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Abstract

In this thesis, the adaption of models and methods known from the electrical transmission
line (TL) theory to thermal heat transfer problems in cables is analyzed. Possibilities and
limitations are presented.

Based on the consequent usage of analogies between electrical and thermal domains, a
thermal analog to the electrical TL theory is derived for a single wire cable. The necessary
assumptions and simplifications are discussed. For more complex cable arrangements, a gen-
eral modeling approach is presented, which allows setting up an equivalent circuit diagram
(ECD) and the corresponding system of partial differential equations (PDEs) directly based
on the physical cable properties. The electrical and thermal models are compared.

The PDEs are solved using different simplifications. At first, basic linear analytical solu-
tion approaches for constant excitations are calculated beginning with solutions of the PDEs
for special cases (neglection of time and/or spatial dependence). In addition, for relevant ca-
bles (single wire cable, system consisting of axially combined single wire cables, two single
wire cables, coaxial cable, N identical single wire cables, and a general form), analytical
calculation approaches of the complete PDE or system of PDEs are given. Approaches for
the consideration of time and spatial varying initial and boundary conditions and inhomo-
geneity are discussed. For the nonlinear parameter dependence, a fast converging fixed-point
iteration is proposed.

The solutions are validated by comparison with measurement results (indirect temper-
ature measurement based on resistance measurement and thermocouple temperature mea-
surement) and numerical reference solutions. An approach for determining some cable pa-
rameters that are extremely difficult to be measured directly from the physical arrangement
is presented, for example, the coupling conductance between the conductors of a twisted pair
cable. Overall, very good accordance between numerically and analytically calculated tem-
peratures 1s observed. For a cable bundle consisting of 33 cables, the general applicability of
the presented methods to complex problems is shown.

The results are discussed with regard to the model and solution accuracy. In addition,
the new models are compared to literature approaches for the single wire cable. For multi-
conductor arrangements, the influence of the bundle on the individual cable temperatures is
discussed using the example of a twisted pair cable. Also, the influence of the assumption of
a solid conductor in contrast to a stranded conductor is analyzed. Finally, as an application
example, a protection strategy for a twisted pair cable for power over data line (PoDL) ap-
plications is developed based on the presented calculation approaches and implemented on a
microcontroller. The setup is tested in a laboratory environment which shows the applicabil-

ity of cable protection strategies directly based on the cable temperature.
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1 Introduction

The technical development of electrical and electronic components is proceeding at a rapid
pace. More powerful and at the same time smaller components are taking on more complex
functions. These also include safety-relevant features that lead to new demands concern-
ing reliability - safety-relevant functions should not simply be switched off in critical cases
because this can result in potentially dangerous situations for the end user. Overall, these de-
velopments lead to new challenges and requirements concerning diagnosis functions as well
as architectures [1]. In this context, heat generation and dissipation play an important role.
In addition to the individual functional elements, the consideration of the interconnecting
conductor structures is gaining importance due to the increasing power levels. The thermal
behavior must therefore always be taken into account when cables, busbars, or conductor
traces that are used to supply individual functions are dimensioned [2].

In this thesis, the focus is put on cables. During operation, the cable has to be protected
from damage to the temperature-sensitive insulation and, in the worst case, a cable fire.
Classically, melting fuses are used for this safety-relevant purpose. Those cannot fulfill the
ever-rising requirements of flexibility and their tripping behavior only partly depends on
the relevant cable temperature. That is why electronic fuses are developed, that consist of
a (software) controlled switch and therefore allow very flexible switching strategies. As the
temperature of the cable that has to be protected is the relevant parameter, strategies for
continuous cable temperature monitoring are necessary. For high power transmission cables,
various approaches for online temperature monitoring already exist. One example of such
an approach is distributed temperature sensing (DTS) [3], where the response of a thin op-
tical fiber to laser pulses is analyzed. Overall, this procedure is quite complex, so it is only
economical for special applications (especially very long, large and expensive cables such as
submarine cables).

In practice, however, thinner and shorter cables are often used and the cost pressure on
cable systems is high. Simple single cables are necessary for various application fields to
supply a wide range of elements. In some cases, shielded single (coaxial) or multiconductor
cables are also used to reduce interference emissions. Twisted pair cables are applied, for
example, to supply low-power consumers via communication lines (power over data line,
PoDL, [4]). Systems constructed from three identical cables are particularly used for power
supply. In general, conductor bundles of any complexity can appear, for example, in the main
wiring harness of vehicles.

For all these applications of comparatively thin and short cables, thermal considerations
play an increasing role. Direct temperature measurements are too complex and expensive.
Thus, indirect model-based approaches based on current measurements are necessary. Un-

til now, in addition to the application of elaborate measurements, the thermal behavior of
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those cables has been described almost exclusively by numerical approaches, primarily finite
element methods (FEMs) [2]. However, since these numerical calculation approaches are as-
sociated with a high effort (in form of computing capacity and runtime), these approaches
are usually not real-time capable. The aim of this thesis is therefore to determine analytical
calculation rules for the current-based cable temperature estimation for selected, particularly
relevant conductor arrangements.

In chapter 2, an overview of different cable protection approaches is given with a focus
on automotive applications. Besides classical (melting) fuses, also approaches based on con-
trolled switches are shown. A current-based and a temperature-based decision are discussed
and the different protection strategies are compared. In the next step, an overview of the
theoretical basics and the state of the art concerning thermal effects on cables is briefly sum-
marized in chapter 3. In addition, electrical effects on cables are presented in the form of the
electrical transmission line (TL) theory.

In chapter 4, the basic modeling approach that is used in this thesis for the thermal cable
models is introduced, which is the usage of analogies between electrical and thermal do-
mains. This is followed by the development of a thermal analog to the electrical TL theory,
i.e., a kind of thermal TL theory in chapter 5. After preliminary considerations concerning
the general similarities and differences between the electrical and thermal domain, formula-
tions for a single wire cable and more complex cable arrangements are derived. The electrical
and thermal TL models are critically compared.

The resulting system of nonlinear partial differential equations (PDEs) cannot directly be
solved analytically. That is why in chapter 6, at first analytical solutions for the linearized
PDE system with constant excitations are derived, mostly based on the solution approaches
known from the electrical domain as the solution in the Laplace domain or Green’s function
approaches. Solutions for a single wire cable, a system of axially connected single wire ca-
bles, two single wire cables, a coaxial cable, N identical single wire cables, and a general
solution approach are described. In the next step, approaches for the consideration of time
and spatial varying initial and boundary conditions and inhomogeneity as well as the nonlin-
ear parameter dependence are discussed. The calculation approaches are validated in chapter
7 using measurements and numerical reference solutions.

The results are analyzed in chapter 8: The model and solution accuracies are discussed
and the new models are compared to previous literature approaches. Typical simplifying
assumptions such as the neglect of cable bundles or branded conductors are evaluated. In
addition, an application example is shown: A protection strategy for a twisted pair cable
is developed, implemented on a simple microcontroller, and tested to show the practical
applicability of the approaches. This thesis concludes with a summary.
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Overload scenarios can lead to critical situations in electrical circuits, which on the one
hand can endanger users, but on the other hand potentially damage or destroy sensitive com-
ponents. For more than a century [5, p. 2], protection strategies have therefore been used to
minimize the risks for people and components. Various approaches have been developed for

this purpose. In this thesis, the focus is put on cable protection.

2.1 Overview

When an electric current flows through a cable, the finite conductivity of the conductor
material causes electrical power losses. These losses are converted into heat, which heats
the cable. The insulation material reacts more sensitively to temperature increases than the
inner (metal) conductor: When the insulation material heats up, initially its aging process
1s massively accelerated. Further heating can also lead to (plastic) deformation and, in the
worst case, to a cable fire. These undesirable consequences of an excessively high insulation
temperature have to be avoided. The cables must therefore be protected from overcurrent-
induced overtemperatures. If only the cable heating due to the ohmic losses plays a role and
the environment cools the cable, the hottest point of the insulation is found at the transition
between the inner conductor and the insulation. Accordingly, the inner conductor tempera-
ture is relevant for the insulation status.

The most popular and widespread devices concerning cable protection are (melting) fuses
[5, p- 1], in which a wire melts during overload operation and thus interrupts the circuit,
and circuit breakers, which interrupt the circuit by the thermally induced deformation of
a bimetal [6]. For more specialized applications, also many other protection devices were
developed in the past, which include, for example, resettable fuses [5, 6]. Those typically
consist of positive temperature coefficient devices (for example polymers [7, 8] or ceramic
materials [6]) that show a very large resistance in case of an overcurrent, thus limiting the
current flow [5, p. 15]. Permanent power fuses, or sodium fuses, use the phase transition of
sodium from solid to plasma to dramatically increase the resistance in case of a fault [9, 10].
Electronically controlled systems represent another group of protection devices, in which,
for example, a tripping decision is made based on a current or temperature estimation and
the circuit is interrupted using some kind of switch (e.g., field effect transistor or relay) [5,
6].

Overall, many possible protection methods and elements exist for different applications
and a complete overview would be beyond the scope of this thesis. Therefore, exemplarily,
the development of cable protection strategies for application in automotive vehicles from

(melting) fuses to modern flexible strategies is motivated in the following.
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2.2 Melting Fuses

Melting fuses, or shortly fuses, are widely used in many applications. The worldwide pro-
duction was estimated to be over 10 billion fuses annually in 2004 [5, p. 16]. The history of
fuses goes back to the 19th century [5, p. 2]. According to [11], the first design specifications
for fuses were patented by Thomas Edison in 1881. The basic principle has remained the
same throughout this time: A comparatively short (and thus inexpensive) piece of wire is
sacrificed in case of an overload to protect the rest of the circuit from damage [5, p. 1]. Thus,
the geometrical and/or physical properties of this short piece must differ from those of the
rest of the circuit in such a way that a predetermined breaking point is created here, which
is destroyed by an overload before the other elements suffer serious damage. Usually, this is
ensured by a comparatively thin wire made of a material with a low melting temperature.

Basically, a melting fuse behaves like a controlled resistor (see figure 2.1): Before tripping,
the (time-dependent) resistance R(t) is comparatively low, after tripping, the resistance is
very high. The exact triggering time of the melting fuse is influenced by the temperature of
the melting wire. In addition to the geometrical and physical fuse properties and the current,
this depends in particular on the ambient conditions such as the ambient temperature or the
type of installation. Overall, there is a complex dependence on the load current /, but also on
many other influencing variables such as the ambient temperature 7, the initial temperature
1o, or the connected cables.

The tripping behavior can be realized by different types of melting fuses. Those are sub-
divided into three categories [5, p. 11]. High voltage (HV) fuses and low voltage (LV) fuses
differ in terms of voltage (limit 1000 V alternating current (AC)). The third category, minia-
ture fuses, 1s primarily determined by the geometrical dimensions. Typical automotive fuses
belong to this category. Fuses can also be classified in terms of their spatial structure into
enclosed fuses and semi-enclosed fuses [5, p. 11]. Thermal models for different fuse types
can be found for example in [12-18].

Fuses play a major role in automotive applications. Already in 2004, each vehicle was
equipped with 30 to 75 fuses, depending on the price category [5, p. 134]. Due to increas-

ing automation and electrification in the vehicle, the number of consumers, the complexity

N —

Te(t) R(t)

Figure 2.1: Function of a melting fuse as a controlled resistor.
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of the wiring harness, and thus the number of elements to be protected from overcurrents
continues to increase [19]. At the end of the 1970s, blade-type fuses (see, for example, [20])
were developed primarily for use in automobiles [5, pp. 134-137], which quickly became
established and today represent the typical fuse form in automotive vehicles. They are used
to protect circuits with rated currents of up to 100 A, typically with voltages of up to 32 V.

The design process for cable and fuse is now briefly outlined. Current-time characteristics
as given in figure 2.2 are used to illustrate the typical behavior of the individual elements
(see e.g. [6, 20]): In the normal load characteristic, the typical time is shown that a certain
current flows in normal operation. For a fuse, the characteristic shows, depending on the load
current, after what time the fuse operates. For a cable, the characteristic typically indicates
the time a given constant current has to flow to heat up the cable to a certain temperature.
First of all, the basis is the supplied load. Based on its current-time characteristic (yellow
curve in figure 2.2) a fuse is designed which can permanently tolerate the standard load. The
tripping characteristic of this fuse (green curve in figure 2.2) then indicates the time the wire
needs to melt as a function of the current and is typically chosen to be higher than the load
characteristic by a factor of 1.25 to two [5, pp. 141-142]. The cable, which is used for supply
and has to be protected against overtemperatures, must have a destruction characteristic (blue
curve in figure 2.2) that is even higher to ensure that the fuse breaks the circuit before the
cable suffers irreversible damage. Typically, the cable and fuse show a comparable behavior
regarding low overcurrents, but at high overcurrents, the fuse (which is thin compared to the
cable) reacts much faster than the cable [21]. So, there can be significant distances between
the characteristic curves (red area in figure 2.2).

Fuses are widely used, established, and trusted. In [22], a list of advantages for LV fuses
is given, many of which also apply to HV fuses and miniature fuses [5, p. 140]. Among
them are the following advantages: Generally, no complicated short-circuit calculations are
required for the use. Fuses are simple, reliable, and overall inexpensive components. Because

they cannot be reset, the user is encouraged to take a closer look at the problem that caused

10? - ===
load
- 10t -F---- fuse
- ‘ cable
10° -f---=----f---% R distance
107!
10°

Iin A

Figure 2.2: Characteristics of load, melting fuse, and cable.
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the overload to identify and correct the fault. Fuses reliably switch off even high currents and
minimize supply voltage drops because of the short tripping times.

There are also some disadvantages associated with fuses. Using melting fuses implicitly
assumes homogeneous cables and cable environments, so variations along the cables cannot
be considered. The real cable temperature is not known in this approach. Fuse and cable
ideally are exposed to the same environmental and initial conditions, nevertheless, both react
differently to them, so the influence of those conditions on the real cable temperature is only
partly considered in the triggering decision. Safety distances must be included: The minimum
fusing current always has to be lower than the current that the cables and other elements can
tolerate. Conversely, cables need to be selected that withstand, for example, a 50 % higher
continuous current than the fuse rating (if the fusing factor is 1.5), which increases the cable
price and weight. In addition, depending on the chosen fuse, different cables are necessary
[5, p. 153], so the fusing strategy must already be known in detail when selecting the cable.
This reduces the flexibility of the entire wiring system. In addition, the fuse must be replaced
after operating (reset is not possible), so all fuses have to be placed in easily accessible
locations in the wiring system, which further limits the possible arrangements. Overall, fuses
are very unflexible as the switching behavior of an installed fuse cannot be adapted. Many
fuses do not allow full-range protection over the entire current range [5, p. 142]. Also, there
are critical cases and current loads in which the fuse has not tripped but plastic deformation
has already occurred [5, p. 141]. Then, when a new load is applied, the fusing behavior is
unspecified and it usually operates much earlier than expected. These critical cases form
a narrow band in the current-time diagram, which should be avoided if possible. Another
critical aspect regarding the characteristic curves for fuses is that they do not depend on
the fuse alone, but for comparatively small overcurrents also on the ambient conditions and
the connected cables [5, p. 33]. The specification of “the” fuse characteristic for a specific
fuse is therefore not possible. So, again, safety margins are inevitably necessary. Quantifying
these precisely is not trivial, so usually, significantly over-dimensioned designs are the result.
Because of these disadvantages, other protection strategies are developed. An overview of
advantages and disadvantages in comparison with the other protection strategies presented
in the following is given in table 2.1.

2.3 Controlled Switches

In the case of fuses, a large safety margin is required between the tripping characteristic of
the fuse and the cable characteristic due to the different behaviors of fuses and cables, result-
ing in over-dimensioned cables and unusable cable reserves. Smart fuse protection strategies
allow better adaption of the tripping characteristic to the actual physical conditions. In prin-
ciple, a software-controlled switch is used for disconnecting the circuit [23], whereby a wide
variety of approaches can be considered for the specific implementation of the tripping rule.
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0
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x: decision variable

Figure 2.3: Function of a controlled switch as a controlled resistor.

The underlying setup is shown in figure 2.3: The input variables serve as the basis for the
decision. Those typically include the time-dependent measured current /(¢) and can be sup-
plemented by other variables such as the ambient temperature 7;, or the initial temperature
Tp. From these input variables, the development of the decision variable x is first calculated
in a controller. Based on this decision variable, the tripping decision is then made and the
current is switched, which can be understood as equivalent to the control of a variable resis-
tor. In contrast to the simple (melting) fuse (see figure 2.1), the entire decision process in the
controller is freely programmable and thus much more flexible. Resetting or switching on is
also possible.

The time-depending input variables have to be measured. On the one hand, more infor-
mation enables a more precise assessment of the cable situation and thus a more accurate
switching behavior, on the other hand, it also causes an increased measurement effort. A
compromise must therefore be found between these two effects: The overall goal is to enable
a safe decision with as little (measurement) effort as possible. Compared to the melting fuse,
more different components are now involved in the decision-making process. Each of these
components can fail and thus cause the failure of the protection strategy so the overall failure
probability increases.

In the general approach, the decision variable is not specified in detail - a wide variety of
variables can be chosen here. Two prominent approaches are presented below.

2.3.1 Current-Based Decision

One possibility is to directly use the cable characteristic. In this current-time characteristic,
the permissible load duration of the cable until the selected maximum temperature is reached
is given as a function of the electrical current. When determining these curves, the axial heat
flow is neglected, i.e. long cables are assumed. In addition, a constant current pulse, as well
as an initially cold cable, are assumed and the ambient temperature is set to a fixed value.

In practically relevant applications, single constant current pulses only rarely occur. Nev-
ertheless, the current-time characteristics that are usually given by the manufacturer are often
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used for cable protection. To relate continuous transient currents with the cable characteris-
tics, moving root mean square (RMS) windows are therefore used [24, A.1].

The procedure is as follows: First, a point (I, 7) is chosen on the current-time characteris-
tic. Then, at each time ¢, the question is whether an unacceptably high load (i.e., greater than
I) has occurred in the time window of width 7 ending at time ¢. Therefore, the RMS value

RMS, () — /- / " (@) di = (1) @.0)

-
for the window of width 7 is used as decision variable x(¢) and compared with the allowed
value from the characteristic /. The RMS value is continuously updated during operation. In
total, such a dynamic approach is carried out in parallel for different points on the charac-
teristic curve (typically between six and ten points) to reproduce the entire bandwidth of the
characteristic curve as far as possible. Overall, the decision variables are here the RMS values
that are continuously calculated from the measured current and compared to the maximum
permissible values for the switching decision (see figure 2.4).

However, problems can also arise with this approach. These are discussed in the following.

By selecting specific points on the characteristic curve, it is reproduced in discretized
form. In the next step, the RMS values for window widths between the explicitly selected
and considered widths are analyzed. For this purpose, it is first assumed that two window
widths 7, and 7, were selected for the fuse protection and that the permissible limit values /;
and I, are not exceeded by the associated RMS values for a current waveform not defined in

more detail. Mathematically this means for all # < ¢:

i i
RMS,, (1) = \/ Tll / I2(t)dt < I, RMS, ()= \/ %2 / Pl)ydi<L. (22
t—71 t—To

Without a restriction of generality, [y > I, and 71 < 7 < 73 are assumed. Then, the following
worst-case estimation holds for the RMS for window width 7:

t—7
RMS, (t) < \/ % {72122 - / I2(%) d%] < \/gfg. (2.3)
t—7o

I(t) calculate RMS;, (¢) switch off, if R(t)
— xi = RMS,,, RMS;, > [; for ——

1=1,2,... at least one ¢

t t t

Figure 2.4: Controller function for a current-based switching decision using RMS values.




2 Cable Protection

Explicitly, no statement of form RMS,(¢) < [; is possible, so an estimation against the
smaller of the two considered windows is not directly possible.

Based on this approach, using a given cable characteristic, windows can be chosen left
of the characteristic which ensures that for all possible current developments, the moving
RMS value does not exceed the characteristic. The area with high currents for short times
is uncritical here, as there, the worst case and the characteristic show the same behavior.
Heat conduction and all kind of interaction with the environment do not play any role in this
adiabatic case. Unlike, for comparatively low overcurrents, critical cases can occur.

Due to the worst case, higher values can appear for longer windows than for short win-
dows. An example of such a problematic case is shown in the following. The current-time
characteristic for a 6 mm? cable with the initial and ambient temperature of 60 °C and the
maximum permissible temperature of 105°C (black curve in figure 2.5) is analyzed. The
green and black points of this characteristic curve are now used for protection. The worst-
case curve between the selected window widths is given. The current development shown in
figure 2.6 is assumed: Three single, comparatively high pulses occur. In figure 2.6, the time
evolution of some of the selected windows is shown together with the maximum allowed
values (green). At all these windows, the allowed values are not exceeded. Also, the devel-
opment of the maximum occurring RMS values as a function of the window width is shown
continuously in yellow in figure 2.5. It can be seen that in some cases the permissible values
are exceeded in the areas between the windows for protection, which would not be noticed
by the protection strategy. An example of a particularly critical window width is shown in
yellow in figures 2.5 and 2.6. There, an RMS value is reached that is about 7.5 A above the
allowable current value for this window.

In addition to the RMS values for different window widths, the actual temperature devel-
opment is also calculated (see figure 2.6, blue). It can be seen that the first pulse raises the
temperature close to the permissible limit, as also expected based on the RMS value for the
window width of 55 s. Between the pulses, the cable cools down again, yet the starting tem-
perature at the beginning of the second pulse is already 80 °C so the characteristic curve can
actually no longer be applied. Thus, within the second pulse, the permissible temperature of
105°C is exceeded.

\ e, | characteristic
400 ’
............ i % windows fuse
200 '."':'"i.,“ addi.tional point
maximal RMS
100 { { Leo] | rrmmmmmann Worg case

100 300 1000 50 60 70 80
Iin A Iin A

Figure 2.5: Cable characteristic and chosen windows for an exemplary protection strategy.
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Figure 2.6: Exemplary critical load current that leads to an overheating cable but is not de-
tected by the protection strategy.
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2 Cable Protection

Here another problem of the described approach becomes apparent: The given character-
istic curve is based on the assumption of a starting temperature of 60 °C and therefore cannot
be used already for the second pulse. However, the actual cable temperature is not known in
this approach. It could be continuously measured in parallel, but due to the high effort of this
approach, it is not practically relevant. Worst-case assumptions would be necessary, but the
question arises of which cable temperature should be used: After all, during operation, tem-
peratures can occur right up to the permissible limit temperature, so this would represent the
formal worst case. However, the specification of a characteristic curve for heating starting at
the maximum permissible temperature up to the same temperature is not reasonable. Thus,
the initial conditions are not sufficiently continuously considered in this approach. To be able
to track the initial temperature and thus the characteristic curve, a temperature monitoring
system running in parallel would be necessary. However, if the actual cable temperature is
known, it is also possible to trigger directly on this basis and the entire RMS approach is
no longer needed. For the ambient temperature, worst-case assumptions or additional mea-
surements are also necessary for the selection of the characteristic curve. Implicitly, constant
values are assumed by choosing a characteristic curve here. Nevertheless, the possibility of
choosing an appropriate cable characteristic allows more flexible strategies than the simple
melting fuse.

With the use of controlled switches, controlled overload and switching on is possible.
Nevertheless, because of the unknown cable temperature in the RMS-based approach, both
of those functions cannot be used directly based on the physical cable status but can only be
implemented based on assumptions or rough approximations.

In principle, the discretization of the current sampling can also lead to further problems.
Maxima of the RMS values can thus possibly no longer be resolved. However, this problem
also occurs in other protection strategies, so it is assumed here and in the following that
the actual current waveform is known with sufficient accuracy not to cause any additional
problems.

A very relevant question is to what extent the RMS value is at all directly related to the
evolving conductor temperature. The underlying idea here is that the squared current in-
fluences the injected power and therefore the RMS value corresponds to the temperature.
However, nonlinear effects are not taken into account: In particular, the heat dissipation from
the cable surface to the environment is highly nonlinear. In the literature, therefore, the ac-
tual exponent for the current influence on the temperature is given overall between 1.5 and 2
(depending on the emissivity of the surface) [25] or between 1.5 and 1.85 [26]. Various fac-
tors influence this behavior. Therefore, the pure RMS value does not reproduce the occurring
effects well enough and is thus not always suitable for a sufficiently accurate estimation of
the conductor temperature.

Overall, some difficulties arise in the application of this algorithm. Therefore, cables are
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2 Cable Protection

usually significantly oversized in practice and switched off far before reaching critical tem-
peratures, so reserves can often not be utilized. Many windows and/or significant cable re-
serves have to be taken into account. The necessary reserves vary depending on the selected
window width. Good protection strategies can only be found for the special case where am-
bient and initial temperatures are constant and only individual current pulses occur between
which the cable cools down completely. All conditions that differ from these strict assump-
tions can lead to significant problems.

2.3.2 Temperature-Based Decision

The two previous approaches had in common that the actual cable temperature was not
known and therefore could not be taken into account. Based on this, various difficulties arose.
To avoid these, the cable temperature 7' itself is required as decision variable y and therefore
has to be continuously monitored. In the ideal case, both the time and spatial temperature
development along the complete cable are known.

On the one hand, this can be achieved via measurement. For example, the DTS [3] can
be applied: Here, a thin optical fiber is placed directly in the cable, and the response of this
fiber to laser pulses is analyzed, so the conductor temperature can be determined with a spa-
tial and temporal resolution. This procedure needs a rather complex technique for measuring
and processing the recorded data. Typical resolutions are in the range of meters, but special
techniques also allow higher spatial resolutions for shorter cables (e.g. [27, 28]). The optical
fiber itself should not relevantly distort the measured temperature curve, so this method is
only partly suitable for thin cables. Because of the complexity of this procedure, it is only
economical if the optical fiber is laid directly with the cable and very long, large, and expen-
sive cables (e.g. underground cables or submarine cables) are to be monitored.

Alternatively, the cable temperature can be calculated using appropriate thermal cable
models. Typically, based on the current measurement (and possible additional inputs) the
time-dependent temperature development is calculated. Then, the current can be switched off
if the maximum permissible temperature 7j;, is exceeded and switched on again if the cable
temperature falls below the lower temperature 71,5, thus using hysteresis to avoid permanent

switch off, if
Te(t)|  calculate T(t) T > Tim, R(t)
SRR . e
T, x=T switch on, if
7. T T < Thys
N, 143 Sl
t t t

Figure 2.7: Controller function for a temperature-based switching decision using thermal ca-
ble models.
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switching. An overview of this approach is given in figure 2.7. On the one hand, appropriate
models must describe the physical conditions reliably and with sufficient accuracy, but on
the other hand, they must not become too complex to remain competitive compared to the
very cheap fuse protection. This thesis aims to contribute to such protection strategies in the
form of simple (therefore analytical) models for cable temperature calculation.

2.4 Comparison of Different Protection Strategies

Finally, in table 2.1, the properties of the presented protection approaches (melting fuse,
controlled switch with RMS-based and temperature-based decision) are directly compared to
highlight the advantages of controlled switches with temperature-based protection strategies.

In the first two approaches, the cable temperature is not known: The melting fuse is cho-
sen to fit the thermal behavior of the cable, but cannot reproduce its behavior under varying
conditions or give any information about the real cable temperature. Therefore, high safety
margins are necessary. With the RMS-based approach, the aim is to know whether the max-
imum permissible cable temperature is exceeded or not — but the real cable temperature is
not known in detail, which causes again safety margins. The three approaches also differ
in terms of their consideration of the environmental temperature, the initial cable temper-
ature, and earlier loads. Using the melting fuse, this is partly considered as the fuse is on
the one hand exposed to the same conditions and loads, but on the other hand, reacts dif-
ferently than the cable. In the RMS-based approach, the consideration of the environmental
temperature is possible via measurement, although implicitly a constant environmental tem-
perature is assumed when choosing a cable characteristic. Nevertheless, slow changes in
the environmental temperature can be considered by choosing the appropriate characteristic.
For the initial characteristic choice, an initial cable temperature is necessary, which has to
be measured or assumed. The continuous update of this initial temperature for the choice
of the appropriate characteristic for each window is highly problematic in this approach, as
the cable temperature is unknown. Using the thermal cable model, again, via measurement
the environmental temperature can be determined and used as input for the calculation. An
initial cable temperature has to be known as in the previous case but then, at each moment
the temperature calculation is performed based on the earlier results which directly allows
the consideration of earlier loads. In addition, also spatial varying temperatures can be taken
into account by appropriate models, which is not supported for the melting fuse and the
RMS-based approach. In contrast to the other two approaches, also the safety margin can
be reduced. Overall, the usage of a thermal cable model directly provides the temperature
information, so in this case, thinner cables can be chosen, which reduces the cable weight.

A melting fuse cannot be switched on again but has to be replaced after operating once.
Therefore, it has to be placed at a well-accessible fuse box in the final setup, which limits
possible boardnet architectures. Also, controlled overload is not possible and the switching
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strategy cannot be influenced after the installation of the fuse. Unlike, the controlled switches
can flexibly change their strategy during operation, be switched off later to allow controlled
overload, or be switched on again, although in the case of the RMS-based approach this
procedure has to be predetermined without knowledge of the cable temperature, so it is
uncontrolled to some extend. As the switch does not have to be replaced after an operation,
no central and accessible fuse box is necessary any longer, which allows new architectures
of the overall boardnet. All in all, the melting fuse is very unflexible in comparison with the
other two alternatives.

A melting fuse is a very simple protection device that can directly be integrated into the
circuit. Therefore, only this single element is necessary for protection without additional sup-
ply or calculation, which is why high reliability is achieved. Unlike, the usage of controlled
switches causes calculation effort (which also goes ahead with a necessary power supply),
implementation effort, and memory requirements depending on the chosen algorithm. Each
of the involved elements or steps can fail and therefore, result in reduced reliability. A higher
effort has to be put into the implementation.

Table 2.1: Comparison between different cable protection strategies.

(melting) fuse controlled switch (RMS) controlled switch
(thermal model)

cable temperature
consideration of environ-

mental temperature possible (not continuous)

initial cable temperature
consideration of earlier
loads

consideration of spatial
temperature distribution

cable weight

safety margin

reset/switch-on possible (partly controlled)
controlled overload possible (partly controlled)

fuse positions

flexibility

implementation effort
calculation effort
memory requirements medium

reliability medium medium

effort
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3 Fundamentals of Thermal and Electrical
Effects on Transmission Lines

In this chapter, the fundamentals of thermal and electrical effects on TLs are discussed.

Some considerations of this chapter were already published in [A.2].

3.1 Thermal Effects on Transmission Lines

Thermal issues for a wide variety of structures and elements play an important role in
many different disciplines. The focus of this thesis is on the thermal modeling of current-
carrying cables. Also in this field, many modeling approaches were developed and many
investigations were performed. For example, a large number of dissertations (e.g., [2, 29—
39]) already dealt with this topic. Numerous publications, review papers, and basic literature
(e.g., [40—-45]) have presented and systematized the diverse investigations. Selected methods
have also been standardized (e.g., [46-52]) and, accordingly, are widely used commercially.
An overview of the historical development of thermal cable modeling can be found in [53].
Many important approaches and developments are addressed there. Due to the long devel-
opment of thermal cable models (first considerations go back to the 19th century [53]) and
the resulting number of investigations (a search of the database of the Institute of Electrical
and Electronics Engineers, IEEE, with the keyword “thermal cable model” returns more
than 1200 entries), an overview of all approaches cannot be given in the following. Instead,
a classification according to different criteria is suggested for already existing approaches.

The mentioned sources in each case are meant as examples and do not claim to be complete.

3.1.1 Heat Flow Directions

Many round cables can be considered cylindrical structures. Therefore, cylindrical coordi-
nates are appropriate, as shown in figure 3.1. Two prominent transport directions for the heat
can be distinguished, the current flow direction (z-direction, axial) and the directions in the
plane transverse to the current flow, which sum up ¢- and r-directions (radial direction).

