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FINITE ELEMENT APPROXIMATION OF DATA-DRIVEN

PROBLEMS IN CONDUCTIVITY

ANNIKA MÜLLER AND CHRISTIAN MEYER

Abstract. This paper is concerned with the finite element discretization of

the data driven approach according to [18] for the solution of PDEs with
a material law arising from measurement data. To simplify the setting, we

focus on a scalar diffusion problem instead of a problem in elasticity. It is

proven that the data convergence analysis from [9] carries over to the finite
element discretization as long as H(div)-conforming finite elements such as the

Raviart-Thomas element are used. As a corollary, minimizers of the discretized

problems converge in data in the sense of [9], as the mesh size tends to zero and
the approximation of the local material data set gets more and more accurate.

We moreover present several heuristics for the solution of the discretized data

driven problems, which is equivalent to a quadratic semi-assignment problem
and therefore NP-hard. We test these heuristics by means of two examples

and it turns out that the “classical” alternating projection method according
to [18] is superior w.r.t. the ratio of accuracy and computational time.

1. Introduction

In material science, empirically developed material models are commonly in use,
i.e., material laws that describe the behavior of materials are derived from measured
data. But, due to measuring errors and simplified models, this approach bears the
risk of inaccuracies. For this reason, an alternative data-driven concept has been
established in [18]. In a sense, this concept skips the modeling step and uses
the measured data directly. The idea is to select that data point from the set of
measurements that best fits axiomatic physical laws such as first principles.

Let us explain this data-driven approach in terms of a stationary diffusion process
of the form

−div κ(∇u) = f in Ω, u = 0 on Γ := ∂Ω. (1.1)

Here and in the following, Ω ⊂ Rd, d ∈ N, is a bounded domain, f ∈ H−1(Ω) :=
H1

0 (Ω)
∗, and div : L2(Ω;Rd) → H−1(Ω) denotes the distributional divergence.

Furthermore, κ : Rd → Rd is a given function which models the material law and is
calibrated by m ∈ N measurements for the tuple (q,∇u) collected in the so-called
local material data set

Dloc := {(r1,w1), . . . , (rm,wm)} ⊂ Rd × Rd. (1.2)
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As indicated above, the idea is now to use these measurements directly. For this
purpose, we rewrite (1.1) equivalently as

(1.1) ⇐⇒ (q,∇u) ∈ D̃ × E ,
with the so-called equilibirum set

E := {(q,∇u) ∈ L2(Ω;Rd)× L2(Ω;Rd) : u ∈ H1
0 (Ω), −div σ = f} (1.3)

and the material law set

D̃ := {(r,w) ∈ L2(Ω;Rd)× L2(Ω;Rd) : r(x) = κ(w(x)) a.e. in Ω}. (1.4)

The data-driven approach now skips the modelling step and uses the measured data

directly by replacing D̃ with the material data set

D := {(r,w) ∈ L2(Ω;Rd)× L2(Ω;Rd) : (r,w) ∈ Dloc a.e. in Ω}
where Dloc is the collection of measurements from (1.2). Due to measurement
errors and limited measuring capacities, the intersection D ∩ E is usually empty.
One therefore resorts to a minimization problem of the form

min
(y,z)∈Z×Z

∥y − z∥2Z

s.t. y ∈ D, z ∈ E ,

}
(DDP)

i.e., one searches for two elements of the sets E and D that have smallest distance
to each other. Herein, we abbreviated Z := L2(Ω;Rd)× L2(Ω;Rd).

The optimization problem (DDP) is frequently called data-driven problem and
gives rise to several questions and issues: First of all, while E is easily seen to be
weakly closed, the set D is in general not. Hence, (DDP) does not necessarily admit
a solution. Moreover, a natural question arising in context of (DDP) is its behavior
for measurements getting more and more accurate. Does the arising data-driven
limit recover the “true” material law and, if so, in which sense? Moreover, a nu-
merical solution of (DDP) requires a discretization of (DDP) and one may ask how
a discretization influences this data-driven limit. Finally, the material data set D
involves a discrete point set such that (DDP) is a mixed-integer optimization prob-
lem. Problems of this type are typically hard to handle such that the development
of efficient optimization algorithms for (DDP) (and its discretized counterpart) is
all but trivial.

With this work, we address the two latter questions, i.e., we discuss discretization
schemes and optimization algorithms for the solution of (DDP). Let us put our work
into perspective. In engineering science, the data-driven approach is meanwhile well
accepted and has been applied to various problems, in particular in solid mechanics,
we only refer to [18, 19, 21, 12, 7] for examples from elasticity, inelasticity, dynamics,
and fracture mechanics. A rigorous mathematical analysis of this approach has
only been initiated recently in [9], where the concept of data convergence has been
introduced. This notion of convergence is especially tailored to the structure of
(DDP) and allows to characterize the data-driven limit. In this way, it answers
the above question what happens, if the measurement errors tend to zero. The
precise characterization of data-driven limits strongly depends on the particular
structure of D and E . This notion of convergence and the characterization of the
associated limits have been investigated for several scenarios, we exemplarily refer
to in [9, 10, 23]. To the best of our knowledge however, the discretization of E and
D has not been incorporated into this convergence analysis so far and with this
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work, we aim to fill this gap. This is an important issue, not only because (DDP)
cannot be solved in infinite dimensional spaces, but also due to the general lack of
existence of solutions to (DDP). If one turns to a discretized counterpart of (DDP),
then the finite dimensional structure allows to establish the existence of optimal
solutions under mild assumptions so that, not until then, it makes sense to look for
efficient algorithms for their computation.

As already indicated, the design of reliable and efficient solvers for (DDP) (and
its discretization, respectively) is a delicate issue due to the discrete structure of
the local material data set. In [18], a fixed-point type heuristic based on projections
has been introduced, which is able to handle extensive measurement data, but may
fail to converge or converges to spurious fixed-points that are not optimal, as shown
in [17]. In the latter reference, a standard mixed-integer programming solver his
employed to solve a data-driven problem of (unrealistically) small size. Due to
the vast amount of measurement data, it is in principle impossible to use exact
mixed-integer programming solvers for the solution of (DDP). Therefore, various
heuristics have been developed and applied such as as kernel regression [15], local
regression [16], tensor voting [13], and neural networks [22]. In the second part of the
paper, we present some new heuristics and compare them with existing methods.
Some of our algorithms are based on projection heuristic from [18], but we also
tested a method, which employs an exact mixed-integer solver in combination with
a local search algorithm.

We point out that we restrict ourselves to the conductivity example from (1.1)
in order to keep the discussion as concise as possible. An extension of the finite
element convergence analysis as well as the algorithmic approaches to problems in
elasticity should be possible and is subject to future research.

The plan of the paper reads as follows: After introducing our standing assump-
tions and some well known results from saddle point theory in Section 2, we focus
on the discretization of the equilibrium set by means of Raviart-Thomas type fi-
nite elements in Section 3. Afterwards, in Section 4, we recall the notion of data
convergence from [9] and adapt it to our setting. Section 5 is then devoted to our
main results, incorporating the finite element discretization of E and D into the
data convergence analysis. In Section 6, we discuss the need for H(div)-conforming
finite elements like the Raviart-Thomas element for the discretization of (DDP).
Section 7 is dedicated to the algorithms and their implementation and finally, in
Section 8, we present some numerical results.

2. Preliminaries and Standing Assumptions

As usual we define

H(div) := {w ∈ L2(Ω;Rd) : divw ∈ L2(Ω)},

where div : L2(Ω;Rd) → H−1(Ω) denotes the distributional divergence. The fol-
lowing two lemmas concerning the space H(div) will be useful in the rest of the
paper. For their proofs, we refer to [25, ...].

Lemma 2.1. If the complement of Ω satisfies the cone condition according to [?] ,
then C∞(Ω;Rd) is dense in H(div).
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Lemma 2.2. Let F ∈ H(div)∗ and f ∈ L2(Ω) be given. Then there exists a unique
solution (τ , λ) ∈ H(div)× L2(Ω) to the saddle point problem∫

Ω

τ ·w dx+

∫
Ω

λ divw dx = ⟨F,w⟩ ∀w ∈ H(div), (2.1a)

−
∫
Ω

v div τ dx =

∫
Ω

fv dx ∀v ∈ L2(Ω). (2.1b)

If Ω satisfies the regularity assumptions from Lemma 2.1 and F ∈ L2(Ω;Rd), then
λ ∈ H1

0 (Ω). If moreover Ω is H2-regular and F ∈ H1(Ω;Rd), then τ ∈ H1(Ω;Rd)
and

∥τ∥H1(Ω;Rd) ≤ c(∥f∥L2(Ω) + ∥F∥H1(Ω;Rd))

with a constant c > 0, which only depends on Ω.

Assumption 2.3. Throughout this paper, we assume the following regularity as-
sumptions on the domain and the inhomogeneity f :

(i) The domain Ω is supposed to bounded and convex with a polygonal resp.
polyhedral boundary.

(ii) The right-hand side in the divergence constraint satisfies f ∈ L2(Ω).

Remark 2.4. The regularity of the domain can be relaxed in the sense that we
can drop the convexity, see Remark 3.9 below. In contrast to this, we need the
higher regularity of f and cannot work with inhomogeneities in H−1(Ω), since
our discretization requires H(div)-conforming finite elements as demonstrated in
Section 6 below.

We underline that Assumption 2.3 is tacitly supposed to hold throughout the
rest of the paper without mentioning it every time.

