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Abstract

The DELTA facility is a synchrotron light source located in Dortmund, Germany. Here, the

TU Dortmund University operates a 1.5GeV storage ring supplying radiation ranging from the

THz to the hard X-ray regime for experiments in chemistry, biochemistry, solid-state physics

and materials science. The ring is equipped with a slow orbit feedback (SOFB) that corrects the

transverse orbit position using a set of steerer magnets. The orbit correction software acts as

the feedback’s controller. Until 2021, the ring used a program based on a customized singular

value decomposition (SVD) approach for calculating corrections. Its replacement, which is

better integrated into the experimental physics and industrial control system (EPICS) and also

capable of two methods of energy correction, was implemented and commissioned to routine

operation within the scope of this work. Additionally, the closed-orbit bilinear-exponential

analysis (COBEA) algorithm was generalized to accept combinations of orbit response matrix

columns, so-called response sets, as input. This enables the new response set fit algorithm

(RSFA) to extract the coupled beta functions and betatron phase advances as well as the

scaled dispersion from orbit corrections. If it is integrated with the SOFB in an online fitting

approach, the RSFA will supply non-invasive measurements of these optical functions. The

new orbit correction software and algorithm are described and evaluated in simulations as well

as experimental studies.

Kurzfassung

DELTA ist eine Synchrotronstrahlungsquelle in Dortmund, Deutschland. Hier betreibt die

Technische Universität Dortmund einen 1.5GeV-Elektronenspeicherring, der Strahlung vom

THz- bis zum harten Röntgenbereich für Experimente in der Chemie, der Biochemie, der

Festkörperphysik sowie den Materialwissenschaften zur Verfügung stellt. Der Ring ist mit einer

langsamen Orbitkorrektur ausgestattet, um die transversale Orbitposition mit Hilfe von Steuer-

magneten zu korrigieren. Die Regelung wird durch das Orbitkorrekturprogramm gesteuert. Bis

ins Jahr 2021 wurde ein auf der Methode der Singulärwertzerlegung (SVD) beruhender und

auf DELTA angepasster Ansatz verwendet, um diese Korrekturen zu berechnen. Im Rahmen

dieser Arbeit wurde ein neues Programm implementiert und in den Routinebetrieb übernom-

men, das besser in das Experimental Physics and Industrial Control System (EPICS) integriert

ist und zwei Methoden zur Energiekorrektur bereitstellt. Zusätzlich wurde der Closed-Orbit

Bilinear-Exponential Analysis-Algorithmus (COBEA-Algorithmus) verallgemeinert, um Lin-

earkombinationen von Orbitkorrekturmatrizen, genannt Response Sets, als Eingangsdaten zu

akzeptieren. Das ermöglicht dem neuen Reponse Set Fit Algorithm (RSFA) die gekoppelten

Betafunktionen und Betatronphasenvorschübe sowie die skalierte Dispersion aus einem Satz

Orbitkorrekturdaten zu extrahieren. Würde der Algorithmus mit der langsamen Orbitkor-

rektur in einem Online-Fitansatz integriert, könnten nicht-invasive Messungen der genannten

optischen Funktionen durchgeführt werden. Das neue Orbitkorrekturprogramm und der RSFA

werden beschrieben und aufgrund von Simulationen sowie experimenteller Studien evaluiert.
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1 Introduction

In 1946, a group of scientists observed a phenomenon [1] that had been theorized to exist

since 1894 [2] following decades of research into J. C. Maxwell’s theory of dynamical electro-

magnetism [3]: charged particles emit electromagnetic radiation when being deflected by the

Lorentz force. The researchers had accelerated electrons in a particle accelerator, a 70MeV

synchrotron, in the labs of General Electric in Schenectady, New York. The radiation was

consequently dubbed synchrotron radiation. It is characterized by a broad spectrum whose

median energy is determined by the strength of the magnetic field and the energy of the

particle beam [4], quantities which are exploitable for building potent sources of X-rays, a

matter-penetrating electromagnetic radiation discovered by W. C. Röntgen in 1895 [5], useful

for conducting experiments in various sciences. Today, many particle accelerators exist for

the sole purpose of providing synchrotron radiation and assist in advancing humanity’s under-

standing of matter on a microscopic scale. These synchrotron radiation facilities are based on

energy-efficient electron storage rings which keep the beam on a closed orbit.

The electron beam in a typical GeV-range storage ring delivers kilowatts of power posing a

problem for the safety of the machine if the beam drifts too far from its designated position.

The vacuum chamber can then take damage from synchrotron radiation hitting uncooled sur-

faces. Other undesirable outcomes are drifts of beamline source points, reductions of the beam

lifetime and beam losses. All impair ongoing experiments and the latter two also present

possible radiation hazards. At most storage rings, orbit drifts are therefore suppressed by

automated slow orbit feedbacks (SOFBs) [6] that are additionally useful for active orbit place-

ment. They control small dipole magnets, called steerer magnets, to steer the orbit towards

an orbit reference.

The electrons in a storage ring perform betatron oscillations around the closed orbit that are

characterized by an amplitude and a phase function, referred to as the beta(tron) function and

the betatron phase (function) [7], both named after the accelerator at which they were first

discovered, the betatron [8]. In modern synchrotrons and storage rings, betatron oscillations

are shaped via alternating gradient (AG) focusing that combines horizontally focusing and

defocusing quadrupoles to achieve a net focusing effect in both planes [9]. AG focusing is useful

to decrease the beam size and thereby increase the brilliance. The beta function and betatron

phase are properties of the lattice, the sequence of the storage ring’s dipole, quadrupole and

higher-order magnets, and the modeling and measurement of these optical functions plays an

important role in the operation and the design of synchrotron light sources.

The DELTA facility is a synchrotron radiation source operated by the TU Dortmund Uni-

versity in Germany. The facility’s 1.5-GeV electron storage ring produces radiation ranging
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1 Introduction

from the THz to the hard-X-ray regime for international experiments in solid-state physics,

chemistry, biochemistry and materials science. It is equipped with three insertion devices, a

7T superconducting wiggler (SCW) [10] and two undulators [11]. The SOFB of the storage

ring operates with 30 horizontal, 26 vertical steerer magnets and 54 beam position monitors

(BPMs). Its controller is a singular-value-decomposition (SVD) based orbit correction soft-

ware, which was commissioned in 2004 [12]. Optics analysis at the ring is done with a range of

numerical models and measurement techniques. In 2016, the closed-orbit bilinear-exponential

analysis (COBEA) algorithm became the newest entry to this list [13]. It fits the bilinear-

exponential (BE) model to a measured orbit response matrix (ORM) decomposing it into

coupled beta functions, betatron phase advances and scaled dispersion functions. COBEA

was experimentally tested at three storage rings without transverse coupling (MLS, BESSY II

and DELTA).

The goals of this work were to

• write a new orbit correction software that better integrates into the operating system of

the storage ring at DELTA and adds new functionality,

• investigate embedding the BE model into an online fitting process fed with orbit response

data from orbit corrections (BE online model) that will enable a measurement of optical

functions without dedicated ORM measurement and

• test COBEA’s approach of reconstructing optical functions for storage ring lattices with

transverse coupling.

Chapter 2 introduces basic theoretical concepts of storage ring beam dynamics as well as the

DELTA facility and hardware components of its storage ring. The following Ch. 3 outlines

more advanced aspects of the linear theory of beam dynamics including transverse coupling

that are necessary to understand this work. Chapter 4 explains important concepts of orbit

correction in general and orbit correction methods used specifically at DELTA. The 5th Ch.

outlines the approach of the new orbit correction software implemented to meet the first goal

of this work. The new software features a mode for pure orbit correction and two modes for

additional energy correction, one stabilizing the beam energy and one minimizing the orbit

length for a given orbit reference. Chapter 6 presents a simulation-based proof of principle for

the orbit-shortening mode. In Ch. 7, experimental results for all three modes are presented.

The 8th Ch. explains the COBEA algorithm and Ch. 9 introduces a generalization, the response

set fit algorithm (RSFA), meant for use in a BE online model, the second goal of this work.

Focusing on the third goal of this work, Ch. 10 studies the capabilities of COBEA and the

RSFA to extract optics information from simulated orbit response data in the presence of

transverse coupling. In Ch. 11, a comparison of experimental RSFA results to other sources of

optical function measurements as well as an RSFA-based analysis of the new superconducting

wiggler on the optics of the storage ring are presented. The concluding Ch. 12 summarizes

this work and gives an outlook.

10



2 Basic Concepts

2.1 Particle Motion in a Storage Ring

A storage ring confines moving charged particles by means of the Lorentz force. In linear

beam dynamics, their trajectories can be described as betatron oscillations around a closed

orbit. The closed orbit is the only trajectory that closes after a single turn. Its location is

subject to change during operation. It is practical to describe all trajectories, be they betatron

oscillations or closed orbits, relative to a moving frame of reference, the co-moving coordinate

system [14] (see left schematic in Fig. 2.1). Its origin moves along the storage ring as an ideal

particle would: with nominal energy on an ideal closed orbit. In most storage ring designs,

the location of this orbit, the design orbit, is determined by the bending radii of the dipoles

and the magnetic centers of most quadrupoles. The position of the coordinate frame along the

design orbit is determined by a longitudinal coordinate s that increases from zero up to the

length of the storage ring.

Figure 2.1: Position of a particle in the co-moving coordinate system (left) as well as relation of angles
and transverse coordinate derivatives with respect to s (right). In the right schematic, the
motion direction is a tangent to the real trajectory and δs is a small step in the direction
of e⃗s.

The position of a particle within the moving coordinate system is described by a horizontal

coordinate x and a vertical coordinate y. The unit vectors of the horizontal coordinate e⃗x

and the vertical coordinate e⃗y are perpendicular to the ideal particle’s direction of motion e⃗s

that itself is a tangent to the design orbit. Describing the complete motion state of a particle

with relativistic mass m within the co-moving coordinate system requires three additional

coordinates, the relativistic momenta px = mẋ, py = mẏ and ps = mṡ. Together with

the spatial coordinates, they determine the position of a particle in 6D phase space. In a

synchrotron radiation source such as DELTA, the particles in the storage ring are electrons

11



2 Basic Concepts

and they move at velocities v close to the speed of light c. This is marked by the large Lorentz

factor of the storage ring

γ =
1√

1− v2

c2

≈ 3000. (2.1)

In ultra-relativistic approximation ż ≈ c and under neglect of synchrotron radiation, the trans-

verse momenta are approximately proportional to the derivatives of the transverse coordinates

with respect to s

x′ =
∂x

∂s
=

∂x

∂t

∂t

∂s
≈ px

mc
and y′ =

∂y

∂s
=

∂y

∂t

∂t

∂s
≈ py

mc
. (2.2)

The transverse phase space of a particle is therefore described by

z⃗T =
(
x, x′, y, y′

)T
. (2.3)

In a storage ring, the longitudinal momentum of a particle is many times larger than its

transverse momenta. The possible angles are therefore in the mrad-range and the derivatives

of the spatial coordinates can be interpreted as angles (see right schematic in Fig. 2.1)

φx ≈ tan(φx) =
x′δs

δs
= x′ and φy ≈ tan(φy) =

y′δs

δs
= y′. (2.4)

2.1.1 Betatron Oscillations

Keeping charged particles in a storage ring together, requires a focusing system. In modern

storage rings, this role is commonly fulfilled by quadrupole magnets. Quadrupoles provide a

magnetic flux density that increases proportional to the distance from the magnetic center

of the magnet. While the design orbit passes the magnet at the center, all other trajectories

pass it off-center. Particles on these trajectories are either bent towards the design orbit

(focused) or bend away from it (defocused). The bending angle increases along the magnetic

field strength with the distance from the magnetic center. A QF quadrupole, which focuses in

the horizontal plane, defocuses in the vertical plane. For a QD quadrupole, it is the other way

around. To achieve a net focusing effect, QF quadrupoles with positive horizontal gradient

and QD quadrupoles with negative horizontal gradient can be combined. This is known as

alternating gradient (AG) focusing and was proposed at the Brookhaven National Laboratory

in 1952 [9]. Figure 2.2 displays a schematic of the focusing process in a quadrupole duplet.

In modern storage rings, the AG focusing as well as minor contributors such as weak focusing

in sector-type dipoles and magnet fringe fields let particles, which are not on the design orbit,

perform betatron oscillations around it [16]. An early comprehensive parameterization of

betatron oscillations in AG synchrotrons is given in [7]. It is known as the Courant-Snyder

12



2.1 Particle Motion in a Storage Ring

Figure 2.2: Focusing effect of a quadrupole duplet in both transverse planes [15] (left) and the phase
space ellipse of a betatron oscillation [14] (right).

parameterization. Here, betatron oscillations refer to oscillations of the spatial coordinate and

its longitudinal derivative [14]

x(s) =
√
Cxβx(s) cos

(
Φx(s) + Φinit

x

)
(2.5)

x′(s) =

√
Cx

βx(s)

[
αx(s) cos

(
Φx(s) + Φinit

x

)
+ sin

(
Φx(s) + Φinit

x

)]
. (2.6)

The amplitude of the spatial oscillation is determined by a particle-specific constant Cx, the

Courant-Snyder invariant, and the beta function βx(s) that is the same for all particles. The

oscillation phase similarly consists of a particle-specific start phase Φinit
x as well as a function

part Φx(s), the betatron phase advance. The latter is the same for all particles. Both, beta

function and betatron phase advance are properties of the lattice. The same applies to the

alpha function that is the negative half-derivative of the beta function

αx(s) = −β′
x

2
. (2.7)

While the beta function is periodic with the length of the storage ring, the betatron phase

advance is not. Particles enter each additional turn with a phase offset

µx = Φx(L)− Φx(0) = 2πqx, (2.8)

where qx is the tune. The trajectory of a betatron oscillation therefore changes from turn to

turn moving the particle along a transverse phase space ellipse shown in Fig. 2.2. Similar to

the spatial oscillation, the amplitude of the momentum oscillation
√
Cxγx(s) is determined by

the particle-specific Courant-Snyder invariant and a general part

γx(s) =
α2
x(s) + 1

βx(s)
, (2.9)
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2 Basic Concepts

the gamma function. The Courant-Snyder invariant is related to the area of the ellipse

A = πCx. The phase space ellipses of all particles are concentric. For a gaussian transverse

beam profile, the Courant-Snyder invariant of the particle whose spatial betatron oscillation

amplitude matches the standard deviation of the beam profile is called emittance [14]. The

same relations hold for the vertical plane.

The Courant-Snyder parameterization of betatron oscillations is an approximation for storage

rings with little to no inter-plane coupling. The betatron oscillations of the horizontal and

vertical plane then do not mix. This holds true for most storage rings in good approximation.

A more general description of transversly coupled betatron oscillations is introduced in Ch.

3.1.

2.1.2 RF Frequency, Beam Energy and Dispersion

Charged particles emit synchrotron radiation when interacting with the electromagnetic fields

of the storage ring via the Lorentz force [14]. The emitted photons carry some of the kinetic

energy of the particles away. It is necessary to reaccelerate these particles. Otherwise they

are lost. The acceleration is applied in a radiofrequency (RF) resonator containing an oscil-

lating electric field with a longitudinal field-strength component E. The RF frequency of the

resonator needs to be an integer multiple of the revolution frequency of the ideal particle to

make it arrive at the same phase, the synchronous phase, and the same electric field strength

E0 every turn.

Figure 2.3: How a frequency shift alters the acceleration voltage experienced by the beam in the RF
resonator (left) and the impact of the resulting energy shift on the position of betatron
oscillations in transverse phase space in areas where dispersion is positive (right). The
arrival time t0 of the beam in the cavity is determined by the synchronous phase.

Beyond recovering the energy loss resulting from synchrotron radiation, the RF resonator

is useful for adjusting the energy of the closed orbit, the beam energy, by altering the RF

frequency. If the RF frequency f changes by ∆f , the beam experiences a different electric

field amplitude when passing the cavity the next time. A schematic of this is shown on the left

in Fig. 2.3. An effect called phase focusing then makes the beam oscillate around a slightly

different synchronous phase in subsequent turns. Here, it eventually comes to rest due to
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2.2 The Storage Ring at DELTA

synchrotron radiation damping. In this new equilibrium state, the beam energy has changed

by δ. The relation of frequency shift and energy shift is [17]

f

f +∆f
− 1 =

(
α− 1

γ2

)
δ ≈ αδ, (2.10)

where the momentum compaction factor [14]

α =
∆L/L

δ
(2.11)

determines the orbit lengthing ∆L for particles deviating form the design energy relative to the

length of the design orbit L. It is a property of the lattice. At DELTA, the 1/γ2-term can be

neglected due to α >> 1/γ2 (see Tab. 2.1 and Eq. (2.1)). The orbit length is affected because

the bending radii of the dipole magnets are dependent on the beam energy. The energy shift

therefore pushes the beam to a new orbit where the revolution frequency is again an integer

multiple of the RF frequency. The difference between the original and the new transverse orbit

is δDx(s), where Dx(s) is the horizontal dispersion function. Its longitudinal derivative D′
x(s)

similarly describes the change in transverse momenta via δD′
x(s). With the closed orbit, the

betatron oscillations are shifted, as well. A schematic of the effect is shown on the right in Fig.

2.3. The dispersion function is, similar to the beta function and the betatron phase advance,

a property of the lattice. It is determined by the bending magnets of a storage ring and is

therefore largely confined to the horizontal plane. If vertical dispersion is present, the same

relations apply.

2.2 The Storage Ring at DELTA

The Dortmund Elektronenspeicherring-Anlage (DELTA) is a combined synchrotron radiation

source and accelerator research facility located in Dortmund, Germany. It is operated by the

Center for Synchrotron Radiation of the TU Dortmund University. A schematic top-up view

of the storage ring at DELTA and its injection chain is given in Fig. 2.4.

The electrons are emitted in a triode gun with 50 kV extraction voltage after which they pass

a 3-cell 2π/3-mode standing-wave buncher with a design gradient of 16MV/m [19]. Both

components are followed by a 6m S-band linear accelerator that increases the electron energy

to 75MeV [20]. The transfer line T1 connects the linac exit to the booster synchrotron BoDo.

BoDo is a 50.4m long full-energy booster. Its magnet power supplies are current controlled and

ramped via digital signal processors following programmable power arcs. BoDo can therefore

be operated like a storage ring at constant energy ranging from 50MeV to 1.50GeV. In booster

operation, the transfer line T2 transports the electrons to the injection septum of the storage

ring.

The 115.2m storage ring entered commissioning in 1996. Similar to BoDo, it can be ramped

and operated at different energies. The maximum energy is 1.5GeV. A summary of important

parameters is given in Tab. 2.1. The layout of the storage ring, two 42.6m half-circles con-
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2 Basic Concepts

Figure 2.4: The accelerator complex at DELTA. Source: adapted from technical drawing [18].

nected by two 15m straight sections for operation of insertion devices, reminds of a racetrack.

The design achieves a horizontal emittance of 15 nm rad while still being compact [22]. The

T2 connects to the storage ring half-way through the eastern arc. The two RF cavities of the

ring are located on the opposite side. The first resonator, a DORIS-type cavity, is fed with up

to 65 kW of forward power from a klystron. The second resonator, an EU-type cavity [23] fed

with up to 75 kW of forward power from a solid state amplifier, was added in 2019 to prepare

for the installation of the superconducting wiggler (SCW) [24].

The storage ring supplies synchrotron radiation ranging from the THz to the hard X-ray regime

to several beamlines used for experiments in solid-state physics, chemistry, biochemistry and

materials science. The northern straight section was initially designed to accommodate the

low-gain free electron laser experiment FELICITA [25], an optical klystron. Since 2011 it has

been replaced with the DELTA short pulse facility, a coherent harmonic generation (CHG)

experiment using the U250 undulator [26]. The experiment produces coherent synchrotron

radiation with pulse lengths in the femtosecond range at harmonics of a 800 nm titan-sapphire

seeding laser for BL5 [27]. So far, this approach was demonstrated to work down to a wave-

length of 133 nm, the 3rd harmonic of the frequency-doubled seeding laser. In the future, the

CHG experiment will be replaced with a setup enabling echo-enabled harmonic generation

(EEHG) to reach even smaller wavelengths [28]. The CHG setup is also used as part of a tun-

able narrow-bandwidth THz source [29]. The THz radiation is emitted in one of the dipoles

following the U250 (BL5a). In the southern straight section, a wiggler and an undulator are

installed. The SCW [10], a 7-T wiggler, supplies hard X-ray radiation of up to 30 keV to

BL8, BL9 and BL10. In 2020, it replaced a 5-T wiggler, the superconducting asymmetric

wiggler (SAW), which produced up to 10 keV X-rays [30]. The permanent-magnet undulator

U55 produces radiation ranging from the vacuum UV spectrum to soft X-rays for BL11. The

remaining beamlines are fed with synchrotron radiation from dipole magnets.
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2.2 The Storage Ring at DELTA

parameter value

nominal beam energy 1.5GeV
RF frequency f 499.834MHz
ring length L 115.2m
harmonic number 192
revolution frequency 2.603MHz
revolution time 384 ns
bunch length (FWHM) 75 ps
horizontal emittance 15 nm rad
momentum compaction factor α 5 · 10−3

number of BPMs J 54
number of horizontal steerer magnets Kx 30
number of vertical steerer magnets Ky 26

Table 2.1: Parameters of the storage ring before installation of the SCW in 2020. Source: technical
report [21].

Most hardware components are controlled via a distributed control system, the experimental

physics and industrial control system (EPICS) [31]. It provides a software architecture to read

out and set hardware parameters via Ethernet.

Figure 2.5: Quadrupole triplet and triplet cell after the northern straight. Source: adapted from tech-
nical drawing [18].

2.2.1 Lattice

The lattice of the storage ring was initially designed in 1989 [32]. In 1999, the optics was

modified to prepare for the installation of the SAW and the U55 [33]. Since then, the optics

largely remained the same although the current optics includes minor changes such as altered

quadrupole strengths resulting from modifications of the storage ring’s nominal tunes and

optics adaptions for the SCW. A plot of the optical functions according to the del008.2001

(see Ch. 2.4 for model details) is given in Fig. 2.6.

The storage ring lattice is designed around the triplet cell, a bending magnet enclosed by alter-

nating gradient lenses. This way, the horizontal dispersion rising in the dipoles is suppressed

in the focusing quadrupoles whereby the horizontal emittance is kept small. The term triplet

structure comes from the arrangement of the quadrupoles. Because the focusing quadrupoles
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Figure 2.6: Optical functions of the storage ring in user operation but with turned-off SAW according
to the del008.2001 model [33][34].

of two adjacent cells are combined into a single quadrupole of double width, the space between

bends is technically occupied by three quadrupoles, a triplet (see Fig. 2.5).

The injection area in the eastern arc accommodates the injection septum. For injection, the

beam is brought close to the septum via a kicker bump to establish an overlap between the

phase space ellipse of the injected beam and the phase space acceptance of the storage ring.

The dispersion peak in that area is a drawback of the lattice design as it pushes off-energy

particles coming from the booster onto a dispersive orbit. The other large dispersion peak on

the opposite side of the storage ring, in the RF resonators, is another drawback as it leads to

a coupling of synchrotron and betatron oscillations. The decision to built the storage ring this

way was made because it allowed enlarging the straights in the north and south making room

for the operation of insertion devices [34].

