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Abstract: Beam–column joints are the critical section of many reinforced concrete (RC) structure
types in which any failure could lead to the collapse of the entire structure. This paper attempts to
employ a superelastic shape memory alloy plate as an innovative and adaptive external strengthening
element to rehabilitate existing concrete beam–column joints and enhance the structure’s performance.
An experimentally investigated beam–column joint is used as the case study, and it is investigated
numerically to validate the effects of an innovative strengthening technique based on shape memory
alloys. The results show that the proposed technique could increase the joint’s stiffness and reduce
the risk of overall failure. A particular innovation in the proposed method is associated with the
novel material itself but also with the fact that the increased potential costs of using special alloys
are counteracted by its potential to produce these elements in an optimised industrially produced
fastened plate. This fits-all construction product further allows a rapid and minimally invasive
strengthening technique. Moreover, to achieve this, the plate is adaptively designed against random
critical load combinations through probabilistic damage prediction.

Keywords: shape memory alloy; reinforced concrete; beam–column joints; probabilistic damage
analysis; non-linear finite elements; ansys APDL; MATLAB

1. Introduction
1.1. Motivation, Fundamental Principles, and Background Knowledge

This article is written just days after a catastrophic series of earthquakes hit densely
populated areas in southern and central Turkey, as well as northern and western Syria, in
early February 2023 [1]. The extent of the damage is still being assessed, but the disaster
is already recognized as one of the most severe in recent history [2,3]. Its impacts are
magnified by the coincidence of encumbered public welfare provisions in the region due
to military hostilities, the pandemic, financial distress and very low temperatures in the
region. This again brings to the forefront the enormous significance of the protection of the
existing building stock, be that from earthquake events or extreme climate change-induced
natural hazards in general. Moreover, structural interventions need to have enhanced
characteristics such as being rapid, minimally invasive, cost-effective and subsequently
financially viable, in order to qualify as adequately resilient solutions. Some examples
with various novel materials and techniques can be found in [4–9], and a state-of-the-art
report and guidance in [10]. The research reported below seeks to address this issue with a
focus on the use of advanced superelastic shape memory alloys for use at the critical joint
locations of framed concrete structures.

Concrete has been one of the most commonly used construction materials for decades.
Despite its high and reliable compressive strength, its brittle nature and low resistance un-
der tensile loads cause cracking at the initial service life of the structure. Concrete cracking
can impede its mechanical and structural properties, such as stiffness, strength, service
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life, resilience and durability [11]. Propagation and growing crack width can lead the
steel reinforcement to be exposed to the environment and subsequently oxidised, reducing
the cross-section area of the bars. Hence, their capability and resistance as tension mem-
bers will deteriorate, potentially resulting in complete structural failure. Abdulrahman
et al. [12] and Shanmugam et al. [13] have conducted numerous investigations on this
topic. Beam–column joints are the most critical locations of concrete structures whose
failure can lead to the collapse of the entire structural system. This beam–column perfor-
mance and its crucial role in overall structural safety (particularly under lateral seismic
loads) is discussed in detail in [14,15]. Damage propagation in a framed system entails
significant uncertainties—due to, e.g., the seismic excitation but also the distribution of
strength and stiffness in beams and columns—and, therefore, robustness criteria need
to be applied by assigning adequate capacity in selected elements of the structure [16].
Robustness design with consideration of such uncertainties (see [17–19]) is the state-of-art
approach in modern structural engineering. This situation renders joint strengthening be-
fore damage or rehabilitation after partial damage essential. Structural repair has increased
unprecedentedly worldwide, and its annual maintenance outlay is higher than that of new
construction [19–21]. Rehabilitation can be achieved via a an additionally applied strength-
ening element; existing technologies in the literature include primarily special concrete lay-
ers [22–25], metal-confining assemblages [26,27] or fibre-reinforced polymers
(FRP) [28–32].

