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Abstract

For quantum technology, hybrid systems are needed to connect different physical sys-
tems, e.g. a matter system for information processing and light for communication.
For connecting semiconductors and light, semiconductor quantum optics investigates
how light influences the quantum state of the semiconductor and how the state of the
semiconductor can be measured via the emitted light.
To measure the quantum state of light, optical homodyne tomography (OHT) is a
versatile technique that is widely applied in quantum optics. But its application to
semiconductor emission is often prevented by the lack of a fixed phase reference for
nonresonant luminescence and by the fast time scales of the system.
These challenges are tackled in this work. We present the application of OHT to
semiconductor luminescence without a fixed phase reference in order to investigate co-
herence properties and the quantum state. Thereby, a pulsed local oscillator and fast
detectors enable a high time resolution. As a testbed for the method, we investigate
the emission from an exciton-polariton condensate in a GaAs microcavity.
Specifically, this work shows which information can be gained by using one, two and
three homodyne detection channels. With one channel, the second-order photon corre-
lation function g(2)(0) is measured. Via two channels, we measure the phase-averaged
Husimi function and quantify the amount of quantum coherence in the polariton sys-
tem. With three channels, we reconstruct the regularized P function, depending on
postselected initial conditions, and track the temporal decay of quantum coherence.
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Chapter 0. Zusammenfassung

Zusammenfassung

Für die Quantentechnologie sind hybride Systeme gefragt, die verschiedene physikalis-
che Systeme verbinden, z.B. ein Materiesystem zur Informationsverarbeitung und Licht
zur Kommunikation. Für die Verbindung zwischen Halbleitern und Licht erforscht die
Halbleiter-Quantenoptik, wie Licht den Quantenzustand des Halbleiters beeinflusst und
wie der Zustand des Halbleiters über das emittierte Licht gemessen werden kann.
Zur Messung des Quantenzustands von Licht wird in der Quantenoptik die vielseitige
Methode der optischen Homodyn-Tomographie (OHT) verwendet. Ihre Anwendung
auf die Emission von Halbleitern wird jedoch häufig durch das Fehlen einer festen
Phasenreferenz für nicht-resonante Lumineszenz und durch die schnellen Zeitskalen
des Systems verhindert.
Diese Herausforderungen werden in dieser Arbeit angegangen. Wir stellen die An-
wendung von OHT auf Halbleiterlumineszenz ohne feste Phasenreferenz vor, um die
Kohärenz-Eigenschaften und den Quantenzustand zu untersuchen. Dabei ermöglichen
ein gepulster Lokaloszillator und schnelle Detektoren eine hohe Zeitauflösung. Als
Testumgebung für die Methode untersuchen wir die Emission eines Exziton-Polariton-
Kondensats in einer GaAs-Mikrokavität.
Konkret zeigt diese Arbeit, welche Informationen durch die Verwendung von einem,
zwei und drei Homodyn-Detektionskanälen gewonnen werden können. Mit einem Kanal
wird die Photonenkorrelationsfunktion zweiter Ordnung g(2)(0) gemessen, mit zwei
Kanälen messen wir die phasengemittelte Husimi-Funktion und quantifizieren den Grad
der Quantenkohärenz im Polaritonensystem, und mit drei Kanälen rekonstruieren wir
die regularisierte P -Funktion abhängig von postselektierten Anfangsbedingungen und
verfolgen den zeitlichen Zerfall der Quantenkohärenz.
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Chapter 1

Motivation

Semiconductors are a well-established technological platform and the centerpiece of
our computers, smart phones and many other devices. Semiconductor components like
transistors and diodes, as well as lasers, were developed during the last century as part
of the so-called first quantum revolution, when scientists began to understand how
quantum mechanics underlies the electronic properties of materials and the generation
of light. However, the trend to miniaturize these components according to Moore’s
Law — the observation that the number of components in an integrated circuit dou-
bles every one or two years [Mac11] — is reaching its limits while the demand for fast
computing and high data transfer rates still increases.
Beside several possible ways to go past these limits [Wal16, Wil17], a second quantum
revolution is in the making [DM03, Deu20]. Thereby, scientists and engineers aim at
using the peculiarities of quantum mechanics like entanglement and superposition in
order to develop new technologies, promising a speedup that exceeds any classical de-
vice.
To this aim, there is a need for quantum interfaces — also being called quantum inter-
connects or hybrid quantum systems — in order to connect different types of systems
that carry the same quantum information [KBK+15, ABB+21]. For example, com-
putations might be carried out by a matter-based system and the information then
might be transferred via light, as illustrated in Fig. 1.1. Such interfaces are already
well-engineered for classical devices, using semiconductor chips for computing and glass
fibers for information transfer, whereas for quantum information processing, they are
still under development. Furthermore, light-matter interfaces are also paramount for
our fundamental understanding of how distinctively different physical systems can in-
teract to realize seminal quantum phenomena.
These interfaces can comprise different kinds of matter systems, e.g. superconduc-
tors, atoms or solid-state color centers; however, since semiconductors are already well-
established in industrial production, they might be more easily integrated into existing
platforms and enable the fabrication of on-chip devices. Therefore, we focus here on
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Chapter 1. Motivation

Figure 1.1: Visualization of a hybrid quantum system where quantum information is trans-
ferred between two different types of systems, e.g. a semiconductor for computation and light
for communication [LPR+21].

the connection between semiconductors and light.

Unfortunately, in physics, the fields of semiconductors and quantum optics are
mostly separated to date; one exception is the development of single-photon sources,
where one optimizes the purity, the indistinguishability and the repetition rate of the
produced photons [SGD+16], but this only concerns single-photon states and not gen-
eral quantum states. To further connect these fields, one question for physicists is:
how can we measure quantum properties of a semiconductor system via probing the
emitted light? And also the other way around: can light influence the quantum state
of a semiconductor?
These questions are only starting to be approached. Regarding the latter, it was shown
that the photon statistics of the excitation light field can influence the output pho-
ton statistics and the intensity of an emitter [KSA+15, AB15, BHM+14]. Moreover,
the photon statistics of the excitation light creates correlations between carriers in the
material, e.g. bunched light may create biexcitons [CKR09] and a state of light with
three-photon fluctuations may create correlations between three excitons [AHLC+14].
Along these lines, Ref. [KK06] proposed to “map the quantum-statistical properties of
the exciting light directly onto the generated state of the quasiparticle excitations in
matter.” These ideas were extended by the pioneering works of Kira et al. [KKS+11],
who characterized the response of the material to excitation light in arbitrary quantum
states by a Wigner-function-like response distribution where a set of coherent states
used for excitation spans the phase space.

But despite these insights on how light influences the state of a semiconductor, the
converse problem — measuring the quantum state of a semiconductor by probing its
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emitted light — was not comprehensively investigated. One routinely used tool is the
photon statistics g(2) of the emission in order to verify single-photon generation; see
e.g. Ref. [SGD+16]. However, this is not a complete characterization of the quantum
state since g(2) only depends on the diagonal of the density matrix and does not contain
information on off-diagonal elements, i.e. superpositions of basis states.
A more advanced method in the toolkit of quantum optics, allowing a complete char-
acterization of the quantum state of light, is quantum state tomography via homodyne
detection (optical homodyne tomography, OHT) [LR09]. Nonetheless, this method
was rarely applied to semiconductors yet. Usually, OHT requires a fixed relative phase
between signal and detection. Without this phase reference, OHT only allows measur-
ing photon statistics, as done e.g. for a superluminescent diode [MR97] and a diode
laser [MBAR95, RC13]. If the sample is excited resonantly, the excitation laser can
be used as a phase reference, which enabled the measurement of squeezed light from
semiconductor polaritons via OHT [BBA+14]. But this approach does not work for
nonresonant excitation. Thus, a broader application of OHT to semiconductors is of-
ten prevented by the lack of a fixed phase reference. Another problem are the small
time scales given by the coherence times of semiconductors that require a high time
resolution of the detection system.

To bridge the aforementioned gaps, this work presents the application of OHT to
a semiconductor system that is excited nonresonantly, demonstrating that in spite of
the lack of a phase reference, information on the quantum state can be gained. The
setup developed by Marc Aßmann, Johannes Thewes and myself achieves a high time
resolution by using a pulsed laser with 0.5 - 1 ps pulse duration and a fast repetition
rate of 75 MHz as a local oscillator (LO) for detection and fast balanced detectors with
a bandwidth of 100 MHz. The lack of such fast detectors, which have only been en-
gineered during the last decade [CQZ+11, KBM+12, HFW+13], has mostly prevented
the application of OHT at high repetition rates before. Furthermore, by using several
homodyne detection channels, it is possible to reconstruct the relative phase between
signal and LO and to calculate the conditional quantum state depending on selectable
initial conditions and on the time delay between the channels [TLA20]. This method
for time- and intensity-resolved quantum state tomography opens new possibilities to
explore quantum dynamics and characteristics.
To describe the quantum state, I employ state-of-the-art theoretical concepts together
with my collaborators at Paderborn University, including novel phase-space approaches
and the concept of quantum coherence for quantifying superpositions both in mat-
ter and light, which are a sought-after resource for quantum information protocols
[LM14, BCP14, SAP17]. Thereby, we use a particle-picture-based quantification of
quantum coherence which is different than the wave-based nonclassicality criteria that
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Chapter 1. Motivation

have been used before [Man86].

As a testbed for our methods, I investigate exciton-polaritons in a GaAs micro-
cavity. Exciton-polaritons are quasi-particles arising when semiconductor excitons and
photons are strongly coupled. GaAs is a well-established material and easy to con-
nect with existing technology; however, exciton-polaritons can also exist in organic
semiconductors for room-temperature usage [CGZ+17]. Exciton-polaritons are ideal
candidates for hybrid systems: they inherently provide strong light-matter coupling,
and the polariton-polariton interaction mediated via their excitonic part might be used
for quantum information processing. Furthermore, polaritons might inherit the quan-
tum properties of pump light and reproduce them in their emission [LSS+15]. Re-
cent works demonstrated a transfer of entanglement from a single photon to polari-
tons [CLS+18] and possible indications of photon antibunching due to the polariton-
polariton interaction [DFS+19, MMWJ+19]. Besides, polaritons may form a macro-
scopic condensate, which is accompanied by the spontaneous formation of coherence
and off-diagonal long-range order in the system [KMSL07]. This condensation oc-
curs at a carrier density that is several orders of magnitude smaller than for a laser
and thus provides a more energy-efficient source for coherence [DHY10, DP12]. See
also [KLS+22] for a review of the applicability of polariton condensates for classical
and quantum computing. Previous studies on exciton-polaritons already characterized
the first- and second-order correlation functions g(1) and g(2) and their decay times
[LKW+08, TVA+12, KZW+16, KFA+18, APA+19, OTP+21] and the photon number
distribution [KSF+18]. However, to the best of my knowledge, the amount of quantum
coherence was not measured before our work in Ref. [LPR+21] and quantum state
tomography was not performed.

This thesis is structured as follows: Chapter 2 and 3 introduce the theoretical back-
ground of quantum optics and exciton-polaritons, respectively. Chapter 4 presents the
basic experimental setup that is common in all conducted measurements, consisting of
homodyne detection and polariton spectroscopy. I perform a preliminary characteriza-
tion of the sample in Chapter 5.
The next three chapters contain the main results of this thesis. Specifically, Chapter 6
presents time- and frequency-resolved measurements of the second-order photon corre-
lation function g(2)(0) of the polariton emission, surpassing previous methods that rely
on photon counting and need longer acquisition times such as the Hanbury Brown–Twiss
setup [HT56], streak cameras [AVT+10], two-photon absorption [BGRF09] or transi-
tion edge sensors [KSF+18]. With our faster method, the intrinsic fluctuations of the
light field are distinguished from extrinsic noise.
While the measurements in Chapter 6 only need one-channel homodyne detection, I
use two channels in Chapter 7 in order to measure the Husimi function of the polariton
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emission. This phase-space function is a more complete way to describe the state of
light than g(2) and allows me to quantify the amount of quantum coherence in the
polariton system.
In Chapter 8, I extend the measurements to three homodyne channels and implement
a phase-sensitive reconstruction of an advanced phase-space function, the regularized
P function PΩ, depending on postselected initial conditions. By scanning a time delay
between the three channels, I track the temporal decay of quantum coherence, which
is vital for applications.
Finally, a conclusion and an outlook can be found in Chapter 9.
I hope that this work serves as a starting point for future research on semiconductor
quantum optics and hybrid quantum systems.
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Chapter 2

Theoretical background —
Quantum optics and coherence

This chapter introduces the most important concepts from quantum optics needed for
our investigations on polariton condensates. In particular, we explain different notions
of coherence and different ways to characterize a quantum state of light.

2.1 First-order correlation function and coherence time

Before diving into the quantum description of light, we review the classical notion of co-
herence. In classical physics, light is described as an ensemble of electromagnetic waves
in different modes E(t) =

∑
i E0,i cos(ωit+φi), each mode i with a given amplitude E0,i,

phase φi and frequency ωi. These waves might also have different polarizations, which
we ignore here for simplicity. Consequently, the ensemble possesses a distribution of
frequencies F (ω) with linewidth Δω. With increasing time, waves with different fre-
quencies run apart and the total phase of E(t) diffuses. Besides, the individual phases
φ may vary discontinuously due to perturbations [Fox06, p. 17]. Thus, for large times,
the phase relation between the waves is randomized and the ability of the light field to
interfere with itself is lost.
In this framework, coherence is defined as the ability of a light field to interfere with
itself, e.g. in a Michelson interferometer. This ability is quantified by the first-order
correlation of the field [Fox06, p. 19]:

g(1)(τ,t) =
〈E∗(t)E(t + τ)〉

〈|E(t)|2〉 . (2.1)

When g(1)(τ) = 1, the light field interferes with maximum contrast and is perfectly
coherent, which is always the case for equal times τ = 0. By contrast, for increasing
time difference τ , g(1)(τ) usually decreases, and for g(1)(τ) = 0, there is no coherence

9



Chapter 2. Theoretical background — Quantum optics and coherence

and no ability to interfere. Accordingly, a coherence time can be defined from g(1)(τ)
as the time scale over which the coherence decays [MW62]:

τc =
∫ ∞

−∞
|g(1)(τ)|2dτ. (2.2)

The temporal correlation g(1)(τ) is related to the power spectrum F (ω) by the
Fourier transformation for a stationary random process, according to the Wiener-
Khintchine theorem [MW95, p. 59]. The specific shape of both functions depends
on the physics behind the light emission, the two most important cases being an expo-
nential and a Gaussian shape of g(1)(τ). The exponential case [AUM+07]

g(1)(τ) = e−|τ |/τc (2.3)

corresponds to a Lorentzian spectrum and relates to homogeneous broadening. Its
physical origin is natural broadening due to finite lifetimes or collision broadening that
effects all emitters in the same way [Lou83].
The other well-known case is a Gaussian function [AUM+07]

g(1)(τ) = e− π
2 ( τ

τc
)2

, (2.4)

corresponding to a Gaussian spectrum as well. This case results from inhomogeneous
broadening. It occurs when different sources emit light with Gaussian-distributed fre-
quencies, e.g. atoms in a gas with Doppler-shifted frequencies [MW95, p. 806] and an
ensemble of quantum dots with a Gaussian size distribution [MGF+10].

In general, because of the Fourier relation, linewidth and coherence time are in-
versely proportional to each other. The smaller the linewidth, the longer lasts coher-
ence. This hints at a problem of this classical notion of coherence: In principle, one
could always filter a light field spectrally in order to achieve a longer coherence time,
no matter if the light comes from a lightbulb or a laser. (Of course, for the laser, most
of the intensity lies already in a small frequency range while, in the case of the light
bulb, the intensity is spread over a wide frequency range and one would loose most
of the intensity by filtering it.) Thus, in order to distinguish more precisely between
different light states from different origins, a more advanced description is needed.

2.2 Light in the number-state representation

Quantum mechanically, each light wave is described as a harmonic oscillator with fre-
quency ω. The amount of energy in this oscillator is quantized, meaning that energy
can only be added and subtracted in “packages” of the amount �ω, called photons.
Adding one photon is described by the creation operator â† and removing one photon

10



2.3. Thermal and coherent light states

by the annihilation operator â. Photons are bosons and obey the commutator relation
[âj ,â†

j′ ] = δj,j′ , where j identifies different optical modes. How many of these elementary
excitations are present is counted by the number operator n̂ = â†â, and their energy is
then given by �ωâ†â.
The entire light field consists of many modes with different frequencies ωj and different
properties, like spatial shape and polarization. Thus, the Hamilton operator of the
total energy is given by [Sch01, p. 271]

Ĥ =
∑

j

�ωj

(
â†

j âj +
1
2

)
. (2.5)

While
∑

j �ωj â†
j âj is the energy of the total number of photons in the system,∑

j �ωj
1
2 is the ground state or vacuum energy without any photons present.

For each mode, there exists a distinct family of states, the photon-number eigenstates
|n〉, obeying n̂ |n〉 = n |n〉 with n ∈ N. Such states contain a specific number of photons
n. But also superpositions of photon number states are possible, which do not possess a
fixed photon number. In general, every possible state of the light field can be described
as a superposition of various number states since these states form a complete basis,
called the Fock basis. Thus, every state can be characterized by a density matrix in
the Fock basis for each mode [MW95, p. 481]:

ρ =
∑
n,m

ρnm |n〉 〈m| . (2.6)

The diagonal elements of the density matrix ρnn correspond to the probability of
measuring the photon number n, whereas the off-diagonal elements are a result of
coherent quantum superpositions of the basis states.

2.3 Thermal and coherent light states

The two most important light states occuring in this work are the thermal state and the
coherent light state, and a combination of both, the displaced thermal state. Therefore,
we will discuss their properties and how they can be distinguished by more suitable
criteria than g(1)(τ).
A coherent state is the quantum mechanical equivalent to a classical wave with fixed
amplitude and phase. This state is a good approximation of the light emitted by
a laser.1 It is defined as the right-hand-side eigenstate of the annihilation operator
[Gla63]:

â |α〉 = α |α〉 , (2.7)

1There was a debate on whether these states are really created by lasers, see Ref. [BRS06] for a
summary.
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Chapter 2. Theoretical background — Quantum optics and coherence

with a complex eigenvalue α ∈ C = |α|eiφ, with amplitude |α| and phase φ [Fox06,
p. 134]. Astonishingly, photons can be removed from the coherent state without altering
it. The coherent state can be expressed in the Fock basis [Gla63]:

|α〉 = e− 1
2 |α|2 ∑

n

αn

√
n!

|n〉 . (2.8)

The density matrix is then given by

ρ = |α〉 〈α| = e−|α|2 ∑
n,m

αnα∗m

√
n!m!

|n〉 〈m| . (2.9)

Thus, the coherent state is a superposition of an infinite number of photon num-
ber states and therefore does not possess a fixed photon number. We only know the
probability for measuring each photon number [Gla63]:

Prob(n) = | 〈n|α〉 |2 =
|α|2n

n!
e−|α|2 . (2.10)

This is a Poisson distribution, describing random, independent events [MW95,
p. 23]. Thus, each individual photon emission event is statistically independent of
all the other ones for any delay τ . From the Poisson distribution follows the mean
photon number and the variance [Fox06, p. 159]:

〈n̂〉 = |α|2 and Var(n) = 〈n̂〉. (2.11)

This variance, which comes from the quantization and is not found in the classical
description of an electromagnetic wave for non-random light, is also called shot noise.

Now let us compare this to a thermal state. A thermal state is created when
many different sources independently emit light [Gla63], each with different phase and
amplitude. In sum, the light field’s amplitude and phase fluctuate rapidly on the time
scale of the coherence time τc. The density matrix only has diagonal elements [Gla63]:

ρ =
1

1 + n̄

∑
n

(
n̄

1 + n̄

)n

|n〉 〈n| , (2.12)

with the mean photon number n̄. This gives a Bose-Einstein distribution for the photon
number probabilities [Fox06, p. 85]:

Prob(n) =
1

1 + n̄

(
n̄

1 + n̄

)n

. (2.13)

From this follows the variance, which is much higher than the coherent one for the
same mean photon number,

Var(n) = n̄ + n̄2. (2.14)

12
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Coherent

t t + 

Thermal }
c

(b)(a)

Figure 2.1: (a) Simulation of photon numbers detected in time intervals smaller than the
coherence time, for an average photon number of 100. Top: Coherent state. Bottom: Thermal
state. (b) Illustration of photon flux versus time for coherent and thermal state. After a
first photon was detected at time t, a second photon is detected at time t + τ with enhanced
probability for thermal light, as long as τ is smaller than the coherence time τc.

The different variances of coherent and thermal state can also be visualized by
simulating repeated measurements of the photon number. Figure 2.1(a) shows results
from such a simulation. For the coherent state, the measured number of photons
fluctuates only slightly around the mean photon number whereas, for the thermal state,
some instances show a very high photon number and some instances almost no photon
at all. This behavior is called “bunching”. It also means there is a correlation between
photons: If one photon is measured, there is an increased probability to measure another
one within the coherence time. This correlation can be quantified via the second-order
correlation function and helps to distinguish thermal and coherent light.

2.4 Second-order correlation function

The second-order correlation function g(2)(τ,t) is the probability to measure a photon
at time t + τ , after another photon was detected at time t, averaged over some time
interval Δt [Fox06, p. 161]:

g(2)(τ,t) =
〈â†(t)â†(t + τ)â(t + τ)â(t)〉

〈â†(t)â(t)〉〈â†(t + τ)â(t + τ)〉 . (2.15)

The idea is visualized in Fig. 2.1(b).
For coherent light, photons are statistically independent of each other, thus g(2)(τ) = 1
for all τ [Lou83, p. 221]. By contrast, when detecting a photon from a thermal light field,
there is an increased probability to detect another photon as long as τ is smaller than
the coherence time τc. If photons from different spectral modes cannot be distinguished,

13



Chapter 2. Theoretical background — Quantum optics and coherence

Figure 2.2: g(2)(τ) vs τ for coherent light (red) and thermal light with Gaussian spectrum
(green).

for thermal light the following relation holds between first- and second order correlation
[Lou83, p. 221]:

g(2)(τ) = 1 + |g(1)(τ)|2. (2.16)

The dependence of g(2)(τ) on τ is shown in Fig. 2.2 for coherent light and for thermal
light with a Gaussian spectrum.

In the case of one mode of light and τ = 0, g(2)(0) can also be related to the variance
of the photon number. The numerator of Eq. (2.15) can be transformed with help of
the bosonic commutator relation:

〈â†â†ââ〉 = 〈â†ââ†â − â†â〉 = 〈n̂2 − n̂〉 = 〈n̂2〉 − n̄. (2.17)

Using the known relation 〈n̂2〉 = n̄2 + Var(n) [MW95], we find:

g(2)(τ = 0) = 1 − 1
n̄

+
Var(n)

n̄2 . (2.18)

Thus, when the variance is high, the photon correlation increases as well. Using the
variances for the coherent and thermal state Eq. (2.11) und (2.14), we find g(2)(τ =
0) = 1 for the coherent state and g(2)(τ = 0) = 2 for the thermal state.
If coherent and thermal light are combined, values between 1 and 2 are taken. Here,
two different cases are imaginable. On the one hand, the light might come from two
different, distinguishable modes. In that case, g(2)(τ,t) is given by a statistical mixture
of the different possibilities g

(2)
ij (τ,t) to detect photons from these modes [LHA+13]. On

the other hand, thermal and coherent emission might happen in the same mode, which
is the case for the displaced thermal states we investigate in Chapter 7. In that case,
the photon number variance is given by [Lac65, KSF+18]:
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Var(n) = 2|α0|2n̄th + |α0|2 + n̄th + n̄2
th, (2.19)

with the mean thermal photon number n̄th and the mean coherent photon number
|α0|2. Inserting this into Eq. (2.18) gives

g(2)(τ = 0) = 2 − x2, (2.20)

where x = |α0|2/(|α0|2 + n̄th).
But also g(2)(τ = 0) < 1 is possible for single-photon sources, making g(2)(τ = 0) an
important criterion for quantum information applications; see e.g. [SGD+16]. Alto-
gether, g(2) may be used as a criterion to distinguish different states of the light field,
as long as the time resolution Δτ of the apparatus is smaller than the coherence time
of the light. Besides, g(2) is not uniquely connected to only one kind of quantum state,
thus prior knowledge is necessary. See Chapter 6 for a detailed discussion on time
resolution and frequency-resolved g(2)(τ = 0) measurements of polariton emission.

2.5 Quantum coherence

Up to now, we introduced the classical notion of coherence, g(1), which is a measure
of phase stability and spectral width, and the second-order photon correlation g(2),
which is related to the variance of the photon number. However, g(1) can be changed
by filtering the signal and also is only a classical property while g(2) only depends on
the photon number distribution, i.e. the diagonal elements of the density matrix in
the Fock basis. It makes no statement about the presence of off-diagonal elements,
i.e. superpositions of Fock states. But these superpositions can be used for quantum
information protocols and provide a resource for applications. (Resource theories have
emerged over the last years to quantify the usefulness of a physical system for quantum
communication and computing; see Ref. [CG19] for a review.)
Therefore, theorists introduced a measure for the amount of superpositions in a sys-
tem, called quantum coherence in contrast to previous notions of coherence [LM14,
BCP14, SAP17]. It can be defined as the sum of the modulus square of the off-diagonal
elements [BCP14] 2:

C(ρ) =
∑

m,n∈N:m�=n

|ρm,n|2. (2.21)

Since ρ is Hermitian (i.e. ρ = ρ†), this corresponds to the squared distance in the
Hilbert-Schmidt norm, ‖Â‖HS = [tr(Â†Â)]1/2, between the state ρ and an incoherent
state ρinc with the same diagonal elements [SW18, LPR+21]:

2Using the square of the off-diagonal elements, i.e. the l2 norm, is only one possible choice. In
general, one wants the quantum coherence to be monotone with respect to the parameters of the
system, so these can be ordered into “more” or “less” coherent. The l2 norm is monotone with respect
to the parameters of the states we study here and therefore can be used [LPR+21].
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C(ρ) =‖ρ − ρinc‖2
HS = tr

(
[ρ − ρinc]2

)
=tr

(
ρ2
)

− 2 tr (ρρ̂inc)︸ ︷︷ ︸
=
∑

n
ρn,n〈n|ρ|n〉

=tr(ρ2
inc)

+tr
(
ρ2

inc
)

=tr
(
ρ2
)

− tr
(
ρ2

inc
)

.

(2.22)

Quantum coherence can be converted into other quantum correlations [MYG+16]
and into entanglement [KSP16, CH16, QSG+18], which is a key resource for quantum-
communication applications [HHHH09]. This conversion can be performed for example
with a CNOT gate acting on a state with quantum coherence and an incoherent state
[QSG+18].3

However, it requires attention that the quantum coherence depends on the basis of
ρ. For example, in the coherent-state representation, a coherent state can be simply
described by |α〉 =

∫
d2α′δ(α′ − α)|α′〉 — with δ denoting the Dirac delta distribution

— including no superpositions and therefore zero quantum coherence (please note that
this expansion is not unique because coherent states form a generating system and not
a basis; but the above expansion uses the minimum number of elements). Nonethe-
less, in the Fock basis, a coherent state is expressed by Eq. (2.8) and (2.9), having
off-diagonal elements and therefore high quantum coherence. On the other hand, a
photon-number state |n〉 includes no superpositions in the Fock base and therefore zero
quantum coherence; but in the coherent-state representation, |n〉 is a superposition of
n + 1 coherent states [VS14] and thus possesses quantum coherence.
Indeed, quantum coherence is only defined with respect to a chosen “classical” refer-
ence. If one picks particle states |n〉 as the classical reference, then superpositions of
those like the coherent state |α〉 exhibit quantum coherence, and vice versa.
The choice of the reference depends on the kind of system under investigation. Mostly,
in the context of quantum optics, coherent states are seen as classical because they cor-
respond to lightwaves known from classical optics. But for some quantum applications,
also coherent states provide resources. For example, they are exploited as a resource
e.g. for random number generators and continuous-variable quantum key distribu-
tion (CV-QKD) [SAL11, FXA+16, PAB+20]. Moreover, the particle-based quantum
coherence can be converted to entanglement with help e.g. of a pair-production pro-
cess, |n〉p �→ |n〉s ⊗ |n〉i, where the pump photons decay into signal and idler photons
[LPR+21].