Matching quadrupoles decouple the optics of the straight sections from the optics of the arcs.

The optics design of the southern straight is a trade-off between the requirement of a small

vertical beta function in the SAW and a beam with small divergence in the U55. A small

vertical beta function in the SAW ensures small betatron oscillation amplitudes fitting into

the wiggler. Its 10mm aperture is only a quarter of the aperture in the remaining storage

ring. The small vertical beta function also minimizes the wiggler’s unwanted edge focusing

effect on the vertical tune. A small beta function comes with a large divergence. This is

undesirable for the operation of the U55, which is installed in the second half of the southern
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2.2 The Storage Ring at DELTA

straight, as a large divergence makes any off-axis electrons pass the undulator at a large angle.

The synchrotron light emitted by these electrons is red-shifted for the on-axis observer. This

increases the spectral width of the undulator radiation. The U55 is therefore best operated

with a large beta function that does not change much along the length of the insertion device.

The optics design of the northern straight predates the commissioning of the CHG experiment

and concentrated on providing a suitable environment for its predecessor, the FELICITA

optical klystron. Similar to the U55, the undulator-based FELICITA experiment was best

operated with a beam with small divergence. Additionally, the experiment required a small

dispersion function. Both design specifications also work well for the CHG experiment installed

in the northern straight today.

2.2.2 Beam Position Monitors

DELTA is equipped with J = 54 beam position monitors (BPMs) that measure the transverse

position of the beam’s center. Fig.2.7 displays an overview of the storage ring where the

location of the BPMs are marked. The horizontal and vertical measurements of the BPMs

x⃗ =
(
x1, . . . , xJ

)T
(2.12)

and

y⃗ =
(
y1, . . . , yJ

)T
(2.13)

are available via EPICS with a rate of about 10Hz mostly determined by Ethernet latency. Each

BPM consists of a quartet of capacitive pick-up electrodes paired with read-out electronics. The

electrodes are inlets built into the vacuum chamber. Most BPMs use the geometry displayed

in Fig. 2.8 [36]. The exceptions are BPMs 40 and 41 that are built into the tapers of the

vacuum chamber of the superconducting wiggler (SCW).

The voltages Ui of the pick-ups are pairwise subtracted to reveal the horizontal position [37]

x = cx(x, y)
(U2 + U4)− (U1 + U3)∑4

i=1 Ui

(2.14)

and the vertical position

y = cy(x, y)
(U1 + U2)− (U3 + U4)∑4

i=1 Ui

(2.15)

of the beam. The calibration factors cx(x, y) and cy(x, y) are non-linear and geometry-specific.

They were determined via a simulation of the electric field in the DELTA BPM. The equation

system consisting of equations (2.14) and (2.15) has to be solved for x and y to determine

the correct orbit position. If the orbit does not deviate too far from the center of the BPM,

the calibration factors can be considered constant in good approximation. They are cSCW
x =

10.4mm and cSCW
y = 23.9mm for the two BPMs with different geometry around the SCW
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Figure 2.7: Positions of BPMs (see Ch. 2.2.2) as well as the horizontal and vertical steerer magnets
(HSM and VSM) (see Ch. 2.2.3) along the storage ring. Source: adapted from technical
drawing [18].
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2.2 The Storage Ring at DELTA

Figure 2.8: Cross section of typical BPM electrode inlets in a vaccum chamber used at DELTA. Source:
adapted from technical drawing [35].

[38] and cx = 15.9mm and cy = 19.6mm everywhere else. All orbit measurements available

via EPICS are calculated with constant calibration factors. Fig. 2.9 displays the evolution of

the systematic error when measuring off-center for the standard geometry. The orbit position

is calculated by the read-out electronics of each BPM. Two different read-out electronics are

used at DELTA.

44 BPMs are equipped with Bergoz MX BPMs [39]. This read-out electronics generates an

analogous signal of ±10V equivalent to ±10mm orbit displacement that is digitized by an

ESD Module [40] for up to 4 Bergoz units and then fed into EPICS via a CAN (controller area

network) field bus to a central processor unit (CPU) sitting on a VME (versa module eurocard)

crate [36]. The analog-digital converter (ADC) feature a resolution of 12 bit including 1 sign

bit resulting in a 4.8µm resolution for orbit measurements.
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Figure 2.9: Systematic error of off-center orbit measurement in a BPM with constant calibration factors.

10 BPMs are equipped with Libera Electron processors [41]. This FPGA-based measurement

electronics filters the voltage signal induced on the BPM pick-ups by the beam with a bandpass

of 10MHz around the RF frequency of DELTA and then undersamples the filtered signal within

a rate of about 117MHz [41]. The time series is averaged down to supply on-demand orbit

measurements at turn-by-turn rate of 2.6MHz and continuous orbit measurements at 10 kHz
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Figure 2.10: Schematic of a kick in a steerer magnet.

for a fast orbit feedback and 10Hz for closed orbit measurements. At DELTA, the triggers

of the turn-by-turn measurements are synchronized with the kicker of the tune measurement

system (see Ch. 2.2.4 for details). Each Libera runs a Linux kernel and broadcasts buffers

of measurements at turn-by-turn rate and continuous closed-orbit measurements to EPICS via

Ethernet. The averaging process allows Libera Electrons to achieve a resolution of <1 µm for

the closed-orbit measurements [42].

2.2.3 Steerer Magnets

The storage ring is equipped with Kx = 30 horizontal steerer magnets (HSMs) and Kv = 26

vertical steerer magnets (VSMs) [36]. Figure 2.7 displays a top-up view of the accelerators

at DELTA where the steerer magnets of the storage ring are marked. A horizontal steerer

magnet alters the horizontal angle of the beam by ∆x′ = θx (see schematig in Fig. 2.10) while

a vertical steerer magnet alters the vertical angle of the beam by ∆y′ = θy. These deflection

angles are called steerer strengths in the following. In the context of orbit correction and optics

analysis, it is useful to define steerer strength vectors for the horizontal steerer magnets

θ⃗x =
(
θx1, · · · , θxKx

)
, (2.16)

the vertical steerer magnets

θ⃗y =
(
θy1, · · · , θyKy

)
(2.17)

and both together

θ⃗ =
(
θx1, · · · , θxKx , θy1, · · · , θyKy

)
. (2.18)

The coils of the steerer magnets are mounted on combined-function quadrupoles where they

overlay the magnetic field of the quadrupole with a dipole field as shown in Figure 2.11. They

are fed by current sources with a range of ±10A and a resolution of about 2.4mA (12 bit

+ 1 sign bit). Their maximum rate of change is 4.7A/s. The dependence of the multipole

components of the combined-function quadrupoles on the two electric currents feeding the

quadrupole and steerer coils were measured and interpolated in [12]. This allows to calculate

the steerer strength applied by a steerer magnet for a given yoke saturation and including the
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2.2 The Storage Ring at DELTA

effects of the magnet’s fringe fields via a conversion script named i2k. At an electron energy

of 1.5GeV, horizontal steerer magnets deflect up to 3.13mrad if mounted on full yokes and up

to 3.00mrad if mounted on half yokes (see Ch. 2.2.1 for details on the triplet cell). Vertical

steerer magnets apply up to 1.13mrad of deflection. They are only mounted on half yokes.

Groups of 4 current sources each share a controller area network (CAN) module to connect to

a VME crate that serves as controller. The controller is capable of ramping all steerer magnets

coherently after being fed a vector of current targets for all steerer magnets via EPICS.

Figure 2.11: Coils of horizontal (left) and vertical (right) steerer magnets on quadrupoles. The coils
and the magnetic field are marked in red. The red arrow indicates the direction of the
magnetic field at the center of the quadrupole. The blue arrow marks the direction of the
Lorentz force on passing electrons. Source: dissertation image from [36].

2.2.4 Kicker-Based Tune Measurement

The storage ring is equipped with a kicker-based tune measurement system whose measure-

ments are used for an automated tune feedback [43]. The measurement system consists of

an excitation kicker in the western arc of the storage ring and a BPM with Libera read-out

electronics. The slotted-pipe kicker [44] excites betatron motion in the x and y plane driven

by a 250 ns FWHM pulse (about 2/3rds or the revolution time) from a halfwave pulser. The

horizontal and vertical betatron motion of the beam is measured over 2048 turns via the Lib-

era Electron read-out electronics (see Ch. 2.2.2 for details) at BPM43. The betatron phase

advance between kicker and BPM is close enough to 90◦ to measure a strong signal. The

horizontal and vertical time series of betatron motion are then analyzed in a 2-step process on

a computer. Firstly, regions of interest are determined via a fast Fourier transform. Secondly,

the horizontal and vertical timeseries are fitted with sinewaves via the Marquardt-Levenberg

algorithm. The arguments of the fitted sinewaves are the tunes times 2π. Overall, the complete

tune measurement system achieves a precision of 25Hz.

The measurements are used for a simple tune feedback that scales the quadrupole strengths in

the arcs of the storage ring to compensate tune shifts resulting from thermal effects and orbit

movements in sextupoles.
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2.2.5 Optics Settings

For injections, the beam circulating in DELTA is brought close to the injection septum via

a dynamic bump facilitated by three kicker magnets and a static orbit bump facilitated by

three current-controlled dipole magnets. This setup allows to control two properties of the

stored beam, momentum and position of its center of charge, with two three-magnet bumps

instead of a single four-magnet bump. The static orbit bump can be removed after injection.

This avoids unexpected kicks and focusing changes when going off-center through quadrupoles

and sextupoles. This is often used for accelerator research. Keeping the tunes constant when

removing the static orbit bump requires adapting the quadrupole strengths via the tune cor-

rection of the storage ring. This results in a different set of Twiss parameters (see “model

server” in Fig. 11.1). The optics setting enabling injections is referred to as user optics (see

Fig. 2.6 for its Twiss parameters) and the optics setting without static orbit bump is referred

to as machine-study optics in the following chapters.

2.3 Slow Orbit Feedback of the Storage Ring

The closed orbit in a storage ring needs to be controlled to prevent damage to the accelerator

and maximize the usability of the machine. The latter refers to increasing lifetime, stabilizing

as well as maximizing synchrotron radiation intensity at beamlines and other more specialized

applications like making the beam pass an undulator at a specific angle. Storage rings usually

use automated orbit feedbacks with digital controllers [6]. Automated orbit feedbacks steer

the horizontal orbit Eq. (2.12) measured at all BPMs towards the horizontal orbit reference

x⃗ref , the orbit as it should be, by altering the strengths of the steerer magnets automatically.

This process is a closed control loop (Fig. 2.12). Its sensors are the BPMs (see Ch. 2.2.2 for

details) and its actuators are the steerer magnets (see Ch. 2.2.3 for details).

At DELTA, the controller is a program, the orbit correction software, which runs on a CPU.

The software reads the current BPM orbit measurements via EPICS. After determining the

orbit errors

ϵ⃗x = x⃗− x⃗ref , (2.19)

it begins the calculation of new steerer currents to correct the orbit errors. This requires

reading additional parameters such as the currently set steerer magnet currents and the steerer

strength constraints θ⃗min
x and θ⃗min

x . The currents are converted to steerer strengths θ⃗x using

the conversion script i2k [12]. Afterwards, the program calculates new steerer strengths

θ⃗♢x = θ⃗x + η∆θ⃗∗x (2.20)

that correct the orbit errors. Here, ∆θ⃗∗x are the optimal steerer strength corrections according

to an internal orbit response model and a programmatic decision-making process (see Ch.

4 for an introduction). The process has to make sure that the corrections comply with the
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constraints. The step size η is a number between 0 and 1 reducing the effect of an orbit

correction on the control variable Eq. (2.20). This is necessary because the internal model,

which the orbit correction software uses to estimate the orbit for a vector of steerer strengths,

does not perfectly reflect the physical reality of the storage ring. Reasons for this problem can

include non-linearities of magnetic fields and BPMs or changes to the machine not described by

the model. The orbit should therefore only be corrected in the direction set by the calculation

and not directly to its exact value. If the current machine state is described well by the internal

model of the software, the step size can be larger. If that is not the case, for example because

the orbit deviations are large, the step size should be smaller. It is a decision made by the

operator. The approach of damping a correction to a control variable is a concept used in

many iterative convergence and fitting schemes, for example gradient descent [45].

Finally, the orbit correction software broadcasts the electric current equivalents of the new

steerer strengths to the power supplies of the magnets and initiates ramping. The equivalents

are calculated via the i2k script [12]. Reasons for not directly calculating steerer current cor-

rections in the controller are given in Ch. 4.2. The steps of orbit measurement plus calculation

and setting of the new steerer strengths together constitute a horizontal orbit correction

(
θ⃗x

x⃗

)
→

(
θ⃗♢x

x⃗♢

)
(2.21)

subject to θ⃗min
x ≤ θ⃗x ≤ θ⃗max

x . (2.22)

After the ramping of the steerer magnets has commenced, the new orbit x⃗♢ should be closer

to the orbit reference. The explanations similarly apply to the vertical plane.

Figure 2.12: Orbit correction as a control loop. Its control and correction quantities are the orbit errors
ϵ⃗x Eq. (2.19) and the new steerer strengths θ⃗♢x Eq. (2.20). The current steerer strengths

θ⃗x and their constraints θ⃗min
x and θ⃗max

x are additionally required by the controller.

During an orbit correction, the input vector of orbit errors is assumed to be constant. The time

it takes for the controller to calculate and apply the optimal steerer strengths is the reaction

time of the feedback. It is the time that passes between measurement and orbit correction.

Automated orbit feedbacks can be categorized according to their reaction time into slow and

fast. With correction rates of less than 1Hz, slow orbit feedbacks (SOFBs) are mostly used

for static orbit placement although they also damp slow dynamic processes like orbit shifts

induced by thermal drifts. Fast orbit feedbacks (FOFBs) damp faster dynamic processes like

the effects of grid noise and ground vibrations on the stored beam.
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2.3.1 History

The automated orbit feedback at DELTA, which was commissioned in the early 2000s [36][12],

falls with correction rates of at least 0.1Hz (mostly capped by the time required to ramp the

magnets) under the category of SOFBs. Another orbit feedback with damping rates of up to

350Hz, an FOFB, is under development [46]. It uses smaller faster steerer magnets (lower

inductivity) and relies on a hardware-programmed field programmable gateway array (FPGA)

instead of a CPU to calculate orbit corrections. This work focuses on a software upgrade

for the SOFB. In 2002, DELTA commissioned an SOFB testing singular value decomposition

(SVD) for calculating the optimal steerer strengths [36]. Its orbit correction software was

replaced two years later with a customized SVD approach capable of subjecting the optimal

steerer strengths to inequality constraints, a strategy better suited for the operation of the

storage ring [47][12]. Chapter 4.4.2 describes the approach and a related method, which is also

available in the 2004th software, in more detail.

Although recent developments start incorparating non-linearities via machine learning tech-

niques [48], controllers using linear orbit response models remain common. They are reliable

and have been adapted to many use cases. One is the stabilization of the beam energy [49]. A

replacement for DELTA’s SVD-based orbit correction software was commissioned in 2021 [50].

It uses an interior point method (IPM) for quadratic programs, a special type of convex opti-

mization problem that includes linear inequality constraints, for the calculation of the optimal

steerer strengths [51]. The program also assigns unique steerer strengths to linearly depen-

dent steerer magnets and adds two variations of energy correction, energy stabilization and

path-length minimization, to the capabilities of the controller. The new software is described

in Ch. 5.

2.4 Tools for Optics Analysis of the Storage Ring

Understanding the optics of a storage ring is crucial for its operation and designing future

upgrades. In this endeavor, simulation studies and optics measurements are important tools.

Lattice Models

The design of new or upgrades of existing storage rings are commonly accompanied by simu-

lation studies with lattice models. At DELTA, this was as true for the original design study

[32] as it is for a recent study identifying optics changes to offset the impact of the SCW

on the beta function [52]. The basis for most optics calculations at DELTA is the del008

optics model. It was used to develop the last major optics overhaul of the storage ring in

preparation of the installation of the SAW and the U55 in 1999 [33]. In 2001, the optics

model received minor upgrades such as the introduction of unified quadrupole strengths for

quadrupole families and a revision of the location of beamline source points. The MADX version

of this model [34] used within the scope of this work is referred to as the del008.2001 optics

model in the following. It expresses the combined-function quadrupole-and-steerer magnets as
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two quadrupoles of half length with a thin sterer magnet between. Although the del008.2001

optics model theoretically contains a model for the SAW, the optics calculations presented in

Fig. 2.6 as well as Ch. 6 and Ch. 10 were done without it. Another optics model used within

the scope of this work is the model employed in the so-called model server. The model server

is an input-output controller that reads online machine parameters such as the currents for the

quadrupole and steerer magnet coils of the storage ring via EPICS [53]. In the program, the

currents are converted to quadrupole and steerer strengths using the program i2k [12] and fed

into the OCELOT optics code [54] running the del008.online optics model. The results are made

available via EPICS. The del008.online model is mostly the same as the del008.2001 model

but with online machine parameters and an optional SCW model. In Ch. 11, model server

calculations are compared to results of the response set fit algorithm (RSFA).

2.4.1 Beta Function Measurement in Quadrupoles

The first technique available at DELTA to conduct beta function measurements helped check-

ing optics models and supported design studies for EEHG in recent years [55][56]. After

exciting a tune shift ∆qx by changing a quadrupole strength by ∆Ω, the average horizontal

beta function in the corresponding quadrupole can be calculated as [14]

βx =
4π

l

∆qx
∆Ω

. (2.23)

Here, l is the length of the magnet. At DELTA, the quadrupole coil currents are altered via a

relay cascade that allows to superimpose an additional current from a bipolar current source on

the familiy-specific coil currents. A relay cascade refers to a cocatenation of relays in layers to

allow for more than two ouputs. The changes in quadrupole strengths associated with changes

in coil currents can be calculated via the conversion script i2k [12].

2.4.2 Optical Function Measurement at Beam Position Monitors

The second meaurement technique for optical functions used at DELTA is the closed-orbit

bilinear-exponential algorithm (COBEA) [13]. It extracts the tunes as well as the coupled

beta functions, the coupled betatron phase advances and scaled dispersion values at all BPMs

from an orbit response matrix (ORM) measurement (see Ch. 4.2 for details) by fitting the

bilinear-exponential model with dispersion (BE+d model) to the matrix. An introduction to

the COBEA algorithm is given in Ch. 8.

Recent Research

COBEA was tested on experimental data from BESSY II, the MLS and DELTA [13][57].

In the case of BESSY II and the MLS, COBEA’s optical function estimates were compared

to fits with the linear optics from closed orbits (LOCO) algorithm [58]. Differences in beta

function results were attributed to normalization errors. The normalization accuracy was

limited by measurement uncertainties originating from the shortness of the drift spaces used
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to determine the invariants of motion. Overall, the differences were greater for BESSY II than

for the MLS. At DELTA, the beta function estimates returned by COBEA were compared to

coupled beta function estimates calculated from turn-by-turn time series of orbit deviations

[13]. Although both matched well, the comparison was only possible at a subset of 10 out of

54 BPMs with turn-by-turn capable measurement electronics. COBEA’s tune and dispersion

fitting capabilities were later also verified at DELTA [59]. The shape of one of COBEA’s

dispersion fit results matched the shape of a frequency response of the storage ring well. A

COBEA analysis of response matrices recorded over several years also produced tunes very

close to measurements.

The measurement of an orbit response matrix for the analysis with COBEA requires a dedi-

cated ORM measurement that takes about 15minutes at DELTA. Orbit responses and orbit

corrections are related. Therefore, initial research into adapting COBEA’s approach to multi-

steerer orbit response measurements and integrating the adapted algorithm into the SOFB

software was conducted [60][61]. Chapter 9 introduces a more mature version of the adapted

algorithm with better start value generation, the RSFA. It is benchmarked against COBEA

in simulation studies featuring strong coupling in Ch. 10. Chapter 11 presents experimental

results for the RSFA. Additional research includes a derivation of the steerer parameters in

the BE+d model [62]. It is presented in Appendix 14 in detail.
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3 Linear Beam Dynamics

The theoretical concepts explained in the following build the foundation for understanding

orbit correction approaches with linear orbit response models (see Ch. 4 and Ch. 5) as well as

understanding optical function measurements via the COBEA algorithm (see Ch. 8) and the

RSFA (see Ch. 9).

3.1 Coupled Betatron Motion

Coupled betatron motion is a generalization of uncoupled betatron motion, which was intro-

duced in Ch. 2.1.1, and two parameterizations exist to describe it. The first was introduced

by D. A. Edwards and L. C. Teng in 1973 [63] and the second by H. Mais and G. Ripken in

1982 [64]. While the Edwards-Teng parameterization uses a coordinate transformation to de-

scribe coupled betatron oscillations with a single amplitude and phase per mode but in rotated

coordinates, the Mais-Ripken parameterization keeps the coordinate system of the co-moving

coordinate frame but increases the number of optical functions. The following introduction to

coupled betatron motion mainly follows [65], a variant of the Mais-Ripken parameterization,

which presents a comprehensive description of coupled betatron motion using complex oscilla-

tions, that coincides with the parameterization used in [13] to describe coupled orbit responses

(see Ch. 3.2.1 for details).

Motion dynamics in the co-moving coordinate system of a storage ring in linear approximation

are modeled by two coupled second-order differential equations of the four transverse phase

space coordinates x(s), x′(s), y(s) and y′(s) [66]. Their solutions describe particle trajectories

through quadrupoles, dipoles (weak focusing), the fringe fields of both magnets as well as drift

spaces and can be used to calculate the evolution of an initial phase space vector z⃗(s0) at any

position s in the lattice

z⃗(s) = Ts0→sz⃗(s0). (3.1)

Here, the transfer map Ts0→s is a 4x4 symplectic matrix determined by the lattice between

s0 and s. Its calculation requires the knowledge of the position, type, strength, length and

skew angle of each magnet as well as the length of each drift space in that part of the lattice.

If start and end position differ by exactly one turn, i.e. s = s0 + L, then Ts0→s0+L is called

a one-turn transfer map Ts0→s0 and it encodes important properties of particle motion. The

solution of the eigenvalue problem

z⃗(s0 + L) = Ts0→s0 z⃗(s0) (3.2)
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3 Linear Beam Dynamics

Figure 3.1: Projection of coupled betatron motion as superposition of two modes from 4D to 3D.

returns M = 2 complex eigenvalue pairs e±i2πqm where m = 1 - 2 and two corresponding pairs

of complex eigenvectors Z⃗m and Z⃗∗
m. Under the assumption of bound motion and neglect of

synchrotron radiation, the eigenvalues are constrained to a complex unit circle |e±i2πqm | = ±1

to preserve the absolute size of the phase space vector and to comply with Liouville’s theorem.