Superelastic shape memory alloys (SMA), i.e., alloys with significant deformation
reversal potential, can be an ideal option since they offer a spectrum of structural material
properties [33] that can suitably increase the strength and resilience of joints. Investigations
on the employment of SMA as a strengthening element of concrete members have hence
been intensified in the last years [34–38]. A comprehensive overview of the application of
SMA in civil infrastructures, including steel, concrete, and timber structures, is offered by
Zareie et al. [39], for strengthening and repair applications for concrete structures in [40],
and in a review from the perspective of multifunctional properties of the alloy by Abavisani
et al. [41]. Moreover, SMA are employed in both steel and concrete beam–column joints.
Leon et al. [42] describe SMA tendons in the connection section of steel beam–column
joints as the main element to transfer loads. The superelastic effect of the alloy was also
employed for seismic performance applications in steel structures, for example, by Wang
et al. [43] in the form of bolts and by Fang et al. [44] as Belleville washers to enhance
the ductility of joints. SMA bolts are reported in [45] to enable an improvement in the
initial stiffness, shear resistance and energy dissipation capability of steel beam–column
joints. Regarding concrete structures, Molod et al. [46] provide a comprehensive literature
review of SMA applications. Varela [47] presents nickel-titanium (NiTi) SMA bars as a
connection tool to link reinforced concrete (RC) columns to the concrete footing. The
results showed that the proposed concept worked well without considerably damaging
the column components under applied ground motion. Wang and Zhu [48] examined
the influence of NiTi superelastic SMA as reinforcement in the plastic hinge region of RC
shear walls. It led to less energy dissipation, no residual deformation upon unloading,
and a significant enhancement in ductility that allowed the wall to tolerate a greater
load causing larger displacement. Sensitivities on reinforcement arrangement including
hybrid FRP/SMA systems for shear wall bases under different approximation methods
are demonstrated in [49]. As shown by Michels et al. [50], an RC beam with externally
bonded Fe-SMA strip using direct fixings under static loading showed a higher cracking
and ultimate load, as well as ductility, compared to unreinforced and carbon FRP (CFRP)-
reinforced beams. Jung et al. [51] showed a reduced residual inter-story drift ratio of
a concrete frame by embedding a composite of SMA wires glued together using epoxy
resin and covered by a layer of FRP in the plastic hinge region of beam–column joints.
Mas et al. [52] used NiTi-SMA cables as longitudinal reinforcement in the tension zone
of the concrete beam, indicating considerable robustness and durability. An innovative
prestressing application for flexural strengthening, in particular by fastened strips, based
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on experimental and analytical studies is presented by Strieder et al. in [53]. A broad
palette of strengthening concepts is found in the cumulative work of Schranz [54]. Suhail
et al. [55] proposed the use of cables with a shape memory effect to tie pre-damaged concrete
beam–column joints loaded under a cyclic loading action. An experimental and numerical
investigation on concrete beam–column joint retrofitting is demonstrated by Yurdakul
et al. [56], in which NiTi SMA bars were installed diagonally through the joint. This led
to a tolerable post-damage condition even under an 8% drift ratio. Elbahy et al. have
experimentally [57] and numerically [58] employed superelastic SMA bars to strengthen
concrete beam-column joints under a ground motion load, in which the bars were attached
parallel to the beam using external rigid steel angles and bolts. The method tolerated higher
earthquake intensities and decreased the maximum and residual drifts. Embedding a
hybrid NiTi superelastic SMA and glass FRP (GFRP) component in the plastic hinge region
of a concrete beam-column joint performed by Youssef et al. [59] indicates a reduced failure
load and displacement under pushover analysis. Youssef et al. [60] also tested NiTi SMA
bars within the plastic hinge region linked to steel bars on either side using a mechanical
coupler. Under cyclic action, the SMA bars in the plastic hinge region showed a larger
deformation capability and negligible residual strain. Better performance by the concrete
beam-column joint reinforced with the SMA bar under a seismic load in terms of energy
dissipation and residual displacements has also been reported in a numerical investigation
by Alam et al. [61]. Hojatirad and Naderpour [62] have numerically studied the influence
of embedded NiTi SMA bars in concrete frames under 13 far-field earthquake records. The
results reported a significant increase in their ductility, maximum drift, and resistance to
collapse. In another numerical investigation by Nahar et al. [63], the influence of SMA bars
embedded within concrete beam-column joints under pushover analysis on maximum and
residual drift and seismic vulnerability was studied. In [64], the employment of superelastic
SMA bars within seismically loaded RC beam-column joints reduced inter-storey drifts.
Zafar and Andrawes [65] were able to improve the structural performance of an RC frame
under a suite of ground motion records in a numerical investigation with an embedded
composite of superelastic SMA and FRP.

1.2. Novelty and Significance of this Study

The main aim of this research is to use SMA in a plate format as an externally strength-
ening element of concrete beam–column joints. As discussed above, SMA have been used
in different forms of bar, cable and composite to strengthen the structures. However, the
influence of a plate format, specifically to enhance concrete beam–column joints, has not
yet been investigated. The innovation in the proposed method is associated with the use
of this novel material itself, but also with the proposition that the increased potential
costs of using SMA are counterbalanced by supplying strengthening components as an
optimised fastened plate through industrialised off-site production. Towards this objective,
the plate is adaptively designed against a realistic range of critical load combinations
based on “probabilistic damage simulation”. This is also a novel methodology, one that
creates a reference for designing a strengthening component for a structure accounting for
multiple possible damage situations. The newly introduced technique and design concept
offer a new paradigm in delivering structurally efficient but also sustainable and resilient
strengthening solutions.

1.3. Overview of the Paper Content

Following the introduction above, which intends to put the study in the perspective of
modern societal needs for retrofitting schemes but also provides a relevant state-of-practice
to highlight its differentiations and novelty, the following main sections are delivered.
Section 2 gives a short historical development perspective and the main technical proper-
ties of the shape memory alloy materials used. Section 3 provides a thorough description of
the methodology followed, including the creation and validation of the basic finite element
model. This section further provides the various analysis and computational techniques
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employed to dimension and evaluate the attached shape memory alloy-based strength-
ening component. Representative results are described and discussed comparatively in
Section 4. The thought-process and recommendations of the general design approach for
such an intervention are given in Section 5, which is followed by a summary with the main
conclusions and take-aways in Section 6. A list of nearly 100 technical references is provided
at the end. Further insights into the study may be found in the relevant dissertation by
Molod at the Technical University of Dortmund [66]. Additional information on the finite
element model formulations and input properties, a table of symbols and notations, as well as a
flowchart of the prepared algorithms can be found in the “Supplementary Materials” file.

2. Brief Outline of SMA

The history of SMA goes back to 1932, when Chang and Read [67] first recorded
SMA transformation properties in a gold–cadmium alloy. Its use was later established in
high-end sectors such as aerospace engineering and the robotic and automotive industries.
Among all types of SMA, NiTi alloys have found most use in civil engineering [68]. SMA
may possess two crystal forms, i.e., Austenite and Martensite. In addition, there are two
Martensite transformations: (a) the shape memory effect (see Figure 1), which results from a
temperature-induced shift, and (b) shape memory elasticity (see Figure 2), which is caused
by external stress-induced transformation.

The main features that distinguish SMA from conventional steel bars are their higher
recoverable elongation, higher tensile strength and better corrosion resistance. Table 1
presents a comparison between the properties of SMA and standard reinforcement steel.
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Table 1. Indicative comparison of properties of NiTi SMA versus steel [69,70].

Properties NiTi Alloy (Nitinol) Standard Steel Rebar

Recoverable elongation 8% 0.2%

Young’s Modulus 83 × 103 MPa Austenite
28–41 × 103 MPa Martensite 2.07 × 105 MPa

Yield Strength 195–690 MPa Austenite
70–140 MPa Martensite 248–517 MPa

Ultimate Tensile Strength Fully Annealed 895 MPa
Work Hardened 1900 MPa 448–827 MPa

Elongation at failure 248–517 MPa 20%
Corrosion Resistance Excellent Fair

Cost Expensive Fair

3. Description of Research Methodology
3.1. Model Set-Up
3.1.1. Model Overview

A concrete beam–column joint can be located in different parts of a structure, such as
the very top corner or middle of a frame. It can have different dimensions and respond
to various loading conditions. To address these considerations, the available data of an
experimentally investigated joint with a predefined rescaled size under a specific load
combination are considered as the case study. This consideration allows the author to check
the validation and verification of the numerical results. The joint is simulated in the finite
element analysis software Ansys APDL [71]. Figure 3 shows details of the reinforcement
and the geometry of the joint. Since it is symmetric, only half of the beam–column joint is
modelled to reduce computational time.