Different modeling approaches can be distinguished concerning their treatment of the dif-
ferent heat flow directions: First, all three spatial directions can be considered (see, e.g.,
[54-56]). Thus, arbitrary arrangements of cables can be described without the need for ro-

tational symmetry. For example, the complete heat flow along a bundle of cables [57] can

radial, r
axial, z

G )% D

Figure 3.1: Coordinates, axial and radial direction along a cable.
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3 Fundamentals of Thermal and Electrical Effects on Transmission Lines

be considered in this way. However, the resulting models are very complex and usually can
only be solved with great effort, so simplifications are sought wherever possible. One widely
used simplification is the neglection of axial heat flow: In the case of long, homogeneous
conductors whose ends are at non-critical temperatures, only the heat transport processes in
the transverse direction are relevant for the maximum conductor temperature, especially if
the internal ohmic losses in the conductor are the only heat source to be considered. The
heat flux in the current flow direction in the cable middle, where the highest temperatures are
expected, is then negligible, so it is sufficient to consider any cross-section of the conductor,
obtaining a two-dimensional (2 D) radial model (see, e.g., [55, 58-67]). If, in addition, the
arrangement is also symmetrical in the p-direction (the typical case for this is a single cable),
the model order can be further reduced, leaving only a one-dimensional (1 D) radial model
(see, e.g., [68—77]). If, in addition to the heat flux in the r-direction, the axial cable direction
is also taken into account (z-direction), the result is again a 2 D model in which the rotational
symmetry of the arrangement is considered. Examples of such approaches can be found in
[57,78,79]. Also in this thesis, basically the heat flux in y-direction is not considered. Based
on this, approximations for the description of rotationally unsymmetrical cable arrangements
(multiconductor cable arrangements) are also proposed.

3.1.2 Time Dependence

Thermal models can also be classified with respect to their consideration of transient ef-
fects. In steady-state models, thermal equilibrium is assumed: Here, the long-term state after
all adjustment processes is described. Such models without consideration of time dependence
are widely used (see e.g. [58, 60, 61, 63-65, 67, 78-80]), but reach their limits in practically
relevant problems. For example, cables can tolerate much higher currents in the short term
than in the long term. To describe this behavior, transient models are needed (see, e.g., [54,
57, 68-77, 81-86]). However, fully accounting for all transient effects is very challenging
due to retroactive effects (e.g., temperature-dependent thermal cable parameters, see section
5.2.2), so limiting assumptions are almost always made. For example, it is implicitly assumed
that temporal changes occur slowly, so a quasi-static approach can be used and the separa-
tion of cable heating and heat conduction is a good approximation. This assumption is also
made in this thesis. Furthermore, for most of the presented solutions, it is assumed that the
instantaneous parameter values have already existed since the beginning of the investigation
and thus, did not change during a transient calculation.

3.1.3 Basic Modeling Approach

For the description of thermal phenomena on conductors, on the one hand, the basic phys-
ical equations can directly be used. Here, the heat conduction equation plays a special role,
which is based on the conservation of energy. This approach is widely used (see, e.g., [60,
62, 64,75, 78, 80, 81]) and directly provides a differential equation describing the problem.
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Together with appropriate initial, boundary, and transition conditions, an overall mathemat-
ical description can be found. A drawback of this approach is that the formulations are not
very descriptive and interrelationships and influences can sometimes be difficult to discern.
An alternative approach is given by using the equivalence between electrical and thermal do-
mains (see also chapter 4). This approach allows using equivalent circuit diagrams (ECDs)
known from electrical engineering also for the description of thermal problems. The indi-
vidual effects are separated from each other and represented in concentrated elements. The
result is a descriptive formulation, which, however, is also accompanied by approximations
due to the separation of effects. This approach is widely used (see e.g. [57, 59, 6874, 76,
82, 84]) and is also used in this thesis.

3.1.4 Cable Environment

In liquids and gases, all three heat transfer mechanisms, conduction, radiation, and convec-
tion, occur. In contrast, only heat conduction occurs in solids [87, p. 1]. Thus, for the thermal
behavior of current-carrying cables, heat conduction within the cable dominates. However,
since interaction with the environment also occurs, radiation and convection have to be taken
into account for a complete description, depending on the type of installation. In the case of
air installation (see e.g. [66]), for example, the interaction between cable and environment
occurs primarily via convection and radiation - heat conduction plays only a subordinate role
here due to the comparatively low density of the air. Practically relevant examples of cables
laying freely in the air are overhead lines, for which transient models are needed to account
for the influence of weather on temperature development [45, 88—95]. At the other extreme,
cables may be surrounded by solids, so coupling with the environment primarily occurs via
thermal conduction. Typical examples are cables surrounded by soil (e.g. underground cables
[62, 63, 71, 76, 82, 96] or buried submarine cables [56]). Determining the thermal parame-
ters of the earth is particularly challenging since these depend on variables that are difficult
to predict, such as humidity [71]. Laying in water [97] or combinations of laying in air and
solids are also possible (e.g., cable laying in a pipe [62, 64, 98—101] or cable bundles [23,
58-61, 81, 85, 102-107]). Often, the highest temperatures are expected for installation freely
in the air (worst case) [36]. This assumption is reasonable if surrounding elements cool the
cables, but can lead to problems if, for example, there is a current through several cables in
a bundle and thus they are heated at the same time (see section 8.4.1) or close to the cable
additional heated elements appear [79].

3.1.5 Modeled Area

Thermal models can be further distinguished in terms of their spatial scope: What exactly
is covered by the model? In the general case, both the cable and the transition to the en-
vironment as well as the environment itself in a selected area around the cable are directly

modeled (see e.g. [55, 56, 63, 66, 84]). However, especially for the consideration of air as
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an ambient material, this approach leads to very complex models due to the different effects
that occur. Alternatively, as a simplification, only the cable itself is modeled directly and the
transition to the environment is defined in terms of boundary conditions (see e.g. [57, 60]). In
this context, a constant ambient temperature is assumed (see e.g. [59, 61]), so the heating of
the environment via the cable itself is not directly modeled. Rather, the ambient temperature
is measured, for example, and serves as an input variable for the model (see e.g. [60]). It is
assumed that the ambient temperature changes comparatively slowly, so these changes can
be taken into account via quasi-static approaches (using the current ambient temperature for
each time). This approach is also used in this thesis. Another possibility is to only model the
effects in the cable itself. In this case, the coupling to the environment is no longer modeled,
but the surface temperature of the cable is measured and used as an input variable for the
model (see e.g. [74, 76, 82, 108]). This simplifies the model itself considerably, but tem-
perature measurements on the cable can be comparatively expensive and time-consuming,

depending on the application.

3.1.6 Numerical vs. Analytical Solution Approaches

Due to the complex nonlinear parameter dependencies that occur in the thermal domain,
numerical methods for temperature calculation (e.g., [70, 77]) are widely used. With the help
of commercial computer programs for thermal simulations, complex three-dimensional (3 D)
models of cable structures can be built up and calculated. Mostly FEMs are used (e.g. [54—
56, 58, 62-64, 66, 67, 83, 96]), but also other approaches such as finite difference methods
(FDMs) [69, 77, 83] or finite volume methods (FVMs) [30, 81, 104] appear. Using numerical
methods, the transient temperature distributions can be calculated even for complex conduc-
tive structures with inhomogeneous environmental conditions. In principle, however, these
methods are associated with considerable numerical effort, although a reduction of the com-
putational effort can be achieved by neglecting the time dependence (see e.g. [58]). Since the
steady state is often not sufficient for practical problems, the practical applicability of such
calculations is significantly limited. In contrast, analytical descriptions [61, 75, 76, 80, 85,
86, 98, 109] are computationally faster but mostly rely on simplifications. A combination of
both approaches is proposed, for example, in [60]: Analytical relations are used to describe
the problem with constant parameters, and the nonlinear parameter dependence is taken into
account via a superimposed fixed-point iteration. This approach is also used in this thesis.

3.2 Electrical Transmission Line Theory

For many decades, electrical cable behavior has been deeply investigated [110, p. 2]. Over
time, the knowledge and understanding of the appearing effects grew, leading from the first
basic models for simple conductive structures to more and more detailed models for more

complex cable arrangements. For several parallel cables, the multiconductor TL theory was
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established, e.g. [110-112]. Today, a huge variety of methods is known, allowing current
and voltage calculations along conductive structures. Special cases lead to simplified formu-
lations for several applications.

3.2.1 Equivalent Circuit Diagrams and Partial Differential Equations
Often, ECDs for infinitesimally short cable segments are used. For a field excited system
consisting of a reference conductor and a second parallel conductor, oriented in the direc-

tion of the coordinate z, the ECD in figure 3.2 is found for a segment of the infinitesimal

/
el’

!/

capacitance' C/,,

length dz [110, p. 584]. The cable elements (resistance R., inductance L
and conductance G)) and the sources that are used to model the coupling of external mag-
netic (voltage source U}) and electrical (current source I}) fields are given as per unit length
parameters, which means that they are normalized to the length, which is a (spatial) deriva-
tive. In this thesis, per unit length parameters are marked with an upstroke. In the ECDs in
this whole thesis, all per unit length quantities formally have to be multiplied by the length,
which is neglected due to the clarity of the figures. Using Kirchhoff’s laws, a system of

coupled PDE:s relating the current [ and voltage U of the segment is derived with the time ¢:

oU(z,t) Y 0l(z,t)
0z ot
01(z,t) Lo oU(z,t)
0z ot

" (z,t) = U,
(3.1)
+ GLU(z,t) = Ii.

This system, which couples voltage and current, can be reduced to a single PDE for the
voltage in the case of 0U;/0z = 0 and 01}/ 0t = 0:
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Figure 3.2: Electrical ECD for an infinitesimally long segment of a single conductor and a
reference conductor.

Tn this thesis, some mathematical symbols (A, B, C, D, E, L, N, W, €, ©) are used to describe different
quantities. To distinguish between them, one (typically the more rarely occurring) quantity is therefore writ-
ten in a different font (A, B, C, D, &€, L, N, W, ¢, ¢). This sometimes results in an unusual appearance of
widely known relationships, which is why this distinction is briefly pointed out again when the corresponding
quantities are introduced. The corresponding assignments can be found in the list of mathematical symbols. C
describes electrical or thermal capacitances, whereas C' is a parameter of the partial differential equations.
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Figure 3.3: Electrical ECD for an infinitesimally long segment of a multiconductor arrange-
ment.

To model not only a single conductor with a reference conductor but N +1 parallel conduc-
tors (one of which is again the reference conductor) and their interaction, the ECD in figure
3.3 is used for the case of an ideal reference conductor (resistance is equal to zero). The
interaction between the different conductors leads to matrix-vector expressions, that relate
currents and voltages on the analyzed conductors to each other:

UL 1) + L, 0I(=.1) + R, I(z,t) = Uy,
0I(z,t) , oU(z,1) , - '
az + el at + elU(Za t) - Iﬁ

Again, an expression only for the voltage can be derived equivalently to equation (3.2) with
oU(/0z=0,0I;/0t =0and U = U (z,1):

U, U U

o2 LaCagm — (LG, +RY) >W_ aGuU = —Ry Iy (3.4)

To sum up, the scalar parameters from the single conductor now become matrices. The en-
tries in the different per unit length matrices depend on the geometry and material parame-
ters. All of those matrices are in general fully occupied and symmetrical. A system of coupled
PDEs is formulated.

3.2.2 Solution Approaches

Generally, the solution of the previously presented systems of PDEs is not trivial. In the
electrical TL theory, many methods were developed to solve these equations for different ap-
plications. Because of the variety of methods, here, only a little proportion can be presented
shortly.

Often, transformations [110—114] are used to solve the differential equations. Especially
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the Laplace domain or the frequency domain play important roles. The basic idea in the
use of transformations is to convert derivatives to algebraic operations to reduce the PDEs
to ordinary differential equations (ODEs) or even algebraic equations [110, p. 241]. Often,
those simplified formulations can be solved for example using similarity transformations
[110-112] directly in the image domain. In many cases, the complex structure of the result
prevents the transformation back into the time domain. Then, numerical solutions (see for ex-
ample [115]) can be used for the inverse transformation or model order reduction approaches
[110, 111, 116] are applied, that enable an analytical inverse transformation even for complex
arrangements. Another approach for the solution of the PDE is the use of Green’s functions
(see for example [117-122]) in the time domain or the image domain. The basic idea here
is to find a characteristic function for the differential equation (“kernel”) that is used as the
basis for the consideration of stimuli, initial, and boundary conditions. When applied in com-
bination with a transformation, choosing an appropriate approach for Green’s function can
help to avoid problems with the inverse transformation.

To describe the current and voltage signals, macromodels can be applied (see for example
[110, pp. 450-453]). The aim is to transfer the PDEs to a set of ODEs via some kind of dis-
cretization to enable the implementation in given circuit simulators. One prominent approach
(see for example [110, pp. 265-269] and [123]) is to divide the conductive structure into seg-
ments with a length that is short compared to the typical wavelength of the system. Each
of those segments is modeled using an ECD with lumped elements. Then, numerical solu-
tions can be used for the solution. A problem with this approach is that especially for high
frequencies, a huge number of segments is necessary. That is why also different techniques
for a more efficient discretization were developed for example the method of characteristics
(delayed controlled sources), developments in basic function, or approximations for special
expressions [111].

In the general case, the cable parameters are nonlinear (see for example [124-126]), typi-
cally frequency-dependent. Then, also the corresponding PDE is nonlinear. For the solution
considering this behavior, for example, the harmonic balance method [127], the waveform
relaxation [128], or iterations [129] are used.

All in all, the complexity and solvability of the different problems vary. For general con-
ductor arrangements, very complex systems can result, that sometimes can only be solved
with a high effort by numerical approaches [110, 111, 130] as finite differences or recursive
approaches. Nevertheless, the amount of methods and approaches is huge and continuously
increasing. Current research is, for example, focused on inhomogeneous or bent conductors
[131] and the analysis of statistical influences on the conductor arrangement (see for example
[132]).
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4 Thermo-Electrical Analogy

Over the years, a huge variety of methods was developed to describe electrical cable be-
havior (electrical TL theory). A comparably well-established thermal TL theory has not been
derived so far. A fundamental question, therefore, is whether methods from the electrical do-
main can be used for the description of thermal processes as well. That is why in this section,
the analogy between thermal and electrical domains is analyzed. This chapter is based on
[A.2].

Electrical charges ¢, form the fundamental basis for observable electromagnetic effects.
Charges of equal sign repel each other. Electrical charges are discretized on the elementary
level as multiples of the elementary charge. However, since this elementary charge is ex-
tremely small, this discretization no longer plays a role on the macroscopic level. There,
the spatial charge distribution can often be described very precisely by a continuous charge
density p.. Without further external influences, electrical charges strive towards a spatial uni-
form distribution, which manifests itself in a constant volume charge density. A completely
analog behavior can be observed in the thermal domain: Here, a temperature difference in-
duces a balancing process, which eventually leads to a uniform temperature distribution.
On a molecular level, the temperature of a medium characterizes the average of the kinetic
energy, rotation energy, and oscillation energy of the molecules. Analog to the electrical vol-
ume charge density, which strives for an equal distribution, an energy density p is used in the
thermal sense.

In the thermal and electrical domain, the charge (or energy) in a given volume is calculated

by integration over this density. A thermal charge

q:/pdV 4.1)
v

thus represents a certain amount of energy. In the electrical domain, this charge

o — / p AV “2)
1%

is carried by particles, for example, electrons, and is a characteristic property of the particle
that cannot be easily transferred from one particle to another. In the thermal domain, the
energy is also carried by molecules but can be exchanged between them by collision and
radiation. Thus, molecules in the thermal domain cannot initially be understood as being
equivalent to electrons in the electrical domain. Instead, however, it is possible to understand
quasiparticles as carriers of the energy portions, which are the thermal charges ¢. A funda-
mental difference between the electrical and thermal charges consists of the fact that there are

no negative energies - and thus no negative thermal charges and no negative thermal charge
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densities.
The charge quantity that passes a given cross-section per time defines the electrical current

_ dqel

I
dt

:/JeldnA 4.3)
A

which is an effect or through quantity. J,, is the electrical current density. In the thermal
domain, the heat flow

P:%:/JdnA 4.4)
dt A

fulfills an equivalent role and is also defined accordingly (energy that passes a given cross-
section per time) with the thermal current density J.

The electrical scalar potential® ¢, describes the ability of the conservative (electrical) force
field to relocate charge carriers and therefore, to perform work. This electrical scalar potential
is a property that is assigned to the space itself and thus, does not depend on the presence
of matter or charges at the evaluated point, because the charges causing the potential can
be far away due to the infinite range of the Coulomb interaction. Constant offsets in the
potential do not change the physical behavior, which allows the definition of a reference
potential. Generally, the electrical scalar potential can have any value. The corresponding
(potential) quantity in the thermal domain is the temperature 7' and therefore, is always
coupled to appearing matter and energy stored in it. Equivalently to the electrical domain,
a reference temperature can be chosen. But, in contrast to the electrical domain, an overall
absolute temperature scale exists that is especially characterized by the absolute zero point
(thermal energy is zero). Temperatures below this value (and strictly speaking also the zero
point itself) cannot be reached. To sum up, in both domains, a potential quantity can be found
(electrical scalar potential respectively temperature), but their properties differ between the

electrical and thermal domains. The potential is related to the current density via
Jo = —Aa grad(oe), J = —X\grad(T) 4.5)

with the corresponding conductivities A (electrical) and A (thermal), respectively. The con-
servation of electrical charge is equivalent to energy conservation in the thermal domain,
both of which are described via a continuity equation:

Op

div(J) = —. (4.6)

apel

diV(Jel) = —W,

From the electrical scalar potential, the electrical voltage U between two points in space
can be found as their potential difference. This voltage is the cause or across quantity cor-

responding to the through quantity of the current. Equivalently, a temperature difference

2¢ is the scalar potential, whereas ¢ is a coordinate.
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between two points causes a heat flow between these points.

(Negative) electrical charges at points with lower potential have lower potential energy
than charges at points with higher potential. Due to energy minimization, therefore, a force
exists that pulls positive charges to points with lower potential. Therefore, a voltage between
two points induces a charge movement and thus a current as long as an appropriate path is
provided (without potential barriers, which especially means that a finite resistance between
the two points is necessary). A very typical case is a current through a conductor. For different
materials, the same voltage typically leads to different currents. This dependence is described
via the resistance U

R = 7 4.7
which is defined as the ratio between the voltage and the current. In the thermal domain, a
directly parallel formulation can be found: Energy minimization here causes energy (thermal
charges) to move from higher temperatures (potentials) to lower temperatures. The ratio

between temperature difference and heat flow again defines the (thermal) resistance

AT

R P (4.8)

The similarity of this formulation of the resistance manifests in the calculation formulas
for the resistances for identical geometries: For a cylinder (length [, cross-section A), the
axial resistances R, (electrical) and R (thermal) are

[ l

Ry=-— R=-".
A A

4.9)
For a cylindrical shell (inner radius ry,, outer radius ., ), the radial resistances are

Tout Tout
In ( ) In ( )
Ry = N/ p_ N/ (4.10)

2 el 2w

Heat can also be stored in the medium. To model this, a thermal capacitance C is necessary:

d(AT) q

dt AT “411)

Mathematically, C connects the time derivative of the temperature difference with the heat
flow analog to the electrical domain (capacitance C):

dU _ Ga

I = Cel_ = Cel

. 4.12
dt U (+12)

There is no thermal equivalent to the electrical inductance because a thermal equivalent to

the magnetic field does not exist.
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Based on these equivalences between the electrical and thermal domain, also, the often ne-
glected thermal propagation processes along the longitudinal cable direction show analogies
to electrical propagation processes on cables. So far, only isolated modeling approaches have
been proposed that are directly based on the electrical TL theory (e.g., [133]). This analogy
is also mentioned in [134], but not consequently used to find new solution approaches for the
thermal problem. The potential of this analogy was not systematically evaluated in the past.
In this thesis, selected approaches from the electrical domain are used to describe thermal
effects on cables.
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S5 Thermal Cable Modeling Based on the
Electrical Transmission Line Theory

In the previous chapter, correlations between the electrical and thermal domains were ob-
served. Based on these results, in this chapter, a modeling approach for electrical propaga-
tion processes on homogeneous cables (see chapter 3 in [110]) is analyzed concerning its
applicability to thermal processes. First, a detailed comparison between the two domains is
performed for this purpose. Subsequently, approaches for a thermal TL theory are developed
for a single cable and a multiconductor system. The results are compared to the formulations

in the electrical domain.

5.1 Preliminary Considerations - Comparison Between
Electrical and Thermal Effects on Cables

Before the potentials of a thermal analogy to the electrical TL theory are evaluated, elec-
trical and thermal effects on cables are compared. Some parts of those considerations are
based on [A.2].

5.1.1 Basic Physical Equations

In this section, the physical relationships that characterize the electrical and thermal do-
mains, respectively, are compared. For this purpose, the basic equations are analyzed.

The following paragraph is based on the discussion in [135, pp. 521-522]. Electrical and
magnetic processes can be described time-dependently via Maxwell’s equations®

0
rot(€) = _B_B’ div(D) = pa,
t ) (5.1)
rot(H) = Jg + E’D, div(B) =0
together with the material equations for the linear case*
D=c€,B=puH,J, = )\€. (5.2)

Here, £ and H represent the electric and magnetic fields, respectively, and D and B are the
associated flux densities. p is the magnetic permeability and e is the permittivity. Using the
Lorenz gauge condition, a hyperbolic PDE (wave equation) follows for the electrical scalar

3In this thesis, £ describes the electric field strength, whereas E is the energy. D is the electric flux density.
In contrast, D is a parameter of the PDEs. B describes the magnetic flux density, and B is a parameter of the
PDEs.

“¢ is the permittivity, whereas ¢ is the emissivity.
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5 Thermal Cable Modeling Based on the Electrical Transmission Line Theory

potential ¢;:
. 0 Pel
div (grad (¢e)) — uew%l =-— (5.3)

Thermally, no similarly compact closed formulation can be found. This is because there
are three basic heat transport mechanisms, which are based on different physical effects.
Thus, thermal conduction, radiation, and convection are described by different mathematical
relationships. Heat conduction is mediated at the microscopic level by collisions between
particles. Macroscopic, the associated energy transfer is described mathematically by the
heat conduction differential equation [136, p. 85], i.e., a parabolic PDE for the temperature
T (analog to the hyperbolic PDE for the electrical scalar potential, see equation (5.3)):

, c 0T w
div (grad (7)) — Xor = T (5.4)
Here, c represents the specific heat capacity and w is the (external) heat source density. A
is the thermal conductivity, which, according to Fourier’s law [136, 137] (see also equation
(4.5), thermal formulation) describes the relationship between the heat flux density J and the
temperature gradient. Thus, it is an analog of the material equation for the electrical current
density (see equation (4.5), electrical formulation).

Thermal radiation is based on a fundamentally different mechanism. Here, heat is trans-
ferred by electromagnetic radiation [136, 137] which is emitted by accelerated charges in the
molecules. In contrast to the other heat transfer mechanisms, this effect also occurs without
an intermediary medium and can therefore take place in a vacuum [136, 137]. The heat flow
P passing a radiating surface is linearly dependent on the fourth power of the temperature 7°
of this surface® A [136, p. 737]:

P =coAT". (5.5)

o =5.67-1078 W/m?K* is the Stefan-Boltzmann constant and ¢ is the surface emissivity.
Convection, on the other hand, is a flow effect in a liquid or gas and describes a combi-
nation of diffusion and a macroscopic motion [136, p. 378]. Typically, it is presented as a
third individual heat transfer mechanism, nevertheless, heat conduction is a part of this effect
[136, p. 378]. In addition, the fluid dynamics of the surrounding material are important here.
A distinction is made between free and forced convection. In the case of free convection, the
flow is caused only by density differences in the fluid as a result of heating and the associated
temperature differences [136, 137]. In the case of forced convection, there is a forced exter-
nal flow [136, 137]. In the general case, the calculation of all effects is very complicated. In
many cases, no exact analytical closed-form expression can be found [137, p. 17]. However,
for special geometrical arrangements, approaches are given in [138, pp. 27-29] which can

be used to describe the relationship between heat flow and temperature. For free convection

5 A describes areas, and A is a parameter of the PDEs.
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around a horizontally oriented cylinder, the relationship is given in section 5.2.2.

Thus, in contrast to the electrical domain, the processes in the thermal domain are more
diverse and more difficult to accommodate in a common formulation. In the cables under
consideration, all three propagation processes, heat conduction, radiation, and convection,
play a role. Radiation and convection occur at the surface of the cable, while thermal con-
duction occurs primarily in the interior. Assuming that the cables are located in the air, the
heat conduction in the surroundings is neglected, since the thermal conductivity is assumed
to be very low, so radiation and convection dominate at the cable surface.

To find a comparable formulation in the thermal domain, despite the very dominant dif-
ferences between the electrical and thermal domains, the focus is now put on the heat con-
duction inside the cable. There, structural similarities to the electrical domain can be found
(PDE of second order, equivalent material equation). Nevertheless, the differential equations
also show differences: In the electrical domain, hyperbolic equations describe an oscillating
system with wave propagation effects (see equation (5.3)). The second time derivative cor-
responds to an oscillating behavior. Unlike, in the thermal domain, the differential equation
is parabolic (see equation (5.4)). Therefore, wave phenomena such as reflections, standing
waves, and resonances do not appear in the thermal domain. Nevertheless, based on the un-
derlying similarities, a similar formulation in the thermal domain is searched. The idea is
now to set the model boundary to the cable surface, and thus, describe a purely thermal
conduction system. However, since this system is not closed (because there are heat fluxes
beyond the system boundaries), appropriate boundary conditions are necessary. First, the
ohmic heating of the cable is chosen as input variable. To describe the heat flow through
the cable surface to the environment via convection and radiation, (rather complicated and
nonlinear) boundary conditions are defined at this surface. The model itself only describes
the cable itself, because only up to this point the modeling can be applied purely via heat

conduction.

5.1.2 Modeling Goal

In the electrical domain, cables are often primarily an unwanted interference factor. Ide-
ally, for many applications, current and voltage should transfer from the input to the output
without loss and delay [110, p. xviii] (of course, there are also exceptions, in which, for ex-
ample, cable inductances are used quite specifically to influence the oscillation behavior of
the overall circuit). Since current and voltage at the input and output of real cables are gen-
erally not identical, often, the connection behavior of cables is searched. Therefore, two-port
networks or chain matrices for the direct connection of the currents and voltages at the cable
terminations are typically used [110, pp. 269-278]. However, there are applications where
the pure connection behavior is not sufficient. An example from the field of electromagnetic
compatibility is the determination of the radiated fields of a conductor arrangement, which
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are potential interference sources for other elements.

In the thermal domain, one of the main motivations for temperature calculation is the
protection of the cables themselves and nearby installed components. For this purpose, the
decisive variable is usually the maximum (possibly only locally appearing) cable temper-
ature. That is why not only the connection behavior but explicitly the entire temperature
development along the cable is decisive here.

5.1.3 Basic Modeling Approaches
a) TEM Assumption and Fields

The following paragraph is based on the explanations in [110, pp. 4-5]. In the electrical
domain, the assumption that only transverse electromagnetic (TEM) fields are present plays
a major role, which means that only the TEM mode is capable of propagation, i.e., no field
components in the axial cable direction appear. This ensures that current and voltage are
uniquely defined for the case of frequencies not equal to 0 Hz. Theoretically, there are also
higher modes. However, these are strongly attenuated below a cutoff frequency (typically low
GHz range), so their influence becomes negligible. The TEM mode, on the other hand, has
a cutoff frequency of 0 Hz and is therefore always capable of propagation. The assumption
that only transverse electromagnetic fields occur is no longer accurate for lossy conductors
and/or inhomogeneous surrounding materials. However, assuming that the effects occurring
due to the additional modes are small, they can be incorporated into the formulation for
ideal TEM modes (quasi-TEM). An important consequence of the TEM assumption is that
the current sum becomes zero in any cross-section of the conductor arrangement. Therefore,
one conductor can be thought of as a reference or return conductor through which the cur-
rent flows back. For this central assumption to be valid, as mentioned above, the frequency
has to be low enough, which corresponds to electrically short structures. Then, the modeling
approach via an ECD can be applied. If this circuit is built up for a cable segment of infinites-
imal length (which is, obviously, electrically short), an overall electrically long cable length
does not cause any problems. Unlike, in the radial direction, electrically short structures are
mandatory.

The concept of the reference conductor and TEM fields cannot be applied to the thermal
domain. At first, in the thermal domain, the field concept is only partially applicable. Here
the modeling ends at the cable surface, the environment is only considered by boundary
conditions. That is why no fields can meaningfully be defined or even calculated in the
space between the two conductors. An equivalent to magnetic fields does not appear in the
thermal domain at all. An analog to the electric field can be defined in the conductor itself
as a gradient of the temperature, but not in a vacuum - a temperature is always necessary
and therefore, so is a medium. Also, there is no physically closed circuit in the thermal

domain - heat flows from places of higher temperature to places of lower temperature, but
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not back again. Therefore, there is no physical thermal equivalent for the reference conductor
from the electrical domain. Nevertheless, it is possible and necessary to define a common
reference in the thermal domain as well, to which the different effects refer. However, this
reference then has no physical equivalent. This becomes clear also by the consideration that
electrically, typically, charge conservation is assumed in a closed circuit. So there is a closed
system. However, the thermal equivalent to the charge, the energy, is always supplied by the
ohmic losses in the inner conductor - so there is no closed system. The interaction with the
environment (which is only taken into account by the boundary conditions) ensures that an
energy flow beyond the system boundary can also be observed at the outer model termination.
Nevertheless, the thermal effects in the model refer to one shared reference which is why the
ECD can be closed via this reference path, even though there is no physical equivalent and
thus, the heat flow through this reference does not physically exist.

Fields mediate long-distance effects in the electrical domain: Even if two structures do not
touch each other, they can interact. Thermally this happens with radiation. In the following
models, however, only heat conduction is explicitly considered mathematically as only the
cable itself is directly modeled - and the basic prerequisite for heat conduction is that there
is direct contact. For thermal conduction, therefore, there is no long-distance effect.

b) Closed System Assumption

Thermally, a spatially closed system is necessary to find a comparable formulation to the
electrical domain, since radiation and convection at the conductor surface mathematically
follow fundamentally different relationships than thermal conduction (which, comparable
to the wave effects in the electrical domain, also follows a PDE of second order). A ther-
mal insulation material, which is placed around thermal conductors and in which therefore
no thermal conduction takes place, thus also directly prevents the coupling between these
conductors via thermal conduction. Therefore, it is rather to be understood as a boundary
condition for single conductor considerations but is not suitable to build up a multiconductor
problem equivalent to the electrical domain. These observations can be traced back to the

different meanings that capacitance fulfills in the thermal and electrical domains.

¢) Capacitances

In the electrical domain, a capacitance is not directly assignable to a point in space but
is a property between two mutually insulated conductive structures. This capacitance then
crucially depends on what material is placed in the space between them. Knowledge of the
field in the insulating material alone is sufficient to determine the capacitance [110, pp. 26-
27]; the material properties of the conductor are irrelevant. The geometrical arrangement of
the conductors, on the other hand, plays a major role. A capacitance is thus usefully defined
independently of electrical conduction between these two conductive structures.

In the thermal domain, a fundamentally different situation is observed. There, capacitances
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describe a local property. The governing quantity is the specific heat capacity. The capaci-
tance of a conductor against reference does not depend at all on the surrounding material and
only from the surroundings no conclusions about the capacitance are possible. Only the ma-
terial properties of the conductor determine the capacitance, the geometrical arrangement is
not relevant - the total heat capacitance remains the same for an element of constant volume
(or constant mass) even if it is transformed into a different shape. The heat capacitance is
always related to the reference [52, 134, 139] - it is a local property, so there is no physical
equivalent for the second node. In this respect, however, there is also no thermal capacitance
between two conductive structures, as is the case (the only one occurring) in the electrical
domain. Thus, in thermal models that directly aim to describe the physical properties, only
capacitances against reference occur.