3. Discretization

The equilibrium constraint set E from (1.3) is discretized by

Eh := {(qh,∇uh) : qh ∈ Qh, uh ∈ Uh,−divh qh = f}, (3.1)

where Uh and Qh are finite dimensional function spaces satisfying the following

Assumption 3.1. The discretization of E in (3.1) is supposed to fulfill the following
conditions:

(i) For all h > 0, the discrete spaces Uh and Qh are conforming, i.e., they
are finite dimensional linear subspaces of H1

0 (Ω) and H(div). Moreover,⋃
h>0 Uh is dense in H1

0 (Ω) w.r.t. the H1(Ω)-norm.
(ii) We set

Vh := div(Qh) ⊂ L2(Ω). (3.2)

Then the discrete divergence divh : H(div)→ V ∗
h from (3.1) is defined by

⟨divh τ , vh⟩ :=
∫
Ω

vh div τ dx, τ ∈ H(div), vh ∈ Vh.

(iii) There exists an interpolation operator Πh : H1(Ω;Rd)→ Qh such that, for
all τ ∈ H1(Ω;Rd) there holds

divh τ = divh Πhτ (3.3)

and
Πhτ → τ in L2(Ω;Rd) as h↘ 0. (3.4)
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Note that, in view of Assumtion 3.1(ii), the constraint −divh qh = f in the
definition of Eh is short for

−
∫
Ω

vh div qh dx =

∫
Ω

f vh dx ∀ vh ∈ Vh.

Assumption 3.1 implies the well known LBB-condition, as we shortly sketch in the
following (by arguments analogous to the discussion after [4, Lemma 5.4]). To
this end, let w ∈ H(div) be arbitrary and solve (2.1) with (F, f) = (0,−divw) ∈
H1(Ω;Rd)×L2(Ω). Now, since Ω is supposed to be convex and thus H2-regular, we
obtain a solution (τ , λ) with τ ∈ H1(Ω;Rd). Thus we can apply the interpolation
operator Πh from Assumption 3.1(iii) and obtain

divh w = divh τ = divh Πhτ . (3.5)

By construction, the mapping H(div) ∋ w 7→ Πhτ ∈ Qh is linear and continu-
ous and, in view of (3.5), it is a Fortin interpolation operator. Therefore, by [4,
4.8 Fortin’s Criterion], the tuple (Qh, Vh) satisfies the LBB-condition, i.e., we have
shown the following:

Corollary 3.2. Under Assumption 3.1, (Qh, Vh) satiesfies the LBB-condition, i.e.,
there exists a constant β > 0, independent of h > 0, such that

inf
vh∈Vh

sup
wh∈Qh

∫
Ω
vh divwh dx

∥wh∥H(div)∥vh∥L2(Ω)
≥ β. (3.6)

Based on Assumption 3.1(i)–(ii), the standard theory for mixed finite elements
yields the following lemma. For the corresponding proof, we refer to [4, Section 4].

Lemma 3.3. Let Assumption 3.1 be fulfilled. Then, the following is valid:

(i) For all qh, τh ∈ Qh satisfying divh qh = divh τh, it holds that div qh =
div τh.

(ii) For every F ∈ H(div)∗ and f ∈ L2(Ω) there exists a unique solution
(τh, λh) ∈ Qh × Vh to the saddle point problem∫

Ω

τh ·wh dx+

∫
Ω

λh divwh dx = ⟨F,wh⟩ ∀wh ∈ Qh (3.7a)

−
∫
Ω

vh div τh dx =

∫
Ω

f vh dx ∀vh ∈ Vh. (3.7b)

(iii) This solution satisfies the following best approximation result

∥τ − τh∥X ≤ 2 inf{∥τ −wh∥X : wh ∈ Qh,−divh wh = f}, (3.8)

where τ is the solution of (2.1) and X = H(div) or X = L2(Ω;Rd).
(iv) There exists a constant C > 0 depending only on the LBB-constant such

that the solution of (3.7) satisfies.

∥τh∥H(div) + ∥λh∥L2(Ω) ≤ C(∥F∥H(div)∗ + ∥f∥L2(Ω)). (3.9)

Moreover, the following best approximation result holds true

∥τ − τh∥H(div) ≤ 2(1 + C) inf
wh∈Qh

∥τ −wh∥H(div), (3.10)

where τ again denotes the solution of (2.1).

Remark 3.4. Note that the assertions of Lemma 3.3(i)–(iii) also hold without
the LBB-condition, i.e., without the existence of the interpolation operator from
Assumption 3.1(iii).
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Lemma 3.5. Let Assumption 3.1 hold and let a sequence {(qh,∇uh)}h>0 with
(qh,∇uh) ∈ Eh be given. Then, there exists a sequence {(q̂h,∇ûh)}h>0 ⊂ E such
that

∥(q̂h − qh,∇(ûh −∇uh))∥L2(Ω;Rd)2 → 0 as h↘ 0. (3.11)

Proof. We consider the system (2.1) with (F, f) = (0, f) and denote the corre-
sponding solution by (τ , λ) ∈ H(div) × L2(Ω). Moreover, we solve (3.7) with the
same right hand side and denote this solution by (τh, λh) ∈ Qh×Vh. Furthermore,
we set

q̂h := qh + τ − τh ∈ H(div).

Due to Lemma 3.3(i), there holds div(qh − τh) = 0, and, consequently, div q̂h =
div τ = −f and therefore, (q̂h,∇uh) ∈ E by the conformity of Uh by Assump-
tion 3.1(i).

Now, since Ω is convex and f ∈ L2(Ω), Lemma 2.2 implies τ ∈ H1(Ω;Rd) with
∥τ∥H1(Ω;Rd) ≤ c∥f∥L2(Ω). Thus, Lemma 3.3(iii) gives

∥q̂h − qh∥L2(Ω;Rd) = ∥τ − τh∥L2(Ω;Rd) ≤ 2∥τ −Πhτ∥L2(Ω;Rd) → 0 as h↘ 0.

Therefore, if we set ûh := uh, we obtain (q̂h,∇ûh) ∈ E and (3.11). □

Lemma 3.6. Let Assumption 3.1 be fulfilled and let (q,∇u) ∈ E be given. Then
there is a sequence {(qh,∇uh)}h>0 ⊂ H(div)×L2(Ω;Rd) such that (qh,∇uh) ∈ Eh
and

(qh,∇uh)→ (q,∇u) in L2(Ω;Rd)× L2(Ω;Rd) as h↘ 0.

Proof. Let ε > 0 be arbitrary. By Lemma 2.1, there is a function qε ∈ C∞(Ω;Rd)
such that

∥q − qε∥H(div) ≤ min{1, C−1}ε
3
, (3.12)

where C > 0 is the constant from Lemma 3.3(iv). Since qε is smooth, we are
allowed to apply Πh, which yields

∥qε −Πhqε∥L2(Ω;Rd) ≤
ε

3
provided that h > 0 is chosen sufficiently small. Define now fε := −div qε and
denote the solution of (3.7) with right hand side (0, f − fε) by (τ ε

h, λ
ε
h). Then we

set
qε
h := Πhqε + τ ε

h ∈ Qh.

Then, (3.3) implies for every vh ∈ Vh that∫
Ω

div qε
h vh dx =

∫
Ω

div(Πhqε) vh dx+

∫
Ω

div τ ε
h vh dx

=

∫
Ω

div qε vh dx−
∫
Ω

(f − fε) vh dx = −
∫
Ω

f vh dx,

i. e., −divh q
ε
h = f . According to Lemma 3.3(iv), we deduce from (3.12) that

∥τ ε
h∥L2(Ω;Rd) ≤ C∥f − fε∥L2(Ω) = C∥div q − div qε∥L2(Ω) ≤

ε

3
.

Altogether, we obtain

∥q − qε
h∥L2(Ω;Rd) ≤ ∥q − qε∥L2(Ω;Rd) + ∥qε −Πhqε∥L2(Ω;Rd) + ∥τ ε

h∥L2(Ω;Rd) ≤ ε.

Finally, since
⋃

h>0 Uh is dense in H1
0 (Ω) by assumption, there exist h > 0 and

uh ∈ Uh such that ∥∇u − ∇uh∥L2(Ω;Rd) ≤ ε. As ε > 0 was arbitrary, this proves
the claim. □
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Proposition 3.7. Let {Th}h>0 be a family of shape regular triangulations of Ω
according to [4, Definition 5.1]. Then the Raviart-Thomas space of order k ∈ N∪{0}
given by

RTk(Th) := {w ∈ H(div) : w|T ∈ RTk(T ) ∀T ∈ Th}
with RTk(T ) := Pk(T )

d + xPk(T ), where Pk(T ) denotes the space of polynomials
of order k on T , is a feasible choice for Qh fulfilling Assumption 3.1.

For Uh one can choose the classical finite element space

Uh := {u ∈ C(Ω) ∩H1
0 (Ω): u|T ∈ Pk(T ) ∀T ∈ Th}

in order to fulfill Assumption 3.1.

Proof. The conformity of RTk(Th) and Uh is already part of their definition. The
density of

⋃
h>0 Uh in H1

0 (Ω) follows by smooth approximation and standard in-
terpolation error estimates. In case of Raviart-Thomas finite elements, the space
Vh = div(Qh) equals Pk(Th) := {v ∈ L2(Ω): v|T ∈ Pk(T ) ∀T ∈ Th}, see e.g.
[11, Lemma 3.5]. The existence of an interpolation operator Πh fulfilling Assump-
tion 3.1(iii) is established in [11, Theorem 3.1, Lemma 3.5]. □

Remark 3.8. There are several other elements satisfying Assumption 3.1, for in-
stance the BDM-element or the Raviart-Thomas element on quadrilateral meshes.
We refer to [11] and the references therein.