Initially, an investigation was conducted to select suitable elements for this research to
model concrete and steel rebar in Ansys. Solid element 65 with a hexahedral shape was
utilised to model the concrete material. Solid element 185 was used to simulate the SMA
plate. The hexahedral form of the element was applied in the probabilistic analysis step, but
it was then switched to a tetrahedron due to the meshing complexity of the plate geometry
after the optimisation step. To simulate conventional steel bars, the element of Reinf264
was employed. The prior creation of base solid element nodes was required to generate
the element. In addition, elastic bearings were simulated at the load application point and
the support boundary conditions using the element 45, which accommodates stress peaks
and distortions in concrete. Three bearings were created for exerting loads on the system:
(i) axial column load, (ii) bending load, and (iii) shear force. Five others were also created
for boundary conditions, including four to avoid movement in the X-direction: two at the
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top-left and top-right sides of the upper column and two others at the bottom-left and
bottom-right sides of the lower column. Another one was placed at the bottom of the lower
column to avoid the movement of the system in the Y-direction.
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Furthermore, the symmetric boundary condition was applied to the system, in which
movement of those nodes located at the half depth of the system (Z = 125 mm) was closed
in the Z-direction. The Young’s modulus of the concrete material was not given in the
experimental investigation, and it was estimated using current design standards [72] based
on the given compressive strength of the concrete. The Poisson’s ratio of the concrete
was assumed to be 0.2. The uniaxial tensile and compressive strength values were taken
equal to 3.5 and 53.5 MPa, respectively, from the experimental investigation. Shear transfer
coefficients for an open and closed crack were set to 0.3 and 0.7, respectively. The stiffness
multiplier for a crack in tension regions was set to 0.6, and the rest of the material constants
were kept as default. A multilinear isotropic hardening model was employed to simulate
the non-linear behaviour of the concrete. The main reinforcement of the column and the
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beam had the same properties: Young’s modulus was 193 GPa, Poisson’s ratio was 0.3,
and the yielding and ultimate stresses were set to 520 and 630 MPa, respectively. The
shear reinforcement had the same Young’s modulus and Poisson’s ratio as the longitudinal
bars, but its yielding and ultimate stresses were 422 and 682 MPa, respectively. The
tangent modulus was assumed based on the steel grade and data reported by Shukri and
Jumaat [73]. The elongation of the bars was found to be 18 mm; accordingly, the tangent
modulus was calculated to be 620.16 MPa and 1461.75 MPa for the main reinforcement and
stirrups, respectively. Figure 4 illustrates all input data and assumptions to model SMA
in Ansys.
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3.1.2. Model Validation, Element and Material Selection

An experiment by Youssef et al. [60] was chosen for this study since all required inputs
were available and numerical results could be validated to ensure whether the simulated
model was representative. The experiment was conducted at the University of Western
Ontario. The concrete beam–column joint was taken from the sixth floor of an eight-storey
building designed per the Canadian standards CSA A23.3-0.4 [74] and scaled down to 3/4

of its original size. Furthermore, applied loads were scaled down with a factor of (3/4)2,
i.e., the axial column force of 620 kN. It was scaled down to 350 kN, and the reinforcement
included four bars with a diameter of 19.5 mm as principal reinforcement and stirrups with
an 11.3 mm diameter at an 80 mm spacing in the joint region; the same rebar layout was
used for the beam.

There are numerous elements and material models defined in Ansys to simulate
RC. Nine combinations of elements and material models were considered and tested
against their validation of the experimental data. To model the material concrete, three
different material models, respectively using the elements CPT215 and solid65, were
employed. The first two material models were based on the microplane model, which
simulates the behaviour of the material by stress–strain laws for individual planes and is
considered well-suited for cement-bound aggregates of varying properties [71,75,76]. There
were two model types: (i) an elastic microplane model with damage and (ii) a coupled
damage plasticity microplane model. The constitutive laws of both microplane models
are shown in Figures 5 and 6. Both models were based on research done by Zreid and
Kaliske [77–80]. Implementation in Ansys used the CPT215 solid element with eight nodes
and the capability of stress stiffening, large deflection, elasticity and large strains. The third
model was the Menetrey–Willam constitutive model developed by Menetrey [81], extending
from the Willam–Warnke yield surface model (see Figure 7) introduced by Willam [82],
modelled with the solid element 65. This is a 3D element with eight nodes capable of
cracking under tension in three orthogonal directions, crushing under compression, plastic
deformation and creep. There are also numerous elements available in Ansys to model steel
reinforcements; three quite common elements, namely Reinf264, Link180 and Beam188,
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were employed. Unlike Link180 and Beam188, an underlying node structure of solid
elements is a prerequisite for the generation of Reinf264. All three elements support bilinear
isotropic hardening (see Figure 8).
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An axial column load equal to 350 kN and a bending moment load under displace-
ment control up to 73 mm at the beam’s free end were applied. The “WebPlotDigitalizer”
software application developed by Rohatgi [83] was utilised to identify the exact data
of the graph. Graphs of all models were in good agreement with the experiment in the
elastic regime. Nonetheless, in the plastic regime, most cases overestimated the experimen-
tal response, indicating that the element types are significant for the damaged system’s
behaviour. The behaviour of models with Reinf264 was closer to the experiment (see
Figure 9). By juxtaposing the load–displacement curves of the models and the experiment,
the element combination Solid65 and Reinf64 qualified as the most compatible in terms
of load–displacement behaviour, with yielding load and displacement being 58 kN and
15 mm, respectively. This combination was used for further investigations.
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A mesh size convergence study with a structured mesh system was carried out with
ten different element sizes to determine the most appropriate element size. Maximum
displacement versus the number of elements was plotted in a diagram. The correct mesh
size was achieved once the results of two consequences run with different element sizes
remained equivalent. The element size was set to 25 mm. The system was then subjected
to specific loading combinations, and the reaction forces computed by the software were
compared to hand calculations to verify numerical results.

