62



Definition 6.6 (The H (curl)-interpolant)
One defines the H (curl)-interpolant by employing the following functionals

1. On each edge the degrees of freedom are given by

lij(p) =

∫
si

qj〈p, t〉 ds ∀ qj ∈ Pp(s) . (6.24)

2. The face-type functionals read

lij(p) =

∫
Ai

〈curlf p, curlf qj〉 dA ∀qj ∈ [Pp
0 (A)]2 ∩ ker⊥(curl) , (6.25a)

lij(p) =

∫
Ai

〈p, ∇qj〉 dA ∀ qj ∈ Pp+1
0 (A) , (6.25b)

where curlf is the surface curl.

3. Finally, the cell degrees of freedom are given by

li(p) =

∫
V
〈curl p, curl qi〉 dA ∀qi ∈ [Pp

0 (V )]3 ∩ ker⊥(curl) , (6.26a)

li(p) =

∫
V
〈p, ∇qi〉 dA ∀ qi ∈ Pp+1

0 (V ) . (6.26b)

The degrees of freedom define a unisolvent H (curl)-conforming finite element. Further, using the
degrees of freedom one can construct the projection based interpolant Πc : H (curl)→ NI .

6.2 Higher order triangular elements

6.2.1 Bézier elements

The base functions on the triangle reference element are defined using the binomial expansion of the
barycentric coordinates on the domain Γ = {(ξ, η) ∈ [0, 1]2 | ξ + η ≤ 1}

1 = (λ1 + λ2 + λ3)p = ([1− ξ − η] + η + ξ)p , (6.27)

where the barycentric functions Eq. (5.47) are employed to map the domain. As such, the Bézier base
functions read

bpij(λ1, λ2, λ3) =

(
p
i

)(
p− i
j

)
λp−i−j1 λj2λ

i
3 , (6.28)

with the equivalent form

bpij(ξ, η) =

(
p
i

)(
p− i
j

)
(1− ξ − η)p−i−jηjξi , (6.29)

of which some examples are depicted in Fig. 6.2. The Duffy transformation

ξ : [0, 1]2 → Γ , {α, β} 7→ {ξ, η} , (6.30)
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(a) (b) (c)

Figure 6.2: Cubic vertex (a), edge (b) and cell (c) Bézier base functions on the reference triangle.

(0,0) (1,0)

(1,1)(0,1)

α

β

Γ

(0,0) (1,0)

(0,1)

ξ

η

ξ : α→ Γ

Figure 6.3: Duffy transformation from a quadrilateral to a triangle by collapse of the coordinate
system.

given by the relations

ξ = α , η = (1− α)β ,

α = ξ , β =
η

1− ξ
, (6.31)

allows to view the triangle as a collapsed quadrilateral, see Fig. 6.3. Inserting the Duffy map into the
definition of the Bézier base function yields the split

bpij(ξ, η) =

(
p
i

)(
p− i
j

)
(1− ξ − η)p−i−jηjξi

=

(
p
i

)(
p− i
j

)
(1− α− [1− α]β)p−i−j(1− α)jβjαi

=

(
p
i

)(
p− i
j

)
(1− α)p−i−j(1− β)p−i−j(1− α)jβjαi

=

(
p
i

)
(1− α)p−iαi

(
p− i
j

)
(1− β)p−i−jβj

= bpi (α)bp−ij (β) . (6.32)

In other words, the Duffy transformation results in a natural factorization of the Bézier triangle into
Bernstein base functions [2]. The latter allows for fast evaluation using sum factorization. Further,
it is now clear that Bézier triangles are given by the interpolation of Bézier curves, where the degree
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ξ

η

outer Bézier curve with p = 3

inner Bézier curves with p < 3

control polygon of η-curves

outer Bézier curves with p = 3

inner Bézier curves with p = 3

Figure 6.4: Bézier triangle built by interpolating Bézier curves with an ever decreasing polynomial
degree.

of the polynomial decreases between each curve, see Fig. 6.4. In order to compute gradients on the
reference domain one applies the chain rule

∇ξbpij = (Dαξ)−T∇αbpij , Dαξ =

[
1 0
−β 1− α

]
, (Dαξ)−T =

1

1− α

[
1− α β

0 1

]
. (6.33)

The factorization is naturally suited for the use of dual numbers since the α-gradient of a base function
reads

∇αbpij(α, β) =

b
p−i
j

d

dα
bpi

bpi
d

dβ
bp−ij

 , (6.34)

such that only the derivatives of the Bernstein base functions with respect to their parameter are
required.

The Duffy transformation induces an intrinsic optimal order of traversal of the base functions,
compare Fig. 6.5, namely

(i, j) = (0, 0)→ (0, 1)→ ...→ (2, 2)→ ...→ (i, p− i)→ ...→ (p, 0) , (6.35)

which respects a clockwise orientation of the element and the global consistency definitions from
Section 5.5.2. Thus the order of the sequence of discrete values on common edges is determined by the
global orientation. In order to relate a base function to a polytopal piece of the element, one observes
the following result.

Observation 6.1 (Triangle base functions)
The polytope of each base function bpij(ξ, η) can be determined as follows:

• The indices (0, 0), (0, p) and (p, 0) represent the first, second and last vertex base functions,
respectively.

• The indices (0, j) with 0 < j < p and (i, 0) with 0 < i < p represent the first and second edge base
functions, respectively. Base functions of the slanted edge are given by (i, p− i) with 0 < i < p.

• The remaining index combinations are cell base functions.

With the latter observation, the construction of vertex-, edge- and cell base functions follows the
intrinsic traversal order induced by the Duffy transformation and relates to a specific polytope via
index-pairs.
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v1 v3

v2

ξ

η

Figure 6.5: Traversal order of base functions. The purple lines represent the order in which the base
functions are constructed by the factorized evaluation. Note that the traversal order on each edge is
intrinsically from the lower to the higher vertex index.

Γ

v1 v3

v2

ξ

η

e2

Γ

v1 v2

v3

ξ

η

e1

Γ

v3 v2

v1

ξ

η

{v1,v2,v3}7→{v1,v3,v2}
e1

{v1,v3,v2}7→{v3,v1,v2}

Figure 6.6: Derivation of a template vector on the remaining edges via permutations of the reference
triangle using covariant Piola mappings.

6.2.2 Nédélec elements of the second type

Note that the continuity characteristic of tensor valued Hilbert spaces such as Nédélec and Raviart-
Thomas is geometrical in nature. In fact, it is possible to define a template based on the polytopal
building blocks of the reference element and assert the desired reduced continuity by the dyadic
product with an H 1-conforming polynomial space U p. The construction is independent of the degrees
of freedom and allows for a simple definition of the base functions on the reference element using for
example, the Lagrangian basis, or in this work the Bernstein basis.

We consider the decomposition of the reference triangle in Fig. 6.7. On the first vertex v1 we define
a vector with a projection of one on the tangent vector of the first edge e12 and a zero projection on
the second edge e13. Next we define a vector with a projection of one on the tangent vector of the
first edge e12. Further, we construct a normal vector on the first edge e12. Lastly, we define two unit
vectors in the cell. The remaining vectors for their respective polytopes can be computed by mapping
the triangle c123 to various permutations of cijk on the unit domain and adjusting the sign to ensure
a positive projection on the tangent vector, see Fig. 6.6.

Remark 6.3
The polytopal set is not unique and depends on the starting definition on the first polytopes and the
resulting mapping. Further, one can change pure edge-type template vectors by adding or subtracting
normal vectors without influencing the tangential projection.
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v1 v3

v2

e12

e13

e23

c123

Vertex-edge template vectors

Edge template vectors

Edge-cell template vectors

Cell template vectors

Figure 6.7: Template vectors for the reference triangle on their corresponding polytope.

The resulting template is given by the superset of the sets for the respective polytopes

T = {T1, T2, T3, T12, T13, T23, T123} , (6.36)

where the polytopal sets are defined via Cartesian base vectors, reading

T1 = {e2, e1} , T2 = {e1 + e2, e1} , T3 = {e1 + e2,−e2} ,

T12 = {e2,−e1} , T13 = {e1, e2} , T23 = {(1/2)(e1 − e2), e1 + e2} ,

T123 = {e1, e2} . (6.37)

Theorem 6.2 (Linear independence)
The tensor product of the template with an H 1-conforming polynomial basis U p yields a unisolvent
Nédélec element of the second type

N p
II =

{
3⊕
i=1

Vpi ⊗ Ti

}
⊕

⊕
j∈J
Epj ⊗ Tj

⊕ {Cp123 ⊗ T123} , J = {(1, 2), (1, 3), (2, 3)} , (6.38)

where Vpi are the sets of the vertex base functions, Epj are the sets of edge base functions, Cp123 is the
set of cell base functions, and the ⊕ indicates summation over non-overlapping spaces.

Proof. Under the assertion that the underlying H 1-conforming polynomial basis U p is unisolvent,
unisolvence of the N p

II basis follows automatically, since each base function of U p is multiplied with
two linearly independent vectors, thus inheriting linear independence of the basis on the vectorial
level. Further, the resulting basis has the required dimensionality

dim[U p(Γ)]2 = dim[Pp(Γ)]2 = dimN p
II(Γ) , (6.39)

of the Nédélec finite element space.

Theorem 6.3 (H (divR, A)-conformity)
The constructed element on the reference domain is conforming under covariant Piola transformations
of the base functions and contravariant Piola transformations of their respective curls.
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Proof. By construction, the tangential projection of each non-cell base function on the tangential
vector of its respective polytope is the underlying H 1-conforming base function

〈τ , ϑi〉 = ni . (6.40)

Since the templates are constructed by permutations of the reference element, this characteristic is
extended to every corresponding polytope. Lastly, the respective Piola transformations uphold the
tangential and normal projections in the physical domain, such that conformity is guaranteed by the
underlying U p-space.

Using the Bézier basis one finds the following base functions, which inherit the optimal complexity
of the Bernstein basis.

Definition 6.7 (Bézier-Nédélec II triangle basis)
The following base functions are defined on the reference triangle.

• On the edges the base function reads

e12 : ϑ(ξ, η) = bp00e2 , ϑ(ξ, η) = bp0p(e1 + e2) ,

ϑ(ξ, η) = bp0je2 , 0 < j < p ,

e13 : ϑ(ξ, η) = bp00e1 , ϑ(ξ, η) = bpp0(e1 + e2) ,

ϑ(ξ, η) = bpi0e1 , 0 < i < p ,

e23 : ϑ(ξ, η) = bp0pe1 , ϑ(ξ, η) = −bpp0e2 ,

ϑ(ξ, η) = (1/2) bpi,p−i(e1 − e2) , 0 < i < p , (6.41)

where the first two base functions for each edge are the vertex-edge base functions and the third
equation generates pure edge base functions.

• The cell base functions read

c123 : ϑ(ξ, η) = −bp0je1 , 0 < j < p ,

ϑ(ξ, η) = bpi0e2 , 0 < i < p ,

ϑ(ξ, η) = bpi,p−i(e1 + e2) , 0 < i < p ,

ϑ(ξ, η) = bpije2 , 0 < i < p , 0 < j < p− i ,

ϑ(ξ, η) = bpije1 , 0 < i < p , 0 < j < p− i , (6.42)

where the first three are the respective edge-cell base functions. The remaining two are pure cell
base functions.

A depiction of each of the polytopal base function for the cubic Bézier-Nédélec element is given in
Fig. 6.8.

Remark 6.4
The Brezzi-Douglas-Marini element for H (div, A)-conforming subspaces can be constructed in a similar
manner or by rotating the current template by 90 degrees and adjusting the normal projections to one.
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(a) (b)

(c) (d)

Figure 6.8: Cubic vertex-edge (a), edge (b), edge-cell (c) and pure cell (d) base functions of the Nédélec
element of the second type on the reference triangle.

6.2.3 Nédélec elements of the first type

The Nédélec element of the second type has the disadvantage that its curl is a polynomial space of a
lower degree div(RN p

II) = Pp−1. Consequently, one loses one order of convergence in the curl terms.
In order to ameliorate the convergence rate one can employ the Nédélec elements of the first type,
which enhance the polynomial space with base functions orthogonal to the kernel ϑi ∈ ker⊥(divR).
This is not easy to do, as one must be able to split the space between kernel functions and non-kernel
functions while maintaining conformity. Here we follow the ideas presented in [3,5,96,110], where one
explicitly applies the operators in the exact polynomial sequences to construct the kernel of the next
space. In this work, we complement the kernel space with our new approach and introduce a specific
and intuitive polytopal template leading to non-kernel base functions.

