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Very fast finite element Poisson solvers on
lower precision accelerator hardware:
A proof of concept study for Nvidia
Tesla V100
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Abstract
Recently, accelerator hardware in the form of graphics cards including Tensor Cores, specialized for AI, has significantly
gained importance in the domain of high-performance computing. For example, NVIDIA’s Tesla V100 promises a
computing power of up to 125 TFLOP/s achieved by Tensor Cores, but only if half precision floating point format is used.
We describe the difficulties and discrepancy between theoretical and actual computing power if one seeks to use such
hardware for numerical simulations, that is, solving partial differential equations with a matrix-based finite element method,
with numerical examples. If certain requirements, namely low condition numbers and many dense matrix operations, are
met, the indicated high performance can be reached without an excessive loss of accuracy. A new method to solve linear
systems arising from Poisson’s equation in 2D that meets these requirements, based on “prehandling” by means of hier-
archical finite elements and an additional Schur complement approach, is presented and analyzed. We provide numerical
results illustrating the computational performance of this method and compare it to a commonly used (geometric)
multigrid solver on standard hardware. It turns out that we can exploit nearly the full computational power of Tensor
Cores and achieve a significant speed-up compared to the standard methodology without losing accuracy.
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1. Motivation and related work

Accelerator hardware, in particular current GPUs equipped
with Tensor Cores tailored for AI applications, is an in-
creasingly important component of state-of-the-art com-
puter systems, which is used to boost their computing
power. For instance, the NVIDIA Tesla V100 Tensor Core
GPU, which we consider in this work, reaches up to 7.8
TFLOP/s in double precision and 125 TFLOP/s in half
precision due to the usability of Tensor Cores according to
the manufacturer specifications (NVIDIA, 2020). Of course,
it is desirable to apply the V100 or similar GPUs in the
context of numerical simulation, or more precisely, to solve
linear systems resulting from the discretization of partial
differential equations (PDEs), for example, via finite ele-
ment methods (FEM), that are associated with continuum

mechanics. But when trying to do so, one encounters the
problems explained in more detail in the following two
sections, namely the risk of a deteriorating error if low
precision is used in conjunction with high condition
numbers, and the presence of sparse matrices, for which
Tensor Cores cannot be fully utilized. Consequently, the
question arises whether it is possible to implement basic
components of finite element simulations on modern
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accelerator hardware while measurably exploiting its high
computing power.

Recent work using other methods also addresses this issue.
For instance, Oo and Vogel (2020) investigate how profitably
the V100 can be used in the context of a mixed-precision
approach for Poisson’s equation, that is, an iterative refinement
algorithm with a low-precision multigrid preconditioning
involving large, sparse matrices and observe a speed-up by a
factor of 2.5 when solving the linear system. Since the op-
erationswith sparsematrices arememory-bounded, the peak
rates of the V100 are not approached. Another recent
paper on this subject is a comprehensive survey, that
summarizes some of the latest results on mixed-precision
numerical (dense and sparse) linear algebra routines
(Abdelfattah et al., 2021). Moreover, a mixed-precision
iterative refinement solver for dense matrices with a
bounded condition number, that employs an LU factor-
ization in low precision, by Haidar et al. (2020) should be
mentioned. The algorithm is accelerated by a factor of

four to five compared to the completely double-precision
method when running on a Tensor Core GPU. For the case
of sparse matrices, there are fewer practical results
concerning the use of Tensor Cores, which is not sur-
prising given their special suitability for dense linear
algebra. Instead, the focus is on format decoupling and
compression and their application to preconditioners for
iterative solvers and multigrid methods.

An alternative approach is matrix-free methods. In the
article by Kronbichler and Ljungkvist (2019), for example,
a matrix-free multigrid algorithm to solve Poisson’s
equation on NVIDIA’s Pascal P100 GPU is examined and
compared with a CPU implementation, resulting in a
speedup by a factor of 1.5–2. The advantages of using single
precision are highlighted, but this methodology also likely
offers little potential for use with Tensor Core GPUs, if
using half precision is even a consideration for reasons
concerning the conditioning.

The objective of this proof-of-concept study is to de-
velop hardware-oriented algorithms for solving Poisson’s
equation in 2D, which is oftentimes a bottleneck in nu-
merical simulations, on current GPUs and to demonstrate
that computations can be accelerated by orders of magni-
tude in comparison to standard methods on standard
hardware given by a geometric multigrid method on mul-
ticore CPUs while preserving the required accuracy.

2. An example of modern
accelerator hardware

We take a closer look at the two sets of hardware compared
in this study. On the one hand, the aforementioned NVIDIA
Tesla V100 SXM2 as an example of current GPUs offers 7.8
TFLOP/s in double (DP), 15.7 TFLOP/s in single (SP), 31.3
TFLOP/s in half precision (HP), and 125 TFLOP/s in half
precision in conjunction with Tensor Cores. The memory
bandwidth is 900 GB/s (NVIDIA, 2020). On the other hand,
we consider an x64 architecture in the form of the AMD
EPYC 7542 CPU with the following specifications: 32
cores per CPU, 128 MB L3-Cache, 1.5 TFLOP/s in double,
3 TFLOP/s in single precision (half precision is not sup-
ported) and a memory bandwidth of 205 GB/s (AMD, 2021)
representing modern standard computers used in computer
centers, for example.

It should be noted that the stated computer performance
rates are peak rates. They can be achieved when tasks with
very high arithmetic intensity including dense linear algebra
(BLAS3 operations) such as direct solvers for linear systems
of equations (with typically cubic complexity) are executed.
However, finite element discretizations result in very sparse
stiffness matrices and thus standard iterative solvers, for
example, Krylov (multigrid) methods, particularly require
sparse matrix-vector multiplications. Therefore, the compu-
tational performance is bounded by the memory bandwidth.

Figure 1. GFLOP/s for sparse matrix-vector multiplication (one
RHS) and sparse matrix-matrix multiplication (many RHS)
depending on h�1 in DP and SP (left and right three columns,
respectively) on the AMD CPU.