3A simple example for this conversion are two coupled qubits in the states |+〉 |0〉, where |+〉 =√
1/2(|0〉 + |1〉) is in a superposition of two basis states and possesses quantum coherence. The CNOT

gate, which flips the qubit in the state |0〉 if the other qubit is in the state |1〉, then creates the entangled
state

√
1/2(|00〉 + |11〉) [CH16].
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Re(E)

Im(E)

E0

Figure 2.3: The phase-space diagram represents a classical electrical field with phase φ and
amplitude E0.

Especially for matter systems, Fock states as the particle basis are the classical default
and their superpositions are seen as a quantum phenomenon. In this work, we aim at
characterizing a matter system — a semiconductor cavity with polaritons — by probing
the emitted light field. Therefore, we are looking for superpositions of particle states
and use the Fock basis as the classical reference. We quantify the amount of quantum
coherence of the polariton system in Chapter 7.

2.6 Continuous variables

Up to now, we described quantum properties of light in the Fock basis. However,
actually measuring in this basis would require single-photon counting detectors with
sufficient time resolution. In practice, there is also another useful approach, namely to
measure continuous variables instead of discrete photon numbers. Nevertheless this
approach allows to calculate quantities like g(2) and quantum coherence.
To introduce continuous variables, let us go back to the classical notion of the electrical
field of light. The field can also be described as consisting of two oscillating fields, the
field and its conjugate momentum, 90◦ out of phase with each other. These can be
expressed as a complex amplitude with phase φ ([Fox06, p. 130]):

E = E0eiφ (2.23)

= E0 cos φ + iE0 sin φ (2.24)

= E1 + iE2. (2.25)

The real part E1 and the imaginary part E2 are called field quadratures. They
act as the axes of a coordinate system in which a vector represents the complex field
amplitude E, as shown in Fig. 2.3.
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Now coming back to quantum mechanics, the field quadratures correspond to the
dimensionless operators q̂ and p̂, which are composed of the creation and annihilation
operators [Sch01, p. 279-280]:

q̂ = A(â† + â);

p̂ = Ai(â† − â);

â† =
1

2A
(q̂ − ip̂);

â =
1

2A
(q̂ + ip̂).

(2.26)

The positive normalization factor A assumes different values in the literature. The
field quadratures are called continuous variables because they can take any value, in
contrast to discrete variables like the photon number that are restricted to integers.
From the definition (2.26) and the bosonic commutator [â,â†] = 1 follows a commutator
for the field quadratures:

[q̂,p̂] = 2A2i. (2.27)

Using the definition (2.26) and the commutator, the mean photon number can be
related to the expectation values of the quadratures:

n̄ = 〈â†â〉 =
1

4A2 (〈q̂2〉 + 〈p̂2〉) − 1
2

. (2.28)

From the commutator also follows an uncertainty relation [AFP09], p. 87:

ΔqΔp ≥ 1
2

|〈[q̂,p̂]〉| = A2. (2.29)

Hence, the field quadratures q̂ and p̂ cannot be measured simultaneously with ar-
bitrary precision but have an intrinsic uncertainty. When measuring them multiple
times, one obtains a distribution of values with some width. The width is not necessar-
ily equal in both directions but can be asymmetric, e.g. for so-called squeezed states.
This distribution of quadrature values characterizes the light state equally well as the
density matrix. It is called a phase-space distribution because q̂ and p̂ act similarly
to the position and momentum coordinates of a harmonic oscillator, providing coordi-
nates for the phase space of the system.
Since q̂ and p̂ represent the axes of a coordinate system, we must take into account
that coordinate systems can be rotated. The absolute rotation, i.e. absolute phase,
is not fixed but is a choice of the experiment, as follows. Let us consider a point in
phase space given by the measured coordinates (q,p). Now we rotate the coordinate
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system by an angle θ. Then, the point is described by the new coordinates (qθ,pθ) in
the rotated coordinate system [AWH13, p. 134]:

qθ = q cos θ + p sin θ (2.30)

pθ = −q sin θ + p cos θ. (2.31)

By inserting definition (2.26), the rotated operator q̂θ is

q̂θ = A(â†eiθ + âe−iθ). (2.32)

This will be important in Section 4.1 where we discuss the homodyne detection
method, where the rotation θ of the coordinate system is defined by the phase of the
local oscillator.
Meanwhile, the next section introduces the most important phase-space distributions.

2.7 Phase-space distributions

Different kinds of phase-space distributions are available to describe a light state. This
might be puzzling because, in classical mechanics, just one probability distribution
Pcl(q,p) is needed to calculate the expectation value of any quantity O(q,p) [Sch01,
p. 322] 4:

〈O(q,p)〉 =
∫ ∫

O(q,p)Pcl(q,p)dqdp. (2.33)

However, in quantum mechanics, the order in which non-commuting operators like q̂

and p̂ or â† and â are evaluated is relevant. Therefore, different kinds of phase-space dis-
tributions correspond to different operator ordering. For example, the Wigner, Husimi,
and P distributions are associated with symmetric, antinormal (creation operators are
always to the right of annihilation operators), and normal (creation operators to the
left of annihilation operators) ordering, respectively [Sch01, p. 322].

Now we discuss the most important distributions, their advantages and drawbacks.
In any case, phase-space distributions are an attempt to express the density matrix ρ̂

in terms of the continuous variables q and p. These variables are related to annihilation
and creation operators, according to Eq. (2.26), whose right-hand-side and left-hand-
side eigenstates are the coherent states. Therefore, most phase-space distributions are
defined by relating ρ to coherent states instead of Fock states. This is possible because
coherent states form an overcomplete linear generating system — although they are not
orthogonal to each other — so that each state can be represented as a linear combination

4Although in principle, one could convolute the classical distribution and apply this modified prob-
ability to compute expectation values. But this procedure does not provide any benefit, as opposed to
quantum mechanics.
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of them [Sud63].
One of these attempts is the Glauber-Sudarshan P distribution. It is defined by
expressing the density matrix directly via coherent states [Gla63, Sud63]:

ρ̂ =
∫

d2αP (α) |α〉 〈α| . (2.34)

For a particular coherent state |α0〉, P is the delta distribution P (α) = δ(α − α0).
This is already an example for the main drawback of the P distribution: for many
quantum states, it is singular and no well-behaved function. Besides, the P distribution
is ambiguous - a given quantum state can be represented by different P distributions
[SV20]. To avoid these problems, the P distribution may be convoluted with a kernel
K [SV20]:

PK(α) =
∫

d2α′K(α,α′)P (α′). (2.35)

One of the possible results is the Husimi-Kano Q function, when using a Gaus-
sian Kernel. It can also be defined as the expectation value of the density operator for
a coherent state [Sch01, p. 324]. The connection is shown by [SV20]:

Q(q,p) =
1
π

〈α| ρ |α〉 =
∫

d2α′P (α′)
〈
α
∣∣α′〉 〈α′∣∣α〉 /π (2.36)

=
∫

d2α′P (α′)| 〈α∣∣α′〉 |2/π =
∫

d2α′P (α′) e−|α−α′|2/π.︸ ︷︷ ︸
=K(α,α′)

(2.37)

Thus, the Q function is always broader than the corresponding P distribution. Also it
is always positive, but it does not allow to easily compute marginals. An illustration
of the Husimi function for a coherent state is shown in Fig. 2.4a. Regarding mea-
surements, the Q function can be reconstructed from two-channel homodyne detection.
This is explained in detail and applied to polariton emission in Chapter 7.

When using a Gaussian Kernel with half the width as the one above, we obtain the
Wigner function [LR09]. An image of the Wigner function for a coherent state is
shown in Fig. 2.4b. The Wigner function can be negative and therefore is not really
a probability distribution. But its marginals correspond to probability distributions
of the variables q or p [Sch01, p. 69 - 71]. The Wigner function is historically of
importance, but it poses challenges for the reconstruction from measured data. Typ-
ically, the data stem from phase-sensitive measurements of the field quadratures with
one-channel homodyne detection [SBRF93, BSM97] or, if no phase reference is avail-
able, from three homodyne channels using additional phase reconstruction [TLA20].
From these data, the Wigner function can either be calculated using inverse Radon-
transformation, delivering huge error margins and possible unphysical features and
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(a) (b) (c)

Figure 2.4: Simulated coherent state with mean photon number |α0|2 = 10, represented (a)
by the Husimi function, (b) the Wigner function, and (c) the regularized P function with filter
(8.5) and filter parameter R = 0.7. The black lines show an integral projection of the functions
to the q and p axes.

artifacts, or via maximum-likelihood methods, which do not provide practical means
to determine error margins [LR09].

As further improvement, in the last years more, advanced phase-space distributions
were developed, mostly by using optimized non-Gaussian kernels. One of them is
the regularized P function, which can be sampled from homodyne detection data
together with error margins, while artifacts can be avoided, making it more practicable
than the Wigner function. For this reason, we applied the regularized P function
instead of the Wigner function to data from three-channel homodyne detection. Figure
2.4c illustrates the regularized P function for a coherent state, with the filter function
given in Eq. (8.5) and a so-called filter parameter R = 0.7. Details on this function, the
reconstruction process, and its application to polariton emission are found in Chapter
8.
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Chapter 3

Theoretical background —
Exciton-polaritons in semiconductor
microcavities

Due to the strong coupling of light and matter, exciton-polaritons are a natural candi-
date for semiconductor quantum optics. They emerge when excitons in a semiconductor
microcavity are strongly coupled to photons. This chapter explains the fundamentals
of exciton-polaritons, following Refs. [GM14, DHY10], and gives a review on previous
studies.

3.1 Excitons

In a solid, the possible energies electrons can possess are divided into distinct energy
bands. The highest filled band is called valence band, and the band above that conduc-
tion band. The size of the energy gap between those bands determines the conductive
properties of the material, with the three categories isolator (big gap), metal (no gap)
and semiconductor (intermediate gap).
In the semiconductor, this gap can be bridged by optical excitation, when a photon
gives enough energy to an electron in the valence band to transfer it to the conduction
band. Thereby, the electron leaves an empty place in the valence band, a quasiparticle
called hole which is positively charged. The positive hole in the valence band and the
negative electron in the conduction band can be bound by Coulomb interaction, simi-
lar to a hydrogen atom. Such a pair is a new quasiparticle, called exciton. Although
excitons consist of fermionic particles, they can be considered as bosons as long as the
distance between different excitons is much larger than their Bohr radius aB [DHY10].
When the electron falls back to the valence band, recombining with the hole, the exci-
ton is destroyed and the energy is emitted as a photon again.
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The exciton energy dispersion, depending on the wave vector 
k, can be written as

En(
k) = Eg − EX +
�

2
k2

2mexc
, (3.1)

with the band gap Eg, the binding energy EX and the mass mexc [GM14].

In solids, excitons are only weakly bound because dielectric screening of the elec-
trical field reduces the strength of the Coulomb interaction. Therefore, they possess
binding energies on the order of 1 – 100 meV [HH77] and their Bohr radius aB ex-
tends over several unit cells of the crystal. These weakly bound excitons are called
Wannier-Mott excitons, in contrast to the stronger bound Frenkel excitons in organic
and molecular semiconductors.
The Bohr radius directly influences the interaction strength between excitons and light
because the oscillator strength is proportional to a−3

B [DHY10]. Thus, a decrease of
the Bohr radius is desirable for strong coupling to light. This can be achieved by using
quantum wells instead of bulk material.
A quantum well is a thin layer of a semiconductor, with a thickness comparable to
aB, placed between two layers of another material with a larger band gap. Thus, the
motion of excitons is confined in the direction perpendicular to the layer (denoted as z

direction). This confinement leads to a reduced Bohr radius, and therefore an enhanced
interaction strength with light. Also, the total exciton energy is enhanced compared to
the bulk due to the confinement energy, which can be on the order of several 100 meV
and increases with decreasing quantum well thickness [MLC92].
Moreover, the anisotropy in z direction breaks momentum conservation in this direc-
tion. Therefore, the momentum of interchanging photons and excitons needs only to
be equal in lateral direction. This means that the lateral wavenumber k|| has to be
equal for exciton and photon but kz can be arbitrary, improving optical accessibility.
But there is a catch, because with the smaller length of the material in z direction,
the spatial overlap with the light field is reduced. Thus, for ultimately stronger light-
matter coupling, also the light field should be confined in z direction with help of a
microcavity.

3.2 Microcavity

A microcavity, basically, is created by placing two mirrors around an optical medium
— in this case, a semiconductor quantum well —, confining the light field in between.
This has two beneficial effects: it enhances the spatial overlap between material and
light field, and it keeps the photons longer inside the material. Without a cavity, a
photon would quickly escape to the outside after only a few interactions with excitons.
But between the two mirrors, photons are reflected again and again like in an interfer-
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Figure 3.1: (a) Structure of a microcavity. The distributed Bragg reflector (DBR) layers have
alternating refractive indices n1 and n2. In between lies the cavity with refractive index nc and
optical length λc/2, containing the quantum wells. This structure leads to a concentration of
the electrical field in the cavity, depicted in red. (b) Reflectivity spectrum of a microcavity. Due
to the DBRs, a stop band with high reflectivity is formed. For excitation, light can permeate
into the structure either resonantly at the design wavelength λc or non-resonantly at one of the
lower-wavelength Bragg minima outside the stop band. Both images are taken from [Ber21].

ometer, interacting multiple times. Thus, excitons and photons interchange repeatedly,
a photon creating an exciton, which recombines and creates a photon, and so on. When
the lifetime of a photon in the cavity is sufficiently long, the regime of strong coupling
is achieved.

In reality, the two mirrors are so-called distributed Bragg reflectors (DBR), con-
sisting of many layers with alternating high and low refractive indices and an optical
thickness of λ/4. The Bragg effect causes destructive interference for wavelengths in
a certain range called stop band, making the structure highly reflective in this range.
Between the two mirrors is the cavity layer with the quantum wells and an optical thick-
ness of λc/2. Consequently, at the design wavelength λc, the transmission is sharply
increased and the electrical field is concentrated around the center of the cavity with a
highly enhanced amplitude compared to free space. A scheme of the structure and the
electrical field is shown in Fig. 3.1.

In order to create excitons optically, the excitation light, typically from a laser,
has to penetrate into the structure. This is only possible at wavelengths with low
reflectivity, i.e. either at the design wavelength λc or at one of the lower-wavelength
Bragg minima outside the stop band. The first case is called resonant excitation, the
latter one non-resonant excitation. Only non-resonant excitation was used in this work.
This excitation process is discussed in detail in Section 3.4.

The energy dispersion of the cavity is given by:

ECav =
�c

nc

√
k2

z + k2
||, (3.2)
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with reduced Planck’s constant � and the orthogonal wave vector kz = nc2π/λc. For
k|| � kz, this simplifies to a parabolic energy dispersion:

ECav ≈ ECav(k|| = 0) +
�

2k2
||

2mCav
, (3.3)

with the cavity-photon effective mass

mCav =
ECav(k|| = 0)

c2/n2
c

. (3.4)

The cavity-photon effective mass is typically five orders of magnitude smaller than the
bare electron mass [DHY10], resulting in a much more curved energy dispersion than
the one of the exciton alone.

The quality of a microcavity is described with the Q factor

Q ≡ λc

Δλc
= 2π

c

λc
ΔτCav, (3.5)

with the full width half maximum Δλc in the reflectance spectrum, the speed of light
c and ΔτCav the average lifetime of a photon in the cavity [KBML17]. The Q factor
corresponds to the average number of roundtrips a photon can travel in the cavity
before it escapes. This means 20 000 roundtrips for the sample investigated in this
work, sufficient to facilitate strong coupling.

3.3 Polariton dispersion

As we have seen, using a quantum well in a microcavity enhances the oscillator strength
of excitons and leads to a longer lifetime of photons in the cavity. Both effects are
expressed in the exciton-photon dipole interaction strength (which is nonzero only for
excitons and photons having the same k||) [SFW98],

2g0 = �Ω ≈ 2�

√
2Γ0cNQW

ncLeff
, (3.6)

with the Rabi frequency Ω representing the exchange rate between exciton and photon.
NQW is the number of quantum wells in the cavity, Leff is the effective length of the
cavity, which is inversely proportional to the cavity quality factor, and Γ0 is propor-
tional to the exciton oscillator strength per unit area. As we will see, strong coupling
occurs if g0 � (γcav − γexc)/2, with γcav and γexc being the decay rates of the photons
and the excitons, respectively. The following derivation is based on Ref. [DHY10].
Mathematically, strong coupling occurs when the Hamiltonian of the system can be
diagonalised with new eigenvectors, being superpositions of the prior, uncoupled eigen-
vectors. In our case, the uncoupled modes are photons, expressed with photon ladder
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operators âk|| , and excitons with exciton ladder operators b̂k|| . The Hamiltonian con-
sists of the uncoupled parts, ĤCav and Ĥexc, which simply depend on the number of
excitations in each subsystem, and the interaction part ĤI (when using the rotating
wave approximation, discarding terms where energy conservation is violated):

Ĥ = ĤCav + Ĥexc + ĤI

=
∑

ECav(k||,kz)â†
k|| âk|| +

∑
Eexc(k||)b̂

†
k|| b̂k|| +

∑
g0(â†

k|| b̂k|| + b̂†
k|| âk||).

(3.7)

Because of the interaction term, the modes âk|| and b̂k|| are not eigenmodes of the
system anymore. To get new eigenmodes, the Hamiltonian can be diagonalized via the
Hopfield-Bogoliubov transformations:

P̂k|| = Xk|| b̂k|| + Ck|| âk|| , (3.8)

Q̂k|| = −Ck|| b̂k|| + Xk|| âk|| . (3.9)

This leads to a new, diagonalized Hamiltonian

Ĥpol =
∑

ELP(k||)P̂
†
k||P̂k|| +

∑
EUP(k||)Q̂

†
k||Q̂k|| , (3.10)

with new annihilation operators P̂k|| ,Q̂k|| for the resulting eigenmodes. These eigen-
modes can be seen as new elementary excitations or quasiparticles of the system, being
linear superpositions of excitons and photons with the same in-plane wave number k||.
Thus, we cannot consider excitons and photons existing separately anymore, but they
are contributing simultaneously to the system. A similar effect is also known in classical
mechanics when coupling two harmonic oscillators, e.g. two pendulums connected by
a spring, which then oscillate in two normal modes.
The new quasiparticles are called polaritons and are bosons because excitons and pho-
tons are bosons as well. The factors X and C, called Hopfield coefficients, determine
the relative proportion of photon and exciton in the polariton. They depend on the
difference between cavity and exciton energy ΔE(k||) = ECav(k||) − Eexc(k||):

|Xk|| |2 =
1
2

⎛⎝1 +
ΔE(k||)√

ΔE(k||)2 + 4g2
0

⎞⎠ , (3.11)

|Ck|| |2 =
1
2

⎛⎝1 − ΔE(k||)√
ΔE(k||)2 + 4g2

0

⎞⎠ . (3.12)

The new eigenenergies of the system are
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Chapter 3. Exciton-polaritons in semiconductor microcavities

Figure 3.2: (a) Detuning-dependence of the polariton energies at k|| = 0. The detuning is
shown in units of the Rabi splitting 2g0. At zero detuning, the cavity and exciton modes cross
each other, whereas the two polariton modes anticross, with an energy splitting of 2g0. (b)
Detuning-dependence of the Hopfield coefficients at k|| = 0. Both images from [Ber21].

ELP,UP(k||) =
1
2

[
Eexc(k||) + ECav(k||) ±

√
4g2

0 + (Eexc(k||) − ECav(k||))2
]

(3.13)

Obviously, if the coupling strength g0 was zero, the equation would return the
energies of the initial eigenmodes Eexc and ECav, but for finite g0, we obtain new
eigenenergies. The eigenmode with higher energy is called upper polariton (UP) and
the other one lower polariton (LP). In practice, only the lower polariton is relevant,
being the groundstate of the system and the most populated.

Let us finally derive the exact condition for strong coupling. When taking into
account the decay rate of photons γcav due to imperfect mirrors and the nonradiative
decay rate of excitons γexc, the eigenenergies are

ELP,UP(k||) =
1
2

[
Eexc(k||) + ECav(k||) + i(γcav + γexc)

±
√

4g2
0 + [Eexc(k||) − ECav(k||) + i(γcav + γexc)]2

]
. (3.14)

Consequently, there is an anticrossing at ΔE(k||) = 0 as long as g0 � (γcav −γexc)/2
because only then the square root term has a real value �= 0. Otherwise the material is
in the weak-coupling regime.
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3.3. Polariton dispersion

Figure 3.3: Polariton energy dispersions and Hopfield coefficients depending on k||, for (a)
δ = 2g0, (b) δ = 0 and (c) δ = −2g0. The Hopfield coefficients X and C indicate the contribu-
tions of exciton and photon, respectively, for the lower polariton and vice versa for the upper
polariton. The parabolic exciton dispersion seems to be flat in the depicted range of k|| because
the much higher exciton mass leads to a much smaller curvature of its dispersion. Image from
[DHY10].

As we have seen, the Hopfield coefficients and the new eigenergies depend on the
difference between cavity and exciton energy. We discuss this dependence more in detail
by defining the detuning between cavity energy and exciton energy at k|| = 0,

δ = ECav(k|| = 0) − Eexc(k|| = 0). (3.15)

In practice, the exciton energy is determined by the bandgap of the material. But
the cavity energy can be changed by varying the thickness of the cavity layer across
the sample, providing different detunings. Figure 3.2(a) shows the dependence of the
polariton energies at k|| = 0 on the detuning.
Obviously, the minimum energy splitting between LP and UP is reached for zero detun-
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Chapter 3. Exciton-polaritons in semiconductor microcavities

ing, having the value 2g0 and being called Rabi splitting. For larger absolute detuning,
the LP and UP energies approximate the exciton and cavity energies. This is also
reflected in the Hopfield coefficients, which are shown in Fig. 3.2(b).
The effect of the detuning on the polariton dispersions and the Hopfield coefficents for
all k|| is shown in Fig. 3.3. For positive detuning, the lower polariton is mostly “exci-
tonic” and the upper polariton mostly “photonic”. For negative detuning, this behavior
is more complex. Here, the LP is more “photonic” and the UP more “excitonic” at
k|| = 0; however, it is the other way around for higher wave vectors.

This also has an effect on polariton effective mass and lifetime: The effective mass is
the weighted harmonic mean of exciton and photon mass (because the energy dispersion
is inversely proportional to the mass), which can be simplified due to mcav � mexc,

mLP =
(

|X|2
mexc

+
|C|2
mcav

)−1

⇒ mLP(k|| = 0) ≈ mcav/|C|2 (3.16)

mUP =
(

|C|2
mexc

+
|X|2
mcav

)−1

⇒ mUP(k|| = 0) ≈ mcav/|X|2. (3.17)

Also the lifetimes are affected as the decay rates depend on the Hopfield coefficients,

γLP = |X|2γexc + |C|2γcav, (3.18)

γUP = |C|2γexc + |X|2γcav. (3.19)

Typically, excitons have a lifetime of about 1 ns and cavity photons about 1 – 10
ps, thus polaritons live longer when they are more excitonic. The polariton lifetimes
and masses in turn influence their condensation, which we are going to discuss in the
next section.

3.4 Condensation under non-resonant excitation

Since excitons and photons are bosons, polaritons are bosons as well. Therefore, an
unlimited amount of polaritons is able to populate the same quantum state. When a
critical number of polaritons in the system is exceeded, stimulated scattering may lead
to a nonlinear increase of the ground state occupation. This behavior, called Bose-
Einstein condensation, is also found e.g. in atomic gases [DMA+95, BGM+97],
molecules [ZSS+03, JBA+03] and semiconductor excitons [HH77]. But compared to
these systems, polaritons can condensate at a relatively high temperature thanks to
their relatively small masses, because the critical temperature for condensation of a
Bose gas is inversely proportional to the particle mass [Fli18]. The only limit is the
temperature at which excitons are destroyed thermally, which can even be room tem-
perature, e.g. for organic semiconductors [CGZ+17], making polariton condensates
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3.4. Condensation under non-resonant excitation

Figure 3.4: Scheme of the condensation process along the lower polariton dispersion for non-
resonant excitation. The pump laser creates an electron-hole plasma, which relaxes and forms
exciton-like polaritons at high energies and high momenta. These high-energy polaritons relax
further due to scattering with phonons, accumulate in the bottleneck region with intermediate
k|| value and may scatter via polariton-polariton scattering towards the groundstate. The red
spheres visualize the density of polaritons at different positions in the dispersion before con-
densation. Taken from [Sch19].

attractive for research and applications.
However, we investigate a GaAs sample in this thesis, where the exciton binding energy
amounts to 4.1 meV [KBML17], corresponding to a temperature of 32 K (according
to the kinetic energy in an ideal gas model E = 3/2kBT [Nol14] with the Boltzmann
constant kB). Thus, we need cryogenic temperatures for condensation.

The process of condensation is discussed in the following and visualized in Fig. 3.4.
We restrict ourselves to the case of nonresonant excitation, which was used in this
thesis.
The sample is excited by a laser at much higher energy than the polariton energies,
creating large amounts of high-energy electrons and holes. This electron-hole plasma
is shown as a cloud at the top of Fig. 3.4.
By scattering with phonons, the electrons and holes lose energy until they bind via
Coulomb interaction and form excitons with high energy and k|| vector. During this
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process, the coherence and polarization properties of the pump laser are lost [KRK+06,
KMSL07]. From here, the excitons relax further by scattering with phonons, until they
couple to the luminescence light field to become polaritons, in particular lower polari-
tons (LPs).
These high-energy and high-momentum polaritons form a reservoir until they reach the
so-called bottleneck region. At this region of intermediate k|| values, the lifetime of the
LPs is typically two orders of magnitude longer (because they are more “excitonic”) and
the density of states much higher than for small k||. Therefore, polaritons accumulate
in the bottleneck region.
Only when higher polariton densities are created by higher excitation power, they
may escape from the bottleneck region towards the groundstate via polariton-polariton
scattering. As soon as the groundstate at k|| = 0 is populated with a number n0 of
polaritons, the scattering rate into this state is enhanced by a factor of 1 + n0 due to
stimulated scattering. Because of this, at some threshold excitation power, polaritons
accumulate nonlinearly in the groundstate and form a condensate. The condensed po-
laritons then possess a macroscopic wavefunction, forming an order parameter [DHY10].
However, depending on excitation conditions, it is also possible for this process to stop
at higher k|| values, leading to condensation in excited states. Besides, there are losses
due to the finite lifetimes of excitons and photons. Thus, the condensate is not in ther-
mal equilibrium. However, in the case of continuous excitation, which was used here,
a stationary polariton distribution exists according to the detailed balance principle
[STP+96].