We start with the kernel of N p
I by taking gradients of the base functions of the U p+1 space while

excluding the vertex base functions

ϑi(ξ, η) = ∇ξnp+1
i . (6.43)

This yields (p + 2)(p + 1)/2 − 3 base functions. We augment the space by adding the lowest order
Nédélec (N 0

I ) base functions of the first type from Eq. (5.55). Next we need to enhance the space with
a minimal amount of base functions belonging to a higher degree polynomial space such that we find
dim[div(RN p

I )] = dim Pp = (p + 2)(p + 1)/2 base functions and the curl spans the next polynomial
space in the sequence. In order to do so we introduce the polytopal template

T = {T1, T2, T12, T13, T23, T123} , (6.44)

where the polytopal sets are derived from the lowest order Nédélec base functions of the first type in
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Eq. (5.55)

T1 = {ϑI3} , T2 = {ϑI2} , T12 = {ϑI3 − ϑI2} ,

T13 = {ϑI1 + ϑI3} , T23 = {ϑI1 − ϑI2} , T123 = {ϑI1 − ϑI2 + ϑI3} . (6.45)

From the depiction in Fig. 6.9 it is intuitively apparent, that the template vectors represent the
components needed to generate rotational flux. The remaining base functions are given by the tensor
product{

2⊕
i=1

Vpi ⊗ Ti

}
⊕

⊕
j∈J
Epj ⊗ Tj

⊕ {Cp123 ⊗ T123} , J = {(1, 2), (1, 3), (2, 3)} . (6.46)

This generates exactly 2p+ (p− 1)p/2 base functions. Adding the constants from dim[div(RN 0
I )] = 1

satisfies the dimensionality of the polynomial space 2p+ (p− 1)p/2 + 1 = (p+ 2)(p+ 1)/2 = dim Pp.
Further, since ϑi belongs to [P0]2⊕RP̃0ξ the resulting base functions npiϑi clearly belongs to [Pp]2⊕
RP̃pξ. The complete Nédélec space reads

N p
I = N 0

I ⊕

⊕
j∈J
∇Ep+1

j

⊕∇Cp+1
123 ⊕

{
2⊕
i=1

Vpi ⊗ Ti

}
⊕

⊕
j∈J
Epj ⊗ Tj

⊕ {Cp123 ⊗ T123} ,

J = {(1, 2), (1, 3), (2, 3)} . (6.47)

Theorem 6.4 (Linear independence)
The set of base functions given by the lowest order Nédélec elements, the gradients of an H 1-conforming
polynomial subspace U p+1 excluding vertex base functions, and the tensor product of the U p base
functions with the polytopal template yield a linearly independent polynomial basis for N p

I .

Proof. We start by showing the gradients of the U p base functions are linearly independent of each
other by using contradiction. Assume the set of gradients is linearly dependent, then there holds∑

i

ci∇ξni = ∇ξ
∑
i

cini = 0 , (6.48)

for some combination of constants ci where not all ci values are zero. However, the vertex base
functions are not employed. Thus, if the basis satisfies the partition of unity property, then the kernel
of the gradient operator, namely constants R, is missing and the exact sequence property yields a
contradiction (see Fig. 4.2). The same holds true for a hierarchical polynomial basis, since the vertex
base functions are used to capture constants.

The base functions of the lowest order Nédélec elements of the first type are linearly independent
of the gradients since their tangential traces on the edges of the triangle are constant trt

∂A ϑi|µi ∈ R,
whereas the tangential traces of the edge gradients are at least linear and the tangential traces of the
cell gradients vanish on the entire boundary. Together, the three lowest order base functions span the
constant space [P0]2 = R2. Further, their curls span the constant space R.

In order to complete the proof we must show that the remaining base functions are non-gradients
and linearly independent of the lowest order base functions. Observe that the template vectors have
the general form

ϑI =

[
c1η − c2

c3 − c1ξ

]
, c1 ∈ {1, 2, 3} , c2, c3 ∈ {0, 1} , (6.49)
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(a)
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Figure 6.9: Template vectors on the reference triangle for base functions orthogonal to the kernel of
the curl operator (a). Templates of the vertices (b)-(c), followed by the templates of the edges (d)-(f)
and lastly, the cell template (g).
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such that the curl of the base function reads

divξ(RnϑI) = 〈∇ξn, RϑI〉 − 2c1n = (c3 − c1ξ)n,ξ + (c2 − c1η)n,η − 2c1n . (6.50)

Clearly, the polynomial order of the underlying scalar base function n is maintained under the curl
operator. Therefore, under the assumption of a hierarchical basis in the base functions ni (for example
Legendre) it is clear that the curl operator maps to linearly independent base functions, irrespective
of the choice of c1, c2 and c3. Consequently, the template yields non-gradient base functions due to
the exact sequence in Fig. 4.1 and

divξ(R[c1Rξ + c]Pp(Γ)) = Pp(Γ) , c =

[
−c2

c3

]
, (6.51)

such that

divξ(R

p∑
i=0

ciniϑ
I) = 0 ⇐⇒ ci = 0 ∀ i ∈ {0, 1, ..., p} . (6.52)

Further, we can switch the base functions with any other basis that spans the same polynomial
space since it is in fact equivalent to an alternative expression of the hierarchical basis. Doing so
clearly maintains the linear independence of the vectorial base functions due to the inherited linear
independence from the underlying scalar basis. The latter can be easily observed when considering
the normal-traces of the vectorial base functions on the edges. If the complete span of ni is employed,
then the constant element is present and the curl maps also to the space of constants R. However,
this space is already obtained by employing the N 0

I -basis in the construction and as such, leads to
linear dependence. By removing the last vertex base function the hierarchical basis no longer contains
the space of constants, thus asserting linear independence of the total construction. The same holds
true for any other basis that satisfies the partition of unity property since removing one base function
cancels this characteristic and removes the constant element from the space. The latter in conjunction
with the vanishing trace on the edges of the element asserts linear independence from the lowest order
base functions.

Theorem 6.5 (H (divR, A)-conformity)
The resulting finite element is H (divR)-conforming under Piola mappings.

Proof. The lowest order Nédélec base functions are H (divR)-conforming by their degrees of freedom.
The gradient base functions are conforming due to the exact sequence property ∇H 1 ⊂ H (divR), see
Fig. 4.1. Lastly, the remaining base functions are cell-type and do not affect the conformity of the
finite element.

The Piola transformations maintain the conformity of the base functions across the mapping from
the reference to the physical element.

Applying the construction to the Bézier basis yields the following base functions.

Definition 6.8 (Bézier-Nédélec I triangle basis)
We define the base functions on the reference triangle.
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• On the edges we employ the lowest order Nédélec base functions and the edge gradients

e12 : ϑ(ξ, η) = ϑI1 ,

ϑ(ξ, η) = ∇ξbp+1
0j , 0 < j < p+ 1 ,

e13 : ϑ(ξ, η) = ϑI2 ,

ϑ(ξ, η) = ∇ξbp+1
i0 , 0 < i < p+ 1 ,

e23 : ϑ(ξ, η) = ϑI3 ,

ϑ(ξ, η) = ∇ξbp+1
i,p+1−i , 0 < i < p+ 1 . (6.53)

• The cell functions read

c123 : ϑ(ξ, η) = bp00ϑ
I
3 ,

ϑ(ξ, η) = bp0pϑ
I
2 ,

ϑ(ξ, η) = bp0j(ϑ
I
3 − ϑI2) , 0 < j < p ,

ϑ(ξ, η) = bpi0(ϑI1 + ϑI3) , 0 < i < p ,

ϑ(ξ, η) = bpi,p−i(ϑ
I
1 − ϑI2) , 0 < i < p ,

ϑ(ξ, η) = bpij(ϑ
I
1 − ϑI2 + ϑI3) , 0 < i < p , 0 < j < p− i ,

ϑ(ξ, η) = ∇ξbp+1
ij , 0 < i < p+ 1 , 0 < j < p+ 1− i , (6.54)

where the last formula gives the cell gradients and the remaining base functions are non-gradients.

A depiction of the higher order base functions is given in Fig. 6.10. Visualizations of the lowest
order base functions are available in Fig. 5.8.

6.3 Higher order tetrahedral elements

6.3.1 Bézier elements

Analogously to triangle elements, the Bézier tetrahedra on the unit tetrahedron Ω = {ξ, η, ζ ∈
[0, 1] | ξ + η + ζ ≤ 1} are defined using the barycentric coordinates by expanding the coefficients
of

(λ1 + λ2 + λ3 + λ4)p = ([1− ξ − η − ζ] + ζ + η + ξ)p = 1 , (6.55)

into

bpijk(λ1, λ2, λ3, λ4) =

(
p
i

)(
p− i
j

)(
p− i− j

k

)
λp−i−j−k1 λk2λ

j
3λ

k
4 , (6.56)

with the equivalent form

bpijk(ξ, η, ζ) =

(
p
i

)(
p− i
j

)(
p− i− j

k

)
(1− ξ − η − ζ)p−i−j−kζkηjξi . (6.57)
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(a) (b) (c)

(d) (e)

Figure 6.10: Non-gradient vertex-cell (a), edge-cell (b) and pure cell (c) base functions of the cubic
Bézier basis. Gradient edge (d) and cell (e) base functions.

We construct the Duffy transformation by mapping of the unit tetrahedron as a collapsed hexahedron

ξ : [0, 1]3 → Ω , {α, β, γ} 7→ {ξ, η, ζ} , (6.58)

using the relations

ξ = α , η = (1− α)β , ζ = (1− α)(1− β)γ ,

α = ξ , β =
η

1− ξ
, γ =

ζ

1− ξ − η
, (6.59)

as depicted in Fig. 6.11. Applying the Duffy transformation to Bézier tetrahedra

α

β

γ

(0,0,0)

(1,0,0)

(0,0,1)

(1,1,0)

(1,1,1)

(0,1,1)

ξ

η

ζ

Ω

(0,0,0)

(1,0,0)

(0,1,0)

(0,0,1)

ξ : α→ Ω

Figure 6.11: Duffy mapping of the unit hexahedron to the unit tetrahedron.
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bpijk(ξ, η, ζ) =

(
p
i

)(
p− i
j

)(
p− i− j

k

)
(1− ξ − η − ζ)p−i−j−kζkηjξi

=

(
p
i

)(
p− i
j

)(
p− i− j

k

)
(1− α− (1− α)β − (1− α)(1− β)γ)p−i−j−k

· (1− α)k(1− β)kγk(1− α)jβjαi

=

(
p
i

)(
p− i
j

)(
p− i− j

k

)
(1− α)p−i−j−k(1− β)p−i−j−k(1− γ)p−i−j−k

· (1− α)k(1− β)kγk(1− α)jβjαi

=

(
p
i

)
(1− α)p−iαi

(
p− i
j

)
(1− β)p−i−jβj

(
p− i− j

k

)
(1− γ)p−i−j−kγk

= bpi (α)bp−ij (β)bp−i−jk (γ) , (6.60)

leads to an intrinsic factorization via Bernstein base functions, which allow for fast evaluations using
sum factorization [2]. Further, since the pair bp−ij (β)bp−i−jk (γ) spans a Bézier triangle, it is clear
that the multiplication with bpi (α) interpolates between said triangle and a point in space, effectively
spanning a tetrahedron. In order to compute gradients the chain rule is employed with respect to the
Duffy transformation

∇ξbpijk = (Dαξ)−T∇αbpijk , Dαξ =

 1 0 0
−β 1− α 0

(β − 1)γ (α− 1)γ (1− α)(1− β)

 ,
(Dαξ)−T =

1

(1− α)(1− β)

(1− α)(1− β) (1− β)β γ
0 1− β γ
0 0 1

 . (6.61)

We use dual numbers to compute the derivative of each Bernstein base function and construct the
α-gradient

∇αbpijk(α, β, γ) =


bp−ij bp−i−jk

d

dα
bpi

bpi b
p−i−j
k

d

dβ
bp−ij

bpi b
p−i
j

d

dγ
bp−i−jk

 . (6.62)

The Duffy transformation results in the optimal order of traversal of the base functions depicted in
Fig. 6.12. Note that the traversal order agrees with the definitions introduced in Section 5.5.2 and
each oriented face has the same order of traversal as the triangle Fig. 6.5. We relate the base functions
to their respective polytopes using the index triplets.

Observation 6.2 (Tetrahedron base functions)
The polytope of each base function bpijk(ξ, η, ζ) is determined as follows.

• The indices (0, 0, 0), (0, 0, p), (0, p, 0) and (p, 0, 0) represent the respective vertex base functions.

• The first edge is associated with the triplet (0, 0, k) where 0 < k < p, the second with (0, j, 0)
where 0 < j < p and the third with (i, 0, 0) where 0 < i < p. The slated edges are given by
(0, j, p− j) with 0 < j < p, (i, 0, p− i) with 0 < i < p and (i, p− i, 0) with 0 < i < p, respectively.
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ξ

η

ζ

v1

v4

v3

v2

Figure 6.12: Order of traversal of tetrahedral Bézier base functions on the unit tetrahedron. The
traversal order on each face agrees with an orientation of the vertices fijk = {vi, vj , vk} such that
i < j < k. The traversal order on each edge is from the lower index vertex to the higher index vertex.

• The base functions of the first face are given by (0, j, k) with 0 < j < p and 0 < k < p− j. The
second face is associated with the base functions given by the triplets (i, 0, k) with 0 < i < p and
0 < k < p−i. The base functions of the third face are related to the indices (i, j, 0) with 0 < i < p
and 0 < j < p− i. Lastly, the base functions of the slated face are given by (i, j, p− i− j) with
0 < i < p and 0 < j < p− i.

• The remaining indices correspond to the cell base functions.

The Bézier base functions are depicted in Fig. 6.13 on their respective polytopes.

6.3.2 Nédélec elements of the second type

We proceed analogously to the definition of the Nédélec element of the second type for triangles by
constructing a polytopal template on the unit tetrahedron. The template is then used in conjunction
with an H 1-conforming polynomial basis to span the NII -space on the unit tetrahedron.