More information on the elements and materials used as well as the model validation
can be found in the “Supplementary Materials” file.
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3.2. Load Combinations’ Selection and Designation Initial Geometry of the SMA Plate

Three loads, namely R1, R2 and R3, were applied to the system. R3 is used only for
the stability of the system. The relationship between the loads was calculated and plotted
in Figure 10. As shown, the association between possible loads produced a volume of
acceptable combinations within the failure safety margin. The external surfaces of this
volume, which represented all possible design points, were considered the boundary of
the ultimate limit state. Then, this surface was finely triangulated, which generated a
large number of nodes located on the limit state surfaces. Each node was defined by
three coordinates (x, y and z) representing a failure combination of R1, R2 and R3. These
coordinates were conveyed into a self-programmed MATLAB algorithm, and one thou-
sand thereof were randomly selected and individually applied as loading conditions.
After the structural analysis was carried out, the steel bars’ maximum free-end displace-
ment and maximum axial stress were extracted. The process used a do-while loop for all
1000 simulations, and the results were recorded in one single output file. After completing
the loops and scanning for maxima through the output file, the critical load combina-
tion was found. The critical load combination corresponded to an axial column force of
2100.20 kN, a bending moment force of 82.77 kN, and zero axial beam force, leading to a
maximum displacement of 26.25 mm at the free end of the beam and a maximum stress
of the steel bars of 522.5 MPa. This exceeded the yielding stress of 520 MPa and led to the
failure of the system. Figures 11 and 12 demonstrate the displacement distribution of the
system and axial stress of the steel bars under the critical load combination.

This procedure also allows for a “probabilistic damage simulation” which is used as
a spectrum of reference situations as a basis for the design of a strengthening component
that can serve multiple possible damage scenarios. This methodology was developed
in the context of this study, but it conceptually relies on previously established concepts
for the stochastic simulation of existing structures’ degradation based on advanced com-
puting methods and on inverse damage identification with the stochastic elaboration of
uncertainties and non-linear finite element modelling (see also [84–87]).
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Figure 12. Steel reinforcement stress under critical load combination.

For this load combination, an SMA plate with a uniform thickness was designed and
bonded to the system as the next step for the system to stay within the safety margins
under the critical load combination. An empirical equation (see Equation (1)) developed
by Paulay and Priestley [88] was used to specify the plastic hinge region of the joint. The
calculated length was around 300 mm.

Lp = 0.08 · L + 0.022 · Db · fy, (1)

The plate was accordingly assigned an initial uniform thickness of 15 mm and a length
equal to the plastic hinge region’s length plus the column’s width. The plate also extended
towards the upper and lower columns for the same distance Lp. Then, do-while loops were
employed to verify the length of the plastic hinge region, extensions, and the thickness
of the plate installed at the joint under the critical load combination. The plastic hinge
region’s length was changed from 300 to 500 with an increment of 50 mm. Upper and lower
extensions were also reduced from 300 mm to 0 mm with an interval of 50 mm. Using
another do-while loop, the plate’s thickness gradually decreased from 15 mm to 5 mm with
an increment of 2 mm. For each loop repetition, the maximum free end displacement of the
beam, the maximum axial stress of the steel bars and the maximum stress of the SMA were
recorded. After the completion of all do-while repetitions and observation of the recorded
results, the most optimised plate thickness was derived, as shown in Figure 13.
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Figure 13. Initial geometry of the SMA plate designed under the critical load combination.

3.3. Optimisation of the Plate Thickness through a Probabilistic Damage Prediction

Initially, thirty-six control nodes were selected on the external surface of the SMA plate
(see Figure 14). Once the initial size of the plate was calculated and the plate was simulated
as installed at the joint, the same load combinations as previously were applied to the
system. Load combinations were used in two different configurations: once in a cyclic form
and once in a reverse cyclic form. When the cyclic load was applied, R1 was introduced
incrementally. Then, R2 and R3 were gradually introduced to the model. The coincident
node between the internal surface of the SMA plate and the external surface of the concrete
were merged to have a full connection in between; however, after the optimisation step,
a contact algorithm was applied there, and a certain number of bolts were designed to
fasten the plate with concrete. The main aim was to investigate the system’s response
when the plate was connected using a normal bolting system or a rigid interface (e.g.,
construction glue).
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The output was then obtained in the form of the probability density functions (PDF)
and cumulative distribution functions (CDF) of the stress at each control node. From the
CDF diagram, the 0.95 quantile values of each control node were calculated and set as
design stress. The thickness of each node was then calculated proportionately based on
the associated design stress, leading to a plate with varied thicknesses but resisting failure
under random cyclic loads R1, R2 and R3.

The same procedure was followed to design the SMA plate for the system under
reversed cyclic loads. For this case, loads were applied in four steps: (i) R1 was applied
gradually up to its maximum value; (ii) R2 and R3 were applied incrementally up to their
maximum values; (iii) R2 was exerted in the opposite direction, while R1 and R3 stayed
as their maximum values; (iv) R2 was exerted in the same direction as the second step,
while R1 and R3 remained constant. The simulations were carried out for the new loading
combination, the stress of the control nodes was recorded, and a probabilistic analysis
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was performed again to design and optimise the thickness of the plate as for the cyclic
actions above.

3.4. Bolting the Optimised SMA Plate to the Concrete via Fastening Technique

As a connection detailing, six bolts were assumed to fasten the optimised SMA plates
to the system. The bolts were applied at those areas of the plate that had lower stress values.
Beam element 188 was employed to simulate the bolts as cylindrical elements. Figure 15
demonstrates the geometry and size of the bolts. The bilinear isotropic hardening model
was used to model the behaviour of the steel bolts. Figure 16 lists all the material properties
of the bolts.
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Furthermore, a surface-to-surface contact was applied between the concrete’s external
surface and the plate’s inner face. For this purpose, contact element 174 and target element
170 were utilised. The constitutive contact formulation observed the multipoint constraint
(MPC) algorithm. The contact’s function was modelled as non-separable and only sliding
was possible. The MPC contact algorithm was chosen in this non-linear analysis to avoid
convergence issues instead of penalty functions and Lagrange multiplier algorithms.

