
Explainable Adaptation of Time Series
Forecasting

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Amal Saadallah

Dortmund

2022

Tag der mündlichen Prüfung: 12. Dezember 2022

Dekan/Dekanin: Prof. Dr.-Ing. Gernot Fink

Gutachterinnen:

• Prof. Dr. Katharina Morik

• Prof. Dr. Barbara Hammer

Abstract

A time series consists of data points measured over time. This type of data is omnipresent in
many fields, such as healthcare, manufacturing, and transportation, to name but a few. This is
due to the dynamic nature of numerous real-world phenomena, where related events naturally
happen and evolve over time. This also explains why this data type has always attracted
the attention of both academic and industrial communities. Many of these phenomena are
described by multiple inter-dependent time series forming thus a Multivariate Time Series
(MTS). Accurately predicting the future behavior of a time series is crucial for many applications
as predictions are usually required for a decision-making process. The process of predicting
the future behavior of a time series is referred to as time series forecasting. Forecasting allows
anticipating the behavior of a time series by professionals which enables them to take proactive
measures in different tasks such as resource planning and management, security measures
setting, process adjustment, etc. Several Machine Learning (ML) models have been developed
or applied to solve the forecasting task by learning from historical time series data.

In an online-learning setting, time series observations are incrementally acquired and the
distributions from which they are drawn may keep changing over time. This phenomenon is
widely known as concept drift. Such changes may affect the generalization of learned ML models
to future data. To cope with this dynamic behavior, online adaptive forecasting methods are
required. In this context, the aim of this thesis is to extend the State-of-the-Art (SoA) in the
ML literature for time series forecasting. More specifically, our research goal can be divided
into two main parts: (i) forecasting the future numerical values of time series; (ii) performing
model-based quality prediction in a timely manner. To reach these goals, we develop novel
methods for time series forecasting in an online adaptive manner to changes in time series
data as well as forecasting models’ performance. In the first part, we focus on the task of
online time series forecasting. First, we devise a framework for the online selection of time
series variables composing MTS data that should be considered as input to a given forecasting
model. The selection procedure is updated adaptively following concept drift detection in the
dependence structure between these variables that evolve over time and in the performance of
the MTS forecasting model. The framework is fully automated using a meta-learning schema
carefully devised for this task. In addition to being affected by changes in the time series, it
has also been proven that none of the ML forecasting models is universally valid for every
application. This can be explained by the fact that different models have varying regions of
expertise or so-called Regions of Competence (RoCs) over the time series. We then suggest
a novel method for online single model selection. We also extend the RoCs assumption and
highlight the usefulness of combining several models into one single model, i.e. an ensemble
model. The ensemble model building includes three main stages. First, ensemble members’

generation, i.e. individual models composing the ensemble, is performed. Second, some of these
models get selected. This stage is known in the ML literature as ensemble pruning. Third, the
selected model are aggregated into one single model. We aim to make ensemble construction
online and adaptive to the changes in the time series and forecasting models’ performance
over time. Therefore, we develop two methods for online ensemble pruning and one novel
method for online ensemble aggregation using the Deep Reinforcement Learning paradigm.
The methods are updated in an informed manner following concept drift detection under
different perspectives. In addition, we present two additional methods for both online single
model selection and ensemble pruning that are specifically devised for Deep Neural Networks.
We also promote the explainability of both model selection and ensemble pruning processes as
well as models’ performance. We show the usefulness of the developed methods empirically,
using a large set of time series from different application domains.

Regarding the second part, we contribute to the literature on online ML model-based
quality prediction for three different Industry 4.0 applications, namely a machining process
using NC-milling, a bolt installation process in the automotive industry, and Surface Mount
Technology (SMT) in electronics manufacturing. In NC-milling process monitoring, in addition
to real-time quality prediction using our developed methods on time series sensor data, we
show how process simulation can be used to generate additional knowledge and how such
knowledge can be integrated efficiently into the ML process. Based on the results in this case
study, we conclude that our developed methods are competitive with SoA approaches. Then,
we present two applications of explainable model-based quality prediction and their impact on
smart industry practices.

iv

Acknowledgements

This thesis couldn’t have been created without support. First of all, I’d like to express my
deep gratitude to my supervisor, Prof. Dr. Katharina Morik. Finishing this thesis would not
be possible without her continuous support, guidance, valuable input, encouragement, and
never-ending trust in my person. A special word to her, for believing in me and taking me as
a student.

Also, I’d like to thank the committee members of this thesis, Prof. Dr. Barbara Hammer and
Prof. Dr. Thomas Liebig, and the head of the committee Prof. Dr. Petra Wiederkehr. I thank
all my colleagues at the Artificial Intelligence Group for the many interesting collaborations,
discussions, and all the fun we had together. I am grateful to all of them. I also thank my
colleagues in project B3 of the Collaborative Research Center SFB 876, in particular, Felix
Finkeldey and Jan Büscher, for the intensive collaboration on data acquisition, storage, and
preprocessing for the industrial use cases. I further recognize that my research would not have
been possible without the financial support from the Deutsche Forschungsgemeinschaft (DFG)
within the Collaborative Research Center SFB 876, project B3.

I thank also Dr. Luis Moreira-Matias with whom I worked on the first research work on
taxi-demand prediction and who encouraged me to dive further into research.

Finally, I acknowledge the love and support from my family and friends, in particular my
mother Saloua. I thank you very much for all of the support, the friend, and love you have
given to me!

Table of Contents

Abstract iii

List of Figures xv

List of Tables xix

I Introduction 1

1 Introduction 3
1.1 Context . 3
1.2 Goals and Research Questions . 7
1.3 Thesis Contributions . 9
1.4 Thesis Outline . 10

2 Background 13
2.1 Time Series . 13

2.1.1 Time Series Components . 14
2.1.2 Stationarity . 15

2.1.2.1 Stationarity Tests . 17
2.1.3 Time Series Transformations . 18

2.1.3.1 Temporal Space . 18
2.1.3.2 Frequency Space . 19
2.1.3.3 Wavelet Space . 21
2.1.3.4 Correlation Space . 23
2.1.3.5 Symbolic Representation . 23
2.1.3.6 Filters . 24

2.1.4 Multivariate Time Series . 24
2.1.5 Time Series Distance Measures . 25

2.2 Concept Drift . 28
2.2.1 Concept Drift Types . 29
2.2.2 Concept Drift Adaptation . 29

2.3 Time Series Learning Tasks . 30
2.4 Forecasting . 30

2.4.1 Definitions . 31
2.4.2 Basic Steps . 31

vii

TABLE OF CONTENTS

2.4.3 Simple Forecasting Models . 32
2.4.3.1 Mean Model . 32
2.4.3.2 Naïve Model . 33
2.4.3.3 Seasonal Naïve Model . 33
2.4.3.4 Drift Method . 33

2.4.4 General Auto-Regression Models . 33
2.4.4.1 ARIMA Family of Models . 34
2.4.4.2 Exponential Smoothing . 37
2.4.4.3 Vector Auto-Regressive Model 37

2.4.5 Deep Neural Networks . 37
2.4.5.1 Some Deep Learning Notions 37
2.4.5.2 Learning a Deep Neural Network 38
2.4.5.3 Deep Learning for Forecasting 39
2.4.5.4 Multi-Layer Perceptron . 39
2.4.5.5 Recurrent Neural Networks . 40
2.4.5.6 Convolutional Neural Networks 42

2.4.6 Forecasting Evaluation Metrics . 43
2.5 Model Selection . 45
2.6 Ensemble Learning for Time Series Forecasting 46

2.6.1 Ensemble Error Decomposition . 48
2.6.2 Ensemble Pruning . 49
2.6.3 Ensemble Aggregation . 51

2.6.3.1 Averaging Approaches . 51
2.6.3.2 Regret Minimization . 51
2.6.3.3 Meta-Learning Strategies . 54

2.6.4 Bagging and Boosting for Time Series Forecasting 54
2.6.4.1 Bagging . 54
2.6.4.2 Boosting . 55

2.7 Explainable Machine Learning for Time Series 56
2.8 Quality Predictive Analytics . 59

2.8.1 Model-based Quality Prediction . 59
2.8.2 Learning from Process Simulation . 60

2.9 Final Remarks . 61

II Forecasting 63

3 Online Adaptive Time Series Variables Selection 65
3.1 Introduction . 65
3.2 Related Works . 67
3.3 Drift-aware Input Time Series Variables Selection 69

3.3.1 Preliminaries . 69
3.3.1.1 Notations . 69
3.3.1.2 Forecasting Model Learning . 70

viii

TABLE OF CONTENTS

3.3.2 Adaptive Input Time Series Variables Selection 70
3.3.2.1 Relevance . 70
3.3.2.2 Redundancy . 70
3.3.2.3 Drift-aware Variables Selection Adaptation 71