After normalizing the eigenvectors such that

Z⃗†
mU Z⃗m = −2i (3.3)

with a conjugated and transposed eigenvector Z⃗†
m and a matrix

U =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0




(3.4)

is being fulfilled, the phase space vector can be expressed as a real-valued sum of scaled

eigenvectors ÃmZ⃗m (see Eq. (3.8) for an interpretation) that can be propagated to any position

in the storage ring

z⃗(s) = Ts0→s

M∑

m=1

ℜ
{
ÃmZ⃗m(s0)

}
=

M∑

m=1

ℜ
{
ÃmZ⃗m(s)

}
. (3.5)

On the next turn, this vector is rotated by the eigenvalue

Ts→sz⃗(s) =

M∑

m=1

ℜ
{
Ãmei2πqmZ⃗m(s)

}
(3.6)

revealing a superposition of two phase space oscillation modes, the coupled betatron oscillation.

Each turn, the modes advance with constant phase advances 2πqm, where qm are the mode
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3.1 Coupled Betatron Motion

Figure 3.2: Relation of the eigenvectors Eq. (3.7) (colored arrows) and the (un)coupled beta functions.
Without transverse coupling (left), the coupled beta functions β11(s) and β22(s) match
the uncoupled ones βx(s) and βy(s) while the coupling terms β12(s) and β21(s) are 0.
In the presence of coupling (right), the eigenvectors rotate around the beam axis that is
perpendicular to the transverse plane shown here.

tunes, along phase space ellipses with areas πCm, one for each mode. The constants Cm

are generalizations of the Courant-Snyder invariant. The normalization process Eq. (3.3)

effectively divides each eigenvector by the square root of its invariant. Figure 3.1 displays a

3D schematic on the relation of phase space vector, eigenvectors and the phase space ellipses.

The evolution of the coupled betatron oscillation around the storage ring is described by 13

generalized optical functions of which 10 are independent. They are properties of the lattice

hidden in the eigenvectors

Z⃗1 = eiΦ1(s)




√
β11(s)

− i(1−u(s))+α11(s)√
β11(s)√

β12(s)e
iν1(s)

− iu(s)+α12(s)√
β12(s)

eiν1(s)




and Z⃗2 = eiΦ2(s)




√
β21(s)e

iν2(s)

− iu(s)+α21(s)√
β21(s)

eiν2(s)

√
β22(s)

− i(1−u(s))+α22(s)√
β22(s)



. (3.7)

Here, the four coupled beta functions βmw are projections of the amplitude of the betatron

oscillation with Cm = 1 of the m-th mode onto W = 2 planes indexed with w = 1 - 2. If

no coupling is present, the coupled beta functions match the uncoupled beta functions for

m = w (see Fig. 3.2 for details). The four coupled alpha functions αmw(s) coincide with the

negative half derivatives of the coupled beta functions αmw(s) = −β′
mw(s)/2 in areas where

no longitudinal magnetic field is present. The four coupled phase functions Φm(s) and their

off-plane modifiers νm(s) model the phase advance of the betatron oscillation modes. Without

transverse coupling, Φ0(s) and Φ1(s) are equal to Φx(s) and Φy(s). The remaining generalized

optical function u(s) has no equivalent in the description of uncoupled betatron motion. The

complex scaling factors

Ãm =
√
CmeiΦ

init
m , (3.8)
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3 Linear Beam Dynamics

determine the initial phases Φinit
m and the amplitudes

√
Cmβmw(s) of a specific particle.

3.2 Coupled Orbit Response

The closed orbit in a storage ring shifts to a new orbit if dipole strengths are altered. This

phenomenon, called orbit response, is lattice dependent and can, in the approximation of

coupled linear beam dynamics, be expressed analytically in two forms. The first form describes

the lattice dependency with optical functions. The second form uses transfer maps. Both

models are compared in the appendix 14.3.1.

3.2.1 The Bilinear-Exponential Model

Trajectories in a storage ring in coupled linear approximation can according to [13] be modeled

as betatron oscillations. When a kick is applied, the closed orbit switches from being the ideal

orbit to a former betatron oscillation. Figure 3.3 displays a before-and-after schematic of the

process. The kick closes the betatron oscillation and opens the ideal orbit. Otherwise, both

trajectories remain the same. The new closed orbit can therefore be written as a combination

of Eq. (3.5) and Eq. (3.6)

z⃗(s) =





M∑
m=1

ℜ
{
ÃmZ⃗m(s)

}
for s > sk

M∑
m=1

ℜ
{
Ãmei2πqmZ⃗m(s)

}
for s < sk .

(3.9)

Here, the complex scaling factor Eq. (3.8) corrects the amplitude and the phase of each mode

to match the orbit response. After passing the steerer magnet, the beam firstly traverses the

s > sk section of the lattice, passes the origin at s = 0 and secondly traverses the s < sk

section. The eigenvector in the s < sk section therefore has to be modified by an additional

phase factor ei2πq that accounts for the turn-dependent phase shift occurring at the origin

of the longitudinal coordinate frame. Both parts can be assembled into a single analytical

expression

z⃗(s) =

M∑

m=1

ℜ
{
Ameiπqmsign(sk−s)Z⃗m(s)

}
for s ̸= sk. (3.10)

by substituting Am = eiπqmÃm. These equations represent the bilinear-exponential (BE)

model for thin steerer magnets. It describes the orbit response in the complete storage ring

except at the position of the kick. Although not covered here, the BE model also applies to

thick steerer magnets without any modification of the analytical expression. The derivation of

an analytical expression for the steerer parameters in thin-steerer-magnet approximation Eq.

(14.13) [62] is given in the appendix 14.
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3.3 Dispersive Orbit Drifts

Figure 3.3: Closed orbits (blue) and a betatron oscillation (red) for the design lattice (left) and with a
kick at position sk (right). The equations parameterize the closed orbit in the two segments
s < sk and s > sk.

3.2.2 Orbit Response from Transfer Maps

Similar to Eq. (3.2), the closed orbit at the position of a thin steerer magnet sk fulfills [67]

z⃗(sk + L) = Tsk→sk z⃗(sk) + θ⃗ (3.11)

where θ⃗ = (0, θx, 0, θy)
T is the kick applied by the steerer magnet and Tsk→sk is the one-turn

transfer matrix mapping a phase space vector at the steerer magnet to the next turn. Solving

this equation for the closed orbit and propagating it through the storage ring with a transfer

map Tsk→s gives the orbit response

z⃗(s) = Tsk→s(1− Tsk→sk)
−1θ⃗ for s ̸= sk (3.12)

at an arbitrary position s in the storage ring. The model is widely used in accelerator physics

[68][17][67].

3.3 Dispersive Orbit Drifts

The RF frequency of the storage ring controls the orbit length and can be used to change

the beam energy (see Ch. 2.1.2 for an explanation). Field errors, thermal effects and active

orbit steering also affect this equilibrium. They divert the beam from its unperturbed orbit

changing the orbit length by an additional ∆sr as illustrated in Fig. 3.4. Since the orbit length

has to conform with the RF frequency, the beam energy then changes by δ so that [17]

f

f +∆f
− 1 ≈ αδ +

∆sr
L

(3.13)
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is fulfilled. See Eq. (2.10) for more details on the approximation. When the beam energy

changes, the transverse position of the closed orbit adjusts by δD⃗(s). The vector

D⃗(s) =
(
Dx(s), D

′
x(s), Dy(s), D

′
y(s)

)T
(3.14)

contains the horizontal and vertical dispersion function and their longitudinal derivatives (see

Ch. 2.1.2 for an explanation). The introduced orbit response models have to be revised to

account for this effect. The bilinear-exponential model with dispersion (BE+d model) is [13]

z⃗(s) =
M∑

m=1

ℜ
{
Ameiπqmsign(sk−s)Z⃗m(s)

}
+ δD⃗(s) for s ̸= sk. (3.15)

Similarly, a transfer-map model with dispersion can be calculated with 4D transfer maps as

[67]

z⃗(s) = Tsk→s(1− Tsk→sk)
−1θ⃗ + δD⃗(s) for s ̸= sk (3.16)

or according to equation (3.12) but with 6D transfer maps. The latter will result in a 6D

closed orbit that contains the energy deviation as the 6-th coordinate.

Figure 3.4: A field error or intentional kick from a steerer magnet diverts the beam from its ideal orbit
(blue) and lengthens it (red).
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4 Building Blocks of Orbit Correction

Software at DELTA

Building on the linear orbit response models explained in Ch. 3.2, the following Chapter firstly

outlines common concepts of orbit correction used in both of DELTA’s SOFB software genera-

tions. Secondly, the core DELTA-specific optimization methods employed in the first controller

generation, the SVD-based software [12], are explained. The chapter builds the foundation

for understanding the optimization modes available in the second controller generation, the

IPM-based software, which is introduced in Ch. 5. All explanations given in the following also

apply to the vertical plane.

4.1 Introduction

A horizontal orbit correction Eq. (2.20) and Eq. (2.21) steers the orbit towards the horizontal

orbit reference. The calculation of optimal steerer strength corrections ∆θ⃗∗x requires three

components.

1. A model to predict the effect of the steerer magnets on the orbit. Both, the SVD- and the

IPM-based software, use measured ORMs for this purpose. The measurement process is

described in Ch. 4.2.

2. A figure of merit to determine whether the predicted orbit is better or worse. Again, both

software generations use the same quantity, the weighted root mean square (WRMS) of

orbit errors. It is explained in Ch. 4.3.

3. A process to calculate the optimal steerer strengths. Both software generations rely on

minimization problems to do that. Chapter 4.4 lists three methods to formulate and

solve minimization problems to calculate optimal steerer strength corrections that are

either widely used in accelerator physics or employed in the SVD-based software. The

methods of the IPM-based software are explained in Ch. 5.2 and Ch. 5.3.

4.2 Orbit Response Matrix

An orbit correction software requires a model relating the steerer strength of all steerer magnets

to the closed orbit position at all BPMs. In the approximation of linear beam dynamics,

changing the strength of a steerer magnet k by ∆θxk excites a linear orbit response ∆x⃗(∆θxk)

at all BPMs. The orbit response could either be described with the BE+d model Eq. (3.15)
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4 Building Blocks of Orbit Correction Software at DELTA

or the transfer map model with dispersion Eq. (3.16). For the purpose of orbit correction, it

is useful to normalize the orbit response as in [66]

R⃗xk =
∆x⃗(∆θxk)

∆θxk
(4.1)

and aggregate the orbit responses of all steerer magnets in the ORM Rx, where the orbit

response of each steerer magnet is a column of the matrix. The ORM allows to calculate the

orbit response when changing the strength of all horizontal steerer magnets by ∆θ⃗x as

∆x⃗ = Rx∆θ⃗x. (4.2)

The ORM in both controller generations is measured by exciting each steerer magnet individu-

ally. A schematic drawing of the measurement process for a single element is given in Fig. 4.1.

The implementation of the measurement process was done by [36]. Although it is possible to

measure an ORM with an electric-current denominator, using the steerer strength calculated

via the i2k conversion tool [12] instead makes the ORM more resilient to optics changes. This

is a result of the steerer magnets being mounted on quadrupoles at DELTA (see Ch. 2.2.3 for

details). Changing optics, which implies altering quadrupole currents, therefore also changes

the deflection angles of the steerer magnets. In addition to that, a steerer-strength denomina-

tor allows an ORM to be used at different beam energies. As DELTA is not ramped anymore,

this is, however, more of a theoretical argument.

Figure 4.1: Measuring an element of the horizontal ORM at a BPM j for the horizontal steerer magnet
(HSM) k relative to the ideal orbit. Initially, the steerer strength at the HSM and the orbit
are both zero. After applying a steerer strength θxk, which can be interpreted as kick angle,
the orbit at the BPM changes to xj .
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4.3 Weighted Root Mean Square of Orbit Errors

4.3 Weighted Root Mean Square of Orbit Errors

An orbit correction software requires a scalar figure of merit determining the quality of orbit

correction for optimizing the orbit. This quantity is the weighted root mean square of orbit

errors (WRMS) [12]

WRMS(⃗ϵx) = ||Wxϵ⃗x||2 =

√√√√ 1

J

J∑

j=1

w2
xjϵ

2
xj . (4.3)

Here, ||...||2 marks the Euclidean vector norm and ϵ⃗x are the orbit errors Eq. (2.19). The

WRMS maps the vector product of weighted errors to a scalar. Compared to the l1 vector

norm, the Euclidean vector norm has the benefit of increasing with the square of orbit devia-

tions at each BPM. This makes the software preferably correct the orbit at BPMs with large

orbit errors if the orbit cannot be corrected onto the orbit reference everywhere. The latter

is common at storage rings with less steerer magnets than BPMs. The strong imbalance of

steerer magnets and BPMs at DELTA makes it necessary to additionally add a weight matrix

Wx to the Euclidean norm. It is a diagonal matrix multiplying the orbit error at each BPM

with a BPM-specific weight wxj . It is necessary to achieve an above-average orbit correc-

tion quality at the injection septum, the undulators U55 and U250 and some source points

of beamlines. Figure 4.2 displays a plot of the weight distribution at DELTA. Combined, the

heuristics of the WRMS make orbit correction at important BPMs (large weights) a priority

for the orbit correction software if the orbit errors at less important BPMs (small weights) are

not too large.
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Figure 4.2: BPM weights from orbit reference reference.200710-2 used in user operation at DELTA.
The largest weights > 1000 are assigned to the injection septum and the undulator U55.
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4.3.1 Physical Interpretation

The process of orbit correction theoretically distributes the weighted orbit errors between all

BPMs equally. In situations where the orbit correction is optimal, the WRMS value should

therefore equal the product of weight and orbit error at each BPM

WRMS(⃗ϵ∗x) ≈ wxjϵxj . (4.4)

In this approximation, a WRMS value of 2mm makes the orbit error about 2 µm at a BPM

with weight 1000 and 4 µm at a BPM with weight 500. This interpretation only works for the

largest weight tier at DELTA (> 1000) well because the orbit correction software internally

uses the square of the orbit WRMS. The impact of an orbit error at a BPM with weight 1000

on orbit correction is therefore 100 times bigger than the impact of the same orbit error at

another BPM with weight 100. The smaller weights ≤ 100 are so much smaller than the largest

weight tier that the approximation given in Eq. (4.4) is lost in noise. Another limitation of

this interpretation is the resolution of the BPMs.
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4.4 Orbit Correction

4.4 Orbit Correction

The process of orbit correction refers to finding a set of steerer strength corrections that correct

a given set of orbit errors. If the ORM is a square matrix and is full rank, the optimal steerer

strength corrections can be obtained by inverting

Rx∆θ⃗∗x = ϵ⃗x (4.5)

yielding [14]

∆θ⃗∗x = R−1
x ϵ⃗x. (4.6)

At many storage rings including DELTA, neither is the case. In more general terms, the

process of orbit correction refers to finding an orbit with a better orbit correction quality that

can be parameterized as minimizing the WRMS of the expected orbit errors ϵ⃗x+Rx∆θ⃗x after

correction

min
∆θ⃗x

WRMS
(
ϵ⃗x +Rx∆θ⃗x

)
. (4.7)

The minimization process distributes the weighted orbit errors evenly across all BPMs (see Ch.

4.3.1). This and similar optimization problems introduced are referred to as orbit correction

problems in this work as their formulation and methods to solve them lie at the heart of

both orbit correction software generations, the SVD-based software from 2004 and the new

IPM-based software.

4.4.1 Singular Value Decomposition

The orbit correction problem can be solved by pseudoinversion of the ORM via SVD. An

additional application of SVD is found in regularization. Both techniques are widely used

in accelerator physics and are explained in the following. SVD decomposes the ORM into a

matrix product [69]

Rx = UΣV T (4.8)

that can be interpreted as a principal component analysis of the data set of steerer-specific

orbit responses R⃗xk that forms the ORM

Rx =
(
R⃗xk

)
. (4.9)

Here, k = 1 · · · K indexes the K steerer magnets. The first factor

U = (u⃗j), (4.10)
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where j = 1 · · · J indexes the J BPMs, contains the principal components u⃗j . It is a (J × J)

orthonormal matrix. The principal components pose an alternative basis for the K columns

and are chosen iteratively with each additional principal component maximising the described

data variance while being orthonormal to all its kin. There are as many principal components

as there are BPMs. At DELTA (J > K), the second factor

Σ =




σ1 . . . 0
...

. . .
...

0 . . . σi
...

. . .
...

0 0 0




(4.11)

is a rectangular (J ×K) diagonal matrix. Its diagonal is made up of real numbers σi called

singular values where the size of the i-th singular value reflects the data variance described by

the i-th principal component. Since each additional principal component stands for equal or

lower data variance, its corresponding singular value is also the same or smaller. This evolution

can be visualized in a so-called singular value spectrum (see example in Fig. 4.3). If J > K,

there are K singular values. The third factor

V T = (v⃗k)
T (4.12)

is a (K×K) orthonormal matrix. It contains principal-component coefficients for each steerer.

The orbit response of each steerer magnet can therefore be written as sum of principal com-

ponents

R⃗xk =

I=K∑

i=1

σiviku⃗i for J > K (4.13)

where the coefficients determine how much each principal component contributes. The first

coefficient, the singular value, is the same for all steerer magnets. The second coefficient vik

is steerer-specific. The importance of the principal components hence varies from steerer to

steerer. In a real ORM, the first principal components are significantly more important than

the last few principal components as the corresponding singular values are orders of magnitude

apart (see also example in Fig. 4.3).

Pseudoinverse

The SVD matrix product can be inverted by individually inverting each matrix yielding the

Moore-Penrose pseudoinverse of the ORM [70]

R+
x = V Σ+UT. (4.14)
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Figure 4.3: Singular value spectrum for the horizontal part of the ORM response.160311-1 (left) and the
principal component decomposition of the orbit response of the horizontal steerer magnet
HSM04 R⃗x4 from the same matrix according to equation (4.13) (right). Each singular value
belongs to the principal component of the same color. The orbit response at BPM12 is zero
because the BPM is currently not in use due to one of its four pick-up electrodes being
broken.

Here, the pseudoinverse Σ+ is calculated by transposing Σ and replacing each sigular value on

its diagonal with its own reciprocal value. The matrix inverses of the two orthogonal matrices

are their transposes. A pseudoinverse has similar properties as an inverse matrix as it fulfills

[71]

RxR
+
x = I (4.15)

where I is the unit matrix. Yet, attempting to solve a linear equation system with a pseu-

doinverse only gives the best possible solution in a least-squares sense [70]. An optimal set of

steerer strengths

θ⃗∗x = R+
x ∆x⃗ (4.16)

calculated with the pseudoinverse therefore solves the orbit correction problem 4.7.

Regularization

Regularization refers to the heuristic modification of the objective function of an optimization

problem to achieve a more desirable outcome. In the context of orbit correction, it refers to

altering the orbit correction problem in a way that it prefers smaller steerer strength corrections

while still decreasing the WRMS. This goal reflects the limited accuracy of the linear orbit

response model: the larger the steerer strength, the more the accuracy of the model decreases.

Non-linearities of magnetic fields and BPMs are among the reasons for the limited accuracy.

Large changes of the steerer strength may therefore yield unexpected results. At DELTA,

the traditional way to go about regularization is to remove principal components from the
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4 Building Blocks of Orbit Correction Software at DELTA

ORM. This requires decomposing the matrix according to Eq. (4.8), replacing a number of the

smallest singular values in the Σ matrix with zeros and then putting the matrix back together.

While pruning singular values changes the steerer strength corrections resulting from an orbit

correction quite substantially, the expected WRMS does not change much as long as the cutting

is limited to just a few singular values (see example in Fig. 4.4). The number of principal

components removed at DELTA depends on the ORM that is in use. An unwanted side-effect

of this regularization technique is the rank reduction of the ORM because it introduces linear

dependencies among steerer magnets. Linearly dependent steerer magnets are not assigned

with unique steerer strengths when solving the orbit correction problem. Instead, their optimal

steerer strength setting depends on their linearly dependent kin. As such, the steerer strength

from a linearly dependent steerer may change over time and introduce orbit noise. A method

to prevent this issue, which is employed by the new IPM-based software, is presented in Ch.

5.2.2.
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Figure 4.4: Effect of regularization on an orbit correction: weighted orbit errors measured in March
2021 are corrected towards the weighted orbit reference reference.201207-1 with the regu-
larized ORM response.160311-1. The more singular values are removed, the worse the orbit
correction becomes as signaled by an increasing WRMS of orbit errors after the orbit cor-
rection commenced WRMS[∆x⃗∗] (gray line). This is, however, accompanied by a decreasing

average change in steerer strength |∆θ⃗∗x| (bar plot). The colors of the bars reflect the color
coding of the singular value spectrum and the principal components of HSM04 presented
in Fig. 4.3. In this example, it would be a reasonable decision to exclude one principal
component from the orbit response matrix before correcting the orbit as it cuts the required
average change in steerer strengths nearly in half to around 0.28mrad but increases the
WRMS only marginally to about 0.35mm.
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4.4 Orbit Correction

4.4.2 Insufficient Steerer Strength

The available steerer strength may at times be insufficient to correct a given vector of orbit

errors. In that case, inequality constraints for the steerer strengths have to be added to the

orbit correction problem. The minimization problem then becomes [12]

min
∆θ⃗x

WRMS
(
ϵ⃗x +Rx∆θ⃗x

)
(4.17)

subject to θ⃗min
x ≤ θ⃗x +∆θ⃗x ≤ θ⃗max

x (4.18)

where θ⃗min
x and θ⃗max

x are the lower and upper constraints on the strength of each steerer. A

solution of the constrained orbit correction problem satisfies the Karush-Kuhn-Tucker theo-

rem [69]. It states that for an optimization problem with objective function f(x⃗) subject to

inequality constraints g⃗(x⃗) ≤ 0 and equality constraints h⃗(x⃗) = 0 the point x⃗∗ is an optimal

solution if there are coefficients µ⃗∗ and λ⃗∗ so that the Lagrangian

L(x⃗, µ⃗, λ⃗) = µ⃗Tg⃗(x⃗) + λ⃗Th⃗(x⃗) (4.19)

is stationary at the minimum

∇⃗L(x⃗∗, µ⃗∗, λ⃗∗) = 0. (4.20)

The coefficients are commonly referred to as Lagrange multipliers. The application of the

gradient gives a set of equations that are the Karush-Kuhn-Tucker conditions. The Karush-

Kuhn-Tucker conditions for the problem at hand are

grad
(
WRMS

(
ϵ⃗x +Rx∆θ⃗∗x

))
=
∑

k

(
µmin
k

)∗
n⃗min
k +

∑

k

(µmax
k )∗n⃗max

k . (4.21)

Here, the strength limits of each steerer magnet k = 1, · · · , K are expressed via the normal

vectors of the constant minimum and maximum inequality constraints n⃗min
k and n⃗max

k with

corresponding Lagrange multipliers µmin
k and µmax

k . The (...)∗ marks the optimal multiplier.

In the prameterization used here, the normal vectors point away from the origin. This way, the

coefficients µk have to be positive for the inequality constraints to take effect. The constraint

is called active in this case. If one constraining plane is active, the Karush-Kuhn-Tucker

conditions require the gradient of the objective function and the normal vectors of the active

constraining plane to be parallel (see example in Fig. 4.5). If there are more constraining

planes, the gradient has to be part of the cone spanned up by the normal vectors of all

constraining planes.