Figure 2. GFLOP/s for sparse matrix-vector multiplication (one
RHS) and sparse matrix-matrix multiplication (many RHS)
depending on h�1 in DP and SP (left and right three columns,
respectively) on the V100 GPU.
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As a test model, we consider Poisson’s equation� Δu = f
in 2D on the unit square V ¼ ½0; 1�2 discretized by bilinear
(Q1) finite elements on an equidistant mesh of grid width h.
The corresponding stiffness matrix is stored in compressed
sparse row (CSR) format (Saad, 2003). In the further course
of this study, we also cover the subject of general triangular
(P1) meshes. Both above hardware configurations were
used to compute sparse matrix-vector and matrix-matrix
products, whereby the second can be understood as a
component when solving the linear system with respect to a
number of different right-hand sides (RHS). The resulting
GFLOP/s rates are depicted in Figures 1 and 2. It becomes
obvious that the actual performance is far below the peak
rates. For h = 1/1024 (which corresponds to approx. 1
million unknowns), the V100 GPU is only four to six times
faster than the AMD CPU.

We also remark that our results for optimized matrix-free,
more specifically stencil-based, operations on the V100 in
the context of a geometric multigrid algorithm show a
speedup factor of about 5–10 compared to a CSR approach.
Thus, the order of one TFLOP/s is achievable, but this is still
far below the peak rate (Poelstra, 2019).

If, instead, one performs calculations with dense matrices,
that is, dense matrix-vector and matrix-matrix multiplications,
a strong increase in achievable computing power can be
observed, as the results shown in Figures 3 and 4 indicate. Note
that half precision is not supported on the x64 architecture. The
exceptionally high rates in half precision on the Tensor Cores
of the V100 demonstrate their performance potential.

In a nutshell, in this section we have demonstrated the
large gap between peak performance on the one hand and
actual performance in the setting of finite element appli-
cations, that are usually based on sparse matrix-vector
operations in double precision, on the other hand. In ad-
dition, it has become evident that there is a high potential
with regard to numerical simulations of corresponding
PDEs in continuum mechanics if low precision, and thus
Tensor Cores, as well as dense matrix operations, can be
used. To exploit this potential, it is necessary to ensure that
the use of low precision does not lead to a significant overall
loss of accuracy and to develop solution methods that in-
clude dense matrix-vector or matrix-matrix applications.

In the following sections, we pursue both requirements
and introduce possible solutions. The next section treats the
concept of prehandling (Ruda, 2020; Ruda et al., 2021) for
Poisson’s equation, which is an essential component in
many numerical simulations. It enables the use of lower
precision when solving the linear system with respect to the
stiffness matrix while preserving results comparable to
those achieved in double precision in terms of accuracy. It

Figure 3. GFLOP/s for dense matrix-vector multiplication
(GEMV) depending on h�1 in DP and SP (first and second set of
columns from left, respectively) one the AMD CPU and the V100
GPU.

Figure 4. GFLOP/s for dense matrix-matrix multiplication (GEMM) depending on h�1 in DP and SP (first and second set of columns
from left, respectively) on the AMD CPU and the V100 GPU and in the case of the V100 in HP without and with Tensor Cores (third
and fourth set of columns from left, respectively).

Ruda et al. 461



can be realized via hierarchical finite elements (Yserentant,
1986) and this approach is then extended to a Schur
complement like solution method including multiplications
with dense (part) matrices so that Tensor Cores can be fully
used. Finally, we provide first numerical results for this
particular solver serving as a proof-of-concept that GPUs
with Tensor Cores can in fact be appropriately used by
means of adjusted hardware-oriented techniques.

3. Prehandling as a concept for stiffness
matrices in lower precision

The primary objective of prehandling is to reduce the
condition number of the stiffness matrix Ah corresponding
to elliptic PDEs, Poisson’s equation in this case. The ne-
cessity will become clear if the following subdivision of the
error obtained by a finite element discretization (with mesh
width h) given by the difference between the exact solution
u and the actual numerical solution ~uh is considered

u� ~uh ¼ ðu� uhÞ þ
�
uh � ~uh

�
(1)

with the exact solution to the discrete problem uh. It shows that
the overall error consists of the discretization error u � uh
satisfying

��u� uh
��
L2
¼ Oðh2Þ if (bi)linear shape functions

are chosen and the computational error uh � ~uh caused by
roundoff that is characterized by

��uh � ~uh
�� ≈TOL � κðAhÞ,

whereby the machine accuracy TOL (9.8 � 10�4 in half,
1.2 � 10�7 in single and 2.2 � 10�16 in double precision) is a
lower bound for the data error and the spectral condition
number of the stiffness matrix is given by κðAhÞ ¼ Oðh�2Þ in
the case of Poisson’s equation.

The opposite trends of both error types cause that the
mesh width h may not be chosen too small in order to

prevent the computational error from becoming dominant.
This happens if the mesh width undercuts a certain critical
value. In the above example, the intersection of dis-
cretization and computational error is at h ≈

ffiffiffiffiffiffiffiffiffiffi
TOL4

p
, so that

the critical grid width is asymptotically given byOð ffiffiffiffiffiffiffiffiffiffi
TOL4

p Þ.
We show an illustrative and a practical example of this
phenomenon in Figures 5 and 6. Yet, only if PDEs are to be
solved on a fine mesh resulting in large linear systems, the
use of high-performance computers with accelerator
hardware is necessary and reasonable.

It is desirable to reduce the condition number of the
stiffness matrix to widen the range of appropriate grid widths
and even allow for the use of lower precision. This can be
achieved by explicitly transforming the original linear system
Ahxh = bh into an equivalent form ~Ah~xh ¼ ~bh, xh ¼ B~xh, the
method of prehandling, whereby we require the properties:

1. Strong decrease of the condition number,
κð~AhÞ � κðAhÞ.

2. The matrix ~Ah is only moderately less sparse than Ah.
3. The transformation can be realized efficiently (for

instance, inOðN logNÞ operations for N unknowns).

Provided that exact arithmetic is used, solvers in their
(implicitly) preconditioned variants would yield the same
results as the (explicitly) prehandled forms, but it turns out that
the results can differ significantly in finite precision, in par-
ticular in case of ill-conditioned stiffness matrices.Well known
preconditioners (matrix splittingmethods, ILU, SPAI, etc.) that
are directly applied to the stiffness matrix are not appropriate
options for prehandling since they violate the requirements 1
and 2. The hierarchical finite element method (HFEM) meets
the demands for Poisson’s equation, at least in 1D and 2D.
Below we outline the basic idea, remarkable properties, and
practical aspects of this method.