Remark 3.9. The regularity assumptions on Ω in Assumption 2.3 can be relaxed.
In fact, it is sufficient to require that Ω is polygonally resp. polyhedrally bounded,
i.e., we can drop the convexity of Ω. This is due to the fact that convexity is only
needed for the regularity of the solution of the saddle point problem (2.1) for the
construction of Fortin’s interpolation operator for Corollary 3.2 and for the solution
(τ , λ) in the proof of 3.5. In both cases however, one can resort to a larger convex
domain B containing Ω and solve the continuous saddle point problem there such
that the regularity result from Lemma 2.2 applies. The function τh in the proof of
Lemma 3.5 is then defined on B and for this reason, one needs to assume that the
meshes can be extended in a shape regular way from Ω to B so that the results of
Lemma 3.3 also hold on B instead of Ω. In order to avoid these technical issues,
we restrict ourselves to the case of a convex domain Ω.

4. Data Topology

Let us recall the concept of data convergence, which was first introduced in [9].
It represents an intermediate convergence between weak and strong convergence
and is especially tailored to the structure of the data driven problem (DDP).

Definition 4.1 (Data convergence). Let Z be a reflexive, separable Banach space.
A sequence {(yk, zk)}k∈N in Z ×Z is said to converge to (y, z) ∈ Z ×Z in the data
topology, denoted (y, z) = ∆– limk→∞(yk, zk), if

yk ⇀ y, zk ⇀ z and yk − zk → y − z in Z.

The concept of data convergence can be transferred to sets.

Definition 4.2 (Data convergence of sets). Let Z be a reflexive, separable Banach
space and D,Dk, E , Ek ⊂ Z, k ∈ N. We write D × E = ∆– limk→∞(Dk × Ek), if
(DC1) for each (y, z) ∈ D × E there is a sequence {(yk, zk)}k∈N with (yk, zk) ∈

Dk × Ek for each k ∈ N such that (y, z) = ∆– limk→∞(yk, zk),
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(DC2) for each sequence {(yj , zj)}j∈N with (yj , zj) ∈ Dkj
× Ekj

for each j ∈ N,
{kj}j∈N strictly monotonically increasing, and (y, z) = ∆– limj→∞(yj , zj)
it holds that (y, z) ∈ D × E .

Note that the above definition of data convergence of sets corresponds to Kura-
towski convergence of sets with respect to data convergence. The notion of data
convergence of sets is especially well suited to the approximation of data-driven
problems of the form (DDP), as the following proposition shows. Its proof is along
the lines of [9, Theorem 3.2], where the equilibrium set E is fixed. Here we addi-
tionally consider the approximation of E is with a sequence of sets Ek. Though the
proof is a straightforward adaptation of the one in [9], we present it for convenience
of the reader.

Proposition 4.3. Let Z be a reflexive and separable Banach space and suppose
that subsets D, E ⊂ Z and sequences of subsets {Dk}k∈N, {Ek}k∈N, Dk, Ek ⊂ Z for
all k ∈ N, are given such that

D × E = ∆– lim
j→∞

(Dk × Ek). (4.1)

Assume moreover that there are constants c > 0 and b ≥ 0, independent of k ∈ N,
such that, for all k ∈ N,

∥y − z∥Z ≥ c
(
∥y∥Z + ∥z∥Z

)
− b ∀ (y, z) ∈ Dk × Ek. (4.2)

Furthermore, define Fk : Z × Z → [0,∞] by

Fk(y, z) := IDk
(y) + IEk

(z) + ∥y − z∥2Z ,
where IDk

: Z → {0,∞} is the indicator functional of Dk, i.e.,

IDk
(y) :=

{
0, y ∈ Dk,

∞, y /∈ Dk

and IEk
is defined analogously. Then, the following is valid:

(a) If Fk(yk, zk) → 0, there exists z ∈ D ∩ E such that, up to subsequences,
(z, z) = ∆– limk→∞(yk, zk);

(b) If z ∈ D ∩ E, there exists a sequence {(yk, zk)}k∈N in Z × Z such that
(z, z) = ∆– limk→∞(yk, zk) and Fk(yk, zk)→ 0.

Proof. ad (a): Let Fk(yk, zk) → 0. Then, it follows that yk ∈ Dk, zk ∈ Ek for k
sufficiently large and ∥yk − zk∥ → 0 as k →∞. By (4.2), {yk}k∈N and {zk}k∈N are
bounded. Therefore, there are subsequences {ykj}j∈N and {zkj}j∈N and y ∈ Z and
z ∈ Z such that ykj ⇀ y and zkj ⇀ z. By weak lower-semicontinuity of the norm,
we have that

0 ≤ ∥y − z∥Z ≤ lim inf
j→∞

∥ykj
− zkj

∥Z = 0.

Hence y = z and (z, z) = ∆– limj→∞(ykj , zkj ) and therefore, (4.1) yields z ∈ D∩E
as claimed.

ad (b): Let z ∈ D ∩ E be given. Then, thanks to (4.1), there exists a sequence
{(yk, zk)}k∈N with

(yk, zk) ∈ Dk × Ek and (z, z) = ∆– lim
k→∞

(yk, zk).

This in particular implies yk−zk → z−z = 0 and hence, by continuity of the norm,

lim
k→∞

Fk(yk, zk) = lim
k→∞

(
IDk

(yk) + IEk
(zk) + ∥yk − zk∥2Z

)
= 0,
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as required. □

Proposition 4.3 shows that, if a sequence of sets {(Dk, Ek)}k∈N satisfies (4.2)
and more importantly (4.1), then the data-driven problem with limit sets D and
E admits a solution, which can be approximated (w.r.t. data convergence) with
solutions of the respective data-driven problems subject to the sets Dk and Ek.
The crucial question is of course now, which (sequences of sets) satisfy (4.1). This
will be answered for our conductivity example in the following section.

5. Convergence Results

As in [9, Theorem 3.3], we aim at giving sufficient conditions under which the
assumptions of Proposition 4.3 are fulfilled. Recall again the setting in our conduc-
tivity example, where

Z = L2(Ω;Rd)× L2(Ω;Rd) (5.1)

and

E = {(q,∇u) ∈ L2(Ω;Rd)× L2(Ω;Rd) : u ∈ H1
0 (Ω),−div q = f}. (5.2)

For the approximation of E , we choose the discretized equilibrium constraint sets
Ehk

from (3.1). The following theorem shows that such a discretization can be
included in the convergence analysis of [9, Theorem 3.3].

Theorem 5.1. Let Z and E be given as in (5.1) and (5.2), respectively, and assume
that a global material data set D ⊂ Z and approximations thereof, denoted by
Dk ⊂ Z, k ∈ N, are given. Suppose moreover the following to hold:

(i) (Data closure) D × E = D × E∆, i. e., D × E is the closure of D × E w.r.t.
data convergence;

(ii) (Fine approximation) For each ξ ∈ D, there is a sequence {ξk}k∈N with
ξk ∈ Dk for all k ∈ N such that ξk → ξ as k →∞;

(iii) (Uniform approximation) There is a sequence {tk}k∈N ⊂ R>0 with tk ↘ 0
such that

d(ξ,D) := inf
y∈D
∥y − ξ∥Z ≤ tk ∀ ξ ∈ Dk;

(iv) (Transversality) There are constants c > 0 and b ≥ 0 such that, for all
y ∈ D and z ∈ E,

∥y − z∥Z ≥ c
(
∥y∥Z + ∥z∥Z

)
− b;

(v) (Conforming discretization) There is a monotonically decreasing sequence
of mesh sizes {hk}k∈N ⊂ R>0 with hk ↘ 0 as k →∞ such that the discrete
spaces Qk := Qhk

and Uk := Uhk
from the discrete equilibrium set Ek := Ehk

in (3.1) satisfy Assumption 3.1.

Then the assumptions of Proposition 4.3 are fulfilled, i.e.,

(a) (Data convergence) D × E = ∆– limk→∞(Dk × Ek);
(b) (Equi-transversality) There are constants c > 0 and b ≥ 0 such that, for all

k ∈ N and all (y, z) ∈ Dk × Ek, there holds

∥y − z∥Z ≥ c
(
∥y∥Z + ∥z∥Z

)
− b.
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Proof. ad (a), condition (DC1): Let (y, z) ∈ D × E be fixed but arbitrary. Our
goal is to find a sequence {(y∗k, z∗k)}k∈N with (y∗k, z

∗
k) ∈ Dk × Ek such that (y, z) =

∆– limk→∞(y∗k, z
∗
k). By (i), there is a sequence {(ŷn, ẑn)}n∈N ⊂ D × E such that

(y, z) = ∆– limn→∞(ŷn, ẑn). Due to (ii) and Lemma 3.6, for each n ∈ N, there
are sequences {yn,k}k∈N with yn,k ∈ Dk and {zn,k}k∈N with zn,k ∈ Ek and a finite
number mn ∈ N with mn ≥ mn−1 + 1 such that

∥yn,k − ŷn∥Z <
1

n
and ∥zn,k − ẑn∥Z <

1

n
∀ k ≥ mn.

This of course gives rise to a diagonal sequence {yn,mn
, zn,mn

} with the desired

properties, but, for each (y, z) ∈ D × E , one obtains a different sequence {mn}n∈N
with different approximations Dmn

and discretizations Emn
. To overcome this issue,

let us define

{(ŷ∗k, ẑ∗k)}k∈N := {(ŷ1, ẑ1), . . . , (ŷ1, ẑ1)︸ ︷︷ ︸
(m1 − 1)-times

, (ŷ1, ẑ1), . . . , (ŷ1, ẑ1)︸ ︷︷ ︸
(m2 − m1)-times

, (ŷ2, ẑ2), . . . , (ŷ2, ẑ2)︸ ︷︷ ︸
(m3 − m2)-times

, . . . }

as well as

{(y∗k, z∗k)}k∈N := {(y1,1, z1,1), . . . , (y1,m1−1, z1,m1−1),

(y1,m1
, z1,m1

), . . . , (y1,m2−1, z1,m2−1),

(y2,m2
, z2,m2

), . . . , (y2,m3−1, z2,m3−1), . . . }.