Common methods to solve non-linear optimization problems subject to equality constraints,

like attempting to solve the Karush-Kuhn-Tucker conditions directly, which is known as

method of Lagrange multipliers [69], do not generalize to optimization problems subject to

inequality constraints because it is impossible to know which inequality constraints are active

for a given problem instance before solving it. Therefore, alternative methods to find the
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4 Building Blocks of Orbit Correction Software at DELTA

Figure 4.5: Color-coded simulated objective function value of the orbit correction problem (minimum
value violet) as a function of the steerer strengths. The black box marks the area that can
be reached with the available steerer strength. The unconstrained solution is outside of
the constraints putting the constrained solution on the upper constraint of the first steerer
strength. There, the constraint is a tangent to the isoline making the gradient of the
objective function and the normal vector of the constraining plane parallel. This satisfies
the Karush-Kuhn-Tucker conditions.

solution to the constrained orbit correction problem are required. Two methods employed by

the SVD-based software, the strategy of orthogonal projections and the strategy of the active

set [12], are introduced in the following. Both use an iterative approach to converge to the

constrained solution in weighted orbit space. Here, the isolines of the objective are circles and

the solution to the constrained orbit correction problem is the point on the active constraining

planes that is closest to the unconstrained solution. Both strategies require the unconstrained

solution, which is calculated via SVD, as input. As heuristic methods, both strategies suffer

from the same theoretical problem: neither can be proven to converge in a finite number of

steps or converge at all. In numerical tests with up to five constrained steerer magnets, both

strategies, however, found the optimal solution conforming with the Karush-Kuhn-Tucker con-

ditions in about 100ms in all examined cases.

Strategy of Orthogonal Projections

The strategy of orthogonal projections projects the unconstrained solution onto one constrain-

ing plane at a time until a solution is found [12]. The criterion for selecting the next plane is

the distance of the partially converged solution to the origin within the subspace of remain-

ing active constraining planes. An example of this method is given in Fig. 4.6 (left). In

the example, the top and right constraints are active. The strategy of orthogonal projections

firstly picks the closest point on the top constraint x⃗∗1 because it is closer to the unconstrained

solution x⃗∗ than the closest point on the right constraint. As x⃗∗1 is still outside of the right

constraint, it is projected onto this constraint in x⃗∗2 in a second step. Here, the algorithm stops

because no active planes remain.
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4.4 Orbit Correction

Strategy of the Active Set

The strategy of the active set determines where the vector of the unconstrained solution

intersects the constraining planes. From there, the strategy follows the constraining planes

until it finds the constrained solution. An example of this method is given in Figure 4.6 (right).

In the example, the strategy of the active set tracks through the interior of the constrained set

towards the unconstrained solution x⃗∗ until it hits the right constraint in x⃗∗1. From here, the

strategy follows this now active constraining plane upward. The search ends in the intersection

of the top and right constraints in x⃗∗2 as this point is the closest point to the unconstrained

solution that still adheres to the constraints.

Figure 4.6: Strategy of orthogonal projections (left) and strategy of the active set (right) from [12]
demonstrated on the color-coded simulated objective function value (minimum value violet)
as a function of the weighted orbit errors for two steerers and two BPMs.

4.4.3 Method of the Most Effective Steerer Magnet

One of the earliest automated approaches to orbit correction was the method of the most

effective steerer magnet developed at CERN in 1973 [72]. Instead of using all steerer magnets

for an orbit correction, this approach only utilizes the single most effective steerer magnet.

That steerer magnet is found by solving the orbit correction problem Eq. (4.7) for each steerer

separately and then selecting the steerer that performs best for applying the orbit correction.

This procedural simplicity also allows to subjugate the solution to inequality steerer strength

constraints. Compared to solving the (constrained) orbit correction problem with all steerer

magnets, the orbit correction resulting from the method of the most effective steerer magnet is

only optimal if the orbit perturbation is caused by a single dipole error with a steerer magnet

close-by [14]. In all other cases, orbit correction with this method produces sub-optimal

results and leads to non-reproducible steerer strengths. The approach was tested at DELTA

[36] but soon replaced by the SVD-based software (see Ch. 4.4.2) due to its shortcomings

[12]. Still, the method has one advantage. At DELTA, one of the limiting factors of orbit

correction quality is the resolution of the power supplies driving the steerer magnets. As the

method of the most effective steerer magnet only uses a single steerer, the applied correction
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4 Building Blocks of Orbit Correction Software at DELTA

is larger than the average strength correction per steerer magnet calculated when solving the

orbit correction problem with all steerer magnets. The SVD-based and IPM-based correction

methods therefore hit the resolution limit earlier than the method of the most effective steerer

magnet. The new software (see Ch. 5 for program details) switches to the method of the best

steerer magnet below an adjustable WRMS limit that allows it to surpass the orbit correction

quality achieved with the SVD-based software (see Ch. 7.1 for an experimental comparison).
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5 New Orbit Correction Software

The last Ch. 4 introduced orbit response matrices (ORMs), the weighted root-mean-square

(WRMS) of orbit errors and the constrained orbit correction problem as basic building blocks

of both orbit correction software generations at DELTA. This chapter focuses on the three

modes of orbit and energy correction available in the new software. All modes are built on

an interior point method (IPM) for quadratic programs. After Ch. 6 will have presented a

proof-of-principle simulation study for one of the energy-correction modes, Ch. 7 provides

experimental results for the orbit-correction mode and both energy-correction modes.

5.1 Quadratic Programs

The new software uses an IPM for quadratic programs to solve the orbit correction problem.

The advantage of this method is its convergence speed, scalability and built-in acceptance for

linear equality and inequality constraints. The constraints are useful to construct additional

features like steerer-strength and orbit constraints. The latter are necessary for developing

methods for energy correction (see Ch. 5.3). Quadratic programs are a type of convex opti-

mization problem. Their general form is [73]

minimize
ϑ⃗

1

2
ϑ⃗TQϑ⃗+ q⃗Tϑ⃗ (5.1)

subject to Aϑ⃗ = a⃗ (5.2)

Bϑ⃗ ≤ b⃗ (5.3)

where ϑ⃗ are the optimization variables and the matrices Q, A and B as well as the vectors q⃗,

a⃗ and b⃗ contain real numbers. The matrix Q is positive semidefinite.

5.1.1 Interior Point Method

An IPM for quadratic programs is an optimization approach designed to find a solution for Eq.

(5.1) by iterating over vectors ϑ⃗ stemming from the interior of the feasible set until it finds an

optimal vector ϑ⃗∗ (see schematic in Fig. 5.1). All possible vectors ϑ⃗ satisfying the constraints

define the feasible set. The interior of the feasible set excludes its surface. IPMs therefore

approximate the solution of an optimization problem if the optimal vector of optimization

variables belongs to the surface.

Quadratic programs are a subset of second-order cone programs (SOCPs) because their feasible

set can be written as a product of Lorentz cones [74]. General rules for converting a range
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5 New Orbit Correction Software

Figure 5.1: Path of an IPM from start ϑ⃗0 to optimum through the color-coded interior of a 2D feasible
set (minimum value violet). The surface separates interior and exterior.

of optimization problems to SOCPs can be found in [75]. A simple example is the quadratic

program

minimize
ϑ1, ϑ2

ϑ2
1 + ϑ2

2 (5.4)

that is represented by the SOCP

minimize
f

f (5.5)

subject to
√
ϑ2
1 + ϑ2

2 ≤ f (5.6)

with a scalar objective f . The quadratic objective of the original problem is converted to

an inequality constraint
√
ϑ2
1 + ϑ2

2 ≤ f equivalent to a Lorentz cone. Figure 5.2 shows a

schematic drawing of the feasible set. Similar to linear programs, SOCPs are subjects of

a duality theorem: every SOCP has a twin, another optimization problem whose objective

determines a lower bound for the objective function of the original optimization problem.

Since the original optimization problem is a minimization problem, the twin is a maximization

problem. The original problem is called primal. The twin is called dual. If the primal is

robust feasible, the dual is robust solvable and vice versa. Any optimization problem with a

non-empty feasible set is “feasible”. The addition of “robust” demands feasibility of the primal

under small perturbations. The property “robust solvable” similarly certifies solvability for

the dual under small perturbations.

The method used to solve quadratic programs for applications described in this work is coneqp

from the CVXOPT Python package [76]. It is a primal-dual IPM that exploits the duality of

quadratic programs by solving the primal problem and the dual problem simultaneously [77].

This allows coneqp to calculate the difference between the objective of the primal and the

objective of the dual after each step. The difference is called duality gap and it decreases

to zero if optimality is reached. The coneqp method encodes the constraints of the primal
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Figure 5.2: A Lorentz cone representing the feasible set of the SOCP example Eq. (5.5).

and the dual problems in their respective objectives with self-concordant logarithmic barrier

functions. These allow solving the primal and the dual as unconstrained optimization problems

via a Newton approach. With each Newton step, coneqp tracks through the interior of the

feasible set of both problems along the central path leading from the minimum of the barrier

to the minimum of the constrained objective, the sum of the unconstrained objective and the

barrier [75]. The influence of the barrier on the constrained objective is controlled by a penalty

parameter that decreases step-by-step. Since the logarithmic barrier functions go to infinity

if their argument goes to zero, the constraints remain encoded in the constrained objective

even if the penalty parameter is very small. The central path is set by the minimum of the

constrained objective changing step-by-step. The solver follows the minimum. This approach

exploits the local fast convergence of the Newton method. If the duality gap after any Newton

step is sufficiently close to zero, coneqp terminates. Primal-dual IPMs with self-concordant

barrier functions employing the central-path-following scheme, like coneqp, increase their target

accuracy by a fixed percentage with every step and converge with a small number of iterations

almost independent of problem size and data [73]. This makes them a popular choice for

solving quadratic programs.

5.2 Orbit-Correction Mode

The orbit-correction mode estimates the optimal steerer strength corrections ∆θ⃗∗x for a hori-

zontal orbit correction Eq. 2.20 and Eq. (2.21) either using the method of the most effective

steerer magnet (see Ch. 4.4.3 for details) or via the following two steps:

1. Calculate relative steerer strength corrections ∆ϑ⃗∗ that steer the orbit towards the orbit

reference (see Ch. 5.2.1).

2. Calculate new and equally distributed absolute steerer strengths ϑ⃗∗ by reshuffling the

results of the first step θ⃗x +∆ϑ⃗∗ (see Ch. 5.2.2). The final steerer strength corrections

are then given by ∆θ⃗∗x = ϑ⃗∗ − θ⃗x.
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The solution retains all features from both individual steps meaning that the orbit is steered

towards the orbit reference, unique values are assigned to linearly dependent steerer magnets

and steerer-strength as well as orbit-constraints are respected. The method of the best steerer

magnet is used if the orbit WRMS is below a certain threshold (program setting). This setup

allows to bypass the lower WRMS bound imposed by the resolution of the current sources of

the steerer magnets. However, using the method of the best steerer magnet comes at the cost

of unreproducible steerer strengths. Also, orbit constraints cannot be used. Both should be

acceptable as orbit corrections hardly move the orbit if the WRMS is already small.

The new orbit correction software offers two more modes that add either energy stabilization

or path length shortening to the feature list (see Ch. 5.3 for details). A schematic comparison

of all modes is shown in Fig. 5.3).

Figure 5.3: An overview of the three modes of the software: the orbit correction mode (blue) introduced
in Ch. 5.2 as well as the energy-stabilizing and orbit-shortening modes (green and red)

explained in Ch. 5.3. Here, θ⃗x and f are the steerer strengths and the RF frequency before
the orbit correction and ∆θ⃗∗x and ∆f∗ are changes to these quantities.

5.2.1 Method for Correcting the Orbit

Finding a set of relative steerer strength corrections ∆ϑ⃗ that steer the orbit towards the orbit

reference requires solving the constrained orbit correction problem Eq. (4.17). Expanding the

squared objective function gives

∣∣∣
∣∣∣Wx

(
ϵ⃗x +Rx∆ϑ⃗

)∣∣∣
∣∣∣
2

2
(5.7)

= ε⃗TxW
T
x Wxε⃗x + 2ε⃗TxW

T
x WxRx∆ϑ⃗+∆ϑ⃗TRT

xW
T
x WxRx∆ϑ⃗. (5.8)
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After dropping the constant term ε⃗TxW
T
x Wxε⃗x, the orbit correction problem with the steerer-

strength constraints

θ⃗min
x ≤ θ⃗x +∆ϑ⃗ ≤ θ⃗max

x (5.9)

can be parameterized as quadratic program

minimize
∆ϑ⃗

ε⃗TxW
T
x WxRx∆ϑ⃗+

1

2
∆ϑ⃗TRT

xW
T
x WxRx∆ϑ⃗ (5.10)

subject to

(
−1

1

)
∆ϑ⃗ ≤

(
θ⃗x − θ⃗min

x

−θ⃗x + θ⃗max
x

)
. (5.11)

The coefficient matrixRT
xW

T
x WxRx is positive definite because it is a product of two matrices,

the ORM Rx and the weight matrix Wx, with the same property. The objective function

is a multi-dimensional parabola in this case. Removing singular values for the purpose of

regularization makes the coefficient matrix positive semidefinite and the parabola looses the

same number of dimensions. The IPM also allows to add orbit constraints

x⃗min ≤ x⃗+Rx∆ϑ⃗ ≤ x⃗max (5.12)

in the equivalent quadratic-program compliant form

(
−Rx

Rx

)
∆ϑ⃗ ≤

(
x⃗− x⃗min

−x⃗+ x⃗max

)
(5.13)

to the orbit correction problem. The constraints model a software aperture that the orbit

cannot exceed. A software aperture is useful to limit orbit movements where the range of

permitted orbit errors is small. Empirically, this is around BPM23 the case at DELTA. Here,

the vacuum chamber heats up if the vertical orbit reference is altered by less than 1mm [78].

Using orbit constraints in the orbit correction problem requires the orbit before correction x⃗

and the software aperture (x⃗min, x⃗max) as additional inputs.

5.2.2 Method for Distributing Steerer Strengths Equally

Regularization is achieved by removing singular values from the ORM (see part of Ch. 4.4.1

dedicated to regularization). Removing 1 singular value, however, also decreases the rank of

the ORM by 1. The more singular values are removed, the more steerer magnets become lin-

early dependent. At time of writing, 2 and 3 vertical singular values are cut in user operation

resulting in 2 horizontal and 3 vertical linearly dependent steerer magnets. These pose a prob-

lem because the orbit correction program cannot assign a unique optimal steerer strength to

them in an orbit correction. Instead, the optimal steerer strength of these magnets depends on

their linearly dependent kin. This behavior can cause steerer strengths of linearly dependent

steerer magnets to fluctuate throughout operation which can in turn destabilize orbit. Mini-

mizing the squared steerer strengths ϑ⃗Tϑ⃗ while maintaining the already corrected orbit solves
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this problem as steerer strength gets redirected from steerer magnets with large values to those

with small values. This leads to steerer strength being distributed equally among linearly de-

pendent steerer magnets. The quadratic program representing the sketched-out approach and

that additionally respects the limited range of steerer strengths via inequality constraints is

minimize
ϑ⃗

ϑ⃗Tϑ⃗ (5.14)

subject to Rxϑ⃗ = Rx

(
θ⃗x +∆ϑ⃗∗

)
(5.15)

(
−1

1

)
ϑ⃗ ≤

(
−θ⃗min

x

θ⃗max
x

)
. (5.16)

Here, ∆ϑ⃗∗ are the steerer strength corrections resulting from solving minimization problem

Eq. (5.10) and 1 is a diagonal matrix of 1s.
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5.3 Energy-Correction Modes

As explained in Ch. 3.3, the RF frequency, the transverse orbit and the beam energy are related:

if the RF frequency or the transverse orbit changes, the beam energy adapts. This dependence

can be exploited to correct the beam energy via an SOFB. Altering the RF frequency by ∆f

changes the beam energy by δ according to Eq. (3.13) and the transverse orbit position by

δDx(s), where Dx(s) is the horizontal dispersion function. The dispersive orbit shift makes it

possible to treat the RF cavity like a steerer magnet in the orbit correction problem, a steerer

that also affects the beam energy. As the energy is not directly measured, only one of two

rules may be applied: either maintain the current energy without changing the orbit or find

the smallest energy while keeping the orbit changes to a minimum. The latter is equivalent

to finding the shortest orbit. Both methods are introduced in the following and build the

basis for two additional modes (see Fig. 5.3 for a comparison). The correction method for

stabilizing the beam energy (see Ch. 5.3.1) in conjunction with the method distributing steerer

strengths equally (see Ch. 5.2.2) together constitute the energy-stabilizing mode. The method

determining steerer strengths for orbit corrections (see Ch. 5.2.1) and the method for shortening

the orbit (see Ch. 5.3.2) together constitute the orbit-shortening mode.

5.3.1 Method for Stabilizing the Beam Energy

The orbit correction problem can be modified to find steerer strengths that correct both the

beam energy and the transverse orbit position [49]. The method was first introduced at the

European Synchrotron Radiation Facility (ESRF) where it was used in conjunction with SVD.

Since then, similar methods were adopted at KARA (formally ANKA) [79] as well as BESSY

II and the MLS [80]. At BESSY II, the energy stabilizing capabilities of this approach are

regularly checked via Compton backscattering. A similar method was also implemented in

the SVD-based software at DELTA but only partially tested (see discussion below) [12]. The

approach layed out in the following takes the original idea from the ESRF and adapts it to the

IPM used in the new software by parameterizing it as quadratic program with steerer strength

and optional orbit constraints.

Orbit errors may fall under one of three categories requiring the orbit correction software to

react differently each time:

1. The orbit errors are dispersive ε⃗x ∝ D⃗x and modulate the orbit length by ∆sr. As ∆f

is initially zero, this causes an energy shift

δ =
∆sr
αL

(5.17)
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according to Eq. (3.13). Here, α is the momentum compation factor and L the circumfer-

ence of the storage ring. To correct the orbit and the beam energy, the orbit correction

software must apply an RF frequency correction ∆f∗ so that

f

f +∆f∗ − 1 =
∆sr
L

(5.18)

is fulfilled. Then follows δ = 0 and the beam energy remains unchanged.

2. The orbit errors are non-dispersive and do not affect the orbit length and hence the

beam energy. Here, the orbit correction software must modulate the steerer strengths

according to the solution of the orbit correction problem Eq. (5.10) to correct the orbit.

3. A combination of both.

All three scenarios are covered by solving a modified orbit correction problem

minimize
∆ϑ⃗,∆f

∣∣∣
∣∣∣ε⃗x +Rx∆ϑ⃗+ D⃗x∆f

∣∣∣
∣∣∣
2

2︸ ︷︷ ︸
objective A

+
K∑

k=1

∆ϑ2
k

︸ ︷︷ ︸
objective B

(5.19)

that can be separated into two objectives. Objective A aims to minimize the orbit errors by

redistributing steerer strengths and employing the cavity like a steerer magnet. The steerer

strength of the RF cavity is the RF frequency correction ∆f that alters the orbit by ∆fD⃗x.

Here, D⃗x can be interpreted as the orbit response of the cavity. It is proportional to the

dispersion function D⃗x ∝ D⃗x. Objective B targets minimizing the total steerer strength

excluding the RF frequency correction. The combined objective can be summarized as follows:

correct the orbit (objective A) while using the RF cavity as much as possible (objective B). If

the ORM is a square matrix and has full rank, the cavity orbit response is linearly dependent

on the steerer magnets. In this case, the objective A not only decreases to zero but can

stay that way even when the steerer strengths are reshuffled by objective B. Both objectives

are therefore independent and can be minimized at the same time. That means the steerer

magnets alone are used for non-dispersive orbit steering while any dispersive orbit drift is

corrected with an appropriate frequency correction. If this energy-stabilizing mode is used on

an already corrected orbit, it prevents any further energy drift and thereby effectively “locks

in” the beam energy at the time of method activation. The orbit remains corrected as well.

Some storage rings are equipped with less steerer magnets than BPMs though. This makes

their ORM non-square. The optimization problem Eq. (5.19) can then only be solved in a

least-square sense. Potentially, this poses a problem because the cavity might also be used for

non-dispersive orbit steering.
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The quadratic program representing the modified orbit correction problem with additional

steerer-strength constraints is

minimize
∆φ⃗

∆u⃗TRI∆φ⃗+
1

2
∆φ⃗TRT

I RI∆φ⃗ (5.20)

subject to

(
−1

1

)
∆φ⃗ ≤

(
φ⃗− φ⃗min

−φ⃗+ φ⃗max

)
. (5.21)

Here, the RF frequency correction ∆f is added to the optimization variables

∆φ⃗ = (∆ϑ1, · · · ,∆ϑKx , ∆f )T (5.22)

requiring the current RF frequency f and optionally some RF frequency limits fmin and fmax

to be appended the current steerer strengths θ⃗x and their constraints θ⃗min
x and θ⃗max

x resulting

in φ⃗, φ⃗min and φ⃗max. The ORM is extended by an additional column and an additional row

yielding

RI =




Dx1

Rx
...

DxJ

1 · · · 1 0



. (5.23)

The changed dimensions of the ORM RI make it necessary to append a 0 to the vector of orbit

errors

∆u⃗ = (∆εx1 , · · · ,∆εxJ , 0 )
T. (5.24)

The energy-stabilization enhanced orbit correction problem Eq. (5.20) can be used interchange-

ably with the standard orbit correction problem Eq. (5.10) and is compatible with the method

introduced in Ch. 5.2.2 to distribute steerer strengths equally. Similarly to the standard prob-

lem, the modified model can be supplemented with orbit constraints to include a software

aperture.

Discussion

DELTA does not fit the method template. The reason is that the storage ring is equipped

with less BPMS (see Ch. 2.2.2) than horizontal steerer magnets (see Ch. 2.2.3): the ratio is

J = 54 by Kx = 30. This gives the unregularized horizontal ORM a rank of 30 while the rank

of the ideal square full-rank matrix is 54. DELTA therefore requires 14 additional steerers to

fulfill the requirements of the energy-stabilizing mode. Still, the fact that KARA employs a

very similar method [79] with 40 BPMs [81] and 28 horizontal steerer magnets [82] points to

the ratio not being too important. An initial measurement presented in Ch. 7.2 indicates that

the energy-stabilizing mode without BPM weights also works at DELTA. The weights (see

Ch. 4.3) pose another problem. If they are included in Eq. (5.19) (requires multiplying the
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5 New Orbit Correction Software

equation with the weight matrix Wx), the method produces a different frequency correction

than without weights. This was numerically tested. Experimentally, this makes the orbit-

stabilizing mode with weights unusable: the orbit correction software just increases/decreases

the RF frequency until the beam is lost. Previous tests of a similar method in the SVD-based

program probably have encountered the same weight-related issue because the RF frequency

and steerer strengths diverged back then as well [12]. An idea to remove the weights and make

the energy-stabilizing mode work in user operation is discussed in the outlook in Ch. 12.2.
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5.3 Energy-Correction Modes

5.3.2 Method for Shortening the Orbit

The method finding unique settings for linearly dependent steerer magnets (see Ch. 5.2.2) is

modified in the following to additionally adjust the beam energy and find the shortest orbit

that fits the orbit reference. It works by minimizing the total steerer strength at the cost of

increasing the RF frequency correction via an optimization problem

minimize
ϑ⃗,∆f

K∑

k=1

ϑ2
k (5.25)

subject to Rxθ⃗x + D⃗x∆f = Rx

(
θ⃗x +∆ϑ⃗∗

)
. (5.26)

The already corrected orbit is kept stationary. In this form, the method to shorten the orbit

only works if the ORM is a square matrix with full rank making the frequency response linearly

dependent on the steerer magnets. Then, the steerer strengths and the RF frequency correction

can be reshuffled without affecting the BPM readings. For an operator, only the reduction in

overall steerer strengths |θ⃗| is visible when the method is used. Figure 5.4 shows a schematic

of the described effect.