3.3.3 Forecasting Model Adaptation . 72
3.4 Online Automated MTS Forecasting . 73

3.4.1 MTS Meta-Features . 73
3.4.1.1 UTS-specific Features . 74
3.4.1.2 MTS-specific Features . 74
3.4.1.3 Landmarking-based Features 74

3.5 Empirical Experiments . 75
3.5.1 Experimental Setup . 76

3.5.1.1 Candidate Models Setup . 76
3.5.1.2 Meta-learning Task Setup . 77
3.5.1.3 OAMTS Setup: . 77

3.5.2 Comparing OAMTS to the State-of-the-Art 79
3.5.3 Comparing OAMTS to its Variants . 79
3.5.4 Importance of the Meta-learning Component 80
3.5.5 Scalability Analysis . 80
3.5.6 Discussion . 80

3.6 Concluding Remarks . 81

4 Online Adaptive Single Model Selection and Ensemble Pruning 83
4.1 Introduction . 83
4.2 Related Works . 85

4.2.1 On Online Model Selection and Ensemble Pruning 85
4.2.1.1 Online Single Model Selection 85
4.2.1.2 Online Ensemble pruning . 85

4.2.2 On the Use of Regions of Competence for Model Selection 86
4.3 Drift-aware Ensemble Members Selection using a Ranking-Clustering-based

Approach . 87
4.3.1 Preliminaries . 87
4.3.2 A Drift-Aware Ensemble Members Pre-Selection 88
4.3.3 Model Clustering . 89
4.3.4 Model Combination . 90
4.3.5 Empirical Experiments . 90

4.3.5.1 Experimental Setup . 91
4.3.5.2 On the Performance of Single Candidate Models 93
4.3.5.3 Comparing DEMSRC to the State-of-the-Art 94
4.3.5.4 Comparing DEMSRC to its Variants 95
4.3.5.5 Importance of the Drift-aware Models Selection 96
4.3.5.6 Final Remarks . 96

4.4 Online Model Selection using Regions of Competence 97
4.4.1 Preliminaries . 97

ix

TABLE OF CONTENTS

4.4.2 Online Model Selection . 98
4.4.2.1 RoCs Computation . 98
4.4.2.2 Online Forecasting . 98
4.4.2.3 RoCs Adaptation . 99

4.4.3 Empirical Experiments . 100
4.4.3.1 Experimental Setup . 101
4.4.3.2 Comparing OMS-ROC to the State-of-the-Art 102
4.4.3.3 Comparing OMS-ROC to its Variants 104
4.4.3.4 Importance of the Drift-aware Adaptation 104
4.4.3.5 Scalability Analysis . 104
4.4.3.6 Final Remarks . 105

4.5 Explainable Online Model Performance and Selection 106
4.6 Concluding Remarks . 107

5 Explainable Online Adaptive Deep Neural Network Selection 111
5.1 Introduction . 111
5.2 Related Works . 113

5.2.1 On the Recent Developments in Deep Learning for Time Series Forecasting114
5.2.2 Saliency Maps for DNNs . 114

5.3 Online Deep Neural Network Selection using Adaptive Saliency Maps 115
5.3.1 Preliminaries . 116
5.3.2 Candidate CNN Architectures . 116
5.3.3 Online Model Selection . 116

5.3.3.1 Performance Gradient-based Saliency Maps 116
5.3.3.2 RoCs Computation . 117
5.3.3.3 Online Forecasting . 117
5.3.3.4 RoCs Update . 118

5.3.4 Empirical Experiments . 119
5.3.4.1 Experimental Setup . 120
5.3.4.2 Comparing OS-PGSM to the State-of-the-Art 122
5.3.4.3 Comparing OS-PGSM to its Variants 124
5.3.4.4 Importance of the Drift-aware Adaptation 124
5.3.4.5 Final Remarks . 125

5.4 Online Ensemble of Deep Neural Networks Pruning 125
5.4.1 Preliminaries . 126
5.4.2 Base Learners . 126
5.4.3 RoCs Computation . 126
5.4.4 Online Ensemble Pruning . 127
5.4.5 Drift-aware Pruning Update . 130

5.4.5.1 Concept Drift in Time Series 130
5.4.5.2 Concept Drift in Models’ Performance 130

5.4.6 Empirical Experiments . 131
5.4.6.1 Experimental Setup . 131
5.4.6.2 Comparing OEP-ROCto the State-of-the-Art 135

x

TABLE OF CONTENTS

5.4.6.3 Comparing OEP-ROC to its Variants 137
5.4.6.4 Usefulness of the Theoretical Insights 138
5.4.6.5 Importance of the Drift-aware Adaptation 138
5.4.6.6 Impact of Different Aggregation Techniques 139
5.4.6.7 Final Remarks . 139

5.5 Explainable Deep Neural Network Selection . 140
5.5.1 Single Deep Neural Network Selection 140
5.5.2 Ensemble of Deep Neural Networks Pruning 142

5.6 Concluding Remarks . 143

6 Online Ensemble Aggregation using Deep Reinforcement Learning 145
6.1 Introduction . 145
6.2 Related Work . 146
6.3 Online Ensemble Aggregation . 147

6.3.1 Preliminaries . 147
6.3.2 Learning the Optimal Ensemble Weights 148

6.3.2.1 The MDP Framework . 148
6.3.2.2 Learning the Aggregation Policy 149

6.3.3 Online Aggregation Update and Forecasting 150
6.4 Empirical Experiments . 151

6.4.1 Experimental Setup . 152
6.4.1.1 OEA-DRL Setup . 152
6.4.1.2 State-of-the-art Methods . 152
6.4.1.3 OEA-DRL Variants . 153

6.4.2 Comparing OEA-DRL to the State-of-the-Art 153
6.4.3 Importance of the Rank-based Reward Setup 154
6.4.4 Importance of the Drift-aware Policy Adaptation 155
6.4.5 Combining Pruning Methods with OEA-DRL 155

6.5 Concluding Remarks . 156

III Applications 159

7 Real-time quality prediction in NC-Milling 161
7.1 Introduction . 161
7.2 Use Case Description . 164
7.3 Learning from Process Simulation . 166

7.3.1 Major Uses . 166
7.3.2 Synthetic Data Quality Assessment . 166

7.4 Simulation-Sensor Data Fusion . 167
7.4.1 Data Quality Assessment . 169
7.4.2 Simulation-Sensor Data Mismatch Solving 169

7.4.2.1 Synchronization . 169
7.4.2.2 Calibration . 170

7.4.3 Unified Data Representation . 173

xi

TABLE OF CONTENTS

7.4.4 Automated Feature Engineering . 174
7.4.5 Model Learning . 174
7.4.6 Automated Fusion Level Selection . 175

7.4.6.1 General Methodology . 175
7.4.6.2 Application to Simulation-Sensor Data Fusion in NC-Milling . 177

7.5 Online Cutting Forces Prediction . 178
7.6 Concluding Remarks . 180

8 Explainable Quality Prediction in Industrial Applications 181
8.1 Introduction . 181
8.2 Related Works . 183
8.3 Explainable Early Quality Prediction in Automotive Manufacturing 183

8.3.1 Use Case Description . 183
8.3.2 Modeling . 184

8.3.2.1 Preliminaries . 184
8.3.2.2 1D-CNN Architecture . 185
8.3.2.3 Grad-CAM for Extracting Explanations 185
8.3.2.4 Important Time Series Subsequences Identification 186

8.3.3 Quality Prediction Results . 187
8.3.3.1 Experimental Setup . 187
8.3.3.2 Evaluation Metrics . 188
8.3.3.3 Results . 189

8.3.4 Explainable Quality Prediction . 190
8.4 Explainable Quality Prediction in Electronics Manufacturing 191

8.4.1 Use Case Description . 192
8.4.2 Modeling . 194

8.4.2.1 Preliminaries . 194
8.4.2.2 1D-CNN Architecture . 194
8.4.2.3 CNN Visual Explanations . 194
8.4.2.4 Model Deployment . 195

8.4.3 Quality Prediction Results . 196
8.4.3.1 Experimental Setup . 196
8.4.3.2 Evaluation Metrics . 196
8.4.3.3 Results . 197

8.4.4 Explainable Quality Prediction . 198
8.5 Concluding Remarks . 198

IV Conclusions 201

9 Conclusions 203
9.1 Main Conclusions . 203

9.1.1 Forecasting . 203
9.1.2 Model-based Quality Prediction . 206

9.2 Open Issues and Future Directions . 206

xii

TABLE OF CONTENTS

9.2.1 Towards a Fully Automated Forecasting Framework 207
9.2.2 Beyond One-step ahead Forecasting . 207
9.2.3 Beyond Univariate Time Series Forecasting 208
9.2.4 Towards More Time Series Specific Explainability Tools 208
9.2.5 On Empowering Process Simulation for Machine Learning Application . 209

References 211

Appendix A Time Series Data Sets and Learning Algorithms 235
A.1 Data Sets . 235

A.1.1 MTS Data Sets for the Meta-Learning Task in OAMTS 235
A.1.2 MTS Data Sets for OAMTS Evaluation 236
A.1.3 Time Series Data Sets for DEMSRC, OMS-ROC, OS-PGSM, and OEP-

ROC, and OEA-DRL Evaluation . 236
A.2 Learning Algorithms . 236

Appendix B Online Adaptive Time Series Forecasting-R Shiny Interactive
Web App 239

Appendix C Publications, Joint Work and Collaborations 243

xiii

List of Figures

2.1 Decomposition of Electricity time series production data [55]. 16
2.2 Synthetic data, in the first horizontal box the original time series, next boxes the

individual components, corresponding to frequencies of 2, 5 and 3 respectively.
In the vertical box, the result of the Fourier transform. 20

2.3 ARR ECG time series (above), FT transform (bellow). 22
2.4 Wavelet transform of the ARR ECG sequence. 22
2.5 A scaleogram of the ARR ECG sequence wavelet transform. 23
2.6 The warping path between the two series Xi and Xr on the distance matrix.