4. Results and Discussion
4.1. Reinforced System with SMA Plate under Cyclic Load

A probabilistic analysis for all control nodes was performed after their data were
imported into MATLAB software to optimise the plate’s thickness. Due to a large number
of data and nodes, only the results of some significant nodes are presented herein. Diagrams
of probability density functions (PDF) and cumulative distribution functions (CDF) of the
node possessing maximum stress distributed over the plate are shown in Figure 17 (left and
right respectively). The maximum stress appeared at the top corner of the beam–column
joint. The fitted distribution type for the node was of Kernel type, which is a nonparametric
distribution. This type of distribution can be employed in place of parametric distributions
since it describes the results with high fitting precision. According to the associated PDF
graph, the distribution’s mean, standard deviation and variance were equal to 130, 40,
and 129 MPa, respectively. The CDF diagram was accordingly sketched. Consequently,
any quantile of the results could be calculated. Figure 17 (right) shows the CDF diagram,
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where 183.79 MPa is the 95th quantile of the results. Since this node possessed maximum
stress, the maximum thickness of the plate was designed accordingly, and each control
node underwent this exact process.
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Figure 17. PDF and CDF diagrams of maximum stress node (left and right respectively).

As discussed above, due to the nature of the results, most node results were gener-
ally fitted to kernel distribution except a few; one of them is node number 27, where the
generalised-extreme-value distribution was well fitting. This type is noticeably interchange-
able with log-normal distribution, but since there are several negative values among the
stress data, the log-normal type is excluded. PDF and CDF diagrams of this node are shown
in Figure 18. It is evident that the imposed stresses and mean value are marginal since the
node is located in the lower half of the plate close to the bottom surface of the beam, where
the section acts mainly under compression. Figure 19 shows the SMA plate with varying
thicknesses that was designed as a result of the probabilistic study.
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4.2. Reinforced System with SMA Plate under Reverse-Cyclic Load

A probabilistic study was also carried out for the control nodes of the system under a
reverse cyclic loading. However, nodes 19–36 were under the same conditions as nodes
1–18 if one more load step occurred because the designed thickness of the upper half of
the plate was calculated as nearly symmetrical with the lower half of the plate. The mean
value and 95th quantiles of stress for the system under cyclic load were 130 and 183.79 MPa,
respectively, with these values reaching 136.1 and 192.8 MPa under reverse cyclic. The
PDF and CDF diagrams of the data are shown in Figure 20. In addition, the distribution
type of the node that possessed maximum stress in both systems was identical (kernel
distribution), and the only difference was magnitude. To optimise the plate’s thickness for
the system under reverse cyclic load consideration, the probabilistic study for all thirty-six
control nodes was reiterated. Nonetheless, due to the large size of the dataset, only the
results of the node that possessed maximum stress are presented. Figure 21 shows the SMA
plate with various thicknesses designed against the results of the probabilistic study for the
system under reverse cyclic loading.
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4.3. Numerical Examples for System Reinforced with Optimised Plate

After this procedure, the system strengthened with the optimised SMA was finally
re-examined. The system was loaded under load combinations under which the unstrength-
ened system failed. Two numerical checks were run: (i) the SMA strengthened joint plate
under cyclic, and (ii) under reverse cyclic. In addition, each of these two examples was
run twice, i.e., once before bolting the plate to the concrete joint and once after. This
allowed for comparison between the plate installation and the different techniques of direct
bonding and bolting. To create a rigid connection between the plate and concrete in the
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model, coincident nodes at the interface were merged for examples without bolts. In the
first example, the system reinforced with the optimised SMA plate bolted to the joint was
loaded under cyclic loading, where R1 had the same value as the experimental investigation,
350 kN. At the same time, R2 was applied under displacement control up to −32 mm. The
system without the SMA plate under the loading mentioned above was also considered a
reference for comparison purposes. The load–displacement behaviour of both methods is
shown in Figure 22. The steel bars started yielding in the reference system at a bending
load (R2) equal to 58.8 kN, but the value was 1.4 times greater in the system reinforced
with the optimised SMA plate. The load-bearing capacity of the reinforced system in the
elastic regime was higher than the unreinforced structure. The capability in the plastic
regime was even higher so that the load-carrying capacity of the reinforced system at the
displacement of 32 mm was approximately 98 kN. However, the value was only around
66 kN in the system without the plate, meaning that the existence of the plate for higher
load values was a significant contribution in comparison with the system under smaller
pressure. Another important finding is that the bar yielding occurred precisely at the
beam–column intersection in the case without the plate. In contrast, this yielding location
in the case of the strengthened joint was shifted toward the beam span beyond the plate
length’s end. In such a case, any failure will lead to severe damage to the beam, not the
joint. Therefore, not only can the plate delay the local failure of the structure, but it can
also mitigate the failure of the entire structure in case a joint capacity design is required for
robustness purposes.
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Figure 22. Load–displacement behaviour of the system with and without SMA plate under
cyclic load.

The second numerical trial was done for the system strengthened with the optimised
SMA plate bolted to the joint under reverse cyclic loading of load combination 192, where
R2 possessed 95% of all R2 values. The load values of R1, R2 and R3 of the load combination
were 1751.82 kN, 77.912 kN and zero, respectively. Figure 23 shows the steel bars’ stress,
the system’s maximum displacement, and stress distributed over the SMA plate for the
numerical trials with and without the bolting technique. The maximum stress of the
plate, which was 365 MPa, moved towards the location of the bolts in the system with
the bolted SMA plate. In comparison, it was only 197 MPa and located around the upper
beam–column intersection in the example without the bolting technique. In addition, the
maximum axial stress of rebar for the system with bolts reached about 495 MPa, which
was still less than the yielding stress of the main steel bars and was located far from the
intersection. The value was 490 MPa in the system without the bolts. Hence, the bolting
technique can be considered a proper method for fastening the plate to the concrete joint.
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5. Design Recommendation