The underlying fundamental difference is that in the thermal domain, heat conduction and
heat capacitance cannot be separated. This can be seen directly in the heat conduction dif-
ferential equation, where both effects occur together. To each infinitesimal volume element
a resistance can be assigned, which it opposes a directed heat flow, but also a heat capaci-
tance, which relates the supplied energy and the resulting temperature increase. In the later
modeling for conduction, this is exactly what becomes a critical point - because there, heat
conduction and heat radiation have to be separated. This is one of the key approximations
necessary to find a formulation similar to the electrical domain. However, a direct physical
arrangement, where thermal conduction and capacitance naturally occur separately, does not
exist. In this respect, there is no thermal equivalent to an electrical insulator. Therefore, it
is also not possible to find an example in which a transferability between the electrical and
thermal domain can be found directly without approximations.

5.2 Single Conductor Transmission Line Theory

In the electrical TL theory, a typical basic arrangement consists of two parallel conductors,
one of which is selected as the reference conductor. Equivalently, in the thermal domain, a
single conductor with an insulation layer is the basic arrangement. The cross-section of this
cable is shown in figure 5.1: Around the solid conductor with radius r., there is an insulation

1.

Figure 5.1: Cross-section of the analyzed single wire cable.
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layer with outer radius ;. The specific volume-related heat capacities of the conductor and
insulation material are c. and ¢;, respectively. The corresponding thermal conductivities are
Ac and \;. The temperature at the junction between the conductor and insulation is 7y, (single
wire), and the cable surface temperature is 7;. The environment has a constant temperature
of T,.

5.2.1 Partial Differential Equation

For many applications, the temperature development between 7, and 7 is not relevant,
so only the temperatures at specific nodal points are necessary. That is why a description
of the dependence of those nodal temperatures on each other is searched. So, a differential
equation depending only on one spatial coordinate z and the time ¢ is derived in this section,
which describes the behavior of the relevant nodal temperatures (in this case primarily the
conductor temperature). First, the heat equation is derived as the basic description of the
physical behavior. Assuming constant material parameters, individual differential equations
for the conductor and the insulation layer are found. Then, boundary and transition conditions
are defined that are necessary to couple the conductor and insulation temperatures. After that,
the equations for the conductor and the insulation are integrated separately to get rid of the
radial dependence. Finally, the PDE for the conductor temperature is derived.

a) Heat Equation

The heat equation describes heat conduction in a medium. This equation is derived in the
following. According to the first law of thermodynamics, an extended form of the conserva-
tion of energy applies to changes in the energy E, the heat ), and the work® W:

dE = 6Q + SW. (5.6)

Here it has to be distinguished between total differentials (d) and inexact or incomplete
differentials (9). For the total differential dF, an associated potential can be given and the
integral (i.e. ) does not depend on the path of state changes. In contrast, for /() and é/V,
in general, no associated potential can be given. Thus, there is no state variable “heat” or
“work” and the integral depends on the path. In thermodynamics, §)V can be described as

W = —pdV + EAN (5.7)

with pressure p and chemical potential &. Therefore, for a closed system (constant number of
particles’” \') with no volume work (constant volume 1), the work has to vanish:

W = 0= dE = §Q. (5.8)

°In this thesis, W describes the work, whereas W is an abbreviation in some solutions.
7N is the number of particles. In contrast, N describes the number of conductors.
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Due to conservation of energy, in this case, also conservation of heat applies. Generally, a
continuity equation can be determined from a conservation variable. In general, the temporal
change of the density belonging to this conservation variable (here: heat density 0Q)/0V)) is
related to the spatial change of the corresponding current density. The current density here is
the heat flux density

=——ny4 (5.9)
across the edge of the volume, where n 4 points in the direction of the energy propagation,

indicating the direction of the heat flow, and A is the area through which the heat flows.

Thus, the continuity equation becomes

0%Q
otov

+div(J) = . (5.10)

w 1s an additional heat source density in the volume. Via Fourier’s law (see equation (4.5),
thermal formulation, analog to Ohm’s law), the heat flux density can be expressed via the
temperature. The heat capacitance Cy is defined as follows, assuming a constant volume and

a constant number of particles:

0Q
Cy = == . (5.11)
aT V,N
Inserting the volumetric specific heat capacity ¢ with
oCy 0(0Q/0V) 0Q
Y = — =T 5.12
ov ¢ o | W © 612
and equation (4.5) into equation (5.10) leads to
T
6(gt ) _ div (Agrad (T)) = . (5.13)
With 0c/ 0t = 0 and grad (\) = O the heat equation follows:
oT
i Adiv (grad (7)) = w. (5.14)

For application to radially symmetric cables, this is formulated in cylindrical coordinates:

. oT 10 oT 1027  0°T
w_CE_A<;§ (TE> —|—ﬁa—902+@> (5.15)

with radius r, axial coordinate z, and angle . Due to the symmetry of the analyzed cable, it
1s
0*T

w = 0. (5.16)
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b) Boundary and Transition Conditions

The temperatures in the different cable areas are linked by boundary and transition con-
ditions. These are used later to determine the special solutions for the problem from the
general solutions, i.e. to calculate the constants. First of all, a steady temperature curve is
required at the transition between the conductor (radial temperature distribution 7onq(7))

and the insulation (radial temperature distribution 7}, (7)):
Tcond<7a = Tc) = ﬂnsu(r = Tc)' (517)

Fourier’s law in cylindrical coordinates leads to

orT 10T or
J=-A <E67‘ + ;a_gpew + E€Z> . (518)

The heat flow in the radial direction is therefore

J.(r) = Je, = —)\%. (5.19)

This heat flow has to be continuous at the junction between conductor (.J, (7)) and insulation

(Jr,i(r)):

6ircond
or

‘aj—‘insu
or

Jrc(r=re) = Jui(r=r.) & =X (r=r.) =-X\ (r=re). (5.20)

In the conductor, there should be no kinks in the temperature curve, because this would
represent an unphysical behavior. Due to the radial symmetry, the following condition must
therefore apply in the center of the conductor:

8,Tcomd
=0)=0. 5.21
or (r ) ( )
At a surface, the heat flux density
1
J = ZPnA =o(Ts1 — Ts2)na (5.22)

depends on the heat transfer coefficient « as well as the area A and the temperatures 75 ; and
T o of the media involved, where n 4 indicates the direction of the heat flux. Thus, at the
surface of the insulation, the heat flux density in the radial direction is

Jei(r =r)) =Je, = a(Tinsu(r =11) — 1) = (T — To). (5.23)

Here, Tinsu(7) is the insulation temperature, so at the surface (r = r;) it just gives the cable
surface temperature Ty = Tjn, (7 = 77). On the other hand, this heat flux density can also be
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calculated from the derivative of the insulation temperature:

aﬂnsu
Jri(r=m) ==\
(r=m) or

(r=ri) = a(Ty — Te). (5.24)

¢) Conductor

For the conductor the heat equation is
0T cona(r) 10 0T ona(r) 0T ona () ,
_ - = Weond- 2
Tt A For U or + 022 Weond (5:25)

A positive value of w¢,ng corresponds to heat input. Formally, heat conduction (mediated by

the thermal conductivity of the conductor \.) and the heating of the material (capacitance,
mediated by the specific heat capacity per volume of the conductor c.) in the conductor are
coupled. Modeling in an ECD would therefore require an infinite sequence of infinitesimal
RC elements in the radial direction. Here, however, a reduction to one resistor and one ca-
pacitance only is searched, which effectively equals a separation of the two effects. Since
only the temperature at the junction between the conductor and the insulation, i.e. at the
point r = r, is considered later, it is assumed that the complete capacitance of the conduc-
tor becomes effective at this point. Moreover, due to the high thermal conductivity of the
conductor material, the resistance in the radial direction becomes very small. For vanishing
resistance, the assumption of an equivalent capacitance at the junction between conductor
and insulation is even exact. Therefore,
0T ona(r) 0Ty

Ot ~ Ot ) Tsw = Tcond(r = TC) (526)

is assumed. An analog procedure can also be applied for the derivative in z-direction: For
the case of very high conductivity in the conductor material, an almost uniform temperature
distribution will occur radially and stronger temperature variations will be observed in the
axial direction due to the significantly different size ratios (conductor length® £ >> conductor
radius 7.). As an approximation, the z-dependence can thus be evaluated at an arbitrary but
fixed position in the radial direction. Since only the position r = r, is of interest later, i.e.
the transition between conductor and insulation, this position is directly used here as an

approximation:
82jjt:ond (7’) ~ 62jﬂsw

~ . 5.27
022 022 ( )
Thus, in this case, the heat equation becomes
8 8,-Tcomd(r) airsw a2trsw .
Ae— [ r— ) = ree— — P Ade——— — TWeond. 5.28
or (7” or ot "NeTgee T Weond (5:28)

8In this thesis, £ describes the cable length, whereas L is an inductance.
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Applying separation of variables and the assumption that w.,q 1s constant over the conductor
cross-section, it follows for the derivative of the conductor temperature in radial direction:

aTCOH (¢ C atz—‘SW )\C a27_YSW 1
eona(r) _ Fre | P@eond (5.29)

Ae = —
or r +2T ot 2T 022 2

with the integration constant ~; .. Performing a second integration leads to

e 90T A 50Ty, 1
ACTcond(r):ﬁ27c+m1,cln(r)+czr2 S — St g (5.30)

with the second integration constant ;.. With equation (5.21) it follows
Kie = 0. (5.31)

In addition, equation (5.26) leads to

1 Ce o OT, Ae o 0T,
c = )\CTSW ~rlq cond — —r? il 2 SW- 5.32
"2 et = e T e ©-32)
In total, the radially dependent conductor temperature is
Lo oy Co 19 oy 0w 15 o 04y
Teona(r) = Ty + i (rc —r )wcond ~In (rc —r ) 5 1 (rc —r ) 5.2 (5.33)
and its derivative is
aijOIl C aY‘ISW GQT;W 1
Ocona(r) _ . o (5.34)

o 2n. 0t 2 022 2n

d) Insulation
In contrast to the conductor, no heat source is assumed in the insulation, so the heat equa-

tion for the radially dependent insulation temperature T}, (7) is reduced to

. i 2T
¢ insulr) (13 (7‘ aﬂr‘s“(r)) 2 T‘“S“(T)> — 0. (5.35)

Y ror or 022

¢; 1s the specific heat capacity per volume of the insulation material. Due to the low thermal
conductivity \; of the insulation compared to the conductor, the heat flow in the insulation in

the z direction is neglected:
0*Tinu(r)
022

Similar to the conductor, heat conduction and heating of the material are formally coupled in

~ 0. (5.36)

the insulation. For a reduction to a single resistor and a single capacitance, these two effects

must be decoupled. Because later the temperature at the transition between conductor and
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insulation is particularly relevant, the assumption is made that the entire capacitance of the
insulation is already effective at the transition between conductor and insulation. Thus,

OThen(r) _ T

~ 5.37
o o (5-37)
is used. Then, from the heat equation, it follows
074w 10 [ 0Tinsu(r)
—— — A\j— —= ] =0. 5.38
ot ror (T or ) (5.38)

In the first step, an expression for the derivative of the insulation temperature can be deter-
mined by applying the separation of variables:
87ﬂinsu(r) K14 Ci a7—1sw

With equation (5.24) the integration constant x4 ; is determined:

Ci o 0Ty
i =na(Te = T,) — orf—=. 5.40
s =ria(Te =) = rf— (5.40)
Inserting this leads to
87—‘insu (T) Ti & T~2 airsw
NN—m———"=—0al.-T)+=-|r—— | —. 41
or ra< )+ 2 (T r ot (4D

Using again that the complete insulation capacitance is already effective at the inner insula-

tion radius (r = r.) allows the following simplification:

G r2\ 0T, ¢ r2\ 0T,
G, Ty Hew G 1) Mew 0
2 (r 7’) ot 2 (TC TC) ot (542)

After a second integration, it follows for the insulation temperature:

' 2 o7
ANilinsu (1) = Koi + rialn(r)(Te — Ty) + % (7‘0 — 7’_1) r B;W (5.43)

with the integration constant x5 ;. Using r = r. for the capacitance-related term leads to

Kai | oy 2 oy 0w
Tinsu = 1 1. — T, : . 5.44
() = 22+ D () (1= T) + 5 (2 = 1) = (5.44)
Therefore, the surface temperature 75 is
i i i aTSW
Ty = Tnea(r = 11) = ’12 + %(TQ —T)In(ry) + QCAi (2= 1)) =5 (5.45)
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and the temperature at the transition to the conductor is

K2,i 2 2 8I—YSW
Tsw T’insu c) — T 7)1 c ) - 5.46
(r=r) = S+ BT - Ty () + gy (2 =) 5 (546)
Using equation (5.46), k9 ; is calculated:
] 0Ty
Kai = ANTew — mia(Te — Ty) In(r.) — % (r2 —1}) S (5.47)

The difference between surface and conductor temperature then results in a linear relation-
ship between the two temperatures:

20
]_ .
T, Ai '/ T (5.48)

which leads to a formulation for the insulation temperature and its derivative as a function of

the conductor temperature rather than the surface temperature:

T T riQ r

1+ Y In < ) 1 In <r_>
ﬂnsu(r) = : a Tsw + : > Te> (549)

1+ 0% (0 1+ 8%, (8

Ai Te A Tec

i
67ﬂinsu<7a) 1 A G 7’-2 ajjsw

= - : T, — Tiw) — - —r) —=. 5.50
( )=y ol 620

or " 1+ hd In <E)
Ai Te
e) Thermal Transmission Line Equation
In the remaining condition for the continuity of the heat flow at the transition between
the conductor and the insulation (see equation (5.20)), the expressions derived above for the
derivative of the temperatures (see equations (5.34) and (5.50)) are inserted. Rearranging

then provides the differential equation for the present case:

2
L O0Tw(zt) o0l o oy - (T + P
R 022 ot (5.51)

02T, (2, 1) Ao (2, 1)
— 7 A, ——" BT t) = Cysw.
622 SW Bt SW sw(z7 ) wa

Here, the cable parameters C’, R/, G', and P, which are explained in detail in the following

subsection, and the following substitutes are introduced:

Ay = RC, By = R'G, Cow = —R (P, +G'T,). (5.52)
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An equivalent formulation for this PDE connects the axial heat flow P(z,t) with the temper-

ature:

oD | ppeny =0,
0P(z,t) 0T, (azt) (553)
aj +c S%:’ +G'To(2,t) = Py + G'T,.

5.2.2 Parameter Calculation

By inserting equations (5.34) and (5.50) into equation (5.20) and comparing them with the
differential equation (5.51), the parameters C’, R, G’, and P!, can directly be identified. The
following presentation of the corresponding calculation formulas is based on the presentation
in [A.3].

Using the specific heat capacities per volume of the conductor (c.) and insulation (¢;)
material and the volume filled with the materials, the thermal per unit length capacitances
for the conductor (C.) and the insulation (C/) are calculated:

C.=cemr?, C =cn(rf—rl). (5.54)

1

Both of those capacitances are summed up in one complete cable capacitance C':

C'=C.+C. (5.55)
The thermal per unit length resistance
In (£>
R = # (5.56)

is used to model the heat flow through the insulation. The thermal per unit length resistance

1
R (T,) = ———— 5.57
oT5) 2rria(T) (5-37)
models the heat transfer between the cable surface and the environment. The necessary heat
transfer coefficient

a(TS) = Ofrad (Ts) + aconv(Ts) (558)

consists of a part to mention radiation (c,.q) and a second part for convection (avony). The
heat transfer coefficient for free convection in the air is calculated via

Qconv (Ts> = 2z (559)

with the thermal conductivity of air \,;., the characteristic length of the cable [, = 2r;, and
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the Nusselt number for a horizontal cylinder freely in the air [140]

1
0.387 - Ra(T,)6

Nu(7y) = | 0.6 + 3 (5.60)
0.559 =\
: 16
()
Here, Pr is the Prandtl number and
Ra(Ty) = Gr(Ty) - Pr(T5) (5.61)
is the Rayleigh number. The Grashof number Gr is calculated via
¢l (T) gli |TS B Te’ (5 62)
(1) = —F————F~ .
Te7KV§iI" (TS)

using the environmental air temperature (7; in °C and 7 k in K), the gravity of earth g =
9.81m/s?, and the kinematic viscosity v,;, [140].

Values for the material parameters \.;;, V,i;, and Pr are given in form of tables for example
in [138, pp. 197-198]. In this thesis, the following fourth-degree polynomial approximations
of those table data for dry air and pressure of 1 bar are used:

at 1771074 — 4.83 - 107472 4 1.14 - 1071972 4+ 8.81 - 10757}, + 1.35 - 1075,

(5.63)
Pr=223-10""7% —6.27-107°T2 +5.91-107"T2 — 1.58 - 10~*T;, + 0.711,
(5.64)
)\air — — _ — _
T = 135010 Ut 136410712 —4.33-107°%T2 +7.7-107°T}, +2.43 - 102,

(5.65)

T}, 1s the value of the mean temperature of the cable surface temperature and the environ-

mental temperature:

0.5(Ts + Tb)
Tl = ———=. 5.66
(1) = = (5.66)
For the calculation of the heat transfer coefficient for radiation
ad(Tt) = 0 (Tyx + Tox) - (T2 + T2x) (5.67)
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the absolute cable surface temperature in Kelvin 7§ i and the emissivity of the insulation
surface ¢ (the value 0.95 is used in this thesis [141]) are needed. o ~ 5.6704-1078 W /(m?K*)
is the Stefan-Boltzmann constant. The conductance G’ is calculated via

1

S EE R

(5.68)
and thus depends on the cable surface temperature. For the calculation of the heat source
Fy

temperature-dependent electrical conductor resistance [142, p. 99] is assumed:

due to the relatively small temperature rises that are assumed in this thesis, a linearly

Pé(Tsw) = 71-'rz(f‘:)cond = I2 /ef (1 + nr (irsw - Tref)) . (569)

T

nr is the linear temperature coefficient for the conductor’s conductivity and R ; is the elec-
trical per unit length resistance at the reference temperature 7,.¢. The axial thermal per unit

length resistance R’ is calculated via

R' = !

AeTr2

(5.70)

5.2.3 Thermal Equivalent Circuit Diagram

In the electrical domain, an ECD for an infinitesimally short cable segment (length
dz — 0) can be found that directly corresponds to the differential equation and provides
the same information. This ECD can be regarded as an alternate descriptive representation
form of the mathematical model (differential equation). Equivalently, in the thermal domain,
based on the PDE a corresponding thermal ECD can be found that also allows a more intu-
itive interpretation of the basic model. Comparing equation (3.2) from the electrical domain
with the thermal formulation (see equation (5.53)) directly leads from the electrical ECD
(see figure 3.2) to the corresponding thermal ECD shown in figure 5.2. All per unit length
quantities, marked with an upstroke, have to be multiplied by the segment length. Here and
in the following, this multiplication is neglected in the ECDs for the sake of clarity.

In this circuit, the assumptions from the theoretical derivation of the PDE can be found
again. In addition, the influence of the different physical layers can directly be observed in

P(t) R piigT,  Pltds
2

Tsw<z,t>‘ - || ‘qu<z+dz,t>

o ® Oreference

Figure 5.2: ECD for an infinitesimally short segment of a single wire cable.
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this representation: Due to the finite electrical cable resistance, an electrical current flowing
through the cable will always cause electrical losses in form of heat. This heat is impressed
on the conductor and modeled by the heat source P.. All parts of the cable, in this case,
conductor and insulation material, can store heat and thus, heat up. The heat storage capacity
of the cable is represented using the thermal capacitances C. and C/, which are summed up
to the capacitance C’. This complete capacitance is connected to the conductor temperature
node, which shows again the assumption from above: The complete insulation capacitance
is assumed directly at the connection between conductor and insulation. The insulation sets
the resistance R! against a radial heat flow. This resistance causes different inner and outer
insulation surface temperatures. For the conductor, typically, the thermal conductivity is sig-
nificantly higher (three orders) than the thermal conductivity of the insulation [73]. That is
why the appearing radial temperature differences in the conductor are very small and thus,
neglected in this thesis. So, there is no radial resistance for the conductor in the ECD. The
heat flow between the cable surface and the environment (here: air) is represented in the re-
sistance R, . I{ and R;, are combined to find the conductance G’. The resistance R’ describes
the axial heat flow in the conductor (which is not negligible unlike the radial heat flow in the
conductor due to the much higher cable length in comparison with the cable radius). Due to
the already mentioned relationship between the thermal conductivities, the axial heat flow
in the insulation material is not directly considered (infinite resistance), but only indirectly
modeled via the path through the conductor.

5.3 Multiconductor Transmission Line Theory

In this section, more complex cable arrangements are analyzed. In the first step, the formu-
lation known from the electrical domain is used to set up an ECD as well as the corresponding
system of PDEs in the thermal domain. In the next step, the limitations of this analogy are

discussed and an expansion is presented to find a more general thermal formulation.

5.3.1 Analogy to the Electrical Domain

In the electrical domain, the corresponding ECD for an arrangement of multiple cables
is given in figure 3.3. From this, the thermal ECD in figure 5.3 is derived by setting the
inductances as well as the voltage sources to zero. Furthermore, the capacitances between the
individual cables are zero, as thermal capacitances always refer to the reference temperature
[139]. Analogously, the associated differential equations are set up. In analogy to equation
(3.3), the system of coupled PDEs for the temperatures 1" and heat flows P is

% Y R'P(z,1) =0,
0P(z,t oT : t -71)
(Za ) + C/ (Z; ) + G/T(Z, t) — e/1 + G/ (Te o Te)
0z ot
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Ry

o—{ 1 * o N
Py +GunTe Tn(z +dz,t)

In(z,t) =—Cly Gy Gy n

R
o—{ 1 * o1

P+ G T
Ti(z,t) = (] G, Ti(z +dz,t)

o ® ® ® ® O reference

Figure 5.3: Electrical ECD for an infinitesimally short segment of a multiconductor arrange-
ment (/N conductors).

The cable properties are described by the matrices R, C’, G, and the vector P,. The corre-
sponding formulation only for the cable temperatures (as in equation (3.4) for the electrical

domain) is as follows:

Te
2
0°T(z,t) R’ , 0T (2, 1)

~RGT(z:,t)=-R | P,+ G
822 at (Zu ) el+

T (5.72)
0T (2,t) 0T (z,1)
© o2 A w

—BT(z,t)=C.

In the electrical domain, the matrix C., has diagonal and non-diagonal entries. In contrast, in
the thermal domain, the matrix C’ is diagonal because as mentioned already thermal capac-
itances always refer to the reference temperature, and the individual conductors only couple
via a resistance, not via a capacitance. So the thermal matrix shows a simpler overall structure

than the general electrical matrix.

5.3.2 Limitations of the Analogy and General Problem Formulation

The problem formulation from the previous section describes the cable temperatures at
specific cross-sectional points (“nodes”). At those temperature nodes, the axial heat con-
duction is considered and, in addition, a thermal capacitance is placed. This leads to the
appearance of both derivatives (time and spatial). Nevertheless, for example, the coupling
between a cable and the environment depends on the cable surface temperature, which does
not appear in the above formulation until now. Thus, an expansion is proposed here that
allows the consideration of additional temperatures:

- 02T(z,t) = 0T(2,t) =- -
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It has to be mentioned, that both, A and D are diagonal matrices. For a problem that can be
formulated equivalently to the electrical domain only two types of equations appear in this
system: On the one hand, PDEs that include both, the first time derivative and the second
spatial derivative, and on the other hand, linear equations without any derivatives arise. Then,
the temperature vector T(z, t) can be split up into a part with derivatives (variant, T") and a
part without derivatives (linear, 77) by using appropriate matrices (consisting only of zeros
and ones) E,, for T and E, for Ti:

T =E,T+ET,. (5.74)

Inserting this into equation (5.73) and multiplying with E{ leads to a formulation for the

linear part:
- -1 - -
T = — (EITBEl) E’ (BEVT + C) . (5.75)

Inserting this into EZ multiplied with equation (5.73) leads to a formulation only for the

variant parts equivalent to equation (5.72):

PT(2,t) , OT(x1)
022 ot
D=EDE, A=D ETAE,

C

— BT (z,1), (5.76)

~— ~ ~ -1 ~
B=D 'E’B {EV _E (EITBEl) EITBEV] ,

~— ~ ~ -1 ~
c-D 'ET [—BE1 (EITBE1> ET + UN] C.

The matrix D is diagonal without any zeros at the main diagonal, so D' can be calculated
easily.

This rearranging only works, if zero rows appear simultaneously in A and D. This is
not always the case. As seen before, thermal storage capacitance and thermal conductivity
are separated in the model by evaluating only specific radial points. For example, for the
insulation layer of a single wire cable, the complete thermal capacitance was positioned at the
inner insulation radius. This is an approximation that can only be applied for comparatively
slow thermal effects. A better approximation can be found for example by placing one part
of the capacitance on the inner side and the rest on the outside, as proposed by Van Wormer
[143]. The known ECD from figure 5.2 is rearranged to a new version, see figure 5.4. At the
conductor temperature node (green), an axial resistance and a conductance are connected, but
at the cable surface (red node), a capacitance is placed, but no axial heat flow is considered.
This leads to an entry in the corresponding line in matrix A but there is no entry in the
corresponding line of D. Then, the above-presented reduction would not work any longer

and no ECD and PDE directly analog to the electrical domain can be found.
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T, axial resistance and capacitance

\ 4 O

T, capacitance without axial resistance

1o,

Figure 5.4: Exemplary ECD that cannot be treated equivalently to the electrical domain.

5.3.3 Thermal Equivalent Circuit Diagrams, Partial Differential

Equations, and Parameter Calculation
Using a single wire cable, the basic procedure for deriving the thermal TL equation with
the necessary assumptions was presented in section 5.2. The approach can be divided into

the following steps:

1. Nodal points in the radial direction are defined at which the temperature is to be deter-

mined.

2. For all homogeneous layers, the heat conduction equation is integrated twice about 7.
Assumptions have to be introduced regarding negligible or vanishing dependencies.
For example, symmetry considerations or knowledge of the magnitude of the material
parameters can be used for this purpose. For the derivatives with regard to z and ¢,
values at specific nodal points are chosen as an approximation. Thus, heat conduction
and heat storage capacitance are separated in the radial direction and each is modeled
by a concentrated element.

3. Transition and boundary conditions for the elements under consideration are estab-
lished.

4. Based on these additional conditions, the still unknown constants in the formulation

from step 2 are determined and the differential equation is derived.

In principle, this procedure can be transferred to other conductor arrangements. For more
complex conductor arrangements, there are more areas for which the temperature is calcu-
lated individually. In addition, a higher number of transition and boundary conditions oc-
curs, more assumptions are necessary, and altogether more complex calculations result. In
the case of non-concentric structures (e.g. several conductors, an example is shown in figure
5.5), formally, the assumption of symmetry in the ¢-direction is no longer tenable and be-

comes a rough approximation. In this case, additional resistances or conductances are added
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coupling between
conductor 1 and

coupling conductor 2
to environment

coupling conductor 1
to environment

ref

cable 1 cable 2

Figure 5.5: Exemplary ECD for the visualization of the treatment of unconcentric cable
structures.

to model the coupling between the conductors. These can be understood as integral quantities
between both conductors. To avoid a double consideration, an appropriate scaling of some
resistances can be used in a later step. This requires assumptions for the area over which the
coupling occurs. Overall, the formal mathematical derivation of these coupling resistances
is very complex and depends on parameters that are difficult to determine in reality, such
as the contact pressure. It is therefore advisable to determine these parameters metrologi-
cally for specific arrangements using test measurements. Some approaches for specific cable
arrangements are presented in chapter 7.

All in all, the formal mathematical derivation of the PDE for complex conductor arrange-
ments requires many assumptions and a lot of complex calculations. That is why a simpler
approach is searched. Remembering the results from the single wire structure, an equivalent
presentation form of the PDE was the corresponding ECD, in which the necessary elements
could directly be linked to the physical properties of the different cable layers. Extending
this understanding of the basic physical properties of the different cable layers, here, a more
intuitive approach is presented: Instead of the formal evaluation and integration of the heat
equation, the relevant nodes are defined based on the geometrical arrangement for the indi-
vidual layers and partial ECD diagrams are set up. Via a formalism, that shows similarities
with the stamp formalism known from the (modified) nodal analysis from the electrical do-
main, a system of coupled PDE:s is set up, which has the form known from equation (5.73).
In the following, for different physical layers, the corresponding formulations are presented.
A shielded two-conductor cable is used to exemplarily highlight the modeled nodes.
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a) Conductive Layer
The three conductive layers of the exemplary cable are sketched in green in figure 5.6.

Such a conductive layer is characterized radially via its per unit length heat capacitance
C. = c.A.. (5.77)

Here, c. is the specific volumetric heat capacitance of the conductor and A, is the cross-
section area of the conductor layer. Due to the typically high thermal conductivity compared
to typical insulation material conductivities, the thermal resistance in the radial direction is
neglected. So, the complete conductor is represented by one radial node m.. Furthermore, an
electrical current /. in this conductive structure induces losses that heat the conductor, which

is modeled via the heat source

e =12 Rl (L4 nr - (Te = Thetc)) - (5.78)

/
ref,c

state at reference temperature 7} .. 777 is the linear temperature coefficient of the conductor

is the reference resistance, i.e. the electrical resistance of the conductor in the unloaded

material. A typical value for copper is 77 = 3.93 - 1073 1/K, which is used throughout this
complete thesis. In the axial direction, on the other hand, heat conduction is modeled via the

resistance

1
r
Re=3"1

with the specific thermal conductivity of the conductor material A\.. Combining these three

(5.79)

elements provides an ECD component as shown in figure 5.7. The described node m. in
the radial direction is split up into two nodes m, ., and m. . q. at different axial positions.
As dz — 0, this reduces to just one radial node m.. Thus, to describe such a layer, the
conductor temperature T.(z,t) is introduced as a variable. In the nodal equation, this yields

an expression of the form
1 02T, 0

node mc.,
temperature 7,

90) 0®) (OO

Figure 5.6: Exemplary conductive layers (cross-section, green).
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Me z, TC(Za t) ¢ Me z4dzs
Te(z +dz,t)

radial direction

ref

ref

Figure 5.7: ECD for a conductive layer.

b) Concentric Insulation Layer

In contrast to a conductor layer, for a concentric insulation layer, as exemplarily sketched
in figure 5.8, the heat conduction and thus the temperature difference between the inside and
outside of the insulation plays a role that can no longer be neglected due to the low thermal
conductivity. Physically, heat conduction and heat storage cannot be separated. Nevertheless,
a modeling approach is chosen in which individual discrete elements are used to describe
those two physical effects. Additional correction factors can be necessary to avoid a double
consideration of physical effects (see chapter 7). Those are not considered in this section.

Single RC-Structure Usually, it is assumed that the entire capacitance of the insulation
structure is already effective on its inner side. Then a single resistance and a single capaci-
tance are sufficient for the description. The total capacitance of the insulation layer can be
calculated from the cross-section area A; and the specific heat capacity of the insulation
material ¢;:

Cl = A = am (1o — Tim) - (5.81)
Here 1 o, represents the outer radius of the considered layer, and 7, is the inner radius.

The conductance for the description of the radial heat conduction through this layer is given

node My out,
temperature 7},

Figure 5.8: Exemplary insulation layer (cross-section).
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by
G, _ 27'[')\1

1 ?
Ti0out
In | —
Tiin

where ); is the specific thermal conductivity of the insulation material. The combination of

(5.82)

these two elements provides an ECD component as shown in figure 5.9(a). Thus, to describe
such a layer, the temperatures on the inside and outside of the layer are needed as variables. If
one or both temperatures are already used as variables (conductor temperatures), correspond-
ingly fewer new unknowns are needed. In the nodal equation for node m; ;,,, the temperature

at the inner side results in an additional expression of the form

0T
+ Gi(Tn — Tow) + G =5~ (5.83)
For the outside (node m; o) a term of the following form results:
— G{(Tin — Tous)- (5.84)

Transient processes are partly not modeled accurately due to the drastic assumption of
only one equivalent capacitance. For more accurate modeling, the finer modeling proposed
in [143] can be used here, in which the capacitance is divided among several positions in the
radial direction. Long- and short-term transients are distinguished, depending on whether the

transient duration times are greater or lower than

1

et (5.85)

where (7 is the total thermal per unit length capacitance of the complete cable and R; is the

sum of the radial per unit length resistances of the cable [144].

