
User Support for Software Development Technologies

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Anna Vasileva

Dortmund

2022

Dekan: Prof. Dr.-Ing. Gernot Fink
Gutachter:

Prof. Dr. Jakob Rehof (Technische Universität Dortmund, Deutschland)

JProf. Dr.-Ing. Ben Hermann (Technische Universität Dortmund, Deutschland)

Acknowledgments

First, I’d like to thank my advisor, Prof. Jakob Rehof, who was always a source of inspiration,

suggestions, and support during my doctoral journey. I am very thankful for not only the job

and encouragement but also the discussions, guidance, new ideas, and further training in type

theory. Your enthusiasm for the topic was an inspiration during my diploma thesis almost

eight years ago and a basis for my initial ideas. It has been an honour to be your PhD student.

Many thanks to Prof. Ben Hermann, who was so kind to support me during this last step on

my PhD journey. I would also like to thank my other committee members, Prof. Falk Howar

and Prof. Peter Buchholz.

I would like to thank Prof. Petra Mutzel and Dr. Doris Schmedding for their many tips, mental

support, and encouragement as mentors. and Prof. Boris Düdder for believing in me at the

beginning of my PhD.

Many thanks go to my former colleague Dr. Jan Bessai for sharing an office with me and for

the great time during a summer school in Ohrid, Macedonia; numerous tips, discussions,

understanding, and his patience until the end.

I would like to thank the entire team of the chair for Software Engineering, Ute Joscko, Sevda

Tarkun, and Dr. Lars Hildebrand for their incredible support. Thanks especially to Fadil

Kallat, Felix Laarmann, Tristan Schäfer and Jan Winkels for the practical application of the

visualisation and debugging support, as well as for providing complex use cases for evaluating

and improving this work. I would also like to thank Moritz Roidl for the discussions, the

practical use cases in the field of cyber-physical systems, the introduction to a new research

field, and for enabling me to stay in Dortmund and finish my PhD.

Finally, I want to thank my family in Bulgaria and my friends for their moral support through-

out this experience.

Further, I thank my boyfriend Lutz for his great moral support and calmness when things were

not going well. Thank you for being so patient.

iii

iv

Abstract

The adoption of software development technologies is very closely related to the topic of

user support. This is especially true in early phases, when the users are not familiar with the

modification or the build processes of the software that has to be developed nor with the

technology used for software development. This work introduces an approach to improve

the usability of software development technologies represented by the Combinatory Logic

Synthesizer (CL)S Framework. (CL)S is based on a type inhabitation algorithm for the combi-

natory logic with intersection types and aims to automatically create software components

from a domain-specified repository. The framework yields a complete enumeration of all

inhabitants. The inhabitation results are computed in the form of tree grammars. Unfortu-

nately, the underlying type system allows limited application of domain-specific knowledge.

To compensate for this limit, this work provides a framework for debugging intersection type

specifications and filtering inhabitation results using domain-specific constraints as main

aspects. The aim of the debugger is to make potentially incomplete or erroneous input speci-

fications and decisions of the inhabitation algorithm understandable for those who are not

experts in the field of type theory. The combination of tree grammars and graph theory forms

the foundation of a clear representation of the computed results that informs users about the

search process of the algorithm. The graphical representations are based on hypergraphs that

illustrate the inhabitation in a step-wise fashion. Within the scope of this work, three filtering

algorithms were implemented and investigated. The filtering algorithm integrated into the

framework for user support and used for the restriction of inhabitation results is practically

feasible and represents a clear improvement compared to existing approaches. It is based on

modifying the tree grammars resulting from the (CL)S Framework. Additionally, the usability

of the (CL)S framework is supported by eight perspectives included in a web-based integrated

development environment (IDE) that provides detailed graphical and textual information

about the synthesis.

v

vi

Zusammenfassung

Die Einführung von Softwareentwicklungstechnologien ist sehr eng mit dem Thema der

"Benutzerunterstützung" verbunden. Dies gilt primär in frühen Phasen, wenn die Benutzer

weder mit den Änderungs- oder Erstellungsprozessen der zu entwickelnden Software noch mit

der für die Softwareentwicklung verwendeten Technologie vertraut sind. In dieser Arbeit wird

ein Ansatz zur Verbesserung der Benutzerfreundlichkeit von Softwareentwicklungstechnologi-

en am Beispiel von dem Combinatory Logic Synthesizer (CL)S Framework vorgestellt. (CL)S

basiert auf einem Typinhabitationsalgorithmus für die kombinatorische Logik mit Intersekti-

onstypen und zielt auf die automatische Komposition von Softwarekomponenten aus einem

domänenspezifischen Repository ab. Das Framework liefert eine vollständige Aufzählung von

aller Inhabitanten. Die Ergebnisse der Inhabitation werden in Form von Baumgrammatiken

berechnet. Leider erlaubt das zugrundeliegende Typsystem eine begrenzte Anwendung von

domänenspezifischem Wissen. Um dies zu kompensieren, bietet diese Arbeit als Hauptaspek-

te das Debuggen von Intersektionstypen und das Filtern von Inhabitationsergebnisse unter

Verwendung von domänenspezifischen Constraints. Das Ziel des Debuggers ist es, potenziell

unvollständige oder fehlerhafte Eingabespezifikationen und Entscheidungen des Inhabitati-

onsalgorithmus für Nichtexperten auf dem Gebiet der Typentheorie verständlich zu machen.

Die Kombination von Baumgrammatik und Grafentheorie bildet die Grundlage für eine über-

sichtliche Darstellung der berechneten Ergebnisse, die den Benutzer über den Suchprozess

des Algorithmus informiert. Die grafischen Darstellungen basieren auf Hypergrafen, die das

Inhabitationsprozess schrittweise veranschaulichen. Im Rahmen dieser Arbeit wurden drei

Filterungsalgorithmen implementiert und untersucht. Der in das Framework zur Nutzerunter-

stützung integrierte Filteralgorithmus, der zur Einschränkung von Bewohnungsergebnissen

verwendet wird, ist praktisch umsetzbar und stellt eine deutliche Verbesserung gegenüber

bestehenden Ansätzen dar. Er basiert auf einer Modifikation der Baumgrammatiken, die durch

das (CL)S Framework entstanden sind. Die Benutzerfreundlichkeit des (CL)S Frameworks wird

zusätzlich durch acht Perspektiven unterstützt, die in einer webbasierten integrierten Entwick-

lungsumgebung (IDE1) enthalten sind und detaillierte grafische und textuelle Informationen

über die Synthese liefern.

1von englisch: integrated development environment

vii

viii

Contents

Abstract (English/Deutsch) v

List of figures x

1 Introduction 1

1.1 Related Work . 3

1.2 Publications . 5

1.3 Overview . 8

2 Theoretical Background 9

2.1 Combinatory Logic Synthesis . 10

2.2 Finite Combinatory Logic with Intersection Types 12

2.3 Tree Grammars . 14

2.4 Translation of Tree Grammars . 16

2.5 (CL)S Scala Framework . 18

2.5.1 Substitution Space . 19

2.5.2 Repository . 20

2.5.3 Inhabitation Request . 21

2.5.4 Subtype Environment . 22

2.6 Visualisation of Tree Grammars . 23

2.6.1 Directed Compound Graphs . 24

2.6.2 Hypergraphs . 26

2.6.3 Comparison . 28

2.7 Satisfiability Modulo Theories . 30

2.7.1 Satisfiability-Modulo-Theory Library . 30

2.7.2 SMT Solver . 32

3 Filtering of Terms 33

3.1 Filtering Based on Satisfiability Modulo Theories 35

3.1.1 Filtering Approach . 35

3.1.2 SMT Script Generation . 36

3.1.3 Limitations . 43

3.2 Filtering with Recursion Based on Tree Grammar Modification 44

3.2.1 Filtering Approach . 44

ix

Contents

3.3 Filtering without Recursion Based on Tree Grammar Modification 47

3.3.1 Filtering Approach . 47

3.3.2 Application of the Filtering Approach . 58

3.3.3 Limitations . 62

3.4 Parser . 63

3.4.1 Translation of Inhabitation Requests . 63

3.4.2 Translation of Filtering Patterns . 65

4 Integrated Development Environment for (CL)S Framework 67

4.1 Architecture Overview . 68

4.2 Technical Implementation . 70

4.2.1 Tree Grammar Visualisation . 71

4.2.2 Web-Based Realisation . 73

4.2.3 Definition of the Debugger Controller . 75

4.3 IDE Perspectives . 78

4.3.1 Application Cases . 78

4.3.2 Result Overview . 81

4.3.3 Solutions Overview . 85

4.3.4 Debugger Overview . 87

4.3.5 Reports . 92

4.3.6 Repository . 94

4.3.7 Taxonomy Overview . 95

4.3.8 Filtering . 97

4.3.9 Covering . 98

4.4 Critical Review . 100

5 Evaluation 103

5.1 Filtering Performance . 104

5.2 IDE Tests . 109

6 Applications and Impact 111

6.1 Automatic Composition of Factory Planning Projects 112

6.2 Planning of Machining Operations for Components using CAM 112

6.3 Synthesising of Cyber Physical Systems . 113

6.4 Motion Planning in Logistic Lab Environment . 114

7 Conclusion and Outlook 119

x

List of Figures

1.1 Overview of the filtering approach by Adams and Might [14] 4

2.1 Tree grammar example . 25

2.2 Tree grammar visualisation as a compound graph 25

2.3 Example of graph (a) and hypergraph (b) . 26

2.4 Visualisation of var rule as a hypergraph . 27

2.5 Visualisation of intersection rule (∩I) as a hypergraph 27

2.6 Visualisation of arrow elimination rule (→E) as a hypergraph 27

2.7 Visualisation of tree grammar G as a hypergraph 28

2.8 Visualisation of term d(d) as a subhypergraph . 28

3.1 Overview of SMT filtering approach . 35

3.2 Visual representation of inhabitant tree . 37

3.3 Representation of a production rule . 38

3.4 Repository for sorting of lists . 40

3.5 Tree grammar for sorting of lists . 41

3.6 Visual representation of term ((mi n de f aul t) ((sor tmap i nv) values)) 42

3.7 Visual representation of term ((mi n de f aul t) ((sor tmap i d) values)) 42

3.8 Tree grammar that constructs left and right associativity 59

3.9 Patterns for left and right associativity . 60

3.10 Patterns for precedence . 61

3.11 Precedence example for 1+2+3∗4 . 61

3.12 Example for a limitation . 63

4.1 Data flow when using the (CL)S-IDE . 68

4.2 Overview of the web realisation . 70

4.3 Dependencies of the projects . 71

4.4 Overview of request life cycle . 73

4.5 Workflow of requests . 74

4.6 Example of labyrinth 4 × 4 . 78

4.7 Repository for the labyrinth example in Figure 4.6 79

4.8 Resulting tree grammar for target type Pos(2∗0) 79

4.9 Example of labyrinth 5 × 2 . 80

xi

List of Figures

4.10 Repository for the labyrinth example in Figure 4.9 80

4.11 Tree grammar for target Pos(0∗1) . 80

4.12 Result overview . 81

4.13 Applicative tree grammar for target Pos(0∗1) . 82

4.14 Result overview with applicative tree grammar . 82

4.15 Example of applicative tree grammar visualisation 83

4.16 Example of a complex hypergraph . 83

4.17 Representation using circle layout . 85

4.18 Representation of an inhabitant . 86

4.19 Overview of the solutions . 87

4.20 Visual representation of the initial step . 88

4.21 Visual representation of step 1 . 88

4.22 Visual representation of step 3 . 88

4.23 Example of cycle . 89

4.24 Example of unproductive cycle . 90

4.25 Example of unproductive cycle (enlarged) . 90

4.26 Debugger Overview . 91

4.27 Unusable type . 92

4.28 Representation of information about uninhabited types 93

4.29 Representation of information about unused combinators 93

4.30 Representation of warnings . 94

4.31 Repository representation . 94

4.32 Representation of the supertypes. 95

4.33 Representation of the subtype relation. 96

4.34 Representation of the subtype relation. 96

4.35 Filtering perspective . 97

4.36 Modified tree grammar with pattern down(up(∗)) 97

4.37 Path covering visualisation . 99

5.1 Labyrinth example 3 × 3 . 104

6.1 Logistics research lab overview . 114

6.2 Path generation overview [38] . 116

6.3 Data flow . 117

6.4 Laser Projection System Representation . 117

6.5 Labyrinth example represented by Unity 3D . 117

7.1 Tree grammar G . 120

7.2 Graph visualisation of G . 120

7.3 Filtered tree grammar G ′ . 121

7.4 Graph visualisation of G ′ . 121

xii

Chapter 1

Introduction

Modern technologies are being developed with increasing rapidity. Smart homes have become

a feature of people’s daily routines, and the technology for self-driving cars is already over a

decade old. Notably, people’s mobility continues to change, as evidenced by autonomous

robots, fly-by-wire, and drive-by-wire technologies of Industry 4.0 and smart cities [25; 118].

Related projects aim to support the interactions between people and technologies to improve

efficiency and productivity. Accordingly, technologies shape people’s daily (social) routines.

However, technologies are pointless without users. For this reason, the acceptance and

adoption of these technologies depends on their usability. The more straightforward the tools,

the more advantageous they are for users.

The Combinatory Logic Synthesizer (CL)S is a synthesis framework based on the combinatory

logic with intersection types [31; 103]. A type inhabitation algorithm searches for inhabitants

based on a given repository and target type. The repository includes domain-specific, typed

combinators. Notably, software synthesis deals not only with the automatic composition of

classic software (e.g., executable software) but also with the synthesis of data structures such

as LegoNXT scripts [33], Microsoft Project schedules, process plans [133], or Business Process

Model and Notation (BPMN) 2.0 diagrams [31; 109]. Unfortunately, despite the broad range of

possible applications, the usability of software synthesis frameworks has not been prioritised.

This work introduces a web-based integrated development environment (IDE) as user support

for the component-based synthesis framework – (CL)S. The topic usability is familiar to the

field of software development [99]. ISO 9124 [81] defines usability as follows: “the extent

to which a system, product or service can be used by specified users to achieve specified

goals with effectiveness, efficiency and satisfaction in a specified context of use”. In this case,

the system is the (CL)S IDE Framework, and the target audience includes not only software

developers who may have limited training in the field of type theories but also users with

programming knowledge and an interest in the advantages of frameworks for software synthe-

sis. The software synthesis with user support increases the efficiency and effectiveness of the

1

Chapter 1. Introduction

development process without the inexplicable (non-)solutions of the inhabitation algorithm.

The basis of research in the field of user support for software development technologies is

presented by the debugging of specifications for intersection types [51] and a filtering function

of a complete enumeration of inhabitants based on modification of tree grammars. To support

the users, this work introduces the main features of an IDE that augments the functional-

ities of the (CL)S, helps one understand the decisions of the algorithm, and supports the

developers when their input specifications are incomplete or incorrect. The specification

of the components and the variability of the synthesis software can be most troublesome.

For this reason, debugging and filtering make such troubles more manageable. In this way,

the (CL)S IDE Framework supports users during synthesis and assists with the discovery and

comprehension of solutions. The debugging function informs users of bad specifications

or errors that occur during the search process, so the filtering algorithm supports users in

achieving accurate inhabitation results according to the domain specifications by reducing

the synthesised solution space. The wide field of application areas of the (CL)S Framework

requires use-case independence, so this independence had high priority during the develop-

ment of the IDE. This work identifies the basic features required to explain the search process

and detect input-specifications deficiencies. To our knowledge, no other framework currently

supports the debugging of specifications for intersection types [51] nor provides a filtering

support based on a modification of tree grammars.

2

1.1. Related Work

1.1 Related Work

The automated system for verifying and synthesising programs, Leon [41], also provides a

web-based IDE [18] for the user support. This framework is intended for the application of

functional Scala programs. The verification rests on external satisfiability modulo theory

(SMT) solvers whose installation varies by operating system, and the preformation is based on

the Scala AST nodes. The synthesis is based on a given set of data structures with invariants.

The (CL)S IDE provides a backend synthesis algorithm for the automatic composition of soft-

ware components. The synthesis comes from type specifications that are independent of the

Scala programming language. Moreover, the representation of the results is graph-oriented

and a central feature of the development of the user support. In contrast, the Leon IDE pro-

vides text informing users of the results for each line of code. The graphical representation

supplies an annotation of each node representing a combinator with source positions to

indicate the point of origin of that combinator in the repository. Similar to Leon, the platform

for program verification Why3 [42] is also based on external provers and provides an IDE with

a textual output of the solvers for a certain position in the code. Certain theorem provers

also have IDEs for better usability to inform for program verification: for example, the proof

assistants Coq [19; 84], Isabelle [5], and LEAN [63], in which different colours indicate different

information. Numerous examples of programs with IDE exist in the area of automatic verifica-

tion. The examples presented here derive from web-based solutions also aiming to support

users. The main difference from most web-based IDEs is the location and manipulation

of the input specification, particularly using the browser. In our case, the implementation

extends the inhabitation algorithm and works with the results and not with the user-specified

repository, such that the developer can apply the local IDE they usually use. The main reason

for the development of a web-based application is its platform independence. This approach

reduces the effort of program setup without the installation of a specific framework or version.

Examples of such IDE tied to a platform are JavaFX [100] and Oracle Java [89]. Numerous

approaches deal with the topic of program synthesis using type theory, for instance, those of

Polikarpova et al. [101], Zdancewic et al. [66], and Kuncak et al. [75]. To our knowledge, these

approaches for program synthesis provide no user support at the same time.

Globular [22] offers an example of a web-based proof assistant with a graphical representation

of the results. In contrast to the (CL)S IDE, users can manipulate graphs based on sting

diagrams. The disadvantage of this approach is that the user must be expert in category theory.

At the same time, the users of the (CL)S IDE can also be nonexperts in background theory. In

the field of software synthesis, Feng et al. [64] present a graphical representation using Petri

nets. They synthesise programs based on methods from abstract programming interfaces

(APIs), where the nodes of the Petri nets correspond to types and where the transitions are API

calls. This approach can be viewed as an analysis of a graph-reachability problem. In this case,

Petri nets are well suited to the synthesis of imperative programs, which requires multiple calls

of a certain procedure. The authors discuss the application of hypergraphs on an approach

similar to that presented in [30] and they indicate the approach to be complex. Bessai [29]

3

Chapter 1. Introduction

explains in his work why this is not the case and how the problems can be avoided using

synthesis based on a semantic type concept. Moreover, the representation of Petri nets by

another kind of graphs is not novel in the literature. The authors of [87], [88], and [98] discuss

such approaches for transformation. In the context of this work, for the representation of the

synthesis results, a simple multi-hypergraph is sufficient, such that the additional features of

the Petri nets are unnecessary.

Numerous approaches with different focal points are based on SMT. Very often, this tech-

nology is used for the synthesis [117; 72; 15]. The definition of syntactic constraints ensures

certain correctness specifications. Solar-Lezama et al. [117] introduce the language for finite

programs, Sketch. The sketching approach used for software synthesis completes sketches of

programs using constraints, which consider certain domain-specified functionalities [116].

These specifications ensure the generation of solutions representing only desired compo-

nents and are verified by a solver. The approach presented by Gulwani, Singh, and Polozov

[74] also represents a synthesis using SMT. The users define the desired functionalities by

examples (e.g., input-output specifications, demonstrations, or assertions), and a constraint

solver verifies whether the programs satisfy. Other approaches dealing with SMT synthesis

are introduced in [83; 123; 107; 66; 73]. In contrast to these approaches, the filtering approach

presented in this work is based on already-synthesised results using combinatory logic with

intersection types. The results detected by a user as trivial or undesirable can afterwards be

filtered out using constraints. An alternative to the SMT approach is that of Jan Winkels [132].

He applied ScalaGraph [12] to filter the results of a synthesis of planning processes according

to user-defined constraints. An investigation presented in this work demonstrates that this

approach is proper to this application case but cannot be provided as domain-independent

filtering in the IDE.

The restriction approach presented by Michael D. Adams and Matthew Might [14] is closely

related to the filtering implementation presented in this work. Their work deals with ambigui-

ties caused in programming languages such as YACC or C. Figure 1.1 illustrates the approach,

whereby ambiguities caused by precedence, associativity, dangling else, and functional if
can be managed. They show how restrictions and context-free grammars (CFGs) can be

encoded using tree automata.

Context-free Grammar

Tree Automata ∩

Tree Automata

New Context-

free Grammar

Figure 1.1: Overview of the filtering approach by Adams and Might [14]

An intersection of CFGs with restrictions makes the approach computable because intersec-

4

1.2. Publications

tion and difference are undecidable on CFGs. The result represents a tree automaton that

considers user-defined constraints. They translate the result into context-free grammar by

removing the production labels. Similar to the filtering approach presented in this work,

the restrictions represented as tree automaton accept any trees except those that must be

restricted. In this work, the application of intersection of the languages of tree grammars is

presented as a filtering approach. CFGs and tree grammars are strongly related [50], and the

intersection and difference problems between two tree grammars, in turn, are decidable [50].

The problem of enumeration terms resulting from a tree grammar has been investigated

by Bessai et al. [39]. The authors have shown that the deciding emptiness and finiteness

of the intersection L (G)∩N F (R) is EXPTIME-complete, where L (G) is the language of a

regular grammar G and N F (R) is the normal form of a rewriting system R. The approach is

based on previous work by Comon and Jacquemard [50; 49] on automata with disequality

constraints and pumping lemma. This approach applies to linear and nonlinear rewrite

relations. It is demonstrated that the linear case is practically feasible in contrast to the

nonlinear case. A prototype Haskell implementation of the algorithm is introduced and

experimentally analysed. The investigation has shown that the performance of the linear case

is better than in the nonlinear case. According to the authors, this approach represents an

improvement of a filtering algorithm based on an SMT solver [85] presented and discussed in

this work (cf. Section 3.1). At the same time, the filtering approach based on the modification

of tree grammars that is introduced in Section 3.3 and is comparable with the linear case

performs faster for the same use cases (cf. Section 5). These presented results are significant

for the investigations introduced in this work. The practical application and the comparison

of these algorithms are discussed in Section 3.3.3 and Section 5.1.

1.2 Publications

Within the scope of this dissertation project, results in the field of formal IDEs and filtering

based on theorem prover are already published. We consider these publications in this section.

The published results are detailed in this work and referenced accordingly.

1.2.1 User Support for the Combinator Logic Synthesizer Framework

The first publication to present a work in progress on a debugger for the (CL)S Framework was

[30]. The authors outline the idea of user support for type-based tools. This paper presents

the motivation and explains the question of why it is important to consider usability for the

adoption of software development technologies. This publication presents a visualisation

approach using hypergraphs to make the results of the inhabitation algorithm understand-

able for nonexperts. The presentation of different perspectives and features completes the

introduction of the IDE.

5

Chapter 1. Introduction

1.2.2 CLS-SMT: Bringing Together Combinatory Logic Synthesis and Satisfiabil-
ity Modulo Theories

In this paper [85], a framework combining SMT solvers and the (CL)S Framework was pre-

sented. This work aims to consider the advantages of these theories to restrict certain solutions

computed by the inhabitation algorithm. Such a filtering approach is necessary because, in

some situations, certain well-formed terms might be considered unsuitable results according

to the context of the application case. Moreover, certain terms might also represent trivial or

identical results and behaviour. The filtering approach centres on the definition of domain-

specific constraints and translation of the resulting tree grammars into SMT functions. The

translation contains all computed terms that comply with a given target type. The SMT solver

decides which terms are satisfied and which are not. That way, solutions can be filtered out

according to given domain-specific constraints.

1.2.3 Experience Report: Towards Moving Things with Types – Helping Logistics
Domain Experts to Control Cyber-Physical Systems with Type-Based Syn-
thesis

Another publication within the scope of this dissertation was [38]. This work presents the

results of an experience report based on interdisciplinary collaborative work at the Technical

University of Dortmund, regarding the type-based synthesis algorithm, (CL)S, and its IDE

with a logistics lab environment. The possibilities, advantages, and challenges of applying the

framework in the domain of logistics are outlined and discussed. Moreover, the results show

that an extension of the framework is possible with manageable effort. For example, network

communication was implemented to connect the (CL)S Framework with the infrastructure in

the research lab. The experiment and its lessons are detailed in this work.

1.2.4 Clean Code and Static Code Analysis

Publications in the field of clean code and static code analysis were also published by the

author. They do not directly impact the results presented in this work, but they support the

development of the approach and the research in the field of usability. The insights gained

regarding maintainable code, namely avoidance of dead code and use of clear specifications

[93], motivated the development of features included in the IDE for user support. These

publications are not elaborated, but are referenced accordingly. The following research papers

were published:

• Clean Code – ein neues Ziel im Software-Praktikum 1.

This paper [112] presents the topic of Static Code Analysis and considers the importance

1English: "Clean Code – a new goal in the software practicum"

6

1.2. Publications

of high-quality code for development teams. Furthermore, the authors introduce an

approach for long-term and effective integration of code-quality assurances in the

software development process in student projects. The results stated here are achieved

by more iterations in the software education process, as well as by didactic methods.

• Integration von Qualitätsaspekten in einen Entwicklungsprozess2.

The authors [110] introduce the results of an effective integration of clean code assur-

ances in development processes. The presented findings are from an early phase of

the integration process. However, successful integration of such a topic proceeds in

several iteration steps. The authors discuss the acceptance of the applied metrics and

thresholds, as well as their dependency on the projects’ complexity.

• Vom Clean Model zum Clean Code3.

This study’s [126] results correlate the quality of UML models with the quality of the

developed code in software development processes in computer science education.

Here, the authors discuss which of the deficiencies visible in the code can be recognised

in the model: for instance, regarding naming conventions, operations with long pa-

rameter lists, God classes [93], or long functions and classes. Complex changes lead to

the formation of chain reactions, which beginning programmers struggle with. Facing

such, student motivation suffers. This demotivation should be avoided. For this reason,

quality aspects must already be accounted in the modelling phase. Defects detected

early can be eliminated more easily and with less effort than for defects detected too

late.

• How to Improve Code Quality by Measurement and Refactoring.

In this paper [127], the authors demonstrate the successful integration of measurement

of code quality in the process of software development. Apart from choosing a suitable

tool for code analysis and metrics, alongside proper threshold values, concepts to

remove deficiencies are essential code quality requirements. In addition, several cycles

of a development process are necessary to achieve a long-term and effective integration

of code quality in the development process. The integration of static analysis and

refactoring of program code is achieved through the Plan-Do-Check-Act cycle and with

didactic methods in a software development course at the university.

• Clean Java - Von Anfang an! 4.

This article [125]examines developers’ awareness of high-quality code and the integra-

tion of code-quality aspects in the software development process in computer science

education. The authors show that high motivation, clear goals, and appropriately cho-

sen tools for static code analysis, metrics, and benchmarks are crucial in successfully

anchoring clean code in the development process.

2English: "Integration of quality aspects into a development process"
3English: "From Clean Model to Clean Code"
4English: "Clean Java - Right from the start!"

7

Chapter 1. Introduction

• Reviews – ein Instrument zur Qualitätsverbesserung von UML-Diagrammen 5.

This research paper [111] conceptualises how to improve the quality of model-based

development. In the first phase of the analysis, the students must specify and document

the software requirements using UML models. Unfortunately, the quality of these mod-

els is often very poor. The approach is based on peer reviews of the quality of models in

the development teams. The reviews are based on quality aspects inspired by clean code.

They appear in the form of checklists. This approach allows for careful consideration of

the diagrams and for more profound discussions of the quality achieved.

1.3 Overview

This work is organized as follows: In the following, Chapter 2 discusses the relevant theoretical

background. Here, the synthesis based on finite combinatory logic with intersection types

and the resulting tree grammars are introduced. Moreover, the visualisation technique of

tree grammars applied in this work is explained in this part. Chapter 3 outlines an essential

contribution: the developed filtering approaches. This part presents the different algorithms

and provides information about the advantages, disadvantages and the formal correctness of

the algorithm integrated into the web-based IDE for the (CL)S Framework. Chapter 4 deals

with the IDE for the (CL)S Framework. Detailed information about the implementation and

the features of each perspective are presented in this part. Chapter 5 gives an overview over

the evaluation and analysis of the performance of the filtering algorithms. Furthermore, a

comparison to other filtering techniques is discussed. Chapter 6 outlines investigations within

real development projects, presenting the advantages of the IDE, its importance for the support

of developers, and lessons learned from the application cases. Finally, Chapter 7 summarises

the main conclusions and discusses limitations to the results and the recommendations for

further research.

5English: "Reviews - a tool for improving the quality of UML diagrams"

8

Chapter 2

Theoretical Background

This chapter introduces combinatory logic synthesis (Section 2.1). The leading theory behind

the software synthesis approach presented in this work, namely finite combinatory logic

with intersection types, is considered in Section 2.2, while Sections 2.3 and 2.4 elaborate

tree grammars, an essential frame for this work’s developments. Section 2.5 introduces the

framework for composition synthesis, (CL)S Scala, which produces the tree grammars, the

basis for the visualisation and filtering approaches (see Chapter 3) introduced in this work.

Section 2.6 represents the theory behind the visualisation of the inhabitation results. Here, the

definition, usage, and the limitations of the hypergraphs as a visualisation technique for tree

grammars are discussed. The last section deals with Satisfiability Modulo Theories (SMT) that

is an essential part of the filtering approach presented in Section 3.1.

9

Chapter 2. Theoretical Background

2.1 Combinatory Logic Synthesis

Nowadays, software synthesis is familiar in the study of the composition of large systems. It

is an approach that aims for automatically generate programs based on user specifications.

Synthesis based on combinatory logic is a type-theoretical approach dealing with typed

combinators. The combinators represent the user-specified software components. This

approach reduces the search space supporting the handling of the complexity of software

synthesis problems.

The principle of combinatory logic was first presented by Moses Schönfinkel in his work

"Über die Bausteine der mathematischen Logik" 1 in 1924 [113]. This approach is older than

Lambda Calculus [48]. Both techniques are equally expressive, but in contrast to Lambda

Calculus, the grammar of combinatory logic is much simpler, since it does not contain bound

variables. A few years later, Haskell Curry turned the idea of combinatory logic into a useful

programming technique. However, in general, these systems aim to describe the general

properties of programs, using these to modify other programs [78].

To describe the combinatory logic synthesis, the theory of inhabitation based on combinatory

logic is introduced in the following. The decision problem of inhabitation is defined as follows:

Γ`s? : A

That is, the decision problem asks for a term e in a fixed set Γ of typed combinators, with a

given type A. We call a term e inhabitant with type A if Γ`s e : A is true. The above-presented

generalisation of the inhabitation problem is defined as follows: Given Γ and A, does there

exist a combinatory term e with Γ` e : A? [103]

In combinatory logic with simple types, each term is assigned exactly one type.

Definition 1 (Simple Types) Let T be a non-empty set of simple types. Simple types A,B ∈T
are defined as follows:

A,B ::=α | a | A → B ,

where α ∈V is a type variable, a ∈ B is a constant, and A → B is a function type. 2

Terms are defined by

e ::= X | (ee),

where X denotes a combinator symbol that ranges over a set B and where (ee) represents an

application of term e to term e. In typed combinatory logic, we have a fixed set Γ that repre-

sents the typed environment and contains components of the form (X : A). The combinator

base contains the following Turing-complete standard combinators:

1English: "On the Building Blocks of Mathematical Logic"

10

2.1. Combinatory Logic Synthesis

Γ= {S : (α→β→ γ) → (α→β) →α→ γ

K : (α→β→α)}

It results in a system corresponding to Hilbert–Style systems of logic [103]. The standard

combinatory logic with simple types is based on the following type rules:

• The (var) rule allows substitution of formulas into axioms. Here, S denotes a type

substitution on Γ(X).

(var)
Γ, X : A ` X : S(A)

• The modus ponens rule (→E) allows the application of the component specifications

from a set Γ.

Γ` e : A → B Γ` e ′ : A (→E)
Γ` (ee ′) : B

In combinatory logic with intersection types, terms can also be assigned to an intersection of

types [22]. For combinatory logic with intersection types and fixed base S, K, the inhabitation

problem is undecidable [103].

Definition 2 (Intersection Types) Intersection types, denoted by σ,τ ∈T, are defined as fol-

lows:

σ,τ ::=ω | a | α | σ→ τ | σ∩τ
Type constants are represented by a and range over a set B. Type variables α,β, · · · ∈V can be

substituted with type constants. Furthermore, intersection types can be constructed from

function types (σ→ τ) as well as from intersection (σ∩τ). 2

Aside from the intersection types, we consider the subtype relation (≤) presented by Baren-

dregt, Coppo, and Dezani-Ciancaglini (BCD) [23]. The subtype relation σ≤ τ expresses that

type σ is a subtype of the type τ. This relation complicates the type system because the values

of type σ can always be used instead of the values of type τ. We define the following subtyping

rule as an extension of the original BCD rules [29].