The bounds with distance R are the Sakoe-Chiba-Band that is used to constrain
the warping path. 27

2.7 MLP architecture for time series forecasting. 40
2.8 Unfolded basic RNN architecture for time series forecasting. 40
2.9 Hidden layer neuron structure of an LSTM neural network. 41
2.10 One-dimensional convolutional neural network (1D-CNN) architecture for the

time series forecasting. 44

3.1 An MTS X collected till time t . 69
3.2 Schematic visualization of OAMTS. 75

4.1 DEMSRC Framework. 87
4.2 Distribution of the ranks of the single models across 20 different time series

datasets, models within the same family in the x-axis have similar names
attached to different numbers for stating different models’ parameters. 94

4.3 Critical difference diagram for the post-hoc Bonferroni-Dunn test, comparing
OAMTS against variants of our method. 96

4.4 RoCs for the candidate models before (top) and after (bottom) drift detection.
Note same model name with different numbers means the same family of models
but with different parameters, like MLP1 and MLP3 have different numbers of
layers. 105

4.5 Comparison of the current input pattern to the closest RoC. 107
4.6 Example of ensemble pruning for Ab.Heartbeat data using OAMTS 108

5.1 Schematic visualization of OS-PGSM extracting RoCs from the validation time
series. 119

xv

LIST OF FIGURES

5.2 Critical difference diagram for the post-hoc Bonferroni-Dunn test, comparing
OS-PGSM with the other baseline ensemble methods. 124

5.3 RoCs for the candidate model C7 before and after drift detection. 125
5.4 Distribution of the ranks of OEP-ROC with K = 15 in comparison to its

variants across the different time series. 137
5.5 Comparison of the current input pattern to the closest RoC (C11). The Forecaster

C11 was chosen to predict the next value (left plot, green line) because the input
(left plot, black line) was closest (in terms of DTW) to the time series on the
right side from C11’s region of competence R11 141

5.6 Visualization of RoCs for AbnormalHeartbeat data using OEP-ROC. 141
5.7 A visualization of model selection on the AbnormalHeartbeat dataset. 142
5.8 Comparison of the clusters’ representatives of OEP-ROC-10 (top row) with

K = 10 and OEP-ROC-10-top-K-6 (low row) (also K = 10) on the Abnormal
Heartbeat dataset. We report the ambiguity amb of the clustered ensemble as
well as the Euclidean distance of each RoC to the input pattern, which is shown
in the rightmost column. In red, we visualize the models that were chosen by
each method for prediction. 143

5.9 Left: For the time series to predict (black), we show the ground truth value
(red) as well as the prediction of OEP-ROC-10 (green). Right: Visualization of
each nearest RoC from the selected models (light blue), as well as the mean
RoC (dark blue). Both plots were generated on the Abnormal Heartbeat dataset.143

6.1 Learning curves of Algorithm 4 [301] with two different reward definitions. (a)
Reward computed using 1−NRMSE. (b) Reward computed using Equation
6.5. On the x-axis is the number of episodes. On the y-axis is the average reward
over each episode. 154

7.1 Pocket milling process. 162
7.2 Comparison between tool wear states after milling 100 slots and 180 slots. . . . 163
7.3 Measured process forces in z-direction using a cutting speed of 500 m/min and

a tooth feed of 0.06 mm depicted through two perspectives: (a) the total time
series, which results from 180 milled slots and is approx. 90 min in duration and
(b) five tooth engagements. 165

7.4 Simulation-Sensor Data Fusion Framework. 168
7.5 Comparison of measured and simulated forces in x-, y- and z-direction with a

time-related delay between the time series. 170
7.6 Wavelet transform of measured and simulated time series using the Mexican

hat mother wavelet [327]. 171

8.1 The Four zones of a bolt tightening process [348]. 184
8.2 Examples of heat-maps produced by the Grad-CAM for two examples of input

time series for the "non-defective" class. The x-axis is the time, while the y-axis
is the recorded torque value as the time series value. The red color is used for
highlighting the most important subsequences and the blue for less important
parts. 190

xvi

LIST OF FIGURES

8.3 Examples of heat-maps produced by the Grad-CAM for two examples belonging
to two different "defect" classes. The x-axis is the time, while the y-axis is
the recorded torque value as the time series value. The red color is used for
highlighting the most important subsequences and the blue for less important
parts. 191

8.4 Field of Views (FOVs) of the selected panel variant in X2. 193
8.5 Explainable predictive quality inspection in SMT manufacturing 195
8.6 Heat-maps averaged over many samples for X1-direction.x-axis shows the SPI-

features, y-axis the numbering of the pins, and the white coloring highlights
the most discriminative regions of the PCB (most important input features),
i.e., highlighting local features (pins) . 199

8.7 Heat-maps averaged over many samples for X1-direction. y-axis shows the SPI
features, x-axis the numbering of the pins, and the white coloring highlights
the most discriminative regions of the PCB (most important input features),
i.e., highlighting the global features (physical SPI). 200

xvii

List of Tables

3.1 Hyper-parameters of OAMTS and their values for the experiments. 78
3.2 Comparison of OAMTS to different SoA for 66 time series. The rank column

presents the average rank and its standard deviation across different time series.
A rank of 1 means the model was the best performing on all time series. We
report only significant wins and losses of OAMTS against the remaining methods. 79

3.3 Ground truth of the best model and relevance/redundancies measures for some
datasets. 80

3.4 Empirical run-time comparison between different methods in Seconds. 81

4.1 Hyperparameters of DEMSRC and their chosen values for the experiments. . . 92
4.2 Paired comparison between DEMSRC and different baseline methods for 100

time series datasets. The rank column presents the average rank achieved by
each model and the standard deviation of the rank across the different datasets.
A rank of 1 means the model was the best performing in all these datasets. . . 95

4.3 Empirical run-time comparison between DEMSRC and the most competitive
State-of-the-Art method (ADE). 96

4.4 Hyperparameters of OMS-ROC and their values for the experiments. 101
4.5 Comparison of OMS-ROC-single to different SoA methods on 100 time series.

The rank column presents the average rank and its standard deviation across
different time series. A rank of 1 means the model was the best performing in
all the time series. 103

4.6 Comparison of OMS-ROC-ens to different SoA methods on 100 time series
datasets. The rank column presents the average rank and its standard deviation
across different time series. A rank of 1 means the model was the best performing
in all the time series. 103

4.7 Empirical run-time comparison of different methods in Seconds. 106

5.1 Hyperparameters of OS-PGSM and their values for the experiments. 120
5.2 Comparison of OS-PGSM to different SoA methods for 100 time series. The rank

column presents the average rank and its standard deviation across different
time series. A rank of 1 means the model was the best performing on all the
time series datasets. 123

5.3 Empirical run-times comparison between different methods in Seconds. 125

xix

LIST OF TABLES

5.4 Configurations and architectures for all candidate DNNs. Different configurations
are generated by taking all combinations of filters and hidden units as described
in the last column. In total, this results in 33 candidate DNNs. 133

5.5 Hyperparameters of our method and their values for the experiments. 133
5.6 Comparison of OEP-ROC with K = 15 to different SoA methods on 100 time

series. The rank column presents the average rank and its standard deviation
across different time series for each method. An average rank of 1 means the
model was the best performing on all the datasets. 136

5.7 Comparison of OEP-ROC with K = 15 to its variants on 100 time series
datasets. The rank column presents the average rank and its standard deviation
across different time series. An average rank of 1 means the model was the best
performing on all the datasets. 138