The condensation process described above depends on the excitation conditions, in
particular the size and shape of the pump laser spot. As this laser creates the reservoir
of high-energy excitons and free carriers, it also shapes a potential that influences in
turn the condensing polaritons via repulsive interaction.
The most unfavorable case for condensation at k|| = 0 is exciting with a small Gaussian
spot (∝ 2 μm). In this case, the pump laser creates a reservoir with high density, which
repels the polaritons due to the repulsive Coulomb interaction, causing them to gain
high momentum and condense at k|| �= 0 [WCC08].
Since we prefer condensation at k|| = 0 for good overlap with the local oscillator (see
Section 4.1), we need another excitation scheme. One possibility is a rather big pump
spot (≥ 20 μm), which facilitates condensation around k|| = 0 [WCC08].
Another option is excitation with a patterned pump spot, e.g. a ring with a diameter
on the order of the polariton mean free path, created by an axicon or a spatial light
modulator. This has the advantage of separating reservoir and condensate spatially. Via
scattering, some polaritons increase their energy and escape while others lose energy
and are trapped inside the ring. The latter form a condensate at k|| = 0; see e.g.
[AOK+13].
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In this work, we used ring-shaped excitation in Chapter 6 and a relatively large Gaussian
spot in Chapters 7 and 8.

3.5 Optical coherence properties of the condensed state

After some state is created in the polariton system, we somehow have to probe it.
The particular advantage of polaritons is the one-to-one correspondence between the
internal polariton mode and an external photon mode with the same energy and k||
[DHY10]. Also, the excitation does not travel through a bulk material until it reaches
the surface, but the polaritons couple directly to photons outside of the material. Thus,
the energy dispersion I(E,k||) of the luminescence measured outside is directly related
to the cavity-polariton dispersion curve [HWS+94].
Furthermore, the quantum state of the polariton system is preserved in the emitted
light, except for rescaling with some constant [LPR+21], which does not change prop-
erties like the quantum coherence. Consequently, the polariton state can be probed
just from the emission, opening the path for applying quantum optics methods.
On these grounds, previous studies already investigated coherence properties of the
polariton emission like g(1) and g(2). The following paragraphs will summarize their
findings and indicate open questions.

One of the indicators of a light state is the equal-time second-order photon corre-
lation g(2)(0) (see Section 2.4). Therefore, many theoretical and experimental studies
concentrated on this quantity during the condensation process. Below the condensation
threshold, where the thermal phonon bath induces polariton relaxation, most theories
predict the thermal value g(2)(0) = 2 [HSQ+10, SQ08]. Only in the case of resonant
excitation, smaller g(2)(0) was found below threshold, because the polaritons obtained
coherence from the pump laser [WDE+17].
For increasing excitation power and beginning condensation, g(2)(0) decreases towards a
value close to 1; but in some theoretical studies, another increase is predicted between 1
and 2, staying roughly constant over a larger range of powers; see e.g. [SQ08, HDCT12].
This asymptotic value of g(2)(0) depends on several conditions, one being the noise in-
duced by different modes of the condensate. This can be suppressed, leading to smaller
values of g(2)(0), either by spatially confining the sample itself, e.g by using micropillars
[KFA+18] and a cavity with lateral confinement [KZW+16], or by spatially filtering the
emission [AAB+15]. But also the detuning influences the asymptotic value of g(2)(0)
[ATV+11]. Apart from this, the main decoherence sources leading to g(2)(0) > 1 are
nonresonant polariton-polariton scattering [SQ08, SSQ08] and fluctuations of the reser-
voir [LKW+08].
Finally, for much higher pump power, the main emission process is not the emission
from polaritons in the groundstate anymore, but stimulated emission of photons. This
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effect appears as a second threshold and as a jump of the emission energy towards
the energy of the bare cavity. Above the second threshold, g(2)(0) drops towards 1,
corresponding to conventional photon lasing [TVA+12]. Whether this second threshold
corresponds to a breakdown of strong coupling or is caused by a non-Hermitian phase
transition within the strong coupling regime is still an open question [HEOL19].
These findings on g(2)(0) leave several unresolved questions. First, there are limitations
of the detection methods itself: Most of the experimental studies used a Hanbury-Brown
Twiss (HBT) setup and a streak camera. To deliver the correct result, the time reso-
lution of the devices, e.g. of the photo diodes in a HBT setup, should at least match
the coherence time of the emission. This is especially a problem below the threshold,
where the coherence time is relatively low. However, if the time resolution of the de-
vice is known, the measured value can be corrected to obtain the true value; see e.g.
[LKW+08, KZW+16].
A further problem of most detection methods is their vulnerability to environmental
noise sources, like mechanical vibrations, thermal effects, air turbulence, and stray light
entering the detector. These effects are enhanced by the long integration times most
detection methods require and might lead to a higher value of g(2)(0) because they
make the signal seem more noisy than it actually is.
Besides, not all studies filtered the emission from different polariton condensate modes
before detecting them, which means that a mixture of quantum states is measured.
These problems are addressed in Chapter 6, where we performed time-resolved mea-
surements of g(2)(0) of a polariton condensate. But even if perfect detection methods
were available, g(2)(0) does not distinguish uniquely between different quantum states.
For example, a coherent state gives g(2)(0) = 1, but also a particle number eigenstate
and a squeezed state, which are all predicted by different theories, approach g(2)(0) =
1 for high photon numbers [DWS+02]1. Thus, more sophisticated methods are needed
to gain more complete information about the quantum state.

Another property of interest is the temporal decay of the coherence and the co-
herence time. For this purpose, previous experimental studies measured the time de-
pendence of the first-order correlation of the light field g(1)(τ), most of them using
Michelson and Mach-Zehnder interferometers. These studies show several influencing
factors on the coherence time, among these the excitation conditions. Noise of the
exciting laser can diminish the coherence, and therefore a study using a noise-free
single-mode excitation laser was one of the first to find relatively high coherence times
on the order of 100 ps [LKW+08]. The remaining decoherence mechanism is attributed

1For a particle number state, the mean photon number is n̄ = n0 and the photon number variance
is Var(n) = 0. By inserting this into Eq. (2.18), we get g(2)(0) = 1 − 1

n0
, which approaches 1 for big

n0. For a squeezed state, under the condition of high amplitudes, we get g(2)(0) = 1 + 1
α2 (e−2r − 1)

[Wal83], with coherent amplitude α and squeezing parameter r. Depending on r, this can be greater
or less than one, i.e. bunching or anti-bunching, but for big amplitudes, it approaches one.
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by this study to polariton number fluctuations and polariton-polariton interactions.
But also interaction with the exciton reservoir may cause decoherence. These interac-
tions can be diminished by trapping the condensate with a patterned pump, whereby
even nanosecond coherence times were demonstrated [OTP+21, APA+19, BZS+22].
Also top-hat-shaped pump lasers led to coherence times of up to 90 ps, with increas-
ing pump spot diameter causing longer coherence times [APA+19]. However, Refs.
[APA+19, LKW+08] reported a Gaussian temporal shape of g(1)(τ), which suggests
inhomogeneous broadening of the signal, although Ref. [LKW+08] filtered the signal
spectrally.
Thus, apart from the excitation conditions, the other influencing factor is the presence
of several modes in the signal. A study that employed a spatially confined cavity for
single-mode emission [KZW+16] achieved a coherence time on the order of 60 ps with
an exponential time decay, indicating a single-mode signal, for small excitation powers
close to the threshold. For increasing powers, this study nevertheless found a decrease
of the coherence time and a Gaussian decay, which the authors attribute to polariton-
polariton interactions and shot noise of the condensate.
To complement these findings, theoretical studies found that polariton-polariton inter-
action in the groundstate leads to phase diffusion and therefore increased linewidth and
decreased coherence time, e.g. Ref. [PT03]. This effect increases with higher number
of polaritons in the condensate and leads to inhomogeneous broadening for higher pow-
ers, whereas the linewidth is smallest just above threshold (and therefore the coherence
time is the longest).
Furthermore, Ref. [HDCT12] distinguishes the effects of resonant and nonresonant
scattering: Resonant scattering involves two polaritons from an intermediate state, of
which one is scattered to the ground state and the other is scattered to a higher-energy
state, whereby total energy and momentum are conserved. In contrast to this, for non-
resonant scattering, two polaritons from the groundstate scatter to excited states with
opposite momentum, conserving momentum but not energy, which is possible when the
energy gap is smaller than the energy broadening. Resonant scattering destroys the
coherence more than nonresonant scattering. If lateral confinement leads to a large en-
ergy gap between the ground state and the first-excited states, nonresonant scattering
is suppressed. In this situation, resonant scattering is the dominant mechanism and the
coherence time decreases for higher powers. This might explain the results for higher
powers in Ref. [KZW+16]. But if there is no lateral confinement, nonresonant scat-
tering prevails, thus the coherence time stays roughly constant with increasing pump
power, and g(1)(τ) has an exponential decay in the long-time limit.
Additionally, Ref. [WE09] investigates the effect of polariton number fluctuations and
found that for high excitation power or for a large size of the condensate, these fluctua-
tions should decay fast, leading to motional narrowing and a slower, exponential decay
of g(1)(τ).
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All in all, the main reasons leading to temporal decoherence, found by experiments and
theory, are: interaction with the exciton reservoir, which is influenced by the pump spot
shape; a multi-mode signal, which can be removed by filtering during detection; and
internal effects like polariton number fluctuations, interaction and scattering between
polaritons, which depend on lateral confinement and on excitation power.
Consequently, if one wants to measure the “true” temporal decay of the coherence,
one should take care of diminishing the influence of the reservoir on the condensate
and filter the signal for a single mode. But even if this is possible, Michelson and
Mach-Zehnder interferometers deliver only limited information. One only measures the
interference of the light field in total, without distinguishing the effects of diffusing
phase and decaying amplitude. Also, similar to g(2)(τ), g(1)(τ) in itself does not reveal
the quantum state of the system.

More properties aside from g(1) and g(2) were studied in Ref. [KSF+18], which
used a photon-number-resolving transition edge sensor to measure the emitted photon-
number distribution. They observed a monotonous transition from thermal to Poisson
distribution with increasing excitation power. Assuming a displaced thermal state, they
extracted the thermal and coherent photon numbers. Besides, correlations g(n)(τ = 0)
of all orders could be derived, but not temporally resolved. The correlations decreased
monotonously towards one with increasing excitation power.

Another important property is the spatial coherence of the system since long-range
spatial order serves as the smoking-gun evidence for demonstrating Bose-Einstein con-
densation [DP12]. Spatial coherence of polaritons was studied e.g. in Refs. [KRK+06,
DSH+07, WFS+10]. This work, though, focuses on temporal coherence and has not
measured spatial coherence. Therefore, a more detailed discussion of this property is
omitted here for the sake of brevity.

To conclude, many results are already found on coherence properties of polariton
condensates. But they still suffer from experimental limitations, and they do not deliver
complete information on the quantum state of the condensate. Also, these results lack
a unified concept of coherence that applies to both matter and light, e.g. the concept
of quantum coherence introduced in Section 2.5. Therefore, this work attempts to fill
in some of these gaps and provide methods for future investigations. We did so by
employing a different detection method, homodyne detection, which is explained in the
next chapter.
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Experimental Methods

The following chapter explains the basic experimental methods that all experiments in
this thesis have in common. These methods are homodyne detection (here only in one
channel) in Section 4.1 and exciton-polariton spectroscopy in Section 4.2.

4.1 Homodyne Detection

4.1.1 Principle

Homodyne detection is a technique for measuring the field quadratures of a light field,
developed by Yuen and Chan [YC83, ACY83]. The idea of the technique is shown
in Fig. 4.1. The investigated signal light field is overlapped on a beam splitter with
a strong coherent light field, being called local oscillator (LO). On the beam splitter,
these fields interfere with each other if they belong to the same spectral, spatial and
temporal mode. Thus, one can select the investigated mode of the signal by chosing
the LO appropriately. The two mixed beams emanating from the output ports of the
beam splitter impinge on the two photodiodes of a balanced photodetector which mea-
sures the difference photocurrent. As we show in the following, the resulting difference
photocurrent is proportional to the field quadratures of the signal multiplied with the
LO amplitude. Thus, the LO acts as an amplifier for the chosen signal mode.

The following derivation of the functioning principle is based on Ref. [LR09]. We
start by assuming a signal light field composed of several modes. The electric field
operator can be written as a sum of positive- and negative-frequency parts, with the
positive part given by


̂E
(+)
S (
r,t) ∝

∑
j

b̂j
εj exp(i
kj
r − iωjt). (4.1)
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Idiff

Signal

LO

-I2

I1

Figure 4.1: Scheme of homodyne detection. A signal beam and a local oscillator beam (LO)
interfere on a beam splitter and impinge on a balanced photodetector, whose difference pho-
tocurrent Idiff = I1 −I2 is recorded. Often, the LO has a more narrow spectrum than the signal,
effectively selecting only this spectral part for the homodyne measurement.

Here, b̂j is the annihilation operator of the mode j with polarization 
εj , wavevector

kj and frequency ωj . We omit prefactors here for sake of simplicity.
The LO field is considered to be a strong coherent pulse


̂E
(+)
L (
r,t) ∝ |αL|eiθL
εLv(x,y)g(t) exp(i
kL
r − iωLt), (4.2)

having a spatiotemporal mode given by v(x,y)g(t). Because of the high intensity,
we assume a classical coherent-state amplitude |αL|eiθL , with phase θL.
When signal and LO field meet on a beam splitter set to 50:50 reflection and transmis-
sion, the overlapped fields exiting the beam splitter at the different exit ports are given
by


̂E
(+)
1 =

1√
2

(

̂E

(+)
L + 
̂E

(+)
S

)
; (4.3)


̂E
(+)
1 =

1√
2

(

̂E

(+)
L − 
̂E

(+)
S

)
. (4.4)

These fields hit the photodetectors, creating a number of photoelectrons propor-
tional to the intensity

Ni ∝
∫ ∫


̂E
(−)
i


̂E
(+)
i dxdydt, (4.5)
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with i ∈ 1,2. The integration is performed over the detector area and the measurement
time. In the case of a pulsed LO, the measurement time Δτ is given by the pulse
duration. The difference of the number of photoelectrons between both detectors is

Ndiff = N1 − N2 ∝
∫ ∫ (


̂E
(−)
L


̂E
(+)
S + 
̂E

(−)
S


̂E
(+)
L

)
dxdydt. (4.6)

Inserting the expressions for the fields gives

Ndiff ∝ |αL|(âe−iθL + â†eiθL). (4.7)

Using the correct prefactors, the line above represents an equation instead of a
proportionality. Here, â represents the detected signal mode having the same spectral
and spatial shape, wave vector and polarization as the LO. This mode is determined
by

â =
∑

j

cj b̂j , (4.8)

with the Fourier coefficients for the LO pulse

cj =
∫ ∫


εj
ε
∗
Lv∗(x,y)g∗(t)ei(�kj−�kL)�re−i(ωj−ωL)tdxdydt. (4.9)

Now we insert the definition of the phase-dependent field quadrature (2.32) into
Eq. (4.7). We find that the number of photoelectrons is proportional to the field
quadrature, with the quadrature axes of the coordinate system chosen to be in-phase
with the LO and orthogonal to it, respectively.

Ndiff = |αL| 1
A

q̂θL
. (4.10)

Experimentally, the number of photoelectrons can be determined by temporally
integrating the photocurrent, i.e. numerically integrating the recorded signal over a
certain time window. More about data processing can be found in Subsection 4.1.3.

In order to remove the LO amplitude |αL| =
√

n̄L from the measured data, we have
to measure it beforehand. For such a measurement, one blocks the signal beam so that
only vacuum enters the signal port. In this case, the mean value of the squared number
of photoelectrons is [RC13]

〈N2
diff〉vac = |αL|2〈0|(âe−iθL + â†eiθL)2|0〉 = |αL|2〈0|ââ†|0〉 = |αL|2. (4.11)
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Figure 4.2: Illustration of the time scales in a homodyne detection experiment. The red peaks
and the orange line symbolize the LO pulses and a cw signal, respectively. The duration of one
LO pulse Δτ is the time over which one quadrature value is averaged. The distance T between
two pulses determines the sampling rate 1/T with which the quadratures are recorded.

Since the mean value 〈Ndiff〉vac is zero for vacuum, we get the standard deviation

ΔNdiff,vac =
√〈

N2
diff

〉
vac − 〈Ndiff〉2

vac =
√〈

N2
diff

〉
vac = |αL|. (4.12)

Thus, the standard deviation of the photoelectron number obtained from a vacuum
measurement can be used to normalize the data from a signal measurement via

q̂θL
= Ndiff,sig

A

ΔNdiff,vac
. (4.13)

All in all, homodyne detection enables phase-sensitive measurements of the field
quadratures of a light field. However, in cases where the signal phase fluctuates with
respect to the LO on the time scale of the experiment, only a phase-averaged measure-
ment is possible. This problem can be overcome by using more detection channels to
reconstruct the phase between channels, as explained in Chapter 8.
Furthermore, homodyne measurements intrinsically yield temporal resolution when us-
ing a pulsed LO. For better understanding, the temporal properties of the signal and
LO are illustrated in Fig. 4.2. The red peaks represent the LO pulses while the orange
line shows a continuous wave (cw) signal. During each pulse, the signal is amplified by
the LO and photoelectrons in the detector are created, whose total number corresponds
to one quadrature value up to a scaling factor. Thus, the quadrature value is measured
with a time resolution given by the LO pulse duration Δτ . A better time resolution
is not possible since the detector electronics — being slower than our LO pulse length
— can not differentiate between electrons being created in the beginning, the middle
or the end of the pulse but mixes them all together. Furthermore, the time T between
different pulses determines the sampling rate 1/T with which the quadratures are mea-
sured.
Note that if one used a cw LO instead of a pulsed one, both T and Δτ would be limited
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Figure 4.3: Scheme of the homodyne detection setup in one channel. LO: Local oscillator;
PBS: polarizing beam splitter; λ/2: half-wave plate; BD: balanced detector.

by the sampling rate of the detector. Especially Δτ would be much higher, leading to
a much worse time resolution.
Technical details of the setup are described in the next section.

4.1.2 Implementation

Our homodyne detection setup is shown schematically in Figure 4.3. This setup is also
described in Ref. [LTA18]. Details on handling and aligning the setup and a charac-
terization of the detectors can be found in Ref. [The18].
The local oscillator (LO) and the signal are combined on a polarizing beam splitter
(PBS 1). One has to align the two beams carefully with the help of a camera to achieve
good overlap in real space and k space. After this is assured, the combined beam is
focused onto the balanced detector (BD) by a lens with 30 cm focal length. A half-wave
plate (λ/2) sets the splitting ratio of the combined beam on the second polarizing beam
splitter (PBS 2) to roughly 50 % reflection and transmission for both LO and signal.
The half-wave plate can be fine-tuned with a micrometer screw such that the two pho-
todiodes of the detector deliver an equal average photocurrent. This is necessary to
account for slightly different properties of the two photodiodes. Also, the half-wave
plate rotates the polarizations of the LO and signal beam by 45◦ so that they are able
to interfere. The difference photocurrent is converted to a voltage in the detector and
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subsequently amplified and digitized.
As explained in the previous subsection, the time resolution of this setup is determined
by the temporal properties of the LO. On the one hand, the temporal resolution Δτ is
given by the duration of one LO pulse, and on the other hand, the sampling rate for
recording the signal quadratures corresponds to the LO pulse repetition rate 1/T .
Our LO originates from a MIRA 900 Ti:Sapphire laser from the company Coherent
with an adjustable wavelength between 700 and 980 nm, adaptable to the signal wave-
length. The pulse repetition rate is 75.4 MHz, corresponding to T = 13.3 ns. The pulses
have a minimum duration of Δτ = 130 fs. However, with a grating-slit combination
(not shown in the image), the LO spectrum can be narrowed, providing longer pulse
durations. This is beneficial for detecting narrow-line continuous-wave signals. With a
longer LO pulse duration, more signal photons can be detected in total, as long as the
signal spectrum is fully covered by the LO spectrum. Also, for signals with a broad
spectrum, a narrower LO spectrum selects only the parts of the signal spectrum one is
interested in.
The LO power can be adjusted by a λ/2-PBS combination (not shown) and is measured
before the last beam splitter PBS 2. The power is usually set to a value between 2 and
5.0 mW. A small fraction of the LO beam is split off and directed towards a photodi-
ode (model HCA-S-200M-SI-FS manufactured by FEMTO Messtechnik), which sends
a trigger signal to the digitizer.
While the time scales of the experiment are determined by the LO, they may be limited
by the detection and data acquisition setup. Therefore, all components need to possess
a sufficient bandwidth. For the detection, we use a balanced photodetector provided
by the company FEMTO Messtechnik with a bandwidth of 100 MHz. The detector is
based on the model HCA-S but was customized for our application. It contains two
Si-PIN photodiodes and a transimpedance amplifier with a gain of 5 kV/A, converting
the difference photocurrent into voltage. We determined its common mode rejection
ratio to be 69 dBm and verified shot-noise limited performance for LO powers above
1 mW.
Subsequently, signal components at the LO repetition rate and its higher harmonics are
removed from the voltage signal by two notch filters at 75.4 MHz and two notch filters
at 150.8 MHz from Rittmann-HF-Technik and a 100 MHz lowpass filter from Crystek.
The filtered signal is then amplified with a voltage amplifier SR445 from Stanford Re-
search Systems, having a bandwidth of 300 MHz. Finally, the signal is digitized by the
M4i.2234-x8 digitizer from Spectrum Instrumentation, providing sampling rates of up
to 5 GS/s at 8 bit resolution. Such a high sample rate is only achieved for one channel,
though. When recording data from several detectors simultaneously, the sampling rate
is divided between the different channels (2.5 GS/s for two channels, 1.25 GS/s for three
to four channels).
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4.2. Exciton-polariton spectroscopy

4.1.3 Data processing

As explained in Subsection 4.1.1, we need a vacuum measurement without signal in
order to normalize measurements where signals are recorded. In practice, a custom
Labview program is used to acquire a vacuum measurement and a signal measurement
subsequently and store each in a raw-data file with adjustable file size. From these
two raw-data files, we compute the normalized signal quadratures with custom-written
Matlab functions; see Appendix A.
One crucial step in this computation is a numerical summation of the recorded voltage
values over a specified time window around each LO pulse. Since the voltage values
are proportional to the difference photocurrent recorded by the detector, the sum of
them is proportional to the total number of created photoelectrons, which in turn is
proportional to one value of the signal field quadrature averaged over the LO pulse
duration.
Let us mention here that instead of integrating the recorded voltages numerically after
data acquisition, one could also perform direct electronic integration of the photocur-
rent with help of a built-in capacitor in the detector. Such a scheme was used e.g. in
Ref. [RC13]. However, such a RC circuit is too slow to work at 100 MHz since the
capacitor needs time to decharge.
After numerically obtaining the quadrature values qi, one possible problem is that val-
ues qi and qi+1 belonging to subsequent LO pulses might be correlated. The reason is
ringing of the detectors and the electronic filters. Such correlations can be removed nu-
merically [KBM+12, The18]; see Appendix A. However, this removing only works if the
quadratures do not possess any physical correlations, otherwise these real correlations
would be removed as well. Such physical correlations between subsequent quadratures
are present if there is a fixed phase relation between signal and LO that is preserved
during the time between one LO pulse and the next. For light sources emitting in-
dependently of the LO, the phase between signal and LO is randomized if the signal
coherence time is smaller than the time between two LO pulses. But in experiments
where the signal is in some way derived from the LO, e.g. by optical parametric ampli-
fication, there exists a fixed phase relation and the correlation removal scheme should
not be used.

4.2 Exciton-polariton spectroscopy

This section explains the setup for performing exciton-polariton spectroscopy.

4.2.1 Sample

The investigated sample is a planar GaAs-based microcavity (identification number
M3396-9.2) that has been grown at the University of Würzburg by Christian Schnei-
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Figure 4.4: Setup for polariton spectroscopy. λ/2: Half-wave plate; PBS: polarizing beam
splitter; 50:50: beam splitter with 50 % transmission and 50 % reflection; MO: microscope
objective; LP 750: longpass for transmission above 750 nm; 10:90: beam splitter with 10 %
transmission and 90 % reflection; GT: Glan-Thompson prism.

der and Sven Höfling via molecular beam epitaxy. The microcavity consists of two
distributed-Bragg reflectors with 32 top and 36 bottom layer pairs of Al0.2Ga0.8As and
AlAs, having a quality factor of about 20 000. Between the DBRs lies a λ/2 cavity,
containing four GaAs quantum wells. The Rabi splitting 2g0 of the sample is 9.5 meV.
The detuning varies along one axis of the sample due to its wedged shape. A de-
tailed characterization of the sample can be found in Refs. [MBA+20, Ber21]. Also, a
characterization conducted within this thesis is shown in Chapter 5.