Definition 3 (Subtyping Rules) The relation ≤ is closed under the following rules:

• The (IDEM) rule controls the idempotency.

(IDEM)σ≤σ∩σ

• The (≤ω) rule allows the usage of a special type constant ω as the universal type.

11

Chapter 2. Theoretical Background

(≤ω)σ≤ω

• The (→ω) rule controls the functions with type ω.

(→ω)ω≤ω→ω

• The (SUB) rule allows co- (τ1 ≤ τ2) and contra-variant (σ2 ≤σ1) subtyping of functions.

This rule introduces subtype polymorphism. A function type σ2 → τ2 is a supertype of

any function type σ1 → τ1 if σ2 ≤σ1 and τ1 ≤ τ2.

σ2 ≤σ1 τ1 ≤ τ2 (SUB)σ1 → τ1 ≤σ2 → τ2

• The (GLB) rule allows the usage of type σ instead of the intersection τ1 ∩τ2 if σ is a

subtype of τ1 and τ2.

σ≤ τ1 σ≤ τ2 (GLB)σ≤ τ1 ∩τ2

• The rules (LUB1) and (LUB2) allow for the intersection as the least upper bound. In

other words, an intersection of the two types is a subtype of individual types.

(LUB1)
σ∩τ≤σ (LUB2)

σ∩τ≤ τ

• The rule (DIST) allows the distribution of intersections.

(DIST)
(σ→ τ1)∩ (σ→ τ2) ≤σ→ τ1 ∩τ2

Using the rules above, the following distribution with intersection types (σ1 → τ1)∩ (σ2 →
τ2) ≤σ1 ∩σ2 → τ1 ∩τ2 can be derived.

2.2 Finite Combinatory Logic with Intersection Types

In this section, we discuss the main theory behind the software synthesis considered in this

work: finite combinatory logic with intersection types, as studied by Rehof and Urzyczyn [104].

They characterise the decision problem as EXPTIME-complete. This system derives from

combinatory logic with simple types [78], applied with the following two extensions:

• the provability question in a Hilbert–Style with a generalised form of the combinator

base and

• BCD intersection types [23].

12

2.2. Finite Combinatory Logic with Intersection Types

The synthesis problem asks whether there is a composition of functions from a set Γ of typed

combinators with a given type.

Definition 4 (Applicative Terms) Let B be a finite set of combinators. Applicative terms

M , N ∈A are defined as follows:

M , N ::= c | (M N),

where c ∈ B. A term M ∈A can be constructed using named component or combinator c and

application of M to N . An application is left associative, such that ((M N)P) ≡ (M N P) with

P ∈A. 2

Constants can also represent user specifications. Furthermore, types can encode functions.

The user specification of the combinators is Turing-complete in general [58]. Intersection

(σ∩τ) in user-defined components in a repository Γ can also be used for the construction of

results. This intersection is useful for representing the combination of semantic and native

types. In other words, a combinator may be typed under two perspectives: a technical one for

an underlying programming language and a user-centric one. Terms can also be assigned to

an intersection of types [103]. Native types correspond to the type of implementation of the

actual domain-specific components. For example, if the native type is String, the algorithm

will search for any applicative term made from combinators that can be assigned to that

type in the underlying programming language. Moreover, a semantical specification of the

components can be applied. In this way, the type of combinators can be specified to make the

synthesis more precise, according to the intended usage. Thus, it is possible to combine native

types with semantic types. For example, if we have in Γ a combinator c : String∩ T i t le, the

String represented by this combinator can also be used as a T i t le for something.

In finite combinatory logic with intersection types, the type inhabitation process is based on

rules that assign types to combinatory terms [58]. These rules are presented in the following.

• The (var) rule controls the application of any combinator c from the typed repository Γ

that has type τ using substitutions. It is defined as follows:

(var)
Γ,c : τ` c : Γ(τ)

As mentioned, the specification mechanism is Turing complete, and the type inhab-

itation problem is in general undecidable. For this reason, a restriction on variable

substitution is needed to ensure decidability [58].

• Combinators can also have function types. The arrow elimination rule (→E) allows the

application of such combinators to appropriately typed arguments to form new terms

from another terms.

Γ` M :σ→ τ Γ` N :σ (→E)
Γ` M N : τ

13

Chapter 2. Theoretical Background

Here, we consider M as a function that takes σ as input type and returns type τ.

• Finite combinatory logic with intersection types is also closed under the subtyping rules

based on BCD [23] and presented in Definition 3. Here, the BCD system is furthermore

extended with type constructors, as was proposed in [90; 37]. The subtyping rule (≤) is

defined as follows:

Γ` M :σ σ≤ τ (≤)
Γ` M : τ

In FCL, the following rules are derivable [29]:

Γ` M :σ Γ` M : τ (∩I)
Γ` M :σ∩τ

(Aω)
Γ, M :ω

2.3 Tree Grammars

In [29], an inhabitation machine is defined, which given a repository and requested type will

compute a tree grammar. The soundness and completeness of the implemented inhabitation

machine are proven, ensuring computed tree grammars are finite and exact representations

of all possible solutions. According to [50], the emptiness of tree grammars is decidable in

linear time, so this method also solves the type emptiness problem. The following definition

of tree grammars is an unranked version of the normalised regular tree grammars defined in

[50]. Compared to [29], it will encode a more compactly readable, fully uncurried version of

combinator applications, where ((c M) N) becomes c(M, N).

Definition 5 (Tree Grammars) A tree grammar G is a 4-tuple (S,N ,F ,R) with

• a start symbol S ∈N ,

• a set N of nonterminals,

• a set F of terminal symbols, and

• a set R of productions rules of the form α1 7→ {c1(β1,β2, . . .βn), c2(γ1,γ2, . . .γm)}, where

n,m ≥ 0, α1,β1,β2, . . . ,βn ,γ1,γ2, . . . ,γm ∈N are nonterminal, and c1,c2 ∈F are termi-

nal symbols.

We consider unranked tree grammars without restriction on the arity of the terminal symbols;

for example, we can have rules r1 and r2 ∈ R, such that r1 :=α1 7→ c(β1, . . . ,βn) and r2 :=α2 7→
c(β1, . . . ,βm), where n,m ∈N and n 6= m, c ∈F , and α1,α2 ∈N . Moreover, we allow rules with

arity = 0, which we abbreviate to r :=α1 7→ c(). 2

14

2.3. Tree Grammars

Definition 6 (Tree Grammar Languages) For a given tree grammar G = (α,N ,F ,R) and tar-

get symbol α ∈N , Lα(G) is the least set closed under the following rules:

• if α 7→ c ∈ R then c ∈Lα(G).

• if α 7→ c(β1,β2, . . . ,βn) ∈ R and for all 1 ≤ k ≤ n : tk ∈Lβk (G) then c(t1, t2, . . . , tn) ∈Lα(G)

We define L (G) =Lα(G) to be the language of grammar G for start symbol α. 2

Definition 7 (Applicative Tree Grammars) An applicative tree grammar Gap is a special case

of tree grammars with

• a start symbol S ∈N

• a set N of nonterminals,

• a set F of terminal symbols,

• a set R of productions rules of form α1 7→ c and α2 7→ @(β1,β2), where α1,α2,β1,β2 ∈N

are nonterminal and c ∈F is a terminal symbol. The operator @ is a binary operator

@ : R ×R → R.

We consider applicative tree grammars with restrictions on the arity of the terminal symbols;

for instance, we can have application rules only with arity = 2, such that r1 :=α 7→ @(β1,β2),

where r1 ∈ R and α ∈N , or rules with arity = 0 abbreviated to r2 :=α 7→ c, where r2 ∈ R and

c ∈F . 2

Definition 8 (Applicative Tree Grammar Languages) For a given applicative tree grammar

Gap = (α,N ,F ,R) and target symbol α ∈N , Lα(Gap) is the least set closed under the follow-

ing rules:

• If α 7→ c ∈ R then c ∈Lα(Gap).

• If α 7→ @(β1,β2) ∈ R, t1 ∈Lβ1 (Gap), and t2 ∈Lβ2 (Gap) then @(t1, t2) ∈Lα(Gap)

We define L (Gap) =Lα(Gap) as the language of grammar Gap for start symbol α. 2

A word e ∈Lα(G) for a target type α ∈N is an inhabitant e of type α, where G is tree grammar

or applicative tree grammar. Applicative tree grammars represent terms as a curried version.

Hence, in contrast to tree grammars, terms are represented by @(@(c,β1),β2) instead of c(β1,

β2). The next section (Section 2.4) demonstrates that certain tree grammars and applicative

tree grammars are mutually translatable.

15

Chapter 2. Theoretical Background

2.4 Translation of Tree Grammars

Ranked and unranked trees are well-studied constructions that can be recognised by the same

finite automata [50; 45; 69; 55]. Unranked trees are often encoded by ranked because of the

application of the theory of ranked tree automata on unranked trees. In this manner, already

existing algorithms can be reused. A ranked (or applicative) tree grammar can be considered

the unranked tree grammar’s binary presentation.

In the following, we discuss tree grammars resulting from the inhabitation machine. We show

that the tree grammars and the applicative tree grammars can be translated into each other.

That is, they generate equivalent languages so that they are interchangeable. Applicative tree

grammars correspond to tree grammars regarding function fat : Gap → G (s. Algorithm 1).

In contrast, tree grammars correspond to applicative tree grammars regarding the function

ft a : G →Gap presented in Algorithm 2, which is based on the extension encoding presented

in [50], Chapter 8.

Proposition 1 Each applicative tree grammar generated by the inhabitation machine can be

translated into a tree grammar. 2

Given an applicative tree grammar Gap = (τ,N ,F ,R), we can translate each production rule

into an applicative tree grammar using algorithm Tat presented below (Algorithm 1). Here,

the input is an applicative tree grammar represented by a set of rules of the form presented in

Definition 7. The output is the encoded tree grammar. The algorithm encodes each binary

rule into a production rule. Rules of the form α 7→ c are translated in α 7→ c() and added to the

set with the production rules in line 4. Application rules are recursively handled by function

COMPUTE_PRODUCTION_RULES. If we have in the applicative tree grammar rules of the form

α 7→ @(β1,β2), β1 7→ @(σ,τ), β2 7→ y , σ 7→ c, τ 7→ x, where α,β1,β2,σ,τ are nonterminal and

c, x, y are combinators, we get the following production rules α 7→ c(τ,β2),τ 7→ x and β2 7→ y .

In contrast to the first algorithm, this algorithm satisfies for applicative tree grammars, where

the left branch of the tree cannot have an arbitrary height. Such a case can occur when we have

a combinator with the universal type of anything ω so that the subtype rule (cf. Definition 3)

produces arrows from any such target and we get ω≤ω→ω≤ω→ω→ω≤ In this case,

the combinator can receive an arbitrarily high number of arguments. To handle this case, we

insert a new rule of the form α 7→ ∗() (line 19). Hence, from a node ∗, any number of trees is

created. In this way, the algorithm encodes any applicative tree grammar to a tree grammar, in

this case Tat (Gap) =G .

Proposition 2 Each tree grammar can be translated into an applicative tree grammar. 2

Given a tree grammar G = (τ,N ,F ,R), we can translate each production rule into rules from

an applicative tree grammar using the algorithm Tt a as shown in the following: The input of

the algorithm is a tree grammar represented by a map of production rules (cf. Definition 5).

16

2.4. Translation of Tree Grammars

Algorithm 1 Applicative Tree Grammar Translation into Tree Grammar

1: function ENCODE_APPLICATIVE_TREE_GRAMMAR(Gap)
2: tr eeGr ammar ←∅
3: for all r in R do
4: case r :=α 7→ c then
5: tr eeGr ammar ← tr eeGr ammar ∪α 7→ c()
6: case r :=α 7→ @(β1,β2) then
7: tr eeGr ammar ← tr eeGr ammar ∪ α 7→ COMPUTE_RIGHT-HAND_-

SIDE (Gap , β1,β2)
8: end for
9: return tr eeGr ammar

10: end function
11:

12: function COMPUTE_RIGHT-HAND_SIDE(Gap , β1 ∈N , β2 ∈N)
13: ths ←∅
14: for all r in R do
15: case r :=β1 7→ c ∈ R then
16: r hs ← r hs ∪ c(β2)
17: case r :=β1 7→ @(σ1,σ2) then
18: if σ1 =ω then
19: r hs ← r hs ∪ ∗()
20: else
21: r hs ← r hs ∪ (COMPUTE_RIGHT-HAND_SIDE (Gap , σ1,σ2), β2)
22: end if
23: end for
24: return r hs
25: end function

The output is a set of rules representing applicative tree grammar. As mentioned above,

the applicative tree grammar manages ω types. The translation of such grammars into tree

grammar leads to computation of rules in the form of α 7→ ∗(). To demonstrate that the

application of Algorithm 2 on the result of Algorithm 1 can produce the original application tree

grammar, we have to manage such rules. In other words, we have to show that Tt a(Tat (Gap)) =
Gap is satisfied. The algorithm encodes each production rule in the tree grammar by an

application rule using function COMPUTE_FUNCTION_TYPES (line 4). If we have rules in the

form ofα 7→ c(β1, . . .βn) and where c is a combinator,α,β1, . . . ,βn with n ∈N are nonterminals,

they are encoded as follows: α 7→ @(βn → α,βn), βn → α 7→ @(βn−1 → βn → α,βn−1), . . . ,

β2 → ··· → βn →α 7→ @(β1 → ··· → βn →α,β1), β1 → ··· → βn →α 7→ c in lines 12–19. Rules

of the form α 7→ c() are encoded by α 7→ c, shown in line 14. If the tree grammar contains

any rules of the form α 7→ ∗(), the algorithm collects all combinators. Additionally, for each

combinator c, it adds a rule of the form α 7→ c (line 17). The output of the algorithm is a set of

rules that represents the applicative tree grammar. Using the algorithm, each tree grammar

can be translated into an applicative tree grammar, thus Tt a(G) =Gap . The application of Tt a

(Algorithm 2) to the result of algorithm Tat (Algorithm 1) returns an applicative tree grammar

17

Chapter 2. Theoretical Background

Algorithm 2 Tree Grammar Translation into Applicative Tree Grammar

1: function ENCODE_TREE_GRAMMAR (G)
2: appl i cati veTr eeGr ammar Set ←∅
3: for all r in R do
4: appl i cati veTr eeGr ammar Set ← appl i cati veTr eeGr ammar Set ∪
5: COMPUTE_FUNCTION_TYPES(r)
6: end for
7: return appl i cati veTr eeGr ammar Set
8: end function
9:

10: function COMPUTE_FUNCTION_TYPES(r)
11: r ul esSet ←∅
12: case r :=α 7→ c(β1, . . . ,βn) then
13: r ul eSet ← r ul eSet ∪α 7→ @(βn →α,βn)∪·· ·∪β1 →···→α 7→ c
14: case r :=α 7→ c() then
15: r ul eSet ← r ul eSet ∪α 7→ c
16: case r :=α 7→ ∗() then
17: for all c ∈F do
18: r ul eSet ← r ul eSet ∪α 7→ c
19: end for
20: return r ul eSet
21: end function

equal to the input of algorithm Tat , such that Tt a(Tat (Gap)) =Gap is satisfied. In the reverse

direction we have: Tat (Tt a(G)) = G . Here, the input of the algorithm Tt a is a tree grammar

G equal to the output of the algorithm Tat . From now on, we assume that all grammars are

applicative, unless otherwise stated.

The algorithmic generation of the tree grammars by the inhabitation machine represented by

the (CL)S Scala Framework is described in [29]. The algorithm grows the tree grammars step-

wise. This structure allows an easy enumeration of inhabitants. In [50], decision problems

such as emptiness, uniqueness, and finiteness and complexity are presented based on the

corresponding machine, a non-deterministic finite tree automaton (NFTA) [50].

2.5 (CL)S Scala Framework

The (CL)S is a synthesis framework providing an implementation of a type inhabitation al-

gorithm for combinatory logic with intersection types [103; 34]. The implementation of the

inhabitation algorithm began several years ago. Among the first versions of the synthesis

algorithm was presented in the PhD work of Boris Düdder [57]. This version represents an

implementation in the programming language F#. The research in the field was continued by

Andrej Dudenhefner [60]. His work investigates and improves the performance of the inhab-

18

2.5. (CL)S Scala Framework

itation approach implemented in F#. At the same time, Jan Bessai began to implement the

theory presented in [31]. The implementation of the inhabitation algorithm is fully integrated

into the programming language Scala. In his work [29], Jan Bessai has proved the soundness

and completeness of the algorithm. The (CL)S Framework’s formalisation is achieved with use

of the theorem prover Coq [31]. The (CL)S Framework is publicly available [36].

The intended use of the (CL)S Framework is to automatically compose software, where the

typed combinators represent software components. Programs are generated from a user-

specified repository Γ of typed combinators. This approach is used for the automatic synthesis

of software presented in [35; 32; 33; 59; 76; 13].

The integration of the (CL)S algorithm into the Scala program language allows for simple

specification of the framework to make components usable for the current application. The

framework is available as a Scala library that enables the use of any local IDE and from any

program. It supports an extension of intersection types with constructors and products, as

well as the adjusted BCD subtype relation system presented in Section 2.5.4 [29]. This type

expression represents the specification of the applicative terms presented in Definition 2 and

is defined as follows:

Definition 9 (Intersection Types with Products) Intersection types, denoted by M , N ∈ T,

are formed as follows:

M , N ::=ω | c(M) | (M ∗N) | (M → N) | (M ∩N)

Constructors are represented by c and ranged over a set of constructors denoted by C. M and

N denote intersection types. They can be constructed from products (M ∗N), function types

(M → N), and from intersection (M ∩N). 2

Constants are unary constructors. For the application of multiary constructors, products

must be used required. For example, using products, we can encode the position in a two-

dimensional Boolean array as Pos(x ∗ y). Here, products are left-associative – for example,

M ∗N ∗L = ((M ∗N)∗L) – while intersections and arrows are right-associative – for instance,

M ∩N ∩L = (M ∩ (N ∩L)) and M → N → L = (M → (N → L)).

The Scala implementation of the inhabitation algorithm takes a finite substitution space, a

subtype environment, a repository, and a sequence of target types [29]. These domain-specific

requirements are explained in the following sections. The inhabitation machine results in a

tree grammar, where nonterminals are represented by types (cf. Section 2.3).

2.5.1 Substitution Space

In contrast to FCL, the (CL)S Scala Framework supports the definition of substitution space.

An input specification can include a definition of substitutions allowed for type variables.

19

Chapter 2. Theoretical Background

Usually, the beginning of the specifications states the kinding declaration for variables.

val alpha = Variable ("alpha")
val kinding : Kinding = Kinding (alpha)

. addOption (’Pen)

. addOption (’Pencil)

Here, constructors are represented by ’Pen,’Pencil, and ’Drawing. If a combinator definition

specifies a semantic type such as: val semanticType =’Drawing(alpha), where the variable

alpha is specified instead of a concrete type, the inhabitation algorithm considers the fol-

lowing well-typed extension: ’Drawing(’Pen):&: ’Drawing(’Pencil). Using Kinding, the

algorithm iterates over the possible assignments of the variables and constructs a substitution

map according to the defined substitution space to replace the variables.

The (CL)S Framework allows specifications represented by a notation similar to the mathe-

matical one. In Scala syntax, constants and type constructors must be prefixed by a single

quotation mark. This notation can be seen in the example above. Function types are repre-

sented by =>: – for example, σ→ τ becomes σ=>: τ. The binary intersection type operators

are represented by : & – for example, σ∩τ becomes σ : & : τ tau. Constructors with multiple

arguments can be represented using the binary product operator ∗. In Scala syntax, the

operator is specified by <∗>. Therefore, σ∗τ becomes σ<∗> τ.

2.5.2 Repository

Two options are accepted by (CL)S for the implementation of the domain-specific repository Γ.

The first way is based upon mathematical notation. The repository includes typed combinators

of the form (c : σ). The combinator name is denoted by c and σ is an intersection type.

The second option requires specifications based on the standard Scala components. The

combinators are annotated by @combinator. The typical specification for combinators in the

repository is defined as objects that have a function apply annotated by its native type and a

semantic type. The specification of a semantic type is optional. Listing 2.1 encodes part of a

repository Γ using the first mentioned option for specification of a repository, where Player
represents the native type and the position description – the semantic type. For the sake of the

readability, only the specification of the combinators st ar t and r i g ht is presented.

val Gamma =
Map("start " −> (’Player :&: ’Pos(’0<∗>’2)),

"right" −> (’Player =>: ’Player) :&:
(’Pos(’0<∗>’1) =>: ’Pos(’1<∗>’1)) :&:
(’Pos(’1<∗>’1) =>: ’Pos(’2<∗>’1)) :&:
(’Pos(’0<∗>’3) =>: ’Pos(’1<∗>’3)) :&:
(’Pos(’1<∗>’3) =>: ’Pos(’2<∗>’3)))

Listing 2.1: Mathematically similar representation of a repository in Scala

20

2.5. (CL)S Scala Framework

As mentioned, the notation of specifications in the repository is similar to the mathemat-

ical one. Listing 2.2 shows an example of Scala specification. Here, a part of the class

LabyrinthRepository is presented that also implements the specification of combinators

st ar t and r i g ht with native types.

1 class LabyrinthRepository {
2 @ combinator object start {
3 def apply(player : Player): Player = player . goRight ()
4 val semanticType =
5 (’Pos(’0 <∗> ’2))
6 }
7 @ combinator object right {
8 def apply(player : Player): Player = player . goRight ()
9 val semanticType =

10 (’Pos(’0 <∗> ’1) =>: ’Pos(’1 <∗> ’1)) :&:
11 (’Pos(’1 <∗> ’1) =>: ’Pos(’2 <∗> ’1)) :&:
12 (’Pos(’0 <∗> ’3) =>: ’Pos(’1 <∗> ’3)):&:
13 (’Pos(’1 <∗> ’3) =>: ’Pos(’2 <∗> ’3)))
14 }
15 }

Listing 2.2: Scala representation of combinators with native and semantic types

We can extract type information from the specification of the combinators. For example,

combinator r i g ht with its semantic and native types is represented in mathematical notation

by: r i g ht : {(Pl ayer → Pl ayer)∩ (Pos(0,3) → Pos(1,3))∩ (Pos(1,3) → Pos(2,3))}, as shown

in Figure 4.6. The semantic type specification (cf. lines 4 and 9) provides additional conditions

on the use of the combinators. They are user-defined and one-to-one adopted. The algorithm

constructs such repositories to maps of the kind presented in Listing 2.1.

2.5.3 Inhabitation Request

Automatic synthesis is performed by answering the inhabitation question presented in Sec-

tion 2.1. As mentioned, the inhabitation algorithm searches for terms that are formed from

the typed combinators. The resulting terms have the given target type τ. Listing 2.3 presents

a labyrinth example for an inhabitation request in Scala. Section 4.3.1 details the example

presented here. The algorithm searches for solutions with native type Player and semantic

type ’Pos(’2, ’3) defined mathematically as follows: Player ∩ Pos(2, 3).

1 val labyrinthRepository = new LabyrinthRepository
2 val reflectedRepository : ReflectedRepository [LabyrinthRepository] =

ReflectedRepository (labyrinthRepository ,
3 substitutionSpace ,
4 semanticTaxonomy ,
5 classLoader)

21

Chapter 2. Theoretical Background

6 val results : InhabitationResult [Player] =
7 reflectedRepository . inhabit [Player](′Pos(′2, ′3))

Listing 2.3: Definition of inhabitation request in (CL)S Framework

In line 1, the variable labyrinthRepository is an instance of the domain-specific reposi-

tory LabyrinthRepository. Listing 2.2 shows a part of the repository. To define the inhab-

itation context, a reflection of the repository is needed. Line 2 shows the construction of

reflectedRepository with the instance of the user-specific repository. Moreover, the re-

flected repository is constructed with substitution space, semantic taxonomy. The Java class

loader for the Java Virtual Machine is also used to achieve reflection information.

2.5.4 Subtype Environment

A specification of the subtype environment is also allowed. As mentioned in Section 2.5,

the subtype relation ≤ is the least relation closed under the rules presented in Definition 3.

In (CL)S, the subtype relation is extended to include constructors and products using the

following rules [37]:

• The (CAX) rule controls the order of constructors with an argument.

c ≤ d M ≤ N (CAX)
c(M) ≤ d(N)

• The (CDIST) rule allows distribution of intersection over unary constructors.

(CDIST)
c(M)∩ c(N) ≤ c(M ∩N)

• The (PRODSUB) rule allows, such as the (SUB) rule, co- and contra-variant subtyping of

functions. In this case for products.

M1 ≤ N1 M2 ≤ N2 (PRODSUB)
M1?M2 ≤ N1?N2

• The (PRODDIST) rule allows distribution of intersections for products.

(PRODDIST)
(M1?M2)∩ (N1?N2) ≤ M1 ∩N1?M2 ∩N2

The subtype relation of native types can be used to reflect inheritance. A combination of

subtyping and semantic types allows for a representation of taxonomic hierarchies. In the

following part of this section, we consider an example that deals with the possible directions of

movement in a labyrinth. As shown in Listing 4.5, taxonomy is used to represent four possible

22

2.6. Visualisation of Tree Grammars

directions. Here, taxonomies are relations between constructor names. Hence, for a taxonomy

t , we have ′M <=′ N if ′N is in t(′M). In line 2, the definition of the supertype Direction is

shown. The usage of the function addSubtype in the following lines represents the subtype

relation. We define a map with all subtypes belonging to a supertype as follows:

1 lazy val taxonomy =
2 Taxonomy (" Direction ")
3 . addSubtype (" Left ")
4 . addSubtype (" Right ")
5 . addSubtype (" Up ")
6 . addSubtype (" Down ")

Listing 2.4: Representation of taxonomy information

As can be seen, the types Left, Right, Up, and Down are subtypes of the supertype Direc-
tion. In other words, for a taxonomy t we have Left ≤ Direction, Right ≤ Direction, Up ≤
Direction, and Down ≤ Direction if Direction is in t ({Left, Right, Up, Down}). The algo-

rithm arranges the transitive reflexive closure of the taxonomies according to the BCD subtype

relation presented in Section 2.2 so that it results in:

{(Left , Direction), (Right , Direction), (Up , Direction), (Down ,
Direction), (Left , Left), (Right , Right), (Up , Up), (Down , Down)
, (Direction , Direction)}

2.6 Visualisation of Tree Grammars

Just as the writing of clean code [93] makes the code maintainable and leads developers to

better understand the implementing program, clear and proper visualisation of data is crucial

for the analysis and interpretation of information. A visualisation using graphs is a common

way to obtain a representation of much information. A directed graph is a pair of G = (V ,E)

with a set of nodes V and a set of edges E ⊆ V ×V , where e ∈ {(u, v)|(u, v) ∈ V 2 and where

u 6= v}} [28; 27]. This visualisation approach has proven necessary for the analysis, presen-

tation, documentation, and comparison of data. Graphical visualisation allows structural

analysis to detect interesting relations and effects, as well as defects and problems. Outside

of the functional advantages, effective visualisation results in a salient representation of vast

data information so that this representation can also benefit nonexperts. The motivation to

visualise the tree grammars generated by the (CL)S Scala Framework centres on being able to

analyse results, detect defects, and better understand the inhabitation algorithm. In this way, a

user gains an idea of the functionality of the inhabitation technique. Accordingly, the structure

of the results using the graphical visualisation and the usage of the defined combinators can be

discovered. Often, the user who creates the repository with typed combinators expects specific

solutions. However, the repository can contain combinators defined with faulty or incomplete

type specifications or include typos. In such case, it can be difficult for the user to understand

23

Chapter 2. Theoretical Background

why the inhabitation algorithm yields unexpected solutions or why not all combinators are

used. Chapter 4 provides detailed information about discovering specification problems with

the IDE.

This section considers the visualisation of tree grammars resulting from the (CL)S Scala Frame-

work using graphical structures. We start by presenting the first version of our visualisation

approach. In the context of this approach, we applied directed compound graphs in terms of

user-friendly representation of the tree grammars (see Section 2.6.1). Afterwards, we introduce

the hypergraphs as a new graphical representation approach of tree grammars computed by

the inhabitation algorithm. In Section 2.6.3, we discuss the advantages and disadvantages of

these approaches and establish decisions regarding the approach used for visualisation in the

IDE. In the following sections, we consider the tree grammar presented in Definition 5 and not

the applicative tree grammars because of the clear representation of the results. The reason

is that applicative tree grammars are encoded by binary hypergraphs. The visualisation of

extensive inhabitation results leads to an unclear and bulky representation.

2.6.1 Directed Compound Graphs

At the beginning of the development of the IDE for the (CL)S Framework, we applied di-

rected compound graphs to visualise the resulting tree grammars. Such graphs are typically

used to represent expansive information as networks, for instance in the field of chemistry,

biochemistry, or bioinformatics [115; 67]. The definition of these graphs is based on [121].

Definition 10 (Directed Compound Graphs) A compound graph G is a quadruple

G = (C ,V ,E ,F) with

• a finite set of compound nodes C ,

• a finite set of nodes V ,

• a finite set of adjacency edges E ⊆V ×C where an edge e ∈ {(u, v)|u ∈V and v ∈C },

• a finite set of inclusion edges F , where an adjacency edge between vertexes v and u

does not exist so that

{(v,u) ∈ F | u ∈ Anc(v)∪Desc(v)} =;,

where vertex u ∈V , v ∈C , Anc(v) is a finite set of ancestors of v , and Desc(v) is a finite

set of descendants of v . 2

If we have an edge f = (v,u) ∈ F , then u includes v . Using directed compound graphs,

tree grammars can be represented with terminals as nodes (V = F) and non-terminals as

compound nodes (C = N). For each production in the tree grammar α 7→ c(β1,β2, . . .βn),

24

2.6. Visualisation of Tree Grammars

where c ∈F and α,β1,β2, . . . ,βn ∈N with n ≥ 0, we add edges e1,e2, . . . ,en that extend from

vertex c to compound nodes β1,β2, . . .βn , such that we have e1 = (c,β1),e2 = (c,β2), . . . ,en =
(c,βn). Furthermore, we add inclusion edge f with compound node α including c, yielding

f = (α,c).

We consider the following example to illustrate the representation of tree grammars through

compound graphs:

G = {A 7→ c(D,E), d(D),

D 7→ d(),

E 7→ e(A)}

Figure 2.1: Tree grammar example

The presented tree grammar G has a set of nonterminals N = {A,D,E } and a set of terminals

F = {c,d ,e}. Figure 2.2 illustrates the directed compound graph visualising the tree grammar

G .

E

A

c

d

D

d

e

c

Figure 2.2: Tree grammar visualisation as a compound graph

The presented graph includes compound nodes C =N (marked in blue) and nodes V =F

(marked in yellow). With respect to the above example, we have a graph GG with

CG = {A,D,E }

VG = {c,d ,e}

EG = {(c,D), (c,E), (d ,D), (e, A)}

FG = {(A,c), (A,d), (D,d), (E ,e)}

25

Chapter 2. Theoretical Background

Compound graphs are helpful in representing information about groups of data and their

relationships. Here, we can easily investigate the types of combinators. The size of the

compound nodes depends on the number of terminals with the same type specification.

2.6.2 Hypergraphs

Hypergraphs are used to visualise information in the fields of artificial intelligence, database

theory, fuzzy logic, propositional logic, and others [20; 21]. They comprise an alternative

representation to the compound graphs described above (see Section 2.6.3 for a comparison).

Hypergraphs are like regular graphs, but their edges can connect more than two nodes (i.e.,

they have a cardinality). If we consider a hypergraph H with cardinalities of all hyperedges

is |Ei | = 2 with i = 1, . . . ,n, then we have a 2-uniform hypergraph representing an ordinary

graph [70]. Figures 2.3a and 2.3b exemplify an undirected graph and undirected hypergraph.

In an ordinary graph, an incidence function maps every edge E to two nodes so that we have

1:1 connections, E → {{x, y}|(x, y) ∈ V 2 ∧ x 6= y} [27; 108]. The outgoing connections of the

hyperedges represent finite vectors of nodes, n:n connections. In this case, each hyperedge

has three nodes, in contrast to the regular graph, where the edges have exactly two nodes (cf.

Figure 2.3a).

•

• • •

• •
(a)

•

a

•

b

• •

•

c

•
(b)

Figure 2.3: Example of graph (a) and hypergraph (b)

The following definition of hypergraphs derives from [62] and [108].