Figure 5. Illustrative course of total, computational, and
discretization error in SP in the case of Poisson’s equation with
bilinear finite elements.

Figure 6. Actual L2-error for single, double, and quad precision
with standard finite elements in 1D depending on the refinement
level (h = 2�level, so level 10 corresponds to h = 1/1024).
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It was established and analyzed by H. Yserentant et al. in
the 1980s, for example, in (Yserentant, 1986). The pre-
requisite is an initial triangulation (level 0) consisting of
triangular or quadrilateral elements that is successively
refined yielding a nested sequence of finite element spaces.
Here we restrict ourselves to (bi)linear Q1 or P1 finite el-
ement discretizations. Instead of a nodal basis, we use a
hierarchical basis, which comprises shape functions on each
level as shown in Figure 7 in the one-dimensional case. It is
straightforward to generalize this idea to higher dimensions.
We focus on the two-dimensional case.

It seems that the assembly of the stiffness matrix and the
right-hand side with respect to a hierarchical basis is more
complex due to the greater support of the basis functions on
lower levels, but it is in fact not necessary to compute them:
If the stiffness matrix and right-hand side with respect to a
nodal basis are known, we can obtain the respective

structures with respect to a hierarchical basis by means of a
transformation via the matrix S = SjSj�1…S1. Each factor Sk
in this product corresponds to one step of refinement and
can be understood as a typical prolongation from level k� 1
to k as known from geometric multigrid methods. In other
words, multiplying a coefficient vector with the matrix Sk
yields the values of the basis functions on the (k-1)st level at
the nodes of the kth level. Hence, the matrices Sk are identity
matrices with additional entries in the rows whose indices
correlate with the newly added nodes of level k. In practice,
assuming P1 finite elements and uniform refinement of the
initial grid (i.e., subdividing each triangle into four con-
gruent triangles), every added level-k-node with index i is
adjacent to two level-(k � 1)-nodes, n1(i) and n2(i), so that
we have

Sk
�
i,njðiÞ

� ¼ 1

2
, j ¼ 1; 2 (2)

In the case of Q1 finite elements, uniform refinement
leads to four edge midpoints with two adjacent nodes on the
coarser grid, respectively, and one element midpoint with
four adjacent nodes. As a result, the manipulation of the
rows of Sk must be adapted as follows

Sk
�
i,njðiÞ

� ¼
8>><
>>:

1

2
, j ¼ 1; 2, if xi is edgemidpoint

1

4
, j ¼ 1,…,4, if xi is elementmidpoint

(3)

The arising matrix S is consequently a sparse block unit
lower-triangular matrix and the transformed linear system of
equations is given as ~Ah~xh ¼ ~bh, where

~Ah ¼ STAhS, ~bh ¼ STbh (4)

and the solution with respect to the nodal basis is regained
via xh ¼ S~xh.

For better results in terms of condition numbers,
Yserentant (1986) and Deuflhard et al. (1989) suggest an
additional Cholesky decomposition on the initial grid,
which can also be directly applied to the stiffness matrix. Let
~A
0
h be the part of the stiffness matrix with respect to a hi-

erarchical basis that corresponds to the nodes on level 0. If
the nodes are numbered level-wise, this is the top left block
of ~Ah. If the remaining part of the matrix is denoted by
~A
1,…,j
h , we compute the Cholesky decomposition0

BB@
~A
0

h 0

0 diag

 
~A
1,…,j

h

!
1
CCA ¼ LLT (5)

Figure 7. Left: nodal bases; right: hierarchical bases (only newly
added basis functions on the respective meshes) in 1D. Source:
Deuflhard et al. (1989).

Figure 8. L2-errors depending on the refinement level without
(dotted graph) and with prehandling via hierarchical finite
elements (dashed graph) in HP, respectively, in comparison to the
error of the reference solution obtained in DP (solid graph), which
is independent of prehandling in this range of levels. A strongly
oscillating exact solution to the continuous 2D Poisson problem
was chosen. Again, h = 2�level. Note that the error deviates at level
5 without prehandling and at level 8 or 9 with prehandling.
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and apply further prehandling in accordance with L�1~AhL�T

and L�1~bh. The back-transformation of the solution vector is
realized via multiplication with SL�T.

For both variants, with and without a partial Cholesky
decomposition, the remarkable property is that the condition
number of the transformed stiffness matrix is asymptotically
characterized by Oððlog1=hÞ2Þ in 2D, as shown by
Yserentant (1986), in contrast to Oðð1=hÞ2Þ in the case of
standard finite elements without prehandling. However, in the
3D case the condition number of the matrix with respect to a
hierarchical Basis is Oð1=hÞ (Ong, 1997). Due to the sparse
structure of S, the transformation is not expensive and the
resulting transformed stiffness matrix is still sparse, even if
we apply a partial Cholesky decomposition since the number
of nodes in the coarse grid is very small in comparison the
final number of nodes. The advantage of this additional
prehandling is a further significant decrease of the condition
number without an excessive loss of sparsity. For detailed
numerical results, see (Ruda, 2020; Ruda et al., 2021).

We conducted numerical tests that show that solutions
obtained in lower (single or half) precision are considerably
more accurate for fine meshes if we use the method of
prehandling. An example can be seen in Figure 8. It clarifies
that prehandling allows for (in this case) four to five further
steps of uniform refinement in half precision without an
exceeding loss of accuracy compared to standard finite
element methods in double precision. Thus, the use of low

precision becomes feasible, at least when solving Poisson’s
equation in 2D on hierarchically refined meshes and if a
relative accuracy of approximately 1% is acceptable,
whereby the latter is a realistic demand in complex technical
simulations.

4. Direct solvers based on the
HFEM approach

4.1. Derivation of the methods

Let us first take a closer look at the particular structure of
hierarchically refined meshes and the consequent structure
of stiffness matrices that arise from prehandling via the
HFEM approach. Then we derive new solvers tailored for
GPUs in low precision. As before, we investigate the case of
Poisson’s equation in 2D, discretized with P1 or Q1 finite
elements. From now on, for simplicity, we omit the
subscript h and assume that A2R

N×N and b2R
N denote the

stiffness matrix and the right-hand side that result from
prehandling with the partial Cholesky decomposition. So
according to the previous section, we have
A ¼ L�1STAhSL�T , b ¼ L�1STbh and get the solution to the
initial linear system (i.e., with respect to a nodal basis) by
computing xh ¼ SL�Tx if x satisfies Ax = b.