We define the vertex-edge tangent vector e3 for v1-e12 such that its tangential projection is one on
e12 and zero on all other neighbouring edges. The same vector is the tangent vector associated with
edge e12. Next we define the edge-face vector −e2 for the edge e12 and face f123. On the face f123 we
employ the base vectors e3 and e2 which span the plane on the face. Lastly, we employ the full set of
the Cartesian base vectors for the cell, namely e3, e2 and e1. The template vectors of the remaining
polytopes are derived by covariant Piola transformations of the unit tetrahedron c1234 to equivalent
permutations cijkl and adjusting the sign of the vector to ensure a positive projection on the tangent
vector, compare with Fig. 6.6. The resulting template is given by the sum of the following polytopal
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(a) (b)

(c) (d)

Figure 6.13: Quartic Bézier vertex (a), edge (b), face (c), and cell (c) base functions on the reference
tetrahedron.

v1

v2

v3

v4

Vertex-edge template vectors

Edge template vectors

Edge-face template vectors

Face template vectors

Face-cell template vectors

Cell-Cartesian template vectors

e12

e14

e23

e34

e24

f124

Figure 6.14: Template vectors for the reference tetrahedron on their corresponding polytopes. Only
vectors on the visible sides of the tetrahedron are depicted.
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sets depicted in Fig. 6.14

T1 = {e3, e2, e1} , T2 = {e1 + e2 + e3, e2, e1} , T3 = {e1 + e2 + e3,−e3, e1} ,

T4 = {e1 + e2 + e3,−e3,−e2} , T12 = {e3,−e2,−e1} , T13 = {e2, e3,−e1} ,

T14 = {e1, e3, e2} , T23 = {e2, e1 + e2 + e3,−e1} , T24 = {e1, e1 + e2 + e3, e2} ,

T34 = {e1, e1 + e2 + e3,−e3} , T123 = {e3, e2,−e1} , T124 = {e3, e1, e2} ,

T134 = {e2, e1,−e3} , T234 = {e2, e1, e1 + e2 + e3} , T1234 = {e3, e2, e1} , (6.63)

and reads

T = {T1, T2, T3, T4, T12, T13, T14, T23, T24, T34, T123, T124, T134, T234, T1234} . (6.64)

Theorem 6.6 (Linear independence)
Let U p be an H 1-conforming basis on the unit tetrahedron, then its tensor product with the polytopal
template yields a unisolvent Nédélec element of the second type

N p
II =

{
4⊕
i=1

Vpi ⊗ Ti

}
⊕

⊕
j∈J
Epj ⊗ Tj

⊕
{⊕
k∈K
Fpk ⊗ Tk

}
⊕ {Cp1234 ⊗ T1234} ,

J = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} , K = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)} , (6.65)

where Vpi are the sets of vertex base functions, Epj are the sets of edge base functions, Fpk are the sets
of face base functions and Cp1234 is the set of cell base functions.

Proof. Linear independence of the vectorial base functions is inherited from the linear independence
of the underlying H 1-conforming basis since each base function is multiplied with three linearly inde-
pendent template vectors. Further, the dimension of the basis

dim[U p(Ω)]3 = dim[Pp(Ω)]3 = dimN p
II(Ω) , (6.66)

agrees with the dimension of the Nédélec element of the second type.

Theorem 6.7 (H (curl, V )-conformity)
Under the corresponding Piola transformations, the basis spans an H (curl)-conforming subspace.

Proof. The conformity of a grid composed solely of unit tetrahedrons is H (curl)-conforming due to the
methodology used to construct the polytopal template, namely by an initial definition of a minimal
set of template vectors and permutations of the unit tetrahedron. This is the case since the template
reduces the interface condition from [[trt

∂V p]] = 0 to [[tr∂V〈t, p〉]] = 0 for the non-cell base functions,
which is upheld by the underlying U p-space. Conformity of a general grid is consequently achieved
by employing consistent Piola transformations.

We can now use the polytopal template to define the Bézier-Nédélec element of the second type
for arbitrary powers while inheriting optimal complexity.

Definition 6.9 (Bézier-Nédélec II tetrahedral basis)
We define the base functions on the reference tetrahedron.
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• On the edges the base functions read

e12 : ϑ(ξ, η, ζ) = bp000e3 , ϑ(ξ, η, ζ) = bp00p(e1 + e2 + e3) ,

ϑ(ξ, η, ζ) = bp00ke3 , 0 < k < p ,

e13 : ϑ(ξ, η, ζ) = bp000e2 , ϑ(ξ, η, ζ) = bp0p0(e1 + e2 + e3) ,

ϑ(ξ, η, ζ) = bp0j0e2 , 0 < j < p ,

e14 : ϑ(ξ, η, ζ) = bp000e1 , ϑ(ξ, η, ζ) = bpp00(e1 + e2 + e3) ,

ϑ(ξ, η, ζ) = bpi00e1 , 0 < i < p ,

e23 : ϑ(ξ, η, ζ) = bp00pe2 , ϑ(ξ, η, ζ) = −bp0p0e3 ,

ϑ(ξ, η, ζ) = bp0j,p−je2 , 0 < j < p ,

e24 : ϑ(ξ, η, ζ) = bp00pe1 , ϑ(ξ, η, ζ) = −bpp00e3 ,

ϑ(ξ, η, ζ) = bpi0,p−ie1 , 0 < i < p ,

e34 : ϑ(ξ, η, ζ) = bp0p0e1 , ϑ(ξ, η, ζ) = −bpp00e2 ,

ϑ(ξ, η, ζ) = bpi,p−i,0e1 , 0 < i < p , (6.67)

where the first two base functions on each edge are the vertex-edge base functions.

• The face base functions are given by

f123 : ϑ(ξ, η, ζ) = −bp00ke2 , 0 < k < p ,

ϑ(ξ, η, ζ) = bp0j0e3 , 0 < j < p ,

ϑ(ξ, η, ζ) = bp0j,p−j(e1 + e2 + e3) , 0 < j < p ,

ϑ(ξ, η, ζ) = bp0jke3 , 0 < j < p , 0 < k < p− j ,

ϑ(ξ, η, ζ) = bp0jke2 , 0 < j < p , 0 < k < p− j ,

f124 : ϑ(ξ, η, ζ) = −bp00ke1 , 0 < k < p ,

ϑ(ξ, η, ζ) = bpi00e3 , 0 < i < p ,

ϑ(ξ, η, ζ) = bpi0,p−i(e1 + e2 + e3) , 0 < i < p ,

ϑ(ξ, η, ζ) = bpi0ke3 , 0 < i < p , 0 < k < p− i ,

ϑ(ξ, η, ζ) = bpi0ke1 , 0 < i < p , 0 < k < p− i ,

f134 : ϑ(ξ, η, ζ) = −bp0j0e1 , 0 < j < p ,

ϑ(ξ, η, ζ) = bpi00e2 , 0 < i < p ,

ϑ(ξ, η, ζ) = bpi,p−i,0(e1 + e2 + e3) , 0 < i < p ,

ϑ(ξ, η, ζ) = bpij0e2 , 0 < i < p , 0 < j < p− i ,
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ϑ(ξ, η, ζ) = bpij0e1 , 0 < i < p , 0 < j < p− i ,

f234 : ϑ(ξ, η, ζ) = −bp0j,p−je1 , 0 < j < p ,

ϑ(ξ, η, ζ) = bpi0,p−ie2 , 0 < i < p ,

ϑ(ξ, η, ζ) = −bpi,p−i,0e3 , 0 < i < p ,

ϑ(ξ, η, ζ) = bpij,p−i−je2 , 0 < i < p , 0 < j < p− i ,

ϑ(ξ, η, ζ) = bpij,p−i−je1 , 0 < i < p , 0 < j < p− i , (6.68)

where the first three formulas for each face are the edge-face base functions.

• Finally, the cell base functions read

c1234 : ϑ(ξ, η, ζ) = −bp0jke1 , 0 < j < p , 0 < k < p− j ,

ϑ(ξ, η, ζ) = bpi0ke2 , 0 < i < p , 0 < k < p− i ,

ϑ(ξ, η, ζ) = −bpij0e3 , 0 < i < p , 0 < j < p− i ,

ϑ(ξ, η, ζ) = bpij,p−i−j(e1 + e2 + e3) , 0 < i < p , 0 < j < p− i ,

ϑ(ξ, η, ζ) = bpijke3 ,

0 < i < p ,

0 < j < p− i ,
0 < k < p− i− j

,

ϑ(ξ, η, ζ) = bpijke2 ,

0 < i < p ,

0 < j < p− i ,
0 < k < p− i− j

,

ϑ(ξ, η, ζ) = bpijke1 ,

0 < i < p ,

0 < j < p− i ,
0 < k < p− i− j

, (6.69)

where the first four formulas are the face-cell base functions.

A depiction of quartic base functions on their respective polytopes is given in Fig. 6.15.

6.3.3 Nédélec elements of the first type

In order to improve the convergence rates and recover lost precision over curl terms we consider
the Nédélec space of the first type, where the polynomial space is augmented with a minimal set of
curl-type base functions, such that the kernel of the next polynomial space in the exact sequence
is complete and of degree p instead of degree p − 1. The construction is achieved by an explicit
split of the higher order base functions between the kernel and the part orthogonal to the kernel
N p
I \ N 0

I = ([ker(curl) ∩ N p
I ]⊕ [ker⊥(curl) ∩ N p

I ]) \ N 0
I . We start by taking the gradients of the base

functions of an H 1-conforming polynomial space U p+1 while excluding vertex base functions

ϑi(ξ, η, ζ) = ∇ξnp+1
i . (6.70)

The latter results in (p + 3)(p + 2)(p + 1)/6 − 4 base functions. We complete the space of constants
with the six lowest order Nédélec base functions of the first type (N 0

I ) from Eq. (5.61). Next we need
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(a) (b) (c)

(d) (e) (f)

Figure 6.15: Quartic vertex-edge (a), edge (b), edge-face (c), face (d), face-cell (e) and pure cell (f)
base functions of the Nédélec element of the second type on the reference tetrahedron.
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to augment the space, such that the curl of the space has the same polynomial degree as its kernel.
We complete the face base functions using the polytopal template (see Fig. 6.16) of the triangle with
the lowest tetrahedral Nédélec base functions (see Eq. (5.61)),

T1 = {ϑI4,ϑI5,ϑI6} , T2 = {−ϑI2,−ϑI3,ϑI6} , T3 = {−ϑI3,−ϑI5} ,

T12 = {ϑI4 − ϑI2,ϑI5 − ϑI3} , T13 = {ϑI1 + ϑI4,ϑ
I
6 − ϑI3} , T14 = {ϑI1 + ϑI5,ϑ

I
2 + ϑI6} ,

T23 = {ϑI1 − ϑI2,ϑI6 − ϑI5} , T24 = {ϑI1 − ϑI3,ϑI4 + ϑI6} , T34 = {ϑI2 − ϑI3,ϑI4 − ϑI5} ,

T123 = {ϑI1 − ϑI2 + ϑI4} , T124 = {ϑI1 − ϑI3 + ϑI5} , T134 = {ϑI2 − ϑI3 + ϑI6} ,

T234 = {ϑI4 − ϑI5 + ϑI6} , (6.71)

such that the full polytopal template is given by

T = {T1, T2, T3, T12, T13, T14, T23, T24, T34, T123, T124, T134, T234} . (6.72)

For the non-gradient cell functions we use the construction introduced in [5]

Rp =

{
(p+ 1)bpi−ej∇λj −

ij
p+ 1

∇ξbp+1
i | i ∈ Io

}
, (6.73)

where Io is the set of multi-indices of cell functions, ej is the unit multi-index with the value one at
position j and ij is the value of the i-multi-index at position j. Note that only the first term in the
cell functions is required to span the next space in the sequence due to

curl

(
[p+ 1]bpi−ej∇ξλj −

ij
p+ 1

∇ξbp+1
i

)
= curl([p+ 1]bpi−ej∇ξλj) . (6.74)

The term is defined using the surface normals and as such, can be viewed as a combination of surface
and cell templates. However, without the added gradient the function would not belong to [Pp]3 ⊕
ξ× [P̃ ]3 and consequently, would not be part of the Nédélec space. Therefore, a general methodology
would be to use the template and modify it to fit in [Pp]3 ⊕ ξ× [P̃ ]3. By limiting Rp to Rp∗ such that
Rp∗ contains only the surface permutations with ∇λj = ej and the cell permutations with j ∈ {1, 2},
one retrieves the necessary base functions. The sum of the lowest order Nédélec base functions, the
template base functions, the gradient base functions, and the non-gradient cell base functions yields
exactly (p+ 4)(p+ 3)(p+ 1)/2, thus satisfying the required dimensionality of the Nédélec space. The
complete space reads

N p
I =N 0

I ⊕

{⊕
i∈I
∇Ep+1

i

}
⊕

⊕
j∈J
∇Fp+1

j

⊕∇Cp+1
1234 ⊕

{
3⊕

k=1

Vpk ⊗ Tk

}
⊕

{⊕
i∈I
Epi ⊗ Ti

}

⊕

⊕
j∈J
Fpj ⊗ Tj

⊕Rp+1
∗ ,

I = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} ,

J = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}
. (6.75)

Theorem 6.8 (Linear independence)
The set of base functions given by the lowest order Nédélec element of the first type, the gradients of the
H 1-conforming base functions in U p+1 (without vertex base functions), the tensor product between U p

and the polytopal template vectors and the non-gradient cell basis Rp+1
∗ yields a linearly independent

basis for N p
I .
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v1

v2

v3

v4

Vertex-face template vectors

Edge-face template vectors

Face template vectors

e12

e14

e23

e34

e24

f124

(a) (b) (c)

Figure 6.16: Template vectors on the reference tetrahedron for base functions orthogonal to the kernel
of the curl operator (a). Only part of the template is depicted. Visualization of the vertex (b), edge
(c) and face (d) template vectors for the first face.
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Proof. The partition of unity property of both Bézier and Lagrange base functions guarantees the
linear independence of the gradients between themselves since∑

i

ci∇ξni = ∇ξ
∑

ci ni 6= 0 , (6.76)

if not all constants ci are equal to zero. The gradients are linearly independent of the lowest order
Nédélec base functions since their tangential traces on edges are at least linear, whereas the tangential
traces of the lowest order base functions are constant on each edge. The template base functions are
linearly independent of the edge base functions since they have zero tangential traces on edges. The
linear independence of the face functions follows analogously to the proof for triangles, since their
traces are non-vanishing only on their respective faces and vanish for all other faces. The construction
and proof of linear independence of the non-gradient cell base functions is found in [5].