5.8 Average run-time plus variance (both in seconds) for three variants of OEP-ROC
over 5 datasets. 139

5.9 Comparison of OEP-ROC with K = 15 combined with different aggregation
methods for 100 time series datasets. 140

6.1 Pairwise comparisons between OEA-DRL and baseline methods averaged over
all the 100 datasets (ω = 10). 154

6.2 Number of times of policy update comparison between Per-OEA-DRL and
OEA-DRL. 155

6.3 Empirical run-time comparison between SRL, OEA-DRL-Per, and OEA-DRL. 155
6.4 Comparison of OEA-DRL combined with different pruning methods for 100

time series datasets. 156

7.1 Experimental process parameter values. 164
7.2 Comparison between the NRMSE of predicted active and passive forces using

different methods. 177
7.3 Comparison between the NRMSE of predicted active and passive forces using

data-level and model-level fusions. 178
7.4 Comparison between different measures for the level fusion selection. 178
7.5 Comparison between the NRMSE of predicted active and passive forces using

different forecasting methods. 179

8.1 Confusion Matrix . 188
8.2 Average Performance Comparison of CNNIT SSI vs. CNNfull 190
8.3 Descriptive PCB features on the pin level. 193
8.4 Average Performance Comparison of different classifiers 197

A.1 The summary of datasets used for the meta-learning in OAMTS. 235
A.2 The summary of datasets used for the evaluation of OAMTS. 236
A.3 List of datasets used for the experiments of DEMSRC, OMS-ROC, OS-PGSM,

OEP-ROC, and OEA-DRL. 237

xx

Part I

Introduction

1

1
Introduction

1.1 Context

In several scientific fields, measurements are acquired over time. These measurements most
often comprehend some temporal dependency among them. In other words, the currently
observed measurement value may depend on the previously captured values. In addition, they
lead to a collection of chronologically ordered data termed time series. With the increasing
development of data collection and storage technologies in this modern era of information,
massive amounts of time series data become more and more available [1], [2]. Much of the
world’s data supply is in the form of time series [3], [4]. Due to this profusion, learning from time
series data is one of the most active research topics in the data science community so far [2], [3],
[5]. In addition, the time-changing nature of many real-world phenomena has contributed to
this generalized interest in time series. For example, weather-related variables are tracked over
time, and some are continuously predicted to provide information people and organizations
can use to enhance societal benefits and reduce losses, including protecting lives and properties
and ensuring safety [6]. Likewise, in finance, economists monitor stock market indices over time
to help investors compare current stock price levels with past prices and accurately estimate
future market performance to look for appropriate investment opportunities [7]. For some
industrial processes, time series sensor data is continuously acquired and analyzed to ensure
sustainable zero-defect processes [8].

Uncertainty is a common issue in most scenarios involving learning from time series data,
which challenges the accurate understanding of its future behavior [9]. Such understanding
requires rigorous time series analysis [5]. One of the main tasks in time series data analysis is
forecasting, which denotes estimating the future values of a time series. Forecasting has always
attracted the attention of academic and industrial communities as it has always been considered
one of the main steps for real-time decision-making and planning in a wide variety of fields [10],
[11]. It covers also a big range of applications, including traffic prediction [12], [13], weather
forecasts [14], and stock market prices prediction [7], [15], to name but a few. Nonetheless,
forecasting has also been revealed to be one of the most challenging tasks in time series analysis

3

1. Introduction

due to the dynamic behavior of time series data, which may involve non-stationary and complex
processes and are therefore most often subject to concept drifts [9], [11], [16]. In other words,
the underlying generating process of the time series observations may change significantly over
time. Thus, forecasting models trained using old historical data may become obsolete. This
task becomes more and more arduous when the time series data is represented by multiple
time-dependent time series variables, creating thus a Multivariate Time Series (MTS) data.
This is often the case in rapidly growing digital environments, and Internet-of-Things systems
[17], [18]. The evolution of MTS is spatio-temporal, along with the different variables and over
time, respectively. On the one hand, this data represents an enriched form of information about
the application. On the other hand, the number of these variables can increase drastically and
might include irrelevant and redundant ones. This may heighten the curse of dimensionality.
Therefore, it is necessary to carefully select the most important time series variables as a
preparation step before forecasting. Again, this spatio-temporal data may involve multiple
non-stationary processes, and the dependencies along its composing variables may also follow
a non-stationary process. As a result, the relation between time series variables might change
significantly over time, and the offline input variable selection procedures may also become
invalid over time. Therefore, selecting time series variables should cope with the evolving
nature of the spatio-temporal dependencies in the MTS data.

Several Machine Learning (ML) models have been successfully applied to solve the time
series forecasting task. In general, ML uses data generated by some process to learn the
parameters of a function or model that depends on this data. Learning is driven by some
specified loss function that measures in a well-defined way how well the parameters fit the data.
A "good" choice of these parameters is often determined using a numerical optimization which
denotes the process of searching the loss function’s minimum by exploiting information from
its derivatives. ML models can be grouped into different types depending on their outcome.
The main three most popular types include Supervised Learning, where the model maps
an input to an output based on a sample of input-output pairs forming a labeled dataset,
Unsupervised Learning, where no label is given to the model and only a set of inputs is
modeled, and Reinforcement Learning where the model learns a policy of how to act given
an observation of the world and every action has some impact in the environment and the
environment provides feedback that guides the learning algorithm. Time series forecasting
can be framed as a Supervised Learning problem. Hence, an ML model solves the forecasting
task either by considering as input the whole or some window of an ordered sequence of time
series observations in an offline or a streaming fashion or by using time series embedding
into a high-dimensional Euclidean space that reformulates forecasting as a classical regression
task by treating each time series observation as the target or the dependent variable and
its corresponding subsequence of a given number of lagged observations as the explanatory
variables [9], [19]. Note that time series forecasting should be distinguished from time series
regression, where the goal is to predict continuous scalar values from a time series, the prediction
does not necessarily depend on recent values, and the target may not necessarily come from the
same series. The time series regression task is closely related to time series classification, which
aims to learn the relationship between a set of time series and a categorical class label [20].
Note also that we are tackling the forecasting task using an online learning schema, i.e., time

4

1.1 Context

series data is assumed to become available in sequential order and can be used immediately to
update the ML model or the forecasting framework in general for future data at each time
step.

Nevertheless, it is generally accepted that none of these ML models is universally valid for
every forecasting application. This seems to be a particular case of the No Free Lunch theorem
by Wolpert [21], which means no learning algorithm is best suited for all learning tasks. Even
if we consider a single application, forecasting models’ performance is time-dependent [9], [10],
[22]. This can be explained by the fact that different forecasting models have different areas of
expertise or so-called Regions of Competence (RoCs) placed over different parts of the input
time series [9], [22]. These regions evolve over time. Therefore, forecasting model selection
should be able to cope with changes in the time series and adapt to new concepts automatically
and efficiently. In other words, online and adaptive model selection is often required to cope
with the time-evolving nature of time series and the fact that forecasting models have a certain
expected level of competence in predicting a particular region in the time series.

While some works have focused on the online selection of a single model [23], others have
extended on the assumption that no single model is expert all the time and have proposed
to adaptively combine multiple forecasting models into a single model using an ensemble
technique [9], [10], [16], [22]. The individual models that make up the ensemble are often called
ensemble members. Ensemble members must also be carefully selected in an online adaptive
manner to account for changes in both the time series and the time-changing forecasting
performance of the members. This selection is referred to as online ensemble pruning, in which
only a subset of these members is retained at each time instant [24], [25].

For online single model selection, estimating the error densities of candidate models, either
using approximations [26] or empirical estimates [27] is most often employed. These methods
are impractical and sometimes ineffective in the context of forecasting. This is primarily
because the composite densities for the error function of the target and estimated time series
values must be continuously approximated over time in the case of using approximations.
Moreover, the results depend largely on the quality of the approximation. When empirical
assessments of the errors are used, the fact that the estimated empirical error of a model is
usually lower than its true error can lead to an erroneous selection. Model selection can also
be performed using meta-learning to learn an appropriate selection strategy [9], [16], [22] .

Online model selection becomes more and more crucial when selecting many models to
appear in an ensemble, not only to adapt to the changes in the time series and models’
performance but also to optimize resources adequately for the corresponding application.
Hence, an ensemble with a huge number of models may add a lot of computational overhead
due to the large memory requirements of some of its members, e.g. decision trees [28]. The
optimization of run-time overhead is imperative for some specific applications where real-
time requirements must be met, such as in online forecasting with a short time duration
between two subsequent time steps. Nonetheless, selecting ensemble members (i.e., pruning)
is inherently challenging. Hence, given a set of trained forecasters, it is difficult to select the
sub-ensemble with the best generalization performance because it is not easy to estimate the
generalization error of the sub-ensemble similarly to a single model. Moreover, finding the
optimal subset of models is a combinatorial search problem with exponential computational

5

1. Introduction

complexity. Therefore, it is impossible to compute the exact solution by exhaustive search,
and an approximate search is required [29], [30]. Ensemble pruning has been widely studied in
the ML literature for classification problems [29], [30]. Few works tackled this task for time
series forecasting, especially in an online dynamic fashion [10]. Once ensemble members are
selected in a timely manner, a decision about how to aggregate them into one single model,
i.e., the ensemble model, must also be made in real-time. Ensemble aggregation strategies
can be categorized into three main families. The first group is based on voting schemes that
use either a majority or a (weighted) average of the votes to decide the final output (e.g.,
bagging [31]). The second family is based on cascading, where several forecasting models are
concatenated using all information collected from the output from a given forecasting model
as additional information for the next model in the cascade [32]. The third category is based
on a stacking technique [33], and meta-learning is frequently used to learn the aggregation
rule of actual outputs from prior experiences. A machine-learning algorithm is trained on the
ensemble members’ outputs as explanatory variables joined the target time series values to
learn an aggregation rule [34]. However, there is no single best way to estimate the weights of
each model in a linearly weighted ensemble. Thus, learning the optimal ensemble aggregation
strategy remains an open research question [9], [35], [36].