A subdivision of the nodes of the hierarchical mesh and
numbering the nodes accordingly yields a special structure
of the stiffness matrix that can be exploited to solve the
linear system efficiently.We only consider the interior nodes
of the discrete domain since nodes on the (Dirichlet)
boundary are treated separately. A distinction is made be-
tween the following three sets of node indices:

· C stores the indices of nodes that belong to the coarse
grid,

· E denotes the set of indices of fine-grid nodes lying on
the edges of the coarse grid (excluding the coarse grid
nodes), and

· I contains the indices of the remaining nodes located
in the interior of the cells of the coarse grid (also
referred to as macro elements).

Consequently, C[E[I is a disjoint union including all
indices of the interior nodes of the discrete domain. An il-
lustrative example of this subdivision of the nodes on the unit
square can be seen in Figure 9. For our approach, it is further
essential to number the nodes in I in a certain manner,
namely macro element by macro element and in the same
order in a geometrical sense for all groups of similar macro
elements. This approach results in the matrix AII (the part of
A with rows and columns restricted to the indices of I )
consisting of separate blocks (as many as there are macro
elements). The blocks corresponding to similar macro elements
are identical. It follows from the prehandling via the complete

Figure 9. Illustration of the three types of nodes on a uniformly
refined coarse grid (bold lines) for the unit square with h0 = 1/4
and h = 1/16 and Q1 finite elements.
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Cholesky decomposition on the coarse grid that ACC ¼ I
where I denotes the identity matrix of corresponding size.
Furthermore, in the case of arbitrary triangular (P1) and
orthogonal quadrilateral (Q1) initial meshes, there is no
coupling between the coarse grid nodes and the nodes in
the interior of the macro cells because the corresponding
entries in the stiffness matrix cancel out when the hier-
archical basis representation is employed. Hence, ACI ¼
AT
IC ¼ 0 under the stated conditions. The remaining

blocks AEE and AEI (and its transpose AIE) are sparse
matrices, whereas ACE and AEC ¼ AT

CE are full with a
density of up to 50% because these are the only blocks
that are affected by the multiplication with the dense,
non-diagonal part of L�1 and L�T in terms of fill-in. See
Figure 10 for an exemplary presentation of the sparsity
pattern that results from the above node numbering in the
order C, E, I .

It is worth noting that, when a given coarse grid with
width h0 is uniformly refined, the number of interior nodes
jI j grows as h�2. The total number of unknowns N grows
quadratically as well. However, the increase in jEj is pro-
portional to h�1 (or

ffiffiffiffi
N

p
), while jCj is constant during re-

finement. In the simple test case of the unit square
discretized with Q1 elements on a uniform mesh, we have

jCj ¼
�
1

h0
� 1

�2

(6)

jEj ¼ 2

�
1

h0
� 1

��
1

h
� 1

h0

�
(7)

jI j ¼
�
1

h
� 1

h0

�2

(8)

and AII decomposes into h�2
0 indistinguishable, indepen-

dent blocks with ðh0=h� 1Þ2 rows/columns each.
Using the notation ACE ¼ B, AEE ¼ E, AEI ¼ D and

AII ¼ C for better readability, the linear system of equa-
tions can be written as0

BB@
I B 0
BT E D
0 DT C

1
CCA
0
BB@

xC
xE
xI

1
CCA ¼

0
BB@

bC
bE
bI

1
CCA (9)

or in the equivalent form

xC þ BxE ¼ bC (10)

BTxC þ ExE þ DxI ¼ bε (11)

DTxE þ CxI ¼ bI (12)

These three subsystems can be rearranged and
substituted into each other in several ways, similarly to a
Schur complement method for 3 × 3 block matrices. The
three resulting different (semi-)direct methods for solving
the above system have the potential to exploit the
computing power of GPUs in lower precision since dense
and well-conditioned matrices and corresponding matrix-
vector and matrix-matrix multiplications are involved. As
a collective term, we also refer to the methods as PSC
methods (Prehandling Schur Complement). They are
derived as follows.

4.1.1. (M1) Direct Method 1. For the derivation of the first
method, we substitute the suitably rearranged equations (10)
and (12) into equation (11). For a better overview, Schur
complements are denoted by Greek capital letters. Let Λ be

the Schur complement of C in

 
E D
DT C

!
, that is

Λ ¼ E � DC�1DT (13)

and let Π be the Schur complement of I in the matrix 
I B
BT Λ

!
, that is

Π ¼ Λ� BTB (14)

Using block elimination and the above definitions, we
obtain the solution

xE ¼ Π�1
�
bE � BTbC � DC�1bI

�
(15)

xC ¼ bC � BxE (16)

xI ¼ C�1
�
bI � DTxE

�
(17)

Figure 10. Sparsity pattern of the prehandled stiffness matrix
corresponding to the mesh in Figure 9 for the special node
numbering.
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4.1.2. (M2) Direct Method 2. Another approach is
substituting equations (11) and (12) into equation (10) of
the block system. In this case one needs the Schur

complement of Λ, instead of I, in

 
I B
BT Λ

!
denoted by

Θ and given as

Θ ¼ I � BΛ�1BT (18)

After rearranging, the procedure of solving the linear
system of equations reads as

xC ¼ Θ�1
�
bC þ BΛ�1

�
DC�1bI � bE

�	
(19)

xE ¼ Λ�1
�
bE � BTxC � DC�1bI

�
(20)

xI ¼ C�1
�
bI � DTxE

�
(21)

4.1.3. (M3) Semi-direct Method. The third method is semi-
direct. The sets of indices C and E are united and we
consider the Schur complement Σ of C in the entire matrix A

Σ ¼
 

I B
BT E

!
�
 

0
D

!
C�1

�
0 DT

� ¼  I B
BT Λ

!