4.2.2 Setup

Figure 4.4 depicts the setup for polariton spectroscopy.
The sample is held in a flow cryostat at a temperature of 10 K. The cryostat can

be moved in horizontal and vertical direction in order to find a suitable sample spot.
Besides, in horizontal direction, the sample has a wedge for varying the exciton-cavity
detuning. The used detuning is explicitly stated in the results chapters and is always
negative.
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4.2. Exciton-polariton spectroscopy

The sample is excited nonresonantly at the first minimum of the stop band with a tun-
able continuous-wave Ti:Sa laser (SolsTiS 2000 PSX-XF manufactured by M Squared
Lasers). This laser provides single-mode light with a very narrow linewidth of < 50 kHz.
The required wavelength depends on the sample spot and is 735.55 nm for most of the
experiments presented here, if not indicated otherwise. Remarkably, in the case of
nonresonant excitation, the coherence of the exciting laser is completely lost during
the energy relaxation process of the polaritons. Thus, the polaritons do not inherit
coherence from the pump laser [KRK+06, KMSL07].
As explained in Section 3.4, the excitation spot should be either ring-shaped or large to
enable condensation at k = 0. For the experiment in Chapter 6, a Spatial Light Mod-
ulator (SLM, PLUTO-2 from HOLOEYE) is used to create a ring-shaped excitation
spot with a diameter of 12 μm on the sample. Unfortunately, this SLM also modulates
the intensity of the beam, which is part of the investigation in Chapter 6, but unwanted
in later experiments. Therefore, in Chapter 7 and 8, the SLM is removed. Instead, the
exciting beam is transformed with an adjustable 5x beam expander (GBE05-B from
Thorlabs) to create a large Gaussian spot with a diameter of 70 μm full width at half
maximum (FWHM) on the sample. By fine-tuning the beam expander while observing
the polariton dispersion, one can find an optimal beam size for condensation at k = 0.
The excitation beam is reflected by a 50:50 beam splitter towards the cryostat. The
excitation power is controlled by an automatized half-wave plate and measured behind
the unused exit port of the beam splitter. A 20 x microscope objective (MO, M Plan
Apo NIR 20X Mitutoyo with 10 mm effective focal length) focuses the beam onto the
sample. The same MO also collects and collimates the polariton emission. This has
the advantage that excitation and emission belong to the same microscopic region of
the sample. Additionally, light from a whitelight lamp can be reflected via a glass plate
onto the sample for illumination.
Half of the collimated emission passes the 50:50 beam splitter. A longpass filter trans-
mits only light above 750 nm to remove the excitation laser from the beam. Then,
a second beam splitter (10:90 T:R) reflects 90 % of the emission towards the analysis
section of the experiment while a small part is transmitted and focused with a lens onto
a camera to monitor the spatial properties of the emission. This is useful for finding a
sample position where condensation of polaritons occurs in a single bright spot. Other-
wise, there are regions on the sample where impurities cause unstable condensation in
several spots. While the interplay of these spots might be interesting, it is outside the
scope of this work. To further remove the emission from neighboring spots, a telescope
with a pinhole may be inserted before the 10:90 beam splitter to spatially filter the
emission. This is only used in Chapter 7 and 8. In these experiments, a telescope
consisting of a 75 mm focusing lens, a 100 μm pinhole and a 50 mm collimating lens
delivers a beam size that matches the LO size roughly for maximum homodyne signal.
This spatial filtering corresponds to a region with 13 μm diameter on the sample —
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given by ∅pinhole fMO/ffocusing lens — and to a k space region around k = 0 with a
FWHM of 1 μm−1.
After the 10:90 beam splitter, the polarization of the emission can be chosen with a
half-wave plate and a Glan-Thompson prism. Then, the emission propagates towards
the homodyne detection setup or via a flip mirror towards the spectrometer.
On the path to the spectrometer, a 600 mm or 450 mm lens (Fourier lens) can be in-
serted for imaging the k space. The focal length of this lens has to match the distance to
the last optical element collimating the beam, which is either the MO or the last lens of
the telescope. The position of the lens should be fine-tuned in order to achieve a sharp
Fourier image. When this lens is omitted, the real space of the sample can be observed
with the spectrometer. Subsequently, a 400 mm lens — not shown in the Figure —
focuses either the Fourier image or the real-space image onto the spectrometer camera.
The spectrometer is an Acton SP-2500i f = 500 mm monochromator, equipped with a
liquid nitrogen cooled CCD camera. The CCD camera (PyLoN:400BR_eXcelon from
Princeton Instruments) consists of 1340 x 400 pixels with a pixel size of 20 μm x 20 μm.
Blazed gratings with 300, 600 and 1200 blazes are available. For polariton dispersions,
the 1200 blazed grating is used for maximum spectral resolution.
On the path towards the homodyne detection setup, a 2x beam expander (GBE02-B
from Thorlabs) further matches the signal beam size to the LO beam size. However,
a perfect matching is not possible due to the non-perfect spatial properties of the
emission. This flaw could be overcome by coupling the signal and the LO each into
single-mode fibers. After such fibers, the beams possess a well-defined spatial single
mode and thus their sizes match perfectly. However, in this work, free-space beams are
used.
The LO wavelength is set equal to the most intense zero-momentum ground-state mode
of the polariton emission. Besides, the LO has a Gaussian spatial mode and a FWHM
in k space of 1.3 μm−1, centered at k = 0. Therefore, the LO overlaps only with signal
components around k ≈ 0.

4.2.3 Calibration of the k space

When measuring a polariton dispersion with the spectrometer, another step is necessary
for calibrating the k axis. Initially, the image from the spectrometer has only pixels
as an x axis. To find a relation between pixels and k values, one has to perform a
measurement of the k space beforehand. For this purpose, the slit of the spectrometer
is removed and the grating is set to the position of 0th diffraction order. Now, the
Fourier lens images the complete angle space onto the spectrometer camera as a bright
circle. The diameter of this circle in pixels pmax equals twice the maximum angle that
the microscope objective (MO) is able to capture, given by αmax = arcsin(NA/n).
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4.2. Exciton-polariton spectroscopy

Here, n = 1 is the refractive index of air and NA = 0.4 is the numerical aperture of
the MO. Thus, each pixel p in the dispersion image is related to an angle α via

α = (p − p0)2αmax/pmax, (4.14)

with p0 being the pixel in the center of the image. Each angle is then related to an
in-plane k value [KRK+06],

k|| =
E

�c
sin α, (4.15)

with the energy E of the polariton dispersion at that angle.
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Chapter 5

Characterization of the sample

This chapter presents a characterization of basic properties of our microcavity sam-
ple that will help us to understand the results from homodyne detection presented in
later chapters. All results in this chapter are derived from dispersion measurements
performed using a spectrometer. First, I determine the detuning gradient along the
sample and identify a suitable detuning for later measurements. Then, for this detun-
ing, I identify the relevant polarization directions and k-space modes that arise in the
formation of the polariton condensate.

5.1 Detuning across the sample

For determining the detuning, I measured the polariton dispersion below the conden-
sation threshold at different positions across the sample. Fig. 5.1 shows one example.

The image is intentionally saturated in order to render faint features visible. The
bright parabola corresponds to the lower-polariton emission. The red line shows a fit
of the parabola, from which the energy of the ground state ELP (k|| = 0) can be deter-
mined.
While the parabola of the upper polariton cannot be seen, a broad horizontal stripe
of light is visible at higher energies around 1.62 eV. Assuming that this is the exciton
luminescence, the exciton energy can be determined from the maximum of this energy
distribution as 1.6195 eV, indicated by a white line. This relatively high energy com-
pared to bulk GaAs is explained by the additional confinement energy in the quantum
well, which can be on the order of several 100 meV and increases with decreasing quan-
tum well thickness [MLC92].
Using the found energies of the exciton and of the lower polariton at k|| = 0, it is
possible to calculate the detuning. We start by inserting the definition of the detuning
δ = Ecav(k|| = 0) − Eexc(k|| = 0) (cf. Eq. (3.15)) into the equation for the lower-
polariton energy Eq. (3.13). Then we solve this equation for the detuning,
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Figure 5.1: An exemplary dispersion measured below the condensation threshold. Red line:
fit of the lower-polariton dispersion. Yellow dashed line: cavity dispersion. White line: exciton
dispersion. The colorscale is limited to a maximum value of 12000 counts in order to render
the exciton luminescence visible.

δ =
(2g0)2

4[Eexc(k|| = 0) − ELP(k|| = 0)]
− [Eexc(k|| = 0) − ELP(k|| = 0)], (5.1)

with the Rabi Splitting 2g0.
Using the detuning, we obtain the cavity energy Ecav(k|| = 0) = δ + Eexc(k|| = 0).
Subsequently, the complete cavity dispersion can be calculated via Eq. (3.3) and (3.4).
Here, the refractive index of GaAs in the relevant range of wavelengths is inserted as
nc = 3.7. 1 The calculated cavity dispersion is depicted in Fig. 5.1 as a dashed yellow
line.

In this way, the detuning can be determined along the sample; see Fig. 5.2a. The
sample exhibits negative detunings from about -2 meV to -18 meV. The plotted energies
vs detuning in Fig. 5.2b show a similarity to the theoretical expectation presented in
Fig. 3.2(a).

While it might be worthwile to investigate the effect of different detunings, for the
later measurements I chose a detuning around -6 meV, corresponding to -0.6 2g0. At
this detuning, the condensate forms only one spot whereas for more negative detunings,
the condensate tends to fragment into several spots, making it difficult to overlap with
the LO for homodyne detection. A similar behavior was observed in Ref. [EGB+18],
where the filamentation of the condensate at strongly negative detunings is ascribed to

1Different databases give values for the refractive index between 3.6 and 3.8 in the wavelength range
from 768 nm to 775 nm [Pol22, Bat22].
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(a) (b)

Figure 5.2: (a) Top: Measured ground-state energy of the lower polariton versus sample posi-
tion relative to the edge. Bottom: Calculated detuning in meV (blue) and in units of the Rabi
splitting 2g0 (orange) versus sample position. (b) Detuning-dependence of the lower-polariton
energy at k|| = 0. On this sample, only negative detunings are available.

an effective attractive nonlinearity while the more homogeneous condensates at more
positive detunings are explained by less attraction and a more efficient phonon-assisted
energy relaxation suppressing high-momentum excitations. However, for more positive
detunings than -6 meV on our sample, the emission intensity decreases. Thus, -6 meV
detuning gives a good tradeoff with a homogeneous condensate and sufficient emission
intensity. For this detuning, the condensation process is studied in the following.

5.2 Characterization of the condensation process

In order to understand the results from homodyne detection measurements in later
chapters, it is important to gain information about the emission properties of the sample
beforehand. Specifically, we should know which modes - with respect to polarization,
k space and energy - contribute to the formation of the polariton condensate. Here,
we must keep in mind that we can only measure the ground-state mode around k = 0
via homodyne detection; however, in future works it might be worthwhile to shape the
LO to detect other modes as well. Besides, knowing the interplay between the different
modes helps understanding the results observed for the ground-state mode.

5.2.1 Excitation with a large Gaussian spot without SLM

First, we study the condensation process for excitation with a large Gaussian spot with-
out an SLM since this configuration is used for the major part of this thesis because of
its temporal stability.

Initially, we determine the relevant polarization directions. Figure 5.3 shows the
polarization dependence of the intensity of the ground-state mode for three different
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(a) Pexc = 10 mW (b) Pexc = 150 mW (c) Pexc = 500 mW

Figure 5.3: The polar plots show the ground-state intensity as a function of the linear polar-
ization angle for three different excitation powers. The ground-state intensity is determined by
integrating over a rectangular area in the dispersion with k ∈ [−0.5, 0.5] μm−1.

excitation powers, i.e. below the condensation threshold, intermediate and high. For
this measurement, the polarization of the emission is filtered with a half-wave plate and
a Glan-Thompson prism on the path to the spectrometer. The Glan-Thompson prism
transmits only a fixed polarization direction, onto which the incoming light is rotated
by the half-wave plate, in order to avoid any impact of the polarization-dependent
efficiency of the spectrometer grating. To obtain the ground-state intensity from the
measured dispersions, the intensity is integrated over a rectangular part of the disper-
sion with k ∈ [−0.5, 0.5] μm−1 because this range of k values is also selected later by
the pinhole and the LO for homodyne detection. The corresponding energy range of
the integrated rectangle is varied with excitation power to account for the blue- or red
shift of the emission.
According to Fig. 5.3, the dominant polarization direction is (0°,180°). Already be-
low threshold, there is a degree of linear polarization between 0° and 90° given by
DLP = I0−I90

I0+I90
= 0.18. At the intermediate power, the emission is temporally instable,

producing a more chaotic image. Supposedly this is caused by mode competition that
occurs in this power range as we will see in the following. Finally, for the highest
excitation power, the emission is clearly linearly polarized with a polarization degree
DLP = I0−I90

I0+I90
= 0.5.

Such a linear polarization of the polariton emission has also been observed in the liter-
ature. In particular, Refs. [KRK+06, KMA+06, KAD+07] found that the polarization
is aligned along one of the crystallographic axes of the sample, independently of the
polarization of the excitation. Ref. [KMA+06] attributes this pinning of the polariza-
tion along the crystal axis to a small birefringence in the cavity, probably being caused
by weak uniaxial strain. Such a birefringence causes a splitting of the cavity energy for
the two polarization directions. According to Ref. [KAD+07], the system selects the
polarization with lower energy in order to minimize the free energy in the presence of
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(a) 30 mW (b) 40 mW (c) 60 mW (d) 225 mW

Figure 5.4: Dispersion curves measured at different excitation powers for excitation with a
large Gaussian spot. In each panel, the emission is normalized to one and plotted on a linear
color scale. The red line shows the LP dispersion obtained from a fit below threshold. The yellow
dashed line indicates the calculated cavity dispersion. In plot (a) at 30 mW, in (b) at 40 mW
and in (c) at 60 mW, the emission around k = 0 is blueshifted because of polariton-polariton
interaction. In (b), emission at k = ±0.8 μm−1 is visible. In (c), there is also faint emission at
k = ±2 μm−1. In panel (d), 225 mW, the emissions at higher k are mostly suppressed compared
to the dominant emission at k = 0, which is redshifted because of heating.

polariton-polariton interactions.
Consequently, the two basic polarization directions are 0°, which presumably corre-
sponds to the crystal axis, and 90°, being orthogonal to this axis. Therefore, the
following more detailed power dependence is only measured for these two polarizations.

In order to observe the buildup of a polariton condensate, I recorded dispersions for
varying excitation power. The goal is to obtain an input-output relation of emission
intensity versus excitation power, also called I-O curve. In this I-O curve, a nonlinear
increase indicates the formation of a polariton condensate. However, the I-O curve
should be considered with respect to a well-defined emitting mode. Preferably, we
want the condensate to form in the ground state around k = 0. To check this, the
dispersions reveal which modes are contributing at which power.

Figure 5.4 shows dispersions at four different powers for 0° polarization. At 30 mW,
emission starts to form around k = 0 and E = 1.611 eV, becoming more bright at
40 mW. This is the ground-state mode; notably, it is blueshifted compared to the po-
lariton dispersion at very low powers, indicated by the red parabola. This blueshift is
caused by repulsive polariton-polariton interaction [DHY10].
Remarkably, at 40 mW, bright emission appears at k = ±0.8 μm−1. This emission
originates from polaritons being repelled by the excitonic reservoir and scattered to
higher-k states and probably also to different spatial positions. Particularly for nega-
tive detuning, polaritons can accumulate at high-k states under continuous-wave exci-
tation because energy relaxation is less efficient [EGB+18]. Furthermore, between 60
and 100 mW, there is also a faint emission around k = ±2 μm−1 but much weaker than
the other modes.
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(a) (b)

Figure 5.5: (a) Integrated intensity of the selected mode rectangle versus excitation power
for excitation with a large Gaussian spot. For comparability, the intensity has been divided by
the acquisition time and the size of the rectangle in pixels. Blue: Polarization 0°, ground-state
mode k ∈ [−0.5, 0.5] μm−1. Red: Polarization 0°, k ∈ [−1.2, 0.7] μm−1. Yellow: Polarization
90°, ground-state mode k ∈ [−0.5, 0.5] μm−1. (b) Top: Peak energy for the selected k ranges.
Bottom: FWHM of the peak for the selected k ranges.

These higher-momentum modes almost vanish for 225 mW. Then, most emission comes
from the ground state, which is now redshifted due to heating of the sample.
Here, we also note that the energy of the condensate lies below the cavity energy (indi-
cated in yellow) for all powers. Therefore, we conclude that the strong-coupling regime
is preserved.
Thus, the most important modes for constructing an I-O curve are the one around
k = 0 and the one at k = ±0.8 μm−1.

The I-O curves of the different modes are depicted in Fig. 5.5a. For each data point,
the emission intensity is integrated in a rectangle around the selected mode and divided
by the acquisition time and the rectangle size for comparability. At 90° polarization,
only the ground-state mode has a significant contribution and is evaluated here. Figure
5.5b shows in the upper panel the peak energy for the selected k range and in the lower
panel the FWHM of the peak.

The I-O curve for the ground-state mode at 0° polarization (blue) exhibits a non-
linear increase of intensity at 30 mW. This nonlinearity is usually ascribed to the onset
of condensation and the corresponding power is called threshold power. Around this
power also the maximum blueshift occurs and the FWHM undergoes a change.
However, the behavior is more complex since also the intensity of k ∈ [−1.2, 0.7] μm−1

(red) nonlinearly increases at this power, and the ground-state intensity at 90° polar-
ization (yellow) nonlinearly increases at slightly higher powers as well. These modes
also possess a low FWHM in the range of 30 - 200 mW excitation power. Note that a
narrowing of the linewidth is one of the hallmarks of condensation [DP12]. Thus, the
three different modes compete for the formation of a condensate in this power range.
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For powers above 150 mW, the intensity of the high-k mode stagnates and its FWHM
increases, leaving the ground state predominating. But still the two polarizations com-
pete in the ground state.
Such a mode competition and bistability between the two cross-linearly polarized com-
ponents has also been predicted in Ref. [Sig20] and observed in Ref. [BZS+22].
Only above 200 mW, the FWHM of the ground state at 0° polarization decreases ad-
ditionally while the FWHM at 90° increases again. Thus, for P > 200 mW, the 0°
polarization “wins” the competition and contributes solely to the polariton condensate.
Eventually, for P > 400 mW, the intensity of the ground state at 0° polarization stag-
nates and its FWHM increases slightly. Here we also observe a significant redshift of
the peak energy. Both can be attributed to heating of the sample.
In conclusion, the condensation process is complex and governed by mode competition
between 30 and 200 mW. Only for higher powers, the condensate in the 0° polarized
ground state predominates. These observations are compared with the results from
homodyne detection in Chapters 7 and 8. Also, note that the blue- and redshift of
the emission requires us to adapt the LO energy accordingly. Therefore, I chose the
spectral width of the LO broad enough to cover the entire energy range of the ground
state; see Chapter 7.

5.2.2 Ring-shaped excitation with SLM

In this subsection, I present the characterization for the ring-shaped excitation with an
SLM. The results are similar to the ones above up to a few differences. One difference
is that the powers needed for condensation are lower since the excitation area is smaller
and the trap enhances the accumulation of polaritons in the ground state.
The dominant direction of linear polarization has been found to be 10°, and the one or-
thogonal to it 100° (corresponding to 5° and 50° settings of the half-wave plate). These
are very similar to the 0° and 90° directions (0° and 45° settings of the half-wave plate)
found above. The deviation between the directions might stem from an uncertainty
when setting the half-wave plate, or from a variation of the sample birefringence at
different sample spots. Another reason might be an imperfect excitation ring. If the
ring is slightly elliptic, the major and minor axis of the ellipse are the preferred axes of
polarization [GST+21].

In the dispersions (Figure 5.6), there are mainly two modes visible: the ground-state
mode around k = 0 and energy E ∈ [1.611, 1.6112] eV and another mode at slightly
higher energy E ∈ [1.6113, 1.6116] eV and with broader k range k ∈ [−1, 1] μm−1, which
appears only for 100° polarization. The I-O curves of these modes are plotted for the
two principal linear polarizations in Fig. 5.7(a).

The peak position and FWHM are shown in Fig. 5.7(b). The DLP of the two
modes is shown in Fig. 5.7(c).
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(a) (b)

Figure 5.6: Dispersions for ring-shaped excitation at 20.4 mW excitation power. (a) 10°
polarization. (b) 100° polarization. The red line shows the LP dispersion obtained from fitting
the dispersion at a power below threshold. The yellow dashed line indicates the calculated
cavity dispersion.

All I-O curves exhibit a threshold at 7 mW, indicating the onset of condensation.
The ground-state mode with polarization 10° (blue) is the most intense one for all
powers and also has the lowest FWHM, being ca 0.25 meV above threshold. This stands
in contrast to Gaussian excitation, where such a low FWHM of the 0° polarized ground
state is reached only above 200 mW. Thus, the condensation into this mode is more
stable for ring-shaped excitation, probably because the reservoir has less influence.
The 100° polarized emission in the ground-state (red) is significantly less intense. The
degree of polarization DLP = I10−I100

I10+I100
of the ground state is also shown in Fig. 5.7(c).

Below threshold, the DLP has the opposite sign — apparently pinned orthogonal to
the crystal axis — whereas above threshold, it has a high positive value.
Interestingly, for the higher mode, above threshold, the 100° polarization predominates
and the DLP is negative. Thus, the ground state and the higher-energy mode are
cross-polarized.
This is different from Gaussian excitation, where both polarizations compete apparently
in the same energy mode. Maybe the size of the birefringence-induced energy splitting
varies at different sample spots. Another reason might be an energy splitting that
occurs for a slightly elliptical excitation spot [GST+21].
To conclude, for ring-shaped excitation, the most dominant mode is the ground state at
10° polarization. Its energy exhibits much less blue- or redshift than the mode energy
observed for Gaussian excitation, probably because there is less interaction with the
reservoir and less heating due to lower powers. Thus, a less broad LO spectrum is
needed to cover it. This mode is measured with homodyne detection in Chapter 6.
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(a) (b)

(c)

Figure 5.7: (a) Integrated intensity of the selected mode rectangle versus excitation power
for ring-shaped excitation. For comparability, the intensity has been divided by the acquisi-
tion time and the size of the rectangle in pixels. Blue: Polarization 10°, ground-state mode
k ∈ [−0.5, 0.5] μm−1, E ∈ [1.611, 1.6112] eV. Red: Polarization 100°, ground-state mode. Yel-
low: Polarization 10°, higher mode k ∈ [−1, 1] μm−1, E ∈ [1.6113, 1.6116] eV. Purple: Polariza-
tion 100°, higher mode k ∈ [−1, 1] μm−1, E ∈ [1.6113, 1.6116] eV. (b) Peak energy and FWHM.
Note that the FWHM values for 100° polarization are erratically high at some powers because
the two peaks of the ground state and the higher-energy state lie too close to each other for a
proper estimation of their respective FWHMs. (c) Degree of Linear Polarization (DLP) of the
ground-state mode (blue) and of the higher mode (red).
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Chapter 6

One-channel homodyne detection:
Distinguishing noise sources in
photon correlations

The second-order photon correlation function g(2) serves as a criterion to distinguish
different states of light (although not completely unambiguous), cf. Section 2.4 and Sec-
tion 3.5. Unfortunately, many detection methods for g(2) that rely on photon counting,
e.g. the HBT setup or the streak camera, require long integration times and can be
influenced by external noise sources, distorting the measured value of g(2). This flaw
can be overcome by a detection method with sufficient time resolution and short inte-
gration time.
In this chapter, I present time-resolved measurements of g(2)(τ = 0,t) of the polariton
emission and analyze these measurements with respect to the frequency with which
the g(2) values are sampled. My results show that via differentiating g(2) by frequency,
external noise can be separated from the intrinsic g(2) value of the light field, as long as
the typical time scales of the external noise and of the internal photon-number fluctua-
tions differ sufficiently. Usually, this condition is fulfilled since mechanical noise occurs
in the Hz to kHz range while intrinsic photon-number fluctuations happen on the time
scale of the coherence time of the light field, which is typically in the range of pico- to
nanoseconds in semiconductor physics. This chapter is mostly based on Ref. [LA20].

6.1 Setup

For the measurements presented in this chapter, I used the basic one-channel homodyne
detection setup that is explained in Chapter 4. I excited the sample with a ring-
shaped beam created by a Spatial Light Modulator (SLM). The SLM causes a temporal
modulation of the excitation intensity and leads to a modulated sample emission. This
“bug” is actually a “feature” for our purpose, providing a suitable testing ground for
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the frequency-resolved g(2) analysis.
The LO energy was set to 1.611 eV, matching the ground-state condensate energy shown
in Fig. 5.6. The FWHM of the LO spectrum was 0.0018 eV, corresponding to a pulse
length of about 1 ps.

6.2 Calculation of g(2) from quadratures

A homodyne measurement provides us with a set of subsequent quadrature values qi.
Each value is measured with a time resolution Δτ given by the pulse width of the
LO, and the temporal distance between consecutive values corresponds to the time T

between subsequent LO pulses, being inversely proportional to the LO pulse rate 1/T ;
cf. Fig. 4.2.
Now, for each subset of x consecutive quadrature values qi,qi+1,...qi+x−1, corresponding
to a time span tav = xT , we can calculate the average photon number and the average
g(2) via the second and forth statistical moment of the quadratures [RC13]. We derive
the second moment from the definition Eq. (2.32) of the phase-dependent quadrature
q̂θ,

〈q̂2
θ〉tav = A2〈â†â + ââ† + â†â†ei2θ + ââe−i2θ〉tav . (6.1)

Here, the two terms containing the phase vanish when averaging over all possible
phases between LO and signal. This requires the phase of the signal to be sufficiently
randomized so all possible phases are realized equivalently in the time span tav, which is
the case if the coherence time of the light source is lower than tav. When this condition
is fulfilled, the equation can be simplified with help of the bosonic commutator relation,
delivering the mean photon number

nav = 〈â†â〉tav =
〈q̂2

θ〉tav

2A2 − 1
2

. (6.2)

Similarly, when omitting all phase-dependent terms, the fourth moment results in

〈q̂4
θ〉tav =

1
A4 〈â†ââ†â + â†âââ† + ââ†â†â + ââ†ââ† + â†â†ââ + âââ†â†〉tav (6.3)

=
1

A4 〈6â†â†ââ + 12â†â + 3〉tav . (6.4)

From this follows

〈â†â†ââ〉tav =
A4

6
〈q̂4

θ〉tav − 2〈â†â〉tav − 1
2

. (6.5)

Then, the results of Eq. (6.2) and (6.5) can be inserted into the definition of the
equal-time photon correlation g(2)(τ = 0,t) (2.15)
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6.2. Calculation of g(2) from quadratures

g(2)(τ = 0,t) =
〈â†â†ââ〉tav

〈â†â〉2
tav

. (6.6)

Thus, for each time span tav = xT , one value of the mean photon number and of
g(2)(τ = 0,t) can be calculated. This corresponds to a sampling frequency fav = 1/tav.
For example, when T = 13.3 ns and x = 1000, the averaging time is tav = 13.3 μs,
corresponding to a frequency fav = 75.4 kHz. By choosing different subset sizes x for
the average, different frequencies fav can be investigated.
Note that the time resolution Δτ which determines the range of delays for which two
photons are considered to arrive simultaneously (τ = 0) is given by the LO pulse length.

On the other hand, the slow intensity noise over the full duration of the measurement
may be quantified via the conventional intensity correlation function

g
(2)
slow(0) =

〈n2
av〉full

〈nav〉2
full

. (6.7)

.
For clarity, we will refer to the photon correlation function given by Eq. (6.6) as

g
(2)
fast(0,t).

Now, it is possible to distinguish different noise components via their frequency.
When calculating g

(2)
fast(0,t) with an averaging time tav, one includes all fluctuations

that happen within this time span, contributing to a higher value. On the other hand,
fluctuations that occur on a longer time scale do not play a role in the time window
tav and do not influence the value of g

(2)
fast(0). Considering the frequency space, let

us assume a fluctuation having a typical frequency fnoise. Then, for fav < fnoise, this
fluctuation enhances the value of g

(2)
fast(0) whereas for fav > fnoise, the fluctuation

does not influence g
(2)
fast(0). Thus, by choosing a sufficiently high averaging frequency

fav, it is possible to remove the influence of slower noise sources. In particular, slow
mechanical noise with a typical frequency range of Hz to kHz can be separated from
the intrinsic photon-number fluctuations of the light source.
By contrast, g

(2)
slow(0) experiences the opposite effect: for fav < fnoise, the fluctuations

in nav are smoothed away and do not enter g
(2)
slow(0) whereas for fav > fnoise, the

fluctuations in nav are resolved and lead to a higher value of g
(2)
slow(0). Thus, g

(2)
slow(0)

contains every kind of noise that occurs at a frequency smaller than fav while g
(2)
fast(0)

indicates noise that occurs at frequencies higher than fav, including the intrinsic photon-
number noise of the light source.
Note that for typical detection methods that rely on photon counting, tav corresponds
to the integration time that is needed to obtain a single value of g(2)(0) and can amount
to minutes, see e.g. Ref. [KvHR+20], making different kinds of noise indistinguishable.
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(a) (b)

Figure 6.1: (a) Time-resolved g
(2)
fast(0,t) and nav for an excitation power Pexc = 85 mW. The

averaging frequency is fav = 75.4 kHz. (b) The longer time-trace shows a measurement under
the same conditions as in (a) but with mechanical noise applied to the setup.

In contrast, for our fast homodyne detection, the maximum frequency is limited by
the repetition rate of the laser 1/T = 75.4 MHz, which is significantly faster than
most mechanical noise sources. After data acquisition, fav can be chosen freely when
analyzing the data, enabling us to investigate noise on different time scales.
In the following, the results for the polariton emission are discussed.

6.3 Results

For the frequency analysis, we pick two different excitation powers: one far above the
threshold — which was determined to be 7 mW in Section 5.2.2 — at 85 mW, where the
emission is rather stable, and one closer to the threshold at 30 mW, where the system
undergoes a non-linear change and reacts strongly to external noise.
For the higher power, the temporal dependence of g

(2)
fast(0,t) and nav(t) is shown in Fig.