Then, by construction, (y∗k, z
∗
k) ∈ Dk × Ek for all k ∈ N. Moreover, we have

(y, z) = ∆– lim
k→∞

(ŷ∗k, ẑ
∗
k) (5.3)

and, since, for each n ∈ N and all k ≥ mn, it holds

∥ŷ∗k − y∗k∥Z ≤
1

n
and ∥ẑ∗k − z∗k∥Z ≤

1

n
,

we obtain

∥ŷ∗k − y∗k∥Z → 0 and ∥ẑ∗k − z∗k∥Z → 0 as k →∞. (5.4)

By the definition of data convergence, (5.3) and (5.4) yield y∗k ⇀ y, z∗k ⇀ z, and

∥y∗k − z∗k − (y − z)∥Z ≤ ∥y∗k − ŷ∗k∥Z + ∥ŷ∗k − ẑ∗k − (y − z)∥Z + ∥ẑ∗k − z∗k∥Z → 0,

which is nothing else than

(y, z) = ∆– lim
k→∞

(y∗k, z
∗
k)

with (y∗k, z
∗
k) ∈ Dk×Ek for all k ∈ N. Since (y, z) ∈ D×E was arbitrary, this implies

(DC1).
ad (a), condition (DC2): Suppose that (y, z) = ∆– limj→∞(yj , zj) in Z×Z with

(yj , zj) ∈ Dkj
× Ekj

for all j ∈ N and a strictly monotonically increasing sequence

{kj}j∈N. We need to prove (y, z) ∈ D × E . By (iii) and Lemma 3.5, there exist
ŷj ∈ D and ẑj ∈ E such that

∥ŷj − yj∥Z ≤ tkj
and ∥ẑj − zj∥Z → 0 as j →∞.

Consequently, ŷj ⇀ y, ẑj ⇀ z and ŷj−ẑj → y−z so that (y, z) = ∆– limj→∞(ŷj , ẑj).

Thus (i) implies (y, z) ∈ D × E .
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ad (b): Let k ∈ N and (y, z) ∈ Dk × Ehk
be arbitrary. By the uniform approxi-

mation property (iii), there is ŷ ∈ D with ∥y − ŷ∥Z < tk and by Lemma 3.5 there
exists ẑ ∈ E with ∥z − ẑ∥Z ≤ c hk∥f∥L2(Ω) =: rk. Therefore, (iv) implies

∥y − z∥Z ≥ c
(
∥y∥Z + ∥z∥Z

)
− b− (c+ 1)rk − (c+ 1)tk.

Since the sequences tk and rk are bounded, equi-transversality holds with b′ :=
b+ (1 + c)(maxk∈N tk +maxk∈N rk). □

Remark 5.2. Since E as defined in (5.2) is closed and convex and thus weakly
closed and data convergence implies weak convergence, the set E itself arises in the
data closure in (i). The situation changes, if one turns to the material data set D.
Of course, if the constitutive law coupling q and ∇u is linear such as in case of

Fourier’s law for instance, D is weakly closed, too, such that D × E = D × E∆. By
contrast, if the constitutive law is nonlinear, then D will in general differ from the
Z-closure of D, but also from the closure of its convex hull. The latter is due to the
fact that data convergence provides more information than just weak convergence.
The computation of data closures is a field of active research, we only refer to [23]
and the references therein.

So far we have focused on the discretization of the set E . A possible discretiza-
tion of the set D is given by piecewise constant functions. To fulfill condition (ii)
of Theorem 5.1, we need to bound the distance between the values of those piece-
wise constant functions and the values of the functions in D by a monotonically
decreasing sequence that converges to zero, which is done in the following

Proposition 5.3. Let a monotonically decreasing sequence {hk}k∈N ⊂ R>0 with
hk → 0 and a corresponding sequence of shape regular triangulations Thk

of Ω be
given. Let

D := {y ∈ Z : y(x) ∈ Dloc a.e. in Ω} (5.5)

with Dloc ⊂ Rd × Rd and

Dk := {y ∈ Z : y(x) ∈ Dloc
k a.e. in Ω, y|T ∈ P0(T ) ∀T ∈ Thk

} (5.6)

with Dloc
k ⊂ Rd × Rd be given. Moreover, assume that there is a sequence {ρk}k∈N

with ρk ↘ 0 such that the Hausdorff distance between Dloc and Dloc
k satisfies

dH(Dloc,Dloc
k ) = max

{
sup

ξ∈Dloc

d(ξ,Dloc
k ), sup

η∈Dloc
k

d(η,Dloc)
}
≤ ρk. (5.7)

Then D and Dk as defined in (5.5) and (5.6), respectively, satisfy the fine and
uniform approximation assumption (ii) and (iii) in Theorem 5.1.

Proof. Define Vhk
:= {v : Ω → Rd × Rd : v|T ≡ const. ∀T ∈ Thk

}. Then, by
standard interpolation error analysis,

⋃
k∈N Vhk

is dense in Z. Therefore, for y ∈ D
and ε > 0 fixed, but arbitrary, there exist kε1 ∈ N such that for all k ≥ kε1 there is
a vk ∈ Vhk

with

∥y − vk∥Z ≤ ε. (5.8)

Define ȳk ∈ Vhk
, k ∈ N, by

ȳk(x) ∈ Dloc a.e. in Ω,

∥ȳk(x)− vk(x)∥Rd×Rd ≤ inf
ξ∈Dloc

∥ξ − vk(x)∥Rd×Rd + ε a.e. in x ∈ Ω.
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Note that ȳk is well defined, since vk is constant on each T ∈ Thk
. Then, ȳk ∈ D

and
∥vk − ȳk∥Z ≤ ∥vk − y∥Z +

√
|Ω| ε (5.9)

for all k ≥ kε1. Moreover, there is kε2 ∈ N such that ρk ≤ ε for all k ≥ kε2. Hence,
according to 5.7, for each k ≥ kε2, there is an yk ∈ Dk such that

∥ȳk − yk∥Z ≤
√
|Ω| ε. (5.10)

Altogether, (5.8)–(5.10) yield ∥y − yk∥Z ≤ (1 + 2
√
|Ω|)ε for all k ≥ max{kε1, kε2},

which along with yk ∈ Dk implies (ii).
To verify (iii), let now k ∈ N and yk ∈ Dk be fixed, but arbitrary. Then, by defi-

nition of Dk, there exist ξ
(k)
T ∈ Dloc

k , T ∈ Thk
, such that yk =

∑
T∈Thk

ξ
(k)
T χT a.e. in

Ω. In view of (5.7), for every T , we find ξT ∈ Dloc such that ∥ξT −ξ
(k)
T ∥Rd×Rd ≤ ρk.

Therefore, if we define y ∈ D by y :=
∑

T∈Thk
ξT χT , then

∥yk − y∥2Z =
∑

T∈Thk

∫
T

∥ξT − ξ
(k)
T ∥

2
Rd×Rd dx ≤ |Ω| ρ2k,

which is (iii) with tk =
√
|Ω| ρk. □

Let us denote the number of elements in Thk
by Nk := |Thk

|. Then Dk as defined
in (5.6) is isomorphic to the finite dimensional set

Dk := {A ∈ RNk×d×d : Ai ∈ Dloc
k ∀ i = 1, ..., Nk},

which is clearly compact provided that Dloc
k is so. This observation immediately

implies the following

Proposition 5.4. Suppose that D, given as in (5.5), is discretized as in Proposi-
tion 5.3 with approximate local material data sets Dloc

k that are compact for every
k ∈ N. Assume moreover, that the equilibrium constraint set is discretized as in
(3.1) with spaces Qhk

and Uhk
satisfying Assumption 3.1. Then, for each k ∈ N,

the discretized data-driven problem given by

min 1
2∥y − z∥2Z

s.t. y ∈ Dk, z ∈ Ek

}
(Pk)

admits a globally optimal solution.

Proof. Throughout the proof, let us suppress the index k in hk to simplify the
notation. First we rewrite (Pk) as

(Pk) ⇐⇒

 min
(r,w)∈Dk

min
(q,u)

1
2 ∥(∇uh, qh)− (w, r)∥2L2(Ω;Rd)2

s.t. qh ∈ Qh, uh ∈ Uh, −divh qh = f.

By standard arguments, the direct method of calculus of variations yields the ex-
istence and uniqueness of a solution to the inner minimization problem. Due to
strict convexity, it is uniquely characterized by its necessary and sufficient condi-
tions, which read as follows: Thanks to the surjectivity of divh : Qh → V ∗

h , a tuple
(qh, uh) is a solution of the inner minimization problem, iff there exists a Lagrange
multiplier λh ∈ Vh such that∫

Ω

∇uh · ∇φh dx =

∫
Ω

w · ∇φh dx ∀φh ∈ Uh (5.11a)
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Ω

(qh ·wh + λh divwh) dx =

∫
Ω

r ·wh dx ∀wh ∈ Qh (5.11b)

−
∫
Ω

vh div qh dx =

∫
Ω

f vh dx ∀vh ∈ Vh. (5.11c)

By Lemma 3.3(ii), the saddle point system (5.11b)–(5.11c) admits a unique solution
(qh, λh) ∈ Qh × Vh for every right hand side (r, f) ∈ L2(Ω;Rd) × L2(Ω) and the
associated solution operator is linear and continuous by (3.9). Moreover, since Uh

is a closed subspace of H1
0 (Ω), the same holds for the discretized Laplace equation

in (5.11a), i.e., for every w ∈ L2(Ω;Rd), there is a unique solution uh ∈ Uh and the
solution mapping is linear and continuous. Thus, there is an affine (due to f) and
continuous solution operator of (5.11) denoted by

Gh : L2(Ω;Rd)2 ∋ (r,w) 7→ (qh,∇uh) ∈ Qh ×∇Uh. (5.12)

With the help of Gh, we can rewrite (Pk) equivalently as

(Pk) ⇐⇒ min
(r,w)∈Dk

1
2 ∥(Gh − id)(r,w)∥2L2(Ω;Rd)2

Therefore, since Dk is compact as explained above and Gh and thus the whole
objective is continuous, the existence of a globally optimal solution follows from
the Weierstrass theorem. □

Remark 5.5. Note that the result of Proposition 5.4 also holds for a problem of
the form

min 1
2∥y − z∥2Z

s.t. y ∈ Dk, z ∈ E

}
(P̃k)

with the continuous equilibrium set E instead of Ek. The arguments are completely
the same as in the proof of Proposition 5.4, since the solution operators associated
with the continuous counterparts to the saddle point problem and the Laplace
equation are also linear and continuous. Thus, to ensure the mere existence of
optimal solutions, only the discretization of D is necessary, whereas the numerical
computation of optimal solutions of course requires a discretization of E , too.