Theorem 6.9 (H (curl, V )-conformity)
The constructed element on the reference domain is conforming under covariant Piola mappings to
the physical domain of the base functions and contravariant Piola mappings of their respective curls.

Proof. The lowest order Nédélec base functions are H (curl)-conforming by their respective degrees of
freedom. The gradients of U p+1 are conforming by the exact sequence property, see Fig. 4.1. The
polytopal template of the face functions is built using the lowest order Nédélec base functions, thus
ensuring its conformity under covariant Piola mappings onto the physical domain when a consistent
H 1-conforming subspace U p+1 basis is used to construct the underlying tensor products. The non-
gradient cells are composed of cell gradients and the scaling of a surface vector on its respective surface
and as such, are traceless.

Here, the Bézier basis is used to construct the higher order Nédélec base functions of the first type.

Definition 6.10 (Bézier-Nédélec I tetrahedral basis)
The base functions are defined on the reference tetrahedron.

• For the edges we use the lowest order base functions from Eq. (5.61). The remaining edge base
functions are given by the gradients

e12 : ϑ(ξ, η, ζ) = ϑI1 ,

ϑ(ξ, η, ζ) = ∇ξbp+1
00k , 0 < k < p+ 1 ,

e13 : ϑ(ξ, η, ζ) = ϑI2 ,

ϑ(ξ, η, ζ) = ∇ξbp+1
0j0 , 0 < j < p+ 1 ,

e14 : ϑ(ξ, η, ζ) = ϑI3 ,

ϑ(ξ, η, ζ) = ∇ξbp+1
i00 , 0 < i < p+ 1 ,

e23 : ϑ(ξ, η, ζ) = ϑI4 ,

ϑ(ξ, η, ζ) = ∇ξbp+1
0j,p+1−j , 0 < j < p+ 1 ,

e24 : ϑ(ξ, η, ζ) = ϑI5 ,

ϑ(ξ, η, ζ) = ∇ξbp+1
i0,p+1−i , 0 < i < p+ 1 ,
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e34 : ϑ(ξ, η, ζ) = ϑI6 ,

ϑ(ξ, η, ζ) = ∇ξbp+1
00k , 0 < i < p+ 1 . (6.77)

• On faces we employ both template base functions and gradients

f123 : ϑ(ξ, η, ζ) = bp000ϑ
I
4 ,

ϑ(ξ, η, ζ) = −bp00pϑ
I
2 ,

ϑ(ξ, η, ζ) = bp00k(ϑ
I
4 − ϑI2) , 0 < k < p ,

ϑ(ξ, η, ζ) = bp0j0(ϑI1 + ϑI4) , 0 < j < p ,

ϑ(ξ, η, ζ) = bp0j,p−j(ϑ
I
1 − ϑI2) , 0 < j < p ,

ϑ(ξ, η, ζ) = bp0jk(ϑ
I
1 − ϑI2 + ϑI4) , 0 < j < p , 0 < k < p− j ,

ϑ(ξ, η, ζ) = ∇ξbp+1
0jk , 0 < j < p+ 1 , 0 < k < p+ 1− j ,

f124 : ϑ(ξ, η, ζ) = bp000ϑ
I
5 ,

ϑ(ξ, η, ζ) = −bp00pϑ
I
3 ,

ϑ(ξ, η, ζ) = bp00k(ϑ
I
5 − ϑI3) , 0 < k < p ,

ϑ(ξ, η, ζ) = bpi00(ϑI1 + ϑI5) , 0 < i < p ,

ϑ(ξ, η, ζ) = bpi0,p−i(ϑ
I
1 − ϑI3) , 0 < i < p ,

ϑ(ξ, η, ζ) = bpi0k(ϑ
I
1 − ϑI3 + ϑI5) , 0 < i < p , 0 < k < p− i ,

ϑ(ξ, η, ζ) = ∇ξbp+1
i0k , 0 < i < p+ 1 , 0 < k < p+ 1− i ,

f134 : ϑ(ξ, η, ζ) = bp000ϑ
I
6 ,

ϑ(ξ, η, ζ) = −bp0p0ϑ
I
3 ,

ϑ(ξ, η, ζ) = bp0j0(ϑI6 − ϑI3) , 0 < j < p ,

ϑ(ξ, η, ζ) = bpi00(ϑI2 + ϑI6) , 0 < i < p ,

ϑ(ξ, η, ζ) = bpi,p−i,0(ϑI2 − ϑI3) , 0 < i < p ,

ϑ(ξ, η, ζ) = bpij0(ϑI2 − ϑI3 + ϑI6) , 0 < i < p , 0 < j < p− i ,

ϑ(ξ, η, ζ) = ∇ξbp+1
ij0 , 0 < i < p+ 1 , 0 < j < p+ 1− i ,

f234 : ϑ(ξ, η, ζ) = bp00pϑ
I
6 ,

ϑ(ξ, η, ζ) = −bp0p0ϑ
I
5 ,

ϑ(ξ, η, ζ) = bp0j,p−j(ϑ
I
6 − ϑI5) , 0 < j < p ,

ϑ(ξ, η, ζ) = bpi0,p−i(ϑ
I
4 + ϑI6) , 0 < i < p ,
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ϑ(ξ, η, ζ) = bpi,p−i,0(ϑI4 − ϑI5) , 0 < i < p ,

ϑ(ξ, η, ζ) = bpij,p−i−j(ϑ
I
4 − ϑI5 + ϑI6) , 0 < i < p , 0 < j < p− i ,

ϑ(ξ, η, ζ) = ∇ξbp+1
ij,p−i.j , 0 < i < p+ 1 , 0 < j < p+ 1− i . (6.78)

• The cell base functions read

c1234 : ϑ(ξ, η, ζ) = (p+ 2)bp+1
i−1,jke1 −

i

p+ 2
∇ξbp+2

ijk ,

0 < i < p+ 2 ,

0 < j < p+ 2− i ,
0 < k < p+ 2− i− j

,

ϑ(ξ, η, ζ) = (p+ 2)bp+1
i,j−1,ke2 −

j

p+ 2
∇ξbp+2

ijk ,

0 < i < p+ 2 ,

0 < j < p+ 2− i ,
0 < k < p+ 2− i− j

,

ϑ(ξ, η, ζ) = (p+ 2)bp+1
ij0 e3 −

1

p+ 2
∇ξbp+2

ij1 ,
0 < i < p+ 2 ,

0 < j < p+ 2− i ,

ϑ(ξ, η, ζ) = ∇ξbp+1
ijk ,

0 < i < p+ 1 ,

0 < j < p+ 1− i ,
0 < k < p+ 1− i− j

. (6.79)

A depiction of the higher order base functions on the reference tetrahedron is given in Fig. 6.17.
The lowest order base functions are visualized in Fig. 5.11.

Remark 6.5
Unlike in all previous constructions, the non-gradient cells functions employed here do not allow for
a straight-forward algorithm with optimal complexity as they combine two independent Bernstein base
functions.

6.4 Embedding of boundary conditions

The degrees of freedom in [30] commute between the continuous and discrete spaces. As such, they
allow to exactly satisfy the consistent coupling condition [27]. We note that the functionals can be
viewed as a hierarchical system of Dirichlet boundary problems. In the case of hierarchical base
functions [110], they can be solved independently. However, here the boundary value of each polytope
is required in advance. In other words, one must first solve the problem for vertices, then for edges,
afterwards for faces, and finally for the cell. In our case the degrees of freedom for the cell are irrelevant
since a cell is never part of the boundary.

Remark 6.6
In the hp-FEA software Rayse, vertices, edges and faces represent finite elements on their own. Their
respective Dirichlet boundary problems are solved hierarchically and independently of the actual finite
elements (being triangles in two dimensions and tetrahedra in three dimensions).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.17: Gradients of quartic Bézier edge (a), face (b) and cell (c) base functions on the reference
tetrahedron. Cubic non-gradient vertex-face (d), edge-face (e) and face (f) base functions. The first
three cell base functions (g-i) for the quadratic element.
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6.4.1 Boundary vertices

We start with the vertices. The finite element mesh identifies each vertex with a tuple of coordinates.
It suffices to evaluate the displacement field at the vertex

udi = ũ

∣∣∣∣
xi

. (6.80)

If the field is vectorial, each component is evaluated at the designated vertex. The boundary conditions
of the microdistortion field are associated with tangential projections and as such do not have vertex-
type degrees of freedom. This is the case since a vertex does not define a unique tangential plane.

6.4.2 Boundary edges

The edge functional for the H 1-conforming subspace Eq. (6.21) can be reformulated for a reference
edge on a unit domain α ∈ [0, 1]. We parametrize the edge via

x(α) = (1− α)x1 + αx2 . (6.81)

As such, the following relation exists between the unit parameter and the arc-length parameter

t =
d

dα
x = x2 − x1 , ds = ‖dx‖ = ‖x2 − x1‖dα = ‖t‖dα . (6.82)

By the chain rule we find

du

ds
=

du

dα

dα

ds
= ‖t‖−1 du

dα
, (6.83)

for some function u. On edges, the test and trial functions are Bernstein polynomials parametrized by
the unit domain. The function representing the boundary condition ũ(x) however, is parametrized by
the Cartesian coordinates of the physical space. We find its derivative with respect to the arc-length
parameter by observing

d

ds
ũ = 〈 d

ds
x, ∇xũ〉 . (6.84)

The derivative of the coordinates with respect to the arc-length is simply the normed tangent vector

d

ds
x =

dx

dα

dα

ds
= ‖t‖−1t . (6.85)

Consequently, the edge boundary condition is given by∫
si

∂qj
∂s

∂u

∂s
ds =

∫ 1

0

(
‖t‖−1 dqj

dα

)(
‖t‖−1 du

dα

)
‖t‖ dα

=

∫ 1

0

(
‖t‖−1 dqj

dα

)
〈‖t‖−1t, ∇xũ〉‖t‖ dα =

∫
si

∂qj
∂s

∂ũ

∂s
ds ∀ qj ∈ Pp(α) , (6.86)

and can be solved by assembling the stiffness matrix of the edge and the load vector induced by the
prescribed displacement field ũ, representing volume forces

kij =

∫ 1

0

(
‖t‖−1 dni

dα

)(
‖t‖−1 dnj

dα

)
‖t‖ dα , fi =

∫ 1

0
〈‖t‖−1t, ∇xũ〉

(
‖t‖−1 dni

dα

)
‖t‖dα . (6.87)
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Next we consider the Dirichlet boundary conditions for the microdistortion with the Nédélec space
of the second type NII . The problem reads∫

si

qj〈t, p〉ds =

∫
si

qj〈t, ∇xũ〉 ds ∀ qj ∈ Pp(si) . (6.88)

Observe that on the edge the test functions qj are chosen to be the Bernstein polynomials. Further,
by the polytopal template construction of the NII -space there holds 〈t, θi〉|s = ni(α). As such, the
components of the corresponding stiffness matrix and load vectors read

kij =

∫ 1

0
ni nj‖t‖ dα , fi =

∫ 1

0
ni〈t, ∇xũ〉‖t‖ dα . (6.89)

Note that in order to maintain the exactness property, the degree of the Nédélec spaces N p
I ,N

p
II is

always one less than the degree of the subspace U p+1.
Lastly, we consider the Nédélec element of the first type. The problem is given by∫

si

qj〈t, p〉 ds =

∫
si

qj〈t, ∇xũ〉 ds ∀ qj ∈ Pp(si) . (6.90)

We define

qi =
d

dα
np+1
i , (6.91)

and observe that on the edges the Nédélec base functions yield

〈t, θj〉 = 〈t, ∇xnp+1
j 〉 =

d

dα
np+1
j . (6.92)

Therefore, the components of the stiffness matrix and the load vector result in

kij =

∫ 1

0

dnp+1
i

dα

dnp+1
j

dα
‖t‖ dα , fi =

∫ 1

0

dnp+1
i

dα
〈t, ∇xũ〉‖t‖ dα . (6.93)

6.4.3 Boundary faces

We start with the face boundary condition for the H 1-conforming subspace. The problem reads∫
Ai

〈∇fqj , ∇fu〉dA =

∫
Ai

〈∇fqj , ∇f ũ〉dA ∀ qj ∈ Pp(Ai) . (6.94)