Similar issues apply to MTS forecasting. Therefore, in addition to selecting time series
variables that should cope with the time-evolving nature of the spatio-temporal dependencies
in the MTS data, adequate model selection is also required to cope with the time-changing
characteristics of the MTS.

As explained above, several decisions must be made in forecasting, ranging from time
series variables selection and online model selection to the online aggregation of many models.
Machine Learning is used to develop frameworks that are able to automate these decisions
fully. However, to maximize the benefits of these ML-based frameworks while simultaneously
mitigating or even preventing their risks and dangers, the concept of trustworthy ML has
appeared to promote the idea that all the parts involved in an ML application, can benefit from
the full potential of ML if trust can be established in its development, deployment, and usage
[37], [38]. Several requirements have to be fulfilled to build ML-based trustworthy solutions.
According to the European Commission High-Level Expert Group on Artificial intelligence
(AI) [38], seven key requirements AI systems should meet in order to be deemed trustworthy.
Among them, three are related to the explainability of AI systems. Explainable Artificial
Intelligence (XAI) describes methods that generate interpretations for decisions and provide
human-understandable representations for solutions developed by AI [39]. More particularly,
explainability in ML is the process of explaining to a human why and how an ML model
made a decision [40]. In this context, explainability means the algorithm and its decision or
output can be understood by a human. This is an important concept to make ML models
transparent and solves the black-box problem. A Black-box model refers to ML models that are
sufficiently complex such that they can not be straightforwardly understood by humans [41].
In the context of model selection, from a mathematical viewpoint, it can be seen that while
selection made by “simple” rules, such as deciding between two forecasting models based on a
single threshold on the time series values, provides high explainability but possibly, limited
forecasting accuracy, “more complex” model selection methods, such as meta-learning using

6

1.2 Goals and Research Questions

neural networks provide high predictive accuracy at the expense of limited explainability. To
solve this trade-off, it is necessary to devise adequate model selection explainability tools.

Combining online adaptive methods for time series forecasting with adequate explainability
tools helps in making a step toward building trustworthy ML solutions necessary in a wide
variety of fields such as Industry 4.0, i.e., the fourth industrial revolution characterized
by "interconnectedness, data, and intelligence" [42]. In this revolution, adaptable, smart,
and reconfigurable manufacturing processes are developed by utilizing computer-integrated
manufacturing, and digital information technologies. AI is also incorporated to allow
manufacturers to learn from data and create more connected and intelligent industrial practices
[43]. One of the most important tasks in the context of smart manufacturing is the real-time
process quality prediction using ML models [44]. This task is also known as model-based quality
prediction where an ML model is trained to map the available quality-related input information
and data, e.g., master data, operating states, or process parameters, to the resulting product
quality [45], [46]. Nevertheless, there are still some limitations in the way of ML adaption
and application in real-world industrial environments. The most challenging obstacle is the
lack of reliable labeled data sources in many manufacturing scenarios. One solution to this
issue is using synthetic data sources such as process simulations. In addition, simulations
represent expert knowledge; hence, integrating simulation into ML may help achieve better
predictions. This integration can be achieved by fusing simulation and real-world data, e.g.,
sensor data, for ML applications. The combination of simulation and ML has been successfully
used for optimizing many industrial processes such as Numerically Controlled (NC)-milling
[47]. However, deciding the optimal way to fuse real-world and simulation data is still an open
research question.

1.2 Goals and Research Questions

The previous section highlighted how time series forecasting plays a significant role in decision-
making across several domains. Then, we outlined the main challenges faced when solving the
forecasting task. More precisely, we pointed up the non-stationary behavior of time series data
that can be subject to concept drifts, the necessity of online adaptive time series variables
selection in the case of MTS forecasting, the consequences of the No Free Lunch theorem,
inducing the need for the online management of many forecasting models through either
online single model selection or the adaptive aggregation of many models into an ensemble
model, and the requisite of explainable ML-based solutions. We also noted the importance of
forecasting in the context of Industry 4.0 applications, especially for online quality predictive
analytics, and the challenges this task entails. In this context, the main goal of this thesis is
to develop new ML methods for forecasting the future values of a time series in an online,
adaptive, and informed manner following changes in the time series and the forecasting
models’ performance over time.

These methods aim to improve the accuracy of the prediction process in time-dependent
domains, thereby improving the quality of decision-making by professionals in a wide range
of organizations and institutions. To do so, the objective of these methods is to minimize
the difference between the predicted and observed values of time series within the scope of

7

1. Introduction

predicting its future values. Our work includes the development of methods for time-dependent
time series variables selection for MTS forecasting and the adaptive online management of many
forecasting models. We develop equally explainability tools for forecasting models’ selection
process. Regarding the prediction of the quality of industrial processes, we aim to monitor
these processes in a timely manner while overcoming the lack of labeled data.

Therefore, we decompose these research goals into five research questions:

• RQ1 Given the time-evolving spatio-temporal dependencies among time series variables
in MTS, what is the most appropriate way of selecting the most important variables in a
timely manner to enhance the predictive performance of MTS forecasting models?

• RQ2 How can we dynamically select one or many forecasting models and cope with non-
stationary sources of variation in time series and the time-varying models’ performance?

• RQ3 How can we provide suitable timely explanations for the reason behind model
selection at a given time instant or interval?

• RQ4 In selecting many models simultaneously, how can we dynamically and adaptively
combine them to cope with the above-mentioned variations?

• RQ5 How can the developed methods be transferred efficiently to industrial case studies
to perform online model-based quality prediction? And how can the online management
of many models be exploited to integrate sensor and simulation data for ML applications
efficiently?

Before developing novel methods for addressing the online management of forecasting
models, we first need an approach for adaptively selecting MTS variables in a timely manner.
In this context, to answer the first question, we devised a fully-automated framework for
both adaptive input MTS variables selection. The adaptation is performed in an informed
manner following concept-drift detection in the spatio-temporal dependencies among these
variables and the MTS forecasting model’s error over time. In addition, a well-designed
meta-learning scheme is used to automate the selection of appropriate dependencies measures
and the MTS forecasting model (Chapter 3). The second and third research questions were
addressed by developing four methods for dynamically selecting either one single or a set
of forecasting models. Two of them are specific to Deep Neural Networks (DNNs). These
methods exploit gradient-based techniques for generating saliency maps with a coherent design
to make them able to specialize the DNNs across different regions in the input time series
using a performance-based ranking. The two remaining methods are model-agnostic and can
be applied to any family of forecasting models. We assume that different forecasting models
have different Regions of expertise or Competence (RoCs) and varying relative performance.
Therefore, performance drift detection mechanisms and adaptive model clustering approaches
are proposed. To answer the third research question, we exploit the methods that use the
concept of RoCs for model selection to provide appropriate visual explanations for the reason
for selecting a particular model(s) in a specific time interval or instant (Chapter 4-5). While
several approaches have been proposed in the literature for the fourth question, there is no
consensus regarding the most appropriate one. In this context, we offer a novel meta-learning
approach for aggregating linearly weighted ensembles for the task of time-series forecasting

8

1.3 Thesis Contributions

using the Deep Reinforcement Learning (DRL) paradigm. We outline a DRL framework with
a coherent design of the components of the environment and the objective function as an
aggregation method in our task. In this framework, the combination policy in an ensemble is
modeled as a sequential decision-making process that captures the temporal behavior in time
series. Furthermore, an actor-critic model aims to learn the optimal weights in continuous
action space (Chapter 6).

The proposed methods are adapted to a particular domain of application: real-time quality
prediction for Industry 4.0 use cases. One of them consists of online monitoring of an NC-
milling process. Furthermore, process simulations are used as synthetic data sources due to
the shortage of labeled data. An automated fusion framework is developed to optimize the
integration of sensor and simulation data (Chapter 8). Finally, we apply our developed methods
for the online forecasting of the NC-milling cutting forces. Two additional case studies for
model-based quality prediction using DNNs are presented, and saliency maps are exploited to
produce visual explanations for the behavior of the models (Chapter 9).

The research questions presented above are addressed empirically. According to an
experimental design developed to this effect, the proposed methods were tested from different
perspectives. The significance of the main results was assessed according to the Wilcoxon
signed-rank test analysis [48]. In support of reproducible research, the code developed for each
set of experiments is available online.