Van Wormer Capacitances for Long-Term Transients For long-term transients, [143]
proposes a division of the capacitances between the inner and outer insulation boundaries,
so the portion p; ,,C/ is applied on the inside and the portion (1 — p;),)C/ is applied on the

outside with
1 1

Pilo = . - 3 .
i,out T
21n (—) _tout ) 4
Ti,in Tiin

The corresponding ECD is shown in figure 5.9(b). The expression for the nodal equation for

(5.86)

the temperature on the inside is then given as

073,

(T — Tout) - .
6t +G1( n out) (5 87)

+ pi1oCi

50



5 Thermal Cable Modeling Based on the Electrical Transmission Line Theory

For the outside, there is a term of the form

0T,
+ Gi(Tows — Tin) + (1 — pi,lo)ci/Tt- (5.88)

Van Wormer Capacitances for Short Term Transients For short-time transients, accord-
ing to [143], an additional node is introduced in the insulation layer and the division known
from the last section is implemented individually for the inner and outer cylinder shell, re-
sulting in three capacitances. The resistance for heat conduction through the entire insulation
layer is divided between the two sublayers accordingly. With

Cly = &7 (FinTiont — M) » (5.89)
Cly = am (rfow — MimTiout) 5 (5.90)

1 1

b = -
T'i,0out M —1
21n [ =2 o
Ti,in Lin

the ECD shown in figure 5.9(c) results. All three node temperatures are then required as

) (5.91)

variables in the representation. For the newly introduced intermediate temperature 7,4, the
nodal equation is

8,-Tmi
0= 2G{(2T30ia — Tow — Ton) + (1= pi)Cy + 1iCo) —, d (5.92)
For the internal insulation temperature 7;,, the additional expression is
0Tin
+ piCi T 2G{(Tin — Thmia), (5.93)
Mi mid
L. A mi ou mi,in Tmi mi,ou
ml,m? T;n G: ,T’outt ,11 QGI ! 2GI ,Iyoutt
T — Sy 14
(1= pip)C{ , (1— Pi>cil,2
= — —nl, —= —
Pi 1oy - Pi>cil,1
“ fpici/ 2
ref ref
(a) (b) (©

Figure 5.9: ECDs for a concentric insulation layer. (a) Simple RC structure. (b) Van Wormer
capacitances for long-term transients. (¢) Van Wormer capacitances for short-
term transients.
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and for the external temperature 75, the necessary expression is

i ajvout

+ 26 (Towe — Trnia) + (1= p)Cip = (5.94)

¢) Common Filling (Insulation) Around Several Structures
For a common filling around several structures as shown in figure 5.10(a), the assumption
of radial symmetry is a rough approximation. In contrast to the previous considerations, it
does not make sense here to place the capacitance on the inside, since the total capacitance
must play a role for all enclosed structures. Therefore, the total capacitance of the filler
material
Ci = ct A (5.95)

is placed at the surface node of the filling. ¢; is the specific volume-related heat capacity of
the filling and Ay is the cross-section area of the filling. Again, the assumption of a uniform
surface temperature is not always justifiable. But, in particular, if the filling is followed by a
conductive layer that has high thermal conductivity, it is expected that the approximation of
a uniform temperature at the transition between this conductor and the insulation only leads
to small errors.

As shown in figure 5.10(b), additional conductances are assumed between the enclosed
structures and the surface of the filler material to model heat conduction. Again, the temper-
atures at the surfaces of the enclosed structures 7;, ; and additionally the temperature at the
surface of the filling 7;,,; are needed as variables. For the nodal equations at the inner nodes,

a new term of the form

, )
Gl (T = Tow) =1, N (596)
Mtin1,  Mfin,2, mfin,N,
ﬂn,l ﬂn,Q T}HJV
node M out» , y /
Gf 1 Gf72 Gf.N
temperature 75, ’ ’
ms out,
M in 1, Mt in2, cr—— Tout
ﬂn,l 7jin,Z T
O f
ref

(a) (b) (©)

Figure 5.10: Exemplary filling layer. (a) Cross-section. (b) ECD. (c) Filling geometry for
parameter calculation.

52



5 Thermal Cable Modeling Based on the Electrical Transmission Line Theory

results, for the nodal equation at the surface the term

aCrout
ot

N

+Cf + ) G (Tow = Ting) (5.97)
=1

is added. The determination of the resistances is non-trivial in the general case. According to

[145], for the thermal conduction between the inner conductor and the surface of the filling,

the same conductance

2 2 2
G, = ﬁarcosh (%) , i=1,...,N (5.98)
can be used for all inner conductors analog to the characteristic impedance of an eccentric
coaxial cable. This approach is valid for the assumption that the enclosed structures are iden-
tical conductors having the same distance from the center of the cable and being uniformly
distributed. )\ represents the specific thermal conductivity of the filling material, d¢ is the
outer diameter of the filling and d_ is the outer diameter of the enclosed inner conductors. r,

is the distance of the center of the inner conductors from the center of the filling, as sketched
in figure 5.10(c).

d) Interaction Between Surface and Environment
The cable surface (see figure 5.11(a)) interacts with the environment via convection and
radiation in the case of a cable surrounded by air, which is assumed in this complete thesis.
This is modeled via a conductance
Gé = (aconv + arad)27rrs (5.99)
which links the surface (radius r) with the ambient temperature 7, (given as the difference
from the reference temperature). Here, convection and radiation are taken into account via the
heat transfer coefficients av.q,, and a.,q (for their calculation see section 5.2.2) and multiplied
by the surface perimeter 27r. Additional correction factors, again, are not considered in this

section. The resulting ECD can be found in figure 5.11(b). In the nodal equation for the

node my,
temperature 7 L,
my, oo+ —-oref

GI

s

(a) (b)
Figure 5.11: Exemplary surface. (a) Cross-section. (b) ECD.
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surface temperature, the new expression is as follows:
+ GLUT, — Tp). (5.100)

e) Coupling Between Conductors
The coupling between two conductors (nodes m. ; and m, 2, see figure 5.12(a)) is modeled
via a resistor as shown in figure 5.12(b). In the nodal equation for the first conductor, an
expression of the form
+ R,c,l 1o(Teq — T o) (5.101)

is added. For the second conductor, the necessary expression is
+ RQ,Q 1o(Teo — Te). (5.102)

The calculation of the needed resistor is non-trivial and only for special cases, analytical
estimations are possible. One example of such a special case is the direct coupling of adjacent
identical conductors via a common filling under the assumption that the total arrangement
consists of identical and uniformly distributed conductors at the same distance from the cable
center. Then, the resistance can be calculated analog to the characteristic impedance of an
eccentric coaxial cable according to [145]:

1 ap d? — a? + d? (B
Gy = 7T—)\farcosh (d_cm . af = 2ry sin 5 ) (5.103)

Here, [ is the angle between two inner conductors as shown in figure 5.10(c).

In the general case, the coupling is very complex and can only be determined numerically
or via measurements. By directly modeling the coupling between the two conductors, part
of the material located between these conductors is already taken into account. Accordingly,
a correction of the resistances describing this area is necessary. Convection and radiation
are typically also restricted, so a correction is necessary here as well. Approaches for these
parameter determinations from measurement results for specific cable arrangements are pre-

sented in chapter 7.

node m, 1,
temperature 7 ;

7n(:,25
Tc72
Gy
Mme1, Tero Fomea, Teo
(a) (b)

Figure 5.12: Exemplary coupling between two conductors. (a) Cross-section. (b) ECD.
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From those different approaches, the complete system of partial differential equations is
set up. For all of the presented elements, the corresponding entries for the matrices AtoD
are shown in table A.1.

f) Algorithm

All in all, the following steps, which are also presented in figure A.1, are necessary to set
up the differential equation: First, the necessary nodes and thus the relevant temperatures
must be determined from the geometry. A node is provided for each conductive layer. For
insulating layers, one node is provided on the inside and one on the outside. For several
concentric radial layers, a continuous temperature curve at the transition is assumed. For
example, if a conductive solid inner conductor is directly surrounded by an insulation layer,
two nodes or relevant temperatures are defined for this arrangement: The conductor temper-
ature, which also is the temperature on the inside of the insulation, and the temperature on
the outside of the insulation. Using the defined nodes, the general form of the PDE is set up.

In the next step, individual ECDs are now set up for each of the different geometrical el-
ements (concentric conductor layer, concentric insulation layer, common filling) as well as
physical effects (interaction between surface and environment, coupling between conduc-
tors) as summed up in figure A.1. These are linked at the defined nodes, resulting in an
overall ECD. If this ECD is not explicitly searched, this step can also be omitted. In addition,
stamps are used to directly define the corresponding nodal equations. Based on the material
parameters and geometrical dimensions of the individual layers, the associated parameters
are calculated. Especially for non-radial symmetric effects, this parameter determination can
be challenging. In some cases, the parameters have to be found by measurement.

Finally, the calculated parameters are inserted into the previously defined PDE system.
All in all, with this formalism, the differential equations can directly be formulated in the

notation presented in equation (5.73), even without an explicit evaluation of the ECD.

5.4 Comparison Between Electrical and Thermal

Transmission Line Models

In this section, the derived thermal models are compared with approaches from the electri-
cal domain. The necessary assumptions are discussed first, followed by a direct comparison
of the PDEs and ECDs and a discussion on the model classification.

5.4.1 Assumptions

As already mentioned in section 5.1.3, in the electrical domain, the TEM field assumption
is decisive. As there is no physical equivalent to the reference conductor in the thermal
domain, this assumption does not hold there.

However, some approximations and assumptions are also necessary for the thermal do-
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main. First, a constant ambient temperature is assumed: The heating of the environment is
not taken into account here. The ambient air is not covered by the model whose boundaries
are at the cable surface. At this termination, boundary conditions are specified to consider
radiation and convection. Heat conduction in the surrounding air is explicitly not consid-
ered here. The assumption of a constant ambient temperature is a good approximation if it
changes slowly or only slightly compared to the other thermal processes in the system. Then,
for each time, the ambient temperature at that time is assumed as an approximation in the
later calculations.

Nonlinear effects appear widely in the thermal domain. In the derivation of the differen-
tial equation, the temperature dependence of the material parameters was not considered.
Consequently, already the PDE is an approximation. To take into account the temperature-
dependent behavior in the second step, the temperature dependences of the electrical losses
that heat the cable and radiation and convection at the cable surface are included in the pa-
rameter calculation. In the electrical domain, such self-consistent problems do not typically
appear. There, frequency-dependent parameters are common, but not voltage-dependent pa-
rameters. That is why the methods from the electrical domain can be transferred, especially
if the parameters are assumed to be constant in the thermal domain as well. For the solution
in the next chapter exactly this approach is used. Later, an iterative procedure is used to ad-
just the parameters to the conductor temperature. Implicitly, however, constant parameters
are still assumed in the solution - so this approach only leads to good results if the conductor
temperature changes slowly.

Since the thermal conductivity of the conductor material is much higher than that of the
insulation, segments adjacent to each other in the axial direction are assumed to couple to
each other much stronger in the inner conductor than in the insulation. As an approximation,
the direct coupling in the insulation is therefore neglected, so the insulation temperatures at
adjacent segments are only indirectly coupled to each other via the inner conductor temper-
ature. In the radial direction, the temperature drop across the insulation layer is much higher
than across the inner conductor due to the size ratios of the thermal conductivities, which is
why the entire inner conductor is regarded as a single node with a radially constant temper-
ature. This consideration is based on the assumption that the radial expansion of the inner
conductor is considerably smaller than its axial expansion (along which temperature changes
are indeed taken into account). This requirement is thus quite comparable to the requirement
for electrically short cross-sections in the electrical domain, which is needed there to allow
the TEM assumption.

5.4.2 Partial Differential Equations and Equivalent Circuit Diagrams
Comparing the PDE (5.51) with the corresponding equation (3.2) in the electrical domain
shows a very similar form. Setting L/, = 0 directly leads to an equivalent formulation with

56



5 Thermal Cable Modeling Based on the Electrical Transmission Line Theory

I{ = — (G'T, + P))). The same changes are necessary to transform the ECDs from the elec-
trical to the thermal domain. But there are also differences: As already mentioned in section
5.1, the final differential equations in the electrical domain are hyperbolic and describe an
oscillating system, whereas, in the thermal domain, the differential equations are parabolic.
An equivalent to the electrical inductance cannot be found.

The choice of a physically existing conductor as the electrical reference conductor pro-
vides an additional degree of freedom, so to speak: If only one conductor differs from the
other conductors, then it is still possible to exploit certain symmetries in the equations and
the ECD, which may result in a quite simple formulation. In particular, for the solution of
the resulting equations, this can have significant advantages. Also in the thermal ECD, there
is a common reference node, which seems to lead back the heat flow to the inner conduc-
tor. However, since there is no physical equivalent to this reference node, this is a modeling
artifact. The heat does not flow back into the conductor.

Applying the general approach for thermal modeling of different cable structures from
section 5.3.3 can result in an equivalent circuit or PDE, respectively, that cannot be treated
analog to the electrical domain. Then, methods known from the electrical TL theory cannot
be directly transferred to the thermal problem. That is why in the following, the focus is on
thermal models analog to the electrical domain.

5.4.3 Model Classification

In the electrical domain, cable models can be classified in different ways according to
[110, pp. 33-37]. First, a distinction can be made between uniform and nonuniform lines:
In the general case of nonuniform lines, the cable parameters change along the line and thus
depend on the coordinate z. This violates the TEM assumption. For the important case of uni-
form lines, i.e., constant cross-sections through the entire setup along z, on the other hand,
these parameters are independent of z. Another widely spread dependence in the electrical
domain is the frequency dependence of the cable parameters. Often, solutions are found us-
ing approaches in the frequency domain together with a superposition approach based on
the linearity of the problem. In the thermal domain, this frequency dependence does not ap-
pear in a comparable form. Instead, here, the cable parameters are partially dependent on
the cable temperature. As the temperature changes along the cable, the parameters also vary
with z, resulting in a nonuniform cable. This implicit temperature dependence leads to a self-
consistent problem in the thermal domain - the differential equation is nonlinear. Approaches
based on superposition and uniform lines are thus formally not directly applicable. Never-
theless, in the remainder of this thesis, exactly such procedures will be used to determine
an approximate solution in the thermal domain, since they form the basis of the classical
TL theory. The nonlinear implicit temperature dependence is initially excluded for the solu-
tion of the differential equation and later approximately taken into account via an iterative
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approach.

In the electrical domain, a further distinction can be made between homogeneous and in-
homogeneous surrounding materials. For inhomogeneous environments (e.g., combinations
of insulation material and air), the velocities of the propagating waves are not identical. The
TEM assumption is formally no longer exact, but can still be used as an approximation for
many cases (quasi-TEM). Primarily, there are changes in the calculation of the cable pa-
rameters in contrast to the homogeneous case. In the thermal domain, the model does not
cover the environment. That is why inhomogeneity is not considered in an equivalent way
as in the electrical domain. Within the cable, however, homogeneity is often assumed for the
determination of the cable parameters.

A special but important case in the electrical domain is the presence of perfect conductors
and lossless surrounding materials. The cable parameters G, and R/, then vanish. This elim-
inates the damping terms in the wave equation and simplifies the solution. Some methods
have been developed specifically for this idealized case. However, if the losses in the con-
ductor are considered (R, # 0), this formally violates the TEM assumption. Nevertheless,
the quasi-TEM approximation is typically assumed. In the thermal domain, R’ can also be
neglected. However, this corresponds directly to the case where the inner conductor is at an
axially constant temperature. In general, axial boundary conditions can no longer be fulfilled
in a meaningful way. However, the conductance GG’ cannot be neglected at all, since it rep-
resents the heat conduction through the insulation layer (which may become unnecessary in
the case of an uninsulated inner conductor) and the transition to the environment (which is
always present). In this respect, in the thermal domain, losses always have to be incorporated
into the model and the specific approaches for the lossless case from the electrical domain

cannot be transferred in a meaningful way.
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6 Solutions

In this section, analytical solution methods for selected cable arrangements and thus con-
crete calculation rules for the temperature profile are developed. Methods known from the
electrical TL theory are used to find solutions in the thermal domain. That is why the ad-
ditional matrix D from equation (5.73) is not considered here, but the reduced formulation
given in equation (5.72) (equivalent to the electrical domain) is analyzed. Then, in general,
the following system of coupled differential equations with initial and boundary conditions

has to be solved:

CT (2, 1), T(z,1), 2, 1) = 62€i§’ D_ A a:rg, D BT T(t),  (©.1)
];(Z,t) = f(T(Z, t)vTé(th»? (6.2)
T(2,0) =To(z), T(0,t)=T(t), T(L,t)=Tst). (6.3)

Depending on the exact conductor arrangement, the functional (implicit) dependence of the
surface temperature on the conductor temperature f(T'(z,t), Ti(z,t)) varies. For the single
conductor, for example, the required relationship has the following form:

Tisw(2,t) = Tow(z,t) — RIG (Tysw(2, 1)) - (T (2,t) — To). (6.4)

Overall, on the one hand, spatial and time-dependent initial and boundary conditions can
occur. The excitation C' also has an explicit spatial and time dependence in the general
case. On the other hand, the formulation is implicit because the parameters C and B in
the differential equation depend again on the sought conductor temperature and the surface
temperature. The surface temperature itself is a function of the inner conductor temperature.
This formulation is also implicit. These two effects (location and time dependences as well
as implicitness of the formulation) considerably complicate the solution of the differential
equation system. In the following, a formulation for this problem is approached step by
step. Two main approximations are used: On the one hand, the explicit location and time
dependencies of the initial and boundary conditions as well as the excitation are neglected:

To(z) =Ty, T.i(t)=T, Tyt)="T, (6.5)
C(T(z,1), Ty(z,1), 2, t) = C(T(z,t), Ty(z,1)). (6.6)

These assumptions are summarized with the term “constant excitations”. Many practically
relevant problems can be described approximately or at least investigated concerning their
worst-case behavior using this assumption. On the other hand, the implicit parameter depen-

dencies are neglected:
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Figure 6.1: Overview of the different problems that have to be solved for the single wire cable. The sections that deal with the different

problems are given.
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B(Ty(z,t)) = B =const., C(T(z,t),Ty(z,t),2,t) = C(z,1). (6.7)

These assumptions are described in the following with the expression “linearized”. The sur-
face temperature calculation is then decoupled from the conductor temperature calculation
and can thus be excluded from the primary problem formulation. Then, preliminary guesses
are necessary to determine the parameters. One possibility is to use initial estimates for the
conductor temperature and the cable parameters. In principle, with suitable guesses, the tem-
perature curves can be approximated well. This is discussed in section 7.3.1.a).

In the following section 6.1, both simplifications are used together. Thus, solutions or
solution methods of the linearized problem for special cable arrangements and constant ex-
citations are determined. The focus here is on analytical approaches. These form the basis for
the further course of this thesis. In the second step (see section 6.2), temporally and spatially
varying excitations are then discussed. The implicit nonlinear dependence on the conductor
and surface temperatures is again neglected. Finally, in section 6.3, the influence of nonlin-
earity is investigated. Different solutions to the general problem are discussed. Numerical
approaches are needed here due to the non-trivial relationships. An overview of the different
(simplified) problems and the corresponding sections and solutions for the example of the
single wire cable is given in figure 6.1.

6.1 Basic Linear Analytical Solution Approaches for

Special Setups and Constant Excitations

For the solution to the linearized problem with constant excitations,

CT(2t) | OT(zt)
T(2,0) =Ty, T(0,t)=T, T(L,t) =T, (6.9)

a modification of the three-step approach presented in [110, p. 3] for the electrical domain
is used. There, in the first step, the general form of the differential equation is adapted to the
actual problem by determining the required parameters. The general solution of this problem
is found in the second step. The result describes not yet the concrete time development, but
the set of all possible time courses. In the third step, the specific searched development is de-
termined from this set of possible developments by the inclusion of the boundary conditions.

In the thermal domain, this procedure can be applied completely analogously. After con-
cretizing the general PDE for the given problem in the first step, the solution is developed in
the second step. In the following, different possible approaches for the considered cases (ap-
proach via Laplace transform with approximation (index La), via Green’s functions in the
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time domain (index (3), via Green’s functions in the Laplace domain (index GL), a simplified
form of the ECD (index simp) and an iterative approach (index it)) are presented. A gen-
eral solution results here as well, in which remaining unknown factors are determined by the
boundary conditions. However, since this is partially done, e.g., in the Laplace domain, and
only the complete solution is transformed back into the time domain, the clear separation
between the second and third steps from [110, p. 3] is omitted in the further course. Instead,
the boundary conditions are directly used for the solution of the PDE.

First, based on the PDE in matrix-vector form, simplified solutions are derived, which
result if the time and/or spatial dependence can be neglected. In the following, a single wire
cable (index sw), a system of single wire cables, an arrangement of two single wire cables
(index tsw), a coaxial cable (index co), an arrangement of /V identical single wire cables
(index id) as well as a rather general conductor arrangement analog to the electrical domain
are investigated considering the temporal and spatial dependence.

Throughout this complete thesis, many and more indices appear to distinguish, for exam-
ple, between different temperatures. Often, even several indices are combined, as shown in

figure 6.2. That is why a specific index directory can be found within the list of mathematical

symbols.
solution part for con-  cable arrangement, solution approach, here: Laplace do-
sideration of initial here: single wire ca- main solution with approximation,
condition, alterna- ble, alternatives: alternatives:
tives: * tsw: two single * G: solution via Green’s functions
* bc: boundary wire cables in the time domain
conditions * co: coaxial cable * GL: solution via Green’s functions
e inh: inhomogeneity e« id: N identical in the Laplade domain
cables * it: solution via iterative approach
* simp: solution via problem
simplifcation

Figure 6.2: Example for multiple indices with a short explanation.

6.1.1 Neglection of Spatial and/or Time Dependence
In the first step, simplified versions of the complete PDE are analyzed neglecting the spatial
and/or the time dependence. Under those assumptions, solutions can be found for the general

case analog to the electrical domain known from equation (5.72).

a) Radial Steady State
If only the steady-state temperatures 7} for long cables are searched, the time and spa-

tial dependencies can both be neglected. Then, the system of PDEs is reduced to a simple
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algebraic expression, that can directly be solved:
~-BT,,=C & T,=-B'C. (6.10)

b) Axial Steady State
If the spatial dependence has to be considered, but only the steady-state temperature distri-
bution Ty (z) along the cable arrangement is searched, the following system of differential

equations describes the system:
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@Tstst(z) — BTy (2) =C (6.11)

with the boundary conditions (assumed constant temperatures at cable terminations)

T1,1 T2,1
T1,2 T2,2

Tstst(o) = Tl = . ; Tstst(ﬁ) = T2 = . . (6-12)
T1,N TQ,N

Those coupled differential equations are decoupled diagonalizing the matrix B:

Dg, 0 ... 0
0 Dgs -

B = EgDgE;', Dg= e (6.13)
: 0
0 ... 0 Dgy

Then, the complete solution Ty () is the superposition of the homogeneous solution

Thomsist(2) = EgeVPP* Ty | + Ege VPBTL (6.14)
with
etV DBz 0 L. 0
0 £v/Deaz - :
o=VDBZ _ ¢ (6.15)
: . . .

0 0 e*VPBNz

and a particulate solution Tpu,¢ stst = Tt
1—1stst<z) - Thom,stst(z) + Tpart,stst- (616)

Via the evaluation of the boundary conditions, the factors Ty ; and Ty 2 are determined:
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-1
Tr = (¢7VPP = 0/PR0) - [omVPReER! (T - T) — B (T - T)| . (617)

-1
Tz = (o7VPP8 = Vo8] | —oVPREBR! (1)~ o) + By (T - T)| . (618)

¢) Radial Transient Case
If the axial temperature distribution is not relevant, but the transient temperature develop-
ment has to be considered, the reduced form of the PDE system is

- A%Tm(w ~ BT,(t) = C. (6.19)

This general matrix formulation can directly be solved. Again, the solution is the superposi-

tion of the homogeneous solution and a particulate part:
T.(t) = Ea-1gexp (—Da-1gt) T o + Tis (6.20)
with the diagonalization of the matrix A ~'B:
A7'B=EA-18Da-18E, 1. (6.21)

Evaluating the initial condition T} (0) = Tj (assumed constant cable temperature at t = 0s)
leads to
Tiio = E:le (Ty — Tys) - (6.22)

6.1.2 Single Wire Cable
In this section, a single wire cable is analyzed. The thermal ECD for such a cable is given
in figure 5.2. As derived in section 5.2, the PDE

0Ty (2, 1)
022

0T ow (2, 1) >

- ASW ot - BSWTSW<Z7 t) = Osw(za t)v (623)

with a constant excitation C’SW(Z, t) = Cyy and the constant boundary and initial conditions

sw(07 t) = Tl,sw<t) = Tl,sw; Tsw(£7 t) = TQ,SW (t) = TQ,SW7 (624)

TSW(Z7 0) - TO,SW(Z) = TO,SW (625)

has to be solved. The problem can be classified as an inhomogeneous differential equation
with inhomogeneous boundary and initial conditions as generally, Csy, 10 sw» 11 sw» and 15 g
are not zero. Assuming linearity, according to the principle of superposition, the complete so-
lution results as the superposition of solutions that take into account only one of the different
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initial and boundary conditions and the stimulations (CSW) assuming the others to vanish:

TSW(ZJ t) = TT (ZJ t? TO,SW) + TT <Z7 tu Tl,sw) + TT2,SW(Z7 tu T2,Sw) + TC’,SW(’Z7 t? CSW)'
(6.26)

Due to symmetry considerations, the influence of the cable termination temperatures has to

0,5W 1,8W

fulfill the following condition:

TT (Za t, Tl,sw) = Tbc,sw(zv t7 Tl,sw)a TT27SW(27 ta T2,sw) = Tbc,sw(zﬁa ty TZ,SW) (627)

1,SW

with z, = £ — z. Analogously, also for the initial conditions and the inhomogeneity, explicit

functions are introduced:

TT(),SW(Za t, TO,SW) = ﬂc,sw(za t7 TO,SW)) TC’ (z, t, C’sw) = T‘inh,sw(z% ta Osw)' (628)

The corresponding cable surface temperature is
Tisw(2,t) = Taw(2,t) — RIG' (Taw(2,t) — T). (6.29)

a) Direct Solution in the Laplace Domain and Approximation
In this section, solution approaches based on a Laplace domain solution are presented for

a finite and a semi-infinite single wire cable. This section is based on [A.3].

Finite Cable In the first step, the Laplace transform about the time of the PDE together
with constant initial and boundary conditions is performed to reduce the complexity of the
differential equation: Time derivatives do not appear any longer, so the PDE is reduced to an
ODE with the Laplace variable s:

d*Tiy (2, 8) Ci
T - (SASW + BSW)TSW(27 S) = s - ASWTO,SW7 (6.30)
T SW T sw
TSW<07 8) = 1(; ’ TSW<£7 8) = 2; . (631)

Then, in the Laplace domain, the differential equation is directly solved by superpositioning

a homogeneous and a particulate term:

Tsw<z7 5) = Tsw,l(s)eza + Tsvv,2(5)eiza + Tpart,sw<5)7 (632)
SASWTO,SW - C(svv

a= SASW + BSW? Tpart,SW(s) - S(SA + By ) .

The boundary conditions in the Laplace domain are used to calculate the prefactors Ty, 1 (s)
and Ty 2(s), which results in
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_ Tl,sw - STpart,sw(S) (Tl,sw - T2,sw)e_£&
s (1 + e[ld) s (efchl _ 1) ’
T2 sw ST art sw(s) T2 sw T TI SwW
Toa(s) = “20 b s Lo
2(8) s (1 + e £a) + s (e=2£a — 1)

T:sw,l (S)

(6.33)

(6.34)

As originally the time domain solution was searched, the complete solution has to be trans-
formed from the Laplace domain back to the time domain. For some of the expressions from
the prefactors, no corresponding expression in the time domain is known. That is why an al-
ternate formulation is necessary, that allows an analytical transformation back into the time
domain. For this purpose, the prefactors are approximated suitably:

e L% 41 ~ 41, (6.35)

This approximation leads to good results especially for long cables (see also section 7.3.1.d),
[A.3, A.4]). The new, reduced form of the prefactors then becomes

T2 ,SW
S

a T swW
Tsw,l(s) ~ ( - Tpart,sw(s)) e—ﬁa’ TSW,Q(S) ~ L - Tpart,sw(s)' (636)

S

This new formulation allows the analytical transformation back into the time domain yielding

TSW,La(Za t) = ﬂc,sw,La(za t, TO,SW) + Tbc,sw,La(Zv ta Tl,sw)

(6.37)
+ Tbc,sw,La(zﬁa t, T2,8W> + CZjinh,svv,La(Zu ta C(sw>
with
T‘ic,sw,La('% ta TO,SW) = _F(t)TD,SWAg(t)[l - Al(z> t) - Al (ZE7 t)]? (638)
The
Tbc,sw,La<Z7t7 Tbc) = _F<t) b A2<Zat)> (639)

2
Cow Cow Cow
7jinh,sw,LaL(Za ta CYSW) = - B F<t) + ,I’ic,sw,La (27 ta _) + Tbc,sw,La (27 ta _)

SwW BSW BSW
Csw
+ TbC,SW,La <Z£7 ta B_> ) (640)
By
z [ Agw - t
Al(zat) = erf (5 ¢ ) ; A2(Z7t) = el(zat) + 92(Z7t)a A3(t) =¢ ASW ) (641)
Agw — 2t/ By
0,(z,t) = —e *VPerfe (z SN ) , (6.42)
V/ Asw 2t Vv Bsw
0y(z,1) = —e*V P erfe (z 2\—;@ ) ) (6.43)
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This solution approach was also discussed in [A.3, A.5, A.6].

Semi-infinite Cable If not a finite cable is described but an infinitely long cable starting
at z = 0m, the prefactor T, 1 (s) from the above-presented solution has to be set to zero:
Tow1(s) = 0. Then, the remaining boundary condition Ty s semi(0, s) = 11 sw/s is used to

calculate the second prefactor:

Tl,sw
S

Towa(s) = — Thartsw($)- (6.44)

The final result is derived via transformation back into the time domain:

Osw Csw Csw AQ (Z y t)
Tw Lasemi 1) = - — Tosw As(t)A ot — T sw . (6.45
ni(210) = £ = (5 = Do ) M0+ (5 = Ti ) 2220 (05)
b) Solution via Green’s Functions in the Time Domain

In this approach, a time domain Green’s functions formulation is used to solve the PDE.
This approach was earlier presented in [A.4] and can be used to derive the (already known)
solutions for an infinitely long or semi-infinite cable but also for the finite cable, for which,
in the last approach, an approximation was necessary. For the derivation of the fundamental
solutions of the given problem, analog to [146, pp. 150-151], the spatial Fourier transform is
used. The Green’s function Gy (2,t|Z,t) for the problem

1 02 0 B Csw

- A_SVV@TSW<Z7t) + ETSW(ZJ) + A—SWTsw(Zat) = _Asw

(6.46)

with the boundary and initial conditions from equations (6.24) and (6.25) is

~ 7 i BSW n ASW

S () (A5

n=—oo

with n = 2n L. It is important to mention, that this Green’s function only applies for the finite
cable. The different solution parts are calculated as follows for constant initial and boundary

conditions and excitation:
c
ﬂc,sw,G<Z7 ta TO,SW) = / Gsw(za t|27 O)TO,SW dz
0
= () Toswls(t) {1 = Ai(z,8) = Az, ) + ) [Ai(=2c + 7, 1)
n=1

—MN(z+n,t) + A (=22 — n,t) — A(z2 — 1, t) ]} (6.48)
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/ o+ 2)? By 5
Thesw 1) = — t| T dt
be,sw,G (2 be) / W7Tt 62 Z:OOGXP ( A7 A ) b

The = N
= -I(t)=2 {AQ(Z t) + Z[Ag(z +n,t) — No(—2z + n,t)]} , (6.49)
ﬂnh,sw,G(Zv t, CSW) = / / Gsw % % d
Csw
— o T, T s
Bsw + ic,sw,G ( ) + be,sw,G (Z7t7 Bsw)
+ Tbc,sw,G <ZE7 ta B_:Z) ) (650)

Tsw,G(Za t) - fric,sw,G(*% tu TO,SW) + Tbc,sw,G(z7 t, Tl,sw) + Tbc,sw,G(Z£7 t7 TQ,SW)
+ ﬂnh,sw,(}(zv t, OSW)‘ (651)

All in all, the earlier expression from the solution in the Laplace domain Ty 1..(2,t) ap-
pears again in this solution and is extended by new terms. This series formulation covers the
complete solution of the partial differential equation, because, unlike the earlier approach,
here, approximations were not necessary. If this solution is implemented, nevertheless, the
sum has to be stopped after a finite number of addends, which practically also causes an

approximation. The convergence behavior of this solution is analyzed in section 7.3.1.c).