Definition 11 (Hypergraphs) A directed labelled hypergraph H over an alphabet of termi-

nals F and an alphabet of nonterminals N is a quadruple H = (V , E , nod, lab) with

• a finite set of nodes V ,

• a finite set of edges (or hyperedges) E ,

• a family of incidence functions nod , with nodE : E →V ∗ and nodV : V → E , and

• a family of labelling function l ab, with l abE : E →F and l abV : V →N . 2

26

2.6. Visualisation of Tree Grammars

Figure 2.4: Visualisation of var rule as
a hypergraph

Figure 2.5: Visualisation of intersec-
tion rule (∩I) as a hypergraph

Every directed hyperedge has incoming and outgoing connections. The latter are denoted

by nodE , while the incoming connections are described by nodV [68; 70]. To represent the

tree grammar using a hypergraph, we consider the labelling alphabets of terminals and

nonterminals. Each nonterminal N in a tree grammar is represented by nodes V , such that

V = N . Every node is labelled with types. For a production α 7→ c(β1,β2, . . .βn) with n ∈N,

we add an edge e ∈ E with nodV (α) = e and nodE (e) = (β1,β2, . . .βn) where lab(e) = c [30].

The range of nodE (e) for edge e is the set of nodes of e denoted by r ang (nodE (e)) = n. The

numbering of the outgoing edges denotes the argument’s positions.

The tree grammar encoding by hypergraphs is straightforward according to the inhabitation

rules presenter in Section 2.2. For example, Figure 2.4 represents the var rule, Figure 2.5

illustrates the intersection rule, and Figure 2.6 displays the arrow elimination rule (→E).

Figure 2.6: Visualisation of arrow elimination rule (→E) as a hypergraph

The tree grammar G , presented as compound graph in Figure 2.2 is illustrated using hyper-

graph in Figure 2.7. The target type is also A, which can be easily recognised in this layout. The

represented elements are as follows: V = {A,D,E },E = {c,d ,e},nodE = {{c,D}, {c,E }, {d ,D}, {e, A}},

and nodV = {{A,c}, {A,d}, {D,d}, {E ,e}}.

Subhypergraphs

The developed IDE for the (CL)S Scala Framework provides a perspective on which each inhab-

itant can be visualised separately. Detailed information about these perspectives is presented

in Section 4.3.3. In this way, the user can investigate which combinators and types were used

for the inhabitation. To visualise the inhabitants separately, we apply subhypergraphs, the

27

Chapter 2. Theoretical Background

A

d

E

d

0

c

D

e1

0

Figure 2.7: Visualisation of tree grammar G as a hypergraph

definition of which is based on [53].

Definition 12 (Subhypergraphs) A hypergraph H ′ = (V ′,E ′,nodE ′ ,nodV ′ ,lab′) is called a sub-

hypergraph of hypergraph H = (V ,E ,nodE ,nodV ,lab), where H ′ ⊆ H , if V ′ ⊆ V , E ′ ⊆ E ,

nodE ′(e) = nodE (e), nodV ′(e) = nodV (e), and lab′(e) = lab(e). 2

As mentioned in Section 2.3, an inhabitant resulting from the (CL)S Framework is word w ,

where w ∈Lτ(G) where τ is a target type [29]. Thus, considering the example above, when

we have w = c(d ,e(d)), we construct a subhypergraph in terms of investigation of which

combinators and rules were used for the construction of this term. Figure 2.8 illustrates a

subhypergraph H ′ of the hypergraph HG shown in Figure 2.7. This graph represents the

construction of term d(d) derived for the start symbol A that is, again, at the beginning of the

graph because of the tree-like structure.

Figure 2.8: Visualisation of term d(d) as a subhypergraph

2.6.3 Comparison

To verify the usability of the presented approaches for graphical visualisation, we investigate

the readability and the flexibility of the constructed graphs. A poor layout representation

can overstrain and confuse the user. According to Dogrusoz et al. [56], the criteria used to

investigate the quality of a graph’s visualisation are subjective. For this reason, we measured

28

2.6. Visualisation of Tree Grammars

the quality according to some generally accepted criteria such as minimal crossing number of

edges, uniform distribution of nodes, and lack of overlapping of nodes [54; 56; 111; 124].

Experiments with different use cases have shown that for small tree grammars, both ap-

proaches can be applied. Nevertheless, the (CL)S Scala Framework aims to synthesise pro-

grams that can cause the generation of large tree grammars. For example, the use cases

presented in Chapter 6 request repositories including between 60 and 294 combinators. The

tree grammars generated by the algorithm grow exponentially [29]. In such a case, we investi-

gated the readability and the clarity of the resultant graphs.

As mentioned in Section 2.6.1, the directed compound graphs are often applied in the field of

chemistry and biologics. They suit to cases in which much information must be visualised to

investigate the relations between elements, pairs of nodes, or groups. The clustering of the

nodes represents the interactions between elements. Further information about the usage

of compound graphs can be found in [68]. A problem with this approach in combinatory

logic is that it is not practical in all situations. We aim to appropriately visualise how the

inhabitation algorithm (cf. Section 2.5) computes solutions to increase the understandability

of the process. Clustering of tree grammar information does not support this aim. The

experiments with cumbersome solutions mentioned above have shown the representation

of inhabitation results to be easier to understand and more precise without the aggregation

of combinators by types (without compound nodes). That is, where too many nonterminals

are represented using compound nodes (cf. Figure 2.2, blue rectangle), the visualisation

is imbricated and disorganized. The resulting compound graphs become too big; nodes,

hidden; and edges, difficult to discover. In this case, it takes time to order and understand the

components. Considering the small examples presented in Figures 2.2 and 2.7, we can also

see that the compound graph representation is unclear because of the edge–edge crossing,

despite the small number of nodes.

Moreover, the arity of the combinators can be visualised through the labelling of nodeE (e)

(cf. Figure 2.7). This representation is also possible with compound graphs using edge labels.

For large solutions, however, the visualisations are overloaded and unclear because of the

additional information.

The layouts of the graphs are also investigated. Section 4.3.2 discusses the importance and

necessity of different graphical designs. A representation using hypergraphs allows different

automatically generated layouts to be applied. Again, this approach allows better and more

flexible navigation through a representation of large tree grammars. In this way, a user can se-

lect a layout with, for example, fewer overlapping edges and nodes or a tree-like representation

where the target is at the beginning (cf. Figure 2.7).

In the search process, we applied a step-wise representation of the computation of terms.

Each step visualises the target, the combinator(s), and the next target(s). The application of

hypergraphs is more effective in representing large datasets, not only because of the range of

different layouts but also because of the straightforward representation of the tree’s growth. In a

29

Chapter 2. Theoretical Background

more extensive graph, this feature is very significant for user-friendly visualisation. Section 4.3

outlines more details about the advantages of this step-wise visualisation.

For the above-discussed reasons, the (CL)S IDE supports the visualisation of tree grammars by

hypergraphs. Chapter 6 introduces detailed information about and representations of these

graphs, based on real application cases.

2.7 Satisfiability Modulo Theories

The application of Satisfiability Modulo Theories (SMT) to synthesis is diverse. For example,

Solar-Lazama et al.[101] introduce an approach that completes partial implementations using

synthesis. Another technique to combine SMT and synthesis is programming by examples

presented by Gulwani et al. [83]. Further, Reynolds et al. [107] present a program synthesis

approach completely realised with the use of an SMT solver. The synthesis problem in the

case presented in Section 3.1 is solved using combinatory logic. SMT is applied as a filter-

ing approach to restrict the complete enumeration of inhabitants computed by the (CL)S

Framework. This restriction approach is detailed in Section 3.1.

SMT deals with the problem of the satisfiability of logical formulas regarding a background

theory. Around 1980, the use of decision procedures began. In the 1009s, based on this

knowledge, research in the field of SMT and SMT solvers began [40]. Nowadays, SMT solvers

are vital to computer programs verification [10; 52]. SMT solvers prove the satisfiability of the

SMT procedures. Section 2.7.2 briefly reviews SMT solvers. Within the filtering approach, we

define the input formulas according to the SMT-LIB standard. In this way, we can use a wide

range of solvers and benchmarks.

2.7.1 Satisfiability-Modulo-Theory Library

The Satisfiability-Modulo-Theory Library (SMT-LIB) is a standard first introduced within the

scope of the PDRAP 2003 Workshop [102]. Clark Barrett, Pascal Fontaine, and Cesare Tinelli

manage this initiative. The main goal is to provide a standard description of the background

theories and a library of benchmarks for SMT solvers. More than 30 SMT solvers are publicly

available. Using SMT-LIB, they can be compared and evaluated.

In this work, we use the current version 2.6 of the SMT-LIB standard, which consists of three

main components: theory declarations, logic declarations, and scripts. The Core theory

represents the basic and is included in every available SMT-LIB theory declaration [24]. Ac-

cordingly, the theory of the Booleans is always additionally allowed. This theory defines the

basic Boolean operators, alongside the following functions:

• (= x y Bool) returns true if and only if the arguments x and y are identical.

30

2.7. Satisfiability Modulo Theories

• (distinct x y Bool) returns true if and only if the arguments x and y are not identi-

cal.

• (ite Bool x y) returns the second argument x if and only if the first argument is true.

Otherwise the function returns the third argument y.

This work applies the theory of integers (the Ints theory), meaning we have a two-sorted

theory that allows the standard theory of integers in addition to the basic Boolean operators

[24].

In addition to the underlying first-order logic, the SMT-LIB format allows the declaration of a

sublogic to restrict the set of allowed formulas. We use the linear fragment of the theory of

integers (Ints) and the Booleans (Core) with uninterpreted constant symbols — linear integer

arithmetic (LIA) [102], allowing existential and universal quantifiers over integers. Moreover,

this logic allows addition and the functional symbol ∗, although only in the form (* m n) or

(* n m), where n is a free constant and where m is a term that can also be given a negative

integer coefficient (- m). To define the LIA as a logic, we also apply in the solver environment

the following command: (set-logic LIA).

The third component represents sequences of commands defined in a syntax close to this of the

programming language LISP. The order of the commands is essential for communication with

SMT solvers. More information about the scripts used in this work is presented and discussed

later in this section. After the usage of command set-logic, commands for declaring new

sort or function symbols can be used. To declare a function f that receives σ1 . . .σn and

returns σ, commands of the form (declare-fun f (σ1 . . .σn) σ) with n ≥ 0 must be used.

The function name should be unique or an error will be reported. The command (define-
fun f ((x1 σ1) . . . (xnσn)) σ t) can be used to define a function f with arguments that

are not only sorts but also variables. Here, the name must also be unique. This command is

equivalent to the following combination of commands:

1 (declare −fun f (σ1 . . .σn) σ)
2 (asserts (forall ((x1 σ1) . . . (xn σn)) (= (f x1 . . . xn) t)).

To instruct a solver to assume the satisfiability of a formula, we use a command of the following

form:

(assert <expression>).

We thereby define constraints that can be conditions or restrictions. In this example, we

use a binder is used that represents the universal quantifiers of first-order logic forall and

introduces n variables (x1, . . . , xn), where each variable is associated with a sort (σ1, . . . ,σn).

The well-sorted term t is of the sort σ. Otherwise, the solver reports an error.

31

Chapter 2. Theoretical Background

2.7.2 SMT Solver

As mentioned, SMT solvers deal with the satisfiability of formulas regarding background

theories [52]. They are automated and the problems to be checked are defined according to

the SMT-LIB standard.

To start checking the satisfiability using the SMT solver, the command (check-sat) must be

used at the end of the script. Three answers are possible:

• sat: This is a standard output if a formula φ is satisfiable. The solver can find a model

under which the set of assertions is satisfiable by using the command get-model.

• unsat: A solver returns this output if a formula φ is unsatisfiable. In this case, the

solver cannot find a model under which all assertions in the script are true. Using the

command (get-unsat-core), the solver returns the notifications of the assertions that

are unsatisfiable.

• unknown: In this case, the solver cannot determine the satisfiability of a problem. In

such a case, quantified expressions can be the problem. Since they are challenging, they

can force an SMT solver to return this answer. The complexity of the formulas when the

available memory is not enough or the time is expired can also cause this answer to be

returned. This behaviour limits the usefulness of the approach in use cases of quantified

verification conditions [106].

As mentioned, more than 30 SMT systems exist. Among them, some currently used systems

are Alt-Ergo, AProVE, Boolector, CVC4, Minkeyrink, Q3B, SMT-RAT, STP, veriT, Yices 2,and

Z3 [102]. In this work, we use the SMT Solver Z3 from Microsoft Research [52]. Within our

research, solvers can be replaced with reasonable effort, due to the SMT-LIB standard. In

this work, we use an abstraction over the SMT-LIB language in Scala that allows Z3 to be

easily replaced, for example, by CVC4 [4]. Investigations based on other SMT solver were not

considered in this work because of the filtering results discussed in Chapter 5.

32

Chapter 3

Filtering of Terms

Each application has specific requirements. A significant advantage of the (CL)S Scala Frame-

work is its ability to manage variability based on a user-specified repository including typed

combinators. However, the underlying type system can limit the expression of domain-specific

knowledge. For example, the consideration of the logical connections such as conjunction,

disjunction, and negation by intersection types is not explicitly provided. Using combinatory

logic, a user can locally specify type information on a combinator, but the expressiveness of the

results’ global structure is not straightforward using type variables. For instance, it is complex

to consider additional expressions of requirements referring to the resulting programs’ and

solutions’ behaviour more specifically and adequately by the type system. Furthermore, a

disadvantage of this synthesis approach is that the resulting terms can be both trivial and irrel-

evant [29]. For example, the term i d(x) is the same as i d(. . . (i d(x))). In addition to providing a

user-friendly IDE, a filtering approach was developed. Based on domain-specific constraints,

the filtering approach restricts the set of type correct inhabitants. In this way, the user can

define restrictions to forbid the direct application of combinator i d to some term x or other

domain specifications required from the current application.

The filtering approach supports users getting only those solutions that comply with specific

requirements and avoiding these solutions with identical execution and runtime behaviour

by restricting certain terms produced by the (CL)S Scala Framework. Thus, we can define

restrictions for specific use cases where the order of combinators is essential. For example,

order definition is crucial for use cases, where fabric plans must be synthesised or in cyber-

physical systems, where hardware resources are limited. In the scope of program synthesis, a

runtime exception can be avoided using constraints on the order.

In his work, Jan Winkels [132] deals with the automatic composition of factory planning

projects using combinatory logic. This application illustrates a use case where the synthesis

provides many variants of possible planning workflows that comply with the specified target

type. However, an additional examination is necessary. This way, the consideration of project-

33

Chapter 3. Filtering of Terms

specific numerical and module-specific constraints should be ensured. Numerical constraints

can comprise budget limits, time limits, or resource limits. Incompatibility between modules

is an example of a module-specific constraint. To ensure the computation of a domain-

specific solution, Jan Winkels uses the library Graph for Scala [12] for the verification. It

provides functionality for the graph’s generation. Based on these graphs, the user can apply

constraints to ensure that domain-specific restrictions are considered. The graph’s structure

resembles such plans and schedules for factory planning. This approach is also suitable for

such applications because of the JSON interface [132]. However, Graph for Scala cannot be

used for the general filtering approach because the solutions can be checked only one by

one. Accordingly, the approach cannot ensure there is a solution until it finds one. Very often,

the number of terms computed by the (CL)S Scala Framework is infinite. In such cases, this

filtering method is inefficient.

Moreover, the filtering approach can support users during the development of the input

specification. In some cases, it remains possible to use the type system to restrict the solution

space, although this procedure can be complicated when a repository is large. A user can

investigate the current repository using a specific pattern for the restriction of the terms. Based

on the filtered results, the developer can still decide whether the repository should be changed.

An example of such a development is the application case presented in Section 6.2 where the

authors synthesise milling processes using (CL)S.

In this section, we present and discuss approaches for filtering out trivial and irrelevant

terms, as well as those not complying with the application’s requirements. The emptiness

problem presented above is decidable by these approaches. The earliest approach is based

on the combination of the (CL)S Scala Framework and the SMT. The resulting tree grammars

are translated into SMT formulas, and the restrictions are formulated as constraints so that

SMT solver can decide whether a solution exists among the constraints. This approach

is detailed in Section 3.1. The second approach is based on a restriction modifying the

tree grammar produced by the inhabitation (s. Section 3.2). It works recursively based on

regular expressions that must be restricted. The disadvantages of this approach lead to the

development of the third filtering algorithm. The result is also a tree grammar so that the

emptiness problem is also decidable [50]. In this work, we call such user-defined expressions

patterns. A detailed discussion of the algorithm and the formal correctness are presented in

Section 3.3. Moreover, this section presents certain essential cases in which term filtering is

required (see Section 3.3.2) as well as a discussion of the advantages and disadvantages of

this approach (see Section 3.3.3). Section 3.4 presents a parser technique that supports the

filtering approach and that is integrated into the IDE.

34

3.1. Filtering Based on Satisfiability Modulo Theories

3.1 Filtering Based on Satisfiability Modulo Theories

This section introduces a filtering approach called CLS-SMT. It combines the strengths of the

(CL)S Framework and SMT. By restricting user-defined constraints, the approach increases the

usability of the IDE and compensates for the limitations imposed by the type system discussed

in the following. This technique was first presented in [85]. Background information about

SMT is briefly presented in Section 2.7.

3.1.1 Filtering Approach

Using the (CL)S Framework, a user defines a repository including combinators with type

specifications. The synthesis allows the construction of all possible combinations that cannot

be easily restricted according to user-specified constraints. Furthermore, as mentioned, this

approach does not consider the following logical connectives: conjunction, disjunction, and

negation. These drawbacks can be compensated by SMT, which allows the formulation of

such connectives.

The approach translates the tree grammars computed by the (CL)S Framework into a set of

SMT formulas. Afterwards, using domain-specific constraints and an SMT solver, we restrict

the resultant set of inhabitants. The filtering approach solves the following problem: Find a

word M that is both grammatically correct (which implies well-typedness according to the

repository and typing rules) and fulfils all user-defined constraints. Figure 3.1 illustrates the

implemented CLS-SMT filtering approach.

(CL)S Framework

Domain-specified constraints C SMT Formulas Φ

Tree Grammar G M ∈Lτ(G)

M∗ �LI A ΦSMT Solver

Figure 3.1: Overview of SMT filtering approach

In any tree grammar G generated by (CL)S, a term M is a word of the grammar G , such that

M ∈Lτ(G) where Lτ(G) is the language of the grammar with target symbol τ if and only if

Γ �M : τ. The framework then automatically translates the tree grammar G into a set of

appropriate SMT formulas φ. A detailed explanation of the translation process is presented

in Section 3.1.2. Domain-specified patterns have to be formulated as constraints according

35

Chapter 3. Filtering of Terms

to the SMT-LIB standard. The approach collects the formulas into a script. Let Φ denote the

conjunction of the formulas, meaning we have (ψ∧φ) ∈Φ, where φ is already translated into a

tree grammar. The framework passes the generated script to an SMT solver so that satisfiability

can be considered. A formula is satisfiable if there is a model M∗ such that M∗ �LI A Φ. If the

solver cannot find a model, then the formula is unsatisfiable. Any SMT tree model satisfying

the constraints represents a term M of the grammar G , and every word M ∈ L (G) can be

translated to an SMT model M∗. Therefore, we have M∗ �LI A ¬ψ∧φ. In other words, the

word M ∉L (C) and M ∈L (G), where L (C) is the language of all terms fulfilling the domain-

specific constraints; therefore, M is the complement language of L (C), M ∈ L (C). In this

case, a satisfiable formula is simultaneously type correct and specification correct.

3.1.2 SMT Script Generation

This section presents the generation of the third component required by the SMT-LIB standard,

namely – the scripts. To perform this filtering approach, we must define formulas according

to the standard. The formulas collected into a script can be pushed to an SMT solver. SMT

scripts contain a sequence of commands. If the definition and the order of the commands are

correct, the satisfiability of the formulas can be checked.

Tree Grammar to SMT Formulas

Based upon the completeness of the inhabitation algorithm, we know that if there is a non-

empty applicative tree grammar G , there is at least one word M that can be derived from

the grammar for the target type τ. In other words, we have M ∈ Lτ(G). As mentioned, the

inhabitation algorithm supports subtyping. As such subtyping rules have been fully applied

when the tree grammar is constructed and the encoding into SMT formulas no longer needs

to consider them. We define a data structure for applicative terms as follows:

Definition 13 (Inhabitant Tree) An inhabitant tree is a binary tree over integers. It is defined

as follows:

le f tC hi ld , r i g htC hi ld ∈ i nhabTr ee ::= 0 le f tC hi ld r i g htC hi l d | c,

with c ∈ C = {1, . . . ,n} and n representing the finite number of combinators used in a tree

grammar G . Each vertex has exactly two children (le f tC hi ld and r i g htC hi ld). A vertex with

children is labelled at 0. Such nodes are called application nodes. Along with the nonterminals,

functions le f tC hi ld and r i g htC hi ld are declared, which partially map the elements of

i nhabTr ee to their respective left and right children, if they exist. 2

An inhabitation tree with a combinator with k arguments includes k application nodes. The

combinator symbol denotes the leftmost leaf. The rightmost leaf of the parent element of the

36

3.1. Filtering Based on Satisfiability Modulo Theories

combinator represents the nth argument of this combinator c. We represent an application

node by @. According to the definition, an application node has exactly two children. Let us

consider the example presented in Figure 3.2.

@

arg2@

arg1c

Figure 3.2: Visual representation of inhabitant tree

It represents a visualisation of the term ((c(ar g 1))ar g 2), where combinator c is applied to the

arguments ar g 1 and ar g 2. The corresponding inhabitation tree is as follows:

0 (le f tC hi ld (0 (l e f tC hi ld 1) (r i g htC hi ld 2)) (r i g htC hi ld 3)

Here, combinator c is encoded as 1, ar g 1 as 2, and ar g 2 as 3.

A tree grammar can also be represented as an SMT formula. Let I be an inhabitation tree with

v ∈V , where V is a finite set of vertices. We introduce the following functions additionally:

• labelling function i nhabi t ant : V 7→ΣV , where ΣV represents the alphabet of vertex

labels of a tree ΣV ∈ {0}∪C .

• mapping function t y : V 7→N , where N is the finite set of nonterminals in the gram-

mar generated by the inhabitation algorithm. The function maps vertices of a tree to

nonterminals from the tree grammar.

Suppose G = (τ,N ,F ,R) is an applicative tree grammar (cf. Definition 7) constructed by

the (CL)S Scala Framework with a production rule α 7→ c(β1,β2), where are nonterminals

and c ∈F terminal symbol. Each production rule from the tree grammar is translated into

theory-specific structural constraints on the tree by the application of Algorithm 3. Each

translated rule represents a possible set of subtrees. Here, each combinator symbol of the

rules is also represented by the leftmost leaf in the subtrees. Figure 3.3 illustrates the rule

considered above.

37

Chapter 3. Filtering of Terms

@ : α

? : β2@

? : β1c

Figure 3.3: Representation of a production rule

Let i be the node @ : α that represents nonterminal α. Then, we have the combinator c

on position (leftChild (leftChild i)). The arguments are typed according to β1 and

β2. They are at positions (rightChild (leftChild i)) and (rightChild i), respectively.

According to these rules, we can also construct subtrees for β1 and β2.

Applying Algorithm 3, we get Boolean expressions that encode LIA constraints for the rules

from the tree grammar. These expressions are included in an assertion with a f or al l expres-

sion and evaluated to verify whether the inhabitation tree is valid.

Algorithm 3 Rule Translation

1: function TRANSLATE_RULE (t y peI d , values)

2: xor Set ←∅
3: for all (combi nator, par ameter s) in values do

4: cTr ansl ← TRANSLATE_COMBINATOR(combinator, parameters)

5: xor Set ← xor Set ∪ cTr ansl

6: end for

7: return (ite (= (ty i) t y peI d) (xor xor Set) true)
8: end function

9:

10: function TRANSLATE_COMBINATOR(combi nator, ar g s)

11: constr Set ←∅
12: cur r ent Addr ess ← i

13: pLi st ← ar g s.r ever se

14: for all p in pList do

15: constr Set ← constr Set ∪ (= (ty (rightChild cur r ent Addr ess)) p)
16: constr Set ← constr Set ∪ (= (inhabitant cur r ent Addr ess) 0)
17: cur r ent Addr ess ← (leftChild cur r ent Addr ess)
18: end for

19: combi natorConstr ai nt ← (= (inhabitant cur r ent Addr ess) combinator)
20: combi nedSet ← combi natorConstr ai nt ∪ constr Set

21: return (and (combi nedSet))
22: end function

38

3.1. Filtering Based on Satisfiability Modulo Theories

The function Translate_Rule considers each rule sorted in the given set of values (lines 3–5).

The function Translate_Combinator returns a translation of a combinator and its argument

list. The subtrees representing the translation of the combinators in a current production rule

are combined using the function xor (line 7). This function takes two or more arguments,

but here, in order to increase readability, the pseudo-code represents an application of the

function xor and and to sets. The function xor is used because for each production rule, only

one combinator can be used in the current subtree. The labelling of the nodes can be expressed

using constraints on the functions i nhabi t ant and t y . In line 7, a root node constraint is

included to ensure the mapping of node 1 of the tree to the target nonterminal using the

function t y . The variable i represents vertices v ∈V . Using this universal quantified variable

i and its translated children, the function Translate_Combinator translates all arguments

in a rule beginning with the last one in the ar g s list because it is the rightmost child in the

inhabitation tree (lines 14–18). In line 19, the cur r ent Addr ess is the leftmost child and

corresponds to the combinator in the current right-hand side.

Using the commands presented in Section 2.7.1, we declare the functions that ensure that

tree grammar is represented. The functions inhabitant and hasType (see Listing 3.1) receive

an integer and return an integer that represents the encoding terminals and nonterminals,

respectively. The functions lChild and rChild, which receive arguments i of sort integer

and return a sum of sort integer, correspond to the right and left child in an inhabitation tree,

while isAppNode corresponds to an application nodes denoted by @ (cf. Figure 3.3).

1 (declare −fun inhabitant (Int) Int)
2 (declare −fun hasType (Int) Int)
3 (define −fun lChild ((i Int)) Int (+ i i))
4 (define −fun rChild ((i Int)) Int (+ 1 (+ i i)))
5 (define −fun isAppNode ((i Int)) Bool (= (inhabitant i) 0))

Listing 3.1: Declaration of identifiers

After these commands, we insert the declaration of the current tree grammar translated by

Algorithm 3. Listing 3.2 shows the commands that encode the following tree grammar:

Gs = {S 7→ @(A,B),

S 7→ c,

A 7→ c1,

B 7→ c2 }

1 (define −fun tConstr0 () Bool (forall ((i Int)) (ite (=(hasType i)
0)(xor (and (isAppNode i) (=(hasType (rChild i)) 2) (=(hasType (
lChild i)) 1))(=(inhabitant i) 1)) true)))

2 (define −fun tConstr1 () Bool (forall ((i Int)) (ite (=(hasType i)
1)(=(inhabitant i) 2) true)))

39

Chapter 3. Filtering of Terms

3 (define −fun tConstr2 () Bool (forall ((i Int))(ite (=(hasType i) 2)
(=(inhabitant i) 3) true)))

Listing 3.2: Declaration of tree structure

The first declaration represents the first two rules from GS , where the left-hand side, the nonter-

minal S, is encoded by 0 using the function hasType (cf. Listing 3.1, line 2): (= (hasT y pe i) 0),

and where i is a universal quantified variable. As can be seen, the function xor is used for the

representation to ensure the usage of only one right-hand side. The translation is straightfor-

ward, thus nonterminals A and B are encoded by 1 and 2 and combinators c,c1 and c2, by 1,2

and 3. In the first rule, A and B are the left and the right child of the application node, so they

are encoded by (= (hasT y pe(lC hi ld i)) 1) and (= (hasT y pe(rC hi l d i)) 2), respectively. The

translation of the combinators is represented using the function inhabitant (cf. Listing 3.1,

line 1).

The encoded tree grammar and domain-specific restrictions represented by constraints com-

plying with the SMT-LIB standard must be proved by an SMT solver. We define the following

assertions that check whether the stated translations of the rules presented in Listing 3.2 are

true:

(assert tConstr0)
(assert tConstr1)
(assert tConstr2)

If the formulas are satisfiable, the defined functions are true, and the encoding is correct.

Using this command, the solver also proves the satisfiability of the defined domain-specific

constraints.

Let us consider the example presented in [85] that represents a repository for the synthesis of

sort programs. For the synthesis, the small repository ΓS is used (as shown in Figure 3.4).

Γs = { de f aul t : doubl e,

i d :α→α,

mi n : doubl e → Sor tedLi st (doubl e) → mi ni mal ∩doubl e,

values : Li st (doubl e),

i nv : doubl e → doubl e,

sor tmap : (α→α) → Li st (α) → Sor tedLi st (α) }

Figure 3.4: Repository for sorting of lists

name id

default 1

id 2

min 3

values 4

inv 5

sortmap 6

Table 3.1: Encoding of the
combinators

The first combinator sor tmap applies a function to each element, and thereafter, a sorting

of the list is performed. The combinator i d returns its argument unchanged. The i nv com-

binator represents the inverse function i nv(x) = 1/x, which can be applied to double values.

40

3.1. Filtering Based on Satisfiability Modulo Theories

The result type of the mi n combinator is an intersection of mi ni mal and doubl e. This

combinator will be applied if we want to sort a list with elements of type doubl e and find

the minimal values of the elements. The de f aul t combinator typed by doubl e returns the

default value if a list is empty. To sort a doubl e list and to find its minimal value, the following

request is required:

Γs ` ? : mi ni mal ∩doubl e.

In this case, we get the tree grammar Gs that computes an infinite set A of terms. The tree

grammar is presented in Figure 3.5. As can be seen in the doubl e rule, the reason for the

infinite number of solutions is that combinators i d and i nv can be applied on arguments of

type doubl e.

The application of combinators i nv and i d is not restricted, so these combinators lead to the

computation of an infinite set of terms. To avoid the production of trivial terms, we define a

constraint (see Listing 3.3) allowing the usage of these combinators only as arguments (lines 1

and 2), and the combinator mi n must have a terminal as the first argument (lines 3–8).

Gs = {Sor tedLi st (doubl e) 7→ {sor tmap(doubl e → doubl e,Li st (doubl e))},

mi ni mal ∩doubl e 7→ {i d(mi ni mal ∩doubl e),mi n(doubl e,Sor tedLi st (doubl e))},

doubl e 7→ {i d(doubl e),de f aul t (), i nv(doubl e),mi n(doubl e,Sor tedLi st (doubl e))},

doubl e → doubl e 7→ {i d(), i nv()}

Li st (doubl e) 7→ {i d(Li st (doubl e)), values()} }

Figure 3.5: Tree grammar for sorting of lists

1 (assert (forall ((i Int)) (not (= (inhabitant (leftChild i)) 2))))
2 (assert (forall ((i Int)) (not (= (inhabitant (leftChild i)) 5))))
3 (assert (forall ((i Int))
4 (ite (= (inhabitant (leftChild i)) 3)
5 (not (= (inhabitant (rightChild i)) 0))
6 true)
7)
8)

Listing 3.3: Constraint example for restriction of trivial solutions

Here, the combinator i d is encoded as 2, mi n as 3, and i nv as 5. These constraints lead to the

generation of the following terms that are relevant to the use case:

((mi n de f aul t) ((sor tmap i nv) values)) and

((mi n de f aul t) ((sor tmap i d) values)).

41

Chapter 3. Filtering of Terms

The encoding of the combinators as constraints corresponds to that in the tree grammar trans-

lation (see Table 3.1). Figures 3.6 and 3.7 present the terms as trees. The used labelling pattern

is combi nator name : (ver tex i d , combi nator i d), where the values of combi nator i d

appear in Table 3.1.

@:(1,0)

@:(3,0)@:(2,0)

default:(5,1)min:(4,3) values:(7,4)@:(6,0)

sortmap:(12,6) inv:(13,5)

Figure 3.6: Visual representation of term ((mi n de f aul t) ((sor tmap i nv) values))

@:(1,0)

@:(3,0)@:(2,0)

default:(5,1)min:(4,3) values:(7,4)@:(6,0)

sortmap:(12,6) id:(13,2)

Figure 3.7: Visual representation of term ((mi n de f aul t) ((sor tmap i d) values))

Considering a small labyrinth example similar to that presented in Section 4.3, The (CL)S

Framework synthesise all possible paths, so the following terms are also possible solutions:

up(r i g ht (up(down(up(down(up(st ar t))))))),

down(up(up(r i g ht (up(st ar t))))),

up(down(up(down(up(r i g ht (up(st ar t))))))), ...