The surface is parametrized by the barycentric mapping from the unit triangle Γ = {(ξ, η) ∈ [0, 1]2 | ξ+
η ≤ 1}. The surface gradient is given by

∇f ũ = ∇xũ−
1

‖n‖2
〈∇xũ, n〉n , (6.95)

where n is the surface normal. The surface gradient can also be expressed via

∇fu = ei∂xi u = gβ∂ξβu , β ∈ {1, 2} , (6.96)
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where ∂xβ are partial derivates with respect to the physical coordinates, ∂ξβ are partial derivatives with

respect to the reference domain and gβ are the contravariant base vectors. Further, the Einstein
summation convention over corresponding indices is implied. The covariant base vectors are given by

gβ =
∂x

∂ξβ
. (6.97)

One can find the contravariant vector orthogonal to the surface by

g3 = n = g1 × g2 . (6.98)

We define the mixed transformation matrix

T =
[
g1 g2 g3

]
. (6.99)

Due to the orthogonality relation 〈gi, gj〉 = δ ji the transposed inverse of T is clearly

T−T =
[
g1 g2 g3

]
. (6.100)

Thus, we can compute the surface gradient of functions parametrized by the reference triangle via

∇fu =
[
g1 g2

]
∇ξu = T−T∗ ∇ξu , T−T∗ =

[
g1 g2

]
. (6.101)

Further, there holds the following relation between the physical surface and the reference surface

dA = ‖n‖dΓ = ‖g3‖dΓ =
√
〈g1 × g2, g3〉dΓ =

√
detT dΓ . (6.102)

Consequently, we can write the components of the stiffness matrix and load vector as

kij =

∫
Γ
〈T−T∗ ∇ξni, T−T∗ ∇ξnj〉

√
detT dΓ ,

fi =

∫
Γ
〈T−T∗ ∇ξni, ∇xũ− (detT )−1〈∇xũ, n〉n〉

√
detT dΓ =

∫
Γ
〈T−T∗ ∇ξni, ∇xũ〉

√
detT dΓ ,

(6.103)

with the orthogonality 〈gβ, n〉 = 0 for β ∈ {1, 2}.
In order to embed the consistent coupling boundary condition to the microdistortion we deviate

from the degrees of freedom defined in Section 6.1.4 and apply the simpler H (divR)-projection

〈qi, p, 〉H (divR) = 〈qi, ∇f ũ〉H (divR) ∀qi ∈ N p
I (A) or ∀qi ∈ N p

II(A) . (6.104)

Due to ker(curl) = ∇H 1 the problem reduces to∫
Ai

〈qj , p〉+ 〈div(Rqj), div(Rp)〉dA =

∫
Ai

〈qj , ∇f ũ〉dA ∀qj ∈ N p
I (A) or ∀qj ∈ N p

II(A) .

(6.105)

We express the co- and contravariant Piola transformation from the two-dimensional reference domain
to the three-dimensional physical domain using

θi = T−T∗ ϑi , divxRθi =
1√

detT
divξRϑi . (6.106)

Thus, the stiffness matrix components and load vector components read

kij =

∫
Γ
〈T−T∗ ϑi, T

−T
∗ ϑj〉+ 〈(detT )−1/2 divξRϑi, (detT )−1/2 divξRϑj〉

√
detT dΓ ,

fi =

∫
Γ
〈T−T∗ ϑi, ∇xũ− (detT )−1〈∇xũ, n〉n〉

√
detT dΓ =

∫
Γ
〈T−T∗ ϑi, ∇xũ〉

√
detT dΓ , (6.107)

where we again make use of the orthogonality between the surface tangent vectors and its normal
vector.
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6.5 Assembly of element matrices

6.5.1 Numerical quadrature

Although the base functions are expressed using (α, β, γ) the domain is either the reference triangle or
the reference tetrahedron, which require fewer quadrature points than their counterparts given by the
Duffy transformation (quad or hexahedron). As such, we employ a mixture of the efficient quadrature
points introduced in [34, 51, 84, 108, 109] for triangles and tetrahedra, where we avoid quadrature
schemes with points on the edges or faces of the reference domain due to the recursion formula of the
Bernstein polynomials Eq. (6.11). The quadrature points are mapped to their equivalent expression
in (α, β, γ). Consequently, the integration over the reference triangle or tetrahedron reads∫

Ae

f(x, y) dA =

∫
Γ
(f ◦ (ξ, η))(α, β)|detJ |dΓ ,∫

Ve

f(x, y, z) dV =

∫
Ω

(f ◦ (ξ, η, ζ))(α, β, γ)|detJ |dΩ . (6.108)

6.5.2 Schur complement

Unlike in standard finite elements, higher order finite elements often entail cell base functions, also
known as bubble functions. The latter are not directly connected to neighbouring elements and as
such, can be statically condensed using the Schur complement method. We proceed by partitioning
the field into boundary values ub and cell values uc, thus resulting in the discrete vectors and stiffness
matrix

ude =

[
ub
uc

]
, fde =

[
fb
fc

]
, Ke =

[
Kbb Kbc

Kcb Kcc

]
. (6.109)

Consequently, we can express the discrete values of the cell base functions via

uc = K−1
cc (fc −Kcbub) . (6.110)

Inserting the latter in the upper row of the system of equations yields

Kbbub +KbcK
−1
cc (fc −Kcbub) = fb ⇐⇒ (Kbb −KbcK

−1
cc Kcb)ub = fb −KbcK

−1
cc fc . (6.111)

Thus, the condensed stiffness matrix and load vector read

K∗e = Kbb −KbcK
−1
cc Kcb , f∗e = fb −KbcK

−1
cc fc . (6.112)

Two main advantages of the procedure are discussed in [110]. Firstly, the global matrix has a much
smaller dimension. Secondly, the condensed matrix is usually better conditioned. Both combined lead
to faster and more accurate solutions. The discrete values of the cell base functions can be recovered
after the global solution step via Eq. (6.110) and used for internal interpolation.

Remark 6.7
In case of both linear elasticity and the relaxed micromorphic continuum the bilinear forms are sym-
metric positive definite. Consequently, the computation of K−1

cc in the hp-FEA software Rayse is
achieved using the in-place Cholesky decomposition (LLT ).
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7 Numerical examples

A common method for testing the efficiency of finite elements is by constructing artificial analytical
solutions. We define the analytical displacement field ũ and analytical microdistortion field P̃ and
compute the resulting residuum by inserting them into the corresponding strong forms. Thus, the
corresponding volume forces f and micro-moments M are retrieved. Prescribing the entire boundary
with the appropriate Dirichlet boundary conditions ∂V = AD and applying the extracted volume
forces and micro-moments guarantees the defined fields to be the analytical solutions. This is clearly
the case since they equilibrate the problem and by the Lax-Milgram theorem, the solution is unique.

In the following we test the finite element formulations with both artificial analytical solutions
and analytical solutions derived for infinite domains. Specifically the behaviour of the approximations
in comparison to the analytical solutions for infinite domains is an indicator for appropriate choices
of finite elements, as these solutions represent the intrinsic behaviour of the model. In addition, we
test the ability of the finite element formulations to correctly iterate between micro Cmicro and macro
Cmacro stiffnesses as described by the characteristic length parameter Lc. A fitting of the Lc parameter
for an homogenized body with an underlying discrete microstructure is presented in the plane strain
model.

The majority of convergence results are presented by measuring the error in the Lebesgue norm
over the domain

‖ũ− uh‖L2 =

√∫
V
‖ũ− uh‖2 dV , ‖P̃ − P h‖L2 =

√∫
V
‖P̃ − P h‖2 dV , (7.1)

in which context {ũ, P̃ } and {uh,P h} are the analytical and approximate subspace solutions, respec-
tively.

7.1 Antiplane shear

7.1.1 Exponential convergence for trigonometric solutions

We start testing the convergence rates by constructing an artificial analytical solution for antiplane
shear. The domain is defined to be the axis-symmetric square A = [−10, 10]2 with a complete Dirichlet
boundary sD = ∂A. The displacement and microdistortion fields are chosen to be

ũ = sin(x) + cos(y) , p̃ = ∇ũ =

[
cos(x)
− sin(y)

]
, (7.2)

and are embedded into the Dirichlet boundary. By inserting the latter into the strong forms in
Problem. 3.2.2 we extract the corresponding force and micro-moment fields

f = 0 , m = µmicro

[
cos(x)
− sin(y)

]
, (7.3)

where for simplicity, we set all material constants to one µe = µmicro = µmacro = Lc = 1. The behaviour
of the displacement u and the microdistortion p is depicted in Fig. 7.2. We note that a reasonable
visual approximation is first achieved with 940 linear elements or 66 cubic elements. The convergence
results of the respective fields are given in Fig. 7.1. We note that both Nédélec element formulations
yield the same convergence rates. This is to be expected as NI is enriched in its solenoidal part (in
comparison to NII) and the solution is completely irrotational. As such, the added base functions do
not improve the solution and yield zero. The main advantage of higher order finite elements becomes
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Figure 7.1: Convergence of the lower order elements under h-refinement and of the higher order
elements under p-refinement over p ∈ {3, 4, 5, 6, 7} with 66 elements. The error in the displacement is
given in (a) and the error in the microdistortion in (b).

apparent when considering the exponential convergence of Bp × N p−1
I and Bp × N p−1

II . In terms of
amount of degrees of freedom, the refinement of the order of an element, known as p-refinement or
p-adaption, allows to more efficiently approximate the exact solution. In comparison, decreasing the
element size (h-refinement) is bound to an algebraic rate.

In order to observe the difference in convergence between the Nédélec element of the first type and
Nédélec element of the second type we require a solenoidal field in the microdistortion. We define the
domain A = [−2, 2]2. The prescribed displacement and microdistortion fields read

ũ =
(x2 − 4)(y2 − 4)

4
, p̃ = sin([x2 − 4][y2 − 4])

[
y
−x

]
, (7.4)

and are embedded on the Dirichlet boundary sD = ∂A. Clearly, p̃ cannot be given by some gradient
of a scalar potential. The corresponding force and micro-moment are derived for the same material
constants as in the previous example (all set to one)

f =
1

2
(4xy(y2 − 4) cos([x2 − 4][y2 − 4])− 4xy(x2 − 4) cos([x2 − 4][y2 − 4])− x2 − y2 + 8) ,

m =
1

2

[
8x2y

(
x2 − 4

) (
y2 − 4

)
sin
((
x2 − 4

) (
y2 − 4

))
− 8x2y cos

((
x2 − 4

) (
y2 − 4

))
− x

(
y2 − 4

)
−8x3

(
y2 − 4

)2
sin
((
x2 − 4

) (
y2 − 4

))
− 8xy2

(
x2 − 4

) (
y2 − 4

)
sin
((
x2 − 4

) (
y2 − 4

)) · · ·
+8y3

(
x2 − 4

)2
sin
((
x2 − 4

) (
y2 − 4

))
− 16y

(
x2 − 4

)
cos
((
x2 − 4

) (
y2 − 4

))
+8xy2 cos

((
x2 − 4

) (
y2 − 4

))
+ 16x

(
y2 − 4

)
cos
((
x2 − 4

) (
y2 − 4

)) · · ·

+4y sin
((
x2 − 4

) (
y2 − 4

))
−4x sin

((
x2 − 4

) (
y2 − 4

))
− y

(
x2 − 4

)] . (7.5)

The displacement and microdistortion fields are depicted in Fig. 7.3. Considering the left edge of the
domain, it is apparent that only the quadratic B2 × N 1

I -formulation deals with boundary conditions
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.2: Depiction of the displacement field (a)-(c) and the microdistortion field (d)-(f) for the
linear element under h-refinement with 66, 244 and 940 elements, corresponding to 154, 530 and 1962
degrees of freedom. The p-refinement of the displacement field on the coarsest mesh of 66 elements is
visualized in (g)-(l) with p ∈ {2, 3, 4}, corresponding to 372, 845 and 1534 degrees of freedom.
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(a) (b) (c)

(d) (e) (f)

Figure 7.3: Depiction of the displacement field (a)-(c) and the microdistortion field (d)-(f) using 246
elements of the L1 ×N 0

I -, L2 ×N 1
II - and B2 ×N 1

I -formulations.

correctly. This is the case due to B2×N 1
I being the lowest order formulation that introduces cell base

functions for the microdistortion, thus allowing to better separate the behaviour of its tangential and
normal components on the boundary. Despite introducing a non-gradient solution for the microdis-
tortion p the convergence rates given in Fig. 7.4 do not improve when moving from the NII - to the
NI -formulation. Recalling Lemma 5.8 and Remark 5.5 it is clear that the s-regularity of the current
problem is s = 1.

7.1.2 Normal-discontinuous microdistortion

Nédélec elements are tangentially continuous and as such, allow for a discontinuous normal component
at an interface between elements. This feature is a characteristic of the larger space H (curl) ⊃ H 1

and must be captured correctly by the approximating discrete subspace. Consequently, we test the
validity of the proposed finite elements by constructing an artificial analytical solution with a jump
in the normal component of the microdistortion and measure the resulting convergence rates. The
analytical solution is defined as

ũ =

(1− y2)(ex+1 − 1) for x ≤ 0

(1− y2)(e1−x − 1) for x > 0
, p̃ = ∇ũ =



[(
1− y2

)
ex+1

2y
(
1− ex+1

)] for x ≤ 0

[(
y2 − 1

)
e1−x

2y
(
1− e1−x)] for x > 0

. (7.6)
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Figure 7.4: Convergence of the displacement (a) and the microdistortion (b) under h-refinement.