As a direct consequence of the previous results, namely Theorem 5.1 and Propo-
sitions 5.3 and 5.4, we obtain the following result, which, though it is just a corollary
as a consequence of the above findings, can be seen as our main result:

Corollary 5.6. Let Z, E, and D be defined as in (5.1), (5.2), and (5.5). Further-
more, let {hk}k∈N ⊂ R>0 be a monotonically decreasing sequence of mesh sizes with
hk ↘ 0 as k →∞ and suppose the following assumptions:

(i) (Transversality) There are constants c > 0 and b ≥ 0 such that, for all
y ∈ D and z ∈ E,

∥y − z∥Z ≥ c
(
∥y∥Z + ∥z∥Z

)
− b.

(ii) (Discrete material data set) The set D is approximated as in Proposi-
tion 5.3, i.e.,

Dk := {y ∈ Z : y(x) ∈ Dloc
k a.e. in Ω, y|T ∈ P0(T ) ∀T ∈ Thk

}

and the Hausdorff distance fulfills dH(Dloc,Dloc
k ) ≤ ρk with a sequence

{ρk}k∈N with ρk ↘ 0. Moreover, Dloc
k ⊂ Rd × Rd is compact for every

k ∈ N.
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(iii) (Conforming discretization) The finite dimensional spaces Qk and Uk defin-
ing the discrete equilibrium set Ek satisfy Assumption 3.1.

Then, for every k ∈ N, there exists at least one solution of

min 1
2∥y − z∥2Z

s.t. y ∈ Dk, z ∈ Ek

}
(Pk)

and every sequence {(yk, zk)} ⊂ Z × Z of such solutions satisfies the following:

(a) If D × E∆ ̸= ∅, then ∥yk − zk∥Z → 0.

(b) If ∥yk − zk∥Z → 0, then there exists z ∈ D × E∆ such that, up to subse-
quences, (z, z) = ∆– limk→∞(yk, zk).

We again underline that the data closure D × E∆ is in general not equal to
D×E , but D×E with an enlarged set D ⊃ D, see Remark 5.2. Corollary 5.6 shows
that, under the mentioned assumptions, it is in principle possible to approximate
elements of the data closure. The computation of solutions to (Pk) may however be
a very delicate issue, depending on the precise structure of Dloc

k . Before we address
this issue in more details in the Section 7 below, let us shortly discuss the question
why the use of H(div)-conforming finite elements like the Raviart-Thomas element
seems to be indispensable for the discretization of the data-driven problem (DDP).

6. Why H(div)-conforming finite elements?

As the construction of H(div)-conforming finite elements is rather complicated
compared to e.g. classical Lagrangian finite elements, the question arises if their
use is really necessary for the discretization of data-driven problems. To answer
this question, let us assume that we do not use H(div)-conforming elements, i.e.,

we discretize the equilibrium set E by a finite dimensional space Q̂h ⊂ L2(Ω;Rd)

with Q̂h ̸⊂ H(div) and define the discrete divergence condition by

qh ∈ Q̂h,

∫
Ω

qh · ∇vh dx =

∫
Ω

f vh dx ∀ vh ∈ V̂h, (6.1)

where V̂h is a finite dimensional subspace of H1
0 (Ω). Given a triangulation Th of

the domain Ω, a classical example for these finite dimensional spaces reads

Q̂h = {w ∈ L∞(Ω;Rd) : w|T ∈ P0(T ) ∀T ∈ Th}, (6.2)

V̂h = {v ∈ C(Ω) ∩H1
0 (Ω): v|T ∈ P1(T ) ∀T ∈ Th}. (6.3)

Revisiting the proof of Theorem 5.1 shows that a central aspect of convergence
analysis is that elements from E can be approximated by elements from Eh w.r.t.
the data topology and vice versa. Let us return to part (a) in the proof of Theo-
rem 5.1. When verifying condition (DC2) from the definition of data convergence,
one considers a sequence {(yh, zh)}h>0, (yh, zh) ∈ Dh × Eh, converging in data to
(y, z). To show that (y, z) is an element of the data closure, we need to prove the
existence of a sequence (ŷh, ẑh) ∈ D×E with ŷh ⇀ y, ẑh ⇀ z, and ŷh− ẑh → y− z,
which, in view of the data convergence of {(yh, zh)} is equivalent to

ŷh − yh ⇀ 0, ẑh − zh ⇀ 0, ŷh − yh + zh − ẑh → 0. (6.4)

If we assume that the data approximation satisfies the uniform approximation prop-
erty (iii) from Theorem 5.1, then we already know that a sequence {ŷh}h>0 ⊂ D
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exists with ŷh − yh → 0 in Z = L2(Ω;Rd)2. Therefore, if we take this sequence for
ŷh, then the sequence {ẑh}h>0 ⊂ E must necessarily fulfill

ẑh − zh → 0 in Z (6.5)

in order to guarantee (6.4). This however is not always possible, if nonconforming
finite element spaces are used, as we will see in the following when considering the
flux component of

zh = (qh,∇uh) ∈ Eh ⊂ (Q̂h,∇Uh).

The best possible choice for the construction of the desired elements from E is of
course to choose the solution q̂h ∈ H(div) of

min
q∈L2(Ω;Rd)

1
2∥q − qh∥2L2(Ω;Rd)

s.t. − div q = f,

 (6.6)

which is uniquely characterized by the existence of w ∈ H1
0 (Ω) such that

q̂h − qh +∇w = 0, −div q̂h = f.

Let us define Φ ∈ H1
0 (Ω) by

−△Φ = f in H−1(Ω),

as well as the L2-projection of qh on ∇H1
0 (Ω), denoted by ∇Φh with Φh ∈ H1

0 (Ω).
Then, we obtain

∥q̂h − qh∥L2(Ω Rd) = ∥∇w∥L2(Ω Rd)

= sup
v∈H1

0 (Ω)
∥∇v∥

L2(Ω;Rd)
≤1

∫
Ω

∇(Φ− Φh) · ∇v dx

= ∥∇Φ−∇Φh∥L2(Ω;Rd).

(6.7)

Since V̂h is a closed subspace ofH1
0 (Ω), we may decompose Φh = Φh

0+Φh
⊥ ∈ V̂h⊕V̂ ⊥

h ,
where the orthogonal complement is taken w.r.t. the H1

0 -scalar product. Due to
−divh qh = f , we find for Φh

0∫
Ω

∇Φh
0 · ∇vh dx =

∫
Ω

qh · ∇vh dx = ⟨f, vh⟩ ∀ vh ∈ V̂h (6.8)

and consequently, by the best approximation property of the finite element solution,

∥Φh
0 − Φ∥H1

0 (Ω) → 0 as h↘ 0, (6.9)

follows, provided that
⋃

h>0 V̂h is dense in H1
0 (Ω). Therefore, if the sequence

{qh}h>0 is such that

lim inf
h↘0

∥∇Φh
⊥∥L2(Ω;Rd) ≥ c > 0, (6.10)

then (6.9) implies

lim inf
h↘0

∥q̂h − qh∥L2(Ω Rd)

= lim inf
h↘0

∥∇Φ−∇Φh∥L2(Ω;Rd)

≥ lim inf
h↘0

(
∥∇Φh

⊥∥L2(Ω;Rd) − ∥∇Φ−∇Φh
0∥L2(Ω;Rd)

)
≥ c

(6.11)

and hence, (6.5) cannot hold in this case.
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Let us give a simple one-dimensional example indicating that (6.10) may well
happen for a sequence converging in data. For this purpose, set Ω := (0, 2π) and
consider the equidistant triangulation of Ω given by

Tk := {(0, hk), (hk, 2hk), ..., ((2k − 1)hk, 2π)}

with hk := (2k)−1 2π, k ∈ N. We employ the standard finite element space from

(6.3) and denote the nodal basis of V̂k := V̂hk
by φk

i , i.e., φ
k
i (j hk) = δij , 1 ≤ i, j ≤

2k − 1. Note that the meshes and thus the spaces V̂k are nested. Furthermore, we

abbreviate the solution of (6.8) by Φk
0 := Φhk

0 ∈ V̂k and set

Ψk(x) :=
1√
2π

2k∑
i=1

φ2k
2i−1(x) ∈ H1

0 (Ω), k ∈ N. (6.12)

Then one easily verifies that

∥ d
dxΨk∥L2(0,2π) = 1, d

dxΨk ⇀ 0 as k →∞ (6.13)

and ∫ 2π

0

d
dxΨk(x)

d
dxφ

k
i (x) dx = 0 ∀ i = 1, ..., 2k − 1, k ∈ N.