These terms represent trivial and inefficient solutions. With user specification, we can re-

strict inhabitants that include cycles, for instance. One example of an inefficient term can

be seen in the unitary movements to the right, then to the left and back to the right. This

case can be restricted by the definition of constraints that forbid the following order of com-

binators right(left(...)). When the combinator down is used in the next step, the usage of

combinator up must be forbidden. Listing 3.4 displays an example of the SMT formula for

filtering inhabitants by restriction of certain order. Here, the combinator right is encoded by

1, and left by 2. The (CL)S-SMT approach seek solutions that exclude this order of combinators.

42

3.1. Filtering Based on Satisfiability Modulo Theories

(assert
(forall ((i Int))

(not (and (= (inhabitant (leftChild i)) 1)
(= (inhabitant (leftChild (rightChild i))) 2)

)
)

)
)

Listing 3.4: Filtering by the order of combinators

3.1.3 Limitations

Throughout the representation of inhabitation results and constraints as SMT formulas, a

restriction of solutions can be achieved. The synthesis based on combinatory logic reduces

the search space of the SMT solvers. Moreover, this approach makes it unnecessary to change

the defined inhabitation specifications. Nevertheless, the approach also carries certain disad-

vantages. The SMT-encoding process rests on constraints expressed as universal quantified

assertions. Thereby, the SMT encoding requires the instantiation of quantifiers. Dealing

with high numbers of quantifiers and complicated instantiation terms remains difficult for

SMT solvers, even though the community has been continuously improving solutions to this

problem. Experiments show that the formal setup may be so powerful that the SMT solver

is overstrained because there are assertions that cannot practically be decided (while the

underlying logic is theoretically decidable). In such a case, the solver produces the value

unknown as an answer so that we can say that SMT filtering approach works unreliably.

We applied a labyrinth example to investigate this approach. The results show this approach

to perform well with small use-cases resulting in tree grammars with a manageable number

of rules [85]. For the synthesis of paths in a 3×4 labyrinth, the framework quickly computes

a result. As the investigation shows, a significant disadvantage of the filtering approach is

that it is unreliable and not well suited for movement plans larger than a size of 10 × 10. The

more complex the use case, the more time necessary to check satisfiability. Moreover, very

often the answer is unknown. As mentioned, the application of the synthesis to real problems

must handle repositories with hundreds of combinators. Consequently, the filtering takes

much time, and the probability of finding no solution is relatively high. Bessai et al. [39] also

investigated the (CL)S-SMT approach using the construction of sorting functions and the

filtering of redundant paths in a labyrinth considered in this section. The authors showed that

the presented Haskell implementation can check emptiness and finiteness in the linear case,

and this represents an improvement of the filtering approach based on SMT. In summary,

these disadvantages indicate that the (CL)S-SMT approach is not suitable for fail-safe and fast

filtering user support that can be provided by the (CL)S IDE. For this reason, we consider two

other approaches, as presented and discussed in the following.

43

Chapter 3. Filtering of Terms

3.2 Filtering with Recursion Based on Tree Grammar Modification

Because of the drawbacks of the CLS-SMT approach, we developed another filtering algorithm

based on modifying the tree grammars generated by the (CL)S Framework. The filtering

approach presented in this section is achieved through a recursive modification of the produc-

tion rules so that after the application, no words containing a given pattern can be derived for

the given start symbol.

A domain-specific pattern can also be considered as a constraint restricting the synthesised

program’s specific output behaviour. Formally, we define patterns as follows:

Definition 14 (Pattern) For set Pat and p, p1, p2 ∈ Pat , we define

p, p1, p2 ::=∗ | c | @(p1, p2),

where p1 and p2 are subpatterns of the original pattern p. Any application of term or combi-

nator is denoted by ∗. A named component or combinator is represented by c . The expression

@(p1, p2) represents an application of p1 to p2. 2

The size of the pattern p, denoted by si ze(p), is defined as follows:

Si ze(p) =
{

1, ifp ∈ B∨p =∗,

1+Si ze(pi), i ∈ {1, . . . ,n}

3.2.1 Filtering Approach

One of the input values of the filtering algorithm is an unranked tree grammar (cf. Definition 5).

Based on a given pattern, the implementation results in an unranked tree grammar that cannot

derive terms that match this pattern. Applying the algorithm to each production rule makes

it search recursively for matches. If there is a match to the pattern, a modification of the

rule follows. Beyond modifying the original production rule, the algorithm computes new

nonterminals and inserts new rules depending on the match. Each new nonterminal becomes

a fresh name. Therefore, additional functionality is required to generate the new names

and to ensure their uniqueness. Here, production rules that do not match the pattern occur

unchanged in the new tree grammar. The possible behaviour steps of the algorithm are

presented as follows:

• Modification of a production rule with a combinator with ar i t y = 0 on the right-hand

side that matches the pattern. The nonterminal receives a fresh name, and the matched

combinator does not occur in the new tree grammar.

44

3.2. Filtering with Recursion Based on Tree Grammar Modification

• Modification of a production rule with a right-hand side that includes more than one

combinator, where at least one matches the pattern. The new rule contains combina-

tors that do not match. The notation of these combinators remains unchanged. The

matching combinator does not occur in the new rule.

• Generation of a new rule with a fresh nonterminal and a modified right-hand side. If the

matched combinator has an ar i t y > 0, its arguments get fresh names. The algorithm

searches for matches in the rules of the arguments recursively. For each argument with

a fresh name, the algorithm inserts a new rule according to the cases above.

• Production rules that do not match the given pattern are assumed unchanged in the

new tree grammar.

To explain the approach, we consider the following example:

Example 1 Given a tree grammar Gr with the following rules:

Gr = {S 7→ {c(A,B),c2()},

A 7→ {c(A,B),c1()},

B 7→ {c2()} }

and p := c(c1,c2). The algorithm considers the right-hand sides. The new grammar after the

first iteration is shown in the following:

G ′
r = {S 7→ {c(A′,B),c(A,B ′),c2()},

A 7→ {c(A′′,B),c(A,B ′′),c1()},

B 7→ {c2()},

A′ 7→ {c(A,B)},

B ′ 7→ { },

A′′ 7→ {c(A,B)},

B ′′ 7→ { }

}

As can be seen by application of rules A′ and A′′, the pattern can be constructed. If the

algorithm generates new rules in some iteration, a next iteration follows. In this case, the

second iteration results in the following tree grammar:

45

Chapter 3. Filtering of Terms

G ′′
r = {S 7→ {c(A′,B),c(A,B ′),c2()},

A 7→ {c(A′′,B),c(A,B ′′),c1()},

B 7→ {c2()}

A′ 7→ {c(A′′′,B),c(A,B ′′′)},

B ′ 7→ { },

A′′ 7→ {c(A′′′′,B),c(A,B ′′′′)},

B ′′ 7→ { },

A′′′ 7→ {c(A′′,B),c(A,B ′′)},

B ′′′ 7→ { },

A′′′′ 7→ {c(A′′,B),c(A,B ′′)},

B ′′′′ 7→ { }

}

The modified tree grammar contains rules (for example A′′ and A′′′′) that cause cycles. Nev-

ertheless, the inhabitation ceases because new rules without further recursive targets exist.

The filtering algorithm stops when the new grammar does not receive new entries in the final

iteration. Demonstrably, each rule leads to another rule that does not match the pattern (i.e. a

rewritten rule or an empty rule). 2

One drawback of the algorithm is that its termination cannot be easily shown because of the

recursion. Furthermore, the algorithm cannot handle the ω case because of the application

of the tree grammar presented in Definition 5. Moreover, the dependence on the function

that creates new and unique names is necessary. Otherwise, the algorithm leads to illegal

solutions.

46

3.3. Filtering without Recursion Based on Tree Grammar Modification

3.3 Filtering without Recursion Based on Tree Grammar Modifica-

tion

To compensate for the disadvantages of the first version of the filtering approach presented

in Section 3.2, we developed another algorithm. It performs similarly to that with recursion,

but it allows one to reason about its correctness more easily. A detailed investigation of the

performance of the filtering methods is presented in Section 5.1. Moreover, it is not required

to control the uniqueness of the names of the modified rules.

3.3.1 Filtering Approach

The algorithm presented in this section modifies the applicative tree grammar (cf. Definition 7)

so that it also behaves well withω. To specify this filtering approach, a definition of the pattern

language is necessary.

Definition 15 (Pattern Language) Let M and N be given terms, such that M , N ∈ A and c

is a combinator. We define the language of pattern L ′(p) as the least set closed under the

following rules:

c ∈ L ′(∗) c ∈ L ′(c)

@(M , N) ∈ L ′(∗)
M ∈L ′(p1) N ∈L ′(p2)

@(M , N) ∈ L ′(@(p1, p2))

We define a language L (p) as a set closed under the following rules:

M ∈L ′(p)
M ∈ L (p)

M ∈L (p)
@(M , N) ∈ L (p)

N ∈L (p)
@(M , N) ∈ L (p)

These rules allow for the occurrence of a given pattern p not only at the beginning of a word

but also deeper in the tree. From now on, to increase readability, we consider the language

L (p) as a set of all words, where pattern p occurs anywhere in the word and not only at the

beginning. 2

The language complements are essential to the filtering approach. We define the complement

language of L (p) according to [79] as follows:

47

Chapter 3. Filtering of Terms

Definition 16 (Complement Languages) If L (p) is a regular language over alphabet Σ, then

L (p), the complement of L (p), is the set of all words in Σ∗ that are not in L (p); accordingly,

we have L (p) =Σ∗−L (p) that is also a regular language. The complement language L (p) of

the language L (p) is the least set closed under the following rules:

M ∈Σ∗ M ∉L (p)

M ∈ L (p)

According to the closure properties of the regular languages, if languages L (G) and L (p) are

regular languages, then the difference L (G)−L (p) is also a regular language [79]. We define

the difference of the language of a regular tree grammar and the language of a pattern using

complement languages as follows:

Definition 17 (Difference of Languages) Let L (p !G) be a set of terms that is in language

L (G), where G is a tree grammar, but not in the language that constructs a pattern p: L (p).

Language L (p !G) is then the difference of L (G) and L (p) denoted by L (G)−L (p) or

L (G)∩L (p), where L (p) is the complement language of L (p). The intersection of these

languages is the least set closed under the following rules:

c ∈L (G) c ∈L (p)
c ∈ L (p !G)

@(M , N) ∈L (G) @(M , N) ∈L (p)
@(M , N) ∈ L (p !G)

Therefore, a word w is in L (p !G) and does not include p if w ∈L (G) and w ∉L (p). 2

The union of the languages of all trees rooted in nonterminal A ∈N where the pattern p is

forbidden is represented by
⋃

A∈N
LA(p !G). This union corresponds to the intersection of the

language of the tree grammar G with the complement language of the given pattern L (p).

That is, it corresponds to:
⋃

A∈N
LA(p !G) =L (G)∩L (p).

Definition 18 (Filter) For applicative tree grammar G and pattern p ∈ Pat define

• a rule in an applicative tree grammar:

RT 3 r ::= A 7→ c | A 7→ @(B ,C)

for c ∈ B, A,B ,C ∈ T , where T is a set and B is a finite set of combinators.

• the set of all subpatterns p1, . . . pk with k ≥ 0 of pattern p:

p1, . . . pk ∈ S(p) wherepi 6= p with 0 ≤ i ≤ k

48

3.3. Filtering without Recursion Based on Tree Grammar Modification

• a power set of a set of all subpatterns S(p) as the set of all subsets of S(p):

P (S(p)) = {S | S ⊆ S(p)}

• a set P as an element of a set U where:

U = {sp ∪ {p} | sp ∈P (S(p))}

• function FORBID: (R∗
T ×P) →R∗

T∪(U×T)

forbid(G , p) =


[r | sp ∈P (S(p)),

r ← forbidIn(G , p, sp)] for G 6= ;
[::] otherwise

.

• function FORBID_IN: (R∗
T ×Pat ×S) →R∗

T∪(S×T)

forbidIn(G ,p, sp) =

1©


forbidIn(Gr est , p, sp) c ∈ P

[::] for ∗ ∈ P

[:: P !A 7→ c & forbidIn(Gr est , p, sp)] otherwise

for P = {p}∪ sp and G = [:: A 7→ c & Gr est]

2©



([:: P !A 7→ @({P ∪
{p11, p12, . . . , p1n}}!B , P !C) &

P !A 7→ @(P !B , {P ∪ {p21, p22, . . . , p2n}}!C) &

forbidIn(Gr est , p, sp))] for P = {c0, . . . ,ck ,@(p11, p21),

@(p12, p22), . . . ,@(p1n , p2n)}

with k ∈N0 and n ∈N
[::] for ∗ ∈ P

[:: P !A 7→ @(P !B , P !C) &

forbidIn(Gr est , p, sp)] otherwise

for P = {p}∪ sp and G = [:: A 7→ @(B ,C) & Gr est]

3© [::]

for G = [::]

• possible behaviour steps of the filtering algorithm that are closed under the rules:

c ∈ P ∗ ∉ P
(FORBIDCOMB)

P !(Gchecked , [:: A 7→ c & Gr est]); (Gchecked ,Gr est)

49

Chapter 3. Filtering of Terms

not exist {@(p1, p2)} ∈ P ∗ ∉ P
(PATAPP)

P !(Gchecked , [:: A 7→ @(B ,C) & Gr est]); ([:: P !A 7→ @(P !B ,P !C) & Gchecked],Gr est)

∗ ∈ P (FORBIDSTAR)
P !(Gchecked , [:: r & Gr est]); (Gchecked ,Gr est)

c ∉ P ∗ ∉ P
(PATCOMB)

P !(Gchecked , [:: A 7→ c & Gr est]); ([:: P !A 7→ c & Gchecked],Gr est)

P = {c0, . . . ,ck ,@(p11, p21), @(p12, p22), . . . ,@(p1n , p2n)} with k ∈N0 and n ∈N
(FORBIDAPP)

P !(Gchecked , [:: A 7→ @(B ,C) & Gr est]);

([:: P !A 7→ @({P ∪ {p11, p12, . . . , p1n}}!B , P !C) &

P !A 7→ @(P !B , {P ∪ {p21, p22, . . . , p2n}}!C) & Gchecked],Gr est)

The closure of ; with n steps is the least relation closed under the following rules:

P !(Gchecked ,Gr est);0 (Gchecked ,Gr est)

P !(G ′
checked ,G ′

r est); (G ′′
checked ,G ′′

r est) P !(G ′′
checked ,G ′′

r est);n (G ′′′
checked ,G ′′′

r est)

P !(G ′
checked ,G ′

r est);n+1 (G ′′′
checked ,G ′′′

r est)

Accordingly, the n-step closure of G ′ from G corresponds to the reflexive, transitive

closure of ; denoted by ;∗:

P !(Gchecked ,Gr est);∗ (G ′
checked ,G ′

r est) iff there exists a positive integer n, s.t.

P !(Gchecked ,Gr est);n (G ′
checked ,G ′

r est). 2

The filtering algorithm computes from a list of production rules representing an applicative

tree grammar a new list of rules. In addition to the applicative tree grammar G , the function

FORBID gets a user-specified pattern p. The function computes a finite set of subpatterns

S(p) based on the given pattern p. Then, the computation of a power set of S(p) follows. It

is denoted as P (S(p)) and of a size 2k , where k is the size of S(p). For example, for a pattern

p = @(@(c, p1), p2), we get a set of subpatterns S(p) = {c, p1, p2,@(c, p1)} and a power set

P (S(p)) = {{ }, {c}, {p1}, {p2}, {@(c, p1)}, {c, p1}, {c, p2}, {c,@(c, p1)}, {p1, p2}, {p1,@(c, p1)}, {p2,

@(c, p1)}, {c, p1, p2}, {c, p1, p2}, {c, p1,@(c, p1)}, {p1, p2,@(c, p1)}, {c, p1, p2}, {c, p1, p2,@(c, p1)}}.

50

3.3. Filtering without Recursion Based on Tree Grammar Modification

To forbid the pattern and the subpatterns, the function FORBID_IN executes for each element

spi of the power set where 1 ≤ i ≤ |P (S(p))|. Furthermore, FORBID_IN is applied to each

rule of the applicative tree grammar G . For each element P that represents the union of the

original pattern p and an element spi , the function returns a new modified applicative tree

grammar containing rules that cannot construct the elements of P . The number of calls m of

the function is equal to the size of P (S(p)) that also corresponds to the size of U . The function

results in

p !G := ⋃
P∈U

P !G ,

where p !G denotes that the original pattern p is forbidden in G and P !G denotes that all

elements on the left-hand side of the exclamation mark are forbidden in G . The function

FORBID returns a union of all applicative tree grammars modified according to the current P .

For each rule in the grammar, it is necessary to forbid not only the set of subpatterns sp but

also the given original pattern p, for the following reason. Suppose the algorithm forbade the

pattern and the subpattern separately. In this case, the union of the generated applicative tree

grammars can synthesise terms containing the pattern p deeper in the tree. Moreover, this

approach ensures that all terms that do not contain the given pattern remain contained in the

language.

The function FORBID_IN iterates over the rules in G and searches for matches. We consider

the cases under 1©, where the current rule has a form of A 7→ c and where there is a match.

This case occurs, on the one hand, when p = c. Then, S(p) is empty and P contains only the

element {c}. On the other hand, c ∈ P , ∗ ∉ P , but p 6= c. In that case, the algorithm filters this

rule out and the algorithm continues with Gr est . The result grows only with the addition of

newly modified rules. The list Gr est contains the rules that must be considered, and in each

step, the algorithm drops the considered rule.

When input grammar becomes empty, meaning no further rules must be considered (case

3©), the algorithm stops and returns the completed list of modified rules. If p =∗ or ∗ ∈ P – for

example, if p = @(c,∗) – the function returns an empty list because all kinds of rules match

with ∗ and must be forbidden. In the case that we have p 6= c and ∗ ∉ P , or c ∉ P and ∗ ∉ P ,

the algorithm rewrites the left-hand side of the rule by P !A. The right-hand side remains

unchanged. The function then adds the new rule P !A 7→ c and continues with Gr est .

If the rule is an application rule of form A 7→ @(B ,C) and the set P contains a subpattern

of the forms @(p1, p2) and ∗ ∉ P , the algorithm computes two new rules (see the cases un-

der 2©). In this case, it does not matter whether a subpattern of the form c is in the set P

because the rule does not match such patterns anyway. The new apply rules are modified

according to the rules presented above. On the one hand, we must forbid the left side of the

application rule. The name of the function type in the first rule centres on P and p1 because

it can match only left sides in an apply pattern, and in this way, the algorithm recursively

forbids the pattern. The argument type name is composed of its name and the set P . On the

51

Chapter 3. Filtering of Terms

other hand, in the second rule, the algorithm modifies the argument type according to the

set P and the subpattern p2 to recursively forbid the pattern. As in the first rule, the original

name is also considered. The modified target name is based on the original left-hand side

and the current set P . The added rules are of the form P !A 7→ @({P, p1}!B , P !C) and P !A 7→
@(P !B , {P, p2}!C). Even if P includes more than one apply pattern or combinators, such that

P = {c1, . . . ,ck ,@(p11, p21), @(p12, p22), . . . ,@(p1n , p2n)} with k ∈N0 and n ∈N, the filtering algo-

rithm considers separately the left- and right-hand sides of the patterns. It modifies the rule as

follows: P !A 7→ @({P ∪ {p11, p12, . . . , p1n}}!B , P !C) & P !A 7→ @(P !B , {P ∪ {p21, p22, . . . , p2n}}!C).

In this manner, the algorithm forbids only the pattern p and allows the production of all

terms resulting from the original grammar, which do not include the pattern. A modification

does not occur if ∗-pattern is in the set P . In this case, the algorithm returns an empty list

regardless of the current rule. If there is no pattern of the form @(p1, p2) in P , the algorithm

rewrites the apply rule by changing the names, similar to the first case; s.t. the new rule is of

the form P !A 7→ @(P !B , P !C). From now on, for the sake of readability, we denote pattern set

with extensions by P ∪ext .

Lemma 1 (Functionality of the Filtering Algorithm) For all inputs P,Gchecked , and Gr est , there

is at most one G ′
checked and G ′

r est that results from P !(Gchecked ,Gr est); (G ′
checked ,G ′

r est). 2

PROOF We show that if the relation with input P,Gchecked , and Gr est steps to (G ′
checked1,G ′

r est1)

and (G ′
checked2,G ′

r est2), then (G ′
checked1,G ′

r est1) and (G ′
checked2,G ′

r est2) are equal, by case dis-

tinction on a derivation of step P !(Gchecked ,Gr est); (G ′
checked1,G ′

r est1). We assume that the

induction hypothesis holds for any subderivation, s.t. the cases that must be considered

depend on the last rule used in P !(Gchecked ,Gr est) ; (G ′
checked1,G ′

r est1) and the last rule in

P !(Gchecked ,Gr est); (G ′
checked2,G ′

r est2). We consider the following cases:

• If G is empty, then (G ′
checked1,G ′

r est1) and (G ′
checked2,G ′

r est2) are also empty, and the

induction hypothesis holds.

• If ∗ ∈ P , then (G ′
checked1,G ′

r est1) and (G ′
checked2,G ′

r est2) are empty because the deriva-

tions end with FORBIDSTAR, so that the result holds.

• If c ∈ P , ∗ ∉ P , there does not exist p1 and p2 s.t. @(p1, p2) ∈ P , then if the current rule is

of the form A 7→ @(B ,C), the only possible step is PATAPP. If the rule is of the form A 7→ c ,

then it does not matter whether @(p1, p2) is in P , and the derivation ends with the rule

FORBIDCOMB. In this case, the statement (G ′
checked1,G ′

r est1) = (G ′
checked2,G ′

r est2) is true

if and only if the derivations end with PATAPP or FORBIDCOMB.

• If c ∉ P and ∗ ∉ P and if the current rule is of the form A 7→ c, then it does not matter

whether there exist p1 and p2 s.t. @(p1, p2) ∈ P , and the derivation ends with PATCOMB,

such that the result holds.

• If there exist p1 and p2 so that @(p1, p2) ∈ P , c ∉ P , and ∗ ∉ P , then for a rule of the form

A 7→ c, the only possible step is PATCOMB. If the rule is of the form A 7→ @(B ,C), then

52

3.3. Filtering without Recursion Based on Tree Grammar Modification

FORBIDAPP is the only step applicable for this input. It follows that (G ′
checked1,G ′

r est1) =
(G ′

checked2,G ′
r est2) is satisfied, if the rule PATCOMB or FORBIDAPP is used.

• Analogously, if P contains also a pattern of the form c, such that there exist p1 and

thus p2 so that @(p1, p2) ∈ P , c ∈ P , and ∗ ∉ P , then only the rules FORBIDAPP and

FORBIDCOMB can be applied, according to the input rules. If the rule is of the form

A 7→ c, then FORBIDCOMB is the only possible step, and if the rule is of the form A 7→
@(B ,C) then only the application of FORBIDAPP can occur. Thus, (G ′

checked1,G ′
r est1) =

(G ′
checked2,G ′

r est2) is satisfied if and only if the derivations end with FORBIDCOMB or

FORBIDAPP.

As the cases above show, the rules presented in Definition 18 are mutually exclusive. By

induction, the one-step relation only allows unique results. Therefore, it is true that transitive

closure yields only unique results. �

Lemma 2 (Termination of the Filtering Algorithm) For all P, Gr est exist Gchecked and n so

that

P !([::],Gr est);n (Gchecked , [::]). 2

PROOF We prove the termination of the filtering algorithm by analysing all the possible inputs

and steps. The growth of Gchecked is limited by the size of Gr est . We know that Gr est is finite.

In every possible relation step, a rule is removed from Gr est so that n = |Gr est |. �

Definition 19 (Open References) Nonterminals on the right-hand side of production rules in

a given tree grammar G are called open references if these nonterminals do not occur on the

left-hand side of a rule in G . 2

Definition 20 (Compatibility of Nonterminals) Let P, P ∪ ext1, P ∪ ext2, . . . P ∪ extn be el-

ements of the set U computed by the filtering algorithm then all nonterminals P !A, P ∪
ext1!A,P ∪ ext2!A, . . .P ∪ extn !A in Gchecked and G ′ where P !(Gchecked ,G) ;1 (Gchecked +
+G ′,Gr est) are compatible if:

• The pattern set P is either equal to pattern sets used on the right-hand side in G ′ or they

are true supersets.

• Open references in Gchecked are either with extensions so that they cannot be closed

and applied with the new rules in G ′ or there is a left-hand side G ′ that cannot be used

for the construction of forbidden words. 2

Definition 21 (Stable Grammars) Let P !A, P ∪ ext1!A,P ∪ext2!A, . . . , P ∪extn !A be nonter-

minals that occur on the right-hand side of the rules in the grammar Gchecked ++G ′ then

the grammar Gchecked ++G ′ where P !(Gchecked ,G) ;1 (Gchecked ++G ′,Gr est) is stable if the

following conditions are true:

53

Chapter 3. Filtering of Terms

• The production rules in Gchecked cannot construct forbidden words, which are in the

set P .

• Open references in apply rules in Gchecked are compatible with the nonterminals in G ′.
2

Definition 22 (Addable Grammars) Let P !A,P ∪ ext1!A,P ∪ ext2!A, . . . , P ∪ extn !A be non-

terminals that occur on the right-hand side in G ′ then the grammar G ′ can be added to

the grammar Gchecked , P !(Gchecked ,G) ;1 (Gchecked ++G ′,Gr est), where Gchecked is a stable

grammar (cf. Definition 21) if the following conditions are true:

• The nonterminals P ∪ ext1!A,P ∪ ext2!A, . . . , P ∪ extn !A in G ′ cannot be used for the

construction of words using rules from Gchecked . In other words, the new nontermi-

nals with extensions are unproductive because they do not have reverse references in

Gchecked .

• Nonterminals on the right-hand side in G ′ are compatible with the nonterminals in

Gchecked and they cannot be used for the construction of forbidden words. 2

Definition 23 (Union Condition) The union condition of grammar Gchecked , Cu(Gchecked) is

defined as follows: for all G ′ if G ′ is an addable grammar then the union Gchecked ++G ′ is

stable. 2

Lemma 3 For all Gchecked , G ′, P

if P !(Gchecked ,G);1 (Gchecked ++G ′,Gr est) then G ′ is an addable grammar. 2

PROOF According to the filtering rules, G ′ can only contain rules of the form P !A 7→ c, P !A 7→
@(P !B ,P !C), or P !A 7→ @(P !B ,P ∪ext2!C), P !A 7→ @(P ∪ext1!B ,P !C), where ext1 and ext2 are

elements of the power set P (S(p)) and are subsets of P . The rules are computed according

to the filtering rules PATCOMB, PATAPP, and FORBIDAPP so that we have the following three

cases:

1. The rules in G ′ are computed according to the filtering rule FORBIDAPP: the new produc-

tion rule is of the form P !A 7→ @(P ∪ext1!B ,P ∪ext2!C). The pattern sets are P ∪ext1 6= P

and P ∪ ext2 6= P (if P ∪ ext1 = P or P ∪ ext2 = P , then we have the second case, pre-

sented in the following) so that they cannot refer to rules in Gchecked because the pattern

set P is a subset of pattern sets with extensions P ∪ ext1,P ∪ ext2 . . .P ∪ extn . In other

words, there is no nonterminal on the left-hand side in Gchecked with the aforemen-

tioned pattern sets that can be used for the construction of words, and the new rules

are unproductive. Open references in Gchecked either cannot be closed, or they cannot

construct forbidden words so that the nonterminals are compatible.

54

3.3. Filtering without Recursion Based on Tree Grammar Modification

2. The rule in G ′ is computed according to the filtering rule PATAPP: the new production

rule is of the form P !A 7→ @(P !B ,P !C). If PATAPP was used, there is no apply construction

in P ; therefore, the new rule cannot be used to construct a word that is in P .

3. The rule in G ′ is computed according to the filtering rule PATCOMB: the new production

rule is of the form P !A 7→ c . There are no nonterminals on the right-hand side of the rule,

so there are no references to rules in Gchecked . The open references in Gchecked can use

the production rule for the construction of words because c is not in the pattern set P .

The filtering rules FORBIDCOMB and FORBIDSTAR do not add any new rules, so G ′ is empty.

In this case, there are no nonterminals with references to Gchecked and the nonterminals in

Gchecked still cannot construct words that are forbidden and are still compatible so that the

statement is true. �

Lemma 4 For all Gchecked , G ′, P

if P !(Gchecked ,Gr est);1 (Gchecked ++G ′,G ′
r est) and the union condition Cu applies for

Gchecked , Cu(Gchecked) then Cu(Gchecked ++G ′) is true. 2

PROOF The grammar G ′ is an addable grammar (direct consequence of Lemma 3) so that the

new nonterminals are compatible with these in Gchecked , and the grammar Gchecked ++G ′

cannot construct forbidden words that are in the set P . Open references with extensions on the

right-hand side in Gchecked cannot be closed using the rules in G ′. Open references without

extensions that can be closed cannot construct forbidden words (cf. Lemma 3). It follows

that the union grammar Gchecked ++G ′ is a stable grammar. Let G ′
checked be equal to the

union Gchecked ++G ′ and G ′′ be an addable grammar where P !(G ′
checked ,Gr est);1 (G ′

checked +
+G ′′,G ′

r est). Open references in G ′
checked can be closed using rules from G ′′. According to

Lemma 3, the closed rules cannot construct forbidden words because the rules in G ′′ are

either rules with open references or rules that cannot be used for the construction of words

from the set P so that the grammar G ′
checked ++G ′′ is stable. It follows that the grammar

Gchecked ++G ′++G ′′ is a stable grammar so that the union Cu(Gchecked ++G ′) is true. �

Lemma 5 If P !([::],G);n (Gchecked ++G ′, [::]) then Cu(Gchecked ++G ′) with G ′ = [::] holds. 2

PROOF Induction of the number of n.

• BASIS STEP: Direct consequence of Lemma 3 and Lemma 4.

• INDUCTION STEP: According to Lemma 3, G ′ is an addable grammar. In Lemma 4,

we have shown that Cu(Gchecked) is satisfied; therefore, the induction hypothesis is

applicable. It follows that the resulted grammar is stable so that the union condition

Cu(Gchecked ++G ′) holds. �

55

Chapter 3. Filtering of Terms

Lemma 6 (Filtering Algorithm Soundness) For all Gchecked ,

if P !([::],G);n (Gchecked , [::]), then there does not exist a word w so that w is in the language

of the grammar Gchecked , w ∈L (Gchecked) and in the language of the original pattern p,

w ∈L (p). 2

PROOF According to Lemma 5, the union condition Cu(Gchecked) is satisfied; therefore, the

resulted grammar Gchecked is stable. A stable grammar cannot construct words that are in the

set P (cf. Definition 21). It follows that if a word w is in the language L (p), then it cannot be

in the language L (Gchecked). �

56

3.3. Filtering without Recursion Based on Tree Grammar Modification

Lemma 7 (Filtering Algorithm Completeness) For all G , Gchecked , p, and P,

if there exists a word w so that w is in the language of the original grammar L (G) but not in

the language of the pattern L (p), then the word w is in the language of the resulting

grammar w ∈L (Gchecked), where P !([::],G);n (Gchecked , [::]). 2

PROOF We proceed by induction on the number of steps in a derivation of a word w .

• BASIS STEP: By one-step derivation, only applying rules of the form A 7→ c can be used,

where A is a target symbol and c ∈A. In this case, we have c ∈L (G) and c ∉L (p) so that

only the filter rule PATCOMB can be used. It follows that the new rule in Gchecked is of the

form P !A 7→ c and the new target P !A so that the word c is in the language L (Gchecked).

• INDUCTION HYPOTHESIS: Assume that for every derivation with n ≥ 1 steps, w is in

L (G)−L (p)

• INDUCTION STEP: If a word w of the form @(w1, w2) is in the language LA(G) and not

in L (p), then there are rules of the form A 7→ @(B ,C), B 7→ w1 and C 7→ w2 in G . The

word w1 is in the language LB (G) and w2 in LC (G). By the induction hypothesis, if

a word w1 is in the language LB (G), then w1 is also in the language LP1!B (Gchecked).

Accordingly, w2 ∈ LP2!C (Gchecked) is also true. It follows that there are nonterminals

of the form P1!B and P2!C on the left-hand side of the rules in Gchecked , where P1 and

P2 are in the set U , and they can be equal. These nonterminals can be used for the

construction of w1 and w2. To derive the word w from the rules in Gchecked , a rule of

the form P !A 7→ @(P1!B ,P2!C) is required. According to the filtering rule PATAPP, there is

such a rule in the grammar Gchecked . In this case P = P1 = P2. The rules resulting from

the filtering rule FORBIDAPP, can also construct the word w , but in this case P = P1 or

P = P2. It follows that the word w is in the language LP !AGchecked .