Figure 5.4: Three orbits with different revolution frequencies 1/T but the same BPM readings: a long
orbit (red), a shorter orbit (blue) and the shortest orbit (black). The latter is also the ideal
orbit. All orbits receive a different kick θ from a steerer magnet. Given the different lengths
of all orbits, the RF frequency corresponding to each orbit is different as well.

The orbit-shortening mode can be adapted to storage rings with less steerer magnets than

BPMs by replacing the equality orbit constraints with inequality orbit constraints

Rx

(
θ⃗x +∆ϑ⃗∗

)
− 1

2
∆x⃗b ≤ RIIφ⃗ ≤ Rx

(
θ⃗x +∆ϑ⃗∗

)
+

1

2
∆x⃗b (5.27)

that keep the orbit within a thin band of

∆x⃗b =
∆x⃗max

b

diag(W )
(5.28)
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5 New Orbit Correction Software

around the corrected orbit. This modification makes it possible to deploy the orbit-shortening

mode at DELTA. The maximum width of the band is given by a vector of empiric values

∆x⃗max
b = (100 µm, · · · , 100 µm)T (5.29)

that worked well in a simulation and an experimental study (see Ch. 6 and Ch. 7.3). The

width scales inversely with the BPM weight keeping the orbit at more important BPMs more

stable. An unwanted side effect of the inequality constraints is the introduction of orbit noise.

The quadratic program representing the optimization problem with additional steerer-strength

constraints is

minimize
φ⃗

φ⃗TQIIφ⃗ (5.30)

subject to




1

−1

RII

−RII




· φ⃗ ≤




φ⃗max

−φ⃗min

Rx

(
θ⃗x +∆ϑ⃗∗

)
+ 1

2∆x⃗b

−Rx

(
θ⃗x +∆ϑ⃗∗

)
+ 1

2∆x⃗b



. (5.31)

The RF frequency correction ∆f is added to the optimization variables

φ⃗ = (ϑ1, · · · , ϑKx , ∆f )T (5.32)

and the ORM is extended by adding the frequency response Dx as an additional column

RII =




Dx1

Rx
...

DxJ


.

The diagonal matrix

QII = diag( 1, · · · , 1, 0) (5.33)

contains ones and a single zero in the end to minimize the summed squares of all optimization

variables except the RF frequency correction.
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6 Testing the Orbit-Shortening Mode in

a Simulation

The orbit-shortening mode introduced in Ch. 5.3.2 is tested in a simulation to demonstrate

that it finds the shortest orbit for an orbit reference. The simulation is an improved version

of [50].

6.1 Simulation

The simulation is based on a simple model of the storage ring at DELTA implemented in

Python that tracks how variations of the RF frequency and the steerer strengths affect the

beam energy and the horizontal closed orbit. Among other data, the simulation uses optical

functions from the MADX [83] del008.2001 [34] lattice model as input (see Ch. 2.4 for details

on the model). The PyMad Python package [84] is used as MADX-Python interface. The MADX-

Python hybrid approach is necessary to simulate a closed orbit that reflects changes of the

RF frequency as dispersive orbit drifts. MADX and other optics codes such as Elegant [85]

and the polymorphic tracking code (PTC) [86] ignore this phenomenon. The version of the

storage ring model used to generate results for this work improves on [50] by approximating the

curvature of the closed orbit in quadrupoles better. The enhanced simulation cuts the magnets

into slices and calculates a trajectory for every slice. This improves the path length calculation

when passing the quadrupoles off-center and resulted in a notable reduction of frequency and

energy oscillations while using the orbit-shortening mode in the simulated environment. The

Python model of the storage ring provides a simulated horizontal orbit

x⃗a = Ra
xθ⃗x + D⃗a

xδ (6.1)

at all BPMs to be accessed by the orbit-shortening mode. The model incorporates transverse

orbit effects from two sources: orbit displacements induced by the steerer magnets and disper-

sive orbit changes caused by the RF cavity. The orbit displacements from the steerer magnets

Ra
xθ⃗x are determined by a vector of steerer strengths θ⃗x and an ORM Ra

x. The matrix is cal-

culated via the BE model Eq. (3.10) with analytical steerer parameters given by Eq. (14.13)

from Twiss parameter output of the MADX Twiss module. The dispersive orbit changes D⃗a
xδ

are given by the product of the energy deviation δ and the dispersion function D⃗a
x that is also

supplied by the MADX Twiss module. The energy deviation is determined by the length of the

orbit. Therefore, it depends on the steerer strengths and the RF frequency. Whenever the
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6 Testing the Orbit-Shortening Mode in a Simulation

steerer strengths or the RF frequency change, the energy deviation needs to be recalculated

numerically in Python.

Figure 6.1: Part of the perturbed (red) and the unperturbed orbit (black). The orbit length of the
perturbed orbit is the sum over the orbit lengths in all elements.

6.1.1 Calculating the Beam Energy

The energy deviation, the RF frequency and the orbit length are related according to Eq.

(3.13) that is reformulated as

f

f +∆f
− 1 =

∆sδr(δ, θ⃗x)

L
(6.2)

by introducing a total orbit length variation

∆sδr(δ, θ⃗x) = L1(δ, θ⃗x)− L (6.3)

where L is the length of the design orbit and L1(δ, θ⃗x) is the length of the perturbed orbit. It

sums up the effect of the steerer magnets and the RF cavity on the orbit. The length of the

perturbed orbit is calculated numerically from an extended transverse orbit

x⃗b = Rb
xθ⃗x + D⃗b

xδ, (6.4)

a superset of x⃗a that additionally contains the horizontal orbit positions at the entries of all

drift spaces, quadrupoles, bending magnets and the RF cavity. The quantities Rb
x and D⃗b

x are

the ORM and the dispersion vector from the MADX Twiss module corresponding to the superset.

The length calculation iterates over all elements of the lattice adding up the distance between

horizontal orbit position at the entry and exit of each element in a two dimensional coordinate

system

L1(δ, θ⃗x) =
∑

i

li(δ, θ⃗x). (6.5)

Figure 6.1 demonstrates the relation of the element lengths and the orbit lengths. Quadrupoles

are subdivided into multiple parts to better capture the curved trajectory in the magnet. The
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6.2 Test Setup

beam path in dipole magnets is calculated as circular trajectory. Whenever the RF frequency

or the steerer strengths change, the Python storage ring model solves Eq. (6.2) numerically for

the energy deviation by minimizing

min
δ

∣∣∣∣∣
f

f +∆f
− 1− ∆s(δ, θ⃗x)

L

∣∣∣∣∣

2

. (6.6)

This requires iterating the following steps:

1. update δ;

2. calculate closed orbit;

3. calculate resulting orbit length variation ∆s(δ, θ⃗x) and

4. test if δ solves the minimization problem Eq. (6.6). Start over if not.

6.2 Test Setup

The orbit-shortening mode was tested by collecting statistical convergence data on the storage

ring model. For each run, the storage ring model was perturbed with equally distributed

random steerer strengths θ⃗x ∈ [−0.1mrad, 0.1mrad] and a constant RF frequency variation

∆f = 5kHz. The orbit-shortening mode was then executed 100 times. After each step, the

resulting steerer strength corrections ∆θ⃗∗x were applied with a step size of η = 0.7 according to

Eq. (2.20) to correct the orbit towards the reference, the unperturbed orbit. The stepsize was

selected empirically (see Ch. 2.3 for details). Ideally, the correction scheme should reduce all

steerer strengths and the frequency deviation back to zero while doing so, because the shortest

orbit is the orbit reference itself (see Ch. 5.3.2 on further explanations on the orbit shortening

mode). To calculate the orbit WRMS, real weights from a reference file were used.

6.3 Test Results

The evolution of the control variable of the correction scheme, the orbit WRMS, and the

evolution of the sum of the absolute steerer strengths |θ⃗x| for each of the 100 steps are presented

in Fig. 6.2. The evolution of the energy deviation δ and the evolution of the RF frequency

shift ∆f are given in Fig. 6.3.

The orbit WRMS according to Eq. (4.3) encodes the weighted distance between the orbit and

the reference. The large initial peak is caused by the initial perturbation of the RF frequency

and the steerer strengths that drive the orbit away from the orbit reference. Over several

steps, the WRMS decreases which signals an increasing match of orbit and orbit reference.

An orbit WRMS of zero means that the orbit and the reference are identical. After about 10

steps, the orbit WRMS is close to zero. The absolute steerer strengths and the RF frequency

deviation take about 25 steps to be corrected. The energy deviation moves similarly to the

RF frequency deviation. It underlines why the orbit-shortening mode is categorized as energy

61



6 Testing the Orbit-Shortening Mode in a Simulation

0 10 20 30 40 50
n

0.0

0.2

0.4

0.6

0.8

1.0
W

R
M

S
(m

m
)

0 10 20 30 40 50
n

0.00

0.01

0.02

0.03

0.04

0.05

|~ θ x
|(

m
ra

d
)

Figure 6.2: Evolution of the average orbit WRMS (left) and the average absolute steerer strengths |θ⃗x|
(right) of the storage ring model across 100 applications of the orbit-shortening mode. The
error bars mark the standard deviation of both quantities.

correction scheme. When decreasing the RF frequency, the orbit correction software increases

the beam energy.

All in all, the orbit-shortening mode corrects the orbit and (in this case) increases the orbit

length as intended. The correction process consists of two phases. In the first phase up to

step 10, orbit and energy correction are applied together. The second phase from step 10 to

step 25 only constitutes energy correction. Here, the steerer strengths and the RF frequency

deviation are reshuffled without changing the orbit much. The number of steps required to

converge is similar across all runs. The convergence time is therefore mostly independent of

the initial steerer-strength perturbation.
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Figure 6.3: Evolution of the average energy shift δ (left) and the average frequency shift ∆f (right) of
the storage ring model across 100 applications of the orbit-shortening mode. The error bars
mark the standard deviation of both quantities.
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7 Experimental Tests of the New Orbit

Correction Software

The new IPM-based orbit correction software was introduced in Ch. 5. After its orbit-

shortening mode was already shown to work in a simulation in Ch. 6, this Chapter presents

experimental results for the orbit-correction mode, the energy-stabilizing mode and also the

orbit-shortening mode. A summary and an outlook can be found in the final Ch. 12.

7.1 Comparison with its Predecessor

The orbit stability is characterized by the minimum WRMS reached with the SOFB and the

evolution of this state over time as it is impeded by thermal movements of the vacuum chamber

and magnetic field errors. The orbit stabilities offered by the the SVD-based software and the

new IPM-based software were compared in 2020 when the old superconducting wiggler SAW

(see Ch. 2.2.1 for details) was still in operation. The magnetic fields of the SAW applied a net

horizontal kick to the beam proportional to its field strength. In contrast to the new SCW,

the superconducting coils of the SAW were not permanently connected to its power supplies

and had to be actively recharged every 12 to 24 hours. Between these events, the magnetic

field strength of the wiggler and its net horizontal kick decreased and distorted the orbit. In

user operation, correcting the resulting orbit drift was an important duty of the SOFB. The

performances of the SVD-based software and the IPM-based software were monitored in this

environment with the SAW in two consecutive measurements. Both software generations used

the same ORM and the same orbit reference.

7.1.1 Results

The results for the orbit WRMS are given in Fig. 7.1 for the old and and Fig. 7.2 for the new

software. Both software generations achieve a good orbit stability during SAW operation. The

average orbit WRMS (see Ch. 4.3 for an explanation) of the old software is

WRMS
old
x = 2.1mm± 1.1mm (7.1)

in the horizontal plane and

WRMS
old
y = 1.0mm± 0.3mm (7.2)
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Figure 7.1: Horizontal orbit WRMS (left: blue), vertical orbit WRMS (right: blue) and beam current
(red) during SAW operation for the old SVD-based software.
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Figure 7.2: Horizontal orbit WRMS (left: blue), vertical orbit WRMS (right: blue) and beam current
(red) during SAW operation for the new IPM-based software.
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7.1 Comparison with its Predecessor

in the vertical plane. The errors are standard deviations. For the BPMs with the largest

weights (≈ 1100 in the injection area and around the U55), the averages translate to orbit

errors of less than 3 µm in the horizontal plane and 1 µm in the vertical plane that are already

below the resolution of the Bergoz MX BPMs of 5 µm (see Ch. 2.2.2 for an introduction). This

is possible because some of the BPMs with large weights in the straight sections are equipped

with Libera Electrons read-out electronics that reach a smaller resolution <1 µm. The average

WRMS achieved by the new software is even smaller reaching

WRMS
new
x = 1.3mm± 0.3mm (7.3)

in the horizontal plane and

WRMS
new
y = 0.7mm± 0.1mm (7.4)

in the vertical plane. The smaller minima come from switching to the method of the most

effective steerer magnet when the WRMS is already small (see Ch. 4.4.3 for details). Storage

rings usually target a beam stability within 1/10th of their beam size [87][88][89]. A comparison

of the beam size and the orbit stabilities reached with both software generations in DELTA’s

three insertion devices in Tab. 7.1 shows that both programs yield similar results. In the

undulator U55, the orbit stability is well below 1/10th of the beam size. The size in the U250

is about right. Only the orbit in the SAW moves more. This is not a problem as the wiggler

emits synchrotron radiation in a large enough cone. It even serves three beamlines at once

(see Fig. 2.4 for a top-up view of the accelerator complex).

name βx
√
εxβx wx WRMS

old
x /wx WRMS

new
x /wx

U250 3m 212 µm 100 21 µm±11 µm 13 µm± 3 µm
SAW 10m 378 µm 1 2100 µm±1100 µm 1300 µm± 300 µm
U55 10m 378 µm 1100 <3 µm < 2 µm

Table 7.1: Comparison of the average horizontal beta function βx, the beam size
√

εxβx, the horizontal
weight wx and the orbit stabilities reached with the SVD-based software and the new IPM-

based software WRMS
old

x /wx and WRMS
new

x /wx. The horizontal emittance of DELTA is
εx = 15nm rad (see Tab. 2.1).
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Figure 7.3: Measured RF frequency f and orbit RMS (same as orbit WRMS Eq. 4.3 but without the
weight matrix) over time while using the energy-stabilizing mode. Source: scaled plot from
[50].

7.2 Energy Stabilization

At time of writing, DELTA is not equipped with an experimental setup to measure the beam

energy. It is therefore not possible to evaluate the energy-stabilizing mode comprehensively in

an experiment. Still, it is possible to conduct a proof-of-principle measurement validating the

implementation [50]. This was done by firstly selecting the current orbit as orbit reference in

the new orbit correction software and reducing all weights to 1 (see discussion in Ch. 5.3.1 for

an explanation), secondly perturbing the RF frequency by up to ±5 kHz and thirdly correcting

the orbit with the energy-stabilizing mode. According to Eq. (3.13), altering the frequency

also results in an energy shift. Correcting this energy shift requires the SOFB to remove the

frequency shift without using the steerer magnets. Results of several iterations of this test

are shown in Fig. 7.3. When the RF frequency is perturbed, the orbit RMS (same as the

orbit WRMS Eq. 4.3 but without the weight matrix) increases. The energy-stabilizing mode

reacts as expected: it corrects the orbit without using the steerer magnets and returns the RF

frequency to an average of

499 833.94 kHz± 0.04 kHz, (7.5)

where the uncertainty is the standard deviation. The result is very close to the RF frequency

of DELTA in user operation 499 834 kHz (see Tab. 2.1).
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7.3 Minimizing the Orbit Length

7.3 Minimizing the Orbit Length

After the orbit-shortening mode (see Ch. 5.3.2 for details) was validated in a simulation in Ch.

6, it is experimentally evaluated in the following. The experimental data was already shown

in [50]. Firstly, the orbit-shortening mode was applied to the orbit in user optics. The results

are shown in Fig. 7.4. The orbit correction increases the RF frequency until it converges at

about 499 835.24 kHz while decreasing the total currents of all Kx horizontal steerer magnets

Isumx =

Kx∑

k=1

|Ixk|, (7.6)

where Ixk is the current of a single steerer, by about 4.5%. The currents are used as a

proxy for the steerer strengths here as both are closely related. During the measurement, the

orbit WRMS fluctuates but remains small. This illustrates the working principle of the orbit-

shortening mode: replace as much steerer currents (steerer strengths) with an RF frequency

shift as possible without altering the orbit.
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Figure 7.4: Measured RF frequency f and total horizontal steerer currents Eq. (7.6) (left) as well as
the orbit WRMS (right) over time while using the orbit-shortening mode in user operation.
Source: scaled plots from [50].

Secondly, the orbit-shortening mode was used to assist switching between user optics and

machine-study optics (see Ch. 2.2.5 for DELTA’s modes of operation). Switching optics re-

quires to firstly remove the static orbit bump that brings the orbit closer to the injection

septum in user operation. Secondly, the orbit and its length need to be corrected while the

betatron tunes are kept constant by the tune correction program [43] (see Ch. 2.2.4 for de-

tails). Toggling of orbit corrections and changes to the RF frequency needed to be controlled

manually until recently. The orbit-shortening mode now automates this part of the process

as the measurement presented in Fig. 7.5 shows. The Figure displays the evolution of the RF
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7 Experimental Tests of the New Orbit Correction Software

frequency and the total horizontal steerer currents Eq. (7.6) during optics switching. Initially,

the storage ring is in machine-study optics. Here, the average RF frequency is

499 817.65 kHz± 0.02 kHz. (7.7)

The uncertainty marks the standard deviation. The reference orbit is then switched to user

optics (orbit and weights from a reference file) and the orbit bump is manually activated

step-by-step while the orbit-correction mode and the tune correction are working. The RF

frequency then slowly rises until the storage ring reaches user optics where the average RF

frequency is

499 835.38 kHz± 0.01 kHz. (7.8)

Next, the orbit reference is set to machine-study optics again (orbit and weights from the

reference file but with nulled orbit reference and weights set to 1 in the injection area) and the

orbit bump is removed step-by-step while the orbit-shortening mode and the tune correction

are working again. The switching process is repeated two and a half times in total until the

storage ring ends up in machine-study optics. The ideal RF frequencies of both optics settings

are reproduced well after each switch. Counter-intuitively, the optimal orbit length decreases

(RF frequency increases) when the static orbit bump is activated and increases when it is

deactivated. The reason is that the bump needs to cut the design orbit short to bring the orbit

closer to the injection septum on the inside of the storage ring (see Fig. 2.4 for an overview

of the accelerator complex). The total horizontal steerer currents behave as expected. They

peak while the orbit switching is conducted and rest at local minima once the correction has

converged. Without bump, the total horizontal steerer currents are about 30% smaller. This

indicates that the SOFB in user operation corrects orbit perturbations resulting from the bump

or supports the bump-specific dipole magnets in upholding the bump.
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Figure 7.5: Measured RF frequency f and total horizontal steerer currents Eq. (7.6) over time while
using the orbit-shortening mode for optics switching. The optics setting is marked by the
background color. Source: modified plot excerpt from [50].
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8 The Closed-Orbit

Bilinear-Exponential Analysis

Algorithm

After the introductions to the theory of coupled betatron oscillations in Ch. 3.1 as well as to

the BE orbit response model in Ch. 3.2.1 and to the BE+d model in Ch. 3.3, the following

description of the COBEA algorithm builds the basis for understanding the response set fit

algorithm (RSFA) in Ch. 9. Both algorithms are compared in simulation studies in Ch. 10.

8.1 Prequisites

COBEA decomposes an ORM into coupled beta functions, betatron phase advances and scaled

dispersion values at all BPMs. The algorithm is described in [13]. Apart from the matrix,

COBEA only requires the ordering of BPMs and steerer magnets along the beam path and

the length of a single drift space between two BPMs as input. The algorithm works in three

consecutive steps, called layers. The first layer described in Ch. 8.2 prepares start values for the

phasors which are the coupled beta functions, the coupled betatron phases and the betatron

tunes. The second layer fits the BE+d model to the ORM which is explained in Ch. 8.3.

The fit extracts dispersion information and further enhances estimates for the coupled beta

functions and the coupled betatron phase advances. The third layer is outlined in Ch. 8.4. It

postprocesses the fit results by calculating betatron phase, integer tunes and fit uncertainties.

COBEA requires a coupled ORM

R =

(
Rx Rxy

Ryx Ry

)
(8.1)

as input. The submatrices Rx and Ry are the same decoupled matrices used in both orbit

correction software generations at DELTA (see Ch. 4.2 for an explanation). The coupling

terms Rxy and Ryx contain the orbit responses of the vertical steerer magnets in the horizontal

plane and the horizontal steerer magnets in the vertical plane. They make it possible to fit

the coupled optical functions. The entries of the coupled ORM are Rwjk, where the W = 2

planes are indexed by w = 1 - 2, J BPMs are indexed by j = 1, · · · , J and all K = Kx +Ky

(horizontal + vertical) steerer magnets are indexed by k = 1, · · · , K. In the start value layer,
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8 The Closed-Orbit Bilinear-Exponential Analysis Algorithm

COBEA models the ORM entries using the discretized spatial part of the BE model Eq. (3.10)

with separate complex scaling factors Amk called steerer parameters for all steerer magnets

RBE
wjk =

M∑

m=1

ℜ{AmkEmjkZmwj}. (8.2)

In the fit layer, the discretized spatial part of the BE+d model Eq. (3.15) with scaled energy

deviations bk ∝ δk

RBE+d
wjk =

M∑

m=1

ℜ{AmkEmjkZmwj}+ dwjbk (8.3)

is used instead. Here, m = 1 - 2 indexes the M = 2 modes of coupled betatron motion. In

both models, the phasors Zmwj = Zmw(sj) refer to the discretized spatial components of the

propagated eigenvectors Eq. (3.7). They are composed of the coupled beta functions and the

coupled betatron phases. The scaled dispersion values dwj are proportional to the dispersion

functions of the horizontal and vertical plane d1j ∝ Dx(sj) and d2j ∝ Dy(sj). The scaled

energy deviations are steerer-specific because the orbit response of each steerer impacts the

orbit length and hence the beam energy in a different way. In contrast to the phasors, the

scaled dispersion values and the scaled energy deviations cannot be normalized after the fit.

Lastly, the phase jumps at the origin are compressed into

Emjk = eiπqmsign(sk−sj) (8.4)

for easier readability and referred to as model information terms in the following. Here, qm

are the fractional betatron tunes. The model information terms and the steerer parameters

are defined as complex conjugates of the quantities used in the original work [13].

8.2 Start-Value Layer

COBEA’s start-value layer, dubbed the monitor-corrector subset (MCS) algorithm, works in

two steps. Firstly, the beta functions and the betatron phase advances at four (or more) BPMs

are reconstructed via an eigenvalue problem in composite-monitor space. This intermediate re-

sult is, secondly, used in the corrector-monitor (CM) mapping to determine steerer parameters

for all steerer magnets and phasors at all BPMs.