6.1 to give an impression of the fluctuations. Fig. 6.1(a) displays a shorter measure-
ment without additional noise and Fig. 6.1(b) a longer measurement with additional
slow mechanical noise that was added by tapping on the optical table. An averaging
frequency fav = 75.4 kHz was chosen to resolve most fluctuations. The time-trace re-
veals several modulations at different time scales.

The frequencies of these modulations are quantified by a Fourier transform of nav.
A typical Fourier transform in the presence of external noise is shown in Fig. 6.2.
Below 50 Hz, a continuum of noise is present, probably being caused by mechanical
vibrations of the setup. Furthermore, discrete peaks appear at multiples of 60 Hz,
which have a significant influence up to about 1 kHz. These stem from the SLM, which
is a digitally-addressed spatial light modulator with an addressing frequency of 120 Hz
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Figure 6.2: Fourier transform of nav(t) where fav = 75.4 kHz was used. The noise spectrum
exhibits a continuum of mechanical noise below 50 Hz and discrete lines at multiples of 60 Hz
that arise due to the pulse-width modulation of the SLM. Image from [LA20].

for pulse-width modulation. In order to generate intermediate greyscale values on the
display pixels to create a refractive pattern for the excitation beam, only two voltage
states are actually applied to the modulator. The dwell time in these voltage states is
varied at the addressing frequency. This modulation scheme causes noise at half the
addressing frequency and harmonics of that value [FSLQ+11].

Now we know the relevant frequencies where external noise is expected to become
prominent and can compare these to the dependence of g

(2)
fast(0) on fav.

To this purpose, we calculate the mean value of g
(2)
fast(0,t) for each value of fav for

the full measurement. Thereby, g
(2)
fast(0,t) is weighted with the squared photon number

nav(t)2 via

g
(2)
fast(0) =

∑
t nav(t)2 g

(2)
fast(0,t)∑

t nav(t)2 . (6.8)

This correction is used to neutralize the effect of exceptionally small photon numbers
leading to an exceptionally high g

(2)
fast(0,t) since nav(t)2 contributes in the denominator

of Eq. (6.6).

The result is shown in Fig. 6.3 for Pexc = 85 mW. Full symbols and open symbols
denote g

(2)
fast(0) and g

(2)
slow(0), respectively. Black data points represent the standard

measurement while red data points depict the measurement where mechanical noise
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Figure 6.3: Frequency-dependence of g(2)(0) for Pexc = 85 mW. Full symbols: mean value
of g

(2)
fast(0) versus the averaging frequency fav. Open symbols: g

(2)
slow(0). Black: standard

measurement. Red: measurement with additional mechanical noise. Dashed lines indicate the
frequency region where external noise does not influence g

(2)
fast(0). Adapted from [LA20].

was added.
In both cases, the values of g

(2)
fast(0) lie in a rather small range between 1.42 and 1.5,

which implies that the polariton condensate is rather stable against environmental noise
for this high excitation power. Nevertheless, we observe three different frequency re-
gions with slightly different g(2) values.
First, for fav below 1 kHz, g

(2)
fast(0) has a plateau around 1.47. For fav > 1 kHz, g

(2)
fast(0)

decreases and reaches another plateau around 1.43. Finally, for fav > 100 kHz, g
(2)
fast(0)

reduces further. On the other hand, g
(2)
slow(0) experiences the opposite trend: It is lower

in the first region, increases in the second region and again in the third region.
Regarding the first region, in the low frequency range below 50 Hz, g

(2)
fast(0) is signif-

icantly higher in the presence of external noise (red) than without (black). But for
higher frequencies, both are very similar. Apparently, this difference at very low fre-
quency stems from the continuum of mechanical noise apparent in the Fourier transform
below 50 Hz. This supports our assumption that mechanical noise only has an impact
at low frequencies and can be removed by sampling at higher frequencies.
But even if only standard environmental noise is present, g

(2)
fast(0) is higher in the region

below 1 kHz than above 1 kHz, probably because of the modulation by the SLM that
is significant in this range.
In the second region, where fav > 1 kHz, the modulation by the SLM does not impact
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g
(2)
fast(0) anymore and therefore the value is lower. On the other hand, g

(2)
slow(0) increases.

This demonstrates that as soon as fav becomes comparable to the frequency of a certain
noise component, this noise is transferred from g

(2)
fast(0) to g

(2)
slow(0). In the frequency

range between 10 kHz and 100 kHz, g
(2)
fast(0) is almost constant and very similar both

with and without external mechanical noise whereas g
(2)
slow(0) differs considerably with

and without external noise. Thus, in this range, g
(2)
fast(0) is probably unperturbed by

external noise and represents the intrinsic photon correlation of the polariton emission
while g

(2)
slow(0) indicates external perturbations.

Finally, in the third region beyond 100 kHz, the value of g
(2)
fast(0) reduces further. This

effect is an artifact of the averaging procedure. As explained above, in order to cal-
culate g(2)(0) correctly from the quadrature values, all relative phases between signal
and LO need to be included equally. In our case, there is no fixed phase between LO
and signal and the time between two subsequent LO pulses is significantly longer than
the coherence time of the polariton condensate. Thus, each quadrature value is mea-
sured at a random phase between signal and LO. However, at high fav, the number
of quadrature measurements x within a single averaging time window tav may become
too small to include all relative phases equally; e.g. at fav = 100 kHz, x amounts to
750. Thus, the results are reliable only for fav up to 100 kHz.
We conclude that in the frequency range between 10 kHz and 100 kHz, g

(2)
fast(0) repre-

sents the intrinsic photon-number fluctuations of the light field emitted from the sample.

Now let us examine the results for a power closer to the threshold, 30 mW, which
are shown in Fig. 6.4. At this excitation power, the condensate is less stable and more
susceptible to perturbations.

Again, full symbols denote g
(2)
fast(0) and open symbols g

(2)
slow(0). Black symbols in-

dicate a standard measurement while red symbols show a measurement with added
mechanical noise. In general, the values of g(2) are higher for 30 mW than for 85 mW
but the three different frequency regions observed before can be identified as well.
In the low frequency range, where most detection methods work, the g(2) values are
exceptionally high. For the standard measurement, g

(2)
fast(0) is 2 below 1 kHz — which

would correspond to the value for thermal light — and even 2.1 at very low frequencies
below 50 Hz. With external noise, the values are drastically higher, and reach 2.3 below
1 kHz and 2.8 below 50 Hz. These values even exceed the value for thermal light and
are not physically realistic anymore. Thus, in this low frequency range, the external
noise completely overlays the true photon statistics of the emitted light field.
On the contrary, in the relevant frequency range between 10 and 100 kHz that we iden-
tified previously, g

(2)
fast(0) lies between 1.83 and 1.88 without and with added external

noise, respectively. Again, the additional mechanical noise strongly influences g
(2)
slow(0).

However, even in this frequency range, g
(2)
fast(0) differs slightly with and without ex-

ternal noise. Thus, the external noise is capable of altering g(2) even in the optimum
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Figure 6.4: Frequency-dependence of g(2)(0) for Pexc = 30 mW. Full symbols: mean value
of g

(2)
fast(0) versus the averaging frequency fav. Open symbols: g

(2)
slow(0). Black: standard

measurement. Red: measurement with additional mechanical noise. Adapted from [LA20].

frequency range.
In order to explain this effect, let us discuss different ways how external noise may affect
the measured photon correlation. On the one hand, mechanical noise can impact the
detection by perturbing the alignment of optics and the overlap of the light field with
the detector or the LO. In this case, the noise slowly modulates the measured intensity
but does not change the intrinsic relative photon-number fluctuations of the emission.
On the other hand, mechanical noise may also influence the incoupling of the excita-
tion beam into the microcavity, acting as a slow modulation of the excitation power.
In particular close to the condensation threshold, a change in excitation power also
non-linearly changes the state of the polaritons between condensed and uncondensed,
which directly impacts the photon statistics of the emitted light. A similar effect has
been observed for systems with a nonlinear optical response, which emit light with
enhanced photon correlation when excited by a noisy source [AB15, KSA+15]. This
impact on the g(2) value of the emission cannot be eliminated by using different values
of fav.
Still, g

(2)
fast(0) shows a more realistic value in the frequency range between 10 and

100 kHz than for low fav. Thus, this method is more reliable than slower detection
methods.
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6.4 Conclusion

To conclude, in this chapter, I presented time-resolved measurements of the photon
number and the second-order correlation function g(2)(0,t) of a polariton microcavity
that is excited non-resonantly by cw coherent light shaped via an SLM. The second-
order correlation function is perturbed by mechanical noise in the setup and by a mod-
ulation of the excitation intensity caused by the SLM. My results indicate that these
slower external influences can be separated from the faster intrinsic photon-number fluc-
tuations by using a sufficiently high averaging frequency fav for obtaining the g(2)(0,t)
values. Specifically, in the frequency range between 10 and 100 kHz, the slower external
noise is almost completely suppressed.
Thus, time-resolved homodyne detection is a suitable tool for investigating the photon
statistics of a light source where external noise might be a problem. This is especially
an issue when noise itself is an important figure of merit, e.g. for the detection of
squeezed light [BBA+14, AAF+17].

However, g(2)(0) alone does not deliver a complete description of the state of light.
To gain a more complete description, I employ two-channel homodyne detection in order
to reconstruct phase-space functions of the polariton emission in the next chapter.
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Chapter 7

Two-channel homodyne detection:
Quantifying quantum coherence
from Husimi functions

One of the phase-space distributions introduced in Section 2.7 is the Husimi Q func-
tion. This distribution can be obtained from two-channel homodyne measurements. In
this chapter, I explain the two-channel homodyne setup1, introduce the theoretically
expected Husimi function for the polariton emission, and show the measured results.
From the Husimi function, I determine the emission’s quantum coherence. Further-
more, I compare the results to numerical simulations performed by the group of Stefan
Schumacher at Paderborn University. The theoretical background of quantum infor-
mation science was provided by Jan Sperling at Paderborn University. This chapter is
mostly based on Ref. [LPR+21].

7.1 Two-channel setup

The pump laser exciting the sample has the wide Gaussian shape introduced before.
For using two homodyne detection channels simultaneously, the basic setup described
in Section 4.1.2 is slightly modified, as shown in Fig. 7.1. constituting a so-called
eight-port interferometer [Sch01, p. 361].

The signal beam and the LO beam are each split into two partial beams which en-
ter the two homodyne channels where the quadratures X1 and X2 are measured. Both
signal beams should have the same mean photon number to obtain a symmetric Husimi
function. Furthermore, in order to obtain correct Husimi functions, it is crucial that
the signal in both channels is measured at exactly the same time. This requires that

1In the literature, this is sometimes also called heterodyne setup; see e.g. Ref. [TMJ+17]. However,
this may lead to confusion, since heterodyne detection also describes a technique where the local
oscillator has a slightly different frequency than the signal in order to detect their beating at the much
lower difference frequency [DeL68].
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Figure 7.1: Scheme of two-channel homodyne detection. The signal beam (yellow) and the
local oscillator beam (LO) (red) are each split into two beams which then interfere in two
homodyne detection channels. A piezo mirror (Pz) sweeps the relative phase between the LOs
in the two channels. From the LO, an additional beam for alignment of the time delay is derived
(green). The two detectors BD1 and BD2 measure the quadratures X1 and X2. From these,
orthogonal quadratures q and p are selected. A two-dimensional histogram of q and p delivers
the Husimi Q distribution. LO: Local oscillator; PBS: polarizing beam splitter; λ/2: half-wave
plate; BD: balanced detector; Pz: Piezo mirror; 90:10: beam splitter with 90% transmission
and 10% reflection. The path lengths are not drawn to scale. In the actual setup, all LO paths
should have equal lengths and all signal paths should have equal lengths, too.

the two signal beams travel exactly the same distances from their point of separation to
the detectors. This can be ensured by using a part of the LO as a signal for alignment
(depicted in green in Fig. 7.1). For each channel, one can observe the overlap of this
alignment beam (green) and the LO beam (red) on a camera, while slowly scanning
the corresponding delay line. The delay line consists of a retroreflector mounted on
a motorized translation stage, allowing to change the length of the LO beam path by
several centimeters without distorting the beam alignment. If the pulses of the LO
beam and the alignment beam travel the same distance, i.e. arrive at the same time,
interference fringes appear on the camera. When this optimal delay is found for both
channels, the alignment beam can be blocked and the polariton signal can be aligned
to travel along the same path.
For the measurements in this chapter, the LO energy was set to 1.6107 eV. The FWHM
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of the LO spectrum was 0.003 eV, corresponding to a pulse length of about 660 fs. With
such a big spectral width, the LO covers the signal spectrum even when a red- or blue-
shift occurs.
Another important feature is a piezo mirror in one of the two LO paths. The mir-
ror is equipped with the piezo actuator S-303.CDI from Physik Instrumente (PI) and
controlled by an E-725 piezo controller. With this mirror, the LO path length in this
channel can be varied by 2 μm. Thereby, the relative phase between the LOs in the two
channels can be swept continuously. A trigger signal is sent from the piezo controller
to our digitizer card in order to measure only when the piezo is moving linearly and
not changing the direction of movement; see Ref. [The18, p. 45-46]. Later, the data
can be sorted into segments according to the piezo movement.

7.2 Obtaining the Husimi function

For obtaining the Husimi function, one needs orthogonal quadratures q and p, i.e.
quadratures that are phase-shifted by 90◦. However, currently it is not possible to
hold the relative phase between the two channels fixed. Therefore, we scan the relative
phase continuously by modulating the piezo mirror — typically in a sinusoidal wave-
form with a frequency of 50 Hz — and later compute the product of the quadratures
of the two channels X1X2. This product has a sinusoidal shape when plotted against
time resulting from the continuous phase sweeping. Then, we select only data where
the smoothed product X1X2 equals zero within a ±2.5% margin of the peak-to-peak
value. These selected quadratures q and p are approximately orthogonal to each other
and hence represent coordinates of the phase space.
In the next step, we create a histogram of the occurrences of pairs (q,p), which gives
us the Husimi Q distribution of the signal light field [Sch01, p. 367]. See section A.4 in
the appendix for the used Matlab scripts.
However, this Husimi function is phase-averaged since the phase of the polariton emis-
sion fluctuates on a timescale of 1 ns, given by its coherence time, as observed in Chapter
8. Therefore, in a measurement over several hundred milliseconds, we record all possi-
ble phases between signal and LO equally. Nevertheless, the phase-averaged Q function
allows us to determine the amount of quantum coherence in the polariton system.
In the next section, we discuss what kinds of Husimi functions are expected for our
system and what information we can learn from them.
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7.3 Expected Husimi function for coherent, thermal and dis-
placed thermal states of light

In this section, we introduce the expected Husimi functions for the light states inves-
tigated in this work. In general, this is the family of displaced thermal states, whose
limiting cases are the coherent state and the thermal state, which we introduce first.

7.3.1 Husimi function of a coherent state

The Husimi function of a coherent state is given by [Sch01, p. 324]:

Q(α) =
〈α|ρ̂|α〉

π
=

1
π

exp
[
−|α − α0|2

]
, (7.1)

with the coherent amplitude α0 ∈ C = |α0|eiφ, where φ = arg α0. A visualization is
shown in Fig. 7.2 and Fig. 7.3, depicting a Gaussian bell curve located at the offset. The
offset can be related to the quadratures, via definition (2.26) and eigenvalue equation
(2.7). Thus, we obtain the following expectation values and variances: 2

〈q̂〉 = 〈α0| A(â† + â) |α0〉 = A(α∗
0 + α0) = 2AReα0 ≡ q0; (7.2a)

〈p̂〉 = 〈α0| Ai(â† − â) |α0〉 = Ai(α∗
0 − α0) = 2AImα0 ≡ p0; (7.2b)

〈n̂〉 = 〈α0| â†â |α0〉 = |α0|2 = (Reα0)2 + (Imα0)2 =
1

(2A)2 (q2
0 + p2

0); (7.2c)

Var(q̂) = 〈q̂2〉 − 〈q̂〉2 = A2 = Var(p̂). (7.2d)

(7.2e)

The product of the widths ΔqΔp = A2 corresponds to the Heisenberg limit. These
widths also correspond to the width of the vacuum state.

Expressed in terms of quadratures, the phase of the state is:

φ = arctan
(

p0
q0

)
. (7.3)

2Note that the expectation values can be either evaluated from knowledge of the coherent state or
from the Husimi function. E.g. from the property (2.7) of the coherent state we get for the mean
photon number: 〈n̂〉 = 〈α0| â†â |α0〉 = α∗

0α0 = |α0|2 = (Reα0)2 + (Imα0)2.
However, if we evaluate the term with the Husimi function, we have to make sure that the operators
are antinormally ordered [Sch01, p. 330]: 〈n̂〉 = 〈â†â〉 = 〈ââ† −1〉 = 〈α∗α〉Husimi −1 = 〈(Reα)2〉Husimi +
〈(Imα)2〉Husimi − 1.
Thereby, 〈x〉Husimi =

∫ ∞
−∞

∫ ∞
−∞ xQ(α)dRe(α)dIm(α). This gives the result 〈n̂〉 = 1

2 + (Reα0)2 + 1
2 +

(Imα0)2 − 1 = |α0|2. Thus, both methods yield the same expectation values, but only when the
operators are antinormally ordered when averaging over the Husimi function.
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Figure 7.2: Simulated Husimi function of
a coherent state with mean photon number
|α0|2 = 10.

p

q

q0

p0

Figure 7.3: 2D image of the simulated
Husimi function of a coherent state with
mean photon number |α0|2 = 10. Anno-
tations indicate the offset q0,p0 and the
widths Δq,Δp.

7.3.2 Husimi function of a thermal state

The other limiting case is the thermal state, whose Husimi function is given by [Sch01,
p. 328]:

Q(α) =
exp

[
− |α|2

n̄+1

]
π(n̄ + 1)

, (7.4)

with the mean photon number n̄. A visualization is shown in Fig. 7.4 and Fig. 7.5.
It is a Gaussian that is considerably broader than the coherent counterpart. It has no
offset but is centered around zero because the phases of the light field are randomized.
Thus, the expectation values are:

〈q̂〉 = 0; (7.5a)

〈p̂〉 = 0; (7.5b)

〈n̂〉 = n̄; (7.5c)

Var(q̂) = 〈q̂2〉 − 〈q̂〉2 = 〈q̂2〉 = A2(2n̄ + 1) = Var(p̂). (7.5d)

7.3.3 Husimi function of a displaced thermal state

As we have seen, the coherent state has the minimum product of quadrature widths
and an offset that is related to the coherent photon number. On the other hand,
the thermal state has a width related to the thermal photon number and zero offset.
Both are limiting cases for the family of displaced thermal states, which possess an
offset related to a coherent photon number as well as a width related to a thermal
photon number. Mathematically, the displaced thermal state is obtained by applying
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Figure 7.4: Simulated Husimi function of
a thermal state with mean photon number
n̄ = 10.

Figure 7.5: 2D image of the simulated
Husimi function of a thermal state with
mean photon number n̄ = 10.

a displacement operator to a thermal state. This state represents a superposition of
thermal light with coherent light in one mode and is a simple model for single-mode
laser light [VW06, p. 131].
For a laser, the coherent light originates from stimulated emission and the thermal light
from spontaneous emission. This is different for polaritons, where stimulated scattering
of polaritons towards the ground state takes place instead of stimulated emission; see
[BKY14] for a comparison of laser and polariton condensate. The emitted light stems
from leakage of the photonic part of the polaritons out of the cavity and has the same
state as the polaritons up to a rescaling; see Section 3.5. The thermal part of the
emission comes from uncondensed polaritons that are thermalized by the phonon bath
whereas the coherent part results from condensed polaritons. These polaritons build
up coherence when forming a condensate, i.e. they possess a macroscopic wavefunction
with a fixed quantum-mechanical phase, which serves as the order parameter [DHY10].
This polariton wavefunction Ψ = Ψ0eiφ describes a macroscopically coherent state.
Therefore, it is reasonable to assume that the model of the displaced thermal state
applies to polaritons as well. This educated guess is compared to the experimental
results in Section 7.5.1. Beforehand, let us review the properties of the displaced
thermal state.
The P distribution and density matrix are given in Ref. [VW06, p. 131]; from these we
obtain the Husimi function

Q(α) =
exp

[
− |α−α0|2

n̄+1

]
π(n̄ + 1)

, (7.6)

with a width given by the mean thermal photon number n̄ and a coherent displacement
α0 ∈ C, related to the coherent photon number |α0|2. A visualization is shown in Fig.
7.6. It resembles a coherent state that is broadened due to the thermal background,
as specified through the thermal photon number. In the limit |α0|2 → 0 the function
corresponds to the Husimi function of a thermal state, and in the limit n̄ → 0 it
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Figure 7.6: 2D image of the Husimi
function of a displaced thermal state with
|α0|2 = 10 and n̄ = 1.

Figure 7.7: 2D image of the phase-aver-
aged Husimi function of a displaced ther-
mal state with |α0|2 = 10 and n̄ = 1.

corresponds to a coherent state. If both parameters are zero, we obtain the vacuum
state. The expectation values are:

〈q̂〉 = 2ARe(α0) ≡ q0; (7.7a)

〈p̂〉 = 2AIm(α0) ≡ q0; (7.7b)

〈n̂〉 = n̄ + |α0|2; (7.7c)

|α0|2 =
1

(2A)2 (q2
0 + p2

0); (7.7d)

Var(q̂) = Var(p̂) = A2(2n̄ + 1). (7.7e)

However, as mentioned above, the emission has no fixed phase relation to the local
oscillator in our measurements. Thus, the relative phases between LO and signal are
randomized and the obtained Husimi function is a phase-averaged version of the one
given by Eq. (7.6). This phase-averaged version reads [LPR+21]

Qpav(α) =
exp

(
− |α|2+|α0|2

n̄+1

)
π(n̄ + 1)

I0

(2|α||α0|
n̄ + 1

)
. (7.8)

Herein, I0 denotes the zeroth modified Bessel function of the first kind, 2π I0(λ) =∫ 2π
0 dϕ eλ cos(ϕ). This function is visualized in Fig. 7.7. It looks like a ring, whose width

is related to the thermal photon number and whose radius is related to the coherent
photon number.

7.4 Calculating the quantum coherence of a displaced thermal
state

In Section 2.5 we introduced the quantum coherence as a measure for the amount of
superpositions of basis states in the system. If |α0|2 �= 0, there are superpositions of
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Fock states present, indicated by off-diagonal elements in the density matrix ρn,m =
e−|α0|2αn

0 α∗m
0 /

√
n!m! �= 0. Thus, if we assume particle states as the classical reference

and superpositions of them as a quantum resource, then a coherent state possesses a
large amount of quantum coherence.
The exact amount of quantum coherence C can be computed from the Husimi function.
To recall Eq. (2.22), C is given by

C(ρ̂) = tr
(
ρ̂2
)

− tr
(
ρ̂2

inc
)

, (7.9)

where ρinc is an incoherent state with the same diagonal elements as the original state.
Before, we expressed these terms in the Fock basis, but they can also be calculated
from phase-space distributions. Specifically, the best incoherent approximation ρ̂inc =∑

n ρn,n|n〉〈n| [SW18] is obtained by a phase-averaging over the corresponding phase-
space distribution [LPR+21]. Thus, ρ̂inc corresponds to the phase-averaged Husimi
function Qpav from Eq. (7.8). Note that, as explained above, we only measure the
phase-averaged Husimi function, which actually constitutes the incoherent limit we use
here. However, we can reasonably assume that the state is in fact a usual displaced
thermal state and the phase averaging only occurs due to the lack of phase stability
between LO and signal. Thus, the measured phase-averaged function allows us to derive
the parameters n̄ and |α0|2 of the original displaced thermal state and to compute the
quantum coherence from them as follows.
To obtain C(ρ̂), we need the purities tr

(
ρ̂2) and tr

(
ρ̂2

inc
)
. In general, the purity of a

state can be written as

tr
(
ρ̂2
)

=
∫

d2α d2α′ P (α)P (α′) exp
(
−|α − α′|2

)
=π

∫
d2αP (α)Q(α),

(7.10)

where we used the Glauber-Sudarshan P distribution P , the overlap |〈α|α′〉|2 = e−|α−α′|2

and the representation Q(α) = 〈α|ρ̂|α〉/π for the Husimi function.
For the displaced thermal state, we obtain the purities

tr
(
ρ̂2
)

=
1

(n̄ + 1)2 − n̄2 (7.11)

and

tr
(
ρ̂2

inc.

)
=

exp
[
− 2|α0|2

(n̄+1)2−n̄2

]
(n̄ + 1)2 − n̄2 I0

[
2|α0|2

(n̄ + 1)2 − n̄2

]
. (7.12)

The difference of both purities then yields the coherence measure from Eq. (2.22)
for displaced thermal states:
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7.5. Results

C(ρ̂) =
1 − exp

[
− 2|α0|2

(n̄+1)2−n̄2

]
I0
[

2|α0|2
(n̄+1)2−n̄2

]
(n̄ + 1)2 − n̄2 . (7.13)

Thus, the quantum coherence of displaced thermal states only depends on the pa-
rameters n̄ and |α0|2, visualized in Fig. 7.8.
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Figure 7.8: Quantum coherence C(ρ̂) as a function of the coherent and thermal photon num-
bers, 0 ≤ |α0|2 ≤ 10 and 0 ≤ n̄ ≤ 10, respectively. The quantum coherence increases with
increasing displacement α0 and reduces when the thermal background n̄ increases. The figure
is taken from Ref. [LPR+21].

As can be seen, the quantum coherence becomes large for high coherent photon
number |α0|2 and for low thermal photon number n̄. Furthermore, C even monotoni-
cally increases with |α0|2 and monotonically decreases with n̄ [LPR+21]. It saturates
at a maximum value of 1 in the limit of a large coherent amplitude, |α0| → ∞, and
vanishing thermal background, n̄ → 0.

With this knowledge, quantum coherence can be quantified by measuring the Husimi
function of the polariton condensate emission, indicating the system’s usefulness for
quantum protocols.

7.5 Results

7.5.1 Measured Husimi functions

In the following, we fix the normalization A = 1√
2 , i.e. the commutator convention

[q̂,p̂] = i.
First, let us examine two exemplary measured Husimi functions for the dominant 0°
linear polarization. Figure 7.9(a) shows a Husimi function measured at Pexc = 30 mW
and (b) at Pexc = 226 mW. The measured functions are fitted with the model of a
displaced thermal state, from which the thermal and coherent photon numbers are ob-
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(a) 30 mW (b) 226 mW
width

  
  
displace-
ment  
  

Figure 7.9: Measured phase-averaged Husimi functions for (a) Pexc = 30 mW and (b)
Pexc = 226 mW. In (b), the offset and the width are indicated, which deliver the values of
|α0|2 and n̄, respectively. The bottom plots show cuts along p = 0. The black line corresponds
to the data, with the shaded area (that is mostly not visible) representing a one standard-de-
viation error margin that results from the standard error of the counting statistics. The red
curve depicts the fitted model of a displaced thermal state. Adapted from [LPR+21].

tained. The fits are shown in the lower panels for a cut around p = 0. Apparently, the
model of a displaced thermal state matches our measured data well.
At 30 mW, the Husimi function is a Gaussian distribution around zero. This corre-
sponds to a thermal state with almost zero coherent photons and n̄ = 0.214 ± 0.003
thermal photons.
In contrast, at 226 mW, the Husimi function resembles a ring with a radius of (q2

0 +
p2

0)1/2 = 10.4 in quadrature units, as expected for a phase-averaged displaced ther-
mal state, cf. Fig 7.7. From the width of the ring, the thermal photon number
n̄ = 1.71 ± 0.01 can be derived, and from the displacement we obtain the coherent
photon number |α0|2 = (q2

0 + p2
0)/2 = 53.01 ± 0.02 according to Eq. (7.7d).