1.3 Thesis Contributions

Learning from time series data is at the core of this thesis. By proposing novel methods, this
thesis contributes to the field of time series forecasting. Our contributions reach several fields,
including dynamic time series variables selection, online model selection, online ensemble
learning, meta-learning, deep learning, deep reinforcement learning, explainability, forecasting,
and model-based quality prediction for Industry 4.0 applications. The contributions of this
thesis can be then summarized as follows:

• A novel method for online drift-aware input time series variables selection for MTS
forecasting using relevance and redundancy analysis. The drift detection mechanism is
devised to operate on spatial and temporal dimensions, i.e., the two dimensions of MTS
data.

• A meta-learning approach for fully automating the choice of relevance and redundancy
measures for MTS variables selection, as well as the selection of the forecasting model.

• A novel model-agnostic method for online ensemble pruning using a combination of a
drift-aware performance ranking and models’ clustering.

• A novel model-agnostic method for online single model and ensemble members selection
for time series forecasting by computing the RoCs of a set of candidate forecasting models
using an adaptive clustering procedure.

• Generation of appropriate explanations for the reason for outputting a particular forecast
value at a particular time instant and selecting particular models at a particular time
instant or interval using clusters’ visualization.

9

1. Introduction

• A novel method for online DNNs selection for time series forecasting by computing the
RoCs for a set of candidate DNNs using an adaptation of saliency maps to produce
Performance Gradient-based Saliency Maps (PGSMs). The PGSMs are updated in an
informed manner following concept drift detection in the time series data.

• A novel theoretically-based method for the online adaptive ensemble of DNNs pruning
for time series forecasting using pre-computed PGSMs, i.e., the pruning is updated in an
informed manner following concept drift detection in both candidate DNNs’ performance
and the time series data.

• Generation of suitable explanations for the reason behind selecting a specific DNN at a
specific time instant or interval using the developed PGSMs.

• An adaptive meta-learning technique for dynamic ensemble aggregation for the task of
time-series forecasting using Deep Reinforcement Learning.

• An extensive set of experiments comparing the proposed approaches to State-of-the-Art
methods for each task. These experiments also include an analysis of the impact of
introducing variations to the proposed methods, run-time comparisons, and a statistical
significance analysis of the results.

• Application and adaptation of some of the developed methods to the real-time quality
prediction of real-world industrial processes.

• A novel framework for the automated fusion of time series sensor and simulation data
for the online monitoring of an NC-milling process.

1.4 Thesis Outline

This thesis is organized into four parts. The first part presents the introduction and includes
the current chapter. In this chapter (Chapter 1), we presented and spurred the topic of this
thesis. We moreover expressed the main goal and decomposed it into five research questions.
At last, we summarised the contributions of the thesis. To include the fundamental concepts
used in this thesis and the related works on the evoked topics, Chapter 2 is introduced. In
this Chapter, further details on the problems addressed in this thesis, including time series
analysis and forecasting, are provided. We also present formal definitions for the main ML
tasks performed in this thesis within the scope of time series forecasting.

The main parts of this thesis are part II and part III. Part II includes three Chapters
(Chapter 3, 4, 5, and 6), and handles the problem of forecasting, in which the objective is
to predict the subsequent value of a time series concurring with its past values. Chapter 3
introduces a method for online adaptive input time series variable selection for MTS forecasting.
Chapter 4 is dedicated to presenting the methods we devised for online adaptive model selection
and ensemble pruning. In Chapter 5, we present a novel method for online DNNs selection
for time series forecasting by computing their RoCs using an adaptation of saliency maps to
the time series domain, followed by Chapter 6 in which we propose a novel method for an
ensemble of forecasting models aggregation.

10

1.4 Thesis Outline

Part III is composed of Chapter 7 and 8, and is devoted to the application and adaptation
of some of our methods to real-world industrial case studies. Chapter 7 includes learning from
heterogeneous data sources, precisely, sensors and simulation to forecast different quality-
related variables of an NC-milling process in real-time. Model selection methods are adapted to
integrate these data sources efficiently. In Chapter 8, we propose an adaptation of the proposed
DNN-based models to provide an explainable quality prediction of two industrial use cases.

The final part of the thesis (Part IV) includes Chapter 9, which concludes the thesis. In
this chapter, we summarize our answers to the research questions raised in this thesis and
highlight some open issues as well as future work. The thesis also contains an Appendix, where
the time series data sets and the learning algorithms are described.

11

2
Background

In this Chapter, we present the fundamental background related to the topics handled by our
thesis. Section 2.1 describes time series data and its main characteristics. We define the possible
learning tasks on this data type. Then, we put light on the main topics that will be addressed in
the next Chapters. In Section 2.4, we formally define the task of time series forecasting, evoke
the related challenges and describe the existing ML approaches to solve this task. Section 2.5
details the task of model selection in the context of time series forecasting. A specific focus is
given in Section 2.6 to ensemble learning, which defines an important establishment of the work
in this thesis. In Section 2.7, we describe the development of ML explainability topic in general
and in the context of time series analysis in particular. Finally, in Section 2.8, we illustrate
the current trend in applied ML for model-based quality prediction of industrial processes.
In addition, we highlight the importance of learning from heterogeneous data sources, more
precisely process simulation and sensors, under some particular circumstances.

To recap, this chapter aims to equip the reader with the fundamentals of the main topics
studied in this thesis that are assumed to be necessary for the understanding of the remainder
of the thesis.

2.1 Time Series

When formally defining a time series, we need to go beyond the foremost straightforward
definition and include the general context as well. Therefore, characterizing the time series as
a sequence of observations does not reflect much of the context and does not help to define
target tasks on this special data type clearly. A more formal and general definition is given by
Mierswa, and Morik [49], who first introduced the notion of value series that also covers time
series. In a value series, each element xn of the value series consists of an index and a value
vector. The value vector is an m-dimensional vector and corresponds to a point in the value
space.

13

2. Background

Definition 1 Value Series A value series is a mapping X : N → R× Cm. The point of the
series with index n is noted as xn. X1:k = {x1, · · · , xk} denotes the sequence of points starting
at index 1 and ending at index k with length k.

In the following, we focus on time series. Therefore, the index component corresponds to a
measurement of time.

Definition 2 Time Series A time series variable X, is a temporal sequence of values, where
X1:T = {x1, x2, · · · , xT } denotes the sequence of X recorded until time instant T and xt is the
value of X at a time instant t.

In this thesis, we focus exclusively on numerical time series, i.e., xt ∈ R, ∀xt ∈ X, and
assume that the observations are captured over regular time intervals, e.g., every minute.

Time series data and its analysis are increasingly substantial due to its massive generation
through different technologies in a wide range of fields, including, for example, the Internet-of-
Things (IoT) devices [50], the digitalization of industrial and healthcare systems [51], [52], and
the evolution of the concept of smart cities [12]. This explains the rapid growth in quantity
and quality, and the importance of time series data [9], [53]. In most cases, time series data
is continuously acquired. In addition, it reveals a dynamic behavior and is often subject to
uncertainty, complicating the exact understanding of its behavior. Therefore, the need for
vigorous time series analysis using statistical and ML tools becomes more and more crucial.
The aim of time series analysis is to extract meaningful knowledge and statistical information
about data points recorded in chronological order. It is carried out to analyze the past behavior
of the series as well as to forecast its future behavior.

2.1.1 Time Series Components

Time series can be decomposed into four main components: trend, seasonal, cyclic, and
irregular. The time-evolving nature of this data can then be expressed and understood using
these components.

The trend component corresponds to a long-term change in the mean level of the time
series. When the long-term variations are of no interest to the application, the trend component
can be removed. We describe this transformation in detail and its effect on the time series
in Section 2.1.3. However, when the time series contains periodical and predictable changes
over fixed periods, it is said to include a seasonal component. The seasonal change can also be
removed if it is judged of no interest.

In addition to seasonal changes, sometimes time series dispose of some other predictable
variations, which occur at no fixed periods. This type of change is called, most often, a cyclic
component. The standard illustration of a cyclic pattern can be found in economic cycles, where
periods of growth and recession are encountered. After removing the three above components
from a time series, the remaining part is referred to as the residual or noise component. This
component does not have any explainable behavior and can not be approximated by any trend,
seasonal or cyclic pattern, but can have a huge impact on the dynamics of the time series [54].