Since V̂k = span(φk
1 , ..., φ

k
2k−1), the latter implies Ψk ∈ V̂ ⊥

k . Let us choose the
space from (6.2) for qh, but with half mesh size, i.e.,

Q̂k := span(χ(0,h2k), χ(h2k,2h2k), ..., χ((4k−1)h2k,2π))

and set

qk := d
dxΦ

k
0 + d

dxΨk ∈ Q̂k

such that Φk
⊥ = Ψk. Then, owing to (6.8) and (6.13), we have

−divh qk = f, qk ⇀ d
dxΦ in L2(0, 2π),

Together with qk ∈ Q̂k, this indicates that qk can be part of a sequence converging
in data, depending on the structure of Dk. Indeed, if, for instance, there is an a ∈ R
such that (a, 1/

√
2π), (−a,−1/

√
2π) ∈ Dloc

k for all k ∈ N, then one could choose

Uk := V̂2k, uk := a
∑2k

i=1 φ
2k
2i−1, and set yk = (rk,wk) = ( d

dxΨk,
d
dxuk) ∈ Dk. Then

yk ⇀ 0 and

zk − yk = (qk − rk,∇uk −wk) = ( d
dxΦ

k
0 , 0)→ ( d

dxΦ, 0) in Z,

i.e., ((0, 0), ( d
dxΦ, 0)) = ∆– limk→∞(yk, zk). However, due to (6.11) and Φk

⊥ = Ψk,
there holds

lim inf
k→∞

∥q̂k − qk∥L2(0,2π) ≥ lim
k→∞

∥ d
dxΨk∥L2(0,2π) = 1 (6.14)

such that (6.5) does not hold in this example.
Altogether we have seen that it is in general not possible to construct a sequence

{ẑh}h>0 ⊂ E such that (6.5) holds, if a finite element space Q̂h is used that is
not H(div)-conforming. In contrast to this, Lemma 3.5 shows that this is well
possible in case of H(div)-conforming finite elements. Nonetheless, this is no proof
that no sequences {(ŷh, ẑh)}h>0 ⊂ D × E exist such that (6.4) holds also in case of
nonconforming finite element spaces. Maybe, it is possible to construct a sequence
ẑh by adjusting the sequence ŷh, but, so far, we have no idea how to do this and
this issue gives rise to future research.
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7. Algorithms

The last section is devoted to optimization algorithms for the numerical solution
of the discretized data-driven problem (Pk). In the literature, a projection based
fixed-point method is frequently used to solve (Pk). We will advance this method
by introducing a step size and compare the proximal gradient method arising in this
way with two variants of the Douglas-Rachford algorithm applied to (Pk). Besides
these first-order methods, we also employ the equivalence of (Pk) to a quadratic
semi-assignment problem and develop a heuristic based on this reformulation. The
algorithms are tested by means of two examples, a linear and a non-linear material
model.

7.1. Fixed-point methods based on projections. We first consider a class of
algorithms that is based on the two L2-projections πEk

: Z → Ek and πDk
: Z → Dk

with Ek := Ehk
as in (3.1) and Dk as in Proposition 5.3, respectively. As the proof

of Proposition 5.4 shows, πEk
is simply given by the affine operator Gh defined

in (5.12), i.e., given y = (r,w) ∈ Z, we have πEk
(r,w) = (qhk

,∇uhk
), where

(qhk
, uhk

) ∈ Qhk
× Uhk

is the unique solution to the saddle point system (5.11).
To compute the projection πDk

, we first notice that we can project an arbitrary
function z ∈ Z onto Dk by first projecting z onto the space of piecewise constant
functions and then projecting the obtained function onto Dk. To see this, define
ẑ := 1

|T |
∫
T
z dxχT for a given function z ∈ Z. Then the above assertion follows

from

argmin
y∈Dk

∥y − z∥2Z = argmin
y∈Dk

∥y∥2Z − 2(y, z) + ∥z∥2Z

= argmin
y∈Dk

∥y∥2Z − 2(y, ẑ) + ∥ẑ∥2Z = argmin
y∈Dk

∥y − ẑ∥2Z .
(7.1)

Moreover, the structure of Dk yields that the projection can be computed elemen-
twise, for example by using a k-nearest neighbors algorithm. It is to be noted that
πDk

is a set-valued map, since the projection on Dk is clearly non-unique in gen-
eral due to the non-convexity of Dk. In the numerical realization of the algorithms
introduced below, we pick an arbitrary y ∈ Dk attaining the minimum in (7.1).

In [18], a simple projection algorithm was introduced to solve the data driven
problem. One iteration step consists of two projections and reads

yn+1 = πDk

(
πEk

(yn)
)

(PG)

for n ∈ N and an arbitrary initial point y0 ∈ Z. The algorithm terminates if
yn+1 = yn for some n ∈ N. Note that this algorithm is a special case of the proximal
gradient method or more specifically of the projected gradient method [3, 8, 20] with
step size constant equal to one. To illustrate this, let us shortly recall the concept of
the proximal gradient method. Given to mappings F,G : Z → R∪{∞}, where F is
smooth, while G may be not, the proximal gradient iteration for the minimization
of F +G reads

yn+1 = proxγG
(
yn − γ∇F (yn)

)
, (7.2)

where proxγG(y) ∈ argminη∈Z
1
2∥η − y∥2Z + γ G(η) denotes the proximal map and

γ > 0 is a step size. In order to apply the proximal gradient method to the data
driven problem, let us rewrite (Pk) as

(Pk) ⇐⇒ min
y∈Z

1

2
∥πEk

(y)− y∥2Z + IDk
(y), (7.3)
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where IDk
denotes the indicator functional of Dk. If we now set F (y) := 1

2∥πEk
(y)−

y∥2Z and G := IDk
, then (7.2) becomes

yn+1 = πDk

(
yn − γ(yn − πEk

(yn))
)
. (PS)

If F and G were proper, convex, and lower semi-continuous, then the classical
convergence results for proximal gradient methods apply provided that 0 < γmin ≤
γ < 2L−1, where L is the Lipschitz constant of ∇F , cf. e.g. [8, Theorems 9.6
and 10.2]. In our case, ∇F (y) = y − πEk

(y) has the Lipschitz constant L = 1
and, accordingly, we have chosen γ ∈ [1, 2) in our computations. We emphasize
that G = IDk

is clearly not convex due to the non-convexity of Dk and therefore,
convergence of the iteration in (PS) to global minimizers cannot be guaranteed.
A convergence analysis of the proximal gradient method for non-convex problems
in function space similar to (Pk) is presented in [27]. However, due to the lack of
convexity, the convergence results are rather limited and one only obtains that weak
accumulation points of the sequence of iterates satisfy a rather weak stationarity
concept termed L-stationarity, provided that∇F is completely continuous. One can
therefore not expect the iterates produced by the scheme in (PS) to converge to a
minimizer (neither global nor local) of (Pk). Nonetheless, the introduction of the
step size γ may improve the quality of the numerical results. In our numerical tests,
it has turned out that it is favorable to start with γ = 1.4 and to reduce γ whenever
the algorithm circles between two iterates, that is yn+2 = yn for some n ∈ N, see
Table 2 below. The choice γ < 1 accelerates the convergence of the algorithm
to a fixed point with substantially larger objective value and should therefore be
avoided.

We compare the performance of the proximal gradient method (with step size γ =
1 and varying step size) with the Douglas-Rachford algorithm for the computation
of elements in the intersection of two sets A,B ⊂ Z, cf., e.g., [1]. This algorithm
is also initialized with an arbitrary point y0 ∈ Z and the iterates are computed by
the formula

yn+1 = TA,B(yn) with TA,B :=
id+RB ◦RA

2
,

where the reflections RA and RB are defined by RA := 2πA−id and RB := 2πB−id,
respectively. In the case of the data-driven problem, we have the two alternatives
A := Dk and B := Ek or A := Ek and B := Dk, that is

yn+1 = TEk,Dk
(yn) (DR1)

or, respectively,

yn+1 = TDk,Ek
(yn). (DR2)

Since in general Ek ∩ Dk = ∅, we can neither expect the existence of a fixed point
of TEk,Dk

nor TDk,Ek
, cf. [1, Proposition 9]. Consequently, the iterations in (DR1)

and (DR2), respectively, will in general not converge, when applied to the data-
driven problem. Though convergence of the iterations in (PG) and (PS) can be
expected neither, we observed their convergence to a fixed point in our numerical
computations. In contrast to this, the Douglas-Rachford iterations did frequently
not converge to a fixed point and therefore, we let the algorithm terminate, if it does
not achieve an improvement of the objective value for a fixed number of iterations.
Note that the iterates of both variants of the Douglas-Rachford algorithm do not
necessarily fulfill yn+1 ∈ Dk and hence, in order to evaluate the objective of (Pk)
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in the form (7.3), we additionally project the current iterate onto Dk after each
iteration to evaluate the objective value.

7.2. Quadratic assignment and local search. In order to design an alternative
strategy for the solution of (Pk), we rewrite the discretized data-driven problem
as a quadratic semi-assignment problem, where we assign the measured data to
the elements of the finite element grid such that the distance to the corresponding
projection onto the equilibrium set becomes minimal. For this purpose, let Thk

=
{T1, . . . , Tl}, l = l(hk) ∈ N, be the considered triangulation of Ω and let Dk be
defined as in (5.6) with Dloc

k := {ŷ1, . . . , ŷm}, m ∈ N. Then (Pk) can be rewritten
as

(Pk) ⇐⇒



min
1

2
∥πEk

(y)− y∥2Z

s.t. y|Ti
=

m∑
j=1

xi,j ŷj ∀ i = 1, . . . , n

m∑
j=1

xi,j = 1 ∀ i = 1, ..., l

xi,j ∈ {0, 1} ∀ i = 1, ..., l, j = 1, ...,m


(QSAP)

with x = (x1,1, . . . , x1,m, x2,1, . . . , x2,m, . . . , xl,1, . . . , xn,m)T ∈ Rlm, or equivalently

(QSAP) ⇐⇒


min xTAx+ bTx+ c

s.t.

m∑
j=1

xi,j = 1 ∀ i = 1, ..., l

xi,j ∈ {0, 1} ∀ i = 1, ..., l, j = 1, ...,m

with a symmetric and positive semidefinite matrix A ∈ Rlm×lm, b ∈ Rlm, and c ∈ R
arising from the affine solution operator to the saddle point system (5.11), the mass
matrices for the scalar products in Z, and a matrix containing the elements of Dloc

k .
Note that it is allowed to assign the same measuring point to more than one element
and that the objective function is quadratic.