Thus, somewhere between these two powers, a phase transition from a thermal to a
mostly coherent state must occur. This spontaneous appearance of coherence in the
polariton system can be related to Bose-Einstein condensation, cf. Sections 3.4 and
3.5.

Before we study this transition in a series of excitation power measurements, we
must remark one difficulty. The two Husimi functions shown in Fig. 7.9 were both cre-
ated with data from a complete measurement that takes several hundred milliseconds.
However, this only works if the state of light is sufficiently stable during this time span.
Nevertheless, in a certain range of powers, i.e. 170 mW to 205 mW, the emission is not
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Pexc = 205 mW

Figure 7.10: Bistable emission at Pexc = 205 mW. On the upper and lower left side, the
time-resolved g(2)(τ = 0,t) and photon number is shown, respectively. The initial time t = 0 is
chosen as the beginning of the measurement. A dashed line in the bottom panel indicates the
distinction between the states with high and low intensity. For these two states, the Husimi
functions are shown on the right. Adapted from [LPR+21].

stable but switches between a state with high intensity and one with low intensity, as
can be seen in a plot of the time-resolved photon number and g(2)(τ = 0,t) in Fig. 7.10.

In the high state, g(2)(τ = 0,t) is close to one, indicating mostly coherent emission,
while in the lower state, g(2)(τ = 0,t) lies around two, implying mostly thermal light.
Therefore, it does not make sense to sample one Husimi function from the complete
dataset, but to create one Husimi function for each of the two states separately. To
differentiate between both states, we define the “high” state where the photon number
exceeds the mean of the maximum and minimum photon number of the dataset and
the “low” state as the instances with a photon number below that. This distinction
between both states is marked with a dashed line in the bottom panel of Fig. 7.10.
The Husimi functions for these two states are shown on the right.
Consequently, in the range of powers where bistability occurs, we create separate Husimi
functions for the low and the high state, perform a fit for each of them and receive two
separate resulting sets of parameters. Thus, our time-resolved detection method allows
us to take the bistability of the semiconductor dynamics into account, the causes of
which we will elaborate further in the following.

7.5.2 Dependence on excitation power

In order to investigate the transition towards the condensed state, the Husimi functions
are measured for varying excitation power. From each Husimi function, we obtain the
thermal and coherent photon numbers n̄ and |α0|2 via fitting the displaced thermal state
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(a) (b)

(d)(c)

Figure 7.11: Results obtained from fitting the Husimi functions versus excitation power for
0° polarization. (a) Coherent (red circles) and thermal (black circles) photon numbers. The
black line shows the total photon number ntotal. Black vertical lines mark thresholds between
different regimes of emission. (b) Ratio between the coherent and thermal photon numbers.
(c) Equal-time, second-order correlation function g(2)(τ = 0). (d) Amount of quantum coher-
ence. Open and closed symbols correspond to the low and high state of the bistable emission,
respectively. When both symbols overlap, the emission is stable. Error bars are obtained from
a Monte Carlo error propagation (see Appendix B for details); because of the asymmetry of the
logarithmic scale, only the upper part of the error margin is shown. Adapted from [LPR+21].

model to the data. From these photon numbers, we calculate the quantum coherence
C via Eq. (7.13). Furthermore, a mean value for g(2)(τ = 0) can be computed via Eq.
(2.20). All these quantities are plotted versus excitation power for the dominant 0°
linear polarization in Fig. 7.11. Let us now examine the power-dependence of these
values in order to study the phase transition of the system, and, most importantly, the
build-up of quantum coherence.

For low excitation powers, |α0|2 is two orders of magnitude smaller than n̄ and the
correlation function g(2)(τ = 0) equals 2, indicating almost completely thermal emis-
sion. Also, the amount of quantum coherence is close to zero. From this follows that
the polaritons in the sample are in an incoherent state without quantum superpositions.
Since the thermal phonon bath induces polariton relaxation [HSQ+10, SQ08], and the
polaritons cannot directly inherit the coherence from the nonresonant excitation, they
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form a thermal ensemble as long as the critical density for condensation is not reached.

Slightly above the power of 30 mW, where we found a non-linear intensity increase
in the dispersions (cf. Chapter 5.2.1), both the thermal and coherent photon numbers
rise. In particular, the coherent photon number |α0|2 increases significantly, and the
quantum coherence C as well. Probably, this behavior corresponds to the emergence
of a macroscopic occupation in the ground state, enabling stimulated scattering to the
ground state and initializing the condensation process.

However, when the power is increased further, the coherent photon number and the
quantum coherence drop again, and the total photon number stays on a plateau up to
about 65 mW. Also, g(2)(τ = 0) is still 2 because the thermal photon number is much
higher than the coherent photon number. Notably, in this power range, we observed
in the dispersions an appearance of emission around k = ±0.8 μm−1 that competes for
the formation of a condensate, cf. Chapter 5.2.1. These modes at higher k values do
not overlap with the LO and are therefore not measured with our homodyne detection
setup. Because of this competition of polaritons being scattered to higher k states, the
critical density in the ground state is not achieved, and a condensate at k = 0 cannot
form yet.
These higher k modes fade away for Pexc > 60 mW and the emission from k = 0 pre-
dominates, leading to an increase in the total photon number ntotal. But still there is
too much gain competition from the other modes, which can be also seen in Chapter
5.2.1, to enable the build-up of quantum coherence in the ground state.

Only for powers above 170 mW, there is a significant rise of the coherent photon
number and the quantum coherence, accompanied by a drop of g(2)(0). However,
in the range between 170 mW and 205 mW, the emission is not stable but switches
between high and low intensity, as shown in Fig. 7.10. In this range of powers, the
gain competition with the orthogonal 90° polarization comes into play that was also
observed in Chapter 5.2.1. There, we found this competition in a similar range of
powers up to 200 mW. This assumption is further confirmed by the excitation-power
dependence of Husimi function fit parameters for the 90° polarization that is shown
in Fig. 7.12. Here, a significant coherent photon number, quantum coherence and a
reduction of g(2)(0) are found in the power range of 140 - 206 mW. Thus, in this range
of powers, there is a formation of a state with coherent quantum superpositions, but it
is alternating between the two polarizations.

Eventually, at 226 mW, the 0° polarized emission becomes stable and reaches the
maximum observed amount of quantum coherence, C = 0.208 ± 0.001. This value is in
good agreement to the one expected from a numerical simulation, C = 0.2, as discussed
in the next Section 7.6. Also, g(2)(0) reaches a minimum value of 1.0615 ± 0.0003. This
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(a) (b)

(d)(c)

Figure 7.12: Fitted photon numbers from the Husimi functions, g(2)(τ = 0) and quantum
coherence versus excitation power for 90° polarization.

observation of C > 0 tells us that there are significant quantum superpositions of Fock
states present in the polariton system, cf. Section 2.5 and 7.4.

Finally, for excitation powers above 226 mW, the coherent photon number saturates
whereas the thermal photon number further increases, leading to a slight increase in
g(2)(τ = 0) and a loss of quantum coherence. For these higher powers, the sample is
heated by the pump laser, which causes decoherence via the thermal bath of the lattice
and carriers. The effect of heating can also be observed in a redshift of the polariton
emission in Fig. 5.4(d). Another effect leading to decoherence is the polariton-polariton
interaction that increases for higher powers.

7.6 Comparison to numerical simulations

In addition to the measurements, a numerical simulation was performed at Paderborn
University by Matthias Pukrop in the group of Stefan Schumacher in order to confirm
the build-up of quantum coherence in the polariton condensate. The numerical results
are also published in Ref. [LPR+21]. The simulation is based on an open-dissipative
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(b)(a)

Figure 7.13: Results from a numerical simulation versus excitation power. (a) Photon corre-
lation g(2)(τ = 0). (b) Quantum coherence. Adapted from [LPR+21].

Gross-Pitaevskii equation (which describes the dynamics of the order parameter for
Bose-Einstein condensation [PS03]) coupled to an incoherent reservoir. In order to
study coherence properties, fluctuations are included with the help of the truncated
Wigner approximation [CC13, SLC02, WS09]. With this approximation, one obtains a
set of stochastic partial differential equations that describe the temporal evolution of
the polariton field ψ on a finite two-dimensional grid when coupled to an incoherent
reservoir [WS09]. These equations include several microscopic and intrinsic proper-
ties of the sample, namely the decay rates of the condensate and the reservoir γc and
γr, the interaction strength between polaritons gc, the condensation rate R and the
condensate-reservoir interaction gr. The parameter values used in the simulation can
be found in Ref. [LPR+21]. Also, Wiener noise is included to account for classical and
quantum fluctuations, making the equations stochastic.
The equations are then solved via a fourth-order stochastic Runge-Kutta algorithm
[HP06]. To this aim, 300 (below threshold, 200 otherwise) stochastic realizations of
the system are evolved over a time interval of 4 ns with a fixed time step of 0.04 ps.
Then, the expectation values of the sought-after quantities are given by the steady-state
average over those realizations, making use of Monte Carlo techniques. Thereby, the
average is taken across a small square in k space in the vicinity of k ≈ 0.
Specifically, one obtains the expectation values of the mean polariton number and its
variance inside the selected k space area. From these, the mean thermal and coherent
polariton number can be computed with help of Eq. (2.19), giving the photon correla-
tion g(2)(0) via Eq. (2.20) and the quantum coherence via Eq. (7.13). The results for
different excitation powers are shown in Fig. 7.13.

The excitation-power dependence shows a phase transition from a mostly thermal
(g(2)(0) ≈ 2) to a mostly coherent (g(2)(0) ≈ 1) state. During this transition, the quan-
tum coherence C reaches a value of about 0.2. Furthermore, it is evident that g(2) and
quantum coherence describe distinct properties since g(2) reaches saturation for lower
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powers than C.
Let us now compare these results to the experimental ones. First of all, both in simu-
lation and experiment, we observe a phase transition of the system accompanied by a
rapid decrease of g(2)(τ = 0) and an increase of quantum coherence. In both cases, the
maximum value of quantum coherence is very similar, indicating that the simulation
describes the system well.
However, there are also a few differences between simulation and experiment. First,
the simulation delivers the polariton number inside the sample whereas the experiment
measures the photon number outside the sample; however, both are directly propor-
tional to each other [LPR+21].
Furthermore, the threshold found in the simulation is also the power where g(2)(τ = 0)
drops. In the experimental system, the behavior is more complicated because of the
aforementioned mode competition that is not included in the simulation. Thus, the
threshold for an intensity increase in the dispersion does not directly coincide with a
decrease of g(2) and a build-up of quantum coherence in the selected mode. Instead,
one could define the threshold for our purposes as the power where the coherent photon
number rises in the selected mode. Then, the threshold is comparable to the simulation.
In addition, in the experiment the quantum coherence decreases again for higher pow-
ers due to heating and polariton-polariton scattering. This is not taken into account
in the simulation, thus the quantum coherence stays on a plateau for higher powers.

However, since the simulated and experimentally determined maximum amount
of quantum coherence matches closely, the simulation describes the experiment well
enough. Furthermore, the simulation allows us to probe how the maximum amount of
quantum coherence reacts to changes of the microscopic parameters, which are fixed
in the experiment. Specifically, the saturation value of C increases slightly with de-
creasing interaction strength between polaritons gc and increasing condensation rate
R. The parameter gc is mostly influenced by the detuning since the interaction between
polaritons is caused by the excitonic part of the polaritons and is therefore stronger if
they are more excitonic. The condensation rate R describes the scattering rate from
the reservoir into the condensate, which depends on the detuning but also on the over-
lap between reservoir and condensate. However, the quantum coherence is not very
sensitive to changes of these parameters. Furthermore, changing the decay rate of the
condensate γc has almost no influence on the quantum coherence.

7.7 Conclusion

To conclude, I have measured the phase-averaged Husimi function of the emission from
a nonresonantly driven polariton condensate using two-channel homodyne detection.
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The experimentally determined Husimi function was found to be in good agreement to
the model of a displaced thermal state. With increasing excitation power, the emission
underwent a transition from a mostly thermal to a mostly coherent state.
I observed not only a drop of the photon correlation g(2)(0) from 2 towards 1, but
most importantly, a build-up of a significant amount of quantum coherence, C ≈ 0.2,
which was confirmed both by the experiment and by a numerical simulation. While
the decrease in g(2) corresponds to a transition of the photon statistics — given by the
diagonal density matrix elements — from a thermal to a Poisson one, the build-up of
quantum coherence proves the presence of off-diagonal density matrix elements. Thus,
there are significant quantum superpositions of Fock states present in the polariton
system, cf. Section 2.5 and 7.4. These quantum superpositions provide a resource
for quantum protocols and could be transformed into entanglement, cf. Section 2.5.
Therefore, the polariton system might be useful for certain quantum-information pro-
cessing tasks. Hereby, polaritons are advantageous compared to ordinary lasers since
they possess quantum coherence both in the emitted light and in the matter system,
enabling both information transfer and local computing as a so-called hybrid system,
whereas the laser only possesses quantum coherence in the emitted light. Furthermore,
the polariton condensate occurs at a carrier density that is several orders of magnitude
smaller than for a laser and is thus more energy efficient [DHY10, DP12].
However, I have not carried out a quantum protocol in this work but laid the founda-
tion for further investigations. Importantly, I showed the capability of our homodyne
detection method to characterize quantum optical properties of a system via the emit-
ted light.
As an outlook, the value of quantum coherence still leaves room for improvement since
only 20% of what is possible was reached. To optimize this value, different pump shapes
might be employed to spatially separate condensate and reservoir, whereby a spatially
narrow ring-shaped pump profile is particularly promising; a ring-shaped profile im-
proves the quantum coherence with unchanged or increased polariton number and a
smaller pump spot improves the quantum coherence but reduces the polariton number
[Puk22]. Besides, vortex modes might deliver a higher quantum coherence [Puk22].
Furthermore, for quantum information tasks it is also important how fast the quantum
coherence decays. Here, I only measured a steady-state value. The temporal dynamics
is investigated in the next Chapter 8.
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Chapter 8

Three-channel homodyne detection:
Tracking quantum coherence from
the regularized P function

In the previous Chapter 7, I measured the Husimi function of polariton emission and
quantified the amount of quantum coherence carried by the state. Yet, these mea-
surements were conducted for a steady-state light field and did not reveal the temporal
decay of quantum coherence. But applications in quantum information processing need
temporally stable quantum superpositions, therefore their evolution should be investi-
gated.
The dynamics of coherence in polariton condensates has been previously studied, mainly
by measuring the field correlation g(1) with help of Michelson and Mach-Zehnder inter-
ferometry and the second-order correlation g(2) via Hanbury Brown–Twiss interferom-
etry; see Section 3.5. But these correlation functions do not yield information about
quantum coherence, as explained in Chapter 2.
Furthermore, the measurements in Chapter 7 were phase-averaged, not giving a phase-
sensitive quantum state description of the polariton emission.
To improve these shortcomings, in this chapter, I present time-resolved and phase-
sensitive measurements of an advanced phase-space function, the regularized P func-
tion PΩ, allowing me to track the evolution of quantum coherence.
To this aim, I use the nonstationary quantum tomography method that was introduced
by Johannes Thewes, Marc Aßmann and myself [The18, TLA20]. Usually, for tomog-
raphy with homodyne detection, a stable phase between LO and signal is required.
But when a semiconductor is excited nonresonantly and the luminescence is studied,
the exciting laser can not be used as an LO because it has a different wavelength than
the signal. Thus, there is no available phase reference and the usual method is not
applicable. To circumvent this problem, Thewes et al. developed an advanced method
to reconstruct the phase with help of three homodyne channels, where no fixed phase
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Figure 8.1: Basic idea of nonstationary quantum tomography. The signal is split into three
homodyne detection channels. Two of them constitute the postselection / proxy channel, where
the Husimi function is measured. The third one is the target channel with an adjustable time
delay τ . From the measured Husimi function, a ring-shaped region with radius s and width w
is selected after data acquisition. The corresponding quadratures in the target channel q and
the reconstructed phase allow to sample the regularized PΩ function, whose decay with growing
time delay can be observed.

reference is needed. This multi-channel homodyne detection is a powerful tool for mon-
itoring the stochastic dynamics of a light field, depending on initial conditions that can
be freely postselected.
From the phase-sensitive data acquired in such a way, I sample the relatively new phase-
space function PΩ directly using pattern functions. I quantify the quantum coherence
based on the phase variance of PΩ and observe its decay, finding exceptionally long
coherence times up to 1390 ps. These findings are supported by simulations carried out
by the group of Stefan Schumacher at Paderborn University. The quantum information
theory was provided by Jan Sperling at Paderborn University. This chapter is mostly
based on a manuscript titled “Tracking quantum coherence in polariton condensates
with time-resolved tomography”, which is submitted for publication [LPB+].

8.1 Three-channel setup

The basic idea of the nonstationary quantum tomography method is illustrated in Fig.
8.1. A detailed explanation of the setup can be also found in Ref. [The18].

The signal is split into three partial beams, each of which is sent to a homodyne
detection unit for measuring the field quadratures. Two of these channels, called post-
selection or proxy channels, are kept at the same temporal delay. From these, we select
orthogonal quadratures qps and pps and assemble the Husimi function Q(qps,pps) as
explained in Chapter 7. The third channel, called target channel, has a time delay τ
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8.1. Three-channel setup

set by a delay line with respect to the proxy channels. After acquiring quadratures in
all three channels, the postselection step follows where we choose an annular region of
the Husimi function, specified by a radius s and a width w, thereby selecting a range
of momentary intensities of the signal. For example, if s exceeds the average radius of
the Husimi function, this means we select all instances when the momentary intensity
was above average. For these instances, we pick the corresponding quadratures q of
the target channel and we also reconstruct the phase ϕ as explained below. Then, we
are able to reconstruct the PΩ function for these (q,ϕ) values. By setting different de-
lays τ between target and proxy channels, we can observe how the PΩ function relaxes
towards the steady state, giving us insight both in the decay of phase and amplitude.
This continuous-variable approach renders it possible to resolve the complete phase
space for the selected light mode and to analyze the dynamics of different phase-space
regions separately.
In some way, our method is similar to a pump-probe experiment. But while in a
pump-probe scheme, the sample is excited with a pump laser and then probed with
a probe laser after some time delay, here we do not excite the system actively but
select a posteriori from the data when the system was excited stochastically in order
to monitor spontaneous processes. A similar concept can be found e.g. in spin-noise
spectroscopy, where one observes stochastic fluctuations of spin orientations in a sample
[CRBS04, ORHH05]; but contrary to our method, spin-noise spectroscopy operates in
the frequency domain.

Let us now explain the setup in more detail. A schematic drawing is displayed in
Fig. 8.2 while Fig. 8.3 shows the complete setup as it was realized on the optical table.

The sample is excited with a wide-Gaussian spot as before. The polarization of the
emission is selected with a half-wave plate and a Glan–Thompson prism. In this chap-
ter, only the dominant 0° linear polarization is measured. LO and signal are each split
into the three channels for homodyne detection. For the measurements in this chapter,
the LO’s wavelength was resonant to the most intense zero-momentum ground-state
mode of the polariton emission at 1.6109 eV, having a spectral FWHM of 1.88 nm or
0.004 eV, corresponding to a pulse duration of about 460 fs. With such a big spectral
width, the LO covers the signal spectrum even when a red- or blue-shift occurs.
The two proxy channels are set to equal delay as explained in 7.1 while the delay τ of
the target channel is varied with a delay line. For each delay, a dataset of quadratures
X1, X2, and X3 in the three channels is measured. The photon numbers are set equal
in the proxy channels but smaller in the target channel since this provides a reduced
phase uncertainty [The18, TLA20]. For example, for the highest excitation power, I
sent 14 photons into each of the proxy channels, giving 28 in total, and 9 photons into
the target channel.
During measurement, the relative phase between the channels is swept continuously
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Figure 8.2: Experimental setup (a). The signal is split into three channels and interfered
with the local oscillator (LO), before being detected by a balanced homodyne detector (BD).
The two postselection channels measure the Husimi Q function (b) of the signal light field
while the target channel is used to reconstruct the regularized PΩ function (c). The green
ring in (b) exemplifies one selected phase-space region. PBS: polarizing beam splitter; GT:
Glan-Thompson prism; λ/2: half-wave plate; Pz: piezo mirror; BD: balanced detector.

by a piezo mirror in the LO path in one of the proxy channels. This is necessary for
finding the orthogonal quadratures for assembling the Husimi function, see Section 7.2,
but also for reconstructing the relative phase to the target channel. The trigger signal
from the piezo controller is used to restrict measurements to the linear piezo movement
intervals and to sort the data into segments for the back-and-forth movement direc-
tions; see Ref. [The18, p. 45-46].

8.2 Data processing for postselection and phase reconstruc-
tion

In this chapter, we fix the normalization A = 1 such that the fluctuation for vacuum
yields Δqvac = 1 and the commutator convention obeys [q̂,p̂] = 2i.
The Matlab scripts for data processing are explained in the Appendix A.5.
After computing and normalizing the quadratures, we remove a slow drift of the mean
photon numbers over the course of the delay series and only use data where the photon
number is stable inside a given range during one measurement, omitting jumps outside
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Figure 8.3: The complete setup as realized on the optical table. PBS: polarizing beam splitter;
GT: Glan-Thompson prism; λ/2: half-wave plate; Pz: piezo mirror; BD: balanced detector.
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that range. The following process is also elaborated in more detail in Ref. [The18,
p. 79-84].
Let us assume here that X1 and X2 are the quadratures from the two proxy channels,
where X1 is from the channel subject to piezo modulation, and X3 corresponds to the
target channel. From the quadratures X1 and X2 we pick orthogonal quadratures qps

and pps and assemble the Husimi distribution Q(qps,pps) as described in 7.2.
Besides, we calculate the relative phase between the signal in the target channel and
the LO. To this aim, we need two partial phases; one of them is the relative phase
between signal and LO in the postselection channels ϕps = arctan(pps/qps), using the
four-quadrant inverse tangent function. The other one is the relative phase Δϕ between
the LOs in postselection and target channel, which is derived from the time dependence
of X1 × X3. This product X1 × X3 has a sinusoidal time dependence due to the piezo
modulation in channel 1. Applying an inverse sine function to the smoothed prod-
uct delivers the relative phase Δϕ between the LOs. From these two partial phases,
the relative phase between signal and LO in the target channel ϕ is computed via
ϕ = (Δϕ + ϕps) mod 2π.
Altogether, we obtain a dataset (qps,pps,X3,ϕ). From this, we select an annulus-shaped
phase-space region of the Husimi function, specified by a radius s and a thickness w.
An example is indicated in green in Fig. 8.2. For this selection, we pick the correspond-
ing target quadrature values qi ∈ X3 and the corresponding phases ϕi. This dataset
{(qi,ϕi)}i=1,...,N is then used to reconstruct the regularized P function as explained in
the following.

8.3 The regularized P distribution

This section derives the specific regularized P distribution we are using [LPB+], fol-
lowing the general approach in Ref. [KV10]. As discussed in Section 2.7, well-behaved
phase-space functions can be obtained by convoluting the Glauber-Sudarshan P dis-
tribution with a kernel. Gaussian kernels provide the well-known Husimi and Wigner
functions, but to avoid some of their drawbacks, non-Gaussian kernels have been in-
troduced. To this aim, we convolute the P distribution with a non-Gaussian kernel
Ω:

PΩ(α) =
∫
C

d2α′ Ω(α′)P (α − α′). (8.1)

Ω should be a sufficiently smooth, non-negative, and normalized function, i.e., prob-
ability density, and it has to ensure that PΩ(α) is not singular. Also a non-negative
PΩ(α) is desirable for classical states.1 To find a suitable function Ω, it is useful to

1In most contexts, coherent states are seen as classical and photon number states, among others,
non-classical. In such contexts, researchers wish to indicate these non-classical states via negative
phase-space distributions. However, this choice of a classical reference is somewhat arbitrary and
historically connected to Maxwell’s wave-like theory for light.
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8.3. The regularized P distribution

consider the problem in Fourier space. According to the convolution theorem [AWH13,
p. 985 - 987]2, PΩ(α) can be written as the inverse Fourier transform of a product of
the Fourier transforms of the kernel Ω and P :

PΩ(α) =
∫
C

d2β

π2 eβ∗α−βα∗
Ω̃(β)P̃ (β). (8.2)

If this product Ω̃(β)P̃ (β) (also called characteristic function) is square-integrable
in Fourier space, then PΩ(α) is well-behaved and not singular in the original space.
Therefore, we need a suitable Ω̃(β), acting as a cut-off filter in Fourier space. Besides,
in order to keep PΩ(α) non-negative for classical states, the filter Ω̃(β) should have a
non-negative Fourier transform. To this aim, we can use an appropriate function ω̃(β)
in Fourier space. It should be symmetric ω̃(β) = ω̃(−β) and decay sufficiently fast so
that ω̃(β)eu|β|2 is square-integrable for any u > 0. Then the filter can be constructed
as the auto-correlation of ω̃(β):

Ω̃(β) =
1
N

∫
d2β′ω̃(β′)ω̃(β′ + β), (8.3)

with a normalization constant N , so that Ω̃(0) = 1. This filter is also symmetric, its
Fourier transform is always non-negative and it decays sufficiently fast so that Ω̃(β)eu|β|2

is square-integrable for any u > 0.
There are many possible functions ω̃(β) that fulfill these conditions. For example, a
super-Gaussian has been used in Refs. [KVHS11, KVBZ11]. Following Ref. [KV12], we
choose a rotationally invariant Heaviside function in Fourier space, giving a Bessel-type
filter function in the original space. This filter is also a special case of the family of
filters introduced in Ref. [KV14] and used in Ref. [KVT+21, ASV+15], when setting
a parameter that is called q in these references to ∞. Being invariant under rotations,
this filter does not perturb the phase of the original quantum state. With this choice,
the constructing function ω̃(β) is given by:

ω̃(β) =
√

πϕ(R − |β|)
R2 , (8.4)

where ϕ is the Heaviside step function. It has a compact support, R ≥ |β|, and its
autocorrelation function has a support 2R ≥ |β|. This ensures that coordinates with
|β| > 2R will not take part in the integration in Eq. (8.2). Thus, divergences of
Ω̃(β)P̃ (β) are suppressed and the resulting phase-space distribution is regular.
The filter parameter R has to be chosen to achieve the best results for the data at
hand. Note that in the limit R → ∞, we retrieve the original and often highly singular
Glauber-Sudarshan distribution.

2Per Definition (2.26), the complex parameter α = 1
2A

(q + ip) decomposes into two real numbers,
position q and momentum p. Hence, the same rules for the Fourier transforms apply as on R

2.
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Applying known rules for Fourier transformations3, from this choice follows the regu-
larizing function in the original space:

Ω(α) = |ω(α)|2 =
[

J1(2R|α|)√
π|α|

]2
, (8.5)

with Jn denoting the nth Bessel function of the first kind.
The procedure to sample the regularized P function PΩ(α) from data is elaborated in
the next section.