Although the bolting technique shows an efficient way to fix the SMA plate to the
concrete joint, the increase in the maximum stress value and the movement of its concen-
tricity around the bolts can be considered a weak installation and, consequently, early
failure of the fastening. Figure 24 demonstrates this drawback of the fastening technique
and behaviour of the optimised SMA plate bolted to the joint under reverse cyclic load-
ing in different load steps. Therefore, a locally thickened SMA plate around the bolts is
needed to reduce the value and concentricity of stress around them to overcome this bolting
connection disadvantage. Alternatively, bonding the plate to the joint is recommended.
Regarding bolting, a design of the bolts according to current standards on fastenings (e.g.,
EN 1992-4 [89] in Europe) and by the use of anchor bolt products certified for seismic cyclic
loads (e.g., according to the respective European Assessment Document [90]) is envisaged.
Care should be given that the anchors comply with the design situation which is subject to
the designer’s expertise or appropriate standards’ provisions. Some experimental examples
and concepts for strengthening by bolted plates are given in [91–94]. The bonded plate solu-
tion (notwithstanding that both bolting and bonding can be used redundantly) may rely on
the established techniques which have also been now to some extent standardised [95,96],
while several applications have already been demonstrated in research and practice [97–99].
A comparison of the two connection methods is also given in [100].
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Figure 24. Stress of the SMA plate after different load steps.

Figure 25 shows an example of the recommended method of reduction of the maxi-
mum stress value around the bolts located in section D-D of the plate optimised for the
system under reverse cyclic loading. As an alternative fastening method, the employ-
ment of a bonding mortar (e.g., of epoxy-based resin or equally rigid and robust material)
between the plate’s internal surface and the concrete’s external surface must be investi-
gated experimentally. In such a case, the value of maximum stress over the plate will also
be reduced.
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6. Summary and Concluding Remarks

A numerical study has been conducted to assess the behaviour of RC beam–column
joints externally bonded with an SMA plate, which was also optimised through a probabilis-
tic damage prediction. An experimentally investigated concrete beam–column joint was
simulated in Ansys software and loaded under three load types, namely axial column load
(R1), bending load (R2) and axial load applied at the free end beam (R3). After mesh size
convergence, verification and validation, the numerical results showed good compatibility
with the experimental results in terms of load–displacement behaviour and load value
leading to the yielding of the steel bars. There the point of rebar yielding was detected,
corresponding to a bending load of 58 kN at a displacement of 15 mm, and a bending
load of limit state functions for the system under loads R1, R2 and R3 were estimated, and
the system was loaded under 1000 load combinations selected randomly from the limit
state functions. The critical load combination was found, in which R1, R2 and R3 were
equal to 2100.2 kN, 82.8 kN and 0 kN, respectively. The load combination led to a free
end displacement of 26.25 mm and axial stress of rebar 522.5 MPa. The initial geometry of
the SMA plate was designed under critical load combination using an empirical equation
and some do-while loops. The designed plate had a 500 mm length, a 7 mm uniform
thickness and a 100 mm extension toward the upper and lower columns. Optimisation
of the plate’s thickness based on the result of a probabilistic study was carried out, in
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which various strengthening and loading configurations were investigated. The Kernel
distribution was the overall best-fit distribution for the probabilistic results, and the 95th
quantiles were considered the design stress. Two plates have been optimised, one for cyclic
with a maximum thickness of 7 mm and another for a reverse cyclic loading system with a
maximum thickness 7.35 mm. The plates have been assumed either bonded or bolted to the
concrete beam–column joints. Some numerical examples were carried out to compare the
numerical results with the experimental results and to check whether the designed plate
and bolting technique worked adequately.

Furthermore, a design recommendation is proposed to reduce the stress concentration
around the bolts by introducing a local thickening, which may also form a requirement
for practical assembly. Replacement of the bolting fastening technique by bonding (e.g.,
through various upcoming construction glue technologies) can offer an alternative for even
simpler and more rapid applications. In addition, the system reinforced with an externally
bonded and optimised SMA plate showed significant improvement in terms of yielding
and total displacement in comparison with the system without the plate, so that the rebar
started yielding under bending load 81.2 kN as opposed to 58.8 kN in the system without
the plate. Furthermore, the maximum axial stress of the steel bars moved towards the
middle of the beam in the system with the plate, by which the risk of failure of the entire
structure could be reduced and changed to failure of the beams only.

The numerical analyses presented herein demonstrate the feasibility and benefits of
such a strengthening method with the advanced SMA as construction material, which
form a main objective of this study. As future work, an experimental investigation un-
der the same conditions as the numerical examples can be carried out for validation of
the numerical results. In this case, both the bolted and bonded alternatives need to be
tested, with particular focus, moreover, on the influences of installation quality. Such
strengthening tests are recommended to be carried out, taking account of the pre-damaged
situation of the concrete element, which is a realistic condition. A parametric study in
which material properties of concrete and the constitutive law of the alloy are set as the
main design variables can allow further exploration of suitable material properties and
plate configurations.

Nonetheless, basic steps have already been taken. Based on this research, it has been
made possible to understand the behaviour of the proposed strengthening system for the
first time in the scientific and technical literature. The authors can only pronounce here the
significance of maintaining the fact that such methods need to be rapid, minimally invasive
and cost-efficient in order to adequately address the crisis following a disaster. Apart from
that, the engineering community should rely on these aspects in order to improve the
incentives and motivations of building owners towards structural rehabilitation measures.
Additionally, a novel design approach which accounts for high uncertainties in load ac-
tions and the pre-damaged state of the concrete structures, namely probabilistic damage
modelling, is demonstrated herein. Relying on this methodology, it is possible to develop
optimised dimensioning of SMA structural components, which is suitable for a broad
envelope of design situations. Finally, the serial industrial production of such components
should be pursued so that upscaling allows a reduction in material and application costs.
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56. Yurdakul, Ö.; Tunaboyu, O.; Avşar, Ö. Retrofit of non-seismically designed beam-column joints by post-tensioned superelastic
shape memory alloy bars. Bull. Earthq. Eng. 2018, 16, 5279–5307. [CrossRef]

57. Elbahy, Y.; Youssef, M.; Meshaly, M. Seismic performance of reinforced concrete frames retrofitted using external superelastic
shape memory alloy bars. Bull. Earthq. Eng. 2019, 17, 781–802. [CrossRef]