14

2.1 Time Series

At a given time instant t, a time series can be decomposed in an additive manner into the
above four components. The additive decomposition can be expressed as follows [54]:

xt = Trendt + Seasonalityt + Cyclict +Residualst (2.1)

where Trend, Seasonality, Cyclic, and Residuals represent the trend, seasonal, cyclic, and
residual components of the time series at that point, respectively. Other forms of decomposition
can be applied to time series, including multiplicative decomposition or a mixture of both
multiplicative and additive. The multiplicative decomposition is given by:

xt = Trendt × Seasonalityt × Cyclict ×Residualst (2.2)

The choice of adequate decomposition depends on the time series data and the problem at
hand. For instance, if the seasonal component increases as the trend increase, a multiplicative
decomposition can be more appropriate in this case. In addition, if a multiplicative factor
models the residual component and the component is positive, an additive decomposition
model for log(xt) can be used in this case:

log(xt) = Trendt + Seasonalityt + Cyclict +Residualst (2.3)

Figure 2.1 shows an example of a multiplicative decomposition of the time series of
Electricity production data [55]. In this example, the multiplicative decomposition seems more
appropriate than the additive since the original time series variance and its trend are increasing
over time. However, it can also be seen that the residual/random component also has an
increasing variance, which implies that a log-transformation (Equation 2.3) can be, in this
case, more appropriate for this data. It should be noted that the random series obtained from
the decomposition is not precisely a realization of the random process that generated the series
but rather an estimate of that realization.

2.1.2 Stationarity

A time series is said to be stationary if there are no significant changes in its mean or variance
and if periodic changes have also been removed [53]. In other words, time series properties are
preserved over time, and they are independent of the time when the data is observed. However,
it should be noted that different levels of stationarity have been defined in the literature
[53]. For instance, we can distinguish between strict stationarity and weak or second-order
stationarity.

Definition 3 Strictly Stationary Time Series A time series is said to be strictly
stationary if the joint distribution of {x1, x2, · · · , xt} is identical to the joint distribution
{x1+j , x2+j , · · · , xt+j}, ∀t, j ∈ N .

This definition means that if we shift the time window in which we observe the time series,
this does not affect the joint distributions. This condition of strict stationarity is often relaxed
in practice and replaced by second-order stationarity or weak stationarity.

15

2. Background

Figure 2.1: Decomposition of Electricity time series production data [55].

Definition 4 Weak Stationary Time Series A time series is said to be a second-order or
weak stationary series if it has a constant mean and a constant variance and its auto-covariance
does not depend on time.

The definition of second-order stationarity can be formally expressed using the following
conditions:

Condition 1 Constant Mean and Variance.

µj = µ ∧ σj = σ, ∀j ∈ {1..t} (2.4)

Condition 2 Time-invariant Covariance.

γ(t, t− j) = E
[︁
(xt − µ)− (xt−j − µ)

]︁
= γj , ∀j ∈ Z (2.5)

where µ is the mean of the time series X and µj is the mean of the sequence X1:j , i.e. X
recorded till time instant j. Similarly, σ is the variance of time series X and σj is the variance
of the sequence X1:j In the remainder of this thesis, when we refer to a time series as stationary,
we use the definition of second-order stationarity.

A time series can also be considered as trend-stationary when the mean of its trend is
deterministic. In this case, the trend can be removed to obtain a stationary residual time
series.

16

2.1 Time Series

2.1.2.1 Stationarity Tests

Stationarity is an influential property in time series modeling, and several tests were devised
to verify its presence. In this section, we recapitulate three widely used parametric tests and
point the reader toward non-parametric ones.

The Dickey-Fuller test [56] was the first statistical test developed to test the null hypothesis
that a unit root is present in an Auto-Regressive (AR) model (See Section 2.4) of a given
time series and that the generating process is thus non-stationary. The original test treats
the case of a simple lag-1 AR model. The test has three versions that differ in the model
of the unit root process they test for. The choice of the version can significantly affect the
size and power of the test. Using prior knowledge or structured strategies for a series of
ordered tests allows the discovery of the most appropriate version. Extensions of this test were
developed to adapt more complex models and data. These extensions include the Augmented
Dickey-Fuller (ADF) [57](using AR model of any order p and supporting the modeling of time
trends), the Phillips-Perron test (PP) [58] (adding robustness to unspecified autocorrelation
and heteroscedasticity) and the ADF-GLS test [59] (locally de-trending data to deal with
constant and linear trends).

The second method is presented by Kwiatkowski et al. and is called the Kwiatkowski-
Phillips-SchmidtShin (KPSS) test [60]. This method tests the null hypothesis that a given
time series is stationary in trend, whereas the alternative hypothesis is the presence of a unit
root. Unit roots are typical origins of non-stationarities in trend. A time series containing a
unit root is assumed to be non-stationary in trend. Nevertheless, after removing the trend
component, the remaining residuals are stationary. The KPSS test is typically used for trend
inclusion in forecasting models, for example, ARIMA (Auto-Regressive Integrated Moving
Average) [61].

The aforementioned tests do not allow for the possibility of a structural break which means
an abrupt change in the time series inducing a change in the mean or other parameters of the
time series generating process. Considering the time of the break as an exogenous phenomenon,
it has been shown that the power to reject a unit root decreases when the stationary alternative
is true and a structural break is ignored [58]. Therefore, The Zivot and Andrews Test [62]
is proposed as a unit root test in which the exact time of the break-point is assumed to be
unknown. To do so, Zivot and Andrews [62] proceed with three models to test for a unit root.
The first model allows for a one-time change in the level of the series. The second model permits
a one-time change in the slope of the trend function. The third model combines one-time
changes in the level and the slope of the trend function of the series.

To face the limitations of the above-mentioned parametric tests that have been proved
to cover only a narrow sub-class of possible cases encountered in real-world time series data,
non-parametric tests for stationarity have appeared in the time series analysis literature.
These tests offer a promising avenue for examining time series data. There is no longer the
need to assume very simple parametric models to apply to the data in order to capture non-
stationarities. They also minimize the risk of not discovering a complex form of non-stationarity.
The reality of it, however, is more complex. Therefore, at the moment, there are no widely-
applicable non-parametric tests that enclose all real-world scenarios generating time series
data. Rather, these tests restrict themselves to specific types of data or processes. For example,

17

2. Background

the non-parametric test in continuous-time Markov processes [63] was suggested for univariate
time-homogeneous Markov processes. The idea is to construct a kernel-based statistical test and
conduct Monte-Carlo simulations to study the test’s finite-sample size and power properties.
Delft et al. [64] presented a non-parametric stationarity test limited to functional time series,
meaning that data is obtained by separating continuous time records into consecutive intervals.
Due to the limitations and lack of implementations of a handful of non-parametric tests, the
time series analysis process is forced toward making strong assumptions about the data to use
parametric tests.

2.1.3 Time Series Transformations

In this section, we present transformations that map the time series data from the given vector
space into the same or another space, i.e., time series are original elements of the vector space
R2 (See Definition 1). The basis B of a vector space V is a set of vectors that can represent all
vectors in V by their linear combination. The scalar product is the only required operation on
vector spaces for the transformations. Since the most common transformations performed on
time series data are based on the transformation into the infinite space of harmonic oscillations,
we suppose Hilbert spaces.

Definition 5 Hilbert Space Let H be a vector space with an inner product < f, g >. H is
called a Hilbert space if the norm defined by |f | =

√
< f, f > turns H into a complete metric

space, i.e., any Cauchy sequence of elements of the space converges to an element in that space.

The assumption of Hilbert spaces generalizes all finite-dimensional spaces with a scalar product,
such as Euclidean space with an ordinary scalar product. additionally, we use Hilbert spaces with
an infinite number of dimensions to present the concept of Fourier and Wavelet transformations.
Therefore, we need an infinite-dimensional Hilbert space of functions.

Definition 6 Function Space Let P be a Hilbert space. If the elements f ∈ P are functions,
P is called a Function Space.

Following Definition 6, the set of all functions f : R→ R with a finite integral
∫︁∞

−∞ f(x)2dx

together with the inner product < f, g >=
∫︁∞

−∞ f(x)g(x)dx form a well-known function space
L2.

2.1.3.1 Temporal Space

Time series typical components, such as trend or seasonality, may violate stationarity conditions.
Therefore, some transformations have been suggested to make the time series in question
stationary [54]. This section presents some of the commonly used transformations, namely
differencing, model fitting, logarithms, and root squares. Differencing consists of subtracting
the previous value of the time series from its current value:

x′
t = xt − xt−1 (2.6)

where x′
t is the transformed t-th value of the time series. This operation is generally used to

account for a trend component. For instance, we differentiate the original time series data to

18

2.1 Time Series

remove the trend component. Differencing can be applied multiple times to a time series. For
example, the well-known automatic forecasting procedure auto.arima [65] uses the KPSS test
described above to determine the number of times the series needs to be differentiated to reach
trend-stationarity. Differencing can also be used to account for seasonality by computing the
difference between the current time series value and the previous value from the same season:

x′
t = xt − xt−nsea (2.7)

where nsea corresponds to the seasonality period.
Fitting an appropriate model to the time series data is another manner to account for the

trend. In this case, the trend component is removed by modeling the residuals resulting from
that fit [54].

It may also happen that the time series has a time-varying variance, which also breaks
stationarity. In this case, applying logarithm or root square operations most often helps
stabilize the variance [66]. However, resulting negative data values thwart the use of these
approaches. One solution to mitigate this issue is to add a suitable constant to make the data
positive before applying these transformations. These approaches are particular instances of
the Box-Cox transformation [67].