(22)

and solve for the components 
I B
BT Λ

! 
xC
xE

!
¼
 

bC
bE � DC�1bI

!
(23)

xI ¼ C�1
�
bI � DTxE

�
(24)

The first step (23) can be implemented using an iterative
algorithm as the conjugate gradient method (Saad 2003).

Each occurring product of the matrix Σ with a vector can be
subdivided into the almost dense components, that is,
multiplication with B and BT, that can be profitably com-
puted on a GPU, and the sparse matrix-vector multiplication
with Λ.

Note that within all three methods due to the block
structure of the matrix C, its inverse C�1 only needs to be
computed and saved once for each group of similar rect-
angles or triangles. In other words, if the coarse grid consists
of M groups of similar elements and group i consists of mi

similar elements for i 2 {1, …, M}, we have

C ¼ diag

0
B@C1,…,C1|fflfflfflfflffl{zfflfflfflfflffl}

m1

,C2,…,C2|fflfflfflfflffl{zfflfflfflfflffl}
m2

,…,CM ,…,CM|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
mM

1
CA (25)

and explicitly compute the inverses C�1
i for i = 1, …, M.

Each multiplication of C�1 by a vector v2R
jI j can be

reduced to dense matrix-matrix products by splitting it up
into M parts v ¼ ðv1,…,vM ÞT that correspond to the groups
of similar coarse elements. For i = 1, …, M the parts vi are
again subdivided into mi equally sized parts v1i ,…,vmi

i that
are reshaped into a matrix Vi ¼ ðv1i ,…,vmi

i Þwithmi columns.
The product C�1v is thus given by the partial products
C�1
i Vi for i = 1, …, M converted into a vector.
The same principle can be applied if a matrix is multi-

plied by C�1, which is important if the initial linear system
is solved for multiple, Nrhs > 1, right-hand sides simulta-
neously leading to AX = B where X ,B2R

N×Nrhs are matrices
of the solution vectors and right-hand sides, respectively.
The involved linear systems with respect to C, Π, Θ, and Λ
can be solved with methods other than multiplication by
inverses, but if Nrhs � 1, it is worthwhile to compute the
inverses of these moderately large matrices and exploit the
additional potential of Tensor Cores. An example of

Table 1. Cardinality of index sets for nodes of different types, spectral condition numbers of the matrices Ci and Π and number of
nonzero entries in their inverses relative to NNZFEM (nonzeros in standard FEM stiffness matrix) for different fine (h) and coarse mesh
sizes (h0) on the unit square discretized with Q1 finite elements. The total number of interior nodes N is listed in parentheses.

h (N) h0 jCj jEj jI j κ(Ci) κ(Π) NNZðC�1
i Þ=NNZFEM NNZðΠ�1Þ=NNZFEM

1=256 (65,025) 1=4 9 1,512 63,504 23.9 24.1 27.06 3.93
1=8 49 3,472 61,504 16.9 19.5 1.59 20.71
1=16 225 7,200 57,600 11.1 14.5 0.09 89.05
1=32 961 13,888 50,176 6.6 10.1 0.004 331.31

1=512 (261,121) 1=4 9 3,048 258,064 32.2 30.7 110.99 3.96
1=8 49 7,056 254,016 23.9 25.5 6.72 21.24
1=16 225 14,880 246,016 16.9 19.8 0.39 94.46
1=32 961 29,760 230,400 11.1 14.6 0.02 377.85

1=1024 (1,046,529) 1=4 9 6120 1,040,400 41.8 37.9 449.50 3.98
1=8 49 14,224 1,032,256 32.2 32.3 27.66 21.51
1=16 225 30,240 1,016,064 23.9 25.9 1.67 97.22
1=32 961 61,504 984,064 16.9 19.9 0.10 402.14
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application of multiple right-hand sides is given at the end of
Section 5.

When comparing the direct methods (M1) and (M2) it is
evident, that (M2) is more computationally demanding
because, in contrast to (M1), it does not just involve the
assembly of the matrix Λ but also its inversion. The semi-
direct method (M3) has the advantage that besides C�1 no
other storage consuming dense jEj× jEj -matrices such as
Π�1 in (M1) orΛ�1 in (M2) need to be computed and saved.
In this work, we cover the direct method (M1) while (M3) is
subject of forthcoming studies.

4.2. Properties of the matrices

Let us now further investigate the properties of the auxiliary
matrices that are needed for (M1). Table 1 shows the car-
dinality of index sets for nodes of different types, condition
numbers of the matrices Ci and Π and the number of
nonzero entries (NNZ) in their inverses relative to the
number of nonzeros NNZFEM in a standard finite element
stiffness matrix depending on fine and coarse grid widths for
the simple test case of the uniformly refined 2D unit square.
If finite elements (Q1) without prehandling are used,
one obtains ill-conditioned stiffness matrices for Poisson’s
equation with a spectral condition number in the order of

2 � 105 for the mesh size h = 1/1024. In this respect, the
condition numbers of Ci and Π are remarkably low. This is
primarily achieved by prehandling via hierarchical bases
and Cholesky decomposition and enhanced by extracting a
partial block matrix or computing the Schur complement for
Ci and Π, respectively. As an example, if we have h = 1/256
and h0 = 1/16 on the unit square discretized with Q1 finite
elements, the condition number of the stiffness matrix
without any prehandling is 13,280, transforming it with
respect to a hierarchical basis yields a condition number of
100, which decreases to 22 if also the partial Cholesky
decomposition is applied for prehandling. Such low con-
dition numbers enable the use of single and even half
precision when solving the linear system while preserving
sufficient accuracy. By using (M1), rather than basic pre-
handling without Schur complements, one can achieve even
higher accuracy if the matrices Π and C�1

i are assembled in
double precision and then converted into half precision for
the solution purposes.

Obviously, the (M1) algorithm requires more storage than
many standard approaches, especially because the dense in-
versematricesC�1

i andΠ�1 need to be saved. To get an idea of
their sizes we indicate the number of nonzero entries (equaling
the total number of entries since the matrices are dense)
divided by the number of nonzeros of the sparse standard
finite element stiffness matrix for the associated fine
grid. This matrix has at most nine nonzero entries per
row due to the nine-point stencil of Q1 finite elements.
When the coarse grid is refined while keeping h con-
stant, the size of the single blocks Ci of C and thus of C�1

i
decreases because there are more macro cells containing
less interior nodes. At the same time the number of
nodes on the edges of the coarse grid jEj increases and as
a result the matrix Π and its inverse grow in size. The
next subsection addresses the question of which coarse
mesh width should be chosen to obtain a good com-
promise in terms of storage and computational costs.