58. Elbahy, Y.I.; Youssef, M.A.; Meshaly, M. Numerical investigation of reinforced-concrete beam-column joints retrofitted using
external superelastic shape memory alloy bars. AIMS Mater. Sci. 2021, 8, 716–738. [CrossRef]

59. Youssef, M.; Meshaly, M.; Elansary, A. Ductile corrosion-free self-centering concrete elements. Eng. Struct. 2019, 184, 52–60.
[CrossRef]

60. Youssef, M.; Alam, M.; Nehdi, M. Experimental investigation on the seismic behaviour of beam-column joints reinforced with
superelastic shape memory alloys. J. Earthq. Eng. 2008, 12, 1205–1222. [CrossRef]

61. Alam, M.; Youssef, M.; Nehdi, M. Analytical prediction of the seismic behaviour of superelastic shape memory alloy reinforced
concrete elements. Eng. Struct. 2008, 30, 3399–3411. [CrossRef]

62. Hojatirad, A.; Naderpour, H. Seismic assessment of RC structures having shape memory alloys rebar and strengthened using
CFRP sheets in terms of fragility curves. Bull. Earthq. Eng. 2021, 19, 5087–5112. [CrossRef]

63. Nahar, M.; Islam, K.; Billah, A.M. Seismic collapse safety assessment of concrete beam-column joints reinforced with different
types of shape memory alloy rebars. J. Build. Eng. 2020, 29, 101106. [CrossRef]

64. Abraik, E. Seismic performance of shape memory alloy reinforced concrete moment frames under sequential seismic hazard.
Structures 2020, 26, 311–326. [CrossRef]

65. Zafar, A.; Andrawes, B. Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory
composite bars. Smart Mater. Struct. 2012, 21, 025013. [CrossRef]

66. Molod, M.A.M. Strengthening Reinforced Concrete Column-Beam Joints with Modular Shape Memory Alloy Plate Optimized
through Probabilistic Damage Prediction. Ph.D. Dissertation, TU Dortmund, Dortmund, Germany, 2021. Available online:
https://eldorado.tu-dortmund.de/handle/2003/40159 (accessed on 14 February 2023).

67. Chang, L.C.; Read, T.A. Plastic deformation and diffusionless phase changes in metals—The gold-cadmium beta phase. JOM
1951, 3, 47–52. [CrossRef]

68. Miyazaki, S.; Duerig, T.; Melton, K. Engineering Aspects of Shape Memory Alloys; Butterworth-Heinemann: London, UK, 1990.
69. Nasradeen, D. Self-Repairing Performance of Concrete Beams Reinforced with SMA 734 Wires. Master’s Thesis, Newcastle

University, Newcastle, UK, 2015.
70. Deng, Z.; Li, Q.; Sun, H. Behaviour of concrete beam with embedded shape memory alloy wires. Eng. Struct. 2006, 28, 1691–1697.

[CrossRef]
71. ANSYS. ANSYS Documentation Ansys®ANSYS Mechanical APDL, 2019.1, Help System, Ansys Documentation; ANSYS, Inc.: Canons-

burg, PA, USA, 2019.
72. EN 1992.1-1; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. European Committee

for Standardization (CEN): Brussels, Belgium, 2004.
73. Shukri, A.A.; Jumaat, M.Z. The tension-stiffening contribution of NSM CFRP to the behaviour of strengthened RC beams.

Materials 2015, 8, 4131–4146. [CrossRef]
74. CSA A23.3-04; Design of Concrete Structures. Canadian Standards Association: Mississauga, ON, Canada, 2004.
75. Bažant, Z.P.; Gambarova, P.G. Crack shear in concrete: Crack band microflane model. J. Struct. Eng. 1984, 110, 2015–2035.

[CrossRef]
76. Bažant, Z.P.; Oh, B.H. Microplane model for progressive fracture of concrete and rock. J. Eng. Mech. 1985, 111, 559–582. [CrossRef]
77. Zreid, I.; Kaliske, M. Regularisation of microplane damage models using an implicit gradient enhancement. Int. J. Solids Struct.

2014, 51, 3480–3489. [CrossRef]
78. Zreid, I.; Kaliske, M. An implicit gradient formulation for microplane Drucker-Prager plasticity. Int. J. Plast. 2016, 83, 252–272.

[CrossRef]
79. Zreid, I.; Kaliske, M. Microplane modeling of cyclic behaviour of concrete: A gradient plasticity-damage formulation. PAMM

2016, 16, 415–416. [CrossRef]

http://doi.org/10.1007/s41062-017-0083-6
http://doi.org/10.1016/j.conbuildmat.2017.05.041
http://doi.org/10.3390/ma12030345
http://www.ncbi.nlm.nih.gov/pubmed/30678305
http://doi.org/10.1007/s10518-018-0323-y
http://doi.org/10.1007/s10518-018-0477-7
http://doi.org/10.3934/matersci.2021043
http://doi.org/10.1016/j.engstruct.2019.01.086
http://doi.org/10.1080/13632460802003082
http://doi.org/10.1016/j.engstruct.2008.05.025
http://doi.org/10.1007/s10518-021-01141-w
http://doi.org/10.1016/j.jobe.2019.101106
http://doi.org/10.1016/j.istruc.2020.04.025
http://doi.org/10.1088/0964-1726/21/2/025013
https://eldorado.tu-dortmund.de/handle/2003/40159
http://doi.org/10.1007/BF03398954
http://doi.org/10.1016/j.engstruct.2006.03.002
http://doi.org/10.3390/ma8074131
http://doi.org/10.1061/(ASCE)0733-9445(1984)110:9(2015)
http://doi.org/10.1061/(ASCE)0733-9399(1985)111:4(559)
http://doi.org/10.1016/j.ijsolstr.2014.06.020
http://doi.org/10.1016/j.ijplas.2016.04.013
http://doi.org/10.1002/pamm.201610196


Sustainability 2023, 15, 3831 25 of 25

80. Zreid, I.; Kaliske, M. A gradient enhanced plasticity–damage microplane model for concrete. Comput. Mech. 2018, 62, 1239–1257.
[CrossRef]

81. Menetrey, P. Numerical Analysis of Punching Failure in Reinforced Concrete Structures. Master’s Thesis, EPFL, Lausanne,
Switzerland, 1994.