¢) Solution via Green’s Functions in the Laplace Domain

The Laplace domain solution from above could not directly be transformed back into the
time domain due to some problematic expressions. In this section, an alternative formulation
in the Laplace domain is derived using Green’s functions that can directly be transformed
back into the time domain. This approach is also known from the electrical TL theory [118].
This section is based on [A.4].

In the Laplace domain, the problem has the form of the Helmholtz equation, so the known
Green’s function for this problem could be used directly. This way, the above-presented
solution is found again and thus, the same problem with the transformation back into the
time domain appears again. That is why an alternate formulation for the necessary Green’s

function is used:

sin (n,z) sin (nl;z)
Gsw z,8) = 6.52
L(z 2 7 Z (A + Bow) + 12 (6.52)

with n, = nx/L. Using the abbreviation n,, = (2n + 1)7/L, the individual solution

components are calculated and directly transformed back into the time domain:
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L
,Tic,sw,GL(Za S, TO,SW) = - / Gsw,L(za 27 S>Asz0,sw dz
0

 AAG T s f: sin (N c2) 1
B L = (sAw+ Bow) +nf g

4 & t sin (ny, £2)
ﬂc SW 7t7T sw) = T sw - 2 Bsw — 6.53
swen(z 0sw) 0w o HZ:O P < Agw (nu’ﬁ " )> 2n+1 ( )
C. 4G > sin(ny, £2) 1

L
ﬂl’l SW Zasstw = _/ GSW Z7§’S ﬂd%—
s, G ) i Lz 2, 8)— L 2 (3 & Bow) £ g Tz

t
s~ 1 —exp (— (n2 s+ BSW)) )
4 Agw © " sin (1, £2)
ﬂn swW 7t7 Csw - _Osw_ 7 ) 6.54
(2 ) T nZ:O Bew +n3 1 2n + 1 (6.54)
T ( ) The O Goer (2.7, 5)] 2 T i ngsin (ngz)
C,SW Zy8,dbe) = — A= Usw,L\%,2,8)|z=0 = 7T
besw.GL b s 0z WF 'L s — (sAsw + Bsw) + n
2 > t ngsin (ngz)
Tbc,sw,GL<Z7 t, Tbc) = _Tbc |:1 — €xXp (_ TL% + Bsw )1 - 5 . 5 (655)
L nZ:; Agw [ } n% + By

TSW,GL(Za t) - T’ic,sw,GL(Zy ta TO,SW) + Tbc,sw,GL(z7 ta Tl,sw) + Tbc,sw,GL(zﬁa t7 TQ,SW)
+ T'inh,sw,GL(Za t, Csw)- (656)

At the cable terminations, the applied boundary conditions are only fulfilled for the limits

lim TbC,SW,GL(’z? t, Tl,sw) = Tl,sw; hH(l) Tbc,SW,GL(Z£7 t, TQ,SW) = T2,sw; (657)
Z—

z—0

but not if the coordinates = = O m and z, = 0 m are directly inserted. Also, the corresponding
solution part Thc sw.cL(2, ¢, The) only converges very slowly (see section 7.3.1.c)), so many
addends have to be taken into account for a precise result. Overall this limits the applicability
of this complete formulation. For the special case of identical cable termination temperatures
T ¢w = Ty, setting the reference temperature to this value 7 g, allows a formulation
without the unsteady and slowly converging part.
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6.1.3 Systems of Single Wire Cables

In this section, a thermal model for a system of single wire cables that are thermally con-
nected at the cable terminations is developed. This model considers the axial heat exchange
between the individual cables and is based on [A.7].

In section 6.1.2.a), an analytical calculation method for the calculation of the temperature
of a single cable of length £ oriented in z-direction consisting of conductor and insulation
loaded with the current / was presented. From this known temperature distribution, the corre-
sponding heat flow distribution P(z,t) along the cable is calculated, which linearly depends

on the cable termination temperatures 77 and 75:

1 0T (2,t
P(z,t) = —ﬁ% — Fy(2, )Ty + Fo(z,0)Ts + Fy(2,1), (6.58)
Au(zt Ay(zp.t
Fl(zat) = 4;;, )7 F2<Z7t) - 4;%, )7

+ % (Fi(z,t) + Fy(2,1)),

2
Au(z,t) = 2\/§exp (_% - %) cosh <§\/§> + VB (01(2,t) — 0a(2,1)).
Based on this, a network of /V single wire cables that are thermally connected at K nodes
is analyzed. An example of such a system is given in figure 6.3. The axial heat exchange
between the cables is calculated, assuming that there is no coupling between the cables
transversal to the axial direction.

As in the earlier presented solution, the cable termination temperatures are needed and
have to be precalculated. To do that, in the first step, the vectors with the cable end tem-
peratures for all conductors, T;, ¢ = 1, 2, are split up into the given values T} , at the outer
boundaries of the network and the unknown values T; ,, at the inner nodes using the matrices
E;;and E; ;:

T, = (T;1 Tiz .. Tin)' =B Tip + BT (6.59)

Ty
T 51 Tl,z/ 1
() cable 1 ﬁ cable 2
&/ T,
o%o\ 15
Ty

Figure 6.3: Exemplary system of single wire cables.
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Perfect thermal connections are assumed. Then, the temperature behaves continuously at the
nodes. The unknown cable temperatures are expressed in terms of the nodal temperatures
T, = (Ty1 Tro ... Tk, K)T using the matrix E; ; which reduces the number of unknowns:

T, = (Ti1 Tp ... Tin)" = Ei Ty + B BT = B, Ty + BT (6.60)

At the nodes, the heat flow fulfills Kirchhoff’s law, which means that the incoming heat
(cables with local z = £ and 75 at the node) equals the heat that leaves the node (cables with
local = = Om and 77 at the node). Using the vector of the heat flow

P(Zl, 29y auny ZN,t) = F1(217227 couy ZNat)Tl + FQ(Zl,ZQ, couy ZN,t)TQ

(6.61)
+F3(217227"'7ZN7t)a
with
Fi<21a227"'7ZN7t) :diag(ﬂ,l(zlat)a"'7E,N(ZN7;))> L= 172a (662)
F3(217227 ...,ZN,t) = <F3’1<Zl,t) e Fg’N(ZN,t)) y
Kirchhoff’s laws can be expressed as
E, P(Ly,....Cx.t) — B, P(0,...,0,¢) = 0. (6.63)

Inserting equation (6.60) and equation (6.61) into equation (6.63) and rearranging leads to

the system of linear equations that has to be solved to find the unknown nodal temperatures:

~ T ~ ~ ~ T ~ o
[E2 (FLL(t)El v FM;(t)EQ) _E, (FLO@)E1 n Fz,o(t)EQ)} T,
~T ~T ~ T ~ T
= (B/Fio(t) — By Frc(t)) EygTig + (By Faolt) — By Fac(t)) BTy (6:64)
~ T ~ T
Y B, Fyo(t) — By Fy £ (t)
with
Fi’()(t) :Fi(O,...,O,t), Flﬁ(t) :Fi([»l,...,ﬁj\[,t), Z: 1,2, (6 65)
Fyo(t) = F5(0,...,0,t), Fsp(t) = F5(Ly,...,Ln,1). '

Knowing the nodal temperatures, the axial temperature distribution along the cables is cal-
culated using equation (6.37) (solution for a single wire cable from the Laplace domain with

approximation).

6.1.4 Two Single Wire Cables

In this section, an arrangement of two coupled single wire cables is analyzed (cross-section

see figure 6.4). In the general case, those two wires do not necessarily have to be identical.
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Te

Figure 6.4: Cross-section of the analyzed arrangement of two single wire cables.

a) Partial Differential Equations and Equivalent Circuit Diagram
Using the precede presented in section 5.3.3, the ECD given in figure 6.5 is derived that
describes this cable arrangement. The corresponding PDE system is

2

0 0
Ctsw — W,I‘tsw(za t) - Atswaﬂsw(zu t) - Btswﬂsw('za t), (666)

A . AH 0 - RIICi 0 C . C’tsw,l o _R/l (Pél,l + G/1T9>
o 0 Ay 0 RyCH) o Ctsw,2 — Ry (P + Gy Te) ’

Bi1 Bia RI(GY +G,)  —RIGY, Tiswa(2,1)
Btsw = = ;v , , , s ﬂSW(Z’, t) = ' .
Ba1 Bay —RyGYy R2(G2 + G12) Ttsw,2(za t)

The surface temperatures are calculated from the cable temperatures via

R,
o—{ 1 ® I oconductor 2
Pl a
CL == Gy
R ()lT
o—{ '} 4 Oconductor 1
P, .
= (] '
CIDlTe
o ® ® ® ® Oreference

Figure 6.5: ECD for an infinitesimally short cable segment (two single wire cables).
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1
E,tsw(za t) = CI"tSW(Za t) - Rg,tst;Ltsw <’I’tsw(27 t) - Te : (1>> ) (667)

0 0 1
R‘{tsw: bl 7G{£itswz . 7G;z: ﬁ?i: 172
’ 0 R, 7 0 Gy R, + R,

b) Closed Formulation for the Radial Transient Case

In the general solution for the radial transient case known from section 6.1.1.c), a matrix
diagonalization is necessary. For the special case of two coupled single wire cables, in the
following, an explicit formulation is derived. In the case of this cable arrangement, the matrix

formulation of the system of differential equations can be rewritten as two coupled equations:

0
_Allaj"tsw,rt,l(t) - Bllﬂsw,rt,l(t) - BlQﬂsw,rtQ(t) - C’tsvv,la
3 (6.68)
_A22aipnsw,rt,2(t) - BQlﬂsw,rt,l(t) - BQ2ﬂsw,rt,2(t) = Ctsw,2~
Rearranging leads to a differential equation for the temperature Tty ¢ 1(%):
02 0
@Ttsw,rt,l (t) + etsw,l Eﬂsw,rt,l(t) + etsw,Zﬂsw,rt,l(t) = 9tsw,3,17 (669)
9 o A By + A11Bas _ B11Bay — B By 0 _ CiswaBia — Cisw,1 Bao
sw,l — ) sSw,2 — ) sw,3,1 — .
' A1y Az ' A11Ag e Ar Az
This differential equation is solved with
9 SW
ﬂsw,rt,l(t) = ipﬂsvv,rt,l,leetSWAt + T‘tsw,rt,Z,leetSW’w + 5—73’17 (670)
tsw,2
9 SW l GQSW
etsvv,'i = _tTJ + <_1)Z t4 - 9tsw,27 1= 47 d.
Using the second conductor temperature
A 0 B Cisw
Tiswata(t) = —B—Eaﬂsw,rt,l(t) - B—Eﬂsw,rt,l(w - jgm’l (6.71)

and the initial conditions for both temperatures, Tisywrt.1(0) = Totsw1 and Tiew i 2(0) =
10 tsw,2, it follows with ¢ = 1, 2:

etsw 3,1
TO,tsw,lBll + TO,tsw,2312 + C(tsw,l + Alletsw,G—i (TO,tsw,l - —

0 SW
,-Ttsw,rt,i,l - (_]->Z o2
All \/ 9*525“;71 - 40tsw,2
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So now, the complete temperature development is known for the first conductor. The corre-
sponding temperature of the second conductor is derived using equation (6.71):

0tsw,3,2

Otsw at Otsw. 5t
,-Ttsw,rt,Z(t> = ﬂsw,rt,l,Qe towdt + ﬂsw,rt,2,2e towst 0 s (672)
tsw,2
0 Ciswi1B21 — Cisw2B11 19
tsw,3,2 — A A ) 1= 1,4
114122
etsw 3,2
T0 tsw,2B22 + 1o tsw,1 B21 + Cisw,2 + A220sw 6—i <T0,tsw,2 — 6—
% tsw,2
T‘tsw,rt,i,Z = (_1) 5
A Qtsw 1 46tSW,2

¢) Direct Solution in the Laplace Domain and Approximation
In this section, both, the time and the spatial dependence are considered. In the Laplace

domain, the solution of the complete PDE system is

,‘rtSW(Z7 S) A tsw A ESW,I’t SW 1( ) + EA tswe_z DA’tSWCT’tSWQ( ) A
./ T isw
Tiswi(s) = Er tsw {(_ )ZH Iey/Pa e OP { - + AtsWCtSWj|

A tsw
|:T2 Jtsw

Ciov, (673)

tsw

—|—(—1)ZE‘;;SW + A—tSWCtSW:| } )

. ~ Ctsw L. /D= . /Dx -1
t= 17 27 Ctsw = s — A‘tSWT07tSW7 EE,tsw = [e V T Atsw o7V A,tsw:|

with the diagonalization of the matrix Atsw:

X Dg s 0
Atsw = SAtsw + Bisw = EA7tSWDA7tSWE1§1tSW; DA,tsw = Ajtsw,1 . (674)
’ 0 DA,tSW,Z

As A, and its diagonalization depend on the Laplace variable s, an explicit expression is
necessary for the transformation back into the time domain. In the following, for a shorter
notation, A= Ay — Ay and B = B11 — Bss are used. Depending on the parameters and
exact setup, different cases can occur:

case 1: B13By; # 0

In this case, the different conductor temperatures couple. Then, in the calculation, a double

square root appears. The inner square root is

1 /- N2
Wiew = Z<A8+B) + B1oBay, (6.75)

which is of the order one with regard to s. To transform this back into the time domain, a
Taylor series expansion (order one) is used to find a linear approximation of the square root:
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R [ .2
AB B
Wisw = Wis + Wy, W) = - , Wo= e + B2 B9 (6.76)
21/ B 4+ 4B13 B

Depending on the different parameters, this approximation changes. It is important to know
if Wy and W, become zero or not because this influences the partial fraction decomposition
that is performed in the following. That is why two different subcases are necessary. For both
of them, the result for the complete solution of the differential equation is a very complicated
expression, which can be found in appendix B.

case2: (Bjo =0A By #0)V (B2 #0A By =0)

Here, By, and By, are not both equal or both unequal to zero. Physically, this would mean a
coupling only in one direction, which is not reasonable. That is why this case is not further
evaluated.

case 3: Bjs = By =0

In this case, two uncoupled equations are the result. The solution is already known from the
solution for a single wire cable. Physically, both conductor temperatures do not influence
each other.

As can be seen from those solutions for a finite cable, the results are very complicated and
computationally intensive, even though analytical formulations were found. This is due to
the decoupling similarity transform, which depends on the Laplace variable s and therefore
massively increases the complexity as an explicit formulation is necessary for the transform
back into the time domain. Because of this complexity, numerical instabilities become more
probable. Therefore, this approach with the solution in the Laplace domain and approxima-
tion for the transformation back into the time domain is not usable for real setups. This is
the reason why this approach will not be further investigated for more general arrangements.
Instead, different approaches are necessary.

d) Solution via Green’s Functions in the Laplace Domain

As already presented for the single wire cable, Green’s functions can be used in the Laplace
domain to find a series formulation for the cable temperatures. The complete calculation
formula in the general case is calculated here. In the Laplace domain, the formulation of the

general PDE system analog to the electrical domain is

02 C .
@T(z, s)— (sA+B)T(z,s) = e AT, = C(s), (6.77)
T(0,5) = T (s) = % T(L,s) = To(s) = % 6.78)
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So, a differential equation of the following form has to be solved:

02 - -
WT(z) —(sA+B)T(2)=f(z), T(0)=T,, T(L)=T,. (6.79)
The corresponding Green’s function G, (2, Z, s), therefore, has to fulfill the following equa-

tions, where N is the number of conductors:

92
@Ggen(z, Z,5) — (sA+ B)Ggen(2, 2,5) = 0(2,2) Uy, (6.80)
Gyen(0, 2,5) = Ggen(L, 2, 5) = Ggen(2,0,5) = Ggen(2, L, 5) = 0, (6.81)
Ggen(2, 2, 8) = Ggen(Z, 2, 5). (6.82)
Because of the structure of Gen (2, 2, 5), it is also:
92
@Ggen(z, Z,5) — Ggen(2,2,5)(sA +B) = 6(z,2)Uy. (6.83)
Generally, applying the product rule leads to
L 2 2 L
d d d d
() uy — Wy | dE = | () -y — Up— . 6.84
/0 {déQ (112) U — a2 132 Ul} z {dé (u2) U — d%ul] - ( )
Using
wy = T'(2) and uy = Ggen(2, 2, 5), (6.85)

equation (6.84) can be written as

/OL { d? (Ggen(2,%,8)) - T(2) — Ggen(z,g,s)d_QT(g) dg]

= dz?
: ) . (6.86)
_ [& (Gen(2,%,5)) - T(2) = Gien(2, %, %T@}

Inserting equations (6.79) and (6.83) leads to the calculation formula for the temperature
development:

L
T(z):/ Ggen(2,2,9) f(2)dz
0 4 (6.87)
+

E (Ggen('zv 27 5)) B

Inserting the Green’s function

= 12
Gyen(2,2,5) = = 3 _ [B+sA +n2Uy] " 7 sin (ng2) sin (nc?) (6.88)

n=1
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~

as well as f(2) = C(s) and equation (6.78) leads to
Tcwn(z, s) (6.89)

4 & 1 > 2n,
= i u —X ) uaT>C — sl X ) aT — (=1)"T: )
W%sm(n £Z) o 1(8, 1, Ty, C) +; 7 sin (ngz) Xao(s,n, Ty — (—1)"Ty)

J/ N J/

Thom(2,8) = Ty (2,5, To) + Tg(z,5,C) Tin(z,s) = Ty, (2,8, Th) + Ty, (2,5, Ts)

X1 (5,10, T, C) = — [B+sA +n2,Uy] " C, (6.90)

1 )
Xo(s,n. Tie) = ~ [B + sA +nzUx] 'T,.. (6.91)

The solution part T, (2, s) describes the solution for homogeneous boundary conditions.
Via T}, (2, s), inhomogeneous boundary conditions are taken into account. The general so-

lution in the time domain then becomes

4 1
Ton(z,t) = - ZO sin (ny,c2) n—uwl(t, n, Ty, C)
" ) (6.92)
+3° % sin (ngz) @o(t,n, Th — (—1)"Ty).

n=1

So, for a specific solution, only (¢, n,,, Ty, C) and x4 (t, n, Ty — (—1)"T3) have to be calcu-
lated. In the case of an arrangement of two single wire cables, the following matrix inversion

can be calculated explicitly:

~ ~ —1
. _ Aji(s,n)  Agg
A = [Biw + 5Aiw + 720, ' = A 6.93
[ ’ o e 2] < Ay Aga(s,n) (€99

_ 1 12122(5, n) —A12
Ai1(s,m)Aza(s,n) — A1z —As Aqi(s,n)
Then, equation (6.89) is reformulated:

. 1 b182 + ng + b3
det(Atsw) S(S - atsw,l)(S - CLtsw,2),
bl = det(Atsw)TO,tswa
b, = (det(BtsW)Bt_svlv + ni7£U2) Atow T sw — det(Atsw)At_sxlzv
b3 = (det<Btsw>Bt;$V + n37£U2) Ctsw;
1 (Bu+n,, DBat+nl,
Utswi = — 3 — + :
’ 2 Aqq Ao

—(~1) 1 1+ nﬁ,c B By + ni,c ’ " B2 By i—19
4 AH A22 det(AtSW)’ T

77

Xi(s,n4, Ty, C) (6.94)

Ctsw7




6 Solutions

The transformation back into the time domain leads to
B 1
det(Atsw)atsw,latsw,Q(atsw,2 — Qisw,1

~Otsw,2 [atsw,l (blatSW,l + b2) + b3] eatsw’lt + Qtsw,1 [atsw,Z (blatsw,Q + b2) + bS] eatsw’gt} .

331(15, Ny, To, C) ) {b3<atsw,2 - atsw,l) (6.95)

The corresponding expression for X5 (s, n, Tj.) is

b4S + b5
X Ty.) = — , 6.96
2<S7 b ) det<Atsw)$($ - atsw,3)(3 - atsw,4) ( )
b4 - - det(Atsw)At_siv (Tl,tsw - (_1)nT2,tsw> )
b5 = - (det(Btsw)Béiv + n%UZ) (Tl,tsw - (_1)nT2,tsw) 5
Otsw,i = —1 Bu +ni + Baa + i
’ 2 An A
4 All AQQ det(Atsw)

In the time domain, this leads to

1
2 ’T c) = — Utsw b sW b Gsw,st
w2( b ) det(Atsw)atsw,SatswA(atswA - atsw,?)) { . ,4[ 4fhtaw3 * 5] ¢
+atsw,3 [b4aftsw,4 + b5] eatswAt + b5(atsw,4 - atsw,3)} . (697)

e) Iterative Approach Based on the Solution for Single Wire Cable

The basic ECD in figure 6.5 can be rearranged to a new version as presented in figure 6.6.
Then, it becomes more obvious, that two single cables are coupled in the model only by a
single conductance. This shows in the coupled differential equations as well:

0? 0
@ﬂsw,it,l(za 75) - Racigﬂsw,it,l(za t) - R&(Gﬁ + Gllg)Ttsw,im(Za t)
= =R} (Ph, + G\ T + Gy Tiswina(2, 1)), (6.98)
0? 0
@ﬂsw,it,Q(Z’ 75) - Récéaﬂsw,itﬂ(za t) - Rl2<Gl2 + G/12)T’tsw,it,2(zu t)

= — R} Py + GO + GhyTiwsin (2,1)) . (6.99)

Comparing this formulation with the differential equation for a single cable known from
equation (5.51) shows the equivalence between them if for each cable the temperature of the
other cable is treated as a constant. Based on this, an iterative solution approach is proposed
as presented in figure 6.7: At first, the solution for a single wire cable is used to calculate the
temperature distribution along the first cable using the corresponding value for Tisy it 2(2, t)

at each position. This temperature development is used to calculate the temperature distribu-
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cable 1

oreference

cable 2

Figure 6.6: Rearranged equivalent circuit for an infinitesimally short segment of a cable ar-
rangement of two single wire cables.

initialization: constant temperature distribution
for Tisw it,2(2, ) (for example T¢.)

[

solve equation (6.98) using the last value for Tty it 2(2, t)
individually for each position (z, t)

[

solve equation (6.99) using the last value for Tty it 1(, t)
individually for each position (z, t)

false

termination condition

Figure 6.7: Iterative solution scheme for a coupled system of PDEs.

tion along the second cable Tty it 2( 2, t). This result is again used to recalculate the first cable
temperature. The iteration is stopped when the deviation between two consecutive iterations

falls below a given threshold.

f) Simplification of the Equivalent Circuit

As the coupling in the differential equations complicates their solutions, in this section,
simplifications of the ECD and the differential equations are discussed. The first idea is to
consider the axial heat flow only along one of the two cables and combine both of the capac-
itances. Then, the solution for a single wire cable can be applied. For better modeling of the
transient behavior, a capacitance correction is added: By now, the sum of the capacitances
of both cables was used. For the first conductor, however, the capacitance of the second con-
ductor is connected with an additional conductance. To find a suitable estimation to consider
this, the radial ECD is first analyzed for the case without current in conductor two as shown
in figure 6.8.
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/
Rl 71tsw 1
® O conductor 1
Py 71
* G || LT
41 Gy, GY

¢ Q. Q-
o ® T Oreference

Figure 6.8: ECD without current in conductor 2.

A constant current is impressed. First, the capacitance C; is charged because here no re-
sistance appears. This increases the voltage at the temperature node T, ;. However, the
further charging of the capacitance is opposed by a certain resistance due to the already
existing charge with increasing voltage (temperature), so now also the other branches gain
importance. As a first approximation, only the resistances of the branches are considered.
If the first capacitance is already sufficiently charged, the current will be distributed to the
remaining three radial branches (each with only one resistance). The branch with the second

capacitance will have the following part:

!
12
= Ptsw.simp- 6.100
1o+ G+ GaGh)(Gry + Gy~ Prewsime (0.100)

As the first approach, it is assumed that only this part of the capacitance C) is effective:

C' = Ci + PrswsimpCh. (6.101)

The first cable temperature is calculated with the single wire approximation from section

6.1.2.a) using

! G/
Ay = R\C', Bow = R, | =222 + G’) , 6.102
1 (arg e (@102

Plo+ T.G)
12+ Gy

/
Cow = —R, (Pgl,l + 2 ( + G’lTe> . (6.103)
For a better consideration of the transient behavior of the second conductor, the remain-
ing part of C, has to be charged as well. Therefore, the following calculation rule for

Tisw simp2(2, t) i proposed:

tG)
7—Icsvv,simp,2<za t) = TO,tsw,2 + (1 — €Xp (_ 7 12 )) (6104)
2,rem
/ T G/ + P/
12 eM2 el,2
' —Tswsim 7t — = T SW ,
( o+ G e (20 g g o *")
2em = (1 = Dtsw,simp)Cs- (6.105)
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6.1.5 Coaxial Cable
a) Partial Differential Equations and Equivalent Circuit Diagram

For a coaxial cable with the cross-section shown in figure 6.9, the ECD is given in figure
6.10. The corresponding PDE system follows the same structure as the PDE system for the

arrangement of two single wire cables (see equation (6.66)):

0? 6
C., = 92 Teo(z,t) — Ago Co(z t) — BeoTio(2, 1), (6.106)
A (An 0 _ (R c' +cy 0
N0 An) R (CL+CL) )
B. — Bll B12 o R/ G/ —R/ G/
“ \BuByn) \-R,GiR,(Gi+G)]’
coc _R/ P, Tcoc 9
Cco — — c” el,c 7 TCO(Z,t) — , (’Z t) )
C1co,sh _R; ( el,sh + G/ ) Tco,sh(27 t)

R,
o—[ 1} L ¢ oconductor
PC/I.C i):l !
R, é} =[]
sh E_)U I
o * * * oshield
Pell sh \L) Sl G/
+
~ g
] | e
o . . * oreference

Figure 6.10: ECD for an infinitesimally short segment of a coaxial cable.
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That is why most of the solutions presented in section 6.1.4 can also be applied to this
problem. The surface temperature is calculated from the shield temperature via

Teos(2,t) = Teosn(2,t) — RL,G (Teosn(2,t) — Te), (6.107)

where R’. describes the radial thermal resistance of the outer insulation.
01

b) Direct Solution in the Laplace Domain and Approximation

As the system of PDEs has the same appearance as for the arrangement of two single wire
cables, the solution that was presented in section 6.1.4.c) can also be applied here. Also, the
same numerical stability problems appear due to the complicated formulation of the solution.

¢) Solution via Green’s Functions in the Laplace Domain
Again, the solution from section 6.1.4.c) for the arrangement of two single wires can di-
rectly be used for the temperature calculation of a coaxial cable. Using this, a series formu-

lation of the complete solution without any approximation is given.

d) Iterative Approach Based on the Solution for Single Wire Cable

The solution from section 6.1.4.e) for the arrangement of two single wires can also be
applied for the temperature calculation of a coaxial cable: The solution for a single wire cable
is used for the temperature calculation of the inner conductor and shield, assuming the other
temperature to be constant. An iteration is used to recalculate the conductor temperature
based on the known shield temperature, then the shield temperature based on the known

conductor temperature, and so on.

e) Simplification of the Equivalent Circuit

In this section, a simplification of the ECD is presented, that allows the calculation of
the cable temperature based on the solution for a single wire cable. The axial heat flow
along the shield is neglected. In addition, the capacitances for shield and outer insulation are
combined with the capacitances for the inner conductor and the inner insulation. This equals

Figure 6.11: (a) Relocation of capacitances for the radial model for a coaxial cable. (b) Sim-
plified axial model for a coaxial cable.
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the relocation of the outer capacitances in the circuit, which is presented in figure 6.11(a)
for the radial model. As a result, a simplified radial ECD is found. The corresponding axial
model (with neglection of the axial heat flow along the shield) is presented in figure 6.11(b)

with
1

TRy R,
The corresponding PDE equals the PDE for the single wire cable (see equation (5.51)) with

C'=C+C,+C,hL+C,;, G

oi’

(6.108)

G'Gl P g + TG
A=R/(C, B=R), - C=-R.(P Gi———— 6.109
cY CG/ + G£i7 (¢ < el,c + ii G n Gil ) ( )
So the solutions for the single wire cable can be applied. The shield temperature is
Tco,simp,sh(z; t) = e Gil Tco,simp(za t) -+ —G/ T Gil (6110)

6.1.6 Identical Single Wire Cables
a) Partial Differential Equations and Equivalent Circuit Diagram
The ECD for a cable arrangement consisting of /N identical single wire cables (cross-

section see figure 6.12) is given in figure 6.13. The corresponding PDE system is as follows:

2 0
Cia = WTM(ZJ) — Aid&ﬂd(zat) — BiaTia(z, 1), (6.111)
Aid - AidUN - R/C/UNu Bid - R,G/7 Cid - _R,(Pe/l + TeG/e)u
~
Gy -G .. —Gly Tian
G/ - . " . y ) ,-Z-}d - ?72 s
' _(%J/VA,N :
G Pia
G/ P/ ~ N
Go=| |, Pi=| |, Gi=> G i=1....N.
: =
Gy Py

The surface temperatures are calculated from the cable temperatures via

1 G000
ﬂd,s(zat) - ﬂd(Z,t) - R:G;z ﬂd(zat) - Te . ’ G;z = 0 . 0 )
1 0 0 Glyy

(6.112)

where R! describes the resistance against the radial heat flow through the insulation.
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Figure 6.12: Cross-section of the analyzed arrangement of /N identical single wire cables.

R/
o— 1} 14 ¢ ¢ L4 o cable N
P, él,N ,
: G/ GN N :
. 4 c/ 1N .
R/ o
o

L F—¢— ¢ o cable 1
Pel,l l
C/ Glll
| I
O

L L L o reference

Figure 6.13: ECD for an infinitesimally short segment of an arrangement of NV identical sin-
gle wire cables.

b) Direct Solution in the Laplace Domain and Approximation

This section is based on [A.8]. Transforming the general PDE analog to the electrical
domain into the Laplace domain leads to the formulation known from equations (6.77) and
(6.78). For the solution, those coupled differential equations have to be decoupled. In the gen-
eral case, this leads to very complex formulations as exemplarily shown in the comparatively
simple case of two conductors in section 6.1.4.c). This is because the matrix sA + B, which
has to be diagonalized, includes the Laplace variable s, which then also appears in the nec-
essary transformation matrices. To find a transformation that is independent of the Laplace
variable s, equivalently to the approaches known from the electrical domain (see chapter
9.2.4in [110]), a special case is investigated: For identical conductors, itis A;q = AUy as
already mentioned before. Then, only the matrix By, which is independent of s, has to be

diagonalized:
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DB,id,l 0 . 0
O D i . .
Biq = EB,idDB,idE]_g}ida Dpi = _ ]?’ @2 . . (6.113)
0 e 0 DB,id,N

This leads to a decoupled system of PDEs in the Laplace domain for the modal temperatures
ﬂd,m - E];,}idirid:

02 _ G
@ﬂd,m - ESAidUN +Dgid) Tiam = EB,lid (Td - AidTo,id) : (6.114)
a7, = diagonal matrix h NG g
Cida

The solution is the superposition of a homogeneous and a particulate part:

Tiam(z,8) = e 3Ty 1 (s) + 9 Tiq o(s) — Thartia(s), (6.115)
Thartia(s) = éﬁEg}idC’id. (6.116)

As the matrix a2 is diagonal, its square root and inverse matrix can easily be calculated.