Considering the cases above, we have shown that w ∈ L (G) −L (p) if and only if w ∈
L (Gchecked) so that ∀p : L (G)−L (p) ⊆L (Gchecked) is true. �

The deciding emptiness and finiteness of the solution of the filtering algorithm presented

in Definition 18 is equivalent to the linear case introduced by Bessai et al. [39]. The authors

have shown that the intersection problem is E X PT I ME-complete. The filtering algorithm

computes a new tree grammar for each element from the power set and the given pattern. An

exponential blow-up that occurs depends on the size of the power set P (S(p)). Thus, we have

an upper bound equal to 2|S(p)|. The maximal size of the new grammar G ′ is

g · |P (S(p))|

57

Chapter 3. Filtering of Terms

where g is the number of rules in the tree grammar G . Usually, the size of the new grammar G ′

does not correspond to the maximal size. The reason is that after applying the filtering algo-

rithm, two auxiliary functions are applied to G ′ to remove all unproductive and unreachable

rules that cannot be used for the construction of words.

The simultaneous restriction of more than one pattern is also possible. According to Comon

at al. [50], the class of regular tree languages is closed under union so that we have L (p ′)∪
L (p ′′) =L (p ′∪p ′′), where p ′ and p ′′ are regular expressions. Consequentially, a pattern such

as p = c(p1|p2) is equal to p = c(p1)|c(p2). In this case, the filtering algorithm runs once with

the original tree grammar G and pattern p ′ = c(p1) and after that with the modified grammar

G ′ and pattern p ′′ = c(p2). As mentioned, the new target symbol is derivable from the pattern.

In this case, we have c(p2)!c(p1)!A, where A is the original target.

3.3.2 Application of the Filtering Approach

As mentioned, depending on the construction of the user-specified repository Γ with typed

combinators, the tree grammar resulting from the (CL)S Framework can be very large or

infinite. In this section, we discuss certain classic ambiguity problems that the filtering

algorithm can restrict to avoid redundant solutions.

Identity

The language of the constructed tree grammar can contain equivalent terms. In such a case,

the terms derived from a grammar computed by (CL)S differ, yet define the same functions

and are thereby redundant. For instance, we may consider the following example including

the identity function:

Γi d = {i d :σ→σ,

x :σ}.

For the target type σ the following tree grammar gets computed by (CL)S:

Gi d = { σ 7→ @(σ→σ,σ),

σ 7→ x,

σ→σ 7→ i d }.

This grammar contains a cyclic rule that can result in terms such as:

i d(i d(i d(x))), i d(i d(. . . (i d(x)))).

58

3.3. Filtering without Recursion Based on Tree Grammar Modification

All terms of this form are equal to x. The computed grammar yields productive cycles because

the combinator x can be used to derive words (terms) for the start symbolσ. Using the filtering

algorithm, we reduce the number of terms in the language L (Gi d) by restricting such trivial

productions. We define a pattern p = i d(i d(∗)) (in apply form: @(i d ,@(i d ,∗))) that rejects

the redundant solution presented above. In this case, we have subpatterns p1 = @(i d ,∗),

p2 = i d and p3 =∗. Due to the given pattern, a constructor cannot have a child with the same

constructor name. The filtering algorithm results in the following tree grammar, which forbids

the pattern. After applying an algorithm to prune unreachable and unproductive rules, we get

the following tree grammar:

G ′
i d = {{@(i d ,@(i d ,∗))}!σ 7→ @({@(i d ,@(i d ,∗))}!σ→σ, {@(i d ,@(i d ,∗));@(i d ,∗)}!σ),

{@(i d ,@(i d ,∗))}!σ→σ 7→ i d ,

{@(i d ,@(i d ,∗));@(i d ,∗)}!σ 7→ x }.

The new target type is {@(i d ,@(i d ,∗))}!σ. As can be seen, the production rules in G ′ cannot

construct words with the pattern p; for example, i d(i d(. . . (i d(x)))). The only solution possible

is i d(x).

Associativity

Associativity constraints are significant if the trivial results of the inhabitation algorithm must

be avoided. A tree grammar can produce both right- and left-associative trees. For example,

consider the following repository Γa :

Γa = { f : X → X → X ,

x : X ,

y : X ,

z : X }.

Now assume that f satisfies the associative law f (M , f (N , O)) = f (f (M , N), O) for all terms

M , N , O. Tree grammar Ga (cf. Figure 3.8) computed for Γa and target type X produces left-

and right-associated trees involving f . Figure 3.9 illustrates parts of possible parse trees that

can be synthesised. As shown, the names of the constructors match the name of the children.

The left associative constructor f can have a left child with the same name and for the right

associativity, f has as a right child constructor f .

Ga = {X 7→ f (X , X) | x() | y() | z()}

Figure 3.8: Tree grammar that constructs left and right associativity

59

Chapter 3. Filtering of Terms

...

f

...f

...
...

...

f

... f

...
...

Figure 3.9: Patterns for left and right associativity

We define a pattern forbidding right associative terms by p = f (∗, f (∗,∗)). The apply form of

the pattern is @(@(f ,∗),@(@(f ,∗),∗)). Here, the subpatterns are p1 = @(f ,∗), p2 = @(@(f ,∗),∗),

p3 = f , and p4 =∗. The following tree grammar derives from the filtering and pruning algo-

rithms:

G ′ = {{@(@(f ,∗),@(@(f ,∗),∗))}!X 7→ x|y |z|
@({@(@(f ,∗),@(@(f ,∗),∗))}!X → X , {@(@(f ,∗),@(@(f ,∗),∗));@(@(f ,∗),∗)}!X),

{@(@(f ,∗),@(@(f ,∗),∗))}!X → X 7→
@({@(@(f ,∗),@(@(f ,∗),∗));@(f ,∗)}!X → X → X , {@(@(f ,∗),@(@(f ,∗),∗))}!X)|
@({@(@(f ,∗),@(@(f ,∗),∗))}!X → X → X , {@(@(f ,∗),@(@(f ,∗),∗));@(@(f ,∗),∗)}!X),

{@(@(f ,∗),@(@(f ,∗),∗))}!X → X → X 7→ f ,

{@(@(f ,∗),@(@(f ,∗),∗));@(f ,∗)}!X → X → X 7→ f ,

{@(@(f ,∗),@(@(f ,∗),∗));@(@(f ,∗),∗)}!X 7→ x|y |z,

{@(@(f ,∗),@(@(f ,∗),∗));@(@(f ,∗),∗);@(f ,∗)}!X → X → X 7→ f }

According to the pattern, the original target X is modified to {@(@(f ,∗),@(@(f ,∗),∗))}!X .

Starting with the new target, the inhabitation algorithm cannot construct terms with right

associativity. The left association restriction works analogously to the pattern p = f (f (∗,∗),∗).

Precedence

Similar to the associative constraints, with the use of precedence constraints, a specific usage

order of combinators can be restricted. For example, after using the combinator f , the

combinator g cannot be used until some other combinator is used. Figure 3.10 shows two

parse trees that are allowed without restriction.

60

3.3. Filtering without Recursion Based on Tree Grammar Modification

...

f

...
g

...
...

...

f

...
g

...
...

Figure 3.10: Patterns for precedence

Applying using precedence constraints, the filtering approach can resolve ambiguity problems.

We consider an example presented by Adams et al. [14]. Figure 3.11 illustrates two possible

parse trees for the string 1+2+3∗4.

+

1 *

+ 4

32

*

+ 4

+ 3

21

Figure 3.11: Precedence example for 1+2+3∗4

This example illustrates that the definition of a pattern must be planned well. If we de-

fine a pattern p = mul t (add(∗,∗),∗) where mul t and add denote the mathematical sym-

bols from the example, the filtering algorithm restricts the construction of the trees pre-

sented in Figure 3.11. According to the use case, this pattern leads to potentially solution

relevant terms being filtered out. To filter out only the left tree, the pattern can be of the

form p = add(∗,mul t (∗,∗)). Examples of the restriction of the right tree are patterns

p = add(add(∗,∗),∗) and p = mul t (add(add(∗,∗),∗),∗).

Distributive Property

Distributivity restrictions are essential for the synthesis of program code. Better data locality

can thus be achieved [95; 96; 119; 130]. Using distributivity constraints, we can handle the fu-

sion problem presented by Meijer et al. in [97]. For example, we consider M ap(f (M ap(g ((x)))

that can be represented by M ap(f ◦ g (x)).

Let us consider the loop fusion. It is a transformation of a program code aiming to merge

61

Chapter 3. Filtering of Terms

multiple loops into one. This merging is possible if and only if the dependencies of the

statements are not reversed. Otherwise, the results can represent incorrect values [130]. For

example, we consider the following f or loops:

for (i=0; i<n; i++){
a = i + 1;

}
for (i=0; i<n; i++){

b = i + 2;
}

In this case, the statements are disconnected. Accordingly, the presented f or loops can be

merged to optimise the program code as follows:

for (i=0; i<n; i++){
a = i + 1;
b = i + 2;

}

The approach opposite to loop fusion is loop distribution, where loops can be transformed

into different loops (e.g., to allow their parallel execution) if their dependencies do not impact

the results.

In the above example, we can restrict solutions allowing a sequence of f or loops by defining a

pattern and applying the filtering approach. An example of such a pattern can be presented

as follows: p = seq(f or (∗), f or (∗)). Here, combinator seq represents a synthesised program

section sequentially concatenating two program statement blocks.

3.3.3 Limitations

The advantage of the filtering algorithm presented in Section 3.3.1 is that the number of rules

in the grammar and the size of the power set are finite. As mentioned, these properties are

central to the formal verification of the algorithm. Nevertheless, this approach faces certain

limitations. One is the specification of the user-defined pattern p, which must be filtered

out. It is a regular expression. The filtering algorithm therefore cannot be used with a pattern

that cannot be derived from a tree grammar so that a pattern p is p ∈L where L is a regular

language [50]. For example, using the filtering algorithm presented in this work, we cannot

represent the equality or inequality of subtrees with the same ancestors. Comon et al. [50]

discuss automata with constraints between brothers and reduction automata. Using these

approaches, equality or disequality between subtrees can be ensured. The first approach

uses constraints that check positions, which should have the same ancestors. This kind of

automata can thereby recognise terms of the form f (M , M) with term M ∈A. The reduction

automata also recognises equalities (i.e., the term f (M , M)), but the number of constraints on

each run of the automata is restricted. The number of disequality constraints can be arbitrary,

62

3.4. Parser

but equality constraints must be fixed. The example of limitation also includes cases such as

filtering the given pattern on certain positions in the tree.

The filtering approach restricts all terms, including the pattern p. This restriction is also a

kind of limitation because there is no possibility to forbid a given pattern at the beginning,

at the end, or somewhere in the tree. For example, when the application case depends on

a certain number of resources that must be used, the filtering approach cannot be used to

ensure the correct number. For example, Figure 3.12 displays terms that can be filtered using

the following pattern: p = f (x(∗),∗).

f

x ...

f ...

...x

x

...
...

f ...

...x

Figure 3.12: Example for a limitation

If the application case requires only one usage of resources f and x in this order, the right

term would be correct in contrast to the left one. A pattern such as p → p cannot be defined to

restrict only terms with patterns that occur more than once. In our case, with the application

of pattern p, both terms are filtered out (cf. Figure 3.12).

3.4 Parser

This section discusses the parser technique applied in this work. Using parser combinators,

higher-order functions can be modelled to convert several passed parsers into a new parser.

A combinator represents a higher-order function. We used the Scala library Scala Parser

Combinators [6] to translate the user’s text entries into a valid inhabitation request for the

(CL)S Framework. To achieve this translation, we developed classes including parsers for the

user-specified inhabitation request and filtering pattern.

3.4.1 Translation of Inhabitation Requests

To translate the input into inhabitation requests, the implemented parser takes strings and

returns Type objects. Extending from the trait RegexParsers, we can use such a function

based on regular expressions for the parsing. For instance, Listing 3.5 presents functions that

translate the text entries into the inhabitation rules presented in Section 2.5. The value word

63

Chapter 3. Filtering of Terms

with type Regex specifies which characters can be recognised as a valid word. The function

ctor recognises words as a constructor (cf. Definition 9). The combinator opt stands for

optional.

val word: Regex =
"""[a−zA −Z0 −9=>\. \[\]]∗[a−zA −Z0 −9=>\.\[\]] """.r

def ctor: Parser [Type] = word ~ opt("("~ tyPro ~ ")") ^^ {
case name ~ None => Constructor (name)
case name ~ Some(_ ~ tys ~ _) => Constructor (name , tys)

}

def tyArrow : Parser [Type] = tyPro ~ opt("−>" ~ tyArrow) ^^ {
case lhs ~ Some(_ ~ rhs) => Arrow(lhs , rhs)
case lhs ~ None => lhs

}

def tyPro: Parser [Type] = tyProduct ~ opt("∗" ~ tyPro) ^^ {
case lhs ~ Some(_ ~ rhs) => Product (lhs , rhs)
case lhs ~ None => lhs

}

def tyProduct : Parser [Type] = tyInter ~ opt("∗" ~ tyInter) ^^ {
case lhs ~ Some(_ ~ rhs) => Product (lhs , rhs)
case lhs ~ None => lhs

}

def tyInter : Parser [Type] = tyS ~ opt("&" ~ tyInter) ^^ {
case lhs ~ Some(_ ~ rhs) => Intersection (lhs , rhs)
case lhs ~ None => lhs

}

def tyS: Parser [Type] = ctor | "(" ~ tyArrow ~ ")" ^^ {
case _ ~ ty ~ _ => ty

}

Listing 3.5: Representation of taxonomy information

Functions tyProduct and tyInter convert, for example, inputs such as (′a <∗>′ b : & :′ c) and

(′a : & :′ b <∗>′ c) into a valid inhabitation requests, where the precedence over products is

parsed to the left or to the right, respectively.

The ctor function represents a parser for constructors. The parser for a type is defined by

tyS. It combines ctor and other types in parentheses using the |-combinator (or-combinator).

Hence, it is allowed to use a constructor or other type given in parentheses. If it matches a

constructor, the function returns an object of the case class Constructor(name: String,

64

3.4. Parser

argument: Type =Omega). The next function tyPro is a parser for products of arguments (cf.

Section 2.5). We consider the example presented in Section 4.3.1. Here, we have a constructor

with two arguments represented as a product such as ′Pos(′3 <∗> ′4). The parsing functions

also consider right and left association. For example, products associate to the left so that we

have the following:

′a <∗> ′b <∗> ′c = ((′a <∗> ′b) <∗> ′c).

Right association is represented by intersection and arrow:

(′a : & : ′b : & : ′c) = ((′a : & : ′b) : & : ′c)

(′a =>: ′b =>: ′c) = ((′a =>: ′b) =>: ′c)

The function that recognises intersection is tyInter. This function translates the entries into

an object of the case class Intersection(sigma: Type, tau: Type). Similar to this function,

the parser matching arrows is represented by tyArrow. It returns an object of the case class

Arrow(source: Type, target: Type).

3.4.2 Translation of Filtering Patterns

In this approach, we translate patterns to be restricted from the computed inhabitation result

into a valid input for the filtering algorithm presented in Section 3.3. In addition to the help

functions presented in Listing 3.5, the functions pattern, combinator, and star are used for

the translation into a proper pattern (see Listing 3.6).

def pattern : Parser [Pattern] = combinator | star

def combinator : Parser [Pattern] = word ~ opt("("~ pattern ~ ")")
^^ {

case name ~ None => Term(name , Seq.empty)
case name ~ Some(_ ~ tys ~ _) => Term(name , tys)

}

def star: Parser [Pattern] = "∗" ^^ {
case _ => Star ()

}

Listing 3.6: Representation of taxonomy information

According to Definition 14, a pattern can be a combinator name or application of a term to

another term. Moreover, using the characters ∗, we restrict any term or application. The

function star maps these characters to the case class Star() and combinator translates the

combinators with or without arguments.

65

Chapter 3. Filtering of Terms

66

Chapter 4

Integrated Development Environment
for (CL)S Framework

The Combinatory Logic Synthesizer (CL)S Framework is intended to be used for practical ap-

plications. As a result of this aim, the concept of an IDE has emerged to support nonexperts in

the field of combinatory logic with intersection types. Within the scope of this dissertation, an

IDE for the (CL)S Framework was developed, implemented, and evaluated. Chapter 2 outlined

the theoretical foundation of the (CL)S IDE. Based on those background theories, this chapter

provides detailed information about the development of the web-based implementation.

Moreover, the functionalities of the IDE are presented and discussed using real application

cases. Section 4.1 provides an overview of the architecture behind the developed concept

for user-friendly support for the (CL)S Framework. Subsequently, a detailed description of

the technical background is provided in Section 4.2. Section 4.3 presents each perspective

supported by the implementation in detail. The chapter ends with a critical discussion about

the developed IDE for the (CL)S Framework.

67

Chapter 4. Integrated Development Environment for (CL)S Framework

4.1 Architecture Overview

According to the theoretical background presented in Chapter 2, a web-based IDE for the

(CL)S Scala Framework was developed. During the realisation, features such as usability,

maintainability, and interoperability were considered. The architecture of the implementation

consists of several components that ensure a straightforward representation of inhabitation

information. A critical discussion of the selected components is provided in Section 4.4.

The (CL)S IDE architecture is modular and based on several projects. The IDE is publicly avail-

able online [16]. The modularity ensures easy maintainability, flexibility, and expandability of

the framework according to the specification of use cases. Figure 4.1 presents an overview of

the data flow between the components when using and debugging specifications.

(CL)S

Local IDE
(IntelliJ, Eclipse,…)

Filters and requests
(partial) solutions

Provides (partial)
solutions

Web IDE

Scala program
with repository,
request and use

of solutions

Browser

Edits
Exchange

(partial) solutions

Starts and provides
input

Provides
(complete) solutions

Figure 4.1: Data flow when using the (CL)S-IDE

In the figure, the blue boxes indicate the components, and the grey arrows represent the

data flow that occurs when the IDE for the (CL)S Scala Framework is used. The architecture

comprises the following components:

• Local IDE: For the specification of the inhabitation inputs, a local IDE is required. In

this work, for the development and evaluation of the applications, the most commonly

used Scala IDE IntelliJ [82] was employed. This component does not have an impact

on the results, which is why any local IDE with the build tool sbt [7] for Scala can be

used. The project (CL)S IDE is available as the library cls−scala−ide and can be used

by listing it in the build.sbt file as follows:

68

4.1. Architecture Overview

libraryDependencies += "org. combinators " %% "cls −
scala −ide" % "<VERSION >"

The string <VERSION> must be replaced by a released version [16] or a development

version. Using the development version, the (CL)S IDE can be extended according to

the current application and thus the expenditure is manageable.

• Specifications: Using the local IDE, the domain-specific repository with the typed

combinators and the synthesis targets (cf. Section 2.5) must be defined. Moreover, finite

substitution space and a subtype environment can be specified and maintained using

the local IDE. The inhabitation results can also be used and investigated in the local IDE

regardless of the web-based IDE [29]. Furthermore, the local IDE is essential for defining

the setups of the web-based application. A detailed discussion of the specification is

presented in Section 4.2.2.

• (CL)S Scala Framework: The (CL)S Framework receives the provided input, which is

implemented using the local IDE, and then computes all possible solutions using the

inhabitation algorithm presented in Section 2.1. According to the manual above, the

library of the framework (cls−scala) must also be listed in the build.sbt file. This

library allows for interaction with the inhabitation results using the local IDE and the

maintenance and editing of the abovementioned input specifications.

• Web IDE: The web-based IDE supports debugging capabilities and other features. As

illustrated in Figure 4.1, the (CL)S Framework communicates with the IDE by providing

the inhabitation results and input specification required for understanding the search

process. The framework translates the tree grammar into a hypergraph. Moreover, the

filtering algorithm presented in Section 3.3 is included in the Web IDE implementation.

The IDE uses the web application framework Play [91], which requires an implementa-

tion of a controller for the Play framework that manages requests and responses. The

controller must be instantiated, and the specification must be passed onto it. The ap-

plication instantiates a web server which hosts the website. As previously mentioned,

these setups must be specified in the local IDE. More details about the implementation

of the controller that hosts the (CL)S IDE are presented in Sections 4.2.2 and 4.2.3.

• Browser: The web-based implementation of the IDE for the (CL)S Framework provides

browser independence. This means that any modern browser such as Firefox, Chrome,

or Internet Explorer 10+ can be used for investigating the inhabitation results. Further-

more, warnings, information about unused specifications, step-by-step generation of

the solutions, and much more can be discovered in the corresponding perspective. More

details about the different perspectives are presented in Section 4.3. The target type can

also be changed, or a pattern for the filtering function can be defined using the web

realisation.

69

Chapter 4. Integrated Development Environment for (CL)S Framework

4.2 Technical Implementation

This section provides details about the technical implementation of the web-based IDE for

the (CL)S Framework. Figure 4.2 presents the architectural pattern of Model-View-Controller

applied to the architecture of the IDE. It illustrates the request/response-oriented structure of

the framework. The web client is represented above the dotted line. Using any browser, users

can access debugging information, define new inhabitation requests, and filter of terms among

other actions. The data must be translated into a suitable format to be used by subsequent

components, which is why the inputs of the users are passed to a parser (cf. Section 3.4).

Controller

View Model

Render
• Update
• Gather data

Browser

HTTP request

HTTP response

Client

Figure 4.2: Overview of the web realisation

The Controller responds to the actions of the user. It receives and handles HTTP requests.

The first part of the request represents the HTTP method, which in this case is the GET-

method. The second part of the request is jQuery URI information. Thus, action operations

from the DebuggerController class can be found and executed. The selected action function

computes results that are then sent back in the form of an HTTP response. The implemen-

tation of these layers is performed using the local IDE. Details of the implementation of the

DebuggerController are presented in Section 4.2.3.

In general, the model layer encapsulates the domain-specific information, which in this case

is the computation of solutions by the inhabitation algorithm behind the (CL)S Framework.

Based on these results, the web-based IDE provides debugging information. The controller

receives the results from the model and renders a template file.

The view layer reproduces the information provided by the model. Here, the rendered form is

70

4.2. Technical Implementation

easily accessible and intelligible, and it aims to support nonexperts in the field of type theory.

Figure 4.3 depicts the dependencies within the implementation of the IDE. As mentioned

earlier, the IDE supports the user-friendly visualisation of the computed results by the (CL)S

Framework. Therefore, the project cls−scala−ide cannot be used independently of the

project cls−scala, which implements the inhabitation algorithm. The cls−scala−smt project

provides the filtering approach based on SMT, which was presented in Section 3.1. The dotted

arrow represents the optional connection between the projects that enables this project to be

used separately without user support. This means that the usage is necessary only when SMT

filtering must be applied within the IDE. A dependency on the Play framework is required for

the web representation of the inhabitation results in the IDE.

cls-scala

cls-scala-ideplay-framework cls-scala-smt

Figure 4.3: Dependencies of the projects

4.2.1 Tree Grammar Visualisation

The main aim of developing an IDE for the (CL)S Framework is to represent the relationship

between grammar, combinators, and terms in a form which is easy for users to understand.

As mentioned in Section 2.6.2, the tree grammars that are computed by the inhabitation

algorithm are visualised using hypergraphs. To develop a user-friendly web representation, we

used the JavaScript library Cytoscape.js [67]. Notably, Cytoscape does not provide a complete

web application. An advantage of this library is that it allows interactive visualisations of

networks. Moreover, Cytoscape has no platform-specific dependencies, which enables a fast

and interactive representation.

To apply the library, it must be added to the build.sbt file of the IDE project as follows:

libraryDependencies += "org. webjars .bower" % " cytoscape " % "<
VERSION >"

The exchange of the hypergraph elements occurs in JSON format. Listing 4.1 presents the

supported format:

71

Chapter 4. Integrated Development Environment for (CL)S Framework

{
"nodes": [

{
"data": {"label":" ", "style":" ", "id":" "}
}
],
"edges":[
{
"data":{" source ":" "," target ":" ","label":" ","id":" "

}
},
"data":{" source ":" "," target ":" ","label":null ,"id":"

"}
}
]

}

Listing 4.1: Representation of nodes in JSON format

In a regular hypergraph, the style of a node can be type node or combinator−node. The non-

terminals and the combinators from the resulting tree grammar are represented by type−node
and combinator−node, respectively. In the representation of applicative tree grammars, there

are also nodes of the style application−node. In a debugging mode, target nodes, unusable
combinator nodes, and uninhabited type nodes also exist, which allow the representation

of the current targets in each step as well as each possible problem. Usually, unusable combi-

nator nodes and uninhabited type nodes, which are collected during the inhabitation, cause

unexpected results. An individual style represents these nodes to warn the user that something

could be wrong. Furthermore, each node has a label and an ID. The labels are based on the

domain specifications, while the IDs are required for the unique allocation of the elements.

In addition to an ID, the edges have a specification of source and target. The position of the

argument labels the edges if the source is a combinator node and the target is a type node.

If the edge connects a type node with a combinator node, the label is null. The function

toGraph implemented in the DebuggerController class translates the inhabitation results into

JSON format and assigns IDs to the graph’s components.

In addition to Cytoscape, the IDE is implemented using the Bootstrap framework [3]. In this

work, we used the HTML components. The library is specified as follows: "org.webjars"%
"bootstrap"% "<VERSION>" , where in this work the version 3.3.7-1 is used. The framework

allows faster and easier web development, which also ensures support for browser and plat-

form independence [1].

72

4.2. Technical Implementation

4.2.2 Web-Based Realisation

As previously mentioned, the standard Scala web application framework Play [77] is used for

the web-based realisation. Using the build.sbt file, the Play libraries that are necessary for

building the project are added to the project as follows: lazy val root =(project in file(
".")).enablePlugins(PlayScala). The sbt plugin in the file plugins.sbt is added as follows:

addSbtPlugin("com.typesafe.play"% "sbt−plugin"% "<VERSION>"). At the time of writing,

version 2.6.9. is used. An advantage of the Play framework is that change detection occurs

automatically, which helps optimise the time of the development process. The framework

checks the files in the source code, and if there are any changes, they can be updated by

refreshing the browser. Play recompiles and restarts the Akka Http server.

Figure 4.4 illustrates the architecture of the IDE as well as the life cycle of a request in detail.

Browser

(CL)S

Action

Action

Action

Debugger Controller

Route Route Route
Router

Parser

HTML
index.scala.html

View

7. Render
• Solutions as

hypergraphs
• Filtered results
• Problems
• Warnings

4. Inhabitation request

8. HTTP response

1.HTTP request

2.Invoke
action

3. Exchange (partial)
solutions

Filter
5. Filtering patterns

6. Provides modified
tree grammar

…

…

Figure 4.4: Overview of request life cycle

The path that occurs is described as follows:

1. An HTTP Server receives the user request. In this work, the integrated web server is Akka

HTTP [2]. Akka works with actors that allow the realisation of concurrent, parallel, and

distributed systems [2]. A Play web server configuration includes a definition of the

routes that are available in the resources/routes file.

2. The router is essential for the translation of a HTTP request to a play.api.mvc.Action.

The defined routes in the router file lead to the configuration class (DebuggerController
), as depicted in Figure 4.5, which handles the request. For example, the action method

73

Chapter 4. Integrated Development Environment for (CL)S Framework

showGrap() obtains the inhabitation results and translates the tree grammar. It returns

a graph in JSON format, as presented in Section 4.2.1. According to the HTTP request,

the action showStep(step: Int) returns a graph that is also in JSON format, but only

for the first step of the search process and the function showResult(inhabitant: Int)
returns the first inhabitant. If there are any router errors, they become visible in the

browser. Detailed information about this configuration of the controller is presented in

Section 4.2.3.

showGraph
action

showStep(step:Int)
action

showResult(inhabitant:Int)
action

Debugger Controller

Controller Actions HTTP ResponsesHTTP Requests

GET /result/1

GET /graph

GET /step/1

JSON graph

current step graph

inhabitant

Figure 4.5: Workflow of requests

3. Using the web-based user interface, users access inhabitation information provided

by the model layer represented by the (CL)S Framework. According to the request, the

model layer returns the computed results. The response can be information such as

the complete tree grammar, a specific inhabitant or step of the searching process, input

specifications, or filtering results.

4. A new inhabitation request can be made using the web-based IDE. Using a text field, the

users can define new inhabitation requests. The parser must translate the text entries

into an acceptable format for the (CL)S Framework.

5. As mentioned in Section 3, the filtering algorithm requires user specification of the

pattern. Users can define a domain-specific pattern if some inhabitation results should

be restricted. A parser translates the input into the pattern format.

6. The filtering algorithm provides the new modified tree grammar, which cannot construct

the user-specific pattern. The IDE visualises the new tree grammar, which can be used

for the computation of a new inhabitation.

74

4.2. Technical Implementation

7. The view layer renders the results of the called action function. Depending on the

response, the web format is either JSON (cf. Section 4.2.1) or HTML.

8. The computed information is sent back to the client in the form of an HTTP response.

The implementation of the web-based IDE and the examples used for its verification are

discussed in Chapter 5.

4.2.3 Definition of the Debugger Controller

To start the debugger for the (CL)S Framework, the Play application must be set up. The

router uses a resources/routes file, which is compiled. The resources/routes file includes a

representation of all routes that are required by the current application. Moreover, it provides

information about the location of a different router that has to be used [77]. In the labyrinth

example, to use the domain-specific router, we add the following prefix to the file:

−> / org. combinators .cls.ide. labyrinth . LabyrinthController

The presented route leads to the configuration class presented in Listing 4.2. Such config-

uration classes must extend the class org.combinators.cls.ide.DebuggerController and

the trait org.combinators.cls.ide.DebuggerEnabled, which are part of the cls−scala−ide
library. Thus, an action operation can be found. The DebuggerController class includes

functions that manage the generation of Action values. The trait org.combinators.cls.ide.
DebuggerEnabled defines the configuration of the Play web server routes. Listing 4.2 presents

the implementation of the controller that hosts the IDE for the (CL)S Framework:

class LabyrinthController @ Inject ()(val webJarsUtil : WebJarsUtil ,
val lifeCycle : ApplicationLifecycle , assets : Assets)

extends DebuggerController (webJarsUtil , assets)
with DebuggerEnabled {

lazy val target : Type = ’Pos(’0, ’0)
lazy val repository = new Repository
override val controllerAddress : String = " labyrinth "
override val projectName = controllerAddress
override val tgts: Seq[Type] = Seq(target)
override val refRepo : Option [ReflectedRepository [_]] =

Some(Gamma)
override val result : Option [InhabitationResult [Unit]] =

Some(Gamma. inhabit [Unit](target))
}

Listing 4.2: Definition of debugger controller

75

Chapter 4. Integrated Development Environment for (CL)S Framework

The actor model of the Akka HTTP web server can be combined with the lightweight Google

Guice [11] framework to support the realisation of the dependency injection design pattern.

Using the annotation @Inject on a constructor, we can declare components as dependen-

cies. Furthermore, the configuration class includes fields that must be overridden. The

variable controllerAddress is a user-defined specification of the address where the IDE is

accessible. This means that the complete address is a combination of the default settings

as well as the user-defined specifications. In this example, the address where the results

can be viewed is as follows: http://localhost:9000/labyrinth/ide/, where labyrinth
is the controllerAddress defined by the user. The user can define the name of the project,

which will be displayed on the website. By default, the project name is the same as the

controllerAddress. In addition to configuring the address, the inhabitation information

must be overridden. The field tgts represents the domain-specific initial inhabitation targets

that must be shown in the web-based IDE. For the visual representation, the reflected reposi-

tory and the results are also required. In the aforementioned example, Gamma represents the

reflected repository and result represents all possible inhabitation results.

A request path can be defined using static or dynamic paths. An example of a static path

is http://localhost:9000/labyrinth/ide/graph. The function showGraph in Listing 4.3

represents the corresponding action operation (see Figure 4.5). Such operations are defined in

the DebuggerController class.

def showGraph = Action {
treeGrammar . nonEmpty match {

case true =>
graphObj = Json. toJson [Graph](toGraph (treeGrammar))
Ok(graphObj . toString)

case false =>
Ok(" Inhabitant not found!")

}
}

Listing 4.3: Example of Action operation

As can be seen, the showGraph operation does not require parameters and returns an Action
value. If the inhabitation algorithm computes a solution, the method showGraph returns a

graph object as a JSON value. If the tree grammar is empty, then there is no solution, so

the function returns the message ’Inhabitant not found!’ to inform users. To develop a user-

friendly IDE, we also used action generator methods with parameters for a more precise

specification of requests. Such action operations are called from dynamic request paths.