82. Willam, K.J.; Warnke, E.P. Constitutive model for the triaxial behaviour of concrete. In Proceedings of the Seminar on Concrete
Structure Subjected to Triaxial Stresses, Bergamo, Italy, 17–19 May 1974.

83. Rohatgi, A. WebPlotDigitizer; Austin, TX, USA. 2017. Available online: https://apps.automeris.io/wpd/ (accessed on
12 December 2022).

84. Novák, D.; Lehký, D. ANN inverse analysis based on stochastic small-sample training set simulation. Eng. Appl. Artif. Intell.
2006, 19, 731–740. [CrossRef]

85. Barkhordari, M.S.; Armaghani, D.J.; Asteris, P.G. Structural damage identification using ensemble deep convolutional neural
network models. Comput. Model. Eng. Sci. 2022, 134, 835–855. [CrossRef]

86. Šomodíková, M.; Lehký, D.; Doležel, J.; Novák, D. Modeling of degradation processes in concrete: Probabilistic lifetime and
load-bearing capacity assessment of existing reinforced concrete bridges. Eng. Struct. 2016, 119, 49–60. [CrossRef]

87. Strauss, A.; Frangopol, D.M.; Bergmeister, K. Assessment of existing structures based on identification. J. Struct. Eng. 2010, 136,
86–97. [CrossRef]

88. Paulay, T.; Priestley, M.J.N. Seismic Design of Reinforced Concrete and Masonry Buildings; John Wiley Sons, Inc.: Hoboken, NJ, USA, 1992.
89. EN 1992–4:2018; Eurocode 2—Design of Concrete Structures—Part 4: Design of Fastenings for Use in Concrete. European

Committee for Standardization: Brussels, Belgium, 2018.
90. EAD 330232–01-0601; Mechanical Fasteners for Use in Concrete, Decision (EU) 2021/1789. European Organisation for Technical

Assessment (EOTA): Brussels, Belgium, 2021.
91. Li, L.Z.; Lo, S.H.; Su, R.K.L. Experimental study of moderately reinforced concrete beams strengthened with bolted-side steel

plates. Adv. Struct. Eng. 2013, 16, 499–516. [CrossRef]
92. Aykac, S.; Kalkan, I.; Aykac, B.; Karahan, S.; Kayar, S. Strengthening and Repair of Reinforced Concrete Beams Using External

Steel Plates. J. Struct. Eng. 2013, 139, 929–939. [CrossRef]
93. Liu, X.; Lu, Z.D.; Li, L.Z. The use of bolted side plates for shear strengthening of RC beams: A review. Sustainability 2018, 10, 4658.

[CrossRef]
94. Marchisella, A.; Muciaccia, G.; Sharma, A.; Eligehausen, R. Experimental investigation of 3d RC exterior joint retrofitted with

fully-fastened-haunch-retrofit-solution. Eng. Struct. 2021, 239, 112206. [CrossRef]
95. EAD 160086-00-0301; Kits for the Strengthening of Concrete Elements by Externally Bonded CFRP Strips. European Organisation

for Technical Assessment (EOTA): Brussels, Belgium, 2023; (in press).
96. DafStb. DAfStb-RiLi VBgB: Richtlinie "Verstärken von Betonbauteilen mit geklebter Bewehrung"; Deutscher Ausschuss für Stahlbeton:

Berlin, Germany, 2012.
97. Bergmeister, K. Kleben im Betonbau-Theoretische Grundlagen und Bemessungsvorschläge (Bonding in structural concrete—

Theoretical basics and design proposals). Beton-und Stahlbetonbau 2001, 96, 625–633. [CrossRef]
98. Altin, S.; Anil, Ö.; Kara, M.E. Improving shear capacity of existing RC beams using external bonding of steel plates. Eng. Struct.

2005, 27, 781–791. [CrossRef]
99. Barnes, R.A.; Mays, G.C. Strengthening of reinforced concrete beams in shear by the use of externally bonded steel plates: Part

2—Design guidelines. Constr. Build. Mater. 2006, 20, 403–411. [CrossRef]
100. Barnes, R.A.; Baglin, P.S.; Mays, G.C.; Subedi, N.K. External steel plate systems for the shear strengthening of reinforced concrete

beams. Eng. Struct. 2001, 23, 1162–1176. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s00466-018-1561-1
https://apps.automeris.io/wpd/
http://doi.org/10.1016/j.engappai.2006.05.003
http://doi.org/10.32604/cmes.2022.020840
http://doi.org/10.1016/j.engstruct.2016.03.065
http://doi.org/10.1061/(ASCE)0733-9445(2010)136:1(86)
http://doi.org/10.1260/1369-4332.16.3.499
http://doi.org/10.1061/(ASCE)ST.1943-541X.0000714
http://doi.org/10.3390/su10124658
http://doi.org/10.1016/j.engstruct.2021.112206
http://doi.org/10.1002/best.200100810
http://doi.org/10.1016/j.engstruct.2004.12.012
http://doi.org/10.1016/j.conbuildmat.2005.01.028
http://doi.org/10.1016/S0141-0296(00)00124-3

	Introduction 
	Motivation, Fundamental Principles, and Background Knowledge 
	Novelty and Significance of this Study 
	Overview of the Paper Content 

	Brief Outline of SMA 
	Description of Research Methodology 
	Model Set-Up 
	Model Overview 
	Model Validation, Element and Material Selection 

	Load Combinations’ Selection and Designation Initial Geometry of the SMA Plate 
	Optimisation of the Plate Thickness through a Probabilistic Damage Prediction 
	Bolting the Optimised SMA Plate to the Concrete via Fastening Technique 

	Results and Discussion 
	Reinforced System with SMA Plate under Cyclic Load 
	Reinforced System with SMA Plate under Reverse-Cyclic Load 
	Numerical Examples for System Reinforced with Optimised Plate 

	Design Recommendation 
	Summary and Concluding Remarks 
	References