Using the boundary conditions, the remaining factors are calculated:
Tqi(s) = (_1)i (eéidﬁ . eféidll)—l [_Tid,h,Z _ e(il)ijqéidc,l—’id,h,l L i=1,2, (6.117)
1 :
Tign,; = EEB}idT’j,id + Tharta(s), J=1,2.

Now, the complete solution for the modal temperatures is known in the Laplace domain.
Based on this, the real temperatures in the Laplace domain are calculated. The result needs
to be transformed back into the time domain. Similar to section 6.1.2.a), some expressions
cannot be directly transformed. So, the approximation from section 6.1.2.a) is extended for
use here:

el £ Uy ~ £Uy. (6.118)

Then, the transformation back into the time domain is possible. The result is reshaped using
that the matrix Dg ;g and functions of this matrix are diagonal and for two diagonal matrices,
the product commutates. For a function f(B;4), which can be expressed as a series, it is

Eg,af (Dp,a)Egiq = f(Bia). (6.119)

This formulation applies to the complementary error function of a matrix [147] and the ma-
trix exponential function. It can be used to simplify the function evaluations for the imple-
mentation as those are easier to implement for diagonal matrices. All in all, the complete
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temperature distribution in the time domain is equivalent to the solution for the single wire

cable known from section 6.1.2.a):

Tiara(2,t) = Ticiara(2,t, Toja) + Thejaral(z, t, Thia)

(6.120)
+ Thciara(2z,t, Toza) + TinhidLa(2: t, Cia)
with
Ticiara(z, t, Toa) = —1(8)ToaAs(t)[1 — Ai(2,t) — Aq (22, 1)), (6.121)
Tociara(z, t, The) = —1'(t) 1;0 As(z,1), (6.122)
TnnjiaLa(2,t, Cia) = —=Bi' Cial'(t) + T, gy 10 (2,1, Big' Cia) (6.123)

+ Thcid,La (Z, t, B;ilcid) + Thcid,La (2137 t, delCid) ;

Ai(z,t) = erf <z Aid) JAo(z,t) = 01(2,t) + 05(2, 1), A3(t) = exp (— Bidt> ;

2V ¢ Aiq
0,(z,t) = eV *VBU erfe AUy + (-1)2VBua i=1,2.
) 9 /_Aidt ) )

For the implementation, however, the functions of the non-diagonal matrices are hard to
calculate, e.g., for the error function, the series formulation has to be used. The convergence
behavior is partly poor, so no sufficiently accurate values can be determined. Therefore, it is
easier to apply the already known transformation matrices again to use the diagonal matrices
as input for the functions. For the exponential function, a corresponding function is already
provided by MATLAB.

¢) Solution via Green’s Functions in the Time Domain
Similar to Green’s function for a single wire cable, an equivalent formulation for the ar-

rangement of NV identical cables is

Gul(z t]3,10) =T(t — 1) %exp (—Bid%) (6.124)

This approach works because Ajq = AUy allows Ajq to commutate with each other ma-
trix. Identically to the precede presented in section 6.1.2.b), the complete solution is a super-
position of the solution parts that are caused by the different inhomogeneities:

86



6 Solutions

c
Tic,id,G(Z,t,To,id)Z/ Gia(z,t2,0)Tp;q dZ,
0

= —I'(t)ThaA5(t) {1 —Ai(z,t) — Ay (2, 1) + i [A1(—zz + 1, t)

n=1
—Ai(z+n,t) + A (=22 — 7, 1) —Al(z—ﬁ,t)] }, (6.125)
t 1 0 > Aid(ﬁ — 2)2 Bjd~ ~
Thci b, The) = A\ ———=F - — t) Ty dt
b Vd’G(Z b ) A Aidﬂ't 62 nz—:oo eXP ( 4t Aid ) b
Tbc - ~ ~
= —T(t) 5 {Ag(z,t) —|—Z[A2(2+n,t) —AQ(—z—l—n,t)]} : (6.126)
n=1

t L
Tinnac(2,t, Cia) = / / Gia(z,t|2,0)Ciq dz di
0 0

= -B'Cil'(t) + T3 iac (Z, t, B;dlcid) + Theja,c (27 t, B;jlcid)
+ Theiac (22,6, B Cia) - (6.127)

The result is then, analog to the single wire cable:

Tac(z,t) = Ticiac(z, t, Tosa) + Tinniac (2 t, Ca) + Toeiac(z, t, Thia)
+ Thciac(2e, t, Toja). (6.128)

Again, for the implementation, the diagonalization of the matrix B,y can be used for the

matrix function evaluation. This way, series evaluations are avoided.

6.1.7 General Cable Arrangement Analog to the Electrical Problem

In this section, a thermal cable arrangement that can be regarded equivalently to the elec-
trical domain as known from section 5.3.1 is analyzed for constant excitations neglecting the
implicit parameter dependence. Via Green’s functions in the Laplace domain, a solution for
this rather general arrangement is derived.

In section 6.1.4.d), the general approach for the solution using Green’s functions in the
Laplace domain was presented. Based on these considerations, the functions 1 (¢, n, Ty, C)
and xs(t,n, Ty — (—1)"T3) have to be calculated. In the first step, only the homogeneous
solution is analyzed. This has to be transformed back into the time domain. As only the
part X (s, ny, Ty, C') depends on the Laplace variable s, only this expression needs to be
transformed back into the time domain. Typically, a partial fraction decomposition is used
for the transformation. In this case, the explicit formulation of the inverse matrix is necessary
due to the dependence on the Laplace variable s but cannot directly be specified in the general

case. That is why a different formulation is searched, which allows the transformation back
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into the time domain. Equation (6.89) is rearranged to
[B +n2 ,Uy]| X:1(s,n4,Tp, C) + sAX(s,n, Tp, C) = —C. (6.129)
Using the initial value of x4 (¢, n,, Ty, C),
1(0,n,, Ty, C) = Sli_}rgos - X4 (s, ny, Tp, C) = Ty, (6.130)

and the correspondence

f(t) o= sf(s) — f(0+), (6.131)
equation (6.129) is transformed back into the time domain:
2 6
[B+nl Uy z:(t,n,, Ty, C) + Aaazl(t, ny, Ty, C) = —C, (6.132)

which is a differential equation for the prefactors x; (¢, n,, Ty, C). Rearranging leads to

%af:l(t, ny, Tp, C) = Any)xy(t,n,, Ty, C) — A C, (6.133)

A(n)=—-A""[B+nzUy]. (6.134)
Using the eigenvectors v;(n) and eigenvalues D;(n) of the matrix A(n), which means
A(n)v;(n) = D;(n)v;(n), (6.135)

gives the general homogeneous solution of the PDE (6.133) as a linear combination of the

corresponding fundamental solutions:
N
wl,hom (t, Ny, To, C) = Z bl,ivi (nu)eDi(”“)t. (6 136)
i=1

A constant particulate solution can be directly found via rearranging:

0 _
S @par (£, T0, ©) = 0= @1 (f, 10, T, €) = — [B 4] ;U] ‘e, (6.137)
The complete solution for x; (¢, n,, Ty, C) then is
wl(ta Ny, TO, C) = wl,part(t7 Ny, T07 C) + wl,hom<tu Ny, TO: C) (6138)

The prefactors b, ; of the linear combination are undetermined by now and have to be calcu-
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lated via the evaluation of the initial condition
x1(0,n,, Ty, C) = Tp. (6.139)

This leads to N
Ty+ [B+n2 Uy C = bwi(ny), (6.140)

where N is the number of conductors in the system. This system of linear equations has to
be solved to find by;, ¢ = 1,..., N. Then, the complete expression for x; (¢, n,, T, C) is
known. With n, = 2n+1 and n, , = (2n+1)7/L, the resulting solution parts for the initial
condition and the inhomogeneity are then (by setting the other one to zero):

Ty (2,1, Tp) = Tecr(z,t, Tp) = Z n (ny 2 —:Bl(t ny, Tp, 0), (6.141)
=0
Te(2,t,C) = Tinar(z,t,C) Zsm Ny r? —scl(t 1y, 0,C). (6.142)

Analogously, the second solution part, which is used to consider inhomogeneous boundary
conditions, is transformed back into the time domain. With the initial condition

2(0,n,Te) = 0, (6.143)
the solution in the time domain is
TTI(Z,t,Tl) = Tbc GL(Z t,Tl), TTZ(Z,t,TQ) = TbC7GL(Z£,t7T2), (6144)
2
Thecn(z,t, The) = % sin (ngz) x2(t,n, Th.) (6.145)
n=1
with
N
23(t,1n, Toe) = [B +n2Ux] " Tho + Y bygvi(n)e” ™, (6.146)
i=1
> bywi(n) = = [B+n2Uy] " T (6.147)

Again, equation (6.147) represents a system of linear equations that has to be solved to find
bai, = 1,..., N. The complete solution in the time domain then is

Tor(z,t) = TicoL(2, 6, To) + Tinncr(2, t, C)+Thear(z, t, T1 )+ Thegr(zc, t, o). (6.148)
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For each n, that should be considered, this calculation has to be repeated. Because of the
iteration, for different times and positions, the matrices B and C' are not constant, which
means, that for each combination (z, t), the calculation has to be reperformed. All in all, this
means a huge numerical effort. Nevertheless, via this approach, a general formulation for N
arbitrary conductors (for formulations analog to the electrical domain) is found.

6.2 Consideration of Varying Initial and Boundary

Conditions and Inhomogeneity

In this section, solution methods for spatial varying initial conditions, time varying bound-
ary conditions, and for time and spatial varying inhomogeneities are discussed. The explicit
time and spatial dependencies for the initial temperature T, (2), the cable termination temper-
atures T'; (¢) and T'5(t), and the excitation C(z, t) are considered. It is assumed that explicit
functional relations describing these dependencies are known. The overall problem that has

to be solved has the following form:

2
Elot) = 2 13;; D_a aTé’z’ D _Br1), (6.149)
T(z,0) = To(z), T(O,8) =T1(t), T(L,t)=Ta(t). (6.150)

This is a parabolic initial boundary value problem. The surface temperature can be calculated
based on the known cable temperature in a second step:

T(z,t) = F(T(2,1), Tu(z,1)). (6.151)

In principle, the procedures from the previous chapter can also be applied to this more general
problem, but in most cases, the analytical solution can no longer be calculated. For the solu-
tion in the Laplace domain with approximation, the cable termination temperatures and the
excitation must be transformed accordingly. The course To(z) is used instead of the constant
T5. This makes the solution of the ODE:s in the Laplace domain and the transformation back
to the time domain complicated or impossible depending on the exact functional relation.
When solving using Green’s functions in the time domain, the corresponding dependencies
in the integrals (see for example equations (6.48) to (6.50) for the single wire cable) are
taken into account, so the integration becomes much more complicated and requires numeri-
cal methods. When using the solution via Green’s functions in the Laplace domain, the these
two difficulties occur in combination: On the one hand, (more challenging) transformations
are necessary again, on the other hand, again integrals (see for example equations (6.53) to
(6.55) for the single wire cable) appear. All in all, the direct mathematical consideration of
varying initial and boundary conditions as well as excitations is therefore only possible in
very rare special cases. Numerical approaches are often required.
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The numerical method of lines (MOL) [148] summarizes numerical solution techniques
for parabolic PDEs and is divided into a vertical MOL and a horizontal MOL (Rothe method
[149]). In the vertical MOL, the spatial discretization is performed in the first step and the
direct solution or time discretization is performed in the second step. The reverse approach
is used by the Rothe method, where the time discretization is done first.

For individual spatial and time discretizations, different methods can be used and com-
bined in various ways. Altogether, the result is a large number of possible numerical ap-
proaches. The goal of this thesis is not to provide a complete essay on numerical meth-
ods. Rather, only the basics are outlined to indicate the diversity of the corresponding
approaches. Therefore, using examples, the basic ideas of widely used methods are pre-
sented and discussed below. Specifically, the finite difference method (FDM), finite element
method (FEM), boundary element method (BEM), and finite volume method (FVM) are
briefly introduced.

6.2.1 Finite Difference Method (FDM)

The basic idea of this approach is to approximate derivatives by difference quotients di-
rectly in the differential equations. For the first partial derivative of the function f with regard
to the variable u, for example, the following approximations can be used:

0f(u) _ flu+Au) - fu)

forward difference: R , (6.152)

ou Au

0 — - A

backward difference: () ~ Flu) = flu u)’ (6.153)

ou Au

Au) — - A
central difference: 0f () ~ Flut Au) — flu u) (6.154)
ou 2Au
With central differences, the result for the second derivative is
2 _ _

0°f(u) _ flu—Au) 2f(u)+f(u+Au)‘ (6.155)

w2 (Au)?

This allows the formulation of the derivatives directly as a function of temperature values at
discrete points. Thus, a system of equations is set up. This is used for the solution. To clarify
this procedure, possible procedures for the solution of the PDE system (6.149) are exemplar-
ily presented in the following. For illustration purposes, an equidistant grid in space and time
(see figure 6.14) is used here. In addition, the following abbreviations are introduced:

T(z— Az t) =T, T(zt)=T, (6.156)
T(Z + AZ, t) = 112'4_17]', T(Z, t+ At) = E,j+1> e (6157)

i is the spatial index and j is the temporal index. A similar notation is also used for C.

91



6 Solutions

Figure 6.14: Grid in time and space for the numerical calculations.
a) Explicit Euler Method
Starting from PDE system (6.149), a vertical MOL is used in the explicit Euler method
[150, pp. 80-85]. First, the spatial derivative is discretized via central differences:
A 0T (z,t) T(z— Azt)—2T(z,t) + T(z+ Az, t)

= A —BT(z,t) — C(z,1). (6.158)

In the next step, the time derivative is approximated by the forward difference:

Tijnn—Tij  Tio; — 2T+ T
At (Az)?

Tiy; — 2T + Ty
(Az)?

A

—BT,, - Ci, (6.159)

= 1}7]41 = AtA~! ( — B’I%J — Cm’) + 1}7]‘. (6.160)
Thus, an explicit calculation rule results for each time step. This method is easy to implement
[150, p. 82] and quite fast since no matrix inversions are necessary (except for the inversion
of A, which needs to be computed only once). However, it can also diverge easily and is not
always stable [150, p. 82].

b) Crank-Nicholson Method
As in the explicit Euler method, in the Crank-Nicholson method [150, pp. 87-88], the
second spatial derivative is first discretized via central differences, see equation (6.158):

0T (2.t

A% = f(z,1), 6.161)

T(z— Az, t)=2T(z,t)+T(z+ Azt
f(z,t) = ( ) (A(z)Q) ( ) _ BT(z,t) — C(z,t). (6.162)

For time discretization,
0T (2,1) T i —T; 1
A— L AT TN o (f v 6.163
E)t At 2 (.fz,]-i-l + .f,j) ( )
T = 2T + T jn + 1oy — 2T + T
2 (Az)?

—B (E’j+1 + Tz]) — (Ci,j+1 + Ci,j)
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is used. Evaluating this equation for all spatial points ¢ and rewriting yields the following
system of linear equations, which has to be solved at each time step:

ba 0...0 a; —aT) ;.
ab a . T2J+1 as
0.-.-.01|- : = : ) (6.164)
“.a ba L—1,5+1 Q2
0...0 ab Q-1 — AT iy
—1 1 A B
= ——U =——U —+—=, i=1....N

a 2(AZ)2 N> (AZ)2 N+At+ 27 1 ) ) )
1 A 1 B

ai=—3 (Cij + Cij) + <E - WUN - 5) T,; —a(Ti-1; + Tiry) -

In contrast to the Euler method, the Crank-Nicholson method is implicit [151, pp. 182-183].
For each time step, a system of linear equations has to be solved. One advantage of this more
laborious procedure is its stability [150, p. 88].

¢) Spatial Discretization and Solution via Integration

In this approach, the first step is again the spatial discretization from above (see equation
(6.158)). However, this equation is now evaluated directly at the different locations along the
cable and the results are reformulated as a matrix-vector problem, where ¢ again represents

the spatial index:

ba 0...0 —Cy(t) —a(t)Ty

ab a . T2 —Cg(t) TQ
A7 oo - : + : = :

. .'~ a b a 1-;;max71 _CimaX72<t) j—"imaxf1

O D 0 a b _C'Lmax*1<t) - aﬂmax

A . . T (t
& A . T(t) + b(t) = 8—15)’
(6.165)
1 -2
= —— = ——Uy—B.
A= @t Py

The solution for this system of ODEs can be described analytically. For this purpose, the
state-transition matrix or fundamental matrix [152, p. 9] is used, which is determined via
diagonalization:

B(t) = exp (At) . (6.166)
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Then, it follows [153]:
t
T(t) = ®(t) - T(0) + / ®(t — 1)b(1) di. (6.167)
0

Depending on the exact form of the excitations C;(t), sometimes this integral cannot be
solved analytically. Then, numerical methods for integral determination are necessary. The
basic idea of those methods is to divide the integration interval into shorter subintervals and
then express the value for each subintegral by a finite sum of weighted function values. More
information and concrete procedures can be found for example in [154, pp. 163-207] or [155,
pp. 475-533].

6.2.2 Finite Element Method (FEM)
To apply the finite element method (FEM), a so-called weak formulation of the PDE is

solved instead of the actual PDE. Using approach functions, the behavior in comparatively
small elements is locally approximated, and those approximations are combined into a global
solution. Based on the simplified scalar version of equation (6.158), the basic approach is
presented. More detailed presentations of this widespread method can be found for example

in [150, 156]. The beginning is a problem formulation in which the right side vanishes:

02T (2,t) 4 0T(z,t)
022 ot

— BT(z,t) — C(z,t) =0. (6.168)

If now instead of the exact solution 7'(z, t) an approximate solution

N+1

Topp(2.8) = > Tilt)u;(z) (6.169)

=0

built up from basic functions u;(z) and the searched temperature values T;(¢) at discrete
(spatial) locations 7 is used, the partial differential equation is no longer exactly satisfied and
a residual res is obtained:

02T, t 0T (2, t

Olawp(2:8) 4 Map(28) g 4y~ (o) = res(z, 1), (6.170)

022 ot

In the so-called method of weighted residuals, this residual is now multiplied individually
with NV weight or test functions w;(z),7 = 1,..., N, and integrated over the entire space
under consideration [157, pp. 57-60]. These integrals should vanish:

c
/ res(z, t)w;(z)dz = 0. (6.171)
0
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For the example, this gives the following integral, where (-)’ abbreviates the spatial derivative
and (-) the temporal derivative:

/ ‘ [T"(z,t)wi(z) — ATz, wi(2) — BT(z,t)wi(z) — C’(z,t)wi(z)] dz =0,
’ (6.172)
This is a weak formulation of the problem. Depending on the choice of weight functions,
different concrete methods can be derived from this rather general approach. In the Galerkin
method, the basis functions of the (sought) approximate solution are also used as test func-
tions: w;(z) = u;(z). This approach is applied in the following. With partial integration as
well as w;(z = 0) = 0 and w;(z = L) = 0, the following relation is derived:

c c c
/ T"(z,t)w;(2) dz = [T’(z)wi(z)]g —/ T'(z,t)wi(z) dz = —/ T'(z, t)wi(z) dz.
’ ’ ’ (6.173)
This leads to

/ ‘ [—T'(z, Hwl(z) — AT(z,Hwi(z) — BT (2, t)ywi(z) — O(z, t)wi(z)} dz = 0.

’ (6.174)
In the next step, the test functions w;(z), which are identical to the basis functions u;(z), are
defined. Widely used choices are the so-called hat functions [156, p. 154], which are shown
in figure 6.15. Effectively, a linear interpolation of the temperature development between the
selected interpolation points is used here.

For the i-th test function, substituting the test functions and the approximate solution (see

equation (6.169)) yields the following formulation:

0= ZT](t)/O [—w)(2)wi(z) — Bw;(2)wi(z) — C(z,t)wi(2)] dz

(6.175)

Figure 6.15: Spatial hat functions.
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If this formulation is set up for all test functions w;(z),7 = 1, ..., N, and those equations are
suitably rearranged, a matrix-vector problem of the following form is the result:

AT +AT=5b (6.176)

with matrices Al and Ag. In the vector T', the temperatures at the discrete evaluation points
are summed up and the vector b describes the (known) excitation. Overall, then, this spatial
discretization provides a system of ODEs analog to section 6.2.1.c), which can be solved

using appropriate methods.

6.2.3 Boundary Element Method (BEM)

This section gives a short overview of the boundary element method (BEM). For a more
detailed discussion, see for example [158, 159].

The basis for the BEM is, as in the FEM, the weak formulation (6.172) of the problem
[159, p. 37]. The basic idea now is to reformulate this by applying appropriate integral cal-
culus rules to express the sought quantity depending only on the boundary elements [158,
p. 43]. For this purpose, in the first step, the weak formulation of the differential equation is
transformed in such a way that the use of Green’s function as the test function significantly
simplifies the expressions. An essential advantage of this method is that only the boundary of
the considered volume has to be discretized [158, pp. 8-9] instead of the total volume, which
is one dimension larger.

As for the FEM, the procedure is presented in simplified form using the already familiar

scalar version of the general equation. In this example, the product rule is applied first:
£ c
/ (T"(z, t)w(z) — T(z,t)w"(2)) dz = [T"(z, t)w(z) — T(z, t)w'(2)]y.  (6.177)
0
Substituting together with w(z = 0) = 0 and w(z = L) = 0 then yields
L .
/ [T(z, D' (z) — (AT(Z, t) + BT (2, t)) w(z)] dz
0
c
= / C(z, )w(z) dz + [T(z, t)w'(2)]5 - (6.178)
0

On the left side of this equation, in the integral, an expression of the form (DGL for w)-T'(z)
is necessary. Then, the insertion of Green’s function as test function w only leaves 7'(z)

on the left side. Therefore, equation (6.178) is transformed into the Laplace domain. For
C(z,t) = C(z), the transformation leads to
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L
/0 (W (%, 2,5) — (sA+ B)w(Z, z,5)| T()dz

L ~
- /0 <CiZ) - ATO@)) w(,2,5)dz + [T(2)w' (2, 2, D)y - (6.179)

For time-varying C', the appropriate transformation must be used. If now for w(Z, z, s) the
Green’s function for the differential equation

w'(z,2,8) — (sA+ B)w(Z,z,s) =0 (6.180)

(see also equation (6.52)) is inserted, the integral on the left side of the equation vanishes:

c -

T(z) = /0 (@ - ATo(z)) w(z,z,8)dz + [T(E)w' (2, 2, 8)]5, (6.181)
Thus, on the left side, the desired term arises. Due to the initial and boundary conditions,
however, an integral over the entire volume still appears on the right side. Only for very
simple special cases, this integral can be calculated analytically. In many cases, however,
discretization is necessary again, so the main advantage of the BEM (no discretization in
the complete volume) [158, pp. 8-10] no longer exists. The result is finally available in the
Laplace domain and must still be transformed back into the time domain. This transformation
cannot always be performed analytically. Then, numerical transformations are necessary. In
principle, those can be traced back to the numerical approximation of the transformation
integral [160, p. 100]. However, this can be challenging, so specific methods have been de-
veloped for the numerical evaluation of these integrals, see e.g. [160, pp. 327-355].

Due to the necessary discretization of the complete volume to take into account initial
temperatures as well as excitations and due to the potential difficulties with the transforma-
tion back into the time domain, the use of BEM to solve the PDE causes considerable effort.
Other methods are therefore more appropriate.

6.2.4 Finite Volume Method (FVM)

The last method to be shortly presented here is the finite volume method (FVM). A more
detailed discussion can for example be found in [161] or [162, chapter 31]. Once again, the
basis is the weak formulation of the problem, see equation (6.172). As with the BEM, this
is rewritten so that a boundary integral occurs for the flow. In the one-dimensional case, this
boundary integral becomes an integral over a zero-dimensional (0 D) surface, i.e., the known
evaluation at the two terminations. Because of w(z) = 1 and w'(z) = 0, the result is

/ o (AT(=,8) + BT(2,1)) dz = / “ Ot e+ [T, (6.182)
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In contrast to the FEM, where compliance with this equation was required for (several) spe-
cific test functions, the test function w(z) = 1 is chosen now. Instead, the considered volume
is discretized and it is required that the corresponding equation holds in each subvolume
[161, p. 9]. For the 1D case, the considered distance along the cable is divided into subvol-
umes as shown in figure 6.16. The corresponding formulation for the subvolume ¢ is then:

/ " (AT(e 1) + BT(1)) dz = / o ndrTEHE . (618)

if% i—

ol

For a subvolume 7, the following reformulation allows the expression of the results in terms

of mean values:

Zird . Zird _ , Zird
—A T(z,t)dz— B T(z,t)dz = AzC; + [T'(2,t)]: 3 (6.184)
Zi-l Ziol :
= — — ]_ Zi 1
& —AT; — BT, = Ci+ — [T'(2,1)]."2 . (6.185)
Az i3

Here, T; represents the mean temperature in the considered subvolume. Because of the in-
terchangeability of the time derivative and averaging, T'; is the associated mean of the time
derivative. C; is the mean of C' in this volume. The temperature mean values are assigned to

the position in the center of the cell:
T; =T(z). (6.186)

Now, to find a representation for the temperature averages as new unknowns, the spatial
derivative at the cell boundaries has to be approximated as a function of the averages T';. For
this purpose, for example, an FDM approach can be used:

) D) ~Tem) _ Tom T (6.187)

l l
21 N Zi—1 Zi Zitl ..
f—o—F—e—F—o—F—o—|—o——o—]
Tl Tlfl TZ Ti+1
Az
>

Figure 6.16: Spatial discretization with cells and coordinate positions for FVM.
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For a single subvolume, this leads to a new ODE for the mean values of the temperatures in
the subvolume, which are assigned to the values at the central points:

- — . T;—T;

(6.188)
If the corresponding equations are now set up for all considered subvolumes and suitably
transformed, a matrix-vector representation analog to equation (6.176) is again obtained,
where now the temperature averages over the cells are the unknowns. Overall, this approach
showed another possible spatial discretization. The time dependence has to be dealt with in
a second step.

6.2.5 Approximation Based on Linear Solutions for Constant

Excitations

In the previous sections, numerical solutions were presented, which in principle allow
the consideration of variable initial and boundary conditions as well as excitations. Alterna-
tively, a semi-analytical approximation based on the results of section 6.1 is presented here.
First, it is assumed that the initial and boundary conditions as well as the excitation can be
represented by a sequence of rectangular shapes depending on the time and the location, re-
spectively. Real occurring courses must therefore be approximated in the first step of such
a development. By superposition of the results from section 6.1 and by application of an
analog procedure, suitable analytical solutions for these variable excitations are found. This
procedure is an approximation, but compared to the consideration of only constant values, it
allows an adaptation to changing conditions: For example, variable currents can be taken into
account via a suitable worst case. Also, different ambient temperature ranges along the cable
(spatially variable ambient temperature) as well as the consideration of temporal changes in
the ambient temperatures (for example in form of an update after some time) can be con-
sidered. For the initial temperature distribution and the cable termination temperatures, the

consideration of worst-case developments is also enabled.

a) Reformulation of the Solution for a Single Wire Cable

In the earlier examinations, the PDE from equation (6.23) with the constant initial and
boundary conditions (see equations (6.24) and (6.25)) was solved. In this section, for the
initial and boundary conditions and the inhomogeneity, rectangular shapes are assumed in-
stead of the previously used constant values. To enable the isolated evaluation of the effects
resulting from the ambient temperature 7, and the current /, the inhomogeneity C‘SW in the
PDE is split up into the two parts C 1,sw (depending on the ambient temperature) and 0275W
(depending on the current):

Caw(2,1) = Crau(z,1) + Cog(2, 1), (6.189)
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Craw(2,t) = CLewD(t) = —R'G'T.I(t), (6.190)
Casw(2,t) = Cogy'(t) = —R'PiT'(2). (6.191)

Then, also in the solution approach (see equation (6.26)), two parts for the inhomogeneity
appear,

(2,t,Csw) = T

Tz &y sw(2 6 Crsw) + T 2,t, C ). (6.192)

,SW 2,sw<

In the earlier derived solutions for constant initial and boundary conditions as well as stimu-
lation, the different solution parts were presented for three different approaches: Usage of the
Laplace domain with approximation (see section 6.1.2.a)), usage of Green’s functions in the
time domain (see section 6.1.2.b)) and usage of Green’s functions in the Laplace domain (see
section 6.1.2.c)). In the following, for the individual contribution parts, approaches for the
consideration of rectangularly shaped excitations instead of constant values are presented.

b) Rectangular Current

For the current, a single rectangular pulse as shown in figure 6.17 is assumed:
I(t) = L;(D(t —t1,r) = T(t —t201)) - (6.193)
Then, the corresponding heat flow is
Py (2,t) = I Rigg (14 10 (Tow(2,8) = Toer)) (Dt — trp) = T(t — t5)) . (6.194)

In the derivation of the earlier solutions, it was assumed that the heat flow is constant which
is equivalent to the assumption of a constant cable temperature in combination with the con-
stant current. Therefore, for each position (z,t), it is implicitly assumed that the used cable
temperature holds for all times and spaces. This approximation decouples all positions and
times because, for each combination (z, t), a different PDE is solved. The same approach is
used here, which means the neglection of the z- and ¢-dependence of the cable temperature in
the calculation of the heat flow and therefore, replacing Ty, (z, t) with the local, but constant

1
single pulse: I(t) (

. 1
superimposed
step functions: _—erLl—

Figure 6.17: Rectangularly shaped current as excitation.
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temperature Ty 1oc. Then, the heat flow also follows a rectangular shape:

~/

Py (z,t) = IRy (14 00(Tavsoe — Teet)) (D(t — t1i0) = T(t —t251)) . (6.195)
C 25w (t), therefore, becomes

Cosw(t) = Cogwi (T(t —t1i1) — Tt —tair)), (6.196)
CQvSWJ' = _R/]i2 ;ef (1 + nT(Tsw,loc - Tref)) . (6.197)

Because of the assumed linearity in the solution, the new solution is found via relocation and
superposition of the earlier derived solution:

T

Co,sw

(2,t, Coswii) = Tinnsw (2, T — t1i1, Coswi) — Dinhsw (2, — t2i1, Coswi) - (6.198)

For a superposition of several rectangular current shapes (see figure 6.17), the resulting pro-
file becomes

Ymax,Co gy
,

)= Y L(I(t—t)—T(t—tyr). (6.199)

i=1

Then, using #, =t — t,;r and ty = t — t5, 1, the solution is

'Lmax,CZ,SW

Tég,sw(zu t7 CQ,SW,’L') = Z [ﬂnh,sw (Z, z17 OZ,SW,'L’) - ﬂnh,sw (Z, i?a CQ,SW,i):| . (6200)
i=1
¢) Rectangular Cable Termination Temperatures
Rectangular cable termination temperatures as shown in figure 6.18 are taken into account
similar to the approach used for the current. With %l,j =t — t1;7; and iQ,j =t —to;iT;,

j =1, 2, the corresponding solutions are derived:

7fmax,TLSW

T (0,1) = Ty u(t) = Z T i (D(t1a) — T(t21)) (6.201)
=1
~ 7;ma,x,TZSW
Tow(L,t) = Tosw(t) = Z 15 sw.i (F(t1,2) — F(t2,2)) (6.202)
=1
imax,lesw
= TTl,sw(Zu t) = Z [Tbc,sw<27 z1,17 Tl,sw,i) - Tbc,sw(z7 %2,17 Tl,sw,i)} ’ (6203)
=1