The fields are embedded on the Dirichlet boundary sD = ∂A of the axis-symmetric domain A =
[−1, 1]2. The jump of the normal component is clearly at the interface x = 0. The corresponding
micro-moment vector induced by the strong form reads

m =



[(
1− y2

)
ex+1

2y
(
1− ex+1

)] for x ≤ 0

[ (
y2 − 1

)
e1−x

2y (ex − e) e−x
]

for x > 0

, (7.7)

where all the material constants are set to one. Due to p̃ = ∇ũ no body forces occur, compare
with Eq. (3.47a). The jump in the normal component is depicted in Fig. 7.5. The linear formulation
captures the solution well for a fine enough discretization. On the coarsest mesh, first the cubic
formulation yields a satisfactory approximation of the displacement yield. This can be observed when
comparing the top of the displacement fields at (x, y) = (0, 0) where quadratic formulation yields
a faulty sharp edge. The convergence rates are given in Fig. 7.6. Clearly, the optimal convergence
rate is maintained across the various polynomial formulations and even exponential convergence is
observed for pure p-refinement. In comparison, a formulation with p ∈ [H 1(A)]2 would impose the
higher regularity C 0 on the microdistortion. This can be done using H 1-conforming finite elements
for the formulation of the microdistortion p and leads to suboptimal convergence rates, see [101].

7.1.3 Motz’s problem

The application of p-refinement leads to exponential convergence when the analytical solution is
smooth enough. However, in practice, many geometries and load cases induce singularities in the
behaviour of the solution, such that exponential convergence is lost. The hp-finite element method
can regain exponential convergence by applying simultaneous h- and p-refinements. The h-refinement
is applied to the area of the domain where the singularity arises, thus localizing it further. At the
same time, p-refinement is applied to areas of the domain where highly smooth solutions are expected.
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(a) (b) (c)

(d) (e) (f)

Figure 7.5: Displacement field using 1090 linear elements (a), 32 quadratic elements (b) and 32
cubic elements (c), corresponding to 1090, 258 and 530 degrees of freedom, respectively. The related
microdistortion fields are depicted in (d)-(f).
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Figure 7.6: Displacement (a) and microdistortion (b) fields of the discontinuous-normal problem and
convergence rates under h-, p-, and hp-refinements (b).
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sD1 : ũ = 0

sD2 : ũ = 500

sN : 〈∇u, n〉 = 0

sN

Figure 7.7: Domain and boundary conditions of Motz’s problem.

In the following we consider Motz’s problem, which is a common benchmark for hp-refinement
techniques. The domain is defined to be A = [−1, 1]× [0, 1] and the boundary is split as follows

sD1 = [−1, 0]× {0} , sD2 = {1} × [0, 1] , sN = ∂A \ (sD1 ⊕ sD1) , (7.8)

such that on the Dirichlet boundary the displacement reads

ũ

∣∣∣∣
sD1

= 0 , ũ

∣∣∣∣
sD2

= 500 . (7.9)

A depiction of the problem is given in Fig. 7.7. The displacement field provokes a singularity at
(x, y) = (0, 0) where the gradient of u approaches infinity [63]. The analytical solution of Motz’s
problem is given by the infinite series

u(r, ϕ) =
∞∑
j=0

djr
j+1/2 cos([j + 1/2]ϕ) , r =

√
x2 + y2 , ϕ = arctan(y/x) , (7.10)

where di are the true expansion coefficients. Here we make use of the numerically accurate expansion
coefficients derived in [63] to validate our results.

Note that Motz’s problem is defined for the Laplace equation ∆u = 0 and not the relaxed micro-
morphic model. However, as shown in Section 3.2.3, it suffices to set the characteristic length to zero
Lc = 0 in order to obtain similar behaviour.

The employed meshes are depicted im Fig. 7.8. The comparison follows by using both global h-
refinement on structured meshes and local h-refinement at the point of the singularity on unstructured
meshes. Due to the complex nature of the analytical solution we deviate from the Lebesgue norm and
measure convergence by sampling approximatively 1500 points throughout the domain

e =

√√√√≈1500∑
i=1

(ũ− u)2

∣∣∣∣
xi

. (7.11)

The solutions of the displacement and microdistortion fields are depicted in Fig. 7.9 (a)-(b). The
singularity is clearly illustrated by the intensity of the microdistortion. The convergence rates are
given in Fig. 7.9 (c). Due to the singularity, using either linear or quadratics elements under h-
refinement leads only to linear convergence. Interestingly, quadratic convergence is shown for p-
refinement. Optimal exponential convergence is recovered by applying the localized h-refinement at
the singularity and simultaneously increasing the polynomial order of the elements.
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(a) (b) (c)

(d) (e) (f)

Figure 7.8: Global h-refinement of the structured mesh (16, 400 and 10000 elements) (a)-(c) and local
h-refinement of the unstructured mesh (32, 52 and 80 elements) at the singularity point (d)-(f).
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Figure 7.9: Displacement (a) and microdistortion (b) fields of the Motz problem and convergence rates
under h-, p-, and hp-refinements (b).
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7.1.4 Gradient microdistortion

In Theorem 4.6 we explored the conditions for which the microdistortion reduces to a gradient field.
By defining the micro-moment with a scalar potential

m = ∇100− x2 − y2

10
= −1

5

[
x
y

]
, (7.12)

and constructing an analytical solution for the displacement field

ũ = sin

(
x2 + y2

5

)
, (7.13)

we can recover the analytical solution of the microdistortion

p =
1

µe + µmicro
(m + µe∇ũ) =

1

2

(
−1

5

[
x
y

]
+

2

5

[
x cos([x2 + y2]/5)
y cos([x2 + y2]/5)

])

=
1

5

[
x cos([x2 + y2]/5)
y cos([x2 + y2]/5)

]
− 1

10

[
x
y

]
, (7.14)

where for simplicity we set all material constants to one. We note that the microdistortion is not
equal to the gradient of the displacement field and as such, their tangential projections on an arbitrary
boundary are not automatically the same. However, for both the gradient of the displacement field
and the micro-moment is the tangential projection on the boundary of the circular domain A = {x ∈
R2 | ‖x‖ ≤ 10} equal to zero

〈∇t, ũ〉
∣∣∣∣
∂A

= 〈t, m〉
∣∣∣∣
∂A

= 0 , (7.15)

and as such the microdistortion belongs to p ∈ H0(curl, A). Consequently, we can set sD = ∂A and
the consistent coupling condition remains compatible. With the displacement and the microdistortion
fields at hand we derive the corresponding forces

f =
1

25

[
2x2 sin

(
x2 + y2

5

)
+ 2y2 sin

(
x2 + y2

5

)
− 10 cos

(
x2 + y2

5

)
− 5

]
. (7.16)

The approximation of the displacement and microdistortion fields using linear and higher order ele-
ments is depicted in Fig. 7.10. We note that even with almost 3000 finite elements and 6000 degrees
of freedom the linear formulation is incapable of finding an adequate approximation. On the other
side of the spectrum, the higher order approximation (degree 7) with 57 elements and 4097 degrees
of freedom yields very accurate results in the interior of the domain. However, the exterior of the
domain is captured rather poorly. This is the case since the geometry of the circular domain is being
approximated by linear triangles. Thus, in this setting, a finer mesh captures the geometry in a more
precise manner. The effects of the geometry on the approximation of the solution are also clearly
visible in the convergence graphs in Fig. 7.11; only after a certain accuracy in the domain description
is achieved do the finite elements retrieve their predicted convergence rates. This is clearly observable
when comparing the convergence curves of the linear and seventh order elements. The linear element
generates quadratic convergence p + 1 = 1 + 1 = 2, whereas the seventh-order element yields the
convergence slope 7 (where 8 is expected). Although the seventh-order formulation encompasses more
degrees of freedom, it employs a coarser mesh and as such, generates higher errors at the boundary.
The errors themselves can be traced back to the consistent coupling condition since, for a non-perfect
circle the gradient of the displacement field induces tangential projections on the imperfect boundary.
The influence of the latter effect is even more apparent in the convergence of the microdistortion,
where the higher order formulations are unable to perform optimally on coarse meshes.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.10: Depiction of the displacement field (a)-(c) and the microdistortion field (d)-(f) for the
linear element under h-refinement with 225, 763 and 2966 elements, corresponding to 485, 1591 and
6060 degrees of freedom. The p-refinement of the displacement field on the coarsest mesh of 57
elements is visualized in (g)-(l) with p ∈ {3, 5, 7}, corresponding to 731, 2072 and 4097 degrees of
freedom.
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Figure 7.11: Convergence of displacement (a) and the microdistortion (b) under h-refinement for
multiple polynomial degrees.

7.2 Plane strain

7.2.1 Shear stiffness

The relaxed micromorphic model is able to interpolate between stiffnesses defined by the macro and
micro material parameters [90]. This is achieved by varying the characteristic length parameter Lc

and reflects the influence of the microstructure on the stiffness of the system consequently on the
resulting deformations.

In the following we test the behaviour of the plane strain model under shear deformation and vary
the characteristic length scale parameter Lc. The domain is given by A = [0, 10]2 with the Dirichlet
boundaries sD1 = [0, 10] × {0} and sD2 = [0, 10] × {10} such that the Neumann boundary reads
sD = ∂A \ {sD1 ⊕ sD2}. On the Dirichlet boundary we embed the constant displacement fields

ũ

∣∣∣∣
sD1

=

[
0
0

]
, ũ

∣∣∣∣
sD2

=

[
4
0

]
. (7.17)

The material constants of the micro- and macro-structure are chosen to represent the expected result
of higher micro stiffness

λmacro = 10, µmacro = 5, λmicro = 50, µmicro = 25, µc = 5 . (7.18)

The meso-parameters are retrieved by reformulating Eq. (3.20)

µe =
µmicroµmacro

µmicro − µmacro
, λe =

1

3

(
(2µmicro + 3λmicro)(2µmacro + 3λmacro)

(2µmicro + 3λmicro)− (2µmacro + 3λmacro)
− 2µe

)
, (7.19)

and read

λe = 12.5 , µe = 6.25 . (7.20)

The displacement field and the corresponding microdistortion are depicted in Fig. 7.12 for Lc ∈
{10,
√

10, 1}. The behaviour of the displacement follows the pattern of the analytical solution for
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simple shear derived in [90]. Namely, for high Lc-values it is flat, for mid-values curved and for low
values it flattens again. The intensity of the microdistortion increases with a decreasing Lc-value.

We measure the energy of the model with varying Lc-values. The lower bound is given according
to Eq. (3.19) by an equivalent Cauchy model. We compute the energy with tenth order finite elements
for high accuracy and find Imacro ≈ 15.6. The upper bound is derived using Eq. (3.23) yielding
Imicro ≈ 78.03. The progression of the energy in illustrated in Fig. 7.13. Clearly, the exactness of the
subspace greatly influences the resulting energy and as such may distort the expected relation to an
underlying micro-structure. Using linear elements requires very fine meshes to find valid results, as the
stiffness is otherwise overestimated. Although quadratic elements already offer a major improvement,
it is first with cubic elements that satisfactory results are achieved even on coarse meshes. This may
be due to the intrinsic behaviour of the relaxed micromorphic model, seeing as the analytical solution
predicts an hyperbolic function (incorporating sinh and tanh), for which power series expansions first
become relevant when third order terms are included. On a very coarse mesh of 2 elements, accurate
descriptions can be achieved by using higher order elements. We note that the change in the energy
only occurs for µc 6= 0, which is also consistent with the results of [90]. If the coupling modulus
is set to zero µc = 0, the relaxed micromorphic model always finds the energy of a Cauchy model
with macro material parameters. The highest energy produced by the relaxed micromorphic model
is limLc→∞ IRelaxed ≈ 35.1. An equivalent Cauchy model produces the latter energy for the material
constants λ ≈ 22.5 and µ ≈ 11.25, where the assumption of a constant ratio between the Lamé
parameters is used (implying a constant Poisson ratio).