Now let us shortly consider the coherence properties of PΩ. Previously we defined
quantum coherence as the summed magnitude of off-diagonal density matrix elements
in the Fock basis; see Section 2.5. It can be shown that a decrease of these off-diagonal
elements corresponds to a broader phase distribution of PΩ(α) [LPB+]. At the extreme,
an incoherent mixture of photon-number states corresponds to a completely phase-
averaged P distribution. This is not changed by regularizing the P distribution with
our filter. Thus, the phase variance of PΩ(α) can be used as a measure of quantum
coherence. In particular, we apply the circular variance that can lie between 0 and
1, with a small value corresponding to a high amount of quantum coherence and a
value one for an incoherent quantum state. Using the relation α = q + ip, the circular
variance is defined as [Fis93]

Var(φ) = 1 −
∫

d2α PΩ(α)
α

|α|

= 1 −
√√√√(∑

q,p

cos(φq,p) PΩ(q,p)
)2

+
(∑

q,p

sin(φq,p) PΩ(q,p)
)2

,

(8.6)

with φq,p = arctan(p/q).

8.4 Sampling the regularized P distribution

After obtaining phase-sensitive quadrature data {(qi,ϕi)}i=1,...,N , these allow us to sam-
ple the regularized P distribution PΩ(α) that was introduced in the last section. The
basic idea is to decompose PΩ(α) into one part that depends on the measured data and
another part, a so-called pattern function, that is independent of the data and can be
calculated in advance to save time during data analysis. This idea has been introduced
in Ref. [KVHS11] and applied e.g. in Refs. [ASV+15, KVT+21].

3From the convolution theorem follows that the Fourier transform of a product fg is given by∫
C

d2β0
π2 f̃(β − β0)g̃(β0). Thus, Ω̃(β) = 1

N

∫
d2β′ω̃(β′)ω̃(β′ + β) is the Fourier transform of Ω(α) =

|ω(α)|2∗π2/N . From the normalization condition Ω̃(0) = 1 follows N = 1/π2 for our filter choice. Thus,
Ω(α) = |ω(α)|2. Also, ω(α) is the inverse Fourier transform of ω̃(β), i.e. ω(α) =

∫
C

d2β
π2 eβ∗α−βα∗

ω̃(β) =
√

π
π2R

∫
C

d2β eβ∗α−βα∗
ϕ(R − |β|) = J1(2R|α|)√

π|α| .

94



8.4. Sampling the regularized P distribution

A derivation is provided in [LPB+] and also in Appendix C. According to this deriva-
tion, we can analytically write

PΩ(α) =
∫ ∞

−∞
dq

∫ π

0

dϕ

π

p(q,ϕ)∫
R

dq′ p(q′,ϕ)
πfΩ(α; q; ϕ). (8.7)

Here, p(q,ϕ) is the joint probability for measuring q and ϕ, depending on the mea-
sured data, while fΩ(α; q; ϕ) is the pattern function. The pattern function can be
written as an integral over a finite interval,

fΩ(α; q; ϕ) =
16R2

π3 h(X,R), (8.8)

where u = s/(2R), X = 2R[q/A − 2|α| cos(ϕ + arg α)] and

h(X,R) =
∫ 1

0
du u

[
arccos(u) − u

√
1 − u2

]
cos(uX)e2R2u2

, (8.9)

which can be evaluated numerically for a given R and any X. Note that thanks to the
regularization, the pattern function is not divergent in contrast to other phase-space
distributions.
In particular, a sufficiently dense grid of X parameters and corresponding pattern
functions for a given R can be stored and used later. Hereby, the X parameter and
thus the pattern function depend on q, ϕ, and α. The complex number α = qnew +ipnew

is the new phase-space coordinate over which PΩ(α) is displayed. The variables q and
ϕ can be defined as a grid of Ξ position intervals and Φ phase intervals against which
the measured values (qi,ϕi) are compared, as follows. For clarity, we will call these grid
variables qgrid and ϕgrid to discern them from the measured values.
In the next step, we replace the joint probability p(qgrid,ϕgrid) by statistical frequencies.
Therefore, we suppose N quadratures qi with phases ϕi were measured, i.e., the data
set reads {(qi,ϕi)}i=1,...,N . We define N(qgrid,ϕgrid) as the number of data points (qi,ϕi)
which are closest—according to the predefined grid of Ξ position intervals and Φ phase
intervals—to (qgrid,ϕgrid). Then the above integral can be approximated through the
weighted average

PΩ(α) ≈ 1
Φ

∑
qgrid,ϕgrid

N(qgrid,ϕgrid)∑
q′

grid
N(q′

grid,ϕgrid)
πfΩ(α; qgrid; ϕgrid) = PΩ(α). (8.10)

Thus, the measured data only influence the weights N(qgrid,ϕgrid).
The second-order moment PΩ(α)2 can be calculated similarly, using [πfΩ(α; q; ϕ)]2

in the above expression. This gives the uncertainty of the reconstructed phase-space
distribution

σ[PΩ(α)] =

√√√√PΩ(α)2 − PΩ(α)2

N − 1
. (8.11)
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In this work, I chose the values shown in Table 8.1 for the predefined grid of Ξ
quadrature intervals qgrid, Φ phase intervals ϕgrid, and for the resulting new phase-
space coordinates α = qnew + ipnew on which the PΩ(α) function is displayed. All grids
are equally spaced. The step sizes are chosen as a compromise between the smoothness
of the regularized P function and a reasonable computation time.

Minimum Maximum Step size
qgrid -20 20 1
ϕgrid 0 2π 0.1

qnew,pnew -20 20 0.25

Table 8.1: Parameters of the predefined grids for the sampling of the regularized P function.
The grid for comparison with the measured data is given by qgrid and ϕgrid. The new phase-space
coordinates for displaying PΩ(α) are given by qnew,pnew.

8.5 Choice of filter width parameter

The regularized P function we introduced depends on a filter parameter R. For R → ∞
(wide filter), we approach the original Glauber-Sudarshan distribution, but also the
errors σ are large. Conversely, R → 0 (narrow filter) does not result in a sufficient
estimation of the phase-space distribution. Thus, we have to find the best intermediate
R value empirically.
A comparison of PΩ for different R values is shown in Fig. 8.4. In the top row, three
exemplary PΩ distributions are depicted. Obviously, the small filter parameter R = 0.2
leads to a very broad PΩ function, where important features are smoothed away. On
the other hand, for R = 1, the function is sharper but has numerical artifacts and
an increased uncertainty. In between, R = 0.7 yields a smooth-looking function with
well-preserved features without many artifacts. The lower plot compares properties
of PΩ like the width and the maximum error depending on R. Apparently, the range
0.5 ≤ R ≤ 1 provides a low error and an unchanging width. Consequently, I chose
R = 0.7 as the best trade-off value.

8.6 Results

8.6.1 Preliminary characterization of excitation power dependence

Before presenting the measured PΩ functions, we first discuss results from Husimi func-
tion measurements for different excitation powers to characterize the system. Figure
8.5 shows the coherent and thermal photon numbers, g(2)(0) and quantum coherence
derived from fitting Husimi functions for varying excitation powers. The upper row
depicts results for 0° linear polarization and the lower row shows results for 90° polar-
ization.
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Figure 8.4: Comparison of PΩ for different filter parameters R. The used dataset was acquired
for Pexc = 400 mW (Pexc = 1.7 Pthr) and a time delay τ = 1214 ps. With increasing R, PΩ
becomes better defined but also more disturbed by artifacts. The value R = 0.7 yields a good
compromise between well-defined features and reasonable errors.

For P > 240 mW, the coherent photon number in the dominant 0° polarization in-
creases rapidly, g(2)(0) drops and quantum coherence builds up. This power is higher
than the one we identified in Section 7.5.2, probably due to slight changes of the sample
position and environmental conditions. However, similar to our discussion in 7.5.2, we
suppose that at this power, condensation occurs in the mode that is measured by the
LO. Therefore, we define this power as the threshold power for our following discus-
sions. Note that this is not the usual definition of threshold power based on a nonlinear
increase of the total emitted intensity, but it is meaningful for the specific mode filtered
by the LO. Also, this threshold power can be compared to the one in the numerical
simulation.
Furthermore, for the 90° polarization, we observe an increase of coherent photon num-
ber and quantum coherence in a very small range of powers, 239 - 270 mW or 1 - 1.1
Pthr, implying mode competition between the two polarizations.
Keeping this power dependence in mind, we now proceed with the measured PΩ func-
tions.
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(a) (b) (c)

(d) (e) (f)

Figure 8.5: Results from fitting Husimi functions for varying excitation power. Upper row:
0° linear polarization of the emission. Lower row: 90° polarization. (a),(d): Coherent, thermal
and total photon numbers. (b),(e): Photon correlation g(2)(0). (c),(f): Quantum coherence.
Open and closed symbols correspond to the low and high state, respectively, when the emission
is bistable. The green dashed lines in (a)–(c) indicate the threshold for a nonlinear increase of
the coherent photon number and the build-up of quantum coherence in the 0° polarization.

8.6.2 Measured PΩ functions for varying delay time

Let us now examine the PΩ functions of the polariton emission that were measured
for different delay times between target and postselection channels and for different
excitation powers.

In Fig. 8.6, in the upper row, three examples of PΩ for different delay times τ

can be seen. These examples were measured at the highest excitation power Pexc =
400 mW = 1.7Pthr; the postselected phase-space region is given by a radius s = 9.9 and
a width w = 0.57. For the time closest to zero, τ = −6 ps, the distribution is narrow
and symmetrical. With increasing time delay, PΩ dephases, resulting in a broadening of
the angular distribution. Besides, also the mean amplitude relaxes towards the steady-
state value. To resolve both effects, we calculate the circular phase variance Var(φ) via
Eq. (8.6) and the mean amplitude via 〈|α|〉 =

∫
d2α PΩ(α)|α| =

∑
q,p PΩ(q,p)

√
q2 + p2,

where q,p denote the new phase-space coordinates qnew,pnew for simplicity.
The temporal evolution of these mean values is plotted in Fig. 8.6(a) and (b) for
Pexc = 1.7 Pthr for different postselected radii s while the width w is kept at 0.57. The
inset in (a) shows the corresponding steady-state Husimi function for this excitation
power, whereby the displacement of the ring indicates a significant amount of quantum
coherence, C = 0.196 ± 0.002. The circular phase variance (a) has its minimum around
τ = 0, being 0.14 for the highest postselection radius. This minimum increases for
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(a) P = 1.7 Pthr

(c) P = 0.8 Pthr
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Figure 8.6: Results from measuring the PΩ function for a series of delay times. Top row:
Three exemplary PΩ functions for Pexc = 400 mW = 1.7 Pthr for a postselected region with
amplitude s = 9.9 and width w = 0.57, at time delays τ = −6 ps (left), τ = 494 ps (middle),
and τ = 1214 ps (right). The middle and lower rows show average values versus delay time
for Pexc = 1.7 Pthr and Pexc = 0.8 Pthr, respectively. (a,c) display the circular phase variance
Var(φ) and (b,d) the mean amplitude 〈|α|〉 for different postselected amplitudes s. The width
w is always 0.57 for the middle row and 0.1 for the lower row except for the two highest radii
s, where it is also 0.57. The shaded area around the measured data corresponds to a one
standard-deviation error margin, derived from the uncertainty σP . The lines with the same
color as the data depict exponential fits. Insets in (a) and (c) present the corresponding Husimi
functions. An inset in (d) displays a zoom around zero delay, revealing an oscillation of the
mean amplitude.

smaller s due to the fundamental phase-photon number uncertainty relation, as elabo-
rated in Subsection 8.6.3.
For growing time delay, Var(φ) increases but does not reach the value 1 — which would
indicate a uniform distribution of phases — even for the highest delay τ = 1214 ps. On
the other hand, the mean amplitude 〈|α|〉 shown in (b) decays towards the steady-state
value within the measured time interval. Around zero delay, 〈|α|〉 is higher or smaller
than the steady-state value when s is also higher or smaller than the mean amplitude in
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the postselection channels, corresponding to a higher or smaller momentary intensity,
respectively.
In contrast, Fig. 8.6 (c) and (d) show the results for the lowest excitation power
Pexc = 200 mW = 0.8 Pthr. The Husimi function does not show a displacement but is
Gaussian shaped, corresponding to a small quantum coherence C = 0.0563 ± 0.0004.
For this low excitation power, the phase variance increases faster and reaches almost
1 within the measured time interval, indicating an equal distribution of phases and a
complete loss of quantum coherence.
Furthermore, the envelope of the mean amplitude 〈|α|〉 rapidly decays towards the
steady-state value; however, a zoom reveals an oscillation with a frequency of ca.
12.5 GHz. This oscillation appears as well for Pexc = 1 Pthr (not shown), but not
for higher powers. In this range of powers, mode competition might occur between the
two linear polarization components, as observed in Subsection 8.6.1. According to a
simulation in Ref. [Sig20], a bistable regime of two cross-linear polarizations in a non-
resonantly excited polariton condensate might indeed occur and cause an oscillatory
behavior of the condensate pseudospin components. Furthermore, the observed fre-
quency corresponds to an energy difference of 50 μeV, which has a similar magnitude as
energy splittings between the polarizations found in the literature [KAD+07, GST+21];
thus, the oscillation might also be caused by quantum beats if the two polarizations
are not completely separated by the Glan Thompson prism at this power. Another
explanation might be modulations of the spatial density of the polariton condensate,
e.g. breathing modes, that can lie in this frequency range as well [EPW+21]. Finding
the cause for these oscillations, however, goes beyond this work but might be pursued
in further research.

8.6.3 Remarks on phase-photon number uncertainty

Before we further quantify the decay times, let us briefly consider how the minimum
phase variance is connected to the selected intensity. As we have seen, Var(φ) around
τ = 0 increases for decreasing selected radii s. With a smaller selected radius, we
select a state with a lower photon number. Photon number and phase uncertainty are
connected by the fundamental photon number-phase uncertainty relation [SBRF93]

ΔφΔn ≥ 1
2

|〈[φ̂,n̂]〉|. (8.12)

Note that for coherent states, Δn =
√

n. Thus, selecting a coherent state with a
lower photon number leads to a higher phase uncertainty. Coherent states are the ideal
limiting case for our postselected states since we do not expect squeezed states for our
experiment. Hence, the phase variance of a coherent state sets a fundamental limit for
how low the phase variance of the measured state can become. We test this assumption
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(a) (b)

P = 0.8 Pthr P = 0.8 Pthr

P = 1.7 Pthr P = 1.7 Pthr

Figure 8.7: (a) Circular phase variance Var(φ) versus the selected radius s for Pexc = 0.8 Pthr
and Pexc = 1.7 Pthr. Red: Var(φ) of the measured PΩ around τ = 0. Blue: Var(φ) of a
theoretical coherent state with the same offset q0. (b) Measured (red) and theoretical (blue)
circular phase variance Var(φ) for both powers versus the photon number of the corresponding
coherent state.

by comparing the measured phase variance to the one of an ideal coherent state with
the same amplitude as the postselected state. In particular, we identify the offset q0

of the measured PΩ function, calculate the theoretical PΩ function of a coherent state
having the same offset4, and determine the coherent state’s circular phase variance.
The result is depicted in Fig. 8.7. Clearly, for both states, the phase variance decreases
for increasing photon numbers, following the same trend. This phase-photon number
uncertainty relation has also been observed for coherent states in Ref. [SBRF93].
Yet, our measured phase variance slightly exceeds the theoretical limit because of the
finite width of the selected phase-space regions, a low amount of data in some of these
regions, and experimental imperfections that increase phase noise. Furthermore, the
variance of the postselected states is also theoretically expected to exceed the coherent
limit and to depend on the photon numbers in the proxy and target channels [The18,
p. 74, p. 82].

8.6.4 Decay times

Now let us analyze the temporal decay in detail. To this aim, we fit the temporal
dependence of Var(φ) and 〈|α|〉 with a suitable function and extract a decay time.
For finding the best matching function, we compare several functions that are likely
to apply to our case, namely an exponential, a Gaussian, a power-law, and a power-
law that starts at variable time. These functions are shown in Figure 8.8(a) for the

4The Glauber-Sudarshan P distribution of the coherent state is a delta distribution δ(α − α0).
Thus, the regularized P function of the coherent state according to Eq. (8.1) and (8.5) is given by

PΩ(α) = Ω(α − α0) =
[

J1(2R|α−α0|)√
π|α−α0|

]2
.
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(a) (b)

(c) (d)

Figure 8.8: Comparison of different fit functions for the temporal dependence of Var(φ). Plots
(a) and (b): Pexc = 1.7 Pthr. (a) Temporal decay of 1 − Var(φ) for different selected radii s,
plotted semilogarithmically and scaled. The width w of the selected phase-space region is 0.57.
Solid red line: power-law fit function; dashed blue line: temporally shifted power law; dotted
red line: Gaussian fit; solid black line: exponential fit. (b) Residuals (i.e., data minus fit) for
the highest postselection radius. Plots (c) and (d): Pexc = 1 Pthr. The width w is 0.1, except
for the three highest radii s, where w = 0.57.

temporal decay of 1 − Var(φ) at Pexc = 1.7 Pthr. We chose a semilogarithmic scale
so that different functions are easily distinguishable by their shape. Furthermore, we
multiplied the results for increasing postselection radii s by an exponentially increasing
factor in order to render all of them equally visible.

The residual difference between the data and these fit functions for the highest
radius s is displayed in Fig. 8.8(b). Clearly, the exponential function matches best
to the data. The same holds true for all other excitation powers (not shown), except
Pexc = 1 Pthr, which is depicted in Fig. 8.8(c) and (d).
At this threshold power for the build-up of quantum coherence, we observe a flatter
decay of 1 − Var(φ), especially for larger time delays and higher postselected radii s.
Thus, a power-law decay also might be an option. Such a power-law decay was suggested
by theorists in Ref. [SKL07] for large systems and intermediate times. A power-
law decay was also experimentally observed for a high-quality sample with a spatially
extended condensate [CBD+18], where it was ascribed to a Berezinskii–Kosterlitz–
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Thouless phase transition. This kind of topological order requires the formation of
vortex-antivortex pairs, which might be less disturbed by interactions at threshold
power than at higher powers.
Nevertheless, an exponential fit might still be valid as well since both fit functions yield
comparable residuals. Also, for the high time delays and high postselected radii s ≥ 3,
the data points exhibit stronger noise, so they do not allow very reliable fits. Therefore,
the decision between the different fit functions is not conclusive for Pexc = 1 Pthr.
Thus, for comparability, we use an exponential fit to determine the decay times of
Var(φ) and of 〈|α|〉 for all excitation powers according to

〈|α|〉,Var(φ) = a exp
(

− τ

τc

)
+ s, (8.13)

yielding a decay time τc for each. For Var(φ), the saturation value s was kept fixed
at 1. These exponential fits are depicted in Fig. 8.6 as lines with the same color as the
data points. The extracted decay time is plotted in Fig. 8.9(a) for Var(φ) and in Fig.
8.9(b) for 〈|α|〉 versus the postselected radius s for different excitation powers.

In Fig. 8.9(a), we observe a slight trend for the decay time of Var(φ) to decrease
with increasing s for lower excitation powers and vice versa for higher excitation pow-
ers. However, except for 1 Pthr, this trend is not very significant, and for 1 Pthr, the
fits are not that reliable as discussed above. Therefore, we can not decide conclusively
whether the selected radius s has an impact on the decay time of the phase variance.
Furthermore, for 〈|α|〉, the decay time does not show a significant dependence on s.
In the following, we average the decay times over all postselected radii s for each exci-
tation power and plot them in Fig. 8.9(c). Clearly, the amplitude decays significantly
faster than the phase variance. For both quantities, in general, the decay times increase
with excitation power.
However, for the amplitude, the decay time drops for the highest power while the decay
time of Var(φ) stays on a plateau. Here, heating might have an influence; but also an
effect might take place that was described in Ref. [WE09]. This theoretical work found
that for high excitation power, polariton number fluctuations should decay fast, leading
to a slower decay of g(1)(τ) since g(1)(τ) is diminished by number fluctuations. If the
polariton number fluctuations are connected to changes of the mean amplitude and
g(1)(τ) is in somewhat a measure of phase coherence — albeit these quantities are not
equal —, then a faster relaxation of the amplitude might indeed cause a longer-lasting
phase coherence.
Regarding the phase variance, the decay time is exceptionally long, between 520 and
1390 ps. This is particularly the case for Pexc = 1 Pthr. At this threshold power, the
quantum coherence is less affected than at higher powers by heating and interaction
with the reservoir as well as polariton-polariton interactions.
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(a) (b)

(c)

Figure 8.9: Fitted decay time τc of (a) the circular phase variance Var(φ) and (b) the mean
amplitude 〈|α|〉 versus the postselected radius s for different excitation powers. Black-rimmed
triangles indicate the mean radius from the Husimi distribution, i.e. the stationary state. For
〈|α|〉, those s were omitted that lie too close to the mean radius, since here the flat curve shape
of 〈|α|〉(τ) causes unreliable fits. (c) Decay time τc, averaged over the postselected radii s,
versus excitation power. When calculating the average, the decay time for each s has been
weighted with the corresponding amount of postselected data points.

Such long coherence times have been observed only in a few previous studies on
polariton condensates. As discussed in Section 3.5, coherence times on the order of
100 − 1000 ps were achieved by suitable experimental conditions: noisefree single-
mode excitation [LKW+08], samples designed for single-mode emission [KZW+16],
patterned pump shapes for diminishing interactions with the reservoir or large pump
spots [OTP+21, APA+19, BZS+22]. Nevertheless, most of these studies found a Gaus-
sian shape of g(1)(τ), indicating inhomogeneous broadening of the signal. Furthermore,
these results are not directly comparable to ours since they measured different proper-
ties than the quantum coherence, i.e. g(1)(τ) and g(2)(τ).
The long-lasting quantum coherence we observe might be explained on the one hand
by exciting with a single-mode laser with a relatively large beam diameter, and, on the
other hand, by our homodyne detection method that only measures one mode filtered
by the LO. This mode selectivity allows us to track the dynamics of the selected mode
separately and only measure its intrinsic decay time instead of the faster decay due to
inhomogeneous broadening when measuring several modes.
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Figure 8.10: Results from a numerical simulation by the Paderborn group. Main plot: Circular
variance Var(φ) of PΩ versus time for several excitation powers. Inset: Decay time extracted
from an exponential fit versus excitation power. The quantum coherence of the steady state is
indicated for each excitation power.

8.7 Comparison to numerical simulations

In order to assess the decay times from the theoretical side, a numerical simulation
was carried out by Matthias Pukrop and Franziska Barkhausen in the group of Stefan
Schumacher at Paderborn University. They used the same stochastic Gross-Pitaevskii
model, based on the truncated Wigner approximation, as in Section 7.6. The system
is initialized as a displaced thermal state, where the mean displacement and standard
deviation are taken from the steady-state values for the mean polariton number and the
quantum coherence. Then, the system is evolved in time with a fourth-order stochastic
Runge-Kutta algorithm on a finite two-dimensional grid in real space. To be comparable
to the experimental results, the Wigner function is converted to the PΩ function by a
convolution-deconvolution approach [LPB+] before evaluating the phase variance.

The results are shown in Fig. 8.10. The main plot displays Var(φ) versus time
for several excitation powers while the inset shows the fitted decay time versus power.
Compared to the experiment, the decay time has a similar order of magnitude, lying
between 0.5 and 3 ns. Especially for intermediate powers, the times are similar to the
ones observed in the experiment. Thus, there must be similar decoherence mechanisms
present for intermediate powers. From the simulation, we can identify the source of
decoherence as the nonlinear part of the effective potential, which is connected to
interactions of the polaritons with each other and the reservoir, in combination with
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density fluctuations that lead to frequency fluctuations.
In the simulation, these density fluctuations are especially prominent near the threshold
power, leading to a rather short coherence time. This is different from the experiment,
where the coherence time is particularly high at threshold power. From the decay of
the mean amplitude in the experiment, we can assume that density fluctuations decay
fast around threshold and also for the highest power, so they do not affect the phase
coherence as much.
A second difference in the simulation is that the decay time unboundedly increases with
power while in the experiment, it rather reaches a plateau. This shows that at higher
powers, there are decoherence mechanisms in the experiment that are not taken into
account in the simulation, namely heating of the sample and higher-order scattering
processes.
All in all, the simulation is sufficiently similar to the experiment to yield decay times of
the same order of magnitude, but the role of particular decoherence mechanisms might
be investigated in the future.
Nevertheless, from the simulation we can learn the impact of intrinsic properties of the
sample on decoherence. In particular, τc increases with decreasing polariton interaction
strength gc and with increasing condensate-reservoir interaction gr. Especially the
condensate-reservoir interaction gr heavily influences the coherence time through the
nonlinear part of the polariton’s effective potential landscape while not having much
influence on the steady-state amount of quantum coherence, which is why here it was
chosen much smaller than in the previous chapter. This effect that a higher gr leads to
longer coherence times is rather unintuitive. The reason is the so-called hole-burning
effect [EGB+18, WC07], where the condensate-reservoir interaction causes a depletion
of the reservoir when the polariton density increases. This depletion of the reservoir,
in turn, enables longer coherence times because the reservoir is a source of density
fluctuations. Thus, a smaller reservoir density or a spatial separation of reservoir and
condensate leads to longer-lasting coherence.

8.8 Conclusion

In this penultimate chapter, I investigated the temporal decay of quantum coherence
in a polariton condensate. To this aim, I employed multi-channel homodyne detection
in order to reconstruct the state of light of the polariton condensate, using a modern
regularized P function approach. While the homodyne detection method allowed me
to selectively filter on one mode for measurement, postselection after data acquisition
enabled me to analyze the dynamics of the state depending on the initial intensity. I
thereby observed long decay times of the circular variance — being a measure of quan-
tum coherence — on the order of 1 ns, which was confirmed by a numerical simulation.
This result is good news for the usability of polariton condensates in quantum tech-
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nologies. Furthermore, it shows that other modes in the signal are not detrimental if
they can be filtered out by homodyning, relieving constraints that were put on sample
design to enable only single-mode operation.
All in all, this experiment delivered novel findings on polariton condensates that could
hardly have been obtained in another way. The results showed that this system carries
enough resources for quantum information processing while also providing insights into
the physics of complex dynamics in semiconductor systems.
As an outlook, the coherence time might be improved by using different excitation
geometries or vortex modes. Moreover, the multi-channel detection method might be
employed to investigate the interplay between different modes of the condensate. To
this aim, one might measure one mode, e.g. with a given polarization, in the postse-
lection channels while detecting another mode, e.g. with orthogonal polarization, in
the target channel, providing more insights into the dynamics of mode competition.
Besides polariton condensates, also other optical systems with steady-state fluctua-
tions might be investigated via multi-channel homodyne detection, e.g. lasers with
multiple modes having gain competition [SSK+19, LHA+13] or quantum dots showing
fluorescence intermittency (“blinking”) [EN16].
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Chapter 9

Conclusion and Outlook

In this work, I presented the advancement and application of homodyne detection (HD)
to semiconductor exciton-polariton emission in order to measure quantum properties
of the system. I demonstrated that HD is a useful tool not only for quantum optics but
also for semiconductor spectroscopy, furthering the connection between these mostly
separated fields on the road to quantum hybrid systems for future technologies. Specifi-
cally, I showed which information can be gained by HD without a fixed phase reference,
depending on the number of detection channels. These findings are summed up in the
following.