Zmax,TQYSW

TTQ,SW(Z7 t) = Z [Tbc,sw(zﬁy %1,27 T2,sw,i) - Tbc,sw(zﬁ7 %2,27 T2,sw,i)} . (6204)

i=1
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Tsw (0 t T1 SW t sw T2 Sw( )
T1 SW I _< <9_ T2 SW :i
t t

Figure 6.18: Rectangularly shaped cable termination temperatures.

d) Rectangular Initial Cable Temperature

A rectangular shape can also be assumed for the initial cable temperature as shown in
figure 6.19 for several rectangles. Unlike the earlier solutions, now, the rectangular shape is
given in the spatial coordinate z:

T (2,0) = T (2) = Toswi (T(z — 21) = T(2 — 23)) . (6.205)

For this initial condition, the corresponding solution part of the PDE needs to be recalculated
separately for all three solution approaches. For the solution via Green’s functions in the time
domain, the approach known from section 6.1.2.b) is applicable again, but the limits in the
integration differ from the earlier presented solution. To ensure the invariance of each addend

in the sum under the symmetry transformation
2> L—2z,21 = L— 29,20 > L — 2, (6.206)

indices are shifted. Then, the result for a rectangularly shaped initial temperature for the

solution via Green’s functions in the time domain is

I <t>A3 (t)TO,sw,i
2

T’ic,sw,recmG(Za t7 TO,sw,ia 21, 22) = A1 (ZQ —Zz, t) - A1 (22 +2z—= 2£a t)

—Ai(z1 — 2, 0) + M2+ 2,1) — 24 Z{A1(22 — 2z =0, t) + Ai(22 — 2 + 17, t)

n=1

—MN(z2o+z4+2(n—1)Lt) = Ai(z0+2—=2(n+ 1)L, t) — Ai(z1 — 2 — 1, t)

—N(z1 —z24+0,t) + N(z1 + 24+ 70,t) + A(21 +2 — 1, t) . (6.207)

Figure 6.19: Rectangularly shaped initial cable temperature.
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Neglecting the sum leads to the corresponding formulation for the solution from the Laplace

domain with approximation:

D (t) Az (t)To 5w,
2
—Al(Zl -z, t) -+ A1 (21 -+ Z, t) — 2] . (6208)

ﬂc,sw,rect,La(za ta TO,SW,i? 21, 22) = [Al (ZQ —Z, t) - Al (ZQ +z— 2£7 t)

Accordingly, for the solution via Green’s functions in the Laplace domain, in the recalcu-
lation for the new initial condition, the limits of the integral change. The result in the time

domain is

7—’ic,sw,rect,GL('Za t; TO,sw,ia 21, 22) (6209)

2 - t 1
= ;T[)’SWJ ; exp (_Asw (n7 + BSW)) sin (ngz) [cos (ngz1) — cos (nezs)] -

All in all, the corresponding solution part of the PDE is
TT@,SW(’Z? t) = ﬂc,sw,rect(za ta TU,sw,ia 21, ZZ)' (6210)

For a linear combination of several rectangles (see figure 6.19), the initial temperature dis-

tribution is

Zmax,TgysW

T07SW(Z’) = Z T075W7i (F(Z — ZLi,To) — F(Z — ZZi,Tg)) (6211)
i=1

and the corresponding part of the solution becomes

lmax,To,Sw

TTO,SW(Zv t) = Z Tieswrect (2, 1, To sw.i 21,0, To sw > 22,¢7T073W). (6.212)
i=1

e) Rectangular Ambient Temperature
The ambient temperature does not only influence the inhomogeneous part C’st(z, t) in
the PDE but also appears in the parameter B, because there, the conductance GG’ describing
the heat transfer from the cable to the ambient air appears. In this section, this dependence is
not considered. For the calculation of the parameter B, for a specific position in space and
time (z,t), only the value for the ambient temperature at exactly this position is considered.
The influence of a rectangular ambient temperature in the inhomogeneous part C Lsw(2, )
is evaluated in the following. Generally, considering a rectangularly shaped ambient tem-
perature, spatial as well as time rectangles are possible. In practical applications, exactly
rectangular ambient temperatures will not appear, but this approach can be used to approx-
imate real ambient temperature developments. For a sum of rectangular shapes about the

time, but a constant distribution about the spatial coordinate (see figure 6.20(a)), the ambient
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temperature is

Zmax,CI’SW

Tei(D(t —tiim) —T(t —taim))- (6.213)
i=1
For the inhomogeneity, it follows
imax ,C1 sW
Cl SW Z t Z Cl SW,1 t - tl,i,Te) - F(t - t2,i,Te>) : (6214)

As mentioned before, the conductance G’ depends on the ambient temperature. In addition,

the ambient temperature appears explicitly in the calculation rule for C g ;:
Cl,sw,i = R/G/( z) e+ (6215)

Analog to the consideration of rectangular current pulses, the corresponding solution is

lmax,cl’sw

Tr, a2t Crawd) = D [Tan(z.t1, Crwi) — Tinn(2, T2, Crowi)] (6.216)

i=1

witht; = t—t1 7, and o = t—ts; 1. For spatial rectangular shapes without time dependence
(see figure 6.20(b)), the ambient temperature and the inhomogeneity are as follows:

To(z,t) = Toi(D(z — 21) — D(2 — 22)), (6.217)
C'st(z, t) = Craw.i(l(z —21) = T'(2 — 29)). (6.218)

Then, similarly to the considerations for rectangular initial conditions, recalculations need to
be performed. Again, only the limits in the necessary integrations have to be changed. For

the solution with Green’s functions in the time domain, the result is

C SW, %
ﬂnh,sw,rect,G(Za t, Cl,SW,i7 21, 22) = ﬂc,sw,rect,G (Z7 t; gs - xar Z2>
sw
Cl,sw,i 1
- F(t)F —sgn(z — 2) +sgn(z — 2) + 3 [sgn(ze — 2)As(|2z2 — 2], 1)

+Ao(—20 — 2+ 2L,t) —sgn(z; — 2)Ao(|z1 — 2|, t) + Aa(21 + 2, 1)] }

C1SWZ -
4}5’ Z (—zo+ 24+ n,t) + Ao(22 — 2+ 1, 1)

n=1
- AQ(ZZ +z+ 2(n - 1)£7t) + AZ(_Z2 —zZ+ 2(n + 1>‘C>t) + AQ(_Zl +z+ ﬁat)
—Ao(z1 — 24+ n,t) + Ao(21 + 2 + 71, t) — Ao(—21 — 2 + 1, t)]. (6.219)
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For the Laplace approximation, the corresponding expression is

C SW,T
ﬂnh,sw,rect,La(Za t7 Cl,sw,i7 21, Z2) - ﬂc,sw,rect,La (Z, ta #7 21, Z2>
sW
C’l,sw,i 1
- F(t)F —sgn(z; — 2) +sgn(zg — 2) + 3 [sgn(ze — 2)As(|2z2 — 2], 1)

+Ao(—29 — 24+ 2L,t) —sgn(z1 — 2)Aa(]z1 — 2|, 1) + Aa(21 + 2, 1)] } . (6.220)

Using the solution via Green’s functions in the Laplace domain, it follows

t
o 1—exp | ——— (n% + By)
2 Agw
T‘inh,sw,rect,GL<z7 t, Cl,sw,ia 21, ZQ) = _F(t)_cl,sw,i E
m

ot Bgw + 1%
1
-sin (ngz) [cos (npz1) — cos (neze)] —. (6.221)
n
For a single rectangle, the solution then is
Tél,sw<z7 t) = 7jinh,sw,red;(Z? ta Cl,sw,i; 21, Z2>~ (6222)

For a sum of several rectangles, again, the corresponding expressions for the single rectangles

have to be superposed:

Tmax,Te
Crsw(z) = Z Crowi (D(z = 2151) = (2 — 2241)) (6.223)
=1
imax,cl’sw
= Tél,sw(za t? Cl,sw,i) = Z 7jinh,rect('za ta Cl,sw,’ia Zl,i,Tm ZQ,@',TC)- (6224)
i=1

—(_|C C_O—

v/ |/
Te(t) R
— o i e R W 7 ¥
T, ' :
TC1 L - I
f 0 L~ 0 L=
(a) (b) (©)

Figure 6.20: Rectangularly shaped environmental temperatures depending on (a) time, (b)
space, or (c) both.
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Rectangular shapes in the time and spatial coordinate (see figure 6.20(c)) are superposed for
the general case:

’Lmax,cl_’sw ]max,CLSW

Ci(z,t) = Z Z Crowij (D(z = z151) = T(2 — 22:1,.))
=1

=1

(Tt =tiym) =T = ta5m.)) (6.225)

’Lmax,cl_ysw ]max,clisw

= Te, sw(2:t, Crswij) = g g [Tinnrect (2,1 = 15,10, Clsw,ijy 21410 224.T0)
i=1 =1
—Tinh,rect (2,6 — o1, Clswiijy 21,10, 22,61, - (6.226)

Here, the index 7 corresponds to the spatial dependence, the index j corresponds to the time

dependence.

f) Application to Multiconductor Arrangement

For a multiconductor arrangement analog to the electrical domain, the rectangularly
shaped conditions are considered equivalently to the single wire cable. The system of PDEs
is formulated as given in equation (5.72) with

C = Ci(z,t) + Cy(z,1). (6.227)

C,(z,t) considers the dependence on the environmental temperature T, and C(t) depends
on the current excitation. The solution is built up from the partial solutions for the different

excitations and initial as well as boundary conditions:

T(2,t) =Ty (2,1, To) + Ty, (2,8, Th) + Ty, (2,1, Ta) + Tg, (2., C1) + Tg, (2,1, Cy).
(6.228)
In table 6.1, an overview of those solutions is given for constant and rectangular excitations.
Implicitly, here, it is assumed that the rectangular excitations for all conductors change at the
same positions in time and space.
The necessary functions for the solution based on the Laplace approximation for /V iden-

tical conductors are given in equations (6.121) to (6.123) together with

1
Ticidrect,ta(2, t, Toid,is 21, 22) = §F(t) [Ai(ze — 2,t) = Ai(20 + 2 — 2L, 1)
— A1<21 —Z, t) + A1(21 + z, t) - 2]A3(t)TO,id,i7 (6229)
ilﬂinh,id,rect,La(f% tv Cinh7 21, 22) = ﬂc,id,rect,La(za t? Bi?ilcinhu 21, Z2> (6230)

1 1
— §F(t) {—sgn(zl —2)Upn +sgn(za — 2)Uy + §[sgn(22 — 2)As(|z9 — 2|, 1)

+ Ao(—290 — 2+ 2L,t) —sgn(z; — 2)As(|z1 — 2|, t) + Aa(z1 + 2, t)]} B;dlcmh.
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Table 6.1: Overview of solution parts for rectangular stimulations.

stimulus

solution constant | rectangular

F——

Ti"o (Z, t, To) ﬂC(Z, t, To) Z Ijic,rect(ZH t, 11071-7 21Ty s ZZ,i,TO)
oy

Ty (2,6, Th) | Thelz,t,Th) Z [Thoe(z,t — tiim, Tig) — Toe(2,t — toimy, T1)]
irnia:x,lTZ

Tp, (2t T3) | Tocloc,t. Do) | [Toelzest — trimy Toi) — Tholze,t — toimy, T
erfjclcl Jmax,Cy

Te, (2,1, C1) | Tiun(z,t,Ch) Z Z Tinhrect (2, — t1 1, Crijs 21,10 224,10 )
. —Tinhrect (2,6 = ta 1, Crij, 2110, %2,4,1.)]
imax,Cy

T, (2,t,Cy) | Tin(2,t, Ca) Z (Tiun(z,t = t1,1,Ca) — Than(z,t — to1, Cay)]

=1

The terms for the solution via Green’s functions in the time domain for /NV identical conduc-
tors can be found in equations (6.125) to (6.127) together with

,I}c,id,rect,G(Z7 ta TO,% 21, ZQ)

+A1(22—Z+7~1,t)—

_Al(

ﬂnh,id,rect,G(za t7 Cinh7 21, 22)

21—z —Mn,t)

A(zo+2z+2(n—1)L,1)
—Mi(21 —z+n,0) + Mz + 2+ 1,0)
-+ Al(Zl + 2z — ﬁ, t)]Ag(t)TO,z,

[e.9]

1 -
- ,I}c,id,rect,La(Z7 ta TO,i? 21, 22) + §F<t) Z[AI (ZQ —zZ—n, t)

n=1

—N(ze+2—-2(n+1)L,1)

(6.231)

= Tinnjid rect,La(2; t; Cinh, 21, 22)

-1 -1
- Cric,id,rect,LaL<27 tu Bid Cinh7 21, 22) + Cric,id,rect,(}(za tu Bid Cinh7 21, 22)

o0

1

— T(t) Y [~As(—22 + 2 + 7, t) + Ag(zp — 2+ i, )

4

n=1

—Ag(zo+24+2(n = 1)Lt) + Ax(—20 — 2 +2(n + 1)L, t) + Aa(—21 + 2 + 71, 1)

_AQ(Zl_Z+ﬁ7t)+A2<zl+Z+fL7t)_

Ay(—2 — 2+ 71,1)|B' G- (6.232)

For the solution via Green’s functions in the Laplace domain, the results are given in equa-
tions (6.141), (6.142), and (6.145) and are extended by

1—’10 rect GL(Z t T07 21, Z2

,-Tinh rect GL(Z t Clnh7 21, 22

Z Trect GL(Z 21,22, M )ml(t n TO, O), (6233)
ZTM an(z, 21, 20, n) @1 (60,0, Cn),  (6.234)
L.
Trect,cL(2, 21, 22, M) = - sin (ngz) [cos (npzy) — cos (ngzg)l . (6.235)
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6.3 Consideration of Nonlinear Behavior

In this section, the implicit parameter dependence on the temperature is considered. The
overall problem from equations (6.1) and (6.2) can then be classified as a system of cou-
pled nonlinear implicit second order (parabolic) PDEs. This implicit system behavior, which
cannot be represented explicitly, also is a challenge for numerical solution approaches, since
such dependencies are not allowed in most basic methods. In this section, exemplary strate-
gies are discussed, which nevertheless allow consideration of this nonlinear dependence.
Once again, this presentation does not claim to be complete but is intended to provide exem-
plary options.

The determination of the surface temperature is non-trivial due to the implicit dependence
even if the conductor temperature distribution is known. Then, according to equation (6.2), a
self-consistent problem has to be solved. The solution can be found numerically directly via

a fixed-point iteration or via root-finding algorithms.

6.3.1 Fixed-Point Iteration
In a fixed-point iteration (see, e.g., [155, pp. 199-204]), a solution for the following prob-
lem is searched:
u= f(u). (6.236)

The start is an initial solution uo. Evaluation of the function f(ug) = wu; then gives the
next approximate solution for the (attracting) fixed-point. This new solution is inserted into
f again and so on. Thus, the iteration rule for the determination of the ¢-th approximate
solution is

w; = fu;—). (6.237)

6.3.2 Root-Finding Algorithms
The self-consistent problem (6.236) can directly be transformed into a root-finding prob-
lem:
f(u) —u= f(u) =0. (6.238)
A wide variety of methods can be used for numerical root finding, of which only two are

shortly mentioned here as examples.

a) Bisection Method

With the bisection method (see e.g. [163, p. 379]) a root with sign change is searched. A
starting interval [uq, us] is necessary, in which the root must be located. Then the signs of
f(ul), f(ug), and f (%) (interval center) are compared. The estimation interval is then
adjusted so that the edge point with the same sign as in the interval center is replaced by
the interval center. The estimation interval has thus been halved. This procedure is continued

iteratively until predefined termination criteria are met.
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b) Newton’s Method
In Newton’s method (see e.g. [155, p. 272]) the iteration rule is

wp =g — S (6.239)

So, based on the previous approximate solution, the new solution is determined using the
derivative (in the multidimensional case the Jacobian matrix). The (analytical or numerical)
determination of this derivative can be challenging and sometimes causes considerable effort
[155, pp. 274-275]. Then it may be worthwhile to approximate it. For this purpose, a gen-
eralization of the scalar secant method for the approximation of the derivative is used in the
so-called Quasi-Newton method [155, pp. 274-279].

6.3.3 Application of the Earlier Described Numerical Approaches

In principle, the numerical methods presented in sections 6.2.1 to 6.2.4 can also be used
here. If both temporal and spatial discretizations are available, the following procedure can
be used: First, the system of equations or the direct solution formula is set up for a time
step 7. Then the temperature calculation for this time step is performed. The corresponding
surface temperature is then determined via a fixed-point iteration or root-finding algorithm.
This is used to determine the parameters C(T'(z,t), Ty(2,t), z,t) and B(T.(z,t)). These
(spatially variable) parameters are the basis for the calculation of the next time step j + 1.
This approach can be used to take into account distributed implicit parameter dependencies
along the cable only if there is a spatial discretization in that direction. The application of
BEM is not possible here (setting up the appropriate Green’s function for the overall problem
is already problematic there). However, FEM, FDM, and FVM allow this procedure. Thus,
an overall approach for temperature determination can be built up by superimposing several

numerical methods.

6.3.4 Approximation Based on the Linear Approaches

Alternatively, an approach is presented in the following, which is based on the previous
solutions for the linear case. Here, the solution is calculated individually for each combi-
nation of location and time (z,¢) using the analytical relationships. A fixed-point iteration
is then performed for each (z,t) individually to adjust the parameter values and the surface
temperature, as shown in figure 6.21. All conductor temperature calculations are performed
via the analytical solutions.

After a first initial temperature guess together with typical parameter values, the cable
surface temperature is calculated. In the next step, the critical cable parameters (conductance
for convection and radiation as well as the electrical losses) are recalculated followed by the

conductor temperature calculation. After this first iteration, the second iteration starts again
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activity diagram pseudocode steps

initialize: T;—o, G'_; step O
surface temperature
calculatpion ] L = (T, Gi); step 1
1 r_GNT .
. 3 - a+1)
calculation of parameters Zfl _ 1(3/ S(ZJJ:))
for convetion, radiation, Bﬁl"”;l_ R L step 2
) +1 = i+19
and electrical losses ‘
7 Cipn = —R (Pél,i-i-l + G;+1Te);
conductor temperature
[ calculatign ] Tiv1 = T(Biy1,Ci); step 3
1
calculation of
. .. Ar =T, — Ty ql; step 4
[termmatlon condition AT] 7 =|Ti = T P
[A7 > A jim] if Ap > Agijim:
’ step 5
go to step 1;

[Ar < Apjim]

Figure 6.21: Iteration scheme to include nonlinear parameters, activity diagram, and pseu-
docode.

with the surface temperature calculation. As a stopping criterion, after each iteration ¢ + 1,
the difference A between the new and old conductor temperatures 7" is calculated:

Ar = [T, = Tiyal. (6.240)

This value is compared to a predefined value Arp;,, to decide whether to stop the iteration
or continue with a new round. In [A.3], Ar}, = 0.001 K is used to show the convergence
behavior (six to seven iterations were necessary), although in real applications, normally such
high precision is not required. Also, the necessary approximations in the models typically
already cause higher temperature deviations.

By this procedure, a different PDE is gradually solved for each point (z, ¢) due to the dif-
ferent parameters. In particular, for the temperature calculation at each point, it is implicitly
assumed that the used parameter values are valid for all times and places. To a certain extent,
the direct coupling between the neighboring points is thus broken, and each combination
(z,t) stands independently. In section 7.3.1.a), it is investigated how this approximation af-
fects the temperature results. This approach provides a semi-analytical procedure that allows
the analytical solutions to be used for temperature estimations with occurring nonlinearity.

Due to the very fast convergence of the fixed-point iteration, other methods, such as Newton’s
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method, which is more complex but converges faster, are not considered further here.

In the further course of the thesis, the analytical solutions are always combined with the
fixed-point iteration, if not mentioned differently. Exemplary MATLAB implementations of
the complete solution approach for the single wire cable with constant excitations and the
solution via Green’s functions in the Laplace domain for a cable arrangement consisting of

three not identical cables with constant excitations are given in appendix C.
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7 Validation

In this section, the previously derived analytical solutions are validated. At first, the chosen
numerical reference solutions are shortly resumed and the temperature measurement meth-

ods are presented. Then, the validations for the different cable arrangements follow.

7.1 Numerical Reference Solutions
7.1.1 Direct Solution of the Partial Differential Equations

As already discussed in sections 6.2 and 6.3, the PDEs can also be solved numerically. In

the following, the methods that are used in the rest of this thesis are shortly presented.

a) Euler Method

The Euler method, see also section 6.2.1.a), is a very simple numerical approach. For the
consideration of the implicit nonlinear temperature dependency, the approach from section
6.3.3 is used here, which means the iterative parameter adaption based on the known temper-
ature as preparation for the next time step calculation. In the following, this basic approach
is used for the complexity analysis of the single wire cable.

b) MATLAB “pdepe”

For the solution of the coupled PDEs, the function “pdepe” from MATLAB can directly
be used, which solves systems of parabolic and elliptic PDEs by integrating the ODEs that
are found from the PDEs via space discretization [164]. This basic approach was earlier
discussed in section 6.2.1.c). Exemplarily, for the single wire cable, the corresponding for-

mulation for the implementation in MATLAB is analog to equations (6.1) and (6.4):
0w (2,t) 02Ty (2, 1)
ot N 022

0="Tw—T,— RG (Tyw — T). (7.2)

ASW

- BSWTSW(Z7 t) - OSW? (71)

7.1.2 Equivalent Circuit Diagrams with Lumped Elements and

Solution via Simscape
In [165], the thermal ECDs for the radial heat flow in cable segments of finite length are
cascaded in the axial direction to find an axial transient thermal cable model. The complete
ECD is implemented in MATLAB Simulink/Simscape and validated using measurements in
[165]. This approach can be used for different cable arrangements based on the known ECDs

for an infinitesimally short cable segment.
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7.1.3 COMSOL Multiphysics

Using the FEM-based software COMSOL Multiphysics [166] (see also section 6.2.2), a
numerical solution to the heat transfer problem in cables can be found that is completely
independent of the ECD approach (and the necessary assumptions). For a single wire cable,
rotational symmetry considerations allow for the analysis of only a 2D cut of the complete

3 D model for a single wire cable, which drastically reduces the calculation effort.

7.2 Temperature Measurement in Transmission Lines

For temperature measurement, many different approaches can be used depending on the
application (see for example [51, 167]). In this section, two approaches that are used for val-
idation in the following are briefly presented. The same two approaches were also discussed
in [A.7] and [A.9].

7.2.1 Indirect Temperature Measurement
The electrical cable resistance R..p. depends on the cable conductor temperature 7'. For
small temperature rises, a linear dependence can be observed [142, p. 99] as already used for

the calculation of the electrical losses (see equation (5.69)):
Rcable - Rref (1 + nr (T - Tref)) . (73)

The linear temperature dependence of the resistance is a good approximation over a large
temperature range (nearly up to the melting temperature) for metals that are not magnetic
[168, pp. 128-130]. Thus, this dependence is used in the following and its error is neglected.
Based on a known reference resistance R, at a defined reference temperature 7}, the cable
resistance can be approximated for other temperatures. For copper, the linear temperature
coefficient 1y at Ty = 20°C is 3.93 - 1073 1/K according to [169]. In this thesis, this
temperature coefficient is also used for other reference temperatures of the same magnitude.
This linear dependence is used to calculate the cable temperature from a cable resistance

measurement as also proposed in [170]:

1 RC& e
T = Thp + — <—b‘ — 1) . (7.4)
nr Rref

For the measurement of the cable resistance, a small measurement current /.5 1S injected
into the cable. This measurement current has to be chosen small enough to not relevantly
change the cable temperature, but, on the other hand, to cause a measurable voltage drop
along the cable. In this thesis, typically, the measurement current /,,.,s = 0.12 A is chosen.
Then, the voltage drop between two positions along the cable (distance L,,..s) is measured,
which allows the calculation of the resistance along this section. To avoid additional voltage

drops across the voltage measurement contacts, the measurement current is not directly in-
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jected via the voltage contacts but at the cable ends (four-terminal sensing). So, the distance
between those current injection points is the complete cable length, £. Both, impressing the
measurement current and measuring the corresponding (typically very low) voltage can be
performed by appropriate source measurement units (SMUs). An overview of the general
measurement setup is given in figure 7.1.

From the measured cable resistance R, the cable temperature 7' is calculated via equa-
tion (7.4). The result is the mean temperature across the section for the voltage measurement.
That is why this method is especially applicable for the measurement of the cable temper-
ature across a section along which a constant temperature is expected, for example in the
middle of a long cable under homogeneous environmental conditions. The measurement of
axial temperature profiles using this method leads to problems. Very low voltage drops result
when using short sections for the voltage measurement. In addition, the connections for the
voltage measurement distort the cable temperature: As the insulation has to be removed there
and additional thermal bridges are added to the system, the cable temperature will be slightly
lower locally around the connections. If many connections are close to each other, this effect
gains importance and cannot be neglected. To sum up, this method is more feasible for the
measurement across a (longer) cable section with a constant temperature.

For the temperature calculation, in addition to the continuously recorded quantities and the
linear temperature coefficient of the conductor material, the reference resistance of the cable
at a known reference temperature is required. Therefore, a reference measurement is always
performed before the actual temperature measurement in this thesis. There, the cable resis-
tance is measured without a load current. The ambient temperature is recorded separately. It
is assumed that the cable temperature during the reference measurement equals this ambient
temperature. Accordingly, the cable must be stored for a sufficiently long time without a load

in the corresponding environment, so its temperature equals the ambient temperature.

L
Emeas
@58)) > > L oW )
(V)
W,

voltage measurement

measurement current

source measurement unit

D

load current

Figure 7.1: Scheme for the measurement setup.
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a) Single Measurement

If a load current [ heats the cable, the additional (small) measurement current /.5 1S not
necessary. On the other hand, this measuring current hardly changes the occurring tempera-
tures and is also required for the voltage measurement without a load current. Therefore, in
this thesis, indirect temperature measurements are always performed with an additional mea-
surement current that is injected via the SMU. If, for example, the load current is switched
off during the measurement, the measured voltage drops abruptly but does not drop to zero.
If the measurement and load currents are known, the associated temperature curve can be
calculated. An example of this procedure is shown in figure 7.2.

To analyze the uncertainties of the measurement results, an exemplary twisted pair cable is
used’. The parameters of the individual cables are given in table D.1, cable @ The twisted
pair cable is loaded with 10 A on one of the two cables.

In principle, the uncertainty limit A for a quantity f calculated from quantities «; and u,
with known maximal uncertainties A,, and A, can be expressed as
‘ of ‘ of

U2

A Ay, + ’ A, (7.5)

in accordance with the uncertainty estimations for resistance measurement in [171] and in-
spired by [167, p. 60] as well as appendix D of [172]. Based on this, the uncertainty limits
of the temperature are calculated. The individual quantities that are used in the temperature
calculation with the respective ranges of the uncertainty limits are also shown in figure 7.2.
The cable is loaded with the load current I + A; with

A;=02%-120A =024 A (7.6)

according to [173]. For the case without load current, it is assumed here that no current flows,
so I £ A; = 0A. In addition, the measurement current I, £ A7 .. = 0.12A £ Ay
with

Aq... =0.03%: [heas + 1.5 mA (7.7)
according to [171] flows in the cable. The corresponding total current is [y = I + [},cas With

the uncertainty limit
Alt - AI + AImeas’ (78)

The voltage drop that is measured between the two voltage connections is U 4+ Ay with
Ay =0.02%-U + 350 uV (7.9)

according to [171]. From the total current and the measured voltage drop, the electrical re-

9The measurements were performed by student assistant Julian Hohmann.
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Figure 7.2: Cable temperature determination from the measured quantities using a single

voltage measurement for each temperature calculation. The uncertainty limits
are indicated transparently.
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sistance between the voltage connections is calculated according to

U

Reaple = T (710)
t

The associated uncertainty limit is

Ap =

cable AU _'_

7 Ap,. (7.11)

1
Iy
In the last step, the cable temperature is calculated according to equation (7.4) with the

uncertainty limit

1 Rcable
Ar = PRy e + W—%A&ef + Ar,,. (7.12)

Here, it is assumed that the linear temperature coefficient of the conductor material is exact:
A, = 0. The reference temperature 7}.; and the reference resistance R, are determined via
a reference measurement before the actual temperature measurement as already mentioned
above. Both quantities are recorded several times (in this example 15 times) and the mean
value is used as the measured value. The associated uncertainty limits are calculated from
the individually measured values R..s; and T\t ;, respectively, according to section 5.4.2 of

[172] with the coverage factor 2:

15
1 2 H.Q
Ap. =2 | ———— Rieti — Rret)* = 1.7, 7.13
fret \[15- (15 1) ZZ( b 2 m (7.13)
1 15
Ap =2 | —" Tooti — Toet)* = 1.2- 103 K. 7.14
Tref \ 15 (15_1) ZZ:;( f, f) ( )

Overall, very large uncertainty limits are shown for the temperature. The observed mea-
surement noise is much smaller. The large limits are primarily caused by the offset error
of the voltage measurement, which depends on variables such as ambient temperature and
humidity but is almost constant during measurement. In the case of a load current, the volt-
age that has to be measured is comparatively large, so this offset error plays almost no role
here. In the case without load current, on the other hand, only the small measurement current
flows, so the voltage drop is also very small. Here, the offset error plays a much greater role.
This can also be seen from the fact that the specific temperature curve shows unphysical
jumps at the times when the load current is switched on and off. The noise influence also
becomes greater when the load current is switched off. This is because although the load
current is associated with a comparatively high error margin, this offset hardly varies during
a measurement. An additional source of error can occur here if the load current has to be

measured. Then, on the one hand, the synchronization accuracy between current and voltage
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measurement and, on the other hand, the accuracy of the current measurement itself plays a
role. Overall, it can be stated that this simple measurement approach is not suitable for tem-
perature detection at small or vanishing load currents, in particular, due to the offset error of
the voltage measurement. To reduce this error, a suitable calibration has to be performed in

advance.

b) Differential Measurement Approach

An alternative to calibration for the elimination of the voltage measurement offset error
is the use of a differential measurement approach, which was originally proposed in [174].
In this approach, only the voltage drop that directly follows from the measurement current
is evaluated. That is why the corresponding voltages for negative and positive measurement
currents are compared. As it is not possible to measure both of those voltages at the same time
and due to the changing cable temperature, three voltage measurements are performed as
shown in figure 7.3: From the first and third measurements, which use the negative measure-
ment current, an estimation for the voltage drop in the middle between those measurements
is calculated using linear interpolation. At this central time, the voltage drop is measured
using the positive measurement current. By evaluating the difference between the voltages
for positive and negative measurement current and referring it to the measurement currents,

the cable resistance is calculated independently from the load current:

2, — Uy —Us 22Uy — Uy — Us

= 7.15
212 - Il - I3 4Imeas ( )

Rcable =

The temperature determination via this procedure is shown together with the associated un-
certainty limits in figure 7.4. For the individual measurement currents and measured voltages,
the offset error plays a role as in the previous section. This offset can be easily recognized
by the differences in the absolutes of the measured voltages with positive and negative mea-

surement current (3.8 mV vs. 3.3 mV). However, since this offset is almost constant during

current

T+ Lincas % &
R
i 7 ¥ time
voltage ' 3
U.
AU,
15 ;I Uy + Us
2 ¥ time

Figure 7.3: Three-point measurement to eliminate load current dependence.
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Figure 7.4: Cable temperature determination from the measured quantities using three volt-
age measurements for each temperature calculation. The uncertainty limits are
indicated transparently.
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measurement, it is eliminated by the difference calculation. For the case with load current,
however, the voltage difference is now in a different order of magnitude than the originally
measured voltage (15.5mV vs. 0.3 V). The relative error is thus amplified, resulting in more
noisy data. Overall, with the load current turned on, the determined temperature is much
noisier than before. In the case of cooling, the error is considerably smaller and the unphysi-
cal jumps no longer occur. Only at the moment of load current switching off, a single outlier
appears: If the load current is switched off between the three related measurements, the volt-
age curve can no longer be described by the assumed linear approximation and the current
values do not satisfy the assumptions. Accordingly, this one measured value is incorrect and
cannot be used.