Examples of such requests are as follows: GET / result/1 and GET / step/1, as shown in

Figure 4.5. An action method that corresponds to the first request is presented as follows:

76

4.2. Technical Implementation

def showResult (inhabitant : Int) = Action {
try {

Ok(result .get.terms.index(inhabitant). toString)
}
catch {

case _: IndexOutOfBoundsException => play.api.mvc. Results .
NotFound (s"404,

Inhabitant not found: $inhabitant ")
}

}

Listing 4.4: Definition of the Action function that returns a certain inhabitant

Such functions are defined in the DebuggerController. Here, the URI pattern that calls the

presented action is GET / result/1 (see Figure 4.5). The method extracts the data that are

relevant from the request path. In this case, the user selects an inhabitant with number 1.

Inhabitants, which must be visualised separately, can be chosen from the list of solutions (see

Figure 4.18). More details about the front end are presented in the next section. The number,

which can be extracted from the URI request, is also the value of the parameter for the action

function showResult(inhabitant:Int) that is set. According to the index, this function

returns a specific inhabitant in the form of a hypergraph in JSON format and in the form of

tree as a string. If there is no inhabitant, then the function returns a NotFound from the trait

play.api.mvc.Results, which supports the generation of results.

In addition, other (helpers) action operations are implemented in the DebuggerController
class that support the user-friendly IDE for the (CL)S Framework. They collect and parse

the data delivered from the application specifications or inhabitation algorithm. All action

methods return play.api.mvc.Results values. For example, the function presented in

Listing 4.3 results in an HTTP response that contains the status code 200 OK and a response

body.

77

Chapter 4. Integrated Development Environment for (CL)S Framework

4.3 IDE Perspectives

This section provides an overview of the developed perspectives of the web-based IDE for the

(CL)S Framework. Eight perspectives aim to support the usage of combinatory logic synthesis

with intersection types. The presentation of the IDE is based on labyrinth examples; these

examples are extensions of each other (s. Section 4.3.1). They are also used as use cases in

[30; 85; 39]. These examples were inspired from [46]. Here, the authors present a synthesis of

robot motion plans from a given workspace and a given set of obstacles that can move. This

labyrinth example cannot be measured with existing path-finding algorithms, but such use

cases are of interest for the examination of scaling properties. Moreover, they help improve

the performance of the (CL)S Framework by removing the generation of redundant recursive

inhabitants targets. Furthermore, the sizes of the use cases are manageable, such that it is

possible to present the features of the different IDE perspectives using the examples. In the

following, Section 4.3.1 provides an overview of the application cases and Sections 4.3.2–4.3.9

present each perspective.

4.3.1 Application Cases

We consider two variations of the labyrinth example. Each aims to find all possible paths from

the start to the goal position using the inhabitation framework. It is possible to go up, down,

right, or left, if an obstacle does not occupy the new position. The inhabitation algorithm

computes all possible paths and each word derived for the start symbol represents a path from

the start to the goal position. If there is no word, there is no path. Figure 4.6 shows the first

example with a size of 4 × 4. The start position is on (0∗2) (denoted by •) and the goal position

is on Pos(2∗0) (denoted byF).

0 1 2 3

0 F

1

2 •
3

Figure 4.6: Example of labyrinth 4 × 4

The repository is shown in Figure 4.7. As can be seen, the combinators in the repository

consider all possible moves. Figure 4.8 presents the tree grammar produced by the inhabitation

algorithm, where the target type is the goal position – Pos(2∗0).

78

4.3. IDE Perspectives

Γ= {st ar t : Pos(0∗2)

up : (Pos(1∗3) → Pos(1∗2))∩ (Pos(1∗2) → Pos(1∗1)) ∩
(Pos(1∗1) → Pos(1∗0))∩ (Pos(3∗3) → Pos(3∗2)) ∩
(Pos(3∗2) → Pos(3∗1))∩ (Pos(2∗1) → Pos(2∗0))

down : (Pos(1∗0) → Pos(1∗1))∩ (Pos(1∗1) → Pos(1∗2)) ∩
(Pos(1∗2) → Pos(1∗3))∩ (Pos(2∗0) → Pos(2∗1)) ∩
(Pos(3∗1) → Pos(3∗2))∩ (Pos(3∗2) → Pos(3∗3))

l e f t : (Pos(2∗0) → Pos(1∗0))∩Pos(1∗0) → Pos(0∗0)) ∩
(Pos(3∗1) → Pos(2∗1))∩ (Pos(2∗1) → Pos(1∗1)) ∩
(Pos(3∗3) → Pos(2∗3))∩ (Pos(2∗3) → Pos(1∗3)) ∩
(Pos(1∗2) → Pos(0∗2))

r i g ht : (Pos(0∗0) → Pos(1∗0))∩ (Pos(1∗0) → Pos(2∗0)) ∩
(Pos(1∗1) → Pos(2∗1))∩ (Pos(2∗1) → Pos(3∗1)) ∩
(Pos(0∗2) → Pos(1∗2))∩ (Pos(1∗3) → Pos(2∗3)) ∩
(Pos(2∗3) → Pos(3∗3))}

Figure 4.7: Repository for the labyrinth example in Figure 4.6

G = {Pos(0∗2) 7→ { st ar t ()},

Pos(0∗0) 7→ { le f t (Pos(1∗0))},

Pos(1∗0) 7→ {up(Pos(1∗1)), le f t (Pos(2∗0)),r i g ht (Pos(0∗0))},

Pos(1∗1) 7→ {down(Pos(0∗1)),up(Pos(1∗2)), le f t (Pos(2∗1))},

Pos(1∗2) 7→ {down(Pos(1∗1)),up(Pos(1∗3)), r i g ht (Pos(0∗2))},

Pos(1∗3) 7→ {down(Pos(1∗2)), le f t (Pos(2∗3))},

Pos(2∗0) 7→ {up(Pos(2∗1)), r i g ht (Pos(1∗0))},

Pos(2∗1) 7→ {down(Pos(2∗0)),r i g ht (Pos(1∗1)), le f t (Pos(3∗1))},

Pos(2∗3) 7→ {le f t (Pos(3∗3)), r i g ht (Pos(1∗3))},

Pos(3∗1) 7→ {r i g ht (Pos(2∗1)), up(Pos(3∗2))},

Pos(3∗2) 7→ {up(Pos(3∗3)), down(Pos(3∗3))},

Pos(3∗3) 7→ {down(Pos(3∗2)), r i g ht (Pos(2∗3))}}

Figure 4.8: Resulting tree grammar for target type Pos(2∗0)

Figure 4.9 represents the second labyrinth example. The example is smaller, but the con-

struction of the labyrinth generates special cases that can be detected by the (CL)S IDE. The

stars represent optional goal positions, and the bullet at position Pos(0∗0) represents the

79

Chapter 4. Integrated Development Environment for (CL)S Framework

start position. According to these conditions, there is a no path from the start to the goal

positions Pos(2∗0) (denoted byF2) and Pos(4∗1) (denoted byF3). These goals were chosen

deliberately to demonstrate the usability of the IDE for the (CL)S Framework in special cases.

0 1 2 3 4

0 • F2

1 F1 F3

Figure 4.9: Example of labyrinth 5 × 2

The specification of the combinators is shown in Figure 4.10. According to the inhabitation

request, the results can be unexpected. For example, for goal position Pos(0∗1), the inhabi-

tation algorithm computes the tree grammar shown in Figure 4.11. It does not contain the

combinators r i g ht and le f t because the obstacles do not allow such paths. The reason is

obvious in this use case, but considering larger repositories, the clear overview can be lost.

Γ= { st ar t : Pos(0∗0),

up : (Pos(0∗1) → Pos(0∗0))∩ (Pos(2∗1) → Pos(2∗0)),

down : (Pos(0∗0) → Pos(0∗1))∩ (Pos(2∗0) → Pos(2∗1)),

le f t : Pos(3∗0) → Pos(2∗0),

r i g ht : Pos(2∗0) → Pos(3∗0) }

Figure 4.10: Repository for the labyrinth example in Figure 4.9

G = { Pos(0∗0) 7→ {st ar t (),up(Pos(0∗1))},

Pos(0∗1) 7→ down(Pos(0∗0)) }

Figure 4.11: Tree grammar for target Pos(0∗1)

Due to the simplicity of the labyrinth examples, the presentation of the (CL)S IDE is possible

using small graphs and a manageable number of solutions. A disadvantage is that these

application cases are not sufficiently complex, such that all features cannot be considered.

For this reason, we used larger repositories from real synthesis projects in some cases. More

details about these projects are presented in Chapter 6. These repositories include hundreds

of combinators, so they are logically more susceptible to errors. In the following, we detail

80

4.3. IDE Perspectives

how the perspectives provided by the web-based IDE handle the labyrinth example and these

additional application cases.

4.3.2 Result Overview

The first perspective that can be seen after starting the web-based (CL)S IDE is the Result

Overview perspective. Figure 4.12 displays the results of the synthesis of labyrinth paths.

Here, the small variation of the labyrinth example with the first goal position is considered

(cf. Figure 4.9). Thus, the inhabitation question is: Γ `? : Pos(0 ∗ 1). The left side lists

all available perspectives, and users can easily switch between them. On the right side,

the inhabitation request is displayed. The representation of the resultant tree grammar

(cf. Figure 4.11) is centrally displayed below the inhabitation request. As mentioned in

Section 2.6.2, the graphical visualisation of the tree grammars is supported by hypergraphs,

where the nonterminals are represented by yellow boxes and the combinators, by blue circles.

Figure 4.12: Result overview

Moreover, Figure 4.12 demonstrates that users can choose between a representation of the

tree grammars or the applicative tree grammars (cf. Section 2.3). The algorithm computes

81

Chapter 4. Integrated Development Environment for (CL)S Framework

the applicative tree grammar presented in Figure 4.13 and Figure 4.14 illustrates its graphical

representation in the IDE.

G@ = { Pos(0∗0) 7→ st ar t ,

Pos(0∗0) 7→ @(Pos(0∗1) → Pos(0∗0),Pos(0∗1)),

Pos(0∗1) 7→ @(Pos(0∗0) → Pos(0∗1),Pos(0∗0)),

Pos(0∗0) → Pos(0∗1) 7→ down,

Pos(0∗1) → Pos(0∗0) 7→ up }

Figure 4.13: Applicative tree grammar for target Pos(0∗1)

Figure 4.14: Result overview with applicative tree grammar

As can be seen in Figure 4.14, the apply nodes are represented by light blue boxes and denoted

by @. Notably, this kind of graphs always includes more nodes than the other visualisation

techniques, resulting from the binary structure of the applicative tree grammars. The size of

the tree grammar in the example presented here is manageable, ensuring the elements are

82

4.3. IDE Perspectives

still clear. Considering an example with more complex tree grammar, we can see that the

larger the number of nodes, the more obscure the graph can become (see Figure 4.15). For

reasons of usability, the representation of the results focuses on the graphs without apply

nodes. Importantly, the IDE provides visualisation of both the tree grammars (cf. Figure 4.14).

Figure 4.15: Example of applicative tree grammar visualisation

If the inhabitation was unsuccessful, the type inhabitation algorithm returns an empty solution

set. We use textual information to inform the users that there is no result. In this case, the

action function presented in Listing 4.3 returns the message that an inhabitant was not found.

Detailed information about the reasons that lead to non-inhabitability can be found in the

Reports perspective (see Section 4.3.5), where possible scenarios are also discussed.

According to the domain specification, the represented graph structure can be enormous.

Figure 4.16 shows a hypergraph resulting from an application developed into the scope of a

student project [13], as detailed in Section 6.3. The repository was used for the synthesis of

different configurations of intelligent plant management systems. The hypergraph represents

an average solutions’ size. According to the target type and the repository used, the sizes

of the tree grammars can be completely unique. The number of combinators in the used

repositories is between 60 and 294. The visualisation of data using graphs is very challenging

Figure 4.16: Example of a complex hypergraph

83

Chapter 4. Integrated Development Environment for (CL)S Framework

even beyond the field of computer science [92]. To increase the comprehensibility of the

visualised information, we developed the functions for zooming in and zooming out. Users can

also move the edges and the nodes of a visualised hypergraph. This feature is crucial in cases

where the number of nodes is very large, as shown in Figure 4.16. Evidently, big hypergraphs

can lead to labels of nodes or edges that visually overlap because there is insufficient space for

the visualised tree grammar. Depending on the complexity of the graph, different layouts are

sometimes more user-friendly and useful for the investigation of the represented information.

In certain cases, the overlapping problem can also be avoided using a different layout. The

layout’s algorithms allow an automatic reordering of nodes in the hypergraph. The algorithms

included in the IDE are extensions of the Cytoscape.js library [67]. The dropdown list manages

them on the left side (cf. Figure 4.12). The framework supports the following layouts:

• breadthfirst: The nodes are ordered according to a hierarchy.

• random: The nodes are ordered in random positions.

• grid: The nodes are ordered into a grid.

• circle: The nodes are ordered in a circle.

• concentric: The nodes are ordered into a concentric circle.

• dagre: This layout is proper for the representation of directed graphs and trees because

it orders the nodes also according to a hierarchy.

• cose: This layout emphasises groups of nodes through analysis of the connections.

• custom: The nodes can be ordered by a user.

The default layout in the web-based IDE is breadthfirst. According to Franz et al. [67], this type

of layout is well-suited to the representation of trees because of the structural similarity. This

layout makes the content legible for the (CL)S IDE users because of the intuitive and straight-

forward structure, similar to tree grammars. Figure 4.17 exemplifies another representation of

the labyrinth example results with target type Pos(0∗1) using the circle layout. Here, nodes

are positioned according to the number of edge crossings and node types. In this way, nodes

can be easily discovered because they are grouped around the circle.

84

4.3. IDE Perspectives

Figure 4.17: Representation using circle layout

As can be seen in Figure 4.12, a new request can also be made in the web-based IDE. Users

can easily define a new request that is more specific or generic to investigate the inhabitation

and to obtain better synthesis results. They then do not have to switch to the programmatic

definition of the request, and they can experiment faster and more comfortably with the

inhabitation. The parser technique presented in Section 3.4 analyses the input in the text field

in IDE. According to the rules of the context-free grammar, the parser translates the user entry

into target type. As mentioned, the inhabitation request can also be stated using the local IDE.

In this case, after refreshing the browser, the representation of the new results follows.

4.3.3 Solutions Overview

To make the investigation of the results more accessible, we developed the Solutions Overview

perspective. In this perspective, a list of all terms can be seen if the tree grammar can compute

a finite number of results. If the tree grammar is empty, a text message like in the Result

Overview informs the users about the non-inhabitation. If the tree grammar can compute

an infinite number of results, a window with the message: The result is infinite! How many

solutions should be shown? pops up on the screen. The user must enter the number of

inhabitants into a text field.

Through the selection of variations from the list with the results, the associated inhabitant, as

well as the corresponding hypergraph, can be visualised. Figure 4.18 displays the behaviour

after the selection of Variation 0. Considering the labyrinth example in Figure 4.9 and target

type Pos(0∗1), we get an infinite number of results because of the cycle that can be seen in

the hypergraph (cf. Figure 4.12). The inhabitant is presented in a text form. Each hypergraph

presented in this perspective represents a subhypergraph of the hypergraph presented in the

Result Overview perspective. After selecting another variation, the old representation of the

graph is replaced by a new one, and the selected inhabitant is displayed.

85

Chapter 4. Integrated Development Environment for (CL)S Framework

Figure 4.18: Representation of an inhabitant

Figure 4.19 presents a part of the generated inhabitants for the application case presented

in Section 6.2, illustrating an extension of the basic functionalities. Beyond the VARIATION X

buttons (cf. Figure 4.18), the interpreted terms can be downloaded, where X is the number of

the term corresponding to the enumeration of the inhabitants. This feature requires certain

combinators to construct the desired file. According to the presented use case, .xml and .p files

are computed so that arbitrary results can be downloaded after the expectation (Figure 4.19, in

the bottom-left corner). Every application case does not require such a download feature; by

default applying this perspective, users can only discover the terms separately, but the results

have shown that the implementation of this feature is manageable.

The visualisation in this perspective is crucial for the usability of the tool because it allows

separate consideration of the inhabitants. The uninterpreted terms can then be compared.

Moreover, the specifications of the combinators, which are responsible for the ambiguity,

can be detected and restricted by using the filtering functionalities provided by the Filter-

ing perspective. Section 3.3 details the filtering approach integrated into the IDE for (CL)S

Framework. Furthermore, when the application case is too complex, the separate visualisation

allows a more precise investigation of the results, which can be useful for the development of

the repository to further support the user.

86

4.3. IDE Perspectives

Figure 4.19: Overview of the solutions

4.3.4 Debugger Overview

This section presents the central part of the IDE: the Debugger Overview perspective. This

perspective provides a step-wise visualisation of the generation of the results that is essential

to understand the search process implemented by the inhabitation algorithm. Here, users can

control the composition of the components from the given repository by selecting the steps

of the inhabitation process. Using the buttons with the forward and backward arrows (see

Figure 4.22), the search process can be discovered step by step. As mentioned in Section 2.6.2,

in a hypergraph, the combinators are represented by blue cycles and types, by yellow squares

with rounded edges. In each step, the current tree grammar is represented by the associated

hypergraph. In the following, we consider the labyrinth example in Figure 4.9 with target type

Pos(0∗1) (cf. Section 4.3.1). By marking the nodes in green, the algorithm presents the yet-to-

do targets. The first step of the search process is represented by the target type (see Figure 4.20)

and then each step illustrates the recursive targets in green. Figure 4.21 shows the first step,

where the current target is Pos(0∗0). The visualised rule is Pos(0∗1) 7→ down(Pos(0∗0)),

which is part of the tree grammar presented in Figure 4.11. As can be seen, the current type is

the argument of the combinator down that must be used for the inhabitation. In this example,

the second step is also the last one. As shown in Figure 4.22, there are no more green nodes

that must be handled. Moreover, the visualised hypergraph is the same as the one presented

in the Result Overview perspective (cf. Figure 4.12).

87

Chapter 4. Integrated Development Environment for (CL)S Framework

Figure 4.20: Visual representation of the initial step

Figure 4.21: Visual representation of step 1

Figure 4.22: Visual representation of step 3

Aside from the manual building of the solution, this perspective provides short informa-

tion about a possible non-inhabitation occurrences. In Section 3, we mentioned that there

could occur productive and unproductive cycles. For example, the hypergraph presented

in Figure 4.22 includes a productive cycle. In this case, the specification allows the usage of

combinator up after combinator down and vice versa. The reason, why the algorithm can

compute results is that the combinator start can be used as an exit from the cycle and there are

no arguments that must be handled so that the search process stops. However, there are also

unproductive cycles that can be detected in the visualisation of the search process. In this case,

the combinator nodes, which cause such states, are marked in red. Figure 4.23, Figure 4.24,

and Figure 4.26 illustrate hypergraphs with unproductive cycles. The first figure represents a

step from the inhabitation process, where a word cannot be found. In this example, the input is

the repository presented in Figure 4.10 and the second target type Pos(2∗0) denoted byF2 (cf.

Figure 4.9). The inhabitation algorithm cannot produce any results, so a message in the Result

Overview indicates the non-inhabitation. Only using the step-wise visualisation can users can

consider when and where the problem occurs. Moreover, in the graphical representation, it is

easy to comprehend, why these nodes are marked. Obviously, the computed tree grammar

88

4.3. IDE Perspectives

contains a cyclic rule, such that no edge can ensure the exit of the cycles, as shown in the

example above.

Figure 4.23: Example of cycle

Figure 4.24 displays another example of an unproductive cycle produced by the synthesis of

the labyrinth use case presented in Figure 4.6. Here, a step of the searching process with target

type Pos(2∗0) is illustrated. The example is more complex, but it also serves the evaluation of

the developed IDE. The tree grammar generated by the inhabitation algorithm is shown in

Figure 4.8. Using the step-wise function, users can investigate which specifications may be

problematic. The Debug Perspective identifies that there are problem nodes. Let us consider

Figure 4.25 to illustrate only the problem part of the hypergraph. For better recognition, the

representation is enlarged and the layout is changed manually. In the current inhabitation

step, in addition to the nodes in the cycle (r i g ht and l e f t), the upper combinator node le f t

is also marked in red. This behaviour results from the intersection types rules that lead to the

following rule: Pos(2∗0) 7→ le f t(Pos(1∗0)∩Pos(3∗3)). The inhabitants for the argument

types of combinator l e f t are generated from the presented cycle produced from the following

rules:

(Pos(1∗0)∩Pos(3∗3)) 7→ {r i g ht (Pos(0∗0)∩Pos(2∗3))},

(Pos(0∗0)∩Pos(2∗3)) 7→ {l e f t (Pos(1∗0)∩Pos(3∗3))}

Here, it can also be seen that there is no path with an outgoing connection so that the cycle

cannot be broken.

89

Chapter 4. Integrated Development Environment for (CL)S Framework

Figure 4.24: Example of unproductive cycle

Figure 4.25: Example of unproductive cycle (enlarged)

Figure 4.26 illustrates the solution formed from the same repository as in the example consid-

ered above and the inhabitation request Pos(1∗0). As shown, an inhabitation step can contain

more than one unproductive cycles. To improve user support, in the Debugger Overview per-

spective, we include the button Toggle Cycle to avoid overloaded and unclear representations

of the results. The visualisation of unnecessary cyclic rules from the current inhabitation step,

which cannot be used for the generation of a solution, can thereby be restricted. A user can

90

4.3. IDE Perspectives

Figure 4.26: Debugger Overview

then investigate the combinators and type nodes that matter for the final result. The complete

tree grammar visualisation can be toggled back with the same button.

If any problems have occurred during the search process, brief information about the eventual

problems appears on the right side in the Debugger Overview perspective. As Figure 4.26

displays, under the toggle-button the options Unusable Combinators and Uninhabited Types

can be selected. A list of combinators that cannot be used can be listed by selecting the button

Unusable Combinators. Usually, combinators cannot be used because of their specification. If

types cannot be inhabited, they will be listed after selection of the button Uninhabited Types.

For such types, no combinators, which can be used, are available in the repository.

Moreover, with brief information about problems that can occur, a section Warnings informs

the user about deficient specifications of combinators (see Figure 4.27). This notification is

visible only if in the specification of a combinator, the number of the native and semantic

types is not the same [37]. Figure 4.27 pictures an enlarged part for such a problem occurred

in the search process. The example is from the student project presented in [13]. Here, the

layout is also manually changed. As can be seen, an unusable type node is marked by a

yellow square with rounded edges and a red border. The repository of this use case includes

numerous combinators alongside dynamically generated combinators. In such complex

applications, the overview over the correctness of the specifications can become lost. This

specification deficiency is an additional example evidencing that user support is required

during the implementation of complex application cases.

91

Chapter 4. Integrated Development Environment for (CL)S Framework

Figure 4.27: Unusable type

4.3.5 Reports

The visualisation of tree grammars computed by the (CL)S Framework can be obscure and

sometimes uninformative. The figures in Section 4.3.4 present examples of complex tree

grammars. In addition to the features that support the analysis of the search process, the IDE

provides a Reports perspective. The information appearing here benefits the user’s under-

standing of the inhabitation, particularly when there is no solution, when combinators cannot

be used, or when unproductive cycles have occurred during the search process. As noted,

concise problem information appears in the Debugger Overview. In the Reports perspective,

the user gets detailed textual information about the problems and the location of the problem

specifications. The information about the deficiencies that can occur is grouped according to

the following three categories:

• Uninhabited Types: Types that cannot be inhabited are listed on the top of the perspec-

tive. The information concerning each uninhabited type encountered during the search

processes is represented textually. Figure 4.28 displays a part of the list with uninhabited

types resulting during the inhabitation of the labyrinth example presented in Figure 4.6,

with target type Pos(2∗0). The argument type of the upper combinator le f t presented

in Figure 4.25 is also listed as uninhabitable. If the inhabitation is unsuccessful, the

given target type will also be listed in this perspective.

• Unused Combinators: In this part of the Reports perspective, users receive information

about the unused combinators. As mentioned, there is usually a problem with the

92

4.3. IDE Perspectives

Figure 4.28: Representation of information about uninhabited types

quality of the input specification. Very often, simple typos can lead to non-inhabitation.

In such a case, the poorly defined combinator can be found in this perspective. Fig-

ure 4.29 displays certain textual information regarding the unused combinators. Here,

we also consider the example presented above with the same target type. The second

combinator in the list is the upper le f t combinator marked in red in Figure 4.25. As

mentioned, it cannot be used because of the occurrence of an unproductive cycle. In

Figure 4.28, we already saw that its argument type is in the list of uninhabitable types,

which is also why the combinator cannot be used if the target type is Pos(2∗0). From

this perspective, each listed combinator is represented with the current target and the

type that cannot be inhabited. In this way, if there is a problem with the argument, the

reason for non-inhabitation can be retraced.

Figure 4.29: Representation of information about unused combinators

• Warnings: As mentioned, very often the results are unexpected because of the different

number of native and semantic types within a specification of a combinator. In such

93

Chapter 4. Integrated Development Environment for (CL)S Framework

a case, the IDE provides information in the form of warnings. If in the step-wise visu-

alisation such problems are detected, they are also listed in a Warning section in the

Reports perspective, as shown in Figure 4.30. Here, the type specification of the example

presented in Section 6.3 is listed.

Figure 4.30: Representation of warnings

4.3.6 Repository

The Repository perspective presents users an overview of the currently used repository speci-

fication. As mentioned in Section 2.5.2, types can be extended by variables. If variables are

used, a kinding declaration is defined at the beginning of the Scala program. The well-formed

substitution belongs to the input specification. The Repository perspective allows an overview

of the repository with variables as well as of the well-formed (without variables) representation.

Figure 4.31 shows a repository without variables from the labyrinth example in Figure 4.7. In

the example associated with this figure, variables are not used.

Figure 4.31: Repository representation

Using this perspective, the users can investigate and verify whether the programmatically

constructed repository specification is correct. In the presented example, the repository is

constructed from a two-dimensional Boolean array. Of course, the combinators can be entered

manually, as explained in Section 2.5.2 . Regardless of how the user chooses to construct the

94

4.3. IDE Perspectives

repository, unexpected problems can occur. Typos in the specifications are a typical example

of such problems. From this perspective, a quick check of the specification correctness is

provided. Changes can be made in the local IDE as usual.

4.3.7 Taxonomy Overview

Section 2.5.4 has considered the specification of the subtype environment. The Taxonomy

Overview perspective presents a visualisation of these specifications. As mentioned, the taxon-

omy specifications combine the subtype relation with the semantic types. This perspective

summarizes the supertypes in the form of a list. Listing 4.5 displays the programmatic spec-

ification of taxonomies. The Scala implementation presented in Section 2.5 is extended by

two different subtype relations. The first is represented by the supertype Direction and the

subtypes Left, Right, Up, and Down. The second one is the specification of supertype Robot
defined to describe the kind of robot that can go from the start to the go position. Accord-

ing to the specification, a robot can be a vehicle or humanoid. Figure 4.32 illustrates the

representation of the taxonomy specifications in the IDE.

lazy val taxonomy =
Taxonomy (" Direction ")

. addSubtype (" Left ")

. addSubtype (" Right ")

. addSubtype (" Up ")

. addSubtype (" Down ")

.merge(Taxonomy (" Robot ")
. addSubtype (" Car ")
. addSubtype (" Humanoid "))

Listing 4.5: Representation of taxonomy information

Figure 4.32: Representation of the supertypes.

Users can discover the subtype relations through consideration of a graphical representation.

The visualisation presented in Figure 4.33 will be constructed in the Taxonomy Overview

perspective with the selection of the supertype Direction from the list presented above.

95

Chapter 4. Integrated Development Environment for (CL)S Framework

Figure 4.33: Representation of the subtype relation.

As demonstrated, the graphical visualisation of taxonomy specifications is, in general, similar

to the representation of inheritance using UML notation [43]. Here, the yellow square with

rounded edges denotes the supertype, and the blue squares with rounded edges denote the

subtypes. The arrows represent the relation.

This perspective is useful for the implementation of the specifications in cases of numerous

relations defined. For example, in the complex use case presented in [13], a visual representa-

tion of the taxonomy warrants additionally a better user support. Figure 4.34 illustrates all

taxonomy specifications within the project for synthesising of cyber physical systems [13] that

can be easily investigated using this feature of the IDE.

Figure 4.34: Representation of the subtype relation.

96

4.3. IDE Perspectives

4.3.8 Filtering

In this section, we present the function of the filtering approach presented in Section 3.3 in the

(CL)S IDE. As mentioned, the filtering algorithm to be considered here modifies the resulting

tree grammar computed by the (CL)S Framework without recursion. The filtering approach

works based on predefined constraints that can be specified by users. In this context, the

Filtering perspective in the IDE for (CL)S Framework provides a text field where users can

enter a desired pattern to restrict it from the solutions computed by (CL)S Framework (see

Figure 4.35). After pressing the Filter button, the implemented filtering algorithm modifies

the original tree grammar according to the rules presented in Section 3.3.1. The modified tree

grammar that does not include the user-specified pattern is also represented by a hypergraph

placed below the text field. A pruning algorithm ensures that the visualised tree grammar does

not contain unusable rules. If there is an inhabitant with the target type, it is listed under the

visualised tree grammar, as with the representation of the inhabitants shown in Figure 4.18.

Moreover, in this perspective, the download feature mentioned in Figure 4.18 is provided if the

use case supports the generation of files. Figure 4.35 presents the Filtering perspective using

the labyrinth example offered in Figure 4.9, with target Pos(0∗1). To restrict the cycle in the

original tree grammar, the pattern down(up(∗)) is defined.

Figure 4.35: Filtering perspective

G = {@(down, @(up, ∗))!Pos(0∗1) 7→
(down(@(down, @(up, ∗)),@(up, ∗)!Pos(0∗0))),

@(down, @(up, ∗)),@(up, ∗)!Pos(0∗0) 7→ st ar t }

Figure 4.36: Modified tree grammar with pattern down(up(∗))

97

Chapter 4. Integrated Development Environment for (CL)S Framework

Figure 4.36 presents the tree grammar produced by the filtering algorithm. As compared to

the original algorithm, the pruned algorithm leaves us two rules in total. The algorithm inserts

nonterminals with unique names based on the given pattern. The new target type is mod-

ified to {@(down, @(up, ∗))}! Pos(0 ∗ 1). The second type visualised in the hypergraph

is labelled by . . .Pos(0∗0) because of the clarity of the representation. The full name of the

type can be displayed when the mouse hovers on the type node (cf. the representation of the

type {@(down, @(up, ∗))}! Pos(0 ∗ 1)); otherwise, only the original name of the type can

be seen. The rule, which corresponds to the target type, cannot construct a term using the

combinators down and up in that order to remove the cycle. That way, by the restriction of

certain order of combinators’ usage, the infinite number of trivial solutions can be avoided. In

this case, the algorithm computes only the following word as a possible inhabitation result:

Tr ee(down, {@(down, @(up, ∗))}! Pos(0 ∗ 1),

Li st (Tr ee(st ar t , {@(down, @(up, ∗));@(up, ∗)}!Pos(0 ∗ 0),Li st ()))).

The Filtering perspective provides the option to restrict more than one pattern. In this case,

the patterns should be separated using the following symbol: |. For example, the entry

down(up(∗)) | up(down(∗))

in the text field means that the patterns down(up(∗)) and up(down(∗)) must be restricted.

In this case, the algorithm also computes the new target and returns the new tree grammar in

the form of a hypergraph. In this example, the new target type contains the bots patterns

{@(up, @(down, ∗))}!{@(down, @(up, ∗))}!Pos(0∗1).

In the labyrinth example, such a pattern leads to an empty result set because all valid paths

are restricted.

According to the scope of this example, the application of the filtering approach is not so

interesting because the results are manageable. It is useful for more complex use cases

because of the challenging enormity of the result set. For example, if the number of solutions

is infinite, then in some cases, finiteness can be achieved by applying the patterns presented

in Section 3.3.2.

4.3.9 Covering

To support the understanding of the search process, the IDE provides a possibility for a

manual investigation of the type covering machine presented in [37]. This representation

also supports the users through the development of repositories and increasing the quality

of the specifications. That way, users can avoid so-called dead code [94] or in other words,

unusable specifications. Certain combinators and their types can be investigated step-by-step

98

4.3. IDE Perspectives

in the Covering perspective. Thus, the covering of the given target type can be proved. The

covering support works based on the given type. As such, the coverage of the given type

can be investigated. If the user wants to prove another type, then the target type must be

changed according to the new type desired. Initially, all combinators from the repository are

listed. Selecting a combinator reveals whether it can cover the target and whether additional

specifications are required. Similar to [105], the algorithm constructs paths according to the

type specification and groups these paths by their length. The IDE presents an overview of

paths of arguments for the selected combinator (see Figure 4.37). For example, if we have the

following combinator,

c :σ1 →σ2 → τ∩σ1 → γ, 1

the algorithm computes for the given combinator type the following paths:

([::], σ1 →σ2 → τ∩σ1 → γ) with 0 arguments

(([σ1], σ2 → τ), ([σ1],γ)) with 1 argument

([σ1, σ2],τ) with 2 arguments.