Remark 7.1. Since quadratic semi-assignment problems are NP-hard [24], the
reformulation as (QSAP) shows that it is in general not possible to solve (Pk)
efficiently (provided that NP ̸= P ). This makes it practically impossible to solve
the discretized data-driven problem exactly, when we are faced with a big amount
of measured data and a fine finite element grid.

In view of the above remark, we resort to a heuristic for the solution of (QSAP).
Such a heuristic method is the local search, that is we start with an arbitrary initial
assignment and change it on only one element of the triangulation while the assign-
ment to the remaining elements is fixed. If the change leads to an improvement,
the current solution is updated accordingly and one moves on to the next element
in the triangulation, where the same procedure is applied. To test every point in
local data set Dloc

k for the respective element of the triangulation rapidly becomes
too costly, even for moderate finite element meshes, since one needs to evaluate the
objective in (QSAP) every time, which in turn requires the solution of the saddle
point problem (5.11). In order to reduce the effort, one can restrict to the K nearest
neighbors of the data point which is currently assigned to the considered element.
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But still, for reasonable finite element discretizations, the effort of the method easily
becomes too high. A possible remedy is to employ a reduced model-order approach
such as proper orthogonal decomposition (POD) for the saddle point problem in
(5.11), cf. e.g. [14, 26] and the references therein. Since the right hand side only
changes in one single element from one iteration of the local search to the next,
only a moderate number of snapshots are needed to achieve a sufficient accuracy
of the POD basis. The overall method is sketched in Algorithm 1. Note that we
only accept an improvement on the objective if it is computed with the exact finite
element model. A crucial issue for the performance of Algorithm 1 is the choice
of the initial solution. One possibility is to initialize the local search by a solution
obtained with one of the projection algorithms from Section 7.1. This allows to
escape from fixed points that are not optimal or just local minimizers. A second
option is to solve (QSAP) exactly with a small selection of measured data points
on a very coarse finite element mesh. Note that, since (QSAP) is NP-hard, the
problem size has to be fairly small to allow for an exact algorithm. We employ
the algorithm from [6] on a coarse grid with only a few measured data points and
project its solution to the finer mesh to initialize Algorithm 1.

8. Numerical experiments

In our numerical tests, we consider the domain Ω = (0, 1)2 such that Assump-
tion 2.3(i) is fulfilled. For the finite element discretization, we use an exact trian-
gulation of Friedrich-Keller type and choose the following function spaces

Qh = RT0(Th), Vh = P0(Th),

and

Uh = {u ∈ C(Ω) ∩H1
0 (Ω): u|T ∈ P1(T ) ∀T ∈ Th}. (8.1)

As seen in Proposition 3.7, these finite element spaces satisfy Assumption 3.1.
We test all previously introduced algorithms with the following parameters and

settings: For the projection-based fixed point algorithms (PG), (PS), (DR1), and
(DR2), we use y0 = 0 as starting point. If not stated otherwise, we choose the initial
step size γ = 1.4 for (PS) and reduced γ by the factor 0.9 whenever the algorithm
circled between two iterates. This choice is a compromise of accuracy and running
time motivated by the observations in Table 2 below. As mentioned above, the
Douglas-Rachford methods in (DR1) and (DR2) do frequently not converge to a
fixed point and hence, we let the algorithms terminate after 50 iterations without
an improvement of the objective value.

We also test two variants of Algorithm 1. In the first one, we initialized the
algorithm with the best out of ten solutions of the projection algorithm (PS) with
random starting points with components in [−4, 4]4 and used the remaining for
the computation of the initial POD basis. In the second one, we initialized the
algorithm with the exact solution on a coarse grid consisting of eight triangles with
mesh size 1√

2
and 16 selected data points of our measured data set. As indicated

above, we computed this solution by means of the exact algorithm from [6]. In both
cases, the parameters of Algorithm 1 are set to ε1 = 0.002, ε2 = 0.001, ε3 = 0.01,
and K = 20. These choices are motivated by numerical experiments based on the
linear material law from Section 8.1.
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Algorithm 1 Local Search with POD

1: Choose triangulation T of Ω
2: Choose ε1, ε2, ε3 > 0 and K ∈ N
3: Compute initial POD-basis
4: Choose initial solution y with objective value v := 1

2∥πEk
(y)− y∥2Z

5: Set v̄ := v + 1
6: while v ̸= v̄ do
7: Update: v̄ ← v
8: for all T̃ ∈ T do
9: Find K nearest neighbors y1, . . . , yK ∈ Dloc

k of y|T̃
10: for j = 1, ...,K do
11: Define ỹ on each T ∈ T by

ỹ|T :=

{
y|T if T ̸= T̃

yj , if T = T̃

12: Solve POD-model to approximate πEk
(ỹ) by za

13: Set va := 1
2∥ỹ − za∥2Z

14: if |va−v|
|v| > ε1 then

15: Compute exact solution ze := πEk
(ỹ) and set

ve :=
1

2
∥ỹ − ze∥2Z

16: if |va−ve|
|ve| > ε2 then

17: Add ze as snapshot to compute new POD-basis
18: end if
19: if ve < v then
20: Update: y ← ỹ, v ← ve
21: Add ze as snapshot to compute new POD-basis
22: end if
23: end if
24: if va < (1 + ε3)v then
25: Compute exact solution ze := πEk

(ỹ) and set

ve :=
1

2
∥ỹ − ze∥2

26: if ve < v then
27: Update: y ← ỹ, v ← ve
28: Add ze as snapshot to compute new POD-basis
29: end if
30: end if
31: end for
32: end for
33: end while

8.1. Fourier’s law. For the first numerical tests, we considered Fourier’s law where
the material law is linear. To be more precise, we set κ : R2 → R2, κ(w) := w
such that (1.1) simply becomes Poisson’s equation, i.e., −∆u = f in Ω. Moreover,
the right hand side is set to f(x) = 2π2 sin(πx1) sin(πx2), which clearly fulfills
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the regularity condition in Assumption 2.3. Accordingly, the exact solution reads
u(x) = sin(πx1) sin(πx2). For the local material data set, we sampled 11025 evenly
distributed data points (r, w) fulfilling r = κ(w) within [−4, 4]4.

To compare the algorithms, we list the returned objective values and the needed
iterations and wall clock times in Table 1. Moreover, we compute the relative
distance of the exact solution to the outcome of the respective algorithm measured
in the L2-norm and in the H1

0 -seminorm. For this purpose, denote the result of the
respective algorithm by ȳ and set (q̄hk

,∇ūhk
) := πEk

(ȳ). We then compute

errL2 :=
∥u− ūhk

∥L2(Ω)

∥u∥L2(Ω)
and errH1

0
:=
∥∇u−∇ūhk

∥L2(Ω;Rd)

∥∇u∥L2(Ω;Rd)

. (8.2)

As one can see, the returned objective values of the algorithms and the distances to

Algorithm Objective value errL2 errH1
0

Iterations Time

Projection (PG) 1.281e-02 1.731e-02 7.973e-02 10 0.477
Projection with stepsize (PS) 1.248e-02 8.869e-03 7.895e-02 17 0.554
Douglas-Rachford (DR1) 1.305e-02 7.878e-03 7.891e-02 99 9.137
Douglas-Rachford (DR2) 1.299e-02 8.292e-03 7.870e-02 52 3.846

Algorithm 1 with initialization by (PS) 1.247e-02 8.800e-03 7.886e-02 4 181.242
Algorithm 1 with exact initialization 1.248e-02 8.800e-03 7.887e-02 21 4351.329

Table 1. Fourier’s law with |Dloc
k | = 11025 and hk :=

√
2/20.

the exact solution are all similar to each other. It is the computing time that makes
the most significant difference. Since the local search in Algorithm 1 considers each
element of the triangulation separately, there is much computational effort for only
little improvements. However, the algorithm involves several parameters, beside
the tolerances ε1, ε2, and ε3 for the update of POD-basis and the number K of
nearest neighbors, in addition the size of the POD-basis and the choice of the
initial point. Moreover, the exact algorithm from [6] can recursively be applied
within the local search by fixing the assignment on large parts of the domain, while
one applies the exact algorithm on a small amount of elements with only a few
selected measured data points. A comprehensive numerical study of Algorithm 1
including the adjustment of all these parameters however goes beyond the focus of
this work and gives rise to future research. But, in view of substantial differences
w.r.t. the computing time, it is at least doubtful, if the local search could ever be
competitive compared to the projection-based methods. For this reason, we left
out Algorithm 1 for the following numerical study of a non-linear material law.

8.2. A non-linear material law. In our second numerical test, we considered the
non-linear material law κ : R2 → R2 defined by

κ(w) := (2 tan−1(∥w∥2 − 1) + 0.5π + 2)w. (8.3)

Note that κ is strongly monotone and globally Lipschitz so that, according to
the Browder and Minty theorem, there is a unique solution in H1

0 (Ω) of (1.1) for
every right hand side in H−1(Ω). This time the right hand side is set to f(x) =
− div(κ(∇u(x))) with u(x) = sin(πx1) sin(πx2), so that the exact solution of (1.1)
is given by u.