8.2.1 Eigenvalue Problem in Composite-Monitor Space

The first part of the MCS algorithm extracts phasors at four (or more) BPMs and both

betatron tunes from an ORM using nothing but sparse model information as additional input.
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8.2 Start-Value Layer

It is based on the possibility to determine the beta function and the phase advance at a single

BPM j1 by solving the eigenvalue problem

Tj1→j1




Zm1j1

Z ′
m1j1

Zm2j1

Z ′
m2j1




= eiµm




Zm1j1

Z ′
m1j1

Zm2j1

Z ′
m2j1



, (8.5)

where the one-turn transfer map Tj1→j1 maps a phase space vector at BPM j1 to the next

turn. To reduce reliance on a lattice model, no one-turn map is known a priori. The algorithm

solves this problem by reconstructing a proxy one-turn transfer map T̃ from the ORM. The

proxy map discards the momentum components at BPM j1 for the spatial components of a

second BPM j2 thereby mapping vectors of the spatial components of two BPMs j1 and j2 to

the next turn. The purely spatial 4D vector space is dubbed composite-monitor space because

it is composed of the 2D spatial vector spaces at two BPMs. The proxy map constitutes the

eigenvalue problem

T̃




Zm1j1

Zm2j1

Zm1j2

Zm2j2




= eiµm




Zm1j1

Zm2j1

Zm1j2

Zm2j2




(8.6)

and thus contains the beta function and the betatron phase advance of both modes for both

BPMs in its eigenvectors and also both mode tunes in its eigenvalues. The reconstruction of

the proxy map requires dividing the lattice into two parts A and B. These are described by

two separate proxy maps MA and MB so that

T̃ = MAMB. (8.7)

The matrix MA maps the spatial components from BPMs j1 and j2 to two additional BPMs

j3 and j4. The matrix MB maps the spatial components from j3 and j4 to j1 and j2. These

two maps can be directly reconstructed from the ORM by solving the system of equations

MARA(j1, j2) = RA(j3, j4) (8.8)

and

MBRB(j3, j4) = RB(j1, j2). (8.9)

The matrices RA(j1, j2) and RA(j3, j4) as well as RB(j1, j2) and RB(j3, j4) are parts of the

ORM. They contain the matrix elements at the listed BPMs for subsets of steerer magnets.

The subsets must be located in the active segment of their respective measurement cycle.

Figure 8.1 gives a visual explanation. For cycle A, the matrices only contain steerer magnets
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8 The Closed-Orbit Bilinear-Exponential Analysis Algorithm

between BPMs j4 and j1 and for cycle B, the matrices contain steerer magnets between BPMs

j2 and j3. Since each of the proxy transfer maps MA and MB is a 4× 4 matrix, there need to

be at least 4 steerer magnets in each active segment in order to solve Eq. (8.8) and Eq. (8.9).

Finally, the phasors resulting from the eigenvalue problem of BPMs j1 and j2 Eq. (8.6) can

be propagated to phasors at BPMs j3 and j4 using map MB. Since the first part of the MCS

algorithm also works with more than two segments, phasors at all BPMs can be reconstructed

this way.

Figure 8.1: Schematic of the reconstruction process for the proxy transfer map of cycle A MA in
composite-monitor space via Eq. (8.8) (left) and the proxy transfer map of cycle B MB via
Eq. (8.9) (right). Each cycle is drawn with an example orbit response of an active steerer
magnet. At least four such orbit response measurements with different steerer magnets are
required to solve the system of equations for each cycle. The active steerer magnets must
be located in the active segments, between BPMs j4 and j1 for cycle A and between BPMs
j2 and j3 for cycle B.

8.2.2 Corrector-Monitor Mapping

The second part of the MCS algorithm, CM mapping, maps the BPM phasors resulting from

the eigenvalue problem in composite-monitor space to the steerer parameters for all steerer

magnets and the phasors for all BPMs. The discretized BE model Eq. (8.2) can be written as

a vector product

Rwjk = RBE
wjk = ℜ

{
(Z1wjE1jk, ZMwjEMjk)

(
A1k

AMk

)}
(8.10)

that allows to rewrite the ORM as a linear system of equations (see Appendix 13.1.1 for details)

A⃗I = ℜ
{
BIC⃗I

}
. (8.11)
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8.3 Fit Layer

Here, A⃗I is the ORM in vector form, the matrix BI is made up of the phasors at all BPMs

and all model-information terms while the vector C⃗I consists of all steerer parameters. This

system of equations can theoretically be solved for C⃗I giving all steerer parameters. In practice,

COBEA’s implementation of the eigenvalue problem in composite-monitor space (see Ch. 8.2.1

for details), the first part of the start-value layer, only returns the phasors at a subset of BPMs

j1, j2, j3 and j4. To account for this, the system of equations Eq. (8.11) is reformulated with

a vector A⃗I(j1, j2, j3, j4) that only holds the ORM elements corresponding to the subset of

BPMs and a matrix BI(j1, j2, j3, j4) that only consists of the subset’s phasors and model-

information terms as

A⃗I(j1, j2, j3, j4) = ℜ
{
BI(j1, j2, j3, j4)C⃗

I
}
. (8.12)

With the available information, this system of equations can be solved for the matrix C⃗I giving

all steerer parameters. Taking a different perspective, the BE model can also be written as a

vector product

Rwjk = RBE
wjk = ℜ

{
(E1jkA1k, EMjkAMk)

(
Z1wj

ZMwj

)}
. (8.13)

This allows to rewrite the ORM as another linear system of equations (see Appendix 13.1.2

for details)

A⃗II = ℜ
{
BIIC⃗II

}
, (8.14)

where A⃗II is the ORM in (another) vector form, the matrix BII contains all steerer parameters

as well as all model-information terms and the vector C⃗II contains all BPM phasors. As all

steerer parameters are known at this point, the system can be solved for the matrix C⃗II giving

phasors at all BPMs and thereby completing the generation of start values. CM mapping also

works if the first part of the start-value layer only returns phasors for two BPMs. All in all, a

storage ring with two BPMs and two steerer magnets is the minimum requirement for using

CM mapping. The requirements of the first part of the start-value layer are bigger (see closing

paragraph of Ch. 8.2.1) and therefore determine the requirements of the start-value layer as a

whole.

8.3 Fit Layer

The second layer fits the BE+d model Eq. (8.3) onto the input ORM

min
υ⃗

∑

wjk

(
RBE+d

wjk (υ⃗)−Rwjk

)2
. (8.15)

employing a quasi-Newton-type method, the limited-memory Broyden–Fletcher–Goldfarb–Shanno

algorithm with box constraints (L-BFGS-B) [90] from the SciPy Python package [91]. The
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8 The Closed-Orbit Bilinear-Exponential Analysis Algorithm

optimization variables υ⃗ comprise the BPM phasors Zmwj , the steerer parameters Amk, the

tunes µm, the scaled dispersion values dwj and the scaled energy deviations bk. The complex

BPM phasors and the complex steerer parameters constitute two degrees of freedom per unit.

This gives 2MWJ and 2MK degrees of freedom for the BPM phasors and the steerer parame-

ters, respectively. The tunes, the scaled dispersion values and the scaled energy deviations are

real numbers adding M , WJ and K degrees of freedom. Overall, the optimization variables

constitute

n = 2MWJ + 2MK +M +WJ +K − (2M + 1) (8.16)

degrees of freedom. The 2M + 1 degrees of freedom subtracted in the end correspond to M

start phases, M invariants (phasors) and 1 additional invariant (dispersion term). The BE+d

model for the storage ring at DELTA with its J = 54 BPMs and K = 56 steerer magnets has

1041 degrees of freedom.

8.4 Postprocessing Layer

The postprocessing layer calculates the beta function estimates, the betatron phase estimates,

and the integer tune estimates. Additionally, it provides uncertainties for these quantities

based on linear error propagation. Since the uncertainties are not needed for this work, they

are not discussed here. See [13] for further details.

8.4.1 Beta Function Estimates

The beta function estimates are calculated from the fitted BPM phasors according to

βmwj =
ZmwjZ

∗
mwj

Cm
, (8.17)

where Cm is a mode-specific invariant of betatron motion that was explained in Ch. 3.1. Its

calculation [13]

Cm = ℑ
{
Z∗
mwjZ

′
mwj

}
(8.18)

requires knowledge of the phase space and hence the derivative of the BPM phasor Z ′
mwj at

a single BPM. Calculating the latter can be achieved if Zmwj is associated with one of two

BPMs enclosing a drift space. The difference quotient

Z ′
mwj = Z ′

mw(j+1) =
Zmw(j+1) − Zmwj

l
(8.19)

then equals the derivative of the phasors at both BPMs with respect to s. The phasor of

the second enclosing BPM is Zmw(j+1). At DELTA, a drift space is enclosed by BPM38 and

BPM39 shortly before the SCW (see Fig. 2.7 for the position of all BPMs). The length of
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8.4 Postprocessing Layer

the drift space is l =0.866m. It was used in the calculation of all beta function estimates via

COBEA and the RSFA presented in this work.

8.4.2 Betatron Phase Advance Estimates

The coupled betatron phase advance estimates for the first BPM are set to zero Φmw1 = 0

to remove, in accordance with the definition of the decoupled phase advance in Eq. (2.5), the

fluctuating start phase. The estimates of the remaining BPMs are calculated from the fitted

phasors at neighboring BPMs as

Φmwj = arctan 2(ℜ{z},ℑ{z}) with z = Z∗
mw(j−1)Zmwj . (8.20)

The arctan 2(x, y) function calculates the angle between the vector pointing towards (x, y) and

e⃗x (see schematic in Fig. 8.2). In contrast to arctan, arctan 2 also produces the correct angle

if the signs of x and y differ. Used in this context, Eq. (8.20) determines the angle between

Zmw(j−1) and Zmwj . The definition of the coupled betatron phase advances calculated by

COBEA differs from the definition of the phase advances in the propagated eigenvectors Eq.

(3.7) given in [65]. For a primarily horizontal first mode and a primarily vertical second mode,

both definitions are related by Φ11j = Φ1(sj), Φ22j = Φ2(sj), Φ21j = Φ2(sj) + ν2(sj) and

Φ12j = Φ1(sj) + ν1(sj).

Figure 8.2: The angle calculated by arctan 2 is correct even if the signs of x and y are not the same.

8.4.3 Scaled Dispersion Estimates

The fitted values dwj are related to the real dispersion Dwj by an unknown factor that cannot

be recovered. Therefore the fit variables dwj are referred to as scaled dispersion.

8.4.4 Integer Betatron Tune Estimates

The two betatron tunes determine the betatron oscillations per turn in their respective betatron

mode. Each splits into an integer part Qm and a fractional part qm. The fractional part is

a fit variable of the BE+d model and a direct result of the fitting process. An estimate of

the integer part is only calculated in the approximation of decoupled beam optics. For that

purpose, COBEA divides the sum of the betatron phase estimates at all BPMs (see Ch. 8.4.2

for details) by 2π. The result is rounded down. It has to be corrected if the invariant of the

fit is negative Cm = −|Cm|. In that case, the integer part is reduced by 1. An integer tune
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8 The Closed-Orbit Bilinear-Exponential Analysis Algorithm

calculated via this procedure only reflects reality if there is less then 2π rad phase advance

between neighboring BPMs.
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9 The Response Set Fit Algorithm

The RSFA adapts the basic idea of COBEA described in Ch. 8, extracting optical information

from an ORM measurement, to response sets. Both algorithms are compared in two simulation

studies in Ch. 10 for use in a storage ring in the presence of transverse coupling. Chapter 11

presents experimental results for the RSFA.

9.1 Response Sets

Response sets comprise response set entries Ri indexed by i = 1, · · · , I that can be parame-

terized as a product of an unknown coupled ORM R in the format of Eq. (8.1) and a vector

of steerer strengths θ⃗i according to Eq. (2.18) as

R⃗i = Rθ⃗i. (9.1)

Figure 9.1 compares the orbit response underlying a response set entry to the orbit response

of an ORM column. Response sets can, in contrast to ORMs Eq. (4.1), not be normalized

with a single steerer strength because each of their entries contains contributions from multiple

magnets. A response set

R =
(
R⃗1 · · · R⃗I

)
(9.2)

therefore comes paired with a steerer strength set of equal size

θ =
(
θ⃗1 · · · θ⃗I

)
. (9.3)

The new orbit correction software automatically measures a response set entry whenever it

corrects the orbit.

9.2 Start value Generation

The generation of start values in the generalized fit problem adheres to COBEA’s two step

approach (see Ch. 8.2 for details). Firstly, phasors at four (or more) BPMs are calculated by

solving an eigenvalue problem in composite-monitor space. Secondly, the resulting phasors are

used to determine all steerer parameters and BPM phasors at all BPMs via a modified CM

mapping approach.
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Figure 9.1: Schematic comparison of the orbit response (blue) underlying an ORM column R⃗k (left)

and one underlying a response set entry R⃗i (right): the column is formed by one active
steerer magnet while the entry is formed by several.

9.2.1 Eigenvalue Problem for Response Sets

The first part of the original MCS algorithm (see Ch. 8.2.1) divides the lattice into parts A

and B. Part A is defined by two entry BPMs j1 and j2 and two exit BPMs j3 and j4. Part B

is defined by two entry BPMs j3 and j4 and two exit BPMs j1 and j2. The general approach

is maintained here as is the original goal: reconstruct the proxy transfer maps in composite

monitor space MA and MB from Eq. (8.7) and then solve Eq. (8.6). Obtaining the necessary

orbit response information for calculating MA requires adhering to measurement cycle A (see

left side of Fig. 8.1). Therefore, an inactive segment in between the BPMs j1 and j4 is needed.

As each set entry Eq. (9.1) is a superposition of the orbit responses of all K steerer magnets

and the steerer magnets are distributed around the storage ring (see right side of schematic

in Fig. 9.1), few neighboring BPMs go without a steerer in between them. It is therefore

impossible to find an inactive segment that spans half the storage ring. A linear fit of the

ORM solves this problem but also imposes a I ≥ K restriction on the response set size and

is as such ruled out. Instead, a new approach is required. It is the creation of an inactive

segment by finding a superposition of response set entries that cancel out locally between the

BPMs j1 and j4. This is equivalent to demanding that the K̃ steerer magnets in that segment

should be associated with zero steerer strength (inactive) in every response set entry. Solving

a system of equations

0 =




θ11 · · · θ1I
...

. . .
...

θK̃1 · · · θK̃I


a⃗n (9.4)

78



9.2 Start value Generation

gives I coefficients

a⃗n = (a1n · · · aIn)T (9.5)

determining a proxy response set entry

R⃗A
n = Ra⃗n (9.6)

that matches this description. The entry does not contain orbit response components belonging

to any of the K̃ steerer magnets in the now inactive segment. Figure 9.2 visualizes the orbit

responses underlying the original entry and the proxy entry. The process of determining a

coefficient vector is repeated until the resulting linear combinations of orbit response entries

fill a proxy response set

RA =
(
R⃗A

1 · · · R⃗A
I

)
(9.7)

of the same length as the initial set N = I. The index n = 1, · · · , N counts the repetitions.

Note, that all solutions to Eq. (9.4) in the proxy response set need to be linearly independent.

A simple way achieving this, which was implemented for this work, is to replace the nth

coefficient in a⃗n by −1 (or another constant). The first coefficient vector (n = 1) then is

a⃗1 = (−1, a2n · · · aIn)T, (9.8)

the second coefficient vector (n = 2) is

a⃗2 = (a1n, −1, a3n · · · aIn)T (9.9)

and so forth. A proxy response set calculated in this manner allows to construct the same

proxy transfer map MA in composite-monitor space as in the original MCS algorithm by

solving a slightly different system of equations

MARA(j1, j2) = RA(j3, j4). (9.10)

Here, the matrices RA(j1, j2) and RA(j3, j4) are parts of the proxy response set created for

cycle A that hold elements for the listed BPMs formed by the steerer magnets in the active

segment. The proxy transfer map in composite-monitor space of segment B MB is calculated

in a similar fashion. Constructing the proxy response set of segment B RB requires finding

linear combinations of the original response set entries so that the steerer strengths cancel out

locally between BPMs j3 and j2. The proxy response set for segment B then determines the

proxy transfer map in composite-monitor space according to

MBRB(j3, j4) = RB(j1, j2). (9.11)
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Here, the matrices RB(j3, j4) and RB(j1, j2) are parts of the proxy response set created for

cycle B that hold elements for the listed BPMs formed by the steerer magnets in the active

segment. Finally, the proxy transfer maps of both segments are used to compose the proxy

one-turn map Eq. (8.7) that is in turn employed to construct and solve the eigenvalue problem

in composite-monitor space (8.6) yielding the spatial phasors of both betatron modes at BPMs

j1 and j2 that can be propagated to BPMs j3 and j4.

Figure 9.2: Schematic comparison of the continuous orbit response (blue) underlying a response set

entry R⃗i (left) and one underlying a proxy response set entry R⃗A
n (right) in measurement

cycle A. The original response set entry cannot be used for the construction of the proxy
transfer MA because the underlying orbit response is formed by active steerer magnets in
the inactive segment. The proxy response set entry can be used because its underlying orbit
response is only formed by active steerer magnets in the active segment.

The described method preserves the minimum hardware requirement of COBEA’s MCS al-

gorithm. The reconstruction of each proxy transfer map in composite-monitor space requires

4 steerer magnets in the perturbed segment and 4 BPMs. Going with the method described

above, that makes 4 BPMs and 8 steerer magnets in total. The data requirement is, however,

smaller. Where COBEA’s start value layer requires 8 ORM columns, one for each of the steerer

magnets, the start value layer of the RSFA only requires a response set with I = 4 entries.

This set can then be reshuffled into two different proxy response sets of the same length for

segments A and B.

9.2.2 CM Mapping on Response Sets

The matrix decomposition used in the orignal CM mapping factorizes the ORM into known and

unknown matrices based on the BE model to construct a system of equations that can be solved

for the unknown part. A similar approach also works for response sets. Neglecting dispersion,
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the response set elements from Eq. (9.2) can be parameterized as linear combinations of BE

model instances Eq. (8.2)

Rwji =
K∑

k=1

θkiR
BE
wjk =

K∑

k=1

θki

M∑

m=1

ℜ{ZmwjEmjkAmk}, (9.12)

where θki are elements from the steerer strength set Eq. (9.3). Factorizing the equation as

Rwji = ℜ{(θ1iZ1wjE1j1 · · · θKiZ1wjE1jK , θ1iZMwjEMj1, · · · , θKiZMwjEMjK) (9.13)

· (A11 · · · A1K , AM1 · · · AMK)T
}

(9.14)

allows to rewrite the response set as a linear system of equations (see Appendix 13.2.1 for

details)

A⃗I = ℜ
{
BIC⃗I

}
. (9.15)

Here, the vector A⃗I is the response set in vector form. The matrix BI contains phasors at all

BPMs, all model-information terms and the complete steerer strength set. The vector C⃗I is

made up of all steerer parameters. If the matrix BI is known, the system of equations can be

solved for the steerer parameters. This is not possible as only the phasors of the four BPMs

j1, j2, j3 and j4 are known at this point. Instead, a reduced version of the system of equations

A⃗I(j1, j2, j3, j4) = ℜ
{
BI(j1, j2, j3, j4)C⃗I

}
(9.16)

has to be used. Here, A⃗I(j1, j2, j3, j4) and BI(j1, j2, j3, j4) only hold information for the

listed BPMs. The reduced system of equations can be solved for C⃗I giving steerer parameters

for all steerer magnets. Alternatively, the response set elements Rwji can be written as a

vector product

Rwji =
K∑

k=1

θkiR
BE
wjk = ℜ

{(
K∑

k=1

θkiE1jkA1k,

K∑

k=1

θkiEMjkAMk

)(
Z1wj

ZMwj

)}
. (9.17)

This allows to rewrite the response set as another linear system of equations (see Appendix

13.2.2 for details)

A⃗II = ℜ
{
BIIC⃗II

}
, (9.18)

where the vector A⃗II is the response set in vector form and the vector C⃗II contains all BPM

phasors. The matrix BII contains all steerer parameters, all model-information terms and the

complete steerer strength set. The system of equations is solved for matrix C⃗II giving the final

results, the phasors at all BPMs.

A difference in applying CM mapping on response sets to the original CM mapping on response

matrices is the minimum requirement of the second step. With response matrices, a subset
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of steerer parameters can be mapped to a subset of BPMs. In the case of response sets, all

steerer parameters have to be known. This is not a problem since a subset of BPM phasors

can still be mapped to all steerer parameters. The first step of the CM mapping procedure

hence produces enough steerer parameters to conduct the second step.

9.3 Fit

Fitting the BE+d model on a response set can be achieved by solving the minimization problem

min
υ⃗

∑

wji

(
Rwji −

∑

k

RBE+d
wjk (υ⃗)θki

)2

. (9.19)

The aggregated vector of fit variables υ⃗ is determined by the parameters of the BE+d model

and the parameterization of the complex numbers in the model. The latter may either be

polar or Cartesian. COBEA uses the Cartesian representation of complex numbers as does

the RSFA. The vector of fit variables and the number of degrees of freedom are thus mostly the

same. The only exception are the betatron tunes. The RSFA offers the option to keep them

constant. This allows to feed the algorithm with tune measurements from another source such

as the kicker-based tune measurement system (see Ch. 2.2.4). This reduces the difficulty of

the fit problem and sometimes improves fit results. If the tunes are kept constant, the number

of degrees of freedom is reduced by two. Tunes included, the BE+d model for the storage ring

at DELTA has 1041 degrees of freedom (see Ch. 8.3). Each response set entry adds J = 54

data points in W = 2 planes, that is WJ = 108 data points in total, to the optimization

problem. Hence, the theoretical minimum response set size for the RSFA is 10 so that

10 · 108 = 1080 > 1041 (9.20)

holds. For all application discussed in this document, the Adam (adaptive moment estimation)

algorithm [92] from the tensorflow Python package [93] was used to conduct the fitting process.

The algorithm was developed for large-scale machine learning problems and works well with

non-linear objective functions.

9.4 Postprocessing

The estimates for the beta function, the betatron phase and the scaled dispersion are extracted

from the fit results. This process is the same as in COBEA because the fit variables are the

same. Similar to COBEA, a calculation of fit uncertainties has been implemented on the

basis of linear error propagation. The propagation of errors differs for the RSFA because its

objective function is different. The implementation is not discussed here because the resulting

uncertainties are not used in this work.

82



10 Simulation Studies Benchmarking the

Two Orbit Response Fit Algorithms

The description of the COBEA algorithm in Ch. 8 layed the foundation for introducing the

RSFA in Ch. 9. In the following, both algorithms are benchmarked on simulated orbit response

matrices (ORMs) and simulated response sets to assess the quality of their optical function

estimates in the presence of coupling and without it. Chapter 11 presents RSFA fit results on

experimental data.

10.1 Simulation Details

The ORMs and response sets used for fitting purposes in the simulation studies described in

this chapter were simulated in MADX [83] and assembled in Python using the PyMad Python-

MADX application interface [84]. The del008.2001 optics model of the storage ring at DELTA

[34] (see Ch. 2.4 for details) was the basis for all simulations. For this work, the model was

modified in two ways:

1. Addition of a 30 cm long 499.83MHz cavity with a voltage of 300 kV. The RF resonator

alters the beam energy when the orbit length changes. This was described in Ch. 2.1.2

and is necessary to test the dispersion term in the BE+d model.