The visualisation of the paths includes, in the first place, a list of arguments and, in the second

place, the target. The user must select the number of arguments, given by the computation

of the algorithm. If the user selects paths with one argument, then the paths presented in

Figure 4.37 are shown.

Figure 4.37: Path covering visualisation

1Parentheses are unnecessary because the intersection binds stronger than arrows so that type (σ1 →σ2 →
τ∩σ1 → γ) is equal to ((σ1 →σ2 → τ)∩ (σ1 → γ)).

99

Chapter 4. Integrated Development Environment for (CL)S Framework

All types, which must be covered for the inhabitation of the given type, will be listed in the

section to Cover. Each target path that is not equal to or greater than a selected path will be

shown into to Cover section. In this case, with a selection of path ([σ1], γ), only the target

path t au is shown in the To Cover section because γ ≤ γ that means γ is covered by the

chosen path and γ is neither equal to nor greater than τ. If the section To Cover is empty, the

selected combinator can be used for the inhabitation of the target type. If the framework does

not return the expected inhabitation result, the user can discover the covering of the single

combinators using this feature and add new combinators, change, or augment consisting one.

4.4 Critical Review

The usability into the scope of software development is a well-studied topic that can be con-

sidered as a separate research field. The developed IDE represents a basis for understanding

combinatory logic with intersection types. The application of the IDE by nonexperts in the

type theory shows it to be useful for the detection of specification deficiencies that can lead to

unexpected results or non-results. For such a user group, this feature is significant because the

IDE provides a more understandable representation of the search process. Chapter 6 presents

certain examples in which the features of the IDE have proven useful. The application of

the IDE to real use cases has shown that representing the results with graphs can be chal-

lenging within complex problems, where the (CL)S component repository includes hundreds

of combinators. However, the provided step-wise construction of the hypergraphs and the

separate visualisation of individual terms compensate for these disadvantages in such cases.

Moreover, despite the unclear representation, the textual information about deficiencies in

the specifications and in the results provides a significant support [13].

Very often, the usage of frameworks is associated with unnecessary effort. For example, one

disadvantage can be dependency on other applications or operating systems or complicated

installation procedures, where the versions of the components also play an essential role. This

work aims primarily to provide an IDE that not only supports users in the field of type theory

but also functions intuitively and accessibly. For this reason, platform independence was an

essential part of the implementation. Moreover, in this way, complicated installation steps

can be avoided. This feature is an advantage over all applications, in which the installation

is based on such procedures. Furthermore, surveys in the field of usability [61; 120; 71]

show that this aspect is essential to motivate users to apply the framework again later. If an

application is easy to use, users are more inclined to reuse it. Otherwise, if users must deal

with complex installation procedures, their motivation and interest dwindle. The number

of additional technologies required by an application can also have a deterrent effect on

users. The developed web-based IDE does not increase the number of technologies that

must be used. That way, developers do not have to study new software or IDEs to specify the

inhabitation input or to set up the application. They can continue to use the local Scala IDE

that is already using and a browser that is also used by every Scala developer. Furthermore, the

100

4.4. Critical Review

implementation of the IDE allows for the implementation of more domain-specific addition

extensions, so providing such functionalities by default goes against one of the main aims

of this work, namely – the domain-independent generic realisation of user support for the

(CL)S Framework. The mentioned advantages of the web-based application allow for wise

dissemination and availability. These features are essential to attract different user groups and

to increase user motivation. That is why these aims impact the selection of the technologies.

101

Chapter 4. Integrated Development Environment for (CL)S Framework

102

Chapter 5

Evaluation

The main goal of the implementation of the web-based (CL)S IDE was to increase the usability

of the (CL)S Framework. The topic of usability within this work relates to the provision of

features that support the understanding of the inhabitation algorithm and its behaviour,

and not to the usability of a software. In the latter case, investigation should be based on

measurement with surveys and with a large user group to achieve representative results. To

investigate the usability of the web-based IDE, we provided the implementation to other

software developers who were nonexperts in type theory. The applications and their impact

are presented in Chapter 6. In this charter, a performance evaluation is presented. The

application cases and the tests are also publicly available online [16]. The performance of

the (CL)S Framework is discussed in [29]. The filtering algorithm integrated in the IDE is an

important aspect that affects the efficiency of the framework. Section 5.1 provides an overview

of the measurements of the performance of the filtering approaches presented in Section 3.2

and Section 3.3 followed by discussion of the results and justification of the decision on the

applied algorithm.

103

Chapter 5. Evaluation

5.1 Filtering Performance

This section considers the performance of the filtering approaches presented in Section 3.2

and Section 3.3. The first algorithm, based on SMT theories (see Section 3.1), will be not

handled here for the reasons outlined in Section 3.1.3. The presented argumentation indicates

the approach to be unsuitable for our application cases. There are two implementations of the

filtering approach based on the modification of the tree grammars that will be investigated in

this section. To recognise which is more suitable to the IDE, we measured the behaviour and

the performance using a labyrinth example similar to that presented in [30]. All measurements

were carried out on a Windows computer with an Intel i7-5500U (2.40 GHz) processor and

8GB RAM, and they were based on one and the same application case. In the following, we

illustrate the application case, and thereafter, the results are presented and discussed.

For the evaluation, we considered a labyrinth example, where several iterations were exe-

cuted. In each iteration, the start position was top-left and the goal bottom-right. Figure 5.1

illustrates the labyrinth example of size 3 × 3. An advantage of this example is the easy

analysis of the scaling problem of the filtering approaches, increasing the size of the labyrinth

systematically. The first measurement was with a labyrinth of size 5 × 5. Per iteration, we

•

F

Figure 5.1: Labyrinth example 3 × 3

analysed the behaviour of the labyrinth with and without any obstacles. We measured the

time of transformation of the original tree grammar generated by the (CL)S Framework to a

filtered tree grammar computed by the algorithms. The obstacles are placed randomly. The

inhabitation stops if a path from start to goal is generated. If this is not the case, the obstacles

are repositioned, and the inhabitation starts with the new repository. With each iteration, the

size of the labyrinth was increased, whereby the size of 18 × 18 represents the final iteration.

More measurements were unnecessary because the results sufficiently established a clear

tendency.

As mentioned, the results computed by (CL)S Scala Framework can include trivial terms such

as:

down(up(down(up...))).

Such paths are considered as correct. However, to find the shortest possible path, it is coun-

terproductive to go forwards and then backwards so that the pattern applied in the following

experiments was p = down(up(∗,∗),∗). Below, the results of the performance measurement

are presented.

104

5.1. Filtering Performance

The first line in the tables presents the size of the original grammar G computed by the inhab-

itation algorithm. Based on these results, the second line presents the size of the modified

grammars G ′ generated by each filtering algorithm considered. Thereafter, the size of the

pruned grammar is listed. As mentioned, applying a pruning algorithm is required because

the filtering algorithms produce rules that are not usable or reachable. The time required to

find an inhabitant is measured in seconds. The generation of labyrinths without obstacles

leads to the computation of repositories with a larger number of combinators. It also yields,

respectively, tree grammars with a large number of rules. Using the modification approaches,

the number of rules in the tree grammars increases depending on the given pattern. Table 5.1

compares the resultant data from the measurement with the 5 × 5 labyrinth without obstacles.

The algorithms begin with a tree grammar with 32 production rules. The size of the tree

grammar modified by the filtering algorithm without recursion is four times larger than the

original. The other algorithm produces a tree grammar almost three times larger. However,

there is a significant difference (about 32%) between the numbers of rules in the modified tree

grammars. The pruning algorithm halves the number of results in the respective grammars,

but the difference remains minimal. Notably, the performance time of both the algorithms is

similar; algorithm A needs 0.083 seconds and algorithm B – 0.085 seconds.

Table 5.1: Performance for 5 × 5 labyrinth without obstacles

Filter Algorithm (A) Filter Algorithm with Recursion (B)

Tree Grammar G Size 32

New Tree Grammar G ′ Size 128 86

Size after Pruning 64 47

Time (s) 0.083 0.085

The results for a labyrinth with size 5 × 5 with obstacles are shown in Table 5.2. As can be

seen, the size of the tree grammar within the examples without obstacles is larger than for

those ones in the examples with obstacles, since more valid paths are possible in the first case.

Accordingly, the same observation applies for the modified tree grammars and for the pruned

grammars. In this example, the tree grammar generated by algorithm A is larger than this one

generated by algorithm B. However, the filtering algorithm without recursion performs faster

than the other one.

Considering the results in Table 5.3, where the results for an example without obstacles are

outlined, we can see that the original grammar is larger, leading to modified tree grammars

with 648 (in case A) and 476 (in case B) rules. Here, the pruning algorithm also removes

about the half of the rules, so the tendency remains unchanged. This stability also applies to

the time results – filter A is faster. Table 5.4 outlines the results for a 10 × 10 labyrinth with

obstacles. Here, the same behaviour as in the examples for the smaller labyrinth is observable.

105

Chapter 5. Evaluation

Table 5.2: Performance for 5 × 5 labyrinth with obstacles

Filter Algorithm (A) Filter Algorithm with Recursion (B)

Tree Grammar G Size 15

New Tree Grammar G ′ Size 60 31

Size after Pruning 29 18

Time (s) 0.03 0.07

Significantly, the size of the modified tree grammar is great, but the algorithms needed for the

filtering take between only 0.01 and 0.02 seconds. The difference is not significant, but here

algorithm A performs better once more.

Table 5.3: Performance for 10 ×10 labyrinth without obstacles

Filter Algorithm (A) Filter Algorithm with Recursion (B)

Tree Grammar G Size 162

New Tree Grammar G ′ Size 648 476

Size after Pruning 324 247

Time (s) 0.15 0.19

Table 5.4: Performance for 10 ×10 labyrinth with obstacles

Filter Algorithm (A) Filter Algorithm with Recursion (B)

Tree Grammar G Size 87

New Tree Grammar G ′ Size 348 245

Size after Pruning 172 130

Time (s) 0.01 0.02

Tables 5.5 and 5.6 display the results of the last iteration with labyrinths of a size 18 × 18. We

investigated examples of sizes 12 × 12 and 15 × 15, but there were no significant results, and

for the sake of the readability, these measurements are not considered because the tendency

stays stable. The size of the modified tree grammars is based on the original grammar and on

the size of the pattern so that the results are unsurprising. The performance time is notable.

In both cases, the algorithm without recursion performs again faster than the other, despite

the size of the resulting grammar.

However, the investigation shows that the differences in the time taken during the perfor-

106

5.1. Filtering Performance

Table 5.5: Performance for 18 × 18 labyrinth without obstacles

Filter Algorithm (A) Filter Algorithm with Recursion (B)

Tree Grammar G Size 578

New Tree Grammar G ′ Size 2312 1702

Size after Pruning 1428 868

Time (s) 0.32 0.44

Table 5.6: Performance for 18 × 18 labyrinth with obstacles

Filter Algorithm (A) Filter Algorithm with Recursion (B)

Tree Grammar G Size 175

New Tree Grammar G ′ Size 700 481

Size after Pruning 333 238

Time (s) 0.02 0.05

mance of the filtering algorithms are not significant. The filtering algorithm without recursion

performs better than the other in almost all cases. Algorithm B shows a clear advantage over

the other one, without recursion, in terms of the size of the new tree grammars. It generates

tree grammars with notably fewer rules than the first algorithm. The results have shown that,

on average, the algorithm with recursion produces tree grammars with 25% to 38% fewer rules.

Despite the production of a larger number of rules by the filtering algorithm without recursion

(algorithm A), we have estimated that this approach does not display significant disadvantages

as compared to the other algorithm. The size of the tree grammars produced by this algorithm

can be considered disadvantageous, but this fact matters only to the graphical visualisation.

Obviously, a graph representation with 1 428 rules differs from one with 868 rules (cf. Table 5.5,

size after pruning). The results show that in examples with labyrinths of size more than 10 ×
10 and pattern p, the algorithm with recursion requires longer than the other. It is somewhat

surprisingly that with larger application cases, the difference becomes significant.

Additionally, the performance was investigated with the following patterns:

ps = down(up(∗,∗),∗) and pl = down(down(up(down(up(∗,∗),∗),∗),∗),∗).

As expected, both filtering algorithms perform better with the pattern ps and need more time

with pl . In the case with pattern ps , the algorithm without recursion performs better than the

other in all cases. The difference in the individual test cases is between 0.005 and 0.04 seconds.

In the second case, with pattern pl , the algorithm with recursion performs better. For an 18

107

Chapter 5. Evaluation

× 18 labyrinth and pl as input, algorithm A performs in 1.65 seconds and algorithm B under

one second. These findings are not surprising. The algorithm without recursion produces a

grammar with 18 496 (before the pruning) rules. The output of the other algorithm has only

578 rules. This number of rules is about 32 times less.

Certain advantages of the filtering implementations based on modifying tree grammars with-

out recursion over the CLS-SMT approach and the filtering approach with recursion are as

follows:

• It has a simpler and more straightforward implementation so that the filtering approach

also benefits in the field of performance.

• Like the (CL)S Scala Framework, the filtering approach based on modifying tree gram-

mars is implemented in the programming language Scala. In this way, the approach

facilitates the combination of both technologies.

• There is no additional knowledge about other technologies required so that the main-

tainability and further development of the approach are easier.

• Additional technologies, such as constraint solver, to increase the complexity of the

framework are unnecessary.

• It is not necessary to check the uniqueness of the new names.

• The completeness of the solutions, therefore, remains intact, and it is unnecessary to

consider the completeness of other technologies.

Considering the above results, it can be concluded that both filtering algorithms are com-

parable and can handle tree grammars resulting from type environments with hundreds of

combinators representing non-deterministic problems. In the presented experiments with

pattern p, the results are available in under one second. However, the filtering algorithm

without recursion generates a tree grammar with more rules than the algorithm with recursion,

but in these cases, it performs better. In the case with a larger pattern, algorithm B performs

better than the algorithm without recursion. This difference is still manageable. Compared to

the algorithm presented in [39], these filtering algorithms performs better. The authors discuss

the 30 × 30 labyrinth example. The linear case of the algorithm performs in 75.719 seconds

with the pattern p and 30 × 30 labyrinth without obstacles. In contrast, the performance of the

filtering algorithms based on a modification of tree grammars stays under one second. The

filtering algorithm with recursion needs 0.85 seconds, and the algorithm without recursion

finishes in 0.55 seconds. For the example with the size of 18 × 18 and pattern p, the algorithm

presented in [39] computes the results in 3.39 seconds. These measurements were also carried

out on the same Windows computer presented at the beginning of this section. Despite the

disadvantages discussed, the algorithm without recursion was integrated into the (CL)S IDE

because of the formal correctness of the filtering algorithm (cf. Section 3.3).

108

5.2. IDE Tests

5.2 IDE Tests

The functionality of the implementation is tested using one of the most common frameworks

for testing Scala programs - ScalaTest [128]. The tool supports different testing styles that

provide flexibility. The applied style within the project introduced in this work was FunSuit.

Parallel to the testing, a tool for code coverage analysis named scoverage [8] was used. This ap-

plication helped to investigate the quality of the testing. Thus, the tested code development is

covered almost 90%. Moreover, a tool for static code analysis was applied to ensure the quality

of the program code. Certain rules listed in [112] were used to improve the maintainability of

the implementation.

109

Chapter 5. Evaluation

110

Chapter 6

Applications and Impact

The IDE for the (CL)S Framework is used within multiple projects where the synthesis of

different application cases has been implemented successfully. This exploration by various

applications helped us investigate and improve the functionalities and thus the usability of

the IDE. For example, the use case presented in Section 6.1 has shown that the framework

provides support not only in understanding the inhabitation process but also in presenting

and analysing the solutions. Moreover, the idea of an optional download feature also resulted

from the collaborative work presented in Sections 6.1 and 6.2. According to the feedback from

the developers, additional features were implemented that were not part envisioned at the

outset of this work. These functionalities could not be considered until confronted with a

complex use case. An example of such a functionality is the filtering approach that constitutes

a separate project. Inspired by joint work with other researchers, the filtering functionality

was integrated into the IDE. Applying the filtering algorithm to the application case presented

in Section 6.2, which deals with the synthesis of complex milling processes, specific improve-

ments in the visualisation were also implemented, for example, the visualisation of the short

version of the labels of the type nodes that ensures a more precise representation of the results.

The taxonomy visualisation and the covering detection resulted from the application case pre-

sented in Section 6.3. The graphical visualisation was also improved (cf. Section 2.6). Applying

such small use cases as those presented in [30; 37; 85], we investigated the visualisation using

compound graphs and hypergraphs. Finally, the chapter ends with a use case that introduces

the importance of visualisation of (CL)S results in collaboration work with researchers in

logistics (see Section 6.4).

111

Chapter 6. Applications and Impact

6.1 Automatic Composition of Factory Planning Projects

The dissertation project [133] of Jan Winkels deals with the development of an approach

for automatic creation of fabric planning processes. He has investigated subjects such as

production, logistics, and manufacturing to ensure the proper generation of such processes.

By constraint solving, he restricts the solutions computed by the (CL)S Framework. Within

this application case, the following features of the IDE were significant:

• The IDE can be extended according to the use case, with acceptable overhead. Moreover,

this aim can be achieved without the support provided by the author of this work.

• The step-wise visualisation allows an explanation of the results’ construction that is

understandable for engineers without knowledge of programming or type theory.

Within this project, the author was able to implement extensions in the IDE, which were

domain-specific. That implementation has shown that the development of additional features

is manageable. For example, at the time of writing this work, the filtering algorithm presented

in this work was not implemented so that the author implemented a filtering function which

is domain-specific. This filtering approach could not be integrated in the IDE because of the

use case independence. Another example is the option to download ready-made projects for

factory planning. These features compared with the IDE were used to present the results to

other researchers within the interdisciplinary project that are part of this work [133].

6.2 Planning of Machining Operations for Components using CAM

Computer-aided Manufacturing (CAM) systems are used to plan complex milling processes.

The use of such techniques requires manual review by experts. This process increases the

complexity of manufacturing projects. In [114], the authors present a new approach to support

the milling processes by using (CL)S. The presented approach generates tool path solutions

that support the planning process using CAM software. The results of the synthesis are infinite.

Automated evaluation steps pick up solutions that CAM experts can consider in the next step.

The application demonstrates the following useful properties:

• The framework can be extended according to use case, without excessive.

• The IDE provides a convenient way to independently discover certain solutions.

• The filtering of unnecessary solutions supports the development of specifications and

increases the quality of the results.

• Use-case-specific problems do not regard type specifications.

112

6.3. Synthesising of Cyber Physical Systems

• The application of the framework for investigating complex milling processes is possible.

A helpful feature implemented within this project was the possibility of downloading the

synthesised results. In this case, the required files can be easily downloaded in the Solutions

perspective. After applying the filtering function, there is also the possibility to download the

desired filtered files. This feature facilitates further use of the synthesised results by the CAM

software. The implementation of the interface for the download was kept very simple to enable

its application in other use cases where such functionality is required. Within this project,

we have used associativity constraints for the restriction of trivial solutions. Together with

an investigation of the single terms, a detection of user-specific patterns was possible. This

feature helped to achieve better and faster results and to increase clarity for the application

case.

6.3 Synthesising of Cyber Physical Systems

A compulsory course within the computer science masters programme at TU Dortmund

University requires attendance at a project group, where students in small groups develop

software. The students have a year to complete the design, implementation, and of testing

the software. One of the projects in 2019 was the evaluation of possibilities for synthesising

of cyber physical systems [13]. This project aimed to analyse language-agnostic synthesis.

Students were not experts in type theory, but they applied the (CL)S for the synthesis and used

the IDE for the analysis of the repository, discovering problems successfully. The application

case was based on the configuration of intelligent plant management systems. The integration

of abstract syntax trees (ASTs) for OpenSCAD models [86] was part of the development of

the solution. The wide range of synthesised solutions included, in addition to the 3D printer

models, configuration files and shell scripts, some production plans and abstract machine

models [13].

The user support provided by the IDE was especially in the following cases very useful:

• The extension of the (CL)S IDE by the taxonomy representation has proven to be benefi-

cial in complex applications.

• The step-wise visualisation allowed for the discovery of the repositories and detection

of deficiencies and faulty specifications.

According to the participants, without the (CL)S IDE, the implementation and debugging of

the metamodel synthesis would be much more time-consuming, perhaps even impossible,

in the time available for the project. The graphical visualisation often makes visible small as

well as serious errors in the dynamically generated combinators, whereas debugging by test

scripts and command line only provides comparably little information about what is going

113

Chapter 6. Applications and Impact

wrong. Thus, the IDE has proven an indispensable tool for implementation. The dynamically

generated combinators contribute to the generation of very large graphs, pushing the graph-

based representation to its limits. A repository with up to 294 combinators is difficult to

visualise adequately. However, the listing of unusable combinators and uninhabitable types,

as well as the repository and the step-by-step construction of the solutions in breadthfirst

layout, allows even these very large cases to become manageable.

6.4 Motion Planning in Logistic Lab Environment

Logistics Research Lab [26] represents a Cyber-Physical-System (CPS) including wheel-driven

robots, drones, and laser-based support for a visualisation (e.g., of possible movements or

forbidden areas). Figure 6.1 shows the research area. The laser visualisation illustrates the

field of view of the transport robot and the forbidden area (the circle around the person in the

background), where the robot does not have access. This research lab is used from Fraunhofer

Institute for Material Flow and Logistics (IML) and from chair of Materials Handling and Ware-

housing at TU Dortmund University. A collaboration with these researchers in logistics shows

Figure 6.1: Logistics research lab overview

one more time that (CL)S with its IDE can be used from nonexperts in the field of type-theory

[38]. The scenario is based on the labyrinth example presented in Section 4.3.1. As mentioned,

it was previously used to analyse the performance of the type-based synthesis framework and

to explain the tree grammars. Beyond these advantages, this example illustrates the base of

114

6.4. Motion Planning in Logistic Lab Environment

path finding algorithms that are a central problem within autonomous diving. The resultant

prototype demonstrates the following properties:

• (CL)S and its IDE can be used by engineers with knowledge in programming, but who

are nonexperts in type theory.

• Domain-relevant extensions can be considered without impact on existing technologies.

• The application of the framework in a logistic lab is possible.

• Debugging and testing of the results can be provided that preserve the real objects.

• Use-case-specific problems are regardless of type specifications.

• The application of (CL)S IDE impacts cost-efficiency and is resource-friendly.

Figure 6.2 illustrates the architecture of the applied approach. The first layer represents the

syntheses of all possible solutions in a given environment by the (CL)S Framework. The

framework synthesises movement commands for robots. The second layer represents a virtual

representation of the result. An implemented interface allows the investigation of all possible

solutions by a 3D simulation based on Unity 3D game engine [9]. Several observation systems

are installed in the lab. The simulation represents not only a simple visualisation of the results

but it can also send information to installed laboratory equipment (third layer) through an

interface based on a simple MQTT [80] network protocol. One of these systems in the research

lab, the laser projection system, can be used to visualise all 3D models in the research area.

Another important tool is the Motion Capturing (MoCap) system. Using 40 infrared cameras

by Vicon [129], it enables the tracking of all objects and obstacles in the experimentation space.

The objects must be suitably marked to allow the recognition not only of simple real objects,

but also of persons with an accuracy of 0.3 mm, a rate of 200 Hz, and millisecond latencies

depending on the number of objects. Figure 6.1 illustrates a person wearing a marker-suit.

Information about the position and rotation of the objects is available in three dimensions.

The real objects are part of the fourth layer. [38]

The connection of the different frameworks and the automatisation of the approach was an

essential part of the development. An extension is represented by implementing an interface

for the communication with the simulation. As mentioned, the ISO-standardised MQTT

network protocol is used in the lab for the connection of Unity 3D (C# implementation) with

the installed equipment (the programming language depends on the used system). The first

layer provides an implementation in Scala. For this reason, we used Eclipse Paho [65] for

the connection of Unity 3D with (CL)S. The environments could then be investigated and

changed using 3D visualisation. Moreover, the start and end positions can also be modified

using the IDE or the Unity 3D representation. These changes can be sent to the (CL)S as input

for the following synthesis. Figure 6.3 illustrates the data flow into the architecture that realises

the synthesis of operation programs for logistic objects. The use case does not bias the data

115

Chapter 6. Applications and Impact

Figure 6.2: Path generation overview [38]

flow between (CL)S and its IDE. Here, the Robotnik [131] is illustrated, but the application

of other real objects is possible (e.g., drones, or Loadrunner) [26; 122]. The application of all

computed paths by the (CL)S Framework was tested in the logistics research lab using the

laser supported visualisation (s. Figure 6.4). Figure 6.5 shows the 3D representation of the

environment represented by the laser system using Unity 3D. A video of this experiment is

available online [17]. Such testing is protective not only for physical objects such as robots

and drones but also for the researcher in the lab. Moreover, it lowers costs. A test with real

robots raises the risk of real, expensive damages. For example, the current research considers

the development of the Loadrunner. This self-driving high-speed vehicle reaches a speed up

to 10 m/s, with acceleration of up to 5 m/s2 [122]. Such a speed can be not only dangerous

for researchers in the lab but also expensive, on account of hardware costs. Accordingly,

computer simulations of the behaviour and visualisation with the laser system have to be

applied first. The simulation with Unity 3D can be applied regardless of the lab. It ensures the

exact implementation of the simulated behaviour in reality so that the paths computed by

(CL)S and investigated by the IDE can be simulated by Unity 3D, and thereafter the chosen

path can be represented by real physical objects.

116

6.4. Motion Planning in Logistic Lab Environment

Scala program,
Repository, request

Web IDE

SMT-Solver

(CL)S

Browser

Provides (complete) solutions

Exchange (partial) solutions

Filtering by means of user-specified
Constraints

Provides input

Starts and provides
input







Provides (partial) solutions as hypergraph

Manual analysis of the search
process





Visualisation of the search
process



Controls



Provides input

Exchange
solutions

Figure 6.3: Data flow

Figure 6.4: Laser Projection System Representation Figure 6.5: Labyrinth exam-
ple represented by Unity 3D

117

Chapter 6. Applications and Impact

118

Chapter 7

Conclusion and Outlook

The usability of software products can increase the motivation to apply these technologies.

Therefore, this work provides a solution to improve the usability of software development

technologies represented by the (CL)S Framework. It has considered the resulting approach

for user support based on the collection of different functionalities, providing an innovative

approach to support nonexperts in the field of formal methods. The main features are the

debugging of intersection type specifications and the filtering of the solution set represented

by inhabitation results. The combination of formal grammars and graph theory represents

the foundation of a clear step-by-step graph visualisation in a web-based IDE to provide an

additional, user-friendly feature. Several visualisation and filtering approaches were developed

and investigated during the research process to provide the one best suited as a web-based

IDE. The reason for this process of iteration was the unexpected insights arising during

the development and investigation of complex application cases. For example, we have

shown that the first filtering approach based on SMT (see Section 3.1) developed within

the scope of this work is not always fail-safe [39; 85]. The practical experiments presented

in Chapter 5 and Chapter 6 have shown that the algorithm integrated into the (CL)S IDE

(see Section 3.3) is practically feasible and represents a clear improvement on other filtering

approaches. Functionalities such as overviews of the resulting tree grammar, analysis of

individual terms, and textual information about problems that could occur during the search

process support the user’s understanding of the decisions of the inhabitation algorithm (cf.

Chapter 4). Moreover, using application cases (see Chapter 6), we have shown that the IDE

provides user support that can increase the quality of the specifications and thus of the

inhabitation results.

Some research questions appropriate for future work arise from this project. For example,

the application to other software development technologies resulting in tree grammars can

be analysed to investigate the usability of related frameworks using hypergraphs, beyond

software synthesis based on combinatory logic with intersection types. For example, consider

a representation of the framework presented by Feng et al. [64], where if an extension using

119

Chapter 7. Conclusion and Outlook

hypergraphs is implemented, then the IDE presented in this work can be used as an additional

feature for visualisation and debugging.

Another possible area of future work is the extension of the functionalities of the IDE by

a subtyping representation. The results of the subtype machine presented in [37] can be

visualised step-wise. Moreover, the visualisation of the taxonomies using Hasse diagrams

can be discovered [44; 47]. A filtering approach with recursion might be considered to better

visualise the resulting filtered tree grammars. The investigation presented in Section 5.1 shows

that this algorithm performs in some complex application cases faster than the algorithm

without recursion. Furthermore, the number of the rules in the resulting grammar is less

than the other filter algorithm based on modification, which is a clear advantage for the IDE

visualisation. This feature may compensate for the disadvantages when the performance is not

so good. Other approaches for pattern filtering may include a restriction on graph elements.

The idea is to forbid a pattern by removing combinator nodes and the edges corresponding to it.

For example, consider the tree grammar G , as presented in Figure 7.1, and the corresponding

graph visualisation, in Figure 7.2.

G = {σ0 7→ c1(σ1,σ2),

σ1 7→ c2(),

σ2 7→ c3(σ3),

σ3 7→ c4(),c5(σ0)}

Figure 7.1: Tree grammar G

σ0

c1

σ2σ1

c2 c3

σ3

c4 c5

Figure 7.2: Graph visualisation of G

If the restriction combinator c5 is desired, then the node that represents this combinator can

be deleted from the hypergraph. Thus, this activity results in the tree grammar G ′ presented

in Figure 7.3 and a graph visualisation presented in Figure 7.4, where combinator c5 does

not occur. A disadvantage of this approach is that it requires more rigorous and in-depth

research in the field of graph theory. Moreover, an analysis of the languages L (G) and L (G ′)
is required because it is not obvious whether the restriction removes words that do not include

the pattern.

Additional to the Covering perspective, a static analysis of the input specifications can be

developed to increase the quality of the repository and to avoid bad inhabitation (non)results.

In the context of code quality in Java programs, a rule set was developed to avoid code smells

[93]. According to this approach, a rule set for the specification of the repository Γ can be

developed to provide a more formal understanding and insights on intersection types. Finally,

120

G ′ = {σ0 7→ c1(σ1,σ2),

σ1 7→ c2(),

σ2 7→ c3(σ3),

σ3 7→ c4()}

Figure 7.3: Filtered tree grammar G ′

σ0

c1

σ2σ1

c2 c3

σ3

c4

Figure 7.4: Graph visualisation of G ′

the application of the IDE for the (CL)S Framework by a large group of nonexperts can be

investigated to prove its usability. To achieve this aim, measurement techniques similar

to those presented in [111] can be used. Here, the approach is constituent of the regular

university computer science education, such that per iteration, much information can be

collected and compared using a survey. Representative results can thereby be achieved.

121

Chapter 7. Conclusion and Outlook

122

Bibliography

[1] Bootstrap 4. https://www.w3schools.com/bootstrap4/bootstrap_get_started.asp. Ac-

cessed: 11.12.2021.

[2] Akka HTTP. URL https://doc.akka.io/docs/akka-http/current/index.html. Accessed:

11.12.2021.

[3] Bootstrap. https://getbootstrap.com/. Accessed: 11.12.2021.

[4] CVC4. URL https://cvc4.github.io/index.html. Accessed: 11.12.2021.

[5] Isabelle. URL https://isabelle.in.tum.de/. Accessed: 11.12.2021.

[6] scala-parser-combinators. URL https://github.com/scala/scala-parser-combinators.

Accessed: 11.12.2021.

[7] Scala Build Tool (SBT). https://www.scala-sbt.org/. Accessed: 11.12.2021.

[8] scoverage. URL https://github.com/scoverage/scalac-scoverage-plugin. Accessed:

11.12.2021.

[9] Unity 3D. URL https://docs.unity3d.com/Manual/UnityManual.html. Accessed:

11.12.2021.

[10] HVC 2010 - Haifa Verification Conference 2010, 2007. URL https://www.research.ibm.

com/haifa/conferences/hvc2010/award.shtml. Accessed: 11.12.2021.

[11] Guice, 2020. URL https://github.com/google/guice. Accessed: 11.12.2021.

[12] Graph for Scala | Graph for Scala - Home, 3.4.2020. URL http://www.scala-graph.org/.

Accessed: 11.12.2021.