In Chapter 6, I presented time-resolved measurements of the photon number and
the second-order correlation function g(2)(0,t) via one-channel HD. My studies showed
that the slower external noise can be separated from the faster intrinsic photon-number
fluctuations by using a sufficiently high averaging frequency for calculating the g(2) val-
ues.
Thus, time-resolved HD is a suitable tool for investigating the photon statistics of a
light source in spite of external noise, which is especially an issue when noise itself is an
important figure of merit, e.g. for the detection of squeezed light [BBA+14, AAF+17].

In Chapter 7, I employed two-channel HD in order to measure the phase-averaged
Husimi function of the polariton emission. The Husimi function was found in good
agreement with the model of a displaced thermal state, undergoing a transition from a
mostly thermal to a mostly coherent state with increasing excitation power.
At a sweet spot of excitation power, the system showed a significant amount of quan-
tum coherence, C ≈ 0.2, which was confirmed by a numerical simulation performed
by Matthias Pukrop at Paderborn University. This non-zero amount of quantum co-
herence proves the presence of quantum superpositions of Fock states in the polariton
system. Since these superpositions provide a resource for quantum protocols and might
be transformed into entanglement, our result indicates the potential usefulness of po-
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laritons for quantum information processing.
Moreover, I found evidence of mode competition between two cross-linearly polariza-
tions, leading to bistable behavior in a certain power range.

In Chapter 8, I investigated the temporal decay of quantum coherence in a polariton
condensate via three-channel HD. I employed the nonstationary optical homodyne to-
mography (OHT) technique developed by Johannes Thewes, Marc Aßmann and myself,
and applied an algorithm proposed by Jan Sperling to the measured data in order to
reconstruct the recently developed phase-space function PΩ. Sampling PΩ depending
on postselected initial conditions and on delay time rendered it possible to track the
dynamics of different phase-space regions and to extract a nanosecond decay time of
quantum coherence, which is on the upper edge of the range of coherence times that
were previously observed for polariton condensates. A similar decay time was repro-
duced by a numerical simulation from Matthias Pukrop and Franziska Barkhausen at
Paderborn University.
Regarding quantum applications, this decay time is at the low end for different types of
quantum-information platforms and too short to serve as a storage medium, for which
spin ensembles are rather suited [KBK+15]; but this time might be sufficient for a pro-
cessing unit, being comparable to the coherence time provided by a semiconductor quan-
tum dot hybrid qubit [KSS+14] and semiconductor charge qubits [PPLG10, UKDD22].
Of course, the relevant figure of merit is not only the coherence time itself but the ratio
between manipulation and coherence time depending on the used quantum protocol,
which will be determined by future implementations.
Furthermore, at powers close to the threshold for the onset of quantum coherence,
I observed a temporal modulation of the mean amplitude of PΩ. This modulation
might be connected to the aforementioned mode competition but also to density os-
cillations of the condensate and leaves room for further investigations. At this point,
this observation demonstrates the ability of OHT to resolve the dynamics of the system.

All in all, I showed the capability of HD to characterize quantum properties and
dynamics of a light-emitting semiconductor system. By postselecting specific parts of
the phase space, spontaneous processes can be investigated that are hard to resolve
with other detection schemes. This ability to carry out time- and intensity-resolved
quantum state tomography opens new possibilities to explore quantum dynamics in
extremely fine details. Here, it is worthwhile to note that HD allows one to selectively
filter on one mode of the light field, removing the influence of other modes from the
measurement. This selectivity might be expanded further in the future, tuning the LO
in the different channels to different polarization modes or even OAM (orbital angular
momentum) modes in order to investigate their interplay. For example, the observed
mode competition might be investigated in more detail by measuring different polar-
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ization modes in the proxy and target channels.

Regarding the future use of polariton condensates, the value of quantum coherence
still leaves room for improvement since we only reached 20% of what is possible. To
optimize this value, one might employ different pump profiles — in particular, narrow
ring-shaped ones — or create polariton vortices [Puk22], which might also elongate
the coherence time. Furthermore, the polariton optical parametric oscillator (OPO)
[BSS+00, WSF+21] might be investigated with our method, where one tunes the exci-
tation beam to the inflection point of the LP dispersion in order to stimulatedly scatter
two polaritons to the ground state and to a higher state, which is expected to induce
quadrature squeezing [RKL+10].

However, multi-channel HD is not limited to polaritons but may be applied to other
light-emitting systems in order to investigate quantum properties and spontaneous dy-
namical events that can not be measured by conventional methods. This might be
fruitful among others for systems exhibiting bistability, e.g. lasers with mode com-
petition [SSK+19, LHA+13], and quantum dots showing fluorescence intermittency
(“blinking”) [EN16]. Furthermore, one might expand the setup to more channels, giv-
ing access to more complex phase-space correlations.
Finally, a complete quantum process tomography [LKK+08, KK06] might be performed,
where one maps possible input parameters to the output of the system in order to re-
alize a full quantum description of processes within the system.

In conclusion, my studies showed the applicability of optical homodyne tomography
for semiconductor spectroscopy and the general potential for quantum coherent opera-
tion of polariton condensates for quantum information processing. I envisage this work
to be a building block for fundamental research on semiconductor quantum optics and
for the development of hybrid quantum systems.
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Appendix A

Information on Matlab data
processing

The Matlab scripts used in this work were developed by Johannes Thewes and me.
They can be found in github:

https://github.com/CarolinLueders/QST
(Repository: QST, User: CarolinLueders)

A.1 Computation of quadratures from raw data

A homodyne measurement consists of a measurement without signal, in order to cali-
brate the number of photons of the LO, and a measurement with signal. These usually
have file names of the form “01-xxmW-LOonly.raw” and “02-xxmW-LOwithDL.raw”,
respectively, and are stored in a folder called “raw-data”. In the following, the file
names will be referred to with the placeholders filenameLO and filenameSIG.
First, the quadratures are computed from the raw data. Therefore, in Matlab, one
needs to be in the folder just above the folder “raw-data”.
For a series of datasets, it is most convenient to run seriesQuadratures, which com-
putes the quadratures for each dataset and saves them in a folder called “mat-data”.
This function uses the function prepareData(filenameLO,filenameSIG), execut-
ing computeQuadratures, which integrates the data around the locations of the LO
pulses to obtain the quadratures. Different options can be set:

• Detection channels to be calculated: e.g.
seriesQuadratures(’Channels’,1:3).
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• Piezo modulation usage, in order to cut the data into pieces according to the back
and forth sweeping of the piezo:
seriesQuadratures(’Channels’,1:3,’Piezo’,’yes’); (or ’Piezo’,’no’)

• Numerical removal of correlations between adjacent quadratures. It should be
used for any signal with random phase, but it does not work if the signal has a
fixed phase with respect to the LO. It should be set for each of the three channels,
e.g. ’CorrRemove’,[true,true,true] or [false,false,false].

• Subtraction of an offset: This should be done for each set of 1000 pulses indi-
vidually when there is a random phase between LO and signal (’Offset’,["local"
"local" "local"]) or for the whole dataset when there is a fixed phase (’Offset’,
["global" "global" "global"]).

• An example for a signal with random phase:
seriesQuadratures(’Channels’,1:3,’Offset’,["local" "local" "local"],
’Piezo’,’yes’,’CorrRemove’,[true,true,true]);

• An example for a signal with non-random phase:
seriesQuadratures(’Channels’,1:3,’Offset’,["global" "global" "global"],
’Piezo’,’yes’,’CorrRemove’,[false,false,false]);

The computed quadratures X should be a matrix with size 999 x A x B, or 999
x A when no piezo was used, since B is the number of piezo path segments. The
first dimension stems from the badges of 1000 pulses as which the data are stored. One
pulse is removed after the numerical removal of correlations. If the length is significantly
more or less than 999, this means the pulses are not recognized correctly, hinting at
overexposure of the detectors.

A.2 Troubleshooting

If anything goes wrong, it might be helpful to look at the data itself.

• Load raw data using data8bit = load8BitBinary(filename,’dontsave’); Plot
this to see irregularities.

• Examine the variances of LOonly data with
plotPointwiseVariance(data8bit(:,:,channel));
This should show a peak for each LO pulse, but otherwise have a steady offset. If
the offset is strangely varying, this might come from overexposure of the detectors.

• Plot the LOonly data of each channel and look if it is steady around zero. If it
has a varying offset, this hints at mechanical instability.
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A.3. Computation of g(2)(0)

• Plot the computed quadratures, e.g. plot(X1(:),’.’) and histogram(X1). For
a signal with random phase, the quadratures should be distributed around zero.
For a thermal signal, it should be a Gaussian distribution. For a coherent signal
with random phase, the distribution should have two peaks symmetrical around
zero.

A.3 Computation of g(2)(0)

After the quadratures are computed as explained above and stored in the folder “mat-
data”, we can compute the second-order photon correlation and plot it versus time.

• Computation of photon number and g(2)(0) for a series of datasets, e.g.:
g2SeriesFromQuadratures(nResolution,’Weight’,’yes’,’UseX’,’X1’,
’Parameter’,’power’);
This function creates time-resolved plots of g(2)(0) and photon number for each
dataset. It stores the time-resolved g(2)(0) values g2vec, the photon number
values ada and the time vector time in a new folder, and it plots the average
values of each dataset versus the parameter that was varied in the series. With
nResolution, choose the number of quadratures that is used to compute one
g(2)(0) value. Usually, 1000 is a good choice. ’UseX’ sets which quadrature is
used, e.g. ’X1’ for channel 1. ’Parameter’ describes which parameter is varied in
the series. When setting ‘Weight’,’yes’, the g(2)(0) values are weighted with the
corresponding photon numbers when the average is computed for each dataset.

• For a single quadrature dataset X, the time-resolved values can be computed via
[g2vec, ada, time] = g2(X, nResolution);

• Different averaging frequencies can be compared with
g2compareSamplingRate(X, filename), e.g. for the evaluation in Chapter 6.

A.4 Evaluation of 2 Channel Measurements of Husimi func-
tions

As an example, let us assume that channels 1 and 2 were used for the measurement
and in channel 1, the piezo was modulated.

• First, the quadratures are computed with
seriesQuadratures(’Channels’,1:2,’Offset’,["local" "local" "local"],
’Piezo’,’yes’,’CorrRemove’,[true,true,true]);

• For a series of measurements, e.g. a power series, the Husimi functions can be
evaluated with
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HusimiSeriesFromQuadratures([3,1,2],’LoadExistent’,false,
’PlotErrorbars’,true,’FitMethod’,’NLSQ-LAR’,’Scale’,true,
’PlotOption’,true,’MonteCarloError’,true,’Parameter’,’power’);
This function plots the Husimi function for each dataset, fits the Husimi function
to the theoretical model of the displaced thermal state, and plots the coherent
and thermal photon number and the quantum coherence derived from the fit.
If there is a big variation of the photon number during one measurement, the
Husimi function is derived for the instances with high and with low photon num-
ber separately.
Thereby, [3,1,2] assigns which channel was used for what. In general, [a,b,c]
assigns the target channel a, which is not used here, the channel with piezo
modulation b and the remnant channel c. ’LoadExistent’ can be set true to
speed up the evaluation when the orthogonal quadratures O1,O2 and the pho-
ton numbers have already been computed and saved in the quadrature datasets.
’FitMethod’,’NLSQ-LAR’ sets the best method for fitting the Husimi function
to the theoretical model. With ’Scale’,true, the quadratures of channel 1 and 2
are scaled to account for a difference in their photon numbers. With ’Monte-
CarloError’,true, an error is computed for all quantities. Set it to false to save
time. With ’Parameter’, set which parameter was varied during the series and is
indicated in the filenames so it can be read out by Matlab (’no’, if no parameter
was varied). E.g. for a power series, filenames have the structure “02-xxmW-
yymW-LOwithDL.raw”, where xx is the excitation power and yy the LO power.

• Within this function, plotHusimiAndCut is used to plot and fit the Husimi
function.

A.5 Evaluation of 3 Channel Measurements of regularized P

functions

Let us assume that channel 3 is the target channel, channel 1 is the postselection
channel with piezo modulation, and channel 2 is the remnant postselection channel. A
series with different time delays of channel 3 was measured.

• Again, we start by computing the quadratures with
seriesQuadratures(’Channels’,1:3,’Offset’,["local" "local" "local"],
’Piezo’,’yes’,’CorrRemove’,[true,true,true]);

• Then, the series can be processed for different postselection parameters; i.e. we
select different phase-space regions from the Husimi function in the two postse-
lection channels and for each selection, we create a regularized P function from
the target data, for each of the time delays.
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A.5. Evaluation of 3 Channel Measurements of regularized P functions

In the first run, we use only one postselection region. In this run, the computed
phases and orthogonal quadratures are stored in the quadrature datasets so they
can be used in the next runs to save time. We start e.g. with (numbers are
examples from a real measurement)
zeroDelay = 108.96; This is the delay line position that corresponds to zero
time difference between the target channel and the other channels.
listOfParams = struct(’Type’,{’fullcircle’},’Position’,{[7 0.4]});
This selects a ring in the Husimi function with a radius of 7 and a thickness of
0.4. Attention: When using the normalization for quadratures ΔXvacuum = 1,
i.e. A = 1, these are later multiplied with

√
2.

makeSelectionPlots(’table’,’ListOfParams’,listOfParams,’Period’,4,
’RecomputeTheta’,true,’SaveTheta’,true,’RecomputeOrth’,true,
’saveOrth’,true,’SavePostselection’,true, ’ChannelAssignment’,[3,1,2],
’ZeroDelay’,zeroDelay,’Parameter’,’delay’,’RemoveModulation’,true,
’Range’,[0 20],’XUnit’,’ps’,’VaryAPS’,false,’CorrRemove’,’yes’,
’ZeroDelay’,zeroDelay,’MeanNs’,[13.8739,14.8419,9.3581]);

• In the next runs, the postselection is done for many more radii, whereby the
phase and orthogonal quadratures are used that were computed and saved in the
previous step. Therefore, we set some arguments as false, e.g.
t = 0.4;
listOfParams = struct(’Type’,{’fullcircle’},’Position’,{[2 t],[3,t],[4,t],[5
t],[6 t],[7 t],[8 t]});
makeSelectionPlots(’table’,’ListOfParams’,listOfParams,’Period’,
4,’RecomputeTheta’,false,’SaveTheta’,false,’RecomputeOrth’,false,
’saveOrth’,false,’SavePostselection’,true,’ChannelAssignment’,[3,1,2],
’ZeroDelay’,zeroDelay,’Parameter’,’delay’,’RemoveModulation’,true,
’Range’,[0 20],’XUnit’,’ps’,’VaryAPS’,false,’CorrRemove’,’yes’,
’ZeroDelay’,zeroDelay,’MeanNs’,[13.8739,14.8419,9.3581]);
This function creates a table with postselected values, as well as storing the post-
selected data in the folder “post-data”.
’ChannelAssignment’: This sets which channel is the target, which is the postse-
lection channel where the piezo is modulated for the phase computation and which
is the postselection channel without piezo modulation, according to [target,ps-
piezo,ps-no-piezo].
The ‘removeModulation’ option removes longterm drifts of the signal by scaling
it to the mean photon number over all time delays set by ’MeanNs’. (The values
have to be determined from the data). Also, random jumps of the signal outside
a certain range of photon numbers set with ’Range’ are removed.
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• makeSelectionPlots uses makeDelayPlots, which in turn runs series3Ch
for each set of postselection parameters. Also, makeSelectionPlots uses plot-
SeriesPostselections, which makes different types of plots if you set e.g. ‘ra-
diusPlots’ instead of ‘table’ when running makeSelectionPlots.

A.5.1 Computation of pattern functions for the regularized P function

Before the regularized P function can be reconstructed from the data, the pattern func-
tions for the P function have to be computed once. In our case, this is done for a nor-
malization of quadratures such that the fluctuations of a vacuum field ΔXvacuum = 1,
i.e. A = 1. The Matlab function mainCalcGridsAndPatterns(varargin) creates
all necessary coordinate grids and pattern functions and saves them for given param-
eters in a given directory. Here we used the following parameters, whereby ‘R’ is the
filter parameter for the regularized P function:
mainCalcGridsAndPatterns(’MaxQuad’,20,’MaxX’,20,’PhiStep’,0.1,’R’,0.7,
’XStep’,1,’Resolution’,0.25);
This function executes the following procedure:

• [xGrid,phiGrid] = makeGridxAndPhi(maxX,xStep,phiStep);
This creates a grid of position intervals and phase intervals (x, phi), which are
defined by the parameters ’PhiStep’, ’MaxX’ and ’XStep’. This is the coordinate
grid to which the measured data is compared, being called old grid.

• makeXGridAndPattern(xGrid,phiGrid,R,maxQuad,Resolution,
directory);
For each position in the old grid, so-called X parameters (XGrid) (cf. Eq. (C.14))
and the corresponding pattern function (Eq. (C.14) and Eq. (C.15)) are com-
puted and stored. Both are saved in a file called e.g. ‘x-0.5-phi-0.1.mat’, as
for each position (x, phi) in the old grid, one file is created. For computing
the X parameters, we define a new grid of quadratures, specified by ‘maxQuad’
and ‘Resolution’. These new quadratures provide the phase-space coordinates on
which the regularized P function is displayed.

A.5.2 Computing the P functions and plotting the results

Then, the regularized P functions are calculated from the postselected data, e.g. with
these parameters:

• zeroDelay=108.96; t = 0.4;
listOfParams = struct(’Type’,{’fullcircle’},’Position’,{[2 t],[3,t],[4,t],[5
t],[6 t],[7 t],[8 t]});
for iParams = 1:length(listOfParams)
PFunctionDelaySeries(’LoadExistent’,true,’Plot’,false,‘ZeroDelay’,
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zeroDelay,’SelectionParameters’,listOfParams(iParams),
’RemoveModulation’,true,’Range’,[0 20],’MaxQuad’,20,’MaxX’,20,
’PhiStep’,0.1,’Rvalue’,0.7,’XStep’,1,’Resolution’,0.25);
end
Set ’Plot’,true, for plotting each P function. Also it is necessary to set the path
where the pattern functions have been stored; see inside the Matlab script.

• Then, the expectation values from the P functions can be plotted versus delay via
plotPFunctionResults(listOfParams,’Quantity’,{’R’},’fitType’,’exp2sat1’,
’RemoveModulation’, true,’Range’,[0 20],’MaxQuad’,20,’MaxX’,20,
’PhiStep’,0.1,’Rvalue’,0.7,’XStep’,1,’Resolution’,0.25,’Norm’,1);
With ’Quantity’, set for which quantity the expectation value is plotted, e.g.
{’R’} for the amplitude and {’circVa1’} for the circular variance. ’FitType’ can
be set to various fit functions. Set it to ‘exp2’ when plotting the mean amplitude,
so the offset can be fitted, or to ’envelopeExp2’ in order to fit the envelope of an
oscillating curve. The results from the fits are stored into new files.

A.6 Evaluation of Dispersions

For the evaluation of spectroscopic dispersions, a few Matlab functions can be used.

• For a series of different positions on the sample e.g.:
plotDispersionsPositionSeries(’ZeroPosition’,3.67,’ZoomE’,[1.59 1.64]);
’ZeroPosition’ gives the position of the sample edge. ’ZoomE’ gives the plotted
energy range in eV.

• For a series of polarizations, polar plots are created via e.g.:
plotDispersionsPolarisationSeries(’minY’,213,’xAperture’,142,
’GetTime’,’no’,’Fit’,’useOld’,’E0Old’,E0,’aOld’,a,’y0’,y0,’ModeK’, [-0.5
0.5],’ModeE’,[1.6103 1.6109],’AdjustEnergy’,true);
Here, ’minY’, and ’xAperture’ give the calibration of the k space. ’GetTime’
toggles whether the intensity is divided by the acquisition time. ’Fit’, ’useOld’,
’E0Old’, E0, ’aOld’, a, ’y0’, y0 draws a parabola into the dispersion for which the
parameters have to be determined from a dispersion below threshold. ’ModeK’
and ’ModeE’ define the rectangle in which the intensity is integrated. ’AdjustEn-
ergy’ sets whether the energy of the rectangle is adapted to account for a red- or
blue shift during the series.

• For a power series, an I-O curve is created via e.g.:
plotDispersionsPowerSeries(’minY’,214,’xAperture’,142,’GetTime’,
true,’Fit’,’useOld’,’E0Old’,E0,’aOld’,a,’y0’,y0,’ModeK’,
[-0.5 0.5],’ModeE’,[1.6101 1.6111],’adjustEnergy’,true);
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Appendix B

Details on error estimation from
Husimi functions

As described in Chapter 7, the measured quadrature values of two homodyne detection
channels are binned to obtain a histogram, which (when normalized) corresponds to
the Husimi Q function. For any given point in phase space, the mean value Q̄(q,p) is
the empirical probability of the corresponding (q,p) bin and the margin of error is given
by the standard error, σ(Q) = [Q̄(1 − Q̄)/ν]1/2 for ν data points.

We fit the measured Q function to the model of a displaced thermal state for
extracting parameters, such as n̄ and |α0|2, which are then used to compute other
properties like e.g. the quantum coherence, here denoted by z. In order to propagate
errors to these final properties, we use a Monte Carlo error estimation. For this purpose,
we simulate a sufficiently large sample of random Q functions, {Qi}i, according to a
Gaussian distribution with a mean Q̄ and a standard deviation σ(Q) for each point in
phase space. For each sample element i, we determine the parameters zi separately via
fitting. Then, the standard deviation of the resulting parameter set {zi}i yields the
uncertainty of z.
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Appendix C

Derivation of the pattern function
for the regularized P function

This appendix derives how the regularized P function can be expressed with help of
a pattern function [LPB+]. For simplicity, first we derive this decomposition for the
unfiltered P distribution, then we explain how it is altered by the filter Ω, and finally
we show how the measured data is inserted.
We begin with the unfiltered Glauber-Sudarshan distribution, P (α). Its Fourier trans-
form defines the characteristic function

P̃ (β) =
∫
C

d2α P (α)eβα∗−β∗α = 〈eβâ†
e−β∗â〉, (C.1)

where the second relation connects to the normally ordered displacement operator. Ap-
plying the Baker-Campbell-Hausdorff formula, we can rewrite the quantum expectation
value in terms of quadratures,

eβâ†
e−β∗â = e|β|2/2ei|βq̂(π/2−arg β)/A, (C.2)

with q̂(ϕ) = A(eiϕâ+e−iϕâ†). A is a normalization constant relating to the uncertainty
product ΔqΔp ≥ A2 cf. Eq. (2.29).

Now, the P distribution is the inverse Fourier transform of the characteristic func-
tion:

P (α) =
∫
C

d2β

π2 eβ∗α−βα∗
e|β|2/2〈ei|β|q̂(π/2−arg β)/A〉. (C.3)

The goal is now to seperate the term in angular brackets 〈...〉 from the rest because
this term corresponds to the measured data. When transforming γ = iβ∗, we get

P (α) =
∫
C

d2γ

π2 e−i(γα+γ∗α∗)e|γ|2/2〈ei|γ|q̂(arg γ)/A〉. (C.4)
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Substituting γ = seiϕ with s ∈ R and 0 ≤ ϕ < π allows us to write

P (α) =
∫ ∞

−∞
ds

∫ π

0
dϕ

|s|
π2 e−2isRe(eiϕα)es2/2〈eisq̂(ϕ)/A〉. (C.5)

The quadrature operator can be given in its spectral decomposition, using the eigen-
value equation q̂(ϕ)|q; ϕ〉 = q|q; ϕ〉, resulting in

P (α) =
∫ ∞

−∞
ds

∫ π

0
dϕ

|s|
π2 e−2isRe(eiϕα)es2/2

∫ ∞

−∞
dq eisq/A〈q; ϕ|ρ̂|q; ϕ〉 (C.6)

for a density operator ρ̂. This expression can be separated into a measured part,

P (α) =
∫ ∞

−∞
dq

∫ π

0
dϕ p(q; ϕ)f(α; q; ϕ), (C.7)

where p(q; ϕ) = 〈q; ϕ|ρ̂|q; ϕ〉, and the measurement-independent part

f(α; q; ϕ) =
∫ ∞

−∞
ds

|s|
π2 e−2isRe(eiϕα)es2/2eisq/A, (C.8)

defining the divergent pattern function (i.e., distribution) for the Glauber-Sudarshan
distribution. Note that p(q; ϕ) is the probability density for measuring q for a fixed
angle ϕ, i.e., the conditional probability p(q; ϕ) = p(q,ϕ)/p(ϕ), with the joint and
marginal (w.r.t. the angle) densities p(q,ϕ) and p(ϕ).

After decomposing the unregularized Glauber-Sudarshan P distribution, now we
replace P by its regularized counterpart, see Eq. (8.1):

PΩ(α) =
∫
C

d2γ Ω(γ)P (α − γ), (C.9)

using the regularizing function as in Eq. (8.5)

Ω(γ) =
[

J1(2R|γ|)√
π|γ|

]2
, (C.10)

with Jn denoting the nth Bessel function of the first kind.

Inserting this into the considerations above, this yields the pattern function

fΩ(α; q; ϕ) =
∫
C

d2γ Ω(γ)
∫ ∞

−∞
ds

|s|
π2 e−2isRe(eiϕ[α−γ])es2/2eisq/A. (C.11)
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In polar coordinates, γ = reiϑ, this yields

fΩ(α; q; ϕ) =
∫ ∞

0
dr

∫ 2π

0
dϑ

∫
R

ds
|s|
π3r

J1(2Rr)2e2isr cos(ϕ+ϑ)eis[q/A−2Re(eiϕα)]es2/2

=
∫ ∞

0
dr

∫
R

ds
2|s|
π2r

J1(2Rr)2J0(2sr)eis[q/A−2Re(eiϕα)]es2/2

=
∫
R

ds
2|s|
π2

∫ ∞

0
dy

J1(y)2J0
( |s|

R y
)

y
eis[q/A−2Re(eiϕα)]es2/2,

(C.12)
applying a transformation y = 2Rr in the last step.

It is now convenient to evaluate the transformed integral,

g(t) =
∫ ∞

0
dy

J1(y)2J0 (2ty)
y

=
1
π

{
0 for t > 1,

arccos(t) − t
√

1 − t2 for 0 ≤ t ≤ 1,

(C.13)

where 2t = |s|/R.
This allows us to express the pattern function via an integral over a finite interval,

fΩ(α; q; ϕ) =
∫ 2R

−2R
ds

2|s|
π2 g

( |s|
2R

)
eis[q/A−2Re(eiϕα)]es2/2

=
8R2

π3

∫ 1

−1
du |u|

[
arccos(|u|) − |u|

√
1 − u2

]
eiuXe2R2u2

=
16R2

π3 h(X,R),

(C.14)

where u = s/(2R), X = 2R[q/A − 2|α| cos(ϕ + arg α)] and

h(X,R) =
∫ 1

0
du u

[
arccos(u) − u

√
1 − u2

]
cos(uX)e2R2u2

, (C.15)

which can be evaluated numerically for a given R and any X. In particular, a suf-
ficiently dense (typically not equidistant) grid of X parameters for a given R can be
stored and used later for any X ′ ≈ X. Note that thanks to the regularization, the
pattern function is not divergent anymore.

All above considerations enable us to analytically write

PΩ(α) =
∫ ∞

−∞
dq

∫ π

0
dϕ p(q; ϕ)fΩ(α; q; ϕ) =

∫ ∞

−∞
dq

∫ π

0

dϕ

π

p(q,ϕ)∫
R

dq′ p(q′,ϕ)
πfΩ(α; q; ϕ).

(C.16)
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