2. Assumption of skew angles aqφ̂ for each quadrupole. Here, φ̂ is a unified skew angle that

is the same for all quadrupoles and aq is a quadrupole-specific factor. A skew angle rolls

a quadrupole about the longitudinal axis. This adds transverse coupling and is necessary

to test the description of coupling in the BE+d model.

For the first simulation study presented in Ch. 10.2, seven ORMs were simulated column by

column. Each column was determined by perturbing the storage ring model with a steerer

strength of 0.25mrad at a single steerer magnet, measuring the orbit difference and normalizing

it with the steerer strength. The seven ORMs were simulated for the same quadrupole-specific

factors and seven different unified skew angles, one every 5mrad between 0 and 30mrad.

The factors were chosen in a way that, for a unified angle of φ̂ = 10mrad, MADX produces

coupled beta function results similar to the COBEA estimates for the ORM measurement

response.160311-2. Figure 10.1 presents a comparison of the MADX simulation and the COBEA

results. Each further increment of the unified skew angle rotates the primarily horizontal

mode and the primarily vertical mode of betatron motion further out of their native planes

(see schematic in Fig. 3.2 for an explanation of this process) and introduces more transverse
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Figure 10.1: Comparison of the coupled beta function results of the modified del008.2001 model with a
unified skew angle of φ̂ = 10mrad calculated in MADX to results calculated via COBEA for
the ORM response.160311-2. The COBEA results for BPM12 (faulty pickup) and BPM41
(large fit residuals) were removed.

coupling. This results in a rising ratio of the primary-plane and secondary-plane beta function

values of each betatron mode as Fig. 10.2 suggests. Neglecting the marginal effect of the cavity

on the optical function calculation, the beta function results for a unified skew angle φ̂ = 0 are

the same as the results for the unmodified del008.2001 model presented in Fig. 2.6. The ORM

simulations for larger unified skew angles φ̂ > 10mrad were examined to test the capabilities

of COBEA and the RSFA to reconstruct optical functions in the presence of strong transverse

coupling. A noise estimate for the BPM readings was not included in the ORM simulations

because ORMs commonly have a large signal-to-noise ratio.
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Figure 10.2: The evolution of transverse coupling in the modified del008.2001 model depicted by ratios
of the coupled BPM-averaged beta function values β21/β11 and β12/β22 for an increasing
unified skew angle φ̂ calculated in MADX.

The response sets in the second simulation study presented in Ch. 10.3 were only simulated for

the realistic unified skew angle φ̂ = 10mrad. In contrast to the ORM simulations, the response

set entries Eq. (9.1) were simulated with random equally distributed steerer strengths between
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10.2 Benchmark on Orbit Response Matrices

−0.1mrad and 0.1mrad. The smaller strength better reflects a common orbit correction step.

Since the randomness may result in very small orbit shifts, BPM noise was added to the

simulation to better reflect reality. Most BPMs at DELTA are equipped with Bergoz MX

BPMs (see Ch. 2.2.2 for details). Their resolution is 5 µm. Any BPM reading consequently

carries the risk of a ±2.5 µm error that can be modeled via two uniformly distributed random

variables ϵx1 , ϵx2 ∈ [−2.5 µm, 2.5 µm]. The horizontal orbit response with noise at any BPM

is thus given by

(x2 + ϵx2)− (x1 + ϵx1) = x+ ϵx, (10.1)

where x1 and x2 are the orbit measurements before and after excitation, x is the horizon-

tal orbit response without noise and ϵx is the triangularly distributed sum noise resulting

from superpositioning the two uniformly distributed random variables ϵx1 and ϵx2 . The same

holds true in the vertical plane. The optical function calculations were cross-checked with

the polymorphic tracking code (PTC) [94] because the MADX Twiss module may not work

properly in the presence of dispersion [83] but no significant differences in the calculation of

beta functions or any other parameter were found.

10.2 Benchmark on Orbit Response Matrices

COBEA and the RSFA were fed with 7 simulated ORMs with increasing levels of transverse

coupling. ORMs are a special type of response sets and can therefore be used as input of the

RSFA. The precision requirement for COBEA’s L-BFGS fit of the BE+d model was increased

to 10−18 for the fits because it significantly increased COBEA’s performance. The RSFA was

used without betatron tune fitting (see Ch. 9.3 for details on this option). For each unified

skew angle, the betatron phase advance Φfit
mj , the beta function βfit

mwj and the dispersion results

d⃗w of COBEA and the RSFA are compared to the betatron phase Φmj , the beta function βmwj

and the dispersion values D⃗w from MADX. The beta function and the dispersion values stem

from the MADX Twiss module while the betatron phase results were calculated from transfer

maps. The betatron phase advance deviations of the fits are evaluated as averages

∆Φm = avgj

∣∣∣Φfit
mj − Φmj

∣∣∣ (10.2)

and standard deviations

σΦmw = stdj

(
Φfit
mj − Φmj

)
(10.3)

over all BPMs. The figures of merit for the beta function deviations are averages

∆βmw = avgj

∣∣∣βfit
mwj − βmwj

∣∣∣ (10.4)
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and standard deviations

σβmw = stdj

(
βfit
mwj − βmwj

)
(10.5)

over all BPMs. The dispersion values are compared via similarity products

aw =
D⃗T

wd⃗w∣∣∣
∣∣∣D⃗w

∣∣∣
∣∣∣
2
·
∣∣∣
∣∣∣d⃗w
∣∣∣
∣∣∣
2 (10.6)

that may range from 0 if the shape of the fitted dispersion does not match the MADX dispersion

at all, to 1 if the shape of the fitted dispersion is the same as the MADX dispersion, or −1 if

the shapes match but one is flipped up-side-down as in d⃗w → −d⃗w. This is necessary because

the dispersion output from fits of the BE+d model is not normalized (see Ch. 8.4.3 for an

explanation).

Results

The figures of merit are presented in Fig. 10.3. Strikingly, COBEA and the RSFA produce

very similar results. The betatron phase advance deviations produced by both fit methods are

small in the horizontal plane ∆Φ1 < 0.4mrad and medium in the vertical plane ∆Φ2 < 3mrad.

To give some perspective, MADX calculates an average phase advance of 170mrad (horizontal)

and 60mrad (vertical) between BPMs for the del008.2001 model. The primary beta function

deviations are small in the horizontal plane ∆β11 <0.1m as well as in the vertical plane

∆β22 <0.15m. The beta function averages over all BPMs in the del008.2001 model (no

coupling) are βx = 5.7m and βy = 9.5m. The secondary beta function deviations are about

the same size as the primary ones. They are ∆β12 <0.1m and ∆β21 <0.1m. In general, the

betatron phase and beta function deviations increase with the level of transverse coupling.

The similarity products for the dispersion results indicate a close to perfect reconstruction of

the scaled dispersion function in both planes ax ≈ 1 and ay ≈ 1. Only the vertical similarity

product for a unified skew angle of φ̂ = 0 is close to zero because, without transverse coupling,

there is hardly any dispersion in the vertical plane that could be fitted.

All in all, both fit methods reproduce the beta function of the MADX Twiss module well for all

generalized skew angles. COBEA and the RSFA can therefore be expected to produce good

beta function estimates at DELTA and should also be able to perform well in environments

with larger transverse coupling.
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Figure 10.3: Comparison of COBEA and RSFA results for fits on simulated ORMs. Left and right
side: horizontal and vertical quantities. From top to bottom: betatron phase Eq. (10.2)
with error bars Eq. (10.3), beta function Eq. (10.4) with error bars Eq. (10.5) as well as
dispersion similarity product Eq. (10.6).
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10.3 On Response Sets

COBEA and the RSFA were benchmarked on random response sets simulated for a unified

skew angle of φ̂ = 10mrad with set sizes ranging from S = 20 to 120. For COBEA, this

required conducting a linear fit of the response sets first and then feeding its result into the

algorithm because COBEA only accepts ORMs as input. The linear fit in this workaround

restricts the minimum response set size to the number of steerer magnets that is 56. The

theoretical minimum set size for the RSFA is 10. In contrast to the ORM fits, the RSFA was

used with tune fitting here because, contrary to intuition, it increased the quality of the fit

results. An explanation of the minimum response set size and the tune fitting option was given

in Ch. 9.3.

The results of U = 100 fits with the COBEA workaround and the RSFA for each set size

are compared in the following. The figures of merit used for this purpose are similar to the

quantities introduced for the ORM benchmark in Ch. 10.3. But due to each response set size

being tested with 100 random response sets, the fitted betatron phase advance Φfit
umj , the fitted

beta function values βfit
umwj and the fitted dispersion values d⃗uw all carry an additional index

u. All quantities are averaged over this index to compress the results into plots similar to Fig.

10.3. For response sets, the betatron phase advance deviations are evaluated as averages

∆Φm = avgj

(
avgu

∣∣∣Φfit
umj − Φmj

∣∣∣
)

(10.7)

and standard deviations

σΦm
= stdj

(
avgu

∣∣∣Φfit
umj − Φmj

∣∣∣
)

(10.8)

over all BPMs. The figures of merit for the beta function deviations are averages

∆βmw = avgj

(
avgu

∣∣∣βfit
umwj − βmwj

∣∣∣
)

(10.9)

and standard deviations

σβmw
= stdj

(
avgu

∣∣∣βfit
umwj − βmwj

∣∣∣
)

(10.10)

over all BPMs. The dispersion values are compared via similarity products

auw =
D⃗T

wd⃗uw∣∣∣
∣∣∣D⃗w

∣∣∣
∣∣∣
2
·
∣∣∣
∣∣∣d⃗uw

∣∣∣
∣∣∣
2 (10.11)

that may range from 0 if the shape of the fitted dispersion does not match the MADX dispersion

at all, to 1 if the shape of the fitted dispersion is the same as the MADX dispersion, or -1 if

the fitted dispersion values are flipped up-side-down d⃗w → −d⃗w. This is necessary because
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10.3 On Response Sets

the dispersion output from fits of the BE+d model is not normalized (see Ch. 8.4.3). The

distributions of the similarity products are evaluated as averages

aw = avgu(auw) (10.12)

and standard deviations

σaw = stdu(auw). (10.13)

10.3.1 Results

The figures of merit are presented in Fig. 10.4. The COBEA workaround and the RSFA pro-

duce very similar fit results for the largest response set size S = 120. Here, the average betatron

phase advance deviations in both modes Φm(S = 120) are in the mrad range and beta function

deviations ∆βmw(S = 120) < 0.1m are also very small. Both are comparable to the fit results

for the ORMs (see Fig. 10.3). For fits on smaller response set sizes, the deviations in betatron

phase and beta functions increase. As expected, the COBEA workaround stops working below

a set size of S = 56 where the linear fit of the response set becomes underconstrained. The

RSFA was specifically designed to be used on small set sizes. For a set size of S = 20, it still

produces small beta function deviations of ∆βmw(S = 20) < 0.4m. For even smaller set sizes,

errors increase fast. Results for S < 20 are therefore excluded from the analysis. This includes

the theoretical minimum set size of S = 10 (see Ch. 9.3 for an explanation). Despite the good

general results, the response set fits of the COBEA workaround and the RSFA are worse than

the previously analyzed ORM fits in two regards. One are the large standard deviations of the

betatron phase advance σΦ1
(S = 120) = 100mrad and σΦ2

(S = 120) = 50mrad. Even at the

maximum set size, they are one to two orders of magnitude larger than the standard deviations

of the betatron phase fits for the ORMs. Two are the dispersion fits whose similarity products

mostly score considerably lower than 1 although their accuracy increases for larger set sizes.

The noise added to the simulated response sets may take a toll here.

All in all, this simulation shows that, with the RSFA, it is possible to reliably reconstruct the

coupled beta functions from response sets as small as S = 20 and in the presence of noise while

the COBEA workaround fails for S < 56. For large set sizes S ≥ 80, the COBEA workaround

and the RSFA are similarly accurate.
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Figure 10.4: Comparison of COBEA and RSFA results for fits on simulated response sets. Left and
right side: horizontal and vertical quantities. From top to bottom: betatron phase Eq.
(10.7) with error bars Eq. (10.8), beta function Eq. (10.9) with error bars Eq. (10.10) as
well as dispersion similarity product Eq. (10.12) with error bars Eq. (10.13). The COBEA
workaround does not produce any results for set sizes S < 56 because the linear fit, which
is required for the workaround, becomes underconstrained.

90



11 Experimental Results for the

Response Set Fit Algorithm

COBEA (see Ch. 8) was compared to the RSFA (see Ch. 9) in two simulation studies in Ch.

10. In the following, the RSFA is used on experimental data to compare its fit results to other

optical function measurements and to evaluate the impact of the superconducting asymmetric

wiggler (SCW) on user optics.

11.1 Comparison with other Sources

The ability of the RSFA to reconstruct optical functions from random steerer magnet-induced

orbit shifts is evaluated in the following. For that purpose, RSFA fit results for the beta

function, the betatron phase and the scaled dispersion are compared to the Twiss parame-

ter estimates from three other sources. These are uncoupled beta function measurements in

quadrupoles, OCELOT [54] calculations from the model server [53] and dispersion measurements.

The model server calculations are based on the real quadrupole strengths of the storage ring

(see Ch. 2.4 for an explanation).

11.1.1 Measurement

The basis for the RSFA analysis was a response set with 1300 entries recorded without the

static orbit bump in machine-study optics (see Ch. 2.2.5 for details on operation modes) to

keep the effect of non-linear magnetic fields, mainly a sextupole in the injection area, and

non-linear BPM readings on the measurement to a minimum. Each response set entry was

acquired by disturbing all steerer magnets (see Ch. 2.2.3) in a range of ±10mA (≈ 0.03mrad

for horizontal and ≈ 0.01mrad for vertical steerers) and recording the orbit shift. The SCW

was turned off during the measurements. The beta function measurements in the quadrupoles

were conducted by varying the coil currents of the quadrupoles via the relay cascade by 0.7%

one quadrupole at a time (see Ch. 2.4.1 for details) and recording the tune shift measured by

the kicker-based tune measurement system [43] (see Ch. 2.2.4). After determining the change

in quadrupole strength via the i2k conversion script [12] from the coil currents, the uncoupled

average horizontal and vertical beta functions in the quadrupoles were calculated according to

Eq. (2.23). The measurement was repeated three times. A scaled dispersion at all BPMs was

measured by detuning the RF frequency and measuring the resulting orbit. The quadrupole

currents were recorded as well and used to obtain optical function estimates from the model

server. The SCW model of the model server was turned off.
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11.1.2 Fits with the Response Set Fit Algorithm

The RSFA was developed to calculate optical function estimates from orbit corrections in an

online fitting process. To simulate this task, the RSFA was applied to 100 response subsets of

size S = 20 selected randomly from the larger 1300-entries response set. The subset size was

chosen as a trade-off between as small as possible to speed up the availability of the measure-

ment in a possible future online model and as large as necessary to increase the accuracy of

the fits. The simulation study presented in Ch. 10.3 suggests a set size of S = 20 as a good

trade-off. In an online model sourcing the response set from the orbit correction software, the

optical function estimates would then be available after 20 sufficiently large orbit corrections.

BPM01, BPM06, BPM09, BPM12, BPM19, BPM34, BPM43 and BPM45 were excluded from

the analysis presented in the following. Their inclusion increased the standard deviations of

the fits. The same BPMs were also commented out in the orbit correction software in user

operation when the measurements were conducted. BPM12 has a faulty pickup electrode. The

other BPMs are known to suffer from measurement noise. Additionaly, two of the 100 fits were

discarded for being obviously diverged (β11 < β21 and/or β22 < β12).

11.1.3 Results

The comparison of the RSFA fit results to the other optical function measurements is presented

in Fig. 11.1. The fit results for the betatron phase in the horizontal plane match the model

server calculations very well. In the vertical plane, the match is still good but the slope of the

fitted betatron phase is a little smaller than the slope calculated by the model server. The

beta function estimates of the RSFA fits and the quadrupole measurements correspond well in

both planes but, in the horizontal plane, the model server prediction differs considerably. The

difference is most notable around the undulator U250 from s = 20m to 40m. Here, the RSFA

and quadrupole measurement peak at a beta function of around 25m to 30m while the model

server prediction is < 20m. This relationship reverses in the remaining part of the storage

ring where the model server predicts larger beta function values than both the RSFA and the

quadrupole measurement. The vertical beta function calculations of the model server match

the RSFA and quadrupole measurement results a lot better. Still, the peaks around the U250

predicted by the model server are significantly larger than the measurement results. In both

planes, the measurements indicate an asymmetry of the beta function around the U250 that is

not present in the model server calculations. In the north of the storage ring, the asymmetry

can be attributed to sextupoles [95]. The asymmetry in the south is still under investigation.

It may be a result of quadrupole alignment errors. In terms of dispersion, the model server

estimate and the dispersion measurement match decently while the RFSM fit hardly reflects

the measurement at all. For small response set sizes, the lacking accuracy of the dispersion fit

also appeared in the simulation study (see Fig. 10.4). It can be attributed to the small size of

the dispersion term in the fitted BE+d model Eq. (8.3) that is usually in the lower one-digit

percentage range of the euclidean norm of a target ORM with good signal-to-noise ratio. The

small size makes the term difficult to fit if the noise level increases.
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Figure 11.1: Comparison of RSFA fit results and optical function measurements from three other sources
(see legends) without the static orbit bump in machine-study optics (see Ch. 2.2.5 for
details on operation modes). From top to bottom: betatron phase, beta function and
dispersion. The errors are standard deviations calculated from 100 fits for the RSFA and 3
measurements for the quadrupole beta function measurement. The coupled beta function
values β12 and β21 resulting from the RSFA fits are not shown because there is nothing to
compare them to.
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11.2 SCW Optics Impact

In October 2020, the superconducting asymmetric wiggler (SAW) was replaced with a new

wiggler, the SCW [10] (see Ch. 2.2.1 for details). Wigglers can be viewed as concatenations of

dipole magnets whose fringe fields affect vertical focusing [66]. The impact of the SCW on the

user optics (see Ch. 2.2.5 for details on operation modes) is assessed here by comparing the

beta function and betatron phase estimates from RSFA fits of measured ORMs for different

SCW field-strength settings.

11.2.1 Measurement

Five ORMs were measured in user optics for SCW field-strength settings of 0T, 2T, 4T, 5.3T

and 7T. The tunes were kept constant at qx = 0.11 and qy = 0.23 using the automated tune

correction of the storage ring [43] (see Ch. 2.2.4 for details). With each ORM, a dispersion

function was recorded as well to validate the corresponding RSFA fit. The orbit correction

during the ORM measurement for the largest SCW setting was not optimal due to the vertical

steerer strength being insufficient to compensate the kick applied by the wiggler. The kick is a

result of the SCW’s non-zero magnetic-flux-density integral along the wiggler’s axis [96]. The

strength of the kick increases with the SCW setting. As the measurement was conducted soon

after the wiggler was installed, the vertical steerer magnet meant to correct the kick was not

operational yet.
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11.2.2 Analysis

The tunes were kept constant during the RSFA fits. BPM01, BPM12 and BPM33 were ex-

cluded from the analysis for jittering or not returning a signal. The RSFA betatron phase

advance and beta function results for the ORM recorded at the SCW setting 0T, Φ
(0)
mj and

β
(0)
mwj , are compared to the RSFA betatron phase and beta function results ΦSCW

mj and βSCW
mwj for

the four ORMS recorded at the SCW settings >0T by calculating the betatron phase advance

deviations

∆Φmj = ΦSCW
mj −Ψ

(0)
mj (11.1)

and the beta function deviations

∆βmwj = βSCW
mwj − β

(0)
mwj (11.2)

at all BPMs. The RSFA fits are validated by comparing their dispersion estimates d⃗w to the

measured dispersion values D⃗w via a similarity product

aw =
D⃗T

wd⃗w∣∣∣
∣∣∣D⃗w

∣∣∣
∣∣∣
2
·
∣∣∣
∣∣∣d⃗w
∣∣∣
∣∣∣
2 (11.3)

for all SCW settings. As mentioned before, the product is 1 if the shapes are the same, -1 if

the shapes match but the fitted dispersion is flipped as in d⃗w → −d⃗w and 0 if the shapes do

not match at all.

11.2.3 Results

The betatron phase and beta function results are shown in Fig. 11.2. The changes in the

horizontal betatron phase advance are mostly related to noise. This is expected as the SCW

should only affect the vertical focusing. The changes in the vertical phase advance are sig-

nificant and follow a clear trend: the larger the SCW setting, the larger the changes in the

vertical betatron phase.

The impact of SCW operation on the horizontal beta function is mostly limited to the northern

and southern straight. Although larger SCW settings induce larger changes overall, a clear

trend is not recognizable. The horizontal betatron mode seems to pick up some of the vertical

focusing changes induced by the wiggler. The vertical beta function incurs large changes that

follow a similar trend as the changes in the vertical betatron phase: the larger the SCW setting,

the larger the beta function changes. The trend is in line with the changes in betatron phase

deviations. The analysis results for the secondary coupled beta functions ∆β21 and ∆β12 also

point to an increase of transverse coupling for larger SCW settings.

The similarity product of the measured dispersion functions and the fitted dispersion values

presented in Fig. 11.3 is solely shown to validate the fit results. As the scaled dispersion is the

fit parameter that is most susceptible to noise, a good dispersion fit of the RSFA should assert
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Figure 11.2: Twiss parameter changes in user optics for different SCW field-strength settings. Left and
right side: horizontal and vertical quantities. From top to bottom: changes in betatron
phase and beta function according to Eq. (11.1) and Eq. (11.2). The wiggler is located
between BPM40 and BPM41 at s ≈ 80m (see Fig. 2.7).
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Figure 11.3: Dispersion similarity Eq. (11.3) for all analyzed SCW field-strength settings in user optics.

trustworthiness of its betatron phase and beta function estimates. The similarity products

indicate that the dispersion measurement and the RSFA results for the horizontal dispersion

are practically the same. The fitted vertical dispersion estimates match the measurements

less well. In general, this is to be expected because the vertical dispersion is very small and

therefore hard to fit. The only worry seems to be the similarity product for the SCW setting of

7T as it is significantly worse than the rest. It is probably a result of the uncorrected orbit (see

explanation in Ch. 11.2.1) being affected by non-linearities (sextupoles, BPM readings) and

points to a lesser fit quality of the corresponding beta function and betatron phase estimates

produced by the RSFA. This shows in the overly large beta function deviations ∆β11(7T),

∆β12(7T) and ∆β21(7T) in Fig. 11.2. The results were not discarded because the vertical

betatron phase and beta function estimates ∆Φ1(7T) and ∆β11(7T) still fit neatly into the

trend set by the measurements for the smaller SCW field-strength settings.
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12.1 Summary

In this work, new methods for low-frequency (slow) orbit and energy correction as well as the

feasibility of an online optics model are investigated at DELTA. The bilinear-exponential (BE)

model-based online fit could extract Twiss parameters from orbit changes applied by the slow

orbit feedback (SOFB) in the future.