4.3. Estimation of complexity and
storage requirement

To determine an estimation of complexity and storage re-
quirement, we first stick with the case of the unit square and
Q1 finite elements and introduce the auxiliary variablelthat
specifies by how many refinement levels the coarse grid
width h0 differs from

ffiffiffi
h

p
, that is, h0 ¼ 2l

ffiffiffi
h

p
(l=…, �1, 0,

1, 2, …) if h is an even power of two. We only consider the
relevant components of (M1), storing and applying the
matrices Π�1 and C�1

i , whereas applying BT , that is only of
size jEj× jCj, and D, that is sparse, as well as vector ad-
ditions are negligible.

We first estimate the storage cost for the dense matrix
Π�1 2R

jEj×jEj with respect tol and the total number of

Table 2. Total NNZ in multiples of N of the matrices Π�1 and
C�1
i for Q1 and P1 finite elements on the unit square depending on

the coarse grid width h0 ¼ 2l
ffiffiffi
h

p
for h = 1/1024 (N = 1, 046, 529)

and h = 1/256 (N = 65, 025).

Q1 P1

l h ¼ 1=256 h ¼ 1=1024 h ¼ 1=256 h ¼ 1=1024

�1 4,080 16,368 9,180 36,828
0 1,021 4,093 2,295 9,207
1 271 1,039 578 2,306
2 320 512 207 639
3 4,112 4,160 1,060 1,168

Table 3. Number of FLOP in multiples of N
3
2 for matrix-vector

multiplication with Π�1, C�1 (twice) and in total for Q1 and P1
finite elements on the unit square depending on the coarse grid
width h0 ¼ 2l

ffiffiffi
h

p
.

Q1 P1

l Π�1 C�1 Total Π�1 C�1 Total

�1 32.0 1.0 33.0 72.0 0.5 72.5
0 8.0 4.0 12.0 18.0 2.0 20.0
1 2.0 16.0 18.0 4.5 8.0 12.5
2 0.5 64.0 64.5 1.1 32.0 33.1
3 0.1 256.0 256.1 0.3 128.0 128.3
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unknowns N. From the expression (7) for the number of
nodes in the set E follows

jEj ≈ 2 1

2l
ffiffiffi
h

p 1

h
¼ 2

2l
h�

3
2 ≈

2

2l
N

3
4 (26)

where we use the relation N ¼ ðh�1 � 1Þ2 ≈ h�2 in the last
step. Since it is a square matrix, the total number of
(nonzero) entries is given by

NNZ
�
Π�1

� ¼ jEj2 ≈ 4

4l
N 3=2 (27)

Consequently, a matrix-vector multiplication with Π�1 costs
approximately 8=4lN3=2 arithmetic operations (FLOP).

To obtain analogous results for C�1
i we again estimate

the number of rows/columns. In the case at hand all macro
cells are congruent squares so that all blocks of C and C�1

are identical and there is only one partial matrix C�1
i to be

computed and stored. The nodes in the set I , whose car-
dinality is given in equation (8), are divided into h�2

0 parts so
that the number of rows of C�1

i is

h20jI j ≈ 4lh
1

h2
¼ 4lh�1 ≈ 4lN 1=2 (28)

and thus

NNZ
�
C�1

i

�
≈ 16lN (29)

As a result, a matrix-vector multiplication with C�1
i costs

2 � 16lN FLOP. To compute a product with the entire matrix
C�1 we need h�2

0 (that can also be written as 1=4lh�1 or
approx. 1=4lN 1=2) of these partial products which leads to a
FLOP number of

1

4l
N 1=2 � 2 � 16lN ¼ 2 � 4lN 3=2 (30)

Note that the solution process of (M1) includes two
applications of C�1.

To summarize, the total storage requirement of the rel-
evant matrices of (M1) is

NNZ
�
Π�1

�þ NNZ
�
C�1

i

�
≈
4

4l
N 3=2 þ 16lN (31)

and the computational costs for the relevant steps are�
8
4lþ 4 � 4l

�
N 3=2 FLOP.

If the unit square is instead discretized with isosceles right
triangles (with legs of length h) and linear (P1) finite elements
are used, similar results can be derived. The basic difference
to the Q1 case is that for the same values of h and h0 there are
twice as many macro cells, fewer nodes in the interior and
more nodes on the edges of the macro cells, namely

jEj ¼
�
3

h0
� 2

��
1

h
� 1

h0

�
(32)

jI j ¼
�
1

h
� 2

h0

��
1

h
� 1

h0

�
(33)

while jCj ¼ ð1=h0 � 1Þ2 remains. On that basis, we can
conduct similar estimations as above and obtain

NNZ
�
Π�1

�þ NNZ
�
C�1

i

�
≈
9

4l
N 3=2 þ 16l

4
N (34)

as storage requirement. Moreover, the computational
costs of applying Π�1 and C�1

i to a vector are approx-
imately 18=4lN 3=2 FLOP and 4lN 3=2 FLOP, respectively,
so that in total ð18=4lþ 2 � 4lÞN3=2 FLOP are required.

In order to get an intuitive understanding of the results,
we show some important data concerning storage in

Figure 11. GFLOP/s for (M1) with one and many RHS depending on h�1 on the V100 GPU in DP, SP, and HP with Tensor Cores (left,
middle, and right three columns, respectively).
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Table 2 and computational cost in Table 3. We can see in
Table 2 that the least storage-intensive case isl= 2. The
least amount of total FLOP (approx. twelve multiples of
N3=2), however, is reached ifl= 0 (Q1) orl= 1 (P1) is
chosen as the results in Table 3 indicate. To conclude, it
might be profitable to invest more storage space to
minimize the complexity (by the choice h0 ¼

ffiffiffi
h

p
for Q1)

and thus accelerate the computation of the solution to the
linear system.