For the numerical computations, we randomly sampled |Dloc
k | = 1000, 10000,

50000, 100000 uniformly distributed data-points (r,w) fulfilling r = κ(w) withw ∈
[−4, 4]2. Additionally, a uniformly distributed noise si ∈ [−s̄, s̄]4, i = 1, ..., |Dloc

k |,
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with s̄ = 0, 0.1, 0.01, 0.001 is randomly added to each data point. For the finite

element discretization, we considered the mesh sizes h1 =
√
2

50 , h2 =
√
2

100 , and

h3 =
√
2

200 .
First we investigated the choice of the initial step size in (PS). Recall that

the step size is reduced, whenever the algorithm circles between two iterates. The
results are shown in Table 2 and illustrate that the initial choice γ = 1.4 is favorable
in terms of the value of the objective, but let the computing time increase in
comparison to the original projection algorithm PG, which corresponds to the case
γ = 1. The course of the objective values for γ = 1.4 produced by (PS) is illustrated
in Figure 1.

|Dloc
k | = 11025, s̄ = 0 |Dloc

k | = 5000, s̄ = 0.1
Init. γ Iterations Objective value Init. γ Iterations Objective value
0.8 14 3.907e-03 0.8 12 9.839e-02
0.9 12 3.289e-03 0.9 12 8.913e-02
1.0 11 2.899e-03 1.0 11 7.841e-02
1.1 13 2.700e-03 1.1 12 7.420e-02
1.2 13 2.606e-03 1.2 23 6.414e-02
1.3 18 2.573e-03 1.3 47 6.155e-02
1.4 36 2.558e-03 1.4 93 6.034e-02
1.5 40 2.564e-03 1.5 112 6.208e-02
1.6 49 2.566e-03 1.6 137 6.504e-02
1.7 57 2.562e-03 1.7 168 6.816e-02
1.8 58 2.567e-03 1.8 218 7.102e-02
1.9 85 2.564e-03 1.9 317 7.054e-02
2.0 88 2.563e-03 2.0 651 6.944e-02
2.1 560 2.562e-03 2.1 763 8.738e-02
2.2 566 2.567e-03 2.2 1052 6.451e-02

Table 2. Testing the projection algorithm with step size (PS)

with different initial values for γ with h =
√
2/50.

Figure 1. Objective values produced by (PS) with initial value

γ = 1.4, h =
√
2/50, |Dloc

k | = 5000, and s̄ = 0.1.
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The errors from (8.2) as well as the objective value and the computing times for
this example for the different data sets Dloc

k , various noise levels s̄, and different
mesh sizes are shown in Table 3. In addition, the number of iterations and the
computing times for the various objectives are listed. The following observations
can be made:

With respect to accuracy, all algorithms deliver comparable results with (PS)
being slightly superior regarding the objective and errH1

0
and (DR2) being slightly

superior regarding errL2 . To see this more clearly, we highlight the largest differ-
ences (compared to the result of (PS) and (DR2), respectively) concerning objective
value and the errors errL2 and errH1

0
in boldface.

With regard to the effort, the simple projection method (PG) is nearly always
the best. This concerns the number of iterations as well as the consumed computing
time. Moreover, the differences are substantial. For instance, in the line highlighted
in boldface, (PG) is up to approximately 5, 18, and 8 times faster than (PS), (DR1),
and (DR2), respectively.

In accordance with our theoretical findings, the objective value decreases if the
noise level s̄ is reduced and/or if the data sample set is getting larger. Concerning
the noise level, this reduction is however rather moderate. Even the largest reduc-
tion indicated with gray background is by less than 10 %, though s̄ is reduced from
0.1 to zero. Regarding the errors errL2 and errH1

0
, the dependency on the noise

level is indifferent. The largest reduction, again indicated by gray background, is
about 80 % w.r.t. the L2-error and 65 % for the H1

0 -error. On the other hand,
there are also instances, two of them marked in light gray, where the errors not
only stagnate, but even increase with decreasing noise. In summary, the influence
of the noise level appears to be limited and all algorithms behave comparatively
robust w.r.t. noisy data.

The situation changes when the sample size is changed. With respect to the
sample size, the reduction of the objective is more significant. Here, the largest
reduction, when increasing the sample size from 5.000 to 10.000, marked by a box,
is about 80 %. In case of the L2-error, the largest reduction is about one order of
magnitude, while the largest reduction of errH1

0
is approximately 35 %, both again

marked by boxes. In summary, the sample size has a significantly larger impact on
the accuracy of the results than the noise level.

The influence of the mesh size to the L2- and the H1
0 -error is similar to that

of “classical” finite element simulations. We highlight the smallest L2- and H1
0 -

error for zero noise level and maximum |Dloc
k | in italic type. In case of errL2 , the

best result is obtained by (DR2), in case of errH1
0
by (PS). In Table 4, these

values are compared with a “classical” finite element computation. For the latter,
we discretized (1.1) with κ as defined in (8.3) by choosing Uh from (8.1) as trial
and test space. The resulting nonlinear system of equation is solved by Newton’s
method. The relative errors are denoted by errFEL2 and errFE

H1
0
, respectively. We

moreover present the experimental order of convergence defined by

EOCFEL2 :=
log(errFEL2 (h1))− log(errFEL2 (h2))

log(h1)− log(h2)
,

where h1 and h2 are two mesh sizes and errFEL2 (hi), i = 1, 2, the associated rela-

tive L2-errors. Furthermore, EOCFE
H1

0
is defined analogously and EOCDR2

L2 and EOCPS
H1

0

denote the respective orders of convergence generated by the data driven approach
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Table 3. Non-linear law tested on Ω = (0, 1)2 with different mesh
sizes and data sets.
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with (DR2) and (PS), respectively. As the theory predicts, cf. e.g. [5], Table 4

N errFEL2 EOCFEL2 errDR2
L2 EOCDR2

L2 errFE
H1

0
EOCFE

H1
0

errPS
H1

0
EOCPS

H1
0

50 1.601e-03 — 1.598e-03 — 3.143e-02 — 3.174e-02 —
100 4.004e-04 1.9995 3.616e-04 2.1438 1.571e-02 1.0005 1.637e-02 0.9552
200 1.001e-04 2.0000 1.343e-04 1.4289 7.854e-03 1.0002 9.078e-03 0.8506

Table 4. Relative errors and experimental orders of convergence
for the “classical” finite element solution and the best results of
the data-driven approach in dependence of the mesh sizes h =

√
2

N .

shows a quadratic and a linear order of convergence for the relative errors errFEL2

and errFE
H1

0
, respectively. We moreover observe that the errors produced by the data

driven approach are more or less of the same size as the “classical” finite element
error except for the smallest mesh with N = 200, where the error caused by the
sample size becomes predominant compared to the error induced by the mesh.

To summarize, it is to be noted that the accuracy of all algorithms improve, if the
noise level is reduced, the data sample set is enlarged, and the mesh is refined, with
the noise level having the smallest impact on the accuracy. We moreover observe
that all algorithms yield satisfactorily results w.r.t. the accuracy, the best results
being even comparable to a “classical” finite element computation. Concerning the
performance of the algorithms, the original projection algorithm (PG) turns out to
be superior in the sense that it provides an accuracy similar to the other algorithms
with the fastest computing time. The proximal gradient method defined by (PS)
in average returns the most accurate results (in particular w.r.t. the H1

0 -seminorm)
but with a greater computational effort. Both variants of the Douglas-Rachford
algorithm also provide comparable results but one has to be cautious concerning
the termination criterion due to the lack of fixed points.

9. Conclusion and Outlook

In this paper, we studied a finite element discretization of the data driven ap-
proach as introduced [18], where we focused on a stationary scalar diffusion prob-
lem. We showed that the finite element error analysis can be incorporated into
the data convergence analysis of [10] as long as finite elements are used where a
vanishing discretized divergence implies that the continuous divergence vanishes,
too, cf. Lemma 3.3(i). In the conductivity example, i.e., our stationary scalar dif-
fusion problem, the construction of such elements is comparatively simple and, for
instance, Raviart-Thomas elements do the job, see Proposition 3.7. The situation
changes, if one turns to problems in elasticity, where the symmetry of the stress
tensor significantly complicates the construction of such elements, see for instance
[4, Section 4] and [2]. The considerations in Section 6 however indicate that the use
of “classical” piecewise linear and continuous finite elements might not be feasible
in context of the data driven approach, an aspect that gives rise to future research.
Nevertheless, if H(div)-conforming finite elements fulfilling Assumptions 3.1 are
used, then, under suitable assumptions on the approximation of the local data set,
see (5.7), we obtain the same approximation results as in [10] so that (subsequences
of) minimizers of the finite dimensional problems (Pk) converge in data to elements
of the intersection D ∩ E .
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Another issue concerns the computation of minimizers of (Pk). As seen in Sec-
tion 7.2, the discretized data driven problem (Pk) is equivalent to a quadratic
semi-assignment problem and, as such, NP-hard, see Remark 7.1. There is thus no
hope to find an efficient algorithm for the computation of minimizers. We there-
fore presented two heuristic approaches, one based on projections on Eh and Dh,
the other one based on a local search in combination with model order reduction.
It turns out that, the local search is not competitive, at least for the example of
Fourier’s law. There are however plenty of parameters to adjust, such as the size
of the POD basis and the neighborhood within the local search, and it requires
further investigations to analyze if a smart choice of the parameters could result
in a competitive algorithm. With regard to the projection-type methods, the most
simple alternating projection algorithm according to [18] turns out to be advanta-
geous with respect to the ratio of accuracy and computational time. With regard to
accuracy only, the modified projection method (PS) and a variant of the Douglas-
Rachford algorithm delivered the best results. If the noise level is zero and the
sample size is large enough, then these results are comparable to a “classical” fi-
nite element simulation with known material law. There is however no theoretical
evidence for a convergence of the projection-based methods, even not to any kind
of fixed-point, not to mention a minimizer of (Pk), and the examples in [17] show
that this is indeed an issue. The robustification of projection-based methods for a
reliable solution of (Pk) is probably one of the most important open problems in
the context of data driven numerics.
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