7.2.2 Correspondence with micro-structured materials

The relaxed micromorphic model aspires to correctly capture the behaviour of materials with a pro-
nounced microstructure. To that end, the characteristic length parameter Lc is applied to govern the
influence of the microstructure. Essentially, the characteristic length parameter allows the relaxed
micromorphic model to iterate between materials representing a discrete structure and those that are
highly homogeneous and behave like standard continua. In [7] and [73] the authors derive the micro
and macro stiffnesses of a metamaterial using homogenization

λmacro = 1.74 , µmacro = 5.89 , µ∗macro = 0.62 , λmicro = 5.27 ,

µmicro = 12.8 , µ∗micro = 8.33 , µc = 2.28 · 10−3 , (7.21)

and the matrices of the material constants take the form

C =

2µ+ λ λ 0
λ 2µ+ λ 0
0 0 2µ∗

 , ε =

ε11

ε22

ε12

 , (7.22)

in Voigt notation. The underlying geometry of the micro structure is depicted in Fig. 7.14. The
material employed is aluminium with the following Lamé constants

λ = 51.08 , µ = 26.32 . (7.23)

An open question of the above works is the relation of the characteristic length to materials derived
by a periodic embedding of the microstructure. In order to derive a relation, we compute a large
set of Cauchy continua with fully resolved micro-structures, where the size of the underlying unit cell
decreases. A depiction of the cells and their discretization is given in Fig. 7.15. We compute the energy
of structures containing between 1× 1 and up to 20× 20 unit cells, for which the materials constants
are those of aluminium. The fitting of the characteristic length Lc is then achieved by comparing
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.12: Displacement field with Lc ∈ {10,
√

10, 1} (a)-(c), respectively. Depiction of the corre-
sponding first row (d)-(f) and last row (h)-(g) of the microdistortion fields.
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Figure 7.13: Energy progression of the relaxed micromorphic model with respect to Lc using the linear
(a), quadratic (b) and cubic (c) finite element formulations. The energy computed with the coarsest
mesh of 2 elements is depicted in (d) for various polynomial powers.
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to the energy of the relaxed micromorphic model. The upper and lower bounds on the energy are
computed using homogenized material parameters with a standard Cauchy model. The domain of the
relaxed micromorphic model is defined as A = [0, 10]2 with the total Dirichlet boundary sD = ∂A.
We impose the periodic conditions on the Dirichlet boundary

ũ

∣∣∣∣
sD

=
1

10

[
sin(πy/5)
sin(πx/5)

]
. (7.24)

The resolved geometry computed with the Cauchy model is of the same dimensions as the domain of
the relaxed micromorphic model and the same boundary conditions apply. The resulting deformation
maps are depicted in Fig. 7.16. Clearly, the displacement homogenizes with an increasing number of
cells towards the continuous solutions depicted in Fig. 7.18 (c), given by the Cauchy model for the
macro parameters. In Fig. 7.17 we give the resulting displacement and microdistortion fields for the
fitted characteristic length such that the energy for the 4×4, 7×7 and 20×20 periodic grids matches.
The limits of the relaxed micromorphic model are shown in Fig. 7.18 with Lc →∞ and Lc → 0. We
observe that the intensity of the displacement field increases in the interior of the domain for Lc → 0
while at the same time the microdistortion field shifts to the edges of the domain without changing
its general intensity.

The changes in energy for an increasing number of cells as well as the fitting in Lc are illustrated in
Fig. 7.19. For the range of n× n unit cells such that n ≥ 3 we can find a corresponding characteristic
length in the relaxed micromorphic model, such that the same energy is produced. If the amount of
cells is under three (n < 3) the micro-structure is so pronounced that the structure cannot be computed
with an analogous continuum. This is because the upper bound of the relaxed micromorphic model
is given by an equivalent Cauchy model with micro stiffness parameters, which do not allow to reach
the energy of the discrete structure. This is clearly illustrated in Fig. 7.19 (b) where the energy points
outside the bound were extrapolated.

We can interpolate the relation between the amount of unit cells and the characteristic length
parameter using cubic splines. For the first point we use n = 3 and the corresponding Lc-value. For
the last point we choose a limit with a high amount of cells, for example n = 1000, implying a million
cells, and set Lc = 0 thus emulating limn→∞ Lc = 0. The fitting of Lc with a varying amount of
data points is depicted in Fig. 7.20. Using eight points and higher where the first five are taken at
the beginning, one point in the middle, and the remainder at the end (including the limit) we are
able to find highly accurate approximations in the range. However, the accuracy of the extrapolation
diminishes at around n > 20 for the eight-point approximation. The ten-point fitting remains viable
up to n ≤ 26 and the full approximation up to n ≤ 27. The criterium for viability is the continuous
stagnation of the Lc-value with an increasing number of cells. However, due to the minimal change
in Lc with respect to larger values of n we can approximate the remainder of the curve (n > 20) by
fitting the plateau function

Ljc(n) = Ljc e
c(j−n) , (7.25)

where j is the starting n-value such that n ∈ [j,∞) and Ljc is the value of Lc fitted for j (not Lc to
the power of j). In our case we find L14

c ≈ L15
c (1− e0.0235(14−n)).

We note that the same procure cannot be trivially applied to other deformation modes without
first finding the associated homogenized material parameters. For example, in an equivalent bending
test the n× n structures with n ≥ 4 produced energies of I ≤ 8.437. Since the relaxed micromorphic
model is bound from below by the equivalent Cauchy model with macro stiffness we are not able to fit
the characteristic length as limLc→0 I ≈ 8.874 being larger than the energy produced by the discrete
structure. The same problematic arises for shear tests.
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Figure 7.14: The underlying microstructure of the investigated metamaterial and its material param-
eters.

7.3 Three-dimensional model

7.3.1 Convergence test

We start our confirmation of the three-dimensional formulation by constructing artificial solutions
with high regularity and measuring convergence rates. Let the domain be given by a beam structure
such that V = [0, 10] × [−1, 1]2 where Dirichlet boundary reads AD = ∂V , we define the analytical
solution

ũ =

 0
0

sin(πx)

 , P̃ = Dũ + 10(1− y2)(1− z2) sin(πx)

0 0 0
0 0 0
0 −z y

 , (7.26)

and imposed it on the Dirichlet boundary. The corresponding forces and micro-moments for the
material parameters

λe, µe, λmicro, µmicro, µmacro, Lc = 1 , µc = 0, (7.27)

result in

f =

10πy(y2 − 1)(z2 − 1) cos(πx)
20(−y2 + z2) sin(πx)

yz(60y2 − 20z2 − 40) sin(πx)

 ,
M =

 20y
(
y2 − 1

) (
z2 − 1

)
sin (πx) 0

0 20y
(
y2 − 1

) (
z2 − 1

)
sin (πx) · · ·

π
(
20y3z − 20yz3 + 1

)
cos (πx) z

(
120y2 − 10π2

(
y2 − 1

) (
z2 − 1

)
− 20

(
y2 − 1

) (
z2 − 1

)
− 80

)
sin (πx)

π cos (πx)
· · · −20z

(
y2 − 1

) (
z2 − 1

)
sin (πx)

y
(
−120z2 + 60

(
y2 − 1

) (
z2 − 1

)
+ 10π2

(
y2 − 1

) (
z2 − 1

)
+ 80

)
sin (πx)

 . (7.28)

The behaviour of the displacement and microdistortion fields under h- and p-refinement is depicted
in Fig. 7.21. The necessity of a large amount of lower order elements in order to capture the high
frequency solution is apparent. Even with 141900 elements and 597820 degrees of the freedom the
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Figure 7.15: Depiction of n × n unit cells and their discretization in the domain with n ∈
{1, 2, 3, 4, 7, 11, 14, 17, 20} presented over (a)-(i), respectively.
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(a) (b) (c)
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(g) (h) (i)

Figure 7.16: Intensity of the displacement for the fully resolved model with the number of cells n× n
such that n ∈ {1, 2, 3, 4, 7, 11, 14, 17, 20} presented over (a)-(i), respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.17: Displacement fields (a)-(c) and corresponding microdistortion fields in x (d)-(f) and y
(g)-(i) for the solutions Lc ∈ {1.704384479, 0.8179682, 0.42446779} yielding the equivalent energy for
the fully resolved models with 4× 4, 7× 7 and 20× 20 unit cells, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7.18: Limit displacement fields for Lc → ∞ (a) and Lc → 0 (b) and their corresponding
microdistortion fields in x (d)-(e) and y (g)-(h), respectively. The equivalent lower bound given by
the Cauchy model (c). In (f) we depict the mesh used in computation of the continua models, where
the finite element order is set to ten for accuracy.
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Figure 7.19: Energy progression of the fully resolved geometry for an increasing number of cells (a)
and corresponding Lc-values for in the relaxed micromorphic model (b) with the bounds of Cmicro

and Cmacro. The points above the upper bound in (b) are estimated via extrapolation an cannot be
captured by the relaxed micromorphic model.
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Figure 7.20: Fitting of Lc with respect to the number of unit cells n × n for various collections of
discrete energy points.
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solution still generates plateaus at the peaks. Although the solution of the quadratic element seems
well enough, it is simply due to the fortunate placing of element interfaces at the peaks and cannot
be expected in general discretizations. A truly stable solution scheme is achieved by using cubic finite
elements, as these can account for internal oscillations. We observe that the cubic formulation with
1260 elements and 96538 degrees of freedom offers a far better approximation of the displacement and
microdistortion fields.

The respective convergence rates under h- and p-refinement are given in Fig. 7.22. The elements
yield the predicted optimal convergence rate. We note that no better convergence rates are observed
for the Nédélec elements of the first type over the elements of the second type. Clearly, the prob-
lem exhibits full s-regularity. The influence of the placement of element interfaces is evident as the
quadratic formulations generate lower errors at first and later stabilize at a steady convergence rate.

7.3.2 Cylindrical bending

In order to test the ability of the finite element formulations to capture the intrinsic behaviour of the
relaxed micromorphic model we compare with analytical solutions of boundary-value problems. The
first example considers the displacement and microdistortion fields under cylindrical bending [89] for
infinite planes. Let the infinite plane be defined as V = (−∞,∞)2× [−1/2, 1/2] the analytical solution
for cylindrical bending reads

u = κ

−xz0
x2/2

 , P = −κ

[41z + 20
√

82 sech(
√

41/2) sinh(
√

82z)]/1681 0 x
0 0 0
−x 0 0

 , (7.29)

where the material constants are set to

λe = λmicro = 0 , µe = µmacro = 1/2 , µc = 0 , Lc = 1 , µmicro = 20 . (7.30)

The intensity parameter κ is chosen to be κ = 14/200.
Obviously, we cannot compute on infinite plains. However, it suffices to compare the solutions

at a sufficient distance from the boundary, as per the principle of Saint-Venant the embedded fields
homogenize the further they are from their source and the intrinsic solution resurfaces. As such, we
define the finite domain V = [−10, 10]2 × [−1/2, 1/2] and the boundaries

AD1 = {−10} × [−10, 10]× [−1/2, 1/2] , AD2 = {10} × [−10, 10]× [−1/2, 1/2] ,

AN = ∂V \ {AD1 ⊕AD2} . (7.31)

On the Dirichlet boundary we impose the translated analytical solution ũ = u−
[
0 0 3.5

]T
.

The displacement field and the last row of the microdistortion are depicted in Fig. 7.23. The
displacement field is dominated by its quadratic term and captured very correctly. The last row of the
microdistortion is a linear function and easily approximated even with linear elements. In contrary,
the P11 component of the microdistortion is a hyperbolic function of the z-axis. The results of its
approximation at x = y = 0 (the centre of the plane) are given in Fig. 7.24. We observe that even
increasing the number of linear finite elements to the extreme only results in better oscillations around
the analytical solution. In comparison, higher order formulations converge towards the hyperbolic
behaviour. Unlike in many of the previous examples we notice a measurable difference between the
quadratic Nédélec elements of the first and second type. In fact, the approximation of the quadratic
Nédélec element of the first type is nearly perfect, whereas its second type counterpart clearly deviates
from the analytical solution at z ≈ −0.25. Taking the cubic second type element yields the desired
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(a)
(b) (c)

(d) (e) (f)

(g)

(h) (i)

(j) (k) (l)

Figure 7.21: Depiction of the displacement field (a)-(c) and the last row of the microdistortion field
(d)-(f) for the linear element under h-refinement with 2376, 18450 and 141900 elements, corresponding
to 11476, 81550 and 597820 degrees of freedom. The p-refinement of the displacement field on a coarse
mesh of 1260 elements is visualized in (g)-(l) with p ∈ {1, 2, 3}, corresponding to 6364, 33442 and 96358
degrees of freedom.
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Figure 7.22: Convergence under h-adaption for various polynomial orders.

(a)
(b)

Figure 7.23: Displacement (a) and last row of the microdistortion (b) for the quadratic formulation
using the Nédélec element of the first type.

result. This phenomenon is an evident indicator of the prominent role of the Curl of the microdistortion
in this type of problems. Firstly, the microdistortion is a non-gradient field. Secondly, the Curl of
the analytical solution induces an hyperbolic sine term. Such functions are often approximated using
cubic terms in power series, thus explaining the necessity of such high order elements for correct
computations.

7.3.3 Torsion test

In the following we consider the intrinsic behaviour of the relaxed micromorphic model under torsion.
In [88] the authors introduce the analytical solution for the infinite domain V = (−∞,∞) × {r ∈
R2 | ‖r‖ ≤ r}. For choice of material parameters

µe = 1/14 , µmicro = 1 , µc = µmacro = 1/2 , Lc = 1 , λe = λmicro = 0 , (7.32)

we find the analytical solution on the mantel surfaces of the cylinder

u

∣∣∣∣
r=3

= 3θx

 0
− sin(φ)
cos(φ)

 ,
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Figure 7.24: Convergence of the lowest order formulation under h-refinement with 732, 5640 and 44592
elements (a) and of the higher order formulations under p-refinement using 732 elements(b) towards
the analytical solution (dashed curve) of the P11(z) component at x = y = 0.

P

∣∣∣∣
r=3

= θ

 0 0.952374 sin(φ) −0.952374 cos(φ)
−1.80116 sin(φ) 0 −x
1.80116 cos(φ) x 0

 , (7.33)

where r = 3 and the rotational intensity is θ = 1/30. Due to the complexity (long expression) of the
general analytical solution and its dependency on Bessel functions (being solutions to the Bessel partial
differential equation) we only give the formula for our specific case. In order to compare with subspace
solutions we define the finite domain V = {r ∈ R2 | ‖r‖ ≤ 3} × [0, 30] with Dirichlet boundaries at
x = 0 and x = 1. While the analytical solution assumes a constant rotation of the cross-section of the
beam, we use the simplified linear rotation field

u

∣∣∣∣
x=0

= 0 , u

∣∣∣∣
x=30

=

 0
−z
y

 , (7.34)

and embed it in the Dirichlet boundary. Due to the principal of Saint-Venant, the analytical solution
is retrieved at a sufficient distance from the Dirichlet boundary.