5. Numerical results and comparison to
standard FEM solvers on
standard hardware

We now perform a numerical study to evaluate the new
method (M1) in practice. In particular, we focus our

attention to the question of whether we can exploit the
computing power of the V100 and its Tensor Cores to
achieve an advantage over a standard method, in this case a
geometric finite element multigrid solver in double preci-
sion using the CSR format for matrices on the multicore
AMD EPYC 7542 CPU. The geometric multigrid solver
used in these benchmarks is a simple V-cycle multigrid
which performs four smoothing steps of a Richardson it-
eration damped by the factor 0.3 as both a pre- and post-
smoother on each multigrid level. The coarse mesh in the
multigrid hierarchy consists only of one element, so all
degrees of freedom on the coarse mesh are restrained by
the Dirichlet boundary conditions and therefore no
coarse grid solver is required. Because our benchmark
problems do not contain anisotropies or other difficul-
ties, this simple multigrid configuration turned out to be

Figure 12. MDof/s (million degrees of freedom solved per second) for (M1) with one and many RHS depending on h�1 on the V100
GPU in DP, SP, and HP with Tensor Cores (left, middle, and right three columns, respectively).

Figure 13. MDof/s with a standard method (standard finite elements and multigrid in DP) on the AMD CPU (x64) for one and many
RHS (left columns) and on the V100 for one RHS (right columns) depending on h�1.
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the most performant one in our tests as compared to
configurations with more sophisticated smoothers such
as ILU, SPAI or SOR, whose results we omit here be-
cause they are beyond the scope of this work. The as-
sociated software is the finite element software package
FEAT31 (Ruelmann et al., 2021). Both hardware con-
figurations are specified in the beginning of Section 2.
We present numerical results for the unit square dis-
cretized using a uniform mesh of Q1 finite elements for
the pairs of fine and coarse mesh sizes ðh,h0Þ 2 fð1=256,
1=16Þ,ð1=512,1=16Þ,ð1=1024,1=32Þg, the latter leading
to N ≈ 1 million unknowns.

Figures 11 and 12 show the results of the new approach
(M1) regarding GFLOP/s rates in Figure 11 and another
measure, that is necessary to make the different methods
comparable, that is, averaged number of million degrees of
freedom solved per second (MDofs/s), in Figure 12, in
double, single, and half precision and for one (Nrhs = 1) and

many (Nrhs � 1) right-hand sides, respectively. As ex-
pected, the case of solving Poisson’s equation on the same
mesh for many right-hand sides simultaneously yields the
highest performance. More precisely, we get an actual
performance of 62,829 GFLOP/s or approximately 60
TFLOP/s in our study of (M1) with h = 1/1024, Nrhs � 1
and in half precision on the V100 while (almost) no ac-
curacy is lost due to the well-conditioned matrices. Fur-
thermore, the outstanding performance depicted in
Figure 11, especially in half precision, clearly indicates that
the V100 is effectively used. According to the specification
of the V100, the speed-up from single to half precision
without Tensor Cores is a factor of 2 (with Tensor Cores 8).
However, in this example it is 4.5 times faster in half
precision due to Tensor Cores.

The observed GFLOP/s rates do not provide information
about the efficiency of (M1) and do not enable a comparison
to the standard method because we also need to take the
complexity into account. As described in the previous
section, we expect approximately 12N3=2 arithmetic op-
erations if (M1) is applied to solve a problem with N un-
knowns. This is not optimal considering the OðNÞ
complexity of multigrid methods. As a rule of thumb,
one needs approximately 1,000N FLOP to obtain a
sufficiently accurate result with a multigrid algorithm on
a structured mesh like the ones that we use in this study.
Hence, if we have N ≈ 1 million (h = 1/1024 representing
a large-scale system in 2D) we compare the factors 1,000
(multigrid) and 12N 3=2 ≈ 12; 000 (M1), that is, twelve
times more arithmetic operations for the direct method
(M1). Yet, the very effective use of the hardware per-
formance of the V100 by (M1) not only compensates for
this difference in complexity but also leads to a sig-
nificantly higher overall efficiency due to less computing
time (in MDof/s) as the results in Figures 13 and 14
show. If we consider the case of one right-hand side and
compare the results of (M1) on the V100 in half pre-
cision (right set of blue columns in Figure 12) with the
standard approach in double precision in Figure 13, we
see that (M1) is up to four times faster if the V100 is used
for the standard method and up to eight times if the AMD
CPU is used. In the case of many right-hand sides, the
multigrid algorithm on the AMD CPU solves for an
average of 8 MDof/s for the range of mesh sizes con-
sidered in this study (see columns for many RHS in
Figure 13). In Figure 13 we do not present results on the
multigrid method with many right-hand sides on the
V100 because the development of an optimized GPU
multigrid code for this case (realized in FEAT3, see
above) is still part of ongoing work. With (M1) on the
V100 in half precision with Tensor Cores (right set of
columns for many RHS in Figure 12) we observe a
further gain in efficiency. To be precise, we get the
following values of MDof/s: 12,906 (h = 1/256), 8,730

Figure 14. Comparison of MDof/s between standard method on
the AMD CPU (left columns) and the direct method (M1) in HP
with Tensor Cores on the V100 (right columns), both for many
RHS, depending on h�1.

Figure 15. Coarsest mesh (level L = 0) of a flow around a square
configuration on the domain
V ¼ ð0; 4Þ× ð0; 1Þn½5=4,7=4�× ½1=4,3=4� � R

2.

Figure 16. Mesh shown in Figure 15 after one step of uniform
refinement (level L = 1).
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(h = 1/512) and 5,113 (h = 1/1024). That is to say, by
using (M1) on the V100 we are 600 times faster
than we are with a multigrid method on the AMD CPU
if h = 1/1024 and Nrhs � 1 without losing accuracy.
Finally, Figure 14 shows the MDof/s values for a direct
comparison between (M1) in half precision on the V100
with Tensor Cores and a multigrid method in double
precision on the AMD CPU for many right-hand sides.

Regarding the scalability of the presented method, it can
be said that for slightly higher problem sizes the perfor-
mance might even further improve as the Tensor Cores can
be better utilized. However, there is a limitation due to the
high memory requirement of OðN 3=2Þ, which is why we are
currently working on the more memory-efficient semi-direct
method (M3).