A new orbit correction software (see Ch. 5) was implemented, tested and commissioned for

routine operation. It automatically switches between a local (most effective steerer magnet)

and a global (all steerer magnets) orbit correction method to combine the advantages of both

paradigms. With this feature, the new software provides a more stable orbit than the former

program commissioned in 2004 with its global-only approach (see Ch. 7). For the necessary

calculations, the new software relies on an interior point method (IPM) for constrained convex

optimization. The linear equality and inequality constraints accepted by the IPM were used

in additional features the old program mostly did not have. These are a software aperture,

unique settings for linearly dependent steerer magnets and two methods for energy correction.

The first originates from the ESRF and is also used at BESSY II, the MLS and at KARA. It

stabilizes the beam energy which is useful to prevent spectra of narrow-banded undulators from

drifting during operation. Although the method’s implementation was shown to correct beam

energy perturbations caused by frequency changes of the radiofrequency (RF) resonator (see

Ch. 7.2), the storage ring requires more steerer magnets to use the so-called energy-stabilizing

mode to full capacity. The second method for energy correction is new and finds the shortest

orbit fitting a given reference. After it was demonstrated to work in a simulation of DELTA

under random steerer strength perturbations (see Ch. 6), the orbit-shortening mode was also

validated at the real storage ring (see Ch. 7.3). Here, it proved capable of automating part

of the switching process between user and machine-study optics (see Ch. 2.2.5 for the optics

settings).

An algorithm extracting optics information from data generated in orbit corrections, the re-

sponse set fit algorithm (RSFA, see Ch. 9), was implemented and tested in simulations as well

as measurements. The RSFA takes the idea behind the closed-orbit bilinear-exponential analy-

sis (COBEA) algorithm (see Ch. 8) and generalizes it to new input data. COBEA decomposes

orbit response matrices (ORMs) into estimates for the coupled beta functions, betatron phase

advances as well as scaled dispersion values at all BPMs by fitting the BE model with disper-

sion. The RSFA can extract the same quantities from reponse sets (see Ch. 9.1 for details).

As these sets could, unlike ORMs, be measured by the orbit correction software when correct-
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ing the orbit, the RSFA could provide optical function estimates during operation without a

dedicated measurement (BE online model). COBEA and the RSFA were benchmarked in two

simulation studies based on an optics model of DELTA (see Ch. 10). In the first study, both

algorithms produced good estimates for the coupled beta functions and the coupled betatron

phase advances at all BPMs in the presence of strong transverse coupling. In the second study,

response sets were simulated and used as input for the RSFA and a two-step approach of a

linear ORM fit and consecutive application of COBEA. Here, the RSFA proved superior in

producing optical function estimates for small set sizes. The new algorithm was also validated

experimentally by comparing its fit results to beta function measurements in quadrupoles, dis-

persion measurements and model server calculations (see Ch. 11.1). Even for a small amount

of input data, it produced reliable Twiss parameter estimates. Finally, the RSFA was used to

evaluate the optics impact of the superconducting wiggler, installed in 2020, on the vertical

beta function and betatron phase advance (see Ch. 11.2).

12.2 Outlook

The replacement of the steerer magnet’s power sources used in the SOFB is investigated at the

time of writing. The new power sources will make it possible to build a controller that ramps

these steerer magnets coherently with the steerer magnets of the fast orbit feedback (FOFB)

[46]. Such a ramp controller will allow to include the fast steerer magnets for orbit corrections

in the SOFB and thereby increase the number of horizontal steerer magnets by 16 to 46. If 9 of

DELTA’s 54 BPMs will additionally be excluded from orbit correction, the number of steerers

in the SOFB will be equal to the number of BPMs making the BPM weights superfluent. In

this case, the new software’s energy-stabilizing mode, which was introduced in Ch. 5.3.1, will

work in user operation. Problems could arise from the lower maximum steerer strength of the

fast steerer magnets (about 1/10th of the SOFB magnets).

After the RSFA was shown to produce beta function and betatron phase estimates for small

response set sizes (see simulation study in Ch. 10.3 and experimental comparison in Ch. 11.1),

an actual implementation of a BE online model based on the RSFA that reads response set

entries from orbit corrections via the new orbit correction software seems plausible. The online

model will provide access to a symbiotic measurement of optical functions when conducting

machine studies as long as a sufficient number of orbit corrections are applied. The results

presented in this work suggest that reliable Twiss parameter estimates could then be available

after as few as 20 corrections.
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13 Appendix A: Systems of Equations

13.1 Corrector-Monitor Mapping on Orbit Response

Matrices

13.1.1 System of Equations for the Steerer Parameters

A possible substructure of the first system of equations (8.11) required for corrector-monitor

(CM) mapping on ORMs is described in the following. Although it differs from the substructure

chosen in the description of the COBEA algorithm [13], the resulting system of equations yields

the same results. Using the indices m, w, j and k as well as their bounds M , W , J and K

explained in Ch. 8.1, the system of equations can be composed of a vector of length WJK

A⃗I = (aI
1, a

I
W )T (13.1)

consisting of (1× JK)-matrices

aI
w = ((Rw11 · · · Rw1K) · · · (RwJ1 · · · RwJK)), (13.2)

a vector of length MK

C⃗I = ((A11, AM1) · · · (A1K , AMK))T (13.3)

and a (WJK ×MK)-matrix

BI =




bI11
...

bI1J
bIW1
...

bIWJ




(13.4)

consisting of (K ×MK)-matrices

bIwj =




(Z1wjE1j1, ZMwjEMj1) 0
. . .

0 (Z1wjE1jK , ZMwjEMjK)


. (13.5)
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13.1.2 System of Equations for the BPM Phasors

A possible substructure of the second system of equations (8.14) required for CM mapping on

ORMs is described in the following. Although it differs from the substructure chosen in the

description of the COBEA algorithm [13], it yields the same results. Using the indices m, w,

j and k as well as their bounds M , W , J and K explained in Ch. 8.1, the system of equations

can be composed of a vector of length WJK

A⃗II =
(
aII
1 · · · aII

K

)T
(13.6)

consisting of (1×WJ)-matrices

aII
k = ((R11k, RW1k) · · · (R1Jk, RWJk)), (13.7)

a vector of length MWJ

C⃗II = ((Z111, ZM11, Z1W1, ZMW1) · · · (Z11J , ZM1J , Z1WJ , ZMWJ))
T (13.8)

and a (WJK ×MWJ)-matrix

BII =







bII11 0
. . .

0 bII1J




...


bIIK1 0
. . .

0 bIIKJ







(13.9)

consisting of (W ×M)-matrices

bIIjk =

(
A1kE1jk AMkEMjk 0 0

0 0 A1kE1jk AMkEMjk

)
. (13.10)
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13.2 Corrector-Monitor Mapping on Response Sets

13.2.1 System of Equations for the Steerer Parameters

Considering the indices m, w, j and k as well as their bounds M , W , J and K explained in

Ch. 8.1 in addition to the index i and its bound I introduced in Ch. 9.1, the first system of

equations (9.15) required for CM mapping on response sets comprises a vector of length WJI

A⃗I =
(
aI
1 · · · aI

I

)T
(13.11)

consisting of (1×WJ) matrices

aI
i = (R11i · · · R1Ji, RW1i · · · RWJi), (13.12)

a vector of length MK

C⃗I = (A11 · · · A1K , AM1 · · · AMK)T (13.13)

and a (WJI ×MK)-matrix

BI =




(
bI1i
bIWi

)

...(
bI1I
bIWI

)




(13.14)

consisting of (J ×MK)-matrices

bIwi =




θ1iZ1w1E111 · · · θKiZ1w1E11K , θ1iZMw1EM11 · · · θKiZMw1EM1K

...

θ1iZ1wJE1J1 · · · θKiZ1wJE1JK , θ1iZMwJEM1J · · · θKiZMwJEMJK


. (13.15)

13.2.2 System of Equations for the BPM Phasors

Considering the indices m, w, j and k as well as their bounds M , W , J and K explained in

Ch. 8.1 in addition to the index i and its bound I introduced in Ch. 9.1, the second system of

equations (9.18) required for CM mapping on response sets comprises a vector of length WJI

A⃗II =
(
aII
1 · · · aII

I

)T
(13.16)

consisting of (1×WJ) matrices

aII
i = ((R11i, RW1i) · · · (R1Ji, RWJi)), (13.17)
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a vector of length MWJ

C⃗II = ((Z111, ZM11, Z1W1, ZMW1) · · · (Z11J , ZM1J , Z1WJ , ZMWJ))
T (13.18)

and a (WJI ×MWJ)-matrix

BII =







bII1i 0
. . .

0 bIIJi




...


bII1I 0
. . .

0 bIIJI







(13.19)

consisting of (W ×MW )-matrices

bIIji =




(
K∑
k=1

θkiE1jkA1k,
K∑
k=1

θkiEMjkAMk

)
0

0

(
K∑
k=1

θkiE1jkA1k,
K∑
k=1

θkiEMjkAMk

)


. (13.20)
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14 Appendix B: Analytical Steerer

Parameters

The description of the BE model in [13] only includes analytical expressions for the steerer

parameters in the uncoupled BE model Ax and Ay. For the coupled BE model Eq. (3.10), ana-

lytical representations of the coupled steerer parameters Am are established without derivation

in [62]. In this work, they are used in the calculation of the orbit response matrix (ORM)

for the simulation study presented in Ch. 6. After Ch. 3 layed the theoretical foundation, the

derivation of the coupled parameters and, based on it, a comparison of the BE model to other

orbit response models is presented in the following. Before that, see Ch. 8.1 for an introduction

to the parameterization of the discretized BE model including an explanation of the indices

m, w, j and k as well as their bounds M , W , J and K.

14.1 Derivation

On the one hand, the 4D closed orbit at a thin steerer magnet r⃗(sk) that deflects the beam by

θ⃗ = (0, θ1, 0, θ2)
T (14.1)

adheres to Eq. (3.11). Here, θw is the kick in each plane w. This was used in the formulation

of the transfer map model [67] in Ch. 3.2.2. On the other hand, the closed orbit according to

the BE model Eq. (3.10) is a scaled betatron oscillation. This was explained in Ch. 3.2.1. In

the BE model, the steerer parameters Am take the role of (complex) scaling factors. From the

ensemble of all possible betatron trajectories, they select the mode amplitudes and the mode

start phases of the single betatron trajectory that is closed by the kick and therefore becomes

the new closed orbit. At the position of the steerer magnet sk, the scaled betatron oscillation

can be written as

r⃗(sk) =
∑

m

ℜ




Am




Zm1(sk)

Z ′
m1(sk)

Zm2(sk)

Z ′
m2(sk)







. (14.2)

Inserting this ansatz into Eq. (3.11) and using

sin(πqm) =
1

2i

(
eiπqm − e−iπqm

)
(14.3)
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while absorbing a factor eiπqm into the eigenvector gives a set of W conditions

−2i
∑

m

ℜ
{
Zmw(sk)Am

Z ′
mw(sk)Am

}
sin(πqm) =

(
0

θw

)
. (14.4)

These are further simplified by substituting

Âm = −iAm sin(πqm), (14.5)

which results in W spatial conditions

2ℜ
{
Z1w(sk)Â1

}
+ 2ℜ

{
Z2w(sk)Â2

}
= 0 (14.6)

and W momentum conditions

2ℜ
{
Z ′
1w(sk)Â1

}
+ 2ℜ

{
Z ′
2w(sk)Â2

}
= θw. (14.7)

Together, the conditions contain M complex unknowns Âm with two degrees of freedom for

each mode: one degree of freedom corresponds to the real part ℜ{Âm} and one to the imaginary

part ℑ{Âm}. Thus, the number of equations 2W = 4 is equal to the number of real unknows

2M = 4.

14.1.1 System of Equations

The real part of a complex number z = a + ib can be written as a = 1/2(z + z∗). Applying

this to the spatial and momentum conditions yields

Z1wkÂ1 + Z∗
1wkÂ

∗
1 + Z2wkÂ2 + Z∗

2wÂ
∗
2 = 0 (14.8)

Z ′
1wkÂ1 + Z∗′

1wkÂ
∗
1 + Z ′

2wkÂ2 + Z∗′
2wkÂ

∗
2 = θw. (14.9)

Here, the phasors at the position of the steerer magnet Zmw(sk) have been substituted by

Zmw(sk) = Zmwk to increase the readability. The Âm can now be separated from the phasors

by reformulating Eq. (14.8) as a system of equations. This is achieved by collecting the phasors

in a coefficent matrix

M =




Z11k Z∗
11k Z21k Z∗

21k

Z ′
11k Z ′∗

11k Z ′
21k Z ′∗

21k

Z12k Z∗
12k Z22k Z∗

22k

Z ′
12k Z ′∗

12k Z ′
22k Z ′∗

22k



, (14.10)

stacking the steerer parameters into a vector

A⃗ =
(
Â1, Â

∗
1, Â2, Â

∗
2

)T
(14.11)
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and rewriting the spatial and momentum conditions as

M A⃗ = θ⃗. (14.12)

All complex systems of equations of the form ax⃗ = b⃗ can be solved using Cramer’s rule [69].

The result is the desired but not-yet normalized analytical expression for the steerer parameters

Am(Smwk) = Amk =
i
∑

w θwSmwk

sin(πqm) det(M)
, (14.13)

where the complex scalars

S11k = det



Z∗
11k Z21k Z∗

21k

Z∗
12k Z22k Z∗

22k

Z ′∗
12k Z ′

22k Z ′∗
22k


 S12k = det



Z∗
11k Z21k Z∗

21k

Z ′∗
11k Z ′

21k Z ′∗
21k

Z∗
12k Z22k Z∗

22k


 (14.14)

S21k = det



Z11k Z∗

11k Z∗
21k

Z12k Z∗
12k Z∗

22k

Z ′
12k Z ′∗

12k Z ′∗
22k


 S22k = det



Z11k Z∗

11k Z∗
21k

Z ′
11k Z ′∗

11k Z ′∗
21k

Z12k Z∗
12k Z∗

22k


. (14.15)

encode the amplitudes and phases of the betatron oscillation at the position of the steerer

magnet k. Similar to the analytical expressions for the steerer parameters in the uncoupled

BE model Ax and Ay given in [13], the coupled steerer parameters Eq. (14.13) only work for

thin steerer magnets. The BE model also applies to thick steerer magnets.

14.2 Normalization

After collecting the phasors in vectors

Z⃗mk =
(
Zm1k, Z

′
m1k, Zm2k, Z

′
m2k

)T
, (14.16)

that are equivalent to the eigenvectors of the one-turn transfer map in the position of the

steerer magnet Tsk→sk , the determinant of the coefficient matrix can be written as

det(M) =det
([

Z⃗1k, Z⃗
∗
1k, Z⃗2k, Z⃗

∗
2k

])
(14.17)

=det
([

ℜ
{
Z⃗1k

}
+ iℑ

{
Z⃗1k

}
,ℜ
{
Z⃗1k

}
− iℑ

{
Z⃗1k

}
, Z⃗2k, Z⃗

∗
2k

])
. (14.18)

Iteratively applying the associative law in the context of determinants

det
([

a⃗+ b⃗, c⃗, d⃗
])

= det
([

a⃗, c⃗, d⃗
])

+ det
([

b⃗, c⃗, d⃗
])

(14.19)
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to the determinant then yields

det(M) =det
([

ℜ
{
Z⃗1k

}
, ℜ
{
Z⃗1k

}
− iℑ

{
Z⃗1k

}
, Z⃗2k, Z⃗

∗
2k

])
(14.20)

+ det
([

iℑ
{
Z⃗1k

}
, ℜ
{
Z⃗1k

}
− iℑ

{
Z⃗1k

}
, Z⃗2k, Z⃗

∗
2k

])
(14.21)

=det
([

ℜ
{
Z⃗1k

}
, ℜ
{
Z⃗1k

}
, Z⃗2k, Z⃗

∗
2k

])
(14.22)

+ det
([

ℜ
{
Z⃗1k

}
, −iℑ

{
Z⃗1k

}
, Z⃗2k, Z⃗

∗
2k

])
(14.23)

+ det
([

iℑ
{
Z⃗1k

}
, ℜ
{
Z⃗1k

}
, Z⃗2k, Z⃗

∗
2k

])
(14.24)

+ det
([

iℑ
{
Z⃗1k

}
, −iℑ

{
Z⃗1k

}
, Z⃗2k, Z⃗

∗
2k

])
. (14.25)

Now, three additional rules for calculations with determinants are considered [69]. Firstly, let

λ a complex factor of a column in the matrix of a determinant, then the determinant may be

written as

det
([

λa⃗, b⃗, c⃗
])

= λ det
([

a⃗, b⃗, c⃗
])

. (14.26)

Secondly, switching two columns of a determinant flips its sign. Thirdly, the determinant is

zero if any two columns are identical. Applying these rules to the determinant of the coefficient

matrix gives

det(M) = + det
([

ℜ
{
Z⃗1k

}
, −iℑ

{
Z⃗1k

}
, Z⃗2k, Z⃗

∗
2k

])
(14.27)

+ det
([

iℑ
{
Z⃗1k

}
, ℜ
{
Z⃗1k

}
, Z⃗2k, Z⃗

∗
2k

])
(14.28)

=2i det
([

ℜ
{
Z⃗1k

}
, −ℑ

{
Z⃗1k

}
, Z⃗2k, Z⃗

∗
2k

])
. (14.29)

The same procedure is used on the second eigenvector. This yields

det(M) =− 4 det
([

ℜ
{
Z⃗1k

}
, −ℑ

{
Z⃗1k

}
, ℜ
{
Z⃗2k

}
, −ℑ

{
Z⃗2k

}])
. (14.30)

Due to the symplecticity of [65]

M(s) =
[
ℜ
{
Z⃗1(s)

}
, −ℑ

{
Z⃗1(s)

}
, ℜ
{
Z⃗2(s)

}
, −ℑ

{
Z⃗2(s)

}]
, (14.31)

which implies det(M(s)) = 1, the final results are

det(M) = −4 (14.32)

if Eq. (14.13) is calculated from eigenvectors normalized via Eq. (3.3) and

det(M) = −4C1C2 = −4C4D (14.33)

if not. Here, Cm are the generalized Courant-Snyder invariants of the two betatron modes (see

Ch. 3.1 for details). Their product can be identified with the volume of the 4D phase space
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ellipsoid C4D created by the supersposition of the phase space ellipses of both modes [65]. A

projection of the 4D ellipsoid to a 3D subspace is displayed in Fig. 3.1.

14.3 Relation to other Models

The BE model Eq. (3.10) [13] with the analytical steerer parameters Eq. (14.13) and the

normalization Eq. (14.32) allows to calculate the coupled orbit response in a storage ring in

linear approximation from twiss parameters, their longitudinal derivatives and the order of

BPMs and steerer magnets along the storage ring.

14.3.1 Transfer Map Model

The transfer map model calculates the coupled orbit response in a storage ring in linear

approximation from transfer maps. A transfer map Ts1→s2 can be factorized into a matrix

product [97]

Ts1→s2 = M(s2)SM−1(s1) (14.34)

of the eigenvectors Eq. (14.31) of the one-turn maps Ts1→s1 and Ts2→s2 as well as a rotation

matrix

S =




cos(2πq1) sin(2πq1) 0 0

− sin(2πq1) cos(2πq1) 0 0

0 0 cos(2πq2) sin(2πq2)

0 0 − sin(2πq2) cos(2πq2)




(14.35)

that depends on the tunes qw. Replacing the transfer maps in the transfer map model Eq.

(3.12) with these matrix products gives an expression for the orbit response at any position s

in the storage ring

r⃗(s) = M(s)SM−1(sk)
(
1−M(sk)SM−1(sk)

)−1
θ⃗ for s ̸= sk (14.36)

that only depends on the eigenvectors of the one-turn maps Tsk→sk and Ts→s as well as the

tunes. The dependencies of this modified transfer map model are similar to the BE model with

analytical steerer parameters. Taking into account that both models are based on the same

premise Eq. (3.11) and produce nearly identical results in orbit response simulations [62], it is

reasonable to assume that the transfer map model and the BE model with analytical steerer

parameters are physically equivalent.

14.3.2 Uncoupled Orbit Response Model

The first mode of a coupled betatron oscillation m = 1 can be equivalent to an uncoupled

horizontal betatron oscillation (see Fig. 3.2). If that is the case, the horizontal component of

the horizontal coupled beta function β11(s) can be identified with the uncoupled horizontal
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beta function βx(s) = β11(s) and the coupled betatron phase Φ1(s) can be identified with the

uncoupled horizontal betatron phase Φx(s) = Φ1(s). The eigenvector components Z12k and

Z21k, their derivatives Z
′
12k and Z ′

21k and their complex conjugates in the coefficient matrices

Eq. (14.14) are then zero. Under consideration of normalized eigenvectors fulfilling Eq. (3.3),

the analytical expression of the steerer parameters simplifies to

A1 =
i

sin(πq1)

θ1 det



Z∗
11k 0 0

0 Z22k Z∗
22k

0 Z ′
22k Z ′∗

22k


+ θ2 det



Z∗
11k 0 0

Z ′∗
11k 0 0

0 Z22k Z∗
22k




−4
(14.37)

=
i

sin(πq1)

θ1Z
∗
11k

−4
det

(
Z22k Z∗

22k

Z ′
22k Z ′∗

22k

)
. (14.38)

The phasor in the determinant Z22k and its derivative Z ′
22k are identified with the uncoupled

vertical phasor Zyk and its derivative Z ′
yk resulting in

det

(
Z22k Z∗

22k

Z ′
22k Z ′∗

22k

)
= det

(
Zyk Z∗

yk

Z ′
yk Z ′∗

yk

)
= det

([
Z⃗y, Z⃗

∗
y

])
= det(My). (14.39)

Here, My is a (2× 2)-matrix of the vertical 2D eigenvector Z⃗y and its complex conjugate Z⃗∗
y ,

a decoupled version of the 4D eigenvector matrix M defined in Eq. (14.10). By reusing the

refomulation of the 4D determinant det(M) up to Eq. (14.27), the determinant of the 2D

eigenvector matrix can be expressed as

det(My) = det
([

Z⃗y, Z⃗
∗
y

])
= 2i det

([
ℜ
{
Z⃗y

}
, −ℑ

{
Z⃗∗
y

}])
= 2i det(My) = 2i, (14.40)

where My is a symplectic matrix according to Eq. (14.31). The steerer parameter therefore is

Z1 =
i

sin(πq1)

θ1Z
∗
11k det(My)

−4
(14.41)

=
θ1Z

∗
11k

2 sin(πq1)
. (14.42)

The coupled beta function, the phase and the tune in the steerer parameters can then be

identified with their decoupled counterparts resulting in

A1 =
θ1
√

β11(sk)e
−iΦ1(sk)

2 sin(πq1)
(14.43)

=
θx
√
βx(sk)e

−iΦx(sk)

2 sin(πqx)
(14.44)
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which is the same as the steerer parameter in the uncoupled BE model derived in [13]. There,

it is used to relate the uncoupled BE model to the horizontal orbit response model

x(s) =
θx
√
βx(s)βx(sk)

2 sin(πqx)
cos(|Φx(s)− Φx(sk)| − πqx) (14.45)

which is widely known in accelerator physics [14][66][97]. A similar argument holds in the

vertical plane.
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