The direct comparison between the results of both measurement variants is shown in fig-
ure 7.5. Overall, the differential measurement shows noisier data with somewhat lower un-
certainty limits for the case with load current, but the case without load current is recorded
much better. Therefore, this approach will always be used in the further course of this thesis.

o ol TN -
OQ single measurement
; 20 i ~ — differential measurement
0
-20

0 250 500

tin s

Figure 7.5: Temperatures and uncertainty limits for both measurement approaches.

¢) Post-Processing

The temperature data originally collected from the measurement are post-processed in
three steps. These are presented in the following. In the first step, the time axis is adjusted
so that at the time ¢ = 0s the current is switched on. In the second step, the outliers are
corrected, which were already mentioned above and resulted from changes in the load current
during the three related measurements. For this purpose, those points 7 are searched where
|T; — T;+1| > 5 K. The temperature value at location i + 1 is then replaced by the average
of the two surrounding values 7; and T;,-. Because of the very noisy measured values due
to the different magnitudes of the measured voltages and the differential voltages with load
current, filtering is necessary. In principle, different approaches such as low-pass filtering
or moving average filters [175] can be used here. In this thesis, moving average filters over
41 points (symmetrically less towards the edges) are always used. In order not to falsify the
kink in the temperature when the load current is switched off, an edge is also set here for the
filtering. An overview of the individual steps with exemplary curves is shown in figure 7.6.
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Figure 7.6: Post-processing of the measured temperature data.

d) Other Errors

Up to now, mainly the direct influence of the measurement technology on the measured
cable temperatures has been investigated. This caused a deviation between the measured
temperatures and the temperatures that actually occur. In addition, other errors can arise due
to the non-ideal use of the measurement technology: For example, suboptimal contacts can
cause highly noisy measurement data or systematically too high measured voltages, or cable
breaks in the connections can make measurement impossible. These deviations caused by
incorrect handling must therefore be avoided.

In addition, the inner conductor temperatures can differ from the temperatures occurring
in the ideally laid cable without measurement equipment due to different influences. For the
contacts for the voltage measurements, the cable is locally damaged as the insulation is re-
moved and thermal bridges are introduced. Thus, the cable temperature locally drops. How-
ever, the influence of this decrease on the measured temperature is negligible, because in this
thesis always sufficiently long cable sections are provided between the voltage connections,
so the average cable temperature is only minimally influenced by the local changes. In prin-
ciple, there are also influences at the current insertion points, where additional heat sources
are generated in case of poor contact. However, since the voltage measurement is performed
comparatively far away from this, these errors are also not relevant. The real setup differs
from an installation purely in the air. On the one hand, additional elements appear near the
cable due to the measurement equipment, and on the other hand, the cable is set up at a
height of about 15cm to 30 cm above a tabletop. Both effects restrict free convection, but
this effect is so small that it hardly causes any distortion of the measured data. The occur-
rence of additional airflow in the laboratory that has not been recorded or taken into account
is more critical. Then, in addition to the considered free convection, forced convection oc-
curs, which cannot be reproduced. The influence caused by this additional heat dissipation
cannot be directly measured and thus quantified, but it is estimated to be a few Kelvin. As
an alternative to laying the cables freely in the laboratory with the associated possible forced
convection, the measuring box from [174] is available for the measurements, in which the
cables can be placed. The measurement equipment is then connected through small open-

ings. This significantly reduces the forced convection, but the free convection is even more
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restricted than before and the ambient air in the measurement box heats up more due to the
hot cable than in the overall laboratory without a box. Overall, similar temperature changes
are expected as in the case without a measurement box, but these cannot be quantified here
either. In this thesis, both approaches, i.e. placing the cable freely in the air and placing the
cable in the measurement box, are used. Overall, the expected temperature deviations due to
the additional mentioned effects are below the uncertainty limits caused by the measurement

equipment.

e) Exemplary Study on Reproducibility

To analyze the reproducibility of the measurement results between repeated measurements,
several measurements are performed using the exemplary twisted pair cable from section
7.2.1.a) again. This time, the twisted pair cable is loaded with 5A, 7.5A, and 10 A, on
one or both cables. The different measurements!® are summed up in table D.2. The steady-
state temperature is calculated via averaging over a period of 60s in the flat temperature
range. To exclude slightly different ambient conditions, the difference between the measured
temperatures and the mean value of the steady-state ambient temperature is evaluated. As an
example, in figure 7.7 the curves for (a) the loaded (case 1) and (b) the unloaded (case 4)
cable at a current of 10 A in one conductor are shown. It can be observed from this figure
that the measured temperatures can vary even after correction with the ambient temperature.
In the next step, the deviation of the steady-state temperatures obtained for the different load
cases (corrected with the mean value of the ambient temperature for the steady state) from

the mean value of this quantity is shown first as an absolute value (in Kelvin)
ATl?hbs = Ttst — Te — mean(Tstst - Te) (716)

and then also relative to the mean value

Tstst - Te - mean(T‘stst - Te)

AT, = 7.17
rel mean(j—‘stst _ Te) ( )
e I — I — :‘
5 20 : O e e
I~ 10 | | 10 | | meas. 1 meas. 3
&' stat. 1 stat. 3
0. i i Ol i i mesas. 2 meas. 4
0 100 200 0 100 200 = = =gfgt 2 = = =gigt. 4
tin s tin s

(a) (b)
Figure 7.7: Comparison between several measurements with current 10 A. Measurement of

(a) loaded cable (case 1) and (b) unloaded cable (case 4).

10The measurements were performed by student assistant Julian Hohmann.
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Figure 7.8: Comparison between several measurements for different load cases. (a) Absolute
and (b) relative deviation from the mean value.

The results are presented in figure 7.8. In nearly all investigated cases the temperature differ-
ences are within 1 K, only in a single loading case do higher deviations occur. In relative
terms, this is equivalent to a maximum of 7 %. These deviations must be kept in mind, espe-
cially if statements about the general behavior and the required parameters are determined
from individual measurements: The measurement results presented in the further course of

this thesis are therefore not exact, but can show deviations of up to a few Kelvin.

7.2.2 Thermocouple Temperature Measurement

For the measurement of the axial cable temperature distribution, often thermocouples can
be used. Those consist of two metallic wires of different materials that are connected at one
side (hot junction) [142, p. 631]. Then, at the other wire ends (cold junction), a voltage drop
between those two wires appears that depends on the temperature difference between the
connected and the unconnected wire ends due to the Seebeck effect [176, 177]. Different
metal combinations can be used for this purpose. In this thesis, type K thermocouples are
chosen, which consist of Chromel and Alumel [178]. They are widely spread due to the
nearly linear temperature dependence of the thermocouple voltage (about 40 1V /K) and the
wide application range (—200 °C to 1260 °C) [176, pp. 92-96] in combination with low costs.

For the evaluation of the thermocouple voltage and the conversion to a temperature, dif-
ferent boards and instruments are available. Typically, an amplification of the relatively low
thermocouple voltages is used in combination with a compensation of the cold junction tem-
perature. To protect the sensitive electronics from damage and ensure the designed behavior,
the thermocouples themselves have to be installed electrically insulated from the cable po-
tential and the potentially high currents. This can for example be achieved by using Kapton
tape, which is electrically insulating but thermally comparatively conductive.

To measure the local cable temperature, the thermocouple has to be connected thermally
to the conductor. The temperature at the hot junction has to be as close as possible to the
searched conductor temperature, so the measured temperature directly depends on the qual-
ity of the thermal connection between the cable and the thermocouple, which has by far the

most important influence on the accuracy of the measured temperature in most cases. In ad-
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dition, the thermocouple itself influences the measured temperature: As a thermal connection
between the conductor and the thermocouple is necessary, the thermocouple leads away heat
from the conductor itself and therefore influences the measurement, especially for very thin
cables. This effect is studied in section 7.3.2. Other uncertainties coming from the measure-
ment equipment as the amplifier or the voltage reading are not further evaluated here, as their
influence on the overall measured temperature is negligible compared to the earlier described
effects. Nevertheless, overall, the accuracy of the thermocouple temperature measurement is
assumed to be worse than for the indirect temperature due to the retroactive effect and the
highly sensible dependence on the thermal contact quality.

7.3 Validation of the Analytical Solutions

In this section, the analytical solutions for selected different cable arrangements are val-
idated and analyzed using copper cables with polyvinyl chloride (PVC) insulation. For
the copper conductors, the specific heat capacity per volume c. = 3.4 - 10°J/(Km?),
the thermal conductivity A. = 386 W/(Km), and the linear temperature coefficient nr =
3.93-1073 1/K are used. For the PVC insulation layer, the specific heat capacity per volume
¢; = 2.245 - 10° J/(Km?®) and the thermal conductivity A; = 0.21 W/(Km) are assumed.

7.3.1 Single Wire Cable

At first, the solutions for a single wire cable are analyzed. After a comparison of the analyt-
ical solution with the numerical solution and measurement results, the convergence behavior
of the Green’s functions solutions and the influence of the cable length are analyzed followed

by a complexity analysis of the presented solutions.

a) Analytical Solutions vs. Numerical Reference Solutions

In this section, the analytical methods are validated via comparison with numerical refer-
ence solutions for a 6 mm? single wire copper cable (conductor radius 7, ~ 1.4 mm, resis-
tivity p = 1.86-10~® Qm at 20 °C, length £ = 1 m). The insulation (outer radius r; = 2 mm)
consists of PVC. Att = 0s, a constant current of 70 A is switched on at ¢ = 0's. The ambient
air temperature 7, and the initial cable temperature 7j are 15°C. One cable termination is
fixed at the temperature 77 = 10 °C, the other termination has the temperature 7, = 50 °C.

For this cable, the transient axial temperature distribution is calculated using three numer-
ical solutions (MATLAB function “pdepe”, see section 7.1.1.b); Simscape, see section 7.1.2
and COMSOL,, see section 7.1.3) and the presented analytical solutions (see sections 6.1.1.c)
and 6.1.2). For the solution via Green’s functions in the time domain, n.,,x = 1 is used as
the upper limit of the sum, for the solution via Green’s functions in the Laplace domain,
Nmax,icinh = 10 1s used as the upper limit for the parts resulting from the initial conditions
and the inhomogeneity, 1max bc = 2000 is used for the part from the boundary conditions. In
section 7.3.1.c), the convergence behavior of those two solutions is analyzed.
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In figure 7.9, the results for the calculated temperature along the cable at ¢ = 1000 s and
the time-dependent conductor temperature in the central cable section are shown. All results
fit well together. That is why in the next step, the absolute differences between the calculated
temperatures and the solution via COMSOL are evaluated as presented in figure 7.10. For
all solutions, maximum deviations of about 2.5 K are the result. Only for the semi-infinite
solution, as expected, on the second half of the cable, much higher deviations appear because
there, the corresponding second boundary condition is not considered.

In the derivation of the solutions for the implicitly nonlinear PDE (5.51), a two-step proce-
dure was used: First, the linearized form of the differential equation was solved (see section
6.1.2). In the second step, the temperature dependence of the parameters P/, and G’ (in the

t =1000s z=05m

.......... “pdepe”
30 7 \ 80 ) e I (S Simscape
O / / ---------- COMSOL
Og 60 I 60 / finite (Lap.)
; 40|I 40 finite (Green time)
20 20 finite (Green Lap.)
! = = = infinite
0 0.5 1 O 500 1000 = = =semi-infinite
zinm tins

(@) (b)
Figure 7.9: (a) Axial cable temperature distribution in the steady state and (b) transient tem-

perature development in the central cable section. Most of the data in this plot
were already published in [A.3].
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1000
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Figure 7.10: Absolute differences between temperatures calculated with COMSOL and the
other numerical and analytical solutions, respectively. Most of the data in this
plot were already published in [A.3].
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Figure 7.11: Procedure for the analysis of the influence of the iterations.

elements By, and Cs, of the PDE) was taken into account by applying a superimposed fixed
point iteration (see section 6.3.4). This adds a numerical part to the purely analytical solution,
which increases the computational effort. Therefore, the influence of this iteration is now an-
alyzed. For this purpose, the procedure shown in figure 7.11 is used: The cable and surface
temperatures 7" and 7T; are first initialized with an estimated temperature 7gycs. This is used
to calculate the parameters P, and G’ and then the conductor temperature 7". Thus, this tem-
perature Ty, /,i; represents the result without iteration. Then the first iteration follows: The
surface temperature is calculated. Based on this, the recalculation of the parameters and the
conductor temperature after one iteration, 71, follows. Besides the calculated temperature
without iteration and after one iteration, the temperature after convergence of the fixed-point
iteration with Az, = 0.001 K is determined. For comparison, the solution of the PDE is
also calculated using the MATLAB function “pdepe”.

In the following, the 6 mm? copper cable from above is again analyzed. For the ambient,
initial, and termination temperatures, 1, = 1Ty = 171 = T, = 60°C is assumed. For the
currents / = 15A and I = 70 A, the corresponding temperature curves at the cable center
(2 = 0.5 m) without iteration, after the first iteration, after convergence, and from the numeri-
cal solution for the estimated initialization temperatures, 7ess = 60 °C and Tiyess = 105°C
are compared in figure 7.12. It is shown that the analytical solution after convergence fits
well with the numerical solution, but especially the solution without iteration can deviate
significantly from the actual temperatures. Already the first iteration leads to massively im-
proved temperatures. The calculated temperatures without iteration can be both higher and
lower than the actual cable temperature. It is also possible that already without iteration a
good agreement between analytical and numerical solution results. To investigate the occur-
ring effects more precisely, the absolute (AT,,s) and relative (AT;,)) differences between the

analytical and the numerical solution are determined:

T - Tnum

(7.18)
Tstst,num,mid - Te

ACTaLbs = ‘T - Tnum| 5 AiTrel = ‘
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Figure 7.12: Comparison between analytically calculated temperatures with and without it-
erations and numerically calculated temperatures for different currents and ini-
tialization temperatures.

For the determination of the relative temperature difference, the temperature difference is
related to the temperature deviation from the ambient temperature for the steady state in the
center of the conductor, Ty num,mid- 101 equally distributed time points between Os and
1000s as well as 101 equally distributed positions along the cable between 0 m and 1m
are considered. After the absolute and relative differences are calculated point by point, the
results are further processed: On the one hand, the average (mean) is taken over the entire
(z,t) range, and on the other hand, the maximum (max) is determined.

Using this approach, the accuracy of the estimated temperature as a function of the load
current is investigated first. The results are shown in figure 7.13 for Tyyess = 105°C. It
can be seen that the absolute error increases, but the relative error decreases as the current
increases. The absolute error is on average below 1 K, so a good overall agreement is found
even without iteration. For small currents (and thus also small temperature increase compared
to the environmental temperature), the relative deviation can nevertheless exceed 25 % at the
maximum, but after only one iteration this is already significantly reduced.

The dependence on the estimated temperature 7Ty, is investigated for I = 70 A in fig-
ure 7.14. Here, a peak at the position of the ambient temperature appears: If the ambient
temperature is assumed for the conductor and surface temperature, the heat transfer between
the cable surface and the environment is significantly limited, so the cable reaches higher
temperatures and the occurring mean absolute differences are higher than before. Therefore,
the choice of the assumed initialization temperature plays an important role in the quality of
the temperature estimation without iteration.

Overall, even the first iteration can cause a massive improvement in the accuracy of the
temperature estimation. This also shows the very fast convergence behavior of the iteration.
Therefore, in the further course of this thesis, always the solution with iteration is used.
In principle, however, the direct analytical solution without iteration can also be used for a
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Figure 7.13: Mean and maximum values of the absolute and relative temperature differences
dependent on the load current.
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Figure 7.14: Mean and maximum values of the absolute and relative temperature differences
dependent on the estimated initialization temperature.

first temperature estimation if the initialization temperature is suitable and/or only a small

temperature rise compared to the environmental temperature appears which corresponds to

small currents.

b) Analytical Solutions vs. Measurement Results

In this section, the previously derived calculation formulas are compared to measurement
results. This section is based on [A.9]. A 1.5 mm? single wire copper cable (cable data see
table D.1, cable @) with PVC insulation and the length £ = 1.5m is analyzed. This ca-
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ble is connected to large copper plates to fix the cable termination temperatures at constant
values during the short measurements. The probe connections for the indirect temperature
measurement are at the positions z = 0.35m and z = 1.15m, and at the positons z = 5 cm,
z = 10cm, and z = 75cm thermocouples are connected to the conductor. At the time
t = 0s, acurrent I = 30 A is switched on.

In the cable modeling, by now, a solid conductor was assumed. Unlike, the analyzed flex-
ible cable consists of several strands with small air gaps in between. That is why an effec-
tive copper cross-section and a geometrical cross-section are introduced. The analyzed cable
consists of 30 strands (diameter dg;ang = 0.25 mm). Thus, the copper-filled area A, and the
effective copper radius 7. ¢ are

ACO

™

d 2
Ao =307 (tTnd) ~147Tmm? = 1. g = ~ 0.68 mm. (7.19)
This effective radius is used for the parameters that characterize the conductor, namely the
thermal per unit length capacitance for the conductor C. and the axial thermal per unit length
resistance R'. For the parameters that describe the insulation, the geometrical inner insulation
radius is relevant. From the outer cable radius ; = 1.7 mm and the insulation layer thickness

d; = 0.7 mm, the inner insulation radius
Tc,geom = T1 — di = 1mm (720)

is calculated. This value is used for the parameters for the insulation, namely the thermal per
unit length capacitance for the insulation C; and the thermal per unit length resistance R/ that
is used to model the heat flow through the insulation.

In the calculation of the per unit length resistance R (see section 5.2.2) the modeled insu-
lation was a perfect hollow cylinder. In the real cable, the insulation is defined by the strands
and therefore significantly differs from this assumption (see figure 7.15, cross-section of the
insulation). The green circle represents the outer insulation circumference, the black circle
shows the assumed inner insulation circumference and the yellow curve shows the real inner
insulation surface. As the yellow curve is much longer than the black one, the coupling area
between the conductor and the insulation is much higher than considered before. Assuming
that the heat flow depends on the coupling area, thus, the correction factor k; for the per unit
length resistance R is introduced as the relation between the lengths of the black and the
yellow curves:

ki~07= Rl .=k-R. (7.21)

i,corr

This value is used throughout this thesis for all stranded conductors if not stated differently.
During the measurement, the cable heats the environment (see figure 7.16(b)). Due to the

low variations, in the calculations, the constant temperature 25 °C is assumed, which is as
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well the temperature at the cable terminations and the initial cable temperature. In figure
7.16, the axial (a) and transient (b) results are shown. For the transient case, in addition, the
absolute difference between the calculated temperatures and the temperatures measured with

outer
circumference

inner
circumference

Figure 7.15: Cross-section of the insulation with the assumed outer circumference (green),
inner circumference (black), and the real inner surface (yellow). A similar figure
was earlier published in [A.9].
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Figure 7.16: (a) Axial cable temperature distribution for the two different times ¢ = 100s
and ¢ = 450s. (b) Calculated and measured transient temperature development
at the fixed positions z = 5cm, z = 10 cm, and z = 75 cm (cable center). Ab-
solute values and deviation from the thermocouple measurement results. Most
of the data in this figure were already published in [A.9].
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the thermocouples is presented. The differences are lower than 8 K for all cases. As expected,
the temperatures that are measured with the thermocouples are lower than the calculated
temperatures because the thermocouple itself leads away heat from the conductor. As the
difference between both performed measurement approaches lies in the same magnitude as
the differences compared to the calculations, all in all, good accordance between calculation

and measurement is found.

¢) Convergence Behavior of Green’s Functions Solutions

In this section, the convergence behavior of the Green’s functions solutions is evaluated us-
ing the 6 mm? single wire copper cable already known from section 7.3.1.a) with the reduced
length £ = 0.1 m because especially for short cables, the approximation from the Laplace
solution is not valid and additional addends lead to better accuracy. The environmental air
temperature 7, and the initial cable temperature 7j are both 25 °C and the cable termination
temperatures are 77 = T, = 50°C. As a numerical reference, the corresponding calculated
temperature using the MATLAB function “pdepe” (see section 7.1.1.b)) is used. This section
is based on [A .4].

In figure 7.17, for the analysis of the convergence behavior of the Green’s functions series
solutions (7 for time-domain Green’s functions, T, for Laplace domain Green’s func-
tions), the deviations between the calculated temperatures and the reference are presented for
the beginning and the center of the cable depending on the number of considered addends. In
addition, the corresponding deviation for the Laplace domain solution with approximation

(T1.a, see section 6.1.2.a)) is given, which shows a much larger deviation than most of the

z=0cm z=>5cm
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Figure 7.17: Deviation between analytically and numerically calculated temperatures de-
pending on the number of addends at (a) the beginning and (b) the center of
the cable. The data in this plot were already published in [A.4].
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Green’s functions-based solutions. In the second line, a zoom to the first few addends is
given. Only the Green’s functions solution from the Laplace domain with consideration
of different cable termination temperatures shows higher deviations and very slow conver-
gence behavior. Due to the unsteady behavior of this solution near the cable terminations, the
slightly higher value z = 1 mm was used for the calculation at the cable beginning. The bad
convergence behavior limits the practical applicability of this solution, as many addends have
to be taken into account for a precise result, which also massively increases the calculation
effort.

d) Influence of Cable Length

In section 6.1.2.a), an approximation was used to enable an analytical transformation of
the Laplace domain solution to the time domain. This approximation is analyzed in this
section. At first, the approximated and analytically transformed solution is compared to a
numerical inversion (Gaver-Stehfest-algorithm [115], parameter M = 3) of the Laplace do-
main expression from equations (6.32) and (6.34) without approximation for a 6 mm? ca-
ble. This analysis is based on [A.3]. For the ambient, initial, and boundary temperatures,
T, =Ty = Ty = Ty = 25°C is used. For the three cable lengths £ = 0.3m, £ = 0.5m,
and £ = 1 m, figure 7.18(a) shows the analytically and numerically calculated temperatures
and their differences along the normalized axial coordinate z/L for the time ¢ = 1000s. In
figure 7.18(b), the corresponding time-dependent temperature development for the central
cable section is shown. For the longest cable with length £ = 1 m, analytical and numerical
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1 100
o 80
= 60
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Figure 7.18: Deviation between temperature development calculated with approximation and
analytical solution vs. numerical transformation back into time domain for dif-
ferent cable lengths. (a) Axial temperature distribution at ¢ = 1000 s. (b) Tran-
sient temperature development in the central section of the cable. Most of the
data in this plot were already published in [A.3].
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solutions match well (difference much lower than 1 K). For the shorter cables, higher devia-
tions appear, which shows that then, the approximation of the Laplace domain solution can
lead to errors.

The following considerations concerning this effect are based on [A.4]. At the cable’s
beginning and in the central section of the cable, the deviation between analytically and
numerically calculated cable temperatures at the time ¢ = 1000 s is shown depending on the
cable length in figure 7.19. An exponential growth of the deviations of the approximation
for short cables is observed, which also appears (for lower cable lengths) when using only
one additional addend from the Green’s functions solution in the time domain. Using five
addends from this solution or ten addends from the Laplace domain solution for identical
cable end temperatures leads to good accordance over the complete analyzed area down to
cable lengths of 0.1 m. In the central cable section, the consideration of additional addends
also improves the accuracy for short cables. For longer cables, the Laplace domain Green’s
functions solution shows a worse behavior than the time domain Green’s functions solution.

To analyze the influence of the cable cross-section area on the accuracy of the Laplace do-
main solution with approximation, a critical cable length L., is introduced in [A.4]. For this
critical cable length, the steady-state temperature in the central cable section is compared to
the reference and the maximum length is chosen under which the deviation exceeds 3 K. For
the cables whose parameters are given in table D.3 those critical cable lengths are calculated
using the bisection method (see also section 6.3.2.a)) with an allowed uncertainty of 1 mm
loading each cable with a current that leads to a steady-state central cable temperature of
(100 £ 0.2) °C. The results are shown in figure 7.20. The observed relation between conduc-
tor radius and critical cable length is linear, which means that especially for comparatively
short cables with high cross-sections, the approximation from section 6.1.2.a) leads to errors.
Then, the use of Green’s functions-based series formulations can improve the accuracy.

approximation series (time domain), 1 term
-------- series (Laplace domain), T} =T == == series (time domain), 5 terms
, t=1000s, = = 0L Jt = 10005, z = 0.5L
10T 10|
f" 0 l 0 I
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(a) (b)
Figure 7.19: Deviation between the analytically and numerically calculated temperatures de-
pending on the cable length (a) at the beginning and (b) in the central section of
the cable after £ = 1000 s. The data in this plot were already published in [A.4].
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Figure 7.20: Critical cable length depending on the conductor radius. Comparable data were
already published in [A.4].

e) Complexity Analysis
The comparison of the calculation efforts of the different solutions, which is presented in
this section, is based on [A.3]. The total calculation effort for the analytical solution

J
€total = Epre + (esol + eit) : Z imax,j (722)

j=1

depends on the effort for the precalculations e, (identical for each combination (z,t)), the
effort for the necessary calculations in each iteration to update Bs,, and C,, (e;;), the effort of
the temperature calculation itself (es,1) and the number of necessary iteration Steps i,y j for
each combination j of z and ?. e 1., describes the solution via approximation in the Laplace
domain (see section 6.1.2.a)), es1.G» 1S the additional effort for solution calculation with
Green’s functions in the time domain for each addend n (see section 6.1.2.b)) and ego1 gL n
the effort for solution calculation with Green’s functions in the Laplace domain for each
addend n (see section 6.1.2.c)). In table 7.1, the numbers of mathematical operations for
the different solution parts are given. Those numbers are meant to give a rough approach
to the complexities of the different solutions but are highly dependent on the exact form
of the used expression for the solutions. Optimizations could be performed to reduce those
numbers. In contrast to the analytical solutions, the simplest numerical method is the first
order or Euler method ([150], see also section 7.1.1.a), €so1 ruler). The usage of different
methods may on the one hand increase the accuracy of the calculated temperatures, but on the
other hand, also leads to greater calculation effort. So, the usage of the Euler method allows
finding a minimum for the numerical calculation effort. The iteration for the consideration
of the nonlinear parameter dependence is different here as no recalculation of temperature is
necessary: The last parameter values are used for the calculation of the next time step. The

overall effort, therefore, is

J

€total,Euler — Epre + €sol - J + €it - E imax,j~ (723)
Jj=1
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Again, in table 7.1 the necessary operations for the temperature calculation of a single time-
spatial point are counted.

To find an overall effort estimation, the operations are weighted due to their individual
calculation effort. This highly depends on the used implementations. As the first approach,
here, the analysis from [179] is used. There, factors for multiplication, addition, division,
square root, and exponential functions are given. Based on these data, the effort for the other
operations is estimated (red entries in table 7.1). This estimation is meant to give a rough
approach. If, for example, for multiplication, a higher effort is necessary than for addition,
the individual numbers would change, but the basic statements that are found in the following
would still hold. For the different solutions, the weighted sums of the elemental operations
are calculated (see table 7.1) via the following dependencies:

epre = 11wy + 2w, + 3wq + dw, + wy, (7.24)
eit = 40wy, + 27w, + 6wq + wy, + 21w, + 3wy, (7.25)
€sol,La = 30wy + 14w, + 8wy + 11w, + dwy + Tw, + 6w, (7.26)

€s0l,G = Mmax * (D8Wr, + 20w, + 12wq4 + 28w, + 8wy + bw, + 12we) + €sol 1, (7.27)
€sol,GL = Mmaxi * (TWm + 6w, + 4wy + wy + 4w, + wy)

+ Nmax be * (W + 3w, + 3wg + wy + 3w, + 2ws) + 2wy, + 2wy, (7.28)

EsolEuler = W + 6w, + 2wq + wj,. (7.29)

Here, ey, 18 the effort for solution calculation with Green’s functions in the time domain

(see section 6.1.2.b)) and e, 1, 18 the effort for solution calculation with Green’s functions

Table 7.1: Complexity analysis for different solutions. Most of the data in this table were
already published in [A.3].

€pre Cit €sol,La  €sol,G,n €s0l,GL,n €sol,Euler Weight

ic+inh bc [179]
multiplication | 11 40 30 o8 7 9 4 Wy = 1
addition | 2 27 14 20 6 3 5 w, =1
division | 3 6 8 12 4 3 2 wy = 4
square root | 0 0 11 28 0 0 0 wy =4
exponential function | 0 0 ) 8 1 1 0 wy =8
absolute value | 0 1 0 0 0 0 0 wp = 1
allocation | 5 21 7 5 4 3 0 w, =1

error function | 0 0 6 12 0 0 0 We =
sine | O 0 0 0 1 2 0 W = 8

power (non-integer) | 0 3 0 0 0 0 0 wp =
natural logarithm 1 0 0 0 0 0 0 w =8

weighted sum (example) | 38 137 215 403 49 51 17
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in the Laplace domain (see section 6.1.2.c)). As expected, the effort for the Euler method
is lower than for the analytical approaches. But those approaches also go ahead with an ad-
vantage: As all combinations (z, t) are calculated independently from each other, precasting
the temperature far in the future (for constant conditions) is no more expensive concerning
calculation effort than the calculation of a very close time step, as no discretization is needed.
Thus, the necessary calculation effort can be reduced compared to the numerical solution,
although the effort for a single combination is higher than in the simplest numerical case.

7.3.2 System of Single Wire Cables

In this section, the model for a system of single wire cables from section 6.1.3 is validated
with measurement results. This section is based on [A.7]. For this purpose, a 0.14 mm? PVC-
insulated copper cable with the length £ = 1.61m is loaded with the current / = 6.5 A.
Along the cable, between z = 18 cm and z = 143 cm, the indirect temperature measurement
is performed. In between those two connections, thermocouples are connected to the cable
with a distance of 25 cm. In this way, the temperature is measured directly at the connection.
This setup is shown in figure 7.21.

In addition, the environmental temperature is measured and only the differences concern-
ing this temperature are compared for different measurements. The results are shown in fig-
ure 7.22. As expected, the temperatures measured with the indirect temperature measurement
are higher than the temperatures measured with thermocouples. For comparison, the indirect
temperature measurement is additionally performed without any connected thermocouples,

Ocm 18cm 43 cm 68 cm 93 cm 118 cm 143cm 161 cm
| | | | |

|
[ I I I I I I 1

voltage pickup contacted thermocouple

analyzed cable

current source
lClﬂpL‘l‘Llllll’L‘ measurement with th‘l‘[ﬂUCUlIPICS

Figure 7.21: Measurement setup for combined indirect temperature measurement (yellow)
and thermocouple measurement (green).
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= indirect without thermocouple
indirect with thermocouple
thermocouple 0.05 mm
thermocouple 0.11 mm
thermocouple 0.15 mm
thermocouple 0.16 mm

0 100 200 300
tin s
Figure 7.22: Measurement results for different thermocouples and indirect temperature mea-
surement. For the thermocouples, the wire radius 7. is given.

which leads to the highest values. For the different thermocouples (especially different wire
radii) it can be systematically observed, that the measured temperatures are higher for smaller
thermocouple wire radii 7.

The predictions from the presented model and the real measurement results are compared
in the following. In the model, a continuous cable is assumed. Both wires of the thermocouple
are combined into one effective conductor with the same overall conductor area, which leads
to the radius

Tteeff = \/értca (7.30)

where 7. is the real thermocouple wire radius. In the middle of the first cable, a second cable
is thermally connected assuming an ideal thermal coupling and electrical insulation from the
conductor potential as shown in figure 7.23.

The current / flows through the complete first cable and no current is assumed to flow in
the second cable. Both cables are modeled with the inner conductor material copper and the
insulation material PVC. As the real thermocouple does not consist of these materials, this is
a first approximation: In the real thermocouple as well, metal inner conductors and insulating
surroundings are used, but the chosen materials vary. It is expected that the error due to the
not perfectly fitting parameters is low, especially in comparison with other assumptions (one
effective inner conductor instead of two separated conductors, neglection of the