The discretized geometry as well as the solutions for the displacement field and the first row of
the microdistortion are depicted in Fig. 7.25. Clearly, the linear progression of the torque of the
displacement is captured correctly. Further, with the expectation of the vicinity of the Dirichlet
boundary, the satisfactory approximation of the first row of the microdistortion field is apparent.
The progression of the P21 and P23 components at z ≈ 3 over the x-axis for h- and p-refinement is
given in Fig. 7.26. We note that the analytical solution (dashed lines) is retrieved for fine enough
meshes. Although the employment of higher order elements does improve the approximation notably.
Without the accompanying h-refinement the analytical solution is not retrieved. This is due to the high
dependency on the geometry of the mesh. As illustrated in Fig. 7.25, only very fine meshes approximate
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Figure 7.25: Depiction of the meshes with 630, 5760 and 38160 elements (a)-(c) and the corresponding
solutions for the displacement (d)-(f) and the first row of the microdistortion (g)-(l) using the lowest
order elements.

the circular shape of the beam well enough to allow for accurate solutions. This is apparent when
considering the progression of the cubic formulation, where only the finest discretization is able to
retrieve the predicted result.

7.3.4 Bounded stiffness property

In a previous example in two dimensions we explored the stiffness of the relaxed micromorphic model
with respect to varying Lc-values. The fitting procedure showcased the ability to find a corresponding
characteristic length value to describe an equivalent discrete structure using a relaxed micromorphic
continuum model. The same can be done in three dimensions. The principal requirement for such
fitting procedures is the pre-computation of lower and upper bounds on the elasticity parameters for
an homogenized continuum model of an underlying unit cell structure. Since the parameters of such
geometries are an active topic of research and not currently available we consider an artificial example.

Let the domain be given by the axis-symmetric cube V = [−1, 1]3 with a total Dirichlet boundary

AD1 = {(x, y, z) ∈ [−1, 1]3 | x = ±1} , AD2 = {(x, y, z) ∈ [−1, 1]3 | y = ±1} ,

AD3 = {(x, y, z) ∈ [−1, 1]3 | z = ±1} , (7.35)

we embed the periodic boundary conditions

ũ

∣∣∣∣
AD1

=

(1− y2) sin(π[1− z2])/10
0
0

 , ũ

∣∣∣∣
AD2

=

 0
(1− x2) sin(π[1− z2])/10

0

 ,
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Figure 7.26: Convergence of the lowest order formulation under h-refinement with 630, 5760 and 38160
elements (a) and of the cubic order formulations under h-refinement using 630 and 5760 elements (b)
towards the analytical solution (dashed curve) of the P23(x) component at y = 3, z = 0.
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(a) (b) (c)

Figure 7.27: Displacement field of the Cauchy model on the coarsest mesh of 48 finite elements of the
tenth order (a) and depictions of the meshes with 384 (b) and 3072 (c) elements, respectively.

ũ

∣∣∣∣
AD3

=

 0
0

(1− y2) sin(π[1− x2])/10

 . (7.36)

The material parameters are chosen as

λmacro = 2 , µmacro = 1 , λmicro = 10 , µmicro = 5 , µc = 1 , (7.37)

thus giving rise to the following meso-parameters

λe = 2.5 , µe = 1.25 . (7.38)

The displacement field as well as some examples of the employed meshes are depicted in Fig. 7.27.
In order to compute the upper and lower bound on the energy we utilize the equivalent Cauchy model
formulation with the micro- and macro elasticity parameters. In order to assert the high accuracy
of the solution of the bounds we employ tenth order finite elements. The progression of the energy
in dependence of the characteristic length parameter Lc is given in Fig. 7.28. We observe the high
mesh dependency of the lower order formulations, where the energy is clearly overestimated. The
higher order formulations all capture the upper bound correctly but diverge with respect to the result
of the lower bound. Notably, the approximation using the Nédélec element of the first type is more
accurate than the equivalent formulation with the Nédélec element of the second type, thus indicating
the non-negligible involvement of the micro-dislocation in the energy. Using standard mesh coarseness
the cubic element formulation with Nédélec elements of the first type yields satisfactory results. In
order to achieve the same on highly coarse meshes, one needs to employ seventh order elements.
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Figure 7.28: Energy progression of the relaxed micromorphic model with respect to Lc using the linear
(a), quadratic (b) and cubic (c) finite element formulations. The energy computed with the coarsest
mesh of 48 elements is depicted in (d) for various polynomial powers.
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8 Conclusions and outlook

The relaxed micromorphic model is shown to be well-posed in the space X = [H 1]3 × H (Curl) by
the Lax-Milgram theorem, where the case of a positive semi-definite rotational coupling tensor Cc,
well-posedness of the model is maintained by the consistent coupling condition due to the generalized
Korn’s inequality. As such, Cea’s lemma can be applied and subsequently utilized for the derivation
of a priori error estimates based on commuting interpolations on the de Rham complex. In this work,
error estimates are introduced for the Nédélec elements of first and second types, and later improved
for s-regularity. The convergence rates are confirmed in numerical examples.

In Section 5, the construction of low order conforming finite elements for the relaxed micromorphic
model is demonstrated. This encompasses solutions to the orientation problem by vertex-sequencing
and methods of applying the discrete consistent coupling condition, where Lagrangian elements are
employed in the approximation of the displacement field.

The intrinsic behaviour of the relaxed micromorphic model is revealed by the analytical solutions
to boundary value problems. Clearly, the continuum exhibits hyperbolic and trigonometric solutions,
which are not easily approximated by low order finite elements. The examples provided in Section 7
demonstrate that cubic and higher order finite elements yield excellent results in approximate solutions
of the model.

The polytopal template methodology introduced in Section 6 allows to easily and flexibly construct
H (curl)-conforming vectorial finite elements that inherit many of the characteristics of an underlying
H 1-conforming basis, which can be chosen independently. This is achieved by equipping each polytope
of the reference element with a template of vector fields. The multiplication of an H 1 base function
with a template vector on the corresponding polytope yields an H (curl)-conforming base function.
The template allows to readily distinguish between cell and non-cell base functions based on the trace
operators trt

∂A and trt
∂V. Further, the definition of a template for non-gradient base functions allows

to split the space between gradients and non-gradients, with the exclusion of the lowest order base
functions. Consequently, it allows to formulate the enriched Nédélec element of the first type, which
enables an improved order of convergence. The split is also useful for applications not discussed in this
work. For example, it allows to employ base functions according to the nature of the approximated
field, i.e., irrotational or solenoidal, thus reducing unnecessary degrees of freedom. Further, the curl
of the non-gradient base functions can be used to span the solenoidal polynomial basis of H (div)-
conforming elements. The correctness of the polytopal template method and its production of a
unisolvent H (curl)-conforming basis is shown via linear independence and conformity theorems. The
method can be used to produce arbitrary order Nédélec elements of the first and second type.

In this work, we made use of Bernstein polynomials. The latter boast optimal complexity properties
manifesting in the form of sum factorization. The natural decomposition of their multi-variate versions
into multiplications of univariate Bernstein base functions via the Duffy transformation allows to
construct optimal iterators for their evaluation using recursion formulas. Further, this characteristic
makes the use of dual numbers in the computation of their derivatives idle. Finally, the intrinsic order
of traversal induced by the factorization is exploited optimally by the choice of clock-wise orientation
of the reference element. The consequence of these combined features is demonstrated in the resulting
high-performance hp-finite element program Rayse.

The ability of the relaxed micromorphic model to iterate between the energies of homogeneous
materials and materials with an underlying micro-structure using the characteristic length scale pa-
rameter Lc is demonstrated in several examples. Primarily, it is shown that the relaxed micromorphic
model can be used to compute the energies of an equivalent periodic metamaterial with a hollowed
plus-shaped unit cell by fitting the Lc-parameter. However, it is also shown that correct iterations with
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respect to Lc require either fine-discretizations or higher order elements. The excellent performance
of the proposed higher order finite elements in the linear static case is proven by both examples with
varying Lc-values and comparisons with analytical solutions. This is a precursor for their application
in the dynamic setting, which is important since the relaxed micromorphic model is often employed
in the computation of elastic waves (e.g., for acoustic metamaterials), where high frequency solutions
are common.

The proposed computational schemes are lacking in their description of curved geometries. Due
to the consistent coupling condition, this can easily lead to errors emanating from the boundary.
Consequently, a topic for future works would be the investigation of curved finite elements [54, 55]
and their behaviour with respect to the model. Another major issue is the conditioning of the global
matrix with respect to the material parameters and specifically the characteristic length scale Lc,
where large values lead to rapidly increasing computation times. The problem could be alleviated if
proper pre-conditioners are designed.

122



9 References

[1] Abdulle, A.: Analysis of a heterogeneous multiscale FEM for problems in elasticity. Mathemat-
ical Models and Methods in Applied Sciences 16(04), 615–635 (2006)

[2] Ainsworth, M., Andriamaro, G., Davydov, O.: Bernstein–Bézier finite elements of arbitrary
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Faculté des sciences de Toulouse: Mathématiques, vol. 10, pp. I1–I116 (1896)

[26] d’Agostino, M.V., Barbagallo, G., Ghiba, I.D., Eidel, B., Neff, P., Madeo, A.: Effective de-
scription of anisotropic wave dispersion in mechanical band-gap metamaterials via the relaxed
micromorphic model. Journal of Elasticity 139(2), 299–329 (2020)

[27] d’Agostino, M.V., Rizzi, G., Khan, H., Lewintan, P., Madeo, A., Neff, P.: The consistent
coupling boundary condition for the classical micromorphic model: existence, uniqueness and
interpretation of parameters. Continuum Mechanics and Thermodynamics (2022)

[28] D’Alessandro, L., Krushynska, A.O., Ardito, R., Pugno, N.M., Corigliano, A.: A design strategy
to match the band gap of periodic and aperiodic metamaterials. Scientific Reports 10(1), 16403
(2020)

[29] Demkowicz, L.: Computing with hp-Adaptive Finite Elements. Vol. 1: One- and Two-
Dimensional Elliptic and Maxwell Problems. Chapman and Hall/CRC (2006)

[30] Demkowicz, L., Buffa, A.: H 1, H (curl) and H (div)-conforming projection-based interpolation
in three dimensions: Quasi-optimal p-interpolation estimates. Computer Methods in Applied
Mechanics and Engineering 194(2), 267–296 (2005). Selected papers from the 11th Conference
on The Mathematics of Finite Elements and Applications

[31] Demkowicz, L., Kurtz, J., Pardo, D., Paszynski, M., Rachowicz, W., Zdunek, A.: Computing
with hp-Adaptive Finite Elements. Vol. II: Frontiers: Three-Dimensional Elliptic and Maxwell
Problems with Applications. Chapman and Hall/CRC (2007)

[32] Demkowicz, L., Monk, P., Vardapetyan, L., Rachowicz, W.: De Rham diagram for hp-finite
element spaces. Computers and Mathematics with Applications 39(7), 29–38 (2000)

[33] Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces.
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A Symmetry and anti-symmetry tensors

The symmetry and anti-symmetry operators can be represented using fourth order tensors. Let J be
the fourth order identity tensor

JP = P , J = ei ⊗ ej ⊗ ei ⊗ ej , (A.1)

and let T be the fourth order transposition tensor

TP = P T , T = ei ⊗ ej ⊗ ej ⊗ ei , (A.2)

then there follows

symP =
1

2
(P + P T ) =

1

2
(J + T)P = SP , skewP =

1

2
(P − P T ) =

1

2
(J− T)P = AP . (A.3)

We can derive an equivalent matrix notation by redefining P as a nine-dimensional vector

P̂ =
[
P11 P12 P13 P21 P22 P23 P31 P32 P33

]T
. (A.4)

Consequently, we find

Ŝ =



1 0 0 0 0 0 0 0 0
0 0.5 0 0.5 0 0 0 0 0
0 0 0.5 0 0 0 0.5 0 0
0 0.5 0 0.5 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0.5 0 0.5 0
0 0 0.5 0 0 0 0.5 0 0
0 0 0 0 0 0.5 0 0.5 0
0 0 0 0 0 0 0 0 1


, Â =



0 0 0 0 0 0 0 0 0
0 0.5 0 −0.5 0 0 0 0 0
0 0 0.5 0 0 0 −0.5 0 0
0 −0.5 0 0.5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.5 0 −0.5 0
0 0 −0.5 0 0 0 0.5 0 0
0 0 0 0 0 −0.5 0 0.5 0
0 0 0 0 0 0 0 0 0


.

(A.5)

Similarly, by redefining P as a four-dimensional vector for the plane strain problem

P̂ =
[
P11 P12 P21 P22

]T
, (A.6)

we find the corresponding symmetry and anti-symmetry matrices

Ŝ =


1 0 0 0
0 0.5 0.5 0
0 0.5 0.5 0
0 0 0 1

 , Â =


0 0 0 0
0 0.5 −0.5 0
0 −0.5 0.5 0
0 0 0 0

 . (A.7)
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