[13] P. 624. Synthese Cyberphysischer Systeme. Technische Universität Dortmund, intern,

2020. in German.

[14] M. D. Adams and M. Might. Restricting grammars with tree automata. Proceedings of

the ACM on Programming Languages, 1(OOPSLA):82, 2017.

123

https://www.w3schools.com/bootstrap4/bootstrap_get_started.asp
https://doc.akka.io/docs/akka-http/current/index.html
https://getbootstrap.com/
https://cvc4.github.io/index.html
https://isabelle.in.tum.de/
https://github.com/scala/scala-parser-combinators
https://www.scala-sbt.org/
https://github.com/scoverage/scalac-scoverage-plugin
https://docs.unity3d.com/Manual/UnityManual.html
https://www.research.ibm.com/haifa/conferences/hvc2010/award.shtml
https://www.research.ibm.com/haifa/conferences/hvc2010/award.shtml
https://github.com/google/guice
http://www.scala-graph.org/

Bibliography

[15] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia, R. Singh,

A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In 2013 Formal

Methods in Computer-Aided Design, pages 1–8, Oct 2013. doi: 10.1109/FMCAD.2013.

6679385.

[16] Anna Vasileva and Jan Bessai. cls-scala-ide. URL https://github.com/combinators/

cls-scala-ide. Accessed: 11.12.2021.

[17] Anna Vasileva and Moritz Roidl. Laser Demonstration. URL https://github.com/

combinators/labyrinth. Accessed: 11.12.2021.

[18] M. Antognini, R. Blanc, S. Gruetter, L. Hupel, E. Kneuss, M. Koukoutos, V. Kuncak,

R. Madhavan, S. Stucki, and P. Suter. Leon System for Verification, Synthesis and Repair.

URL http://leon.epfl.ch/. Accessed: 11.12.2021.

[19] E. J. G. Arias, B. Pin, and P. Jouvelot. jsCoq: Towards Hybrid Theorem Proving Interfaces.

In Proceedings of the 12th Workshop on User Interfaces for Theorem Provers, UITP 2016,

Coimbra, Portugal, 2nd July 2016., pages 15–27, 2016. URL https://doi.org/10.4204/

EPTCS.239.2.

[20] G. Ausiello and G. F. Italiano. On-line algorithms for polynomially solvable satisfiability

problems. The Journal of logic programming, 10(1):69–90, 1991.

[21] G. Ausiello, P. G. Franciosa, and D. Frigioni. Directed hypergraphs: Problems, algorithmic

results, and a novel decremental approach. In Italian conference on theoretical computer

science, pages 312–328. Springer, 2001.

[22] K. Bar, A. Kissinger, and J. Vicary. Globular: an online proof assistant for higher-

dimensional rewriting. Logical Methods in Computer Science, 14(1), 2018. URL

https://doi.org/10.23638/LMCS-14(1:8)2018.

[23] H. P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A Filter Lambda Model and the

Completeness of Type Assignment. Journal of Symbolic Logic, 48(4):931–940, 1983. doi:

10.2307/2273659.

[24] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.6. Technical

report, 2017. Available at www.SMT-LIB.org.

[25] T. Bauernhansl, M. Ten Hompel, and B. Vogel-Heuser. Industrie 4.0 in Produktion,

Automatisierung und Logistik: Anwendung-Technologien-Migration. Springer, 2014. In

German.

[26] H. Bayhan, A. Karthik Ramachandran Venkatapathy, J. Dregger, F. Zeidler, M. Roidl, and

M. ten Hompel. A Concept of an Industry 4.0 Research Lab for Future Intralogistics

Technologies and Services. 3rd Interdisciplinary Conference on Production, Logistics

and Traffic, ICPLT, 2017.

124

https://github.com/combinators/cls-scala-ide
https://github.com/combinators/cls-scala-ide
https://github.com/combinators/labyrinth
https://github.com/combinators/labyrinth
http://leon.epfl.ch/
https://doi.org/10.4204/EPTCS.239.2
https://doi.org/10.4204/EPTCS.239.2
https://doi.org/10.23638/LMCS-14(1:8)2018

Bibliography

[27] E. A. Bender and S. G. Williamson. Lists, Decisions and Graphs. S. Gill Williamson, 2010.

[28] C. Berge. Graphs and hypergraphs. North-Holland, 1973.

[29] J. Bessai. A Type-Theoretic Framework for Software Component Synthesis. 2019.

[30] J. Bessai and A. Vasileva. User Support for the Combinator Logic Synthesizer Framework.

Electronic Proceedings in Theoretical Computer Science, 284:16–25, 2018. doi: 10.4204/

EPTCS.284.2.

[31] J. Bessai, A. Dudenhefner, B. Düdder, M. Martens, and J. Rehof. Combinatory Logic

Synthesizer. In Leveraging Applications of Formal Methods, Verification and Validation.

Technologies for Mastering Change - 6th International Symposium, ISoLA 2014, Imperial,

Corfu, Greece, October 8-11, 2014, Proceedings, Part I, pages 26–40, 2014. URL https:

//doi.org/10.1007/978-3-662-45234-9_3.

[32] J. Bessai, B. Düdder, G. T. Heineman, and J. Rehof. Combinatory Synthesis of Classes

Using Feature Grammars. In Revised selected papers of the 12th International Conference

on Formal Aspects of Component Software, pages 123–140, 2015. URL https://doi.org/

10.1007/978-3-319-28934-2_7.

[33] J. Bessai, A. Dudenhefner, B. Düdder, M. Martens, and J. Rehof. Combinatory Process

Synthesis. In Proceedings of the 7th International Symposium on Leveraging Applications

of Formal Methods, Verification and Validation, pages 266–281, 2016. URL https://doi.

org/10.1007/978-3-319-47166-2_19.

[34] J. Bessai, A. Dudenhefner, B. Düdder, M. Martens, and J. Rehof. Combinatory Process

Synthesis. In Leveraging Applications of Formal Methods, Verification and Validation:

Foundational Techniques - 7th International Symposium, ISoLA 2016, Imperial, Corfu,

Greece, October 10-14, 2016, Proceedings, Part I, pages 266–281, 2016. doi: 10.1007/

978-3-319-47166-2_19.

[35] J. Bessai, T.-C. Chen, A. Dudenhefner, B. Düdder, U. de’Liguoro, and J. Rehof. Mixin

Composition Synthesis based on Intersection Types. Logical Methods in Computer

Science, Volume 14, Issue 1, Feb. 2018. doi: 10.23638/LMCS-14(1:18)2018. URL https:

//lmcs.episciences.org/4319.

[36] J. Bessai, B. Düdder, G. T. Heineman, et al. (CL)S Framework, 2018. URL http://www.

combinators.org. Accessed: 2018-04-30.

[37] J. Bessai, J. Rehof, and B. Düdder. Fast Verified BCD Subtyping. In Models, Mindsets,

Meta: The What, the How, and the Why Not?, volume 11200 of Lecture Notes in Computer

Science, pages 356–371. Springer, Cham, [S.l.], 2019. ISBN 978-3-030-22347-2. doi:

10.1007/978-3-030-22348-9_21.

[38] J. Bessai, M. Roidl, and A. Vasileva. Experience Report: Towards Moving Things with

Types–Helping Logistics Domain Experts to Control Cyber-Physical Systems with Type-

Based Synthesis. arXiv preprint arXiv:1912.10628, 2019.

125

https://doi.org/10.1007/978-3-662-45234-9_3
https://doi.org/10.1007/978-3-662-45234-9_3
https://doi.org/10.1007/978-3-319-28934-2_7
https://doi.org/10.1007/978-3-319-28934-2_7
https://doi.org/10.1007/978-3-319-47166-2_19
https://doi.org/10.1007/978-3-319-47166-2_19
https://lmcs.episciences.org/4319
https://lmcs.episciences.org/4319
http://www.combinators.org
http://www.combinators.org

Bibliography

[39] J. Bessai, L. Czajka, F. Laarmann, and J. Rehof. Restricting tree grammars with term

rewriting. 7th International Conference on Formal Structures for Computation and

Deduction, FSCD, 2022.

[40] A. Biere, M. Heule, and H. van Maaren. Handbook of satisfiability, volume 185. IOS

press, 2009.

[41] R. Blanc, V. Kuncak, E. Kneuss, and P. Suter. An overview of the Leon verification system:

verification by translation to recursive functions. In Proceedings of the 4th Workshop on

Scala, SCALA@ECOOP 2013, Montpellier, France, July 2, 2013, pages 1:1–1:10, 2013. URL

http://doi.acm.org/10.1145/2489837.2489838.

[42] F. Bobot, J. Filliâtre, C. Marché, and A. Paskevich. Let’s verify this with Why3. STTT, 17

(6):709–727, 2015. URL https://doi.org/10.1007/s10009-014-0314-5.

[43] G. Booch. The unified modeling language user guide. Pearson Education India, 2005.

[44] R. Brüggemann, A. Kaune, J. Klein, and R. Zellner. Anwendung der Hasse-

Diagrammtechnik. Umweltwissenschaften und Schadstoff-Forschung, 8(2):89–96, 1996.

(In German).

[45] J. Carme, J. Niehren, and M. Tommasi. Querying unranked trees with stepwise tree au-

tomata. In International Conference on Rewriting Techniques and Applications. Springer,

2004.

[46] S. Chasins and J. L. Newcomb. Using SyGuS to Synthesize Reactive Motion Plans. arXiv

preprint arXiv:1611.07620, 2016.

[47] C. Chevalley et al. Helmut Hasse, Über die Klassezahl abelscher Zahlkörper. Bulletin of

the American Mathematical Society, 59(3):281–282, 1953. (In German).

[48] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5(2):

56–68, 1940. doi: 10.2307/2266170.

[49] H. Comon and F. Jacquemard. Ground reducibility is EXPTIME-complete. Information

and Computation, 187(1):123–153, 2003.

[50] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and

M. Tommasi. Tree Automata Techniques and Applications. Available online: http:

//www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

[51] M. Coppo and M. Dezani-Ciancaglini. A new type assignment for λ-terms. Arch. Math.

Log., 19(1):139–156, 1978. URL https://doi.org/10.1007/BF02011875.

[52] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In International conference

on Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340.

Springer, 2008.

126

http://doi.acm.org/10.1145/2489837.2489838
https://doi.org/10.1007/s10009-014-0314-5
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.1007/BF02011875

Bibliography

[53] A.-H. Dediu, R. Klempien-Hinrichs, H.-J. Kreowski, and B. Nagy. Contextual hypergraph

grammars–a new approach to the generation of hypergraph languages. In International

Conference on Developments in Language Theory, pages 327–338. Springer, 2006.

[54] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an

annotated bibliography. Computational Geometry, 4(5):235–282, 1994.

[55] T. Dietze. Equivalences between Ranked and Unranked Weighted Tree Automata via

Binarization. In Proceedings of the SIGFSM Workshop on Statistical NLP and Weighted

Automata, pages 1–10, 2016.

[56] U. Dogrusoz, A. Karacelik, I. Safarli, H. Balci, L. Dervishi, and M. C. Siper. Efficient

methods and readily customizable libraries for managing complexity of large networks.

PloS one, 13(5), 2018.

[57] B. Düdder. Automatic Synthesis of Component & Connector-Software Architectures with

Bounded Combinatory Logic. PhD thesis, Technische Universität Dortmund, Fakultät

für Informatik, Dortmund, 2014, 2014.

[58] B. Düdder, M. Martens, J. Rehof, and P. Urzyczyn. Bounded Combinatory Logic. In

P. Cégielski and A. Durand, editors, Computer Science Logic (CSL’12) - 26th Interna-

tional Workshop/21st Annual Conference of the EACSL, CSL 2012, September 3-6, 2012,

Fontainebleau, France, volume 16 of LIPIcs, pages 243–258. Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik, 2012. ISBN 978-3-939897-42-2. doi: 10.4230/LIPIcs.CSL.2012.

243. URL http://drops.dagstuhl.de/opus/portals/extern/index.php?semnr=12009.

[59] B. Düdder, J. Rehof, and G. T. Heineman. Synthesizing Type-Safe Compositions in

Feature Oriented Software Designs Using Staged Composition. In Proceedings of the

19th International Conference on Software Product Line, SPLC 2015, Nashville, TN,

USA, July 20-24, 2015, pages 398–401, 2015. doi: 10.1145/2791060.2793677. URL http:

//doi.acm.org/10.1145/2791060.2793677.

[60] A. Dudenhefner. Algorithmic aspects of type-based program synthesis. PhD thesis, 2019.

[61] Elmar/P/Wach. Aus welchen Gründen haben Sie einen bestimmen eS-

hop ausgewählt?[For what reason did you choose a particular eShop],

2011. URL https://de.statista.com/statistik/daten/studie/188807/umfrage/

gruende-der-kunden-fuer-die-auswahl-von-online-shops/. Accessed: 11.12.2021.

[62] J. Engelfriet and L. Heyker. Context-Free Hypergraph Grammars have the Same Term-

Generating Power as Attribute Grammars. Acta Inf., 29(2):161–210, 1992. URL https:

//doi.org/10.1007/BF01178504.

[63] A. P. Felty and A. Middeldorp, editors. Automated Deduction - CADE-25 - 25th In-

ternational Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015,

Proceedings, volume 9195 of Lecture Notes in Computer Science, 2015. Springer. ISBN

978-3-319-21400-9. URL https://doi.org/10.1007/978-3-319-21401-6.

127

http://drops.dagstuhl.de/opus/portals/extern/index.php?semnr=12009
http://doi.acm.org/10.1145/2791060.2793677
http://doi.acm.org/10.1145/2791060.2793677
https://de.statista.com/statistik/daten/studie/188807/umfrage/gruende-der-kunden-fuer-die-auswahl-von-online-shops/
https://de.statista.com/statistik/daten/studie/188807/umfrage/gruende-der-kunden-fuer-die-auswahl-von-online-shops/
https://doi.org/10.1007/BF01178504
https://doi.org/10.1007/BF01178504
https://doi.org/10.1007/978-3-319-21401-6

Bibliography

[64] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps. Component-based synthesis for

complex APIs. pages 599–612, 2017. URL http://dl.acm.org/citation.cfm?id=3009851.

[65] E. Foundation. Paho. URL https://www.eclipse.org/paho/. Accessed: 11.12.2021.

[66] J. Frankle, P.-M. Osera, D. Walker, and S. Zdancewic. Example-directed Synthesis: A

Type-theoretic Interpretation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’16, pages 802–815, New

York, NY, USA, 2016. ACM. ISBN 978-1-4503-3549-2. doi: 10.1145/2837614.2837629.

URL http://doi.acm.org/10.1145/2837614.2837629.

[67] M. Franz, C. T. Lopes, G. Huck, Y. Dong, S. O. Sümer, and G. D. Bader. Cytoscape.js: a

graph theory library for visualisation and analysis. Bioinformatics, 32(2):309–311, 2016.

URL https://doi.org/10.1093/bioinformatics/btv557.

[68] N. Franzese, A. Groce, T. Murali, and A. Ritz. Hypergraph-based connectivity measures

for signaling pathway topologies. PLoS computational biology, 15(10), 2019.

[69] M. Frick, M. Grohe, and C. Koch. Query evaluation on compressed trees. In 18th Annual

IEEE Symposium of Logic in Computer Science, 2003. Proceedings. IEEE, 2003.

[70] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and applications.

Discrete applied mathematics, 42(2-3):177–201, 1993.

[71] Google. Important features of mobile websites according to smartphone users in

Canada as of March 2015 [Graph], 2015. URL https://www.statista.com/statistics/

438350/features-mobile-websites-canada/. Accessed: 11.12.2021.

[72] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of Loop-free Programs. In

Proceedings of PLDI’11, pages 62–73. ACM, 2011.

[73] S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet Data Manipulation using Exam-

ples. volume 55, pages 97–105, January 2012. URL https://www.microsoft.com/en-us/

research/publication/spreadsheet-data-manipulation-using-examples/. Invited to

CACM Research Highlights.

[74] S. Gulwani, A. Polozov, and R. Singh. Program Synthesis, volume 4. NOW, August 2017.

URL https://www.microsoft.com/en-us/research/publication/program-synthesis/.

[75] T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac. Complete Completion Using Types and

Weights. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’13, pages 27–38, New York, NY, USA, 2013. ACM.

ISBN 978-1-4503-2014-6. doi: 10.1145/2491956.2462192. URL http://doi.acm.org/10.

1145/2491956.2462192.

[76] G. T. Heineman, J. Bessai, B. Düdder, and J. Rehof. A Long and Winding Road Towards

Modular Synthesis. In Leveraging Applications of Formal Methods, Verification and

128

http://dl.acm.org/citation.cfm?id=3009851
https://www.eclipse.org/paho/
http://doi.acm.org/10.1145/2837614.2837629
https://doi.org/10.1093/bioinformatics/btv557
https://www.statista.com/statistics/438350/features-mobile-websites-canada/
https://www.statista.com/statistics/438350/features-mobile-websites-canada/
https://www.microsoft.com/en-us/research/publication/spreadsheet-data-manipulation-using-examples/
https://www.microsoft.com/en-us/research/publication/spreadsheet-data-manipulation-using-examples/
https://www.microsoft.com/en-us/research/publication/program-synthesis/
http://doi.acm.org/10.1145/2491956.2462192
http://doi.acm.org/10.1145/2491956.2462192

Bibliography

Validation: Foundational Techniques - 7th International Symposium, ISoLA 2016, Impe-

rial, Corfu, Greece, October 10-14, 2016, Proceedings, Part I, pages 303–317, 2016. doi:

10.1007/978-3-319-47166-2_21.

[77] P. Hilton, E. Bakker, and F. Canedo. Play for Scala: Covers Play 2. Manning Publications

Co., 2013.

[78] J. R. Hindley and J. P. Seldin. Lambda-calculus and Combinators, an Introduction,

volume 13. Cambridge University Press Cambridge, 2008.

[79] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory, languages,

and computation. 2006.

[80] International Organization for Standardization (ISO). ISO/IEC 20922:2016: Informa-

tion technology – Message Queuing Telemetry Transport (MQTT) v3.1.1. ISO: Geneva,

Switzerland, pages 1–73, 2016.

[81] ISO 9241-11:2018. Ergonomics of human-system interaction – Part 11: Usability: Defini-

tions and concepts. Standard, International Organization for Standardization, Geneva,

CH, 2018.

[82] JetBrains. IntelliJ IDEA. URL https://www.jetbrains.com/idea/. Accessed: 11.12.2021.

[83] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-Guided Component-Based Program

Synthesis. May 2010. URL https://www.microsoft.com/en-us/research/publication/

oracle-guided-component-based-program-synthesis/.

[84] C. Kaliszyk. Web Interfaces for Proof Assistants. Electr. Notes Theor. Comput. Sci., 174(2):

49–61, 2007. URL https://doi.org/10.1016/j.entcs.2006.09.021.

[85] F. Kallat, T. Schäfer, and A. Vasileva. CLS-SMT: Bringing Together Combinatory Logic

Synthesis and Satisfiability Modulo Theories. arXiv preprint arXiv:1908.09481, 2019.

[86] Kintel, Marius. OpenSCAD - The Programmers Solid 3D CAD Modeller. URL https:

//openscad.org/about.html. Accessed: 11.12.2021.

[87] H. Kreowski. A Comparison Between Petri-Nets and Graph Grammars. In Graphtheoretic

Concepts in Computer Science, Proceedings of the International Workshop WG ’80, Bad

Honnef, Germany, June 15-18, 1980, pages 306–317, 1980. URL https://doi.org/10.1007/

3-540-10291-4_22.

[88] H.-J. Kreowski, S. Kuske, and A. Lye. Transformation of petri nets into context-dependent

fusion grammars. In International Conference on Language and Automata Theory and

Applications, pages 246–258. Springer, 2019.

[89] P. Krill. JavaFX will be removed from the Java JDK. URL https://www.infoworld.

com/article/3261066/java/javafx-will-be-removed-from-the-java-jdk.html. Accessed:

11.12.2021.

129

https://www.jetbrains.com/idea/
https://www.microsoft.com/en-us/research/publication/oracle-guided-component-based-program-synthesis/
https://www.microsoft.com/en-us/research/publication/oracle-guided-component-based-program-synthesis/
https://doi.org/10.1016/j.entcs.2006.09.021
https://openscad.org/about.html
https://openscad.org/about.html
https://doi.org/10.1007/3-540-10291-4_22
https://doi.org/10.1007/3-540-10291-4_22
https://www.infoworld.com/article/3261066/java/javafx-will-be-removed-from-the-java-jdk.html
https://www.infoworld.com/article/3261066/java/javafx-will-be-removed-from-the-java-jdk.html

Bibliography

[90] O. Laurent. Intersection Subtyping with Constructors. In Proceedings DCM 2018 and

ITRS 2018, pages 73–84, Oxford, UK, 2018. doi: 10.4204/EPTCS.293.6.

[91] Lightbend. Play framework. URL https://www.playframework.com. Accessed:

11.12.2021.

[92] S. Liu, W. Cui, Y. Wu, and M. Liu. A survey on information visualization: recent advances

and challenges. The Visual Computer, 30(12):1373–1393, 2014.

[93] R. C. Martin. Clean code: a handbook of agile software craftsmanship. Pearson Education,

2009.

[94] R. C. Martin. Clean Code-Refactoring, Patterns, Testen und Techniken für sauberen Code:

Deutsche Ausgabe. MITP-Verlags GmbH & Co. KG, 2013.

[95] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop transfor-

mations. ACM Transactions on Programming Languages and Systems (TOPLAS), 18(4):

424–453, 1996.

[96] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses,

envelopes and barbed wire. In Conference on Functional Programming Languages and

Computer Architecture, pages 124–144. Springer, 1991.

[97] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses,

envelopes and barbed wire. In Conference on Functional Programming Languages and

Computer Architecture, pages 124–144. Springer, 1991.

[98] J. Meseguer and U. Montanari. Petri nets are monoids. Information and Computation,

88, 1990. doi: https://doi.org/10.1016/0890-5401(90)90013-8.

[99] J. Nielsen. Usability Engineering. Elsevier Science, 1994.

[100] Oracle. JavaFX. URL http://www.oracle.com/technetwork/java/javase/overview/

javafx-overview-2158620.html. Accessed: 11.12.2021.

[101] N. Polikarpova, I. Kuraj, and A. Solar-Lezama. Program Synthesis from Polymorphic

Refinement Types. In Proceedings of the 37th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’16, pages 522–538, New York, NY, USA,

2016. ACM. ISBN 978-1-4503-4261-2. doi: 10.1145/2908080.2908093. URL http://doi.

acm.org/10.1145/2908080.2908093.

[102] S. Ranise and C. Tinelli. The SMT-LIB format: An initial proposal. In Proceedings of

the 1st International Workshop on Pragmatics of Decision Procedures in Automated

Reasoning (PDPAR’03), Miami, Florida, pages 94–111, 2003.

[103] J. Rehof. Towards Combinatory Logic Synthesis. In BEAT 2013, 1st International Work-

shop on Behavioural Types. ACM, 2013.

130

https://www.playframework.com
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
http://doi.acm.org/10.1145/2908080.2908093
http://doi.acm.org/10.1145/2908080.2908093

Bibliography

[104] J. Rehof and P. Urzyczyn. Finite Combinatory Logic with Intersection Types. In C. L.

Ong, editor, Typed Lambda Calculi and Applications - 10th International Conference,

TLCA 2011, Novi Sad, Serbia, June 1-3, 2011. Proceedings, volume 6690 of Lecture Notes

in Computer Science, pages 169–183. Springer, 2011. ISBN 978-3-642-21690-9. doi:

10.1007/978-3-642-21691-6_15. URL http://dx.doi.org/10.1007/978-3-642-21691-6_15.

[105] J. Rehof and P. Urzyczyn. Finite Combinatory Logic with Intersection Types. In Typed

Lambda Calculi and Applications - 10th International Conference, TLCA 2011, Novi Sad,

Serbia, June 1-3, 2011. Proceedings, pages 169–183, 2011. URL https://doi.org/10.1007/

978-3-642-21691-6_15.

[106] A. Reynolds, C. Tinelli, A. Goel, and S. Krstić. Finite model finding in SMT. In Interna-

tional Conference on Computer Aided Verification, pages 640–655. Springer, 2013.

[107] A. Reynolds, V. Kuncak, C. Tinelli, C. Barrett, and M. Deters. Refutation-based synthesis

in SMT. Formal Methods in System Design, Feb 2017. ISSN 1572-8102. doi: 10.1007/

s10703-017-0270-2. URL https://doi.org/10.1007/s10703-017-0270-2.

[108] G. Rozenberg and A. Salomaa. Handbook of Formal Languages. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1997. ISBN 978-3-642-63859-6. doi: 10.1007/

978-3-642-59126-6.

[109] T. Schäfer, F. Möller, A. Burmann, Y. Pikus, N. Weißenberg, M. Hintze, and J. Rehof. A

methodology for combinatory process synthesis: process variability in clinical pathways.

In International Symposium on Leveraging Applications of Formal Methods, pages 472–

486. Springer, 2018.

[110] D. Schmedding and A. Vasileva. Integration von Qualitätsaspekten in einen Entwick-

lungsprozess. In Konferenz zur Software und IT Messung und Bewertung, MetriKon, 2015.

In German.

[111] D. Schmedding and A. Vasileva. Reviews-ein Instrument zur Qualitätsverbesserung von

UML-Diagrammen. In SEUH, pages 8–19, 2017. (In German).

[112] D. Schmedding, A. Vasileva, and J. Remmers. Clean Code-ein neues Ziel im Software-

Praktikum. In SEUH, pages 81–91, 2015.

[113] M. Schönfinkel. Über die Bausteine der mathematischen Logik. Mathematische annalen,

92(3-4):305–316, 1924.

[114] T. Schäfer, J. A. Bergmann, R. G. Carballo, J. Rehof, and P. Wiederkehr. A Synthesis-based

Tool Path Planning Approach for Computer Aided Manufacturing. 54th CIRP Conference

on Manufacturing Systems, 2021.

[115] S. Skhiri dit Gabouje and E. Zimanyi. A new compound graph layout algorithm for

visualizing biochemical networks. In Poster Proceedings Volume of the 4th International

Workshop on Efficient and Experimental Algorithms. CTI Press, 2005.

131

http://dx.doi.org/10.1007/978-3-642-21691-6_15
https://doi.org/10.1007/978-3-642-21691-6_15
https://doi.org/10.1007/978-3-642-21691-6_15
https://doi.org/10.1007/s10703-017-0270-2

Bibliography

[116] A. Solar-Lezama, R. Rabbah, R. Bodík, and K. Ebcioğlu. Programming by sketching

for bit-streaming programs. In Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation, pages 281–294, 2005.

[117] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat. Combinatorial sketching

for finite programs. In Proceedings of the 12th international conference on Architectural

support for programming languages and operating systems. ACM, 2006.

[118] D. Spath, O. Ganschar, S. Gerlach, M. Hämmerle, T. Krause, and S. Schlund. Produk-

tionsarbeit der Zukunft-Industrie 4.0, volume 150. Fraunhofer Verlag Stuttgart, 2013. In

German.

[119] Y. Srikant and P. Shankar. The compiler design handbook: optimizations and machine

code generation. CRC Press, 2007.

[120] Statista. "Inwiefern ist der Aspekt "Nutzerfreundlichkeit/Bedienbarkeit"

bei Onlineshops für Sie persönlich besonders wichtig?"[To what ex-

tent is the aspect "usability" of online shops particularly important for

you personally?], 2017. URL https://de.statista.com/prognosen/784769/

umfrage-zu-nutzerfreundlichkeit-im-internet-als-kriterium-fuer-fashion-onlineshops.

Accessed: 11.12.2021, (In German).

[121] K. Sugiyama and K. Misue. Visualization of structural information: Automatic drawing

of compound digraphs. IEEE Transactions on Systems, Man, and Cybernetics, 21(4):

876–892, 1991.

[122] M. ten Hompel, H. Bayhan, J. Behling, L. Benkenstein, J. Emmerich, G. Follert,

M. Grzenia, C. Hammermeister, H. Hasse, D. Hoening, et al. Technical Report: Load-

Runner®, a new platform approach on collaborative logistics services. Logistics Journal:

nicht referierte Veröffentlichungen, 2020(10), 2020.

[123] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. Martin, and R. Alur.

TRANSIT: Specifying Protocols with Concolic Snippets. SIGPLAN Not., 48(6):287–296,

June 2013. ISSN 0362-1340. doi: 10.1145/2499370.2462174. URL http://doi.acm.org/10.

1145/2499370.2462174.

[124] B. Unhelkar. Verification and validation for quality of UML 2.0 models, volume 2. Wiley

Online Library, 2005.

[125] A. Vasileva and D. Schmedding. Clean Java–Von Anfang an! Programmiersprachen und

Grundlagen der Programmierung, KPS, 2015. (In German).

[126] A. Vasileva and D. Schmedding. Vom Clean Model zum Clean Code. Modellierung 2016,

2016. (In German).

[127] A. Vasileva and D. Schmedding. How to improve code quality by measurement and

refactoring. In 2016 10th International Conference on the Quality of Information and

Communications Technology (QUATIC), pages 131–136. IEEE, 2016.

132

https://de.statista.com/prognosen/784769/umfrage-zu-nutzerfreundlichkeit-im-internet-als-kriterium-fuer-fashion-onlineshops
https://de.statista.com/prognosen/784769/umfrage-zu-nutzerfreundlichkeit-im-internet-als-kriterium-fuer-fashion-onlineshops
http://doi.acm.org/10.1145/2499370.2462174
http://doi.acm.org/10.1145/2499370.2462174

Bibliography

[128] B. Venners, G. Berger, and C. C. Seng. ScalaTest. URL https://www.scalatest.org/getting_

started_with_fun_suite. Accessed: 11.12.2021.

[129] Vicon. Motion Tracking Devices. URL https://www.vicon.com/. Accessed: 11.12.2021.

[130] J. Warren. A hierarchical basis for reordering transformations. In Proceedings of the

11th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages

272–282, 1984.

[131] R. Wiki. Documentation-ros wiki. URL: http://www. ros. org, 2021.

[132] J. Winkels. Automatisierte Komposition und Konfiguration von Workflows zur Planung

mittels kombinatorischer Logik. 2019.

[133] J. Winkels, J. Graefenstein, T. Schäfer, D. Scholz, J. Rehof, and M. Henke. Automatic

composition of rough solution possibilities in the target planning of factory planning

projects by means of combinatory logic. In International Symposium on Leveraging

Applications of Formal Methods, pages 487–503. Springer, 2018.

133

https://www.scalatest.org/getting_started_with_fun_suite
https://www.scalatest.org/getting_started_with_fun_suite
https://www.vicon.com/

	Abstract (English/Deutsch)
	List of figures
	Introduction
	Related Work
	Publications
	User Support for the Combinator Logic Synthesizer Framework
	CLS-SMT: Bringing Together Combinatory Logic Synthesis and Satisfiability Modulo Theories
	Experience Report: Towards Moving Things with Types – Helping Logistics Domain Experts to Control Cyber-Physical Systems with Type-Based Synthesis
	Clean Code and Static Code Analysis

	Overview

	Theoretical Background
	Combinatory Logic Synthesis
	Finite Combinatory Logic with Intersection Types
	Tree Grammars
	Translation of Tree Grammars
	(CL)S Scala Framework
	Substitution Space
	Repository
	Inhabitation Request
	Subtype Environment

	Visualisation of Tree Grammars
	Directed Compound Graphs
	Hypergraphs
	Comparison

	Satisfiability Modulo Theories
	Satisfiability-Modulo-Theory Library
	SMT Solver

	Filtering of Terms
	Filtering Based on Satisfiability Modulo Theories
	Filtering Approach
	SMT Script Generation
	Limitations

	Filtering with Recursion Based on Tree Grammar Modification
	Filtering Approach

	Filtering without Recursion Based on Tree Grammar Modification
	Filtering Approach
	Application of the Filtering Approach
	Limitations

	Parser
	Translation of Inhabitation Requests
	Translation of Filtering Patterns

	Integrated Development Environment for (CL)S Framework
	Architecture Overview
	Technical Implementation
	Tree Grammar Visualisation
	Web-Based Realisation
	Definition of the Debugger Controller

	IDE Perspectives
	Application Cases
	Result Overview
	Solutions Overview
	Debugger Overview
	Reports
	Repository
	Taxonomy Overview
	Filtering
	Covering

	Critical Review

	Evaluation
	Filtering Performance
	IDE Tests

	Applications and Impact
	Automatic Composition of Factory Planning Projects
	Planning of Machining Operations for Components using CAM
	Synthesising of Cyber Physical Systems
	Motion Planning in Logistic Lab Environment

	Conclusion and Outlook