5.1. Other meshes

So far, we have only covered the simple case of the
equidistantly refined unit square although the finite element
multigrid method we use for comparative purposes is de-
signed for arbitrary coarse grids, in particular partially
unstructured coarse grids that are refined hierarchically.
Nevertheless, the comparison of both methods is valid
because the new approach (M1) can also be applied to
partially unstructured and uniformly refined triangular
coarse grids. Figures 15 and 16 show a (typical) flow around
a square configuration as an example of a mesh we could
also analyze with regard to (M1) with linear finite elements
(P1) in the framework of this study.

Whereas in the previous case of the unit square all coarse
grid cells are similar, we have three different groups of
similar triangles (isosceles right triangles on the three unit
squares and isosceles obtuse and scalene triangles on the
unit square with the central hole) in this case (see Figures 15
and 16). Consequently, the matrix C and its inverse consist
of three different blocks and the matrices C�1

i need to be

computed and stored for i = 1, 2, 3. If L0 denotes the re-
finement level of the coarse grid, we have 28 � 4L0 macro
cells (and thus blocks of C) in total and, using the notation
from the end of Section 4.1, m1 ¼ 12 � 4L0 blocks corre-
sponding to the isosceles right andm2 ¼ m3 ¼ 8 � 4L0 blocks
corresponding to the isosceles obtuse and scalene macro
cells, respectively. It is described at the above-mentioned
place how multiplications with C �1 are realized efficiently.
The resulting amounts of nodes of the different types and
condition numbers as well as nonzero entries (relative to the
number of nonzeros in the corresponding standard finite
element stiffness matrix) of the matrices occurring in (M1)
are listed in Table 4. Since there are three different matrices
Ci, we consider the maximum condition number and the
summed up number of the nonzero entries of the C�1

i . The
results indicate that the new approach (M1) is also practicable
for this type of mesh.

Another application of the method (M1) are meshes with
high aspect ratios, such as anisotropic or skewed meshes.
The convergence behavior of iterative multigrid methods
gets significantly worse in this case, whereas the behavior
of the direct method is hardly affected if such meshes are
used.

5.2. Multiple right-hand sides

The presented direct method can also be used to accelerate
time-dependent flow simulations modeled by the incom-
pressible Navier–Stokes equations. To give an application
example of this, we refer to operator-splitting methods, in
particular discrete projection methods, that require the so-
lution of a pressure Poisson problem in each time step. Only
the right-hand sides of the linear systems change if the
spatial mesh does not vary. A conjunction with currently
examined time-simultaneous approaches (Dünnebacke
et al., 2021) yields variants of the above-mentioned pro-
jection methods that allow for solving the pressure Poisson

Table 4. Number of three types of nodes, spectral condition numbers of the matrices Ci (here maxi=1,2,3κ(Ci)) and Π and number of
nonzero entries in their inverses (added up for the three different C�1

i ) relative to NNZFEM (nonzeros in standard FEM stiffness matrix)
for different fine (L) and coarse grid refinement levels (L0) on the flow around a square configuration (see Figures 15 and 16) with P1 finite
elements. The total number of interior nodes N is listed in parentheses.

L (N) L0 jCj jEj jI j κ(Ci) κ(Π) NNZðC�1
i Þ=NNZFEM NNZðΠ�1Þ=NNZFEM

7 (228,480) 0 7 4,445 224,028 121.9 61.0 137.14 14.11
1 42 9,702 218,736 82.3 82.7 8.17 67.21
2 196 19,964 208,320 45.9 69.0 0.46 284.60
3 840 39,480 188,160 23.2 48.9 0.02 1,113.00

8 (915,712) 0 7 8,925 906,780 168.2 80.8 559.96 14.18
1 42 19,558 896,112 121.9 111.2 34.18 68.08
2 196 40,572 874,944 82.3 97.3 2.04 292.95
3 840 81,592 833,280 45.9 74.1 0.12 1,184.79
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problems for all time steps simultaneously. That exactly
corresponds to the case of a system AX = B with a constant
stiffness matrix A and a matrix of solutions X and right-
hand-sides B with Nrhs � 1 columns, in which the highest
performance is reached in our tests.

6. Summary and outlook

The purpose of this work was the development and nu-
merical study of a new hardware-oriented algorithm based
on knowledge of modern special hardware. As a result, we
are able to combine high numerical efficiency with the

computational performance of the V100 GPU and its Tensor
Cores.

Clearly, our studies are preliminary and only cover the
case of Poisson’s equation so far. However, this problem
represents a central component of many numerical methods
for flow simulations using the time-dependent incompress-
ible Navier–Stokes equations. The additional use of paral-
lelism in such basic components of advanced simulation
software for applications in numerical continuum mechanics
can reduce the computing time by orders of magnitude

Of course, further research needs to be carried out on
prehandling in 3D, other differential operators and finite

Figure 17. GFLOP/s for (M1) with many RHS depending on h�1 on the V100 and the A100 GPU in DP, SP, and HP with Tensor Cores
(left, middle, and right three columns, respectively) with speed-up indicated above the columns.

Figure 18. MDof/s for (M1) with many RHS depending on h�1 on the V100 and the A100 GPU in DP, SP, and HP with Tensor Cores
(left, middle, and right three columns, respectively) with speed-up indicated above the columns.
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element spaces, as well as on semi-direct variants of the
Schur complement approach, such as the method (M3) we
also derived. The list of interesting open problems also in-
cludes analysis of the new method on other current GPUs.
The presented studies, showing the possible gain in efficiency
in mathematical simulation tools (especially in numerical
continuum mechanics), prove to be even more important
considering that the supercomputer JUWELS at For-
schungszentrum Jülich, Germany ranked eighth in the current
TOP500 list (June 2021) as the fastest European computer
system (TOP500, 2021). Its booster module is based on the
NVIDIA Ampere A100 Tensor Core GPU, the successor
model of the V100. The A100 GPU promises more than 300
TFLOP/s with Tensor Cores in half precision (NVIDIA
2021) which becomes (nearly fully) exploitable by means
of prehandling techniques as the results of preliminary
tests presented in Figures 17 and 18 show. The results
shown inside the columns were obtained with the A100
and can be compared with the values shown in Figures 11
and 12. Indeed, we obtain a further acceleration by ap-
proximately 50%.
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