2.1.3.2 Frequency Space

Fourier Transform was developed to inspect periodicity in time series, i.e., whether a time
series contains a pattern, which repeats itself after a specific amount of time, called a period.
The inverse of the period is named frequency. For instance, a time series with a period of 1
second, its frequency is 1 Hertz (Hz). The main idea behind the transformation is to decompose
the time series into a series of its periodic components. Therefore, for a periodic time series,
the definition for the continuous Fourier transform F of the time-domain description of a time
series X is given by:

F (ω) =
∫︂ ∞

−∞
e−iωtX(t)dt (2.8)

where ω is the frequency and an evaluation of X at time t, denoted by X(t), is given by xt. After
applying the Fourier transform on a time series, information about its composing frequencies
is obtained. At this step, we usually speak about the space of frequency or frequency-domain
description. The aim of applying the Fourier transform is to decompose the original time series
into a sum of its simpler signals, no matter how complex the original one looks. An example
of Fourier transform on synthetic data set with a number of individual frequencies [2, 5, 3] is
shown in Figure 2.2. In Figure 2.2, the frequency spectrum that composes the time series is
obtained after applying Fourier transformation.

To change from frequency back to the time domain, we apply the inverse transform given
by:

X(t) = 1
2π

∫︂ ∞

−∞
eiωtF (ω)dω (2.9)

If the time series represents a non-stationary or transient process, no information related to
changes in the frequency is available.

19

2. Background

Figure 2.2: Synthetic data, in the first horizontal box the original time series, next boxes the
individual components, corresponding to frequencies of 2, 5 and 3 respectively. In the vertical box,
the result of the Fourier transform.

Windowed Fourier Transform If the time series X changes its characteristics over time,
a frequency spectrum at time t = τ can be obtained by multiplying the time series by a
window-function g(t− τ) which is non-vanishing in the region t = τ only. The relevant part of
the time series can then be retained and analyzed. The WTF can be written as:

F (ω, τ) =
∫︂ ∞

−∞
X(t)g∗(t− τ)e−iωtdt (2.10)

where ∗ denotes the complex conjugate. The inverse transform is given by:

X(t) = 1
C

∫︂ ∞

−∞

∫︂ ∞

−∞
F (ω, τ)g(t− τ)eiωtdωdτ (2.11)

where C is a context is given by:

C =
∫︂ ∞

−∞
|g(t)|2dt (2.12)

The window used in WFT analysis may be rectangular, Cosine (Hanning), or Gaussian (Gabor)
shaped functions. The transform function F (ω, τ) yields information related to the frequency
spectrum at time τ . The frequency spectra obtained may, however, be strongly dependent on
the shape and, in particular, the width of the function. The window functions used in the
WFT analysis are independent of the frequency, and the choice of a particular window reflects
the trade-off between resolution in time and frequency. Hence, a wide (narrow) window gives
good (poor) frequency resolution and poor (good) time resolution.

The precision with which a signal could be simultaneously localized in time ∆t and
frequency ∆ω is given by:

Condition 3
∆t∆ω = const (2.13)

20

2.1 Time Series

This uncertainty relation is a consequence of the fact that in order to identify a certain
frequency, the duration of the time series must at least be of the same order as the period
corresponding to that frequency.

2.1.3.3 Wavelet Space

Subject to the uncertainty relation presented by Condition 3, the use of wavelet transforms
yields optimum time and frequency resolutions for the time series. The basis of wavelet analysis
is the (daughter) wavelets which are constructed from a basic mother wavelet Ψ by dilation
and translation, i.e., t → t−τ

a , where a is a scaling parameter. The daughter wavelet ψ can
then be written as:

ψ(t) = 1√
a

Ψ(t− τ
a

) (2.14)

The translation of the analyzing window in time is given by τ , as in the WFT. However, its
size can be adjusted to the frequency analyzed by the scaling parameter a. Short windows
are used for high frequencies, while long windows are used for low frequencies. The wavelet
transform is defined by:

W (a, τ) =
∫︂ ∞

−∞
x(t)ψ∗(t)dt (2.15)

The inverse transform or reconstruction formula is given by:

x(t) = 1
C

∫︂ ∞

−∞

∫︂ ∞

−∞
W (a, τ)ψ(t)dadτ

a2 (2.16)

where C =
∫︁∞

−∞
|Ψ(ω)|2

|ω| dω must be finite (the admissibility condition). Many wavelets types
are possible to use, provided they fulfill the following requirements:

Condition 4 Admissibility Condition (Zero Average)∫︂ ∞

−∞
Ψ(t)dt = 0

which implies that the wavelet must be oscillatory.

Condition 5 Finite Energy ∫︂ ∞

−∞
|Ψ(t)|2dt <∞

Condition 6 Existence of the Fourier Transform

Ψ(ω) =
∫︂ ∞

−∞
Ψ(t)e−iωtdt

In terms of the Fourier transform F (ω) given by Equation 2.8 and Ψ(ω), the wavelet
transform in Equation 2.15 can be written as:

W (a, τ) =
√
a

2π

∫︂ ∞

−∞
Ψ∗(aω)F (ω)eiωτdω (2.17)

Next, we give an example of the Fourier transform of a time series extracted from the
ElectroCardioGram (ECG) dataset 1. An ECG is a graphical representation of the electrical

1This data is sourced from https://www.physionet.org/.

21

2. Background

Figure 2.3: ARR ECG time series (above), FT transform (bellow).

Figure 2.4: Wavelet transform of the ARR ECG sequence.

activity of the heart. It consists of an electric signal that varies over time. This signal is used
for analyzing heart activity and predicting the presence of some diseases. Earlier, ECG data
was restricted to healthcare environments, but nowadays, smart devices like smartphones and
smartwatches can produce an electrocardiogram. Therefore, ECG data analysis is becoming
more and more demanded. One ECG signal can belong to one of three different classes: cardiac
ARRhythmia (ARR), Congestive Heart Failure (CHF), and Normal Sinus Rhythm (NSR).
In Figure 2.3, we plot as a time series sequence of an ARR example followed by its Fourier
transform.

In contrast to the very well-defined set of frequencies obtained with synthetic data, in
Figure 2.2, the Fourier transform in Figure 2.3 is less clear. Hence, some peaks can be identified,
but they are not sharp in some intervals. This is explained by the fact that the synthetic time
series is composed of three frequencies fixed in time opposingly to the time-varying frequencies
in the ECG time series, which violates Condition 3. A wavelet transform applied to the same
time series sequence from the ECG dataset is shown in Figure 2.4.

For better visualizing the transformation, we can use a scaleogram, a tool that builds
and displays the 2D spectrum for the continuous wavelet transform. A scaleogram takes the

22

2.1 Time Series

Figure 2.5: A scaleogram of the ARR ECG sequence wavelet transform.

absolute value of the wavelet transform coefficients of a time series and plots it. The scaleogram
is shown in Figure 2.5.

Each horizontal characteristic in the scaleogram can be interpreted as a frequency of the
total signal. The fact of not seeing a continuous line in Figure 2.5 corresponds to non-continuous
frequencies in time.

2.1.3.4 Correlation Space

A correlation measures the extent of a linear relationship between two variables; autocorrelation
measures the linear relationship between lagged values of a time series. Its value rp between xt

and xt−p can be written as:

rp =
∑︁T

t=p+1(xt − x̄)(xt−p − x̄)∑︁T
t=p+1(xt − x̄)2

(2.18)

where T is the length of the time series and x̄ its mean value. The calculation of autocorrelation
values between two points in time, t and t− p, produce the correlation space, where for each
lag p, the correlation coefficient rp in [−1,+1] is indicated. This transformation is commonly
used for audio data since it eases the recognition of the speed of the music, measured in beats
per minute [49].

In the case of the p-th order, the correlation between xt and xt−p can in part be due to
the correlation these observations have with the intervening lags xt−1, xt−2,· · · , xt−p+1. To
adjust for this correlation, the Partial Auto-Correlation Function (PACF) is calculated by:

PACFp = γ(t, t− p)
σtσt−p

(2.19)

where γ and σ are the covariance and the variance, respectively. For details, see Equations 2.5
and 2.4.

2.1.3.5 Symbolic Representation

Non-numerical representations of time series, such as Symbolic Aggregate approXimation (SAX)
which bins continuous time series into intervals, transforming each time series independently
into a sequence of symbols, usually letters [68], have recently been used in the task of time

23

2. Background

series forecasting [69], [70]. Note that such representations would potentially allow availing
of the wealth of data structures and algorithms from the text processing and bio-informatics
communities [68], [71], and possibly convert the real-valued data in a streaming fashion for
online tasks of time series [72].

2.1.3.6 Filters

A filter is an operator that maps the time series X into another series X ′ within the same
space. A linear filter satisfies the following:

x′
t =

∞∑︂
−∞

βjxt−j (2.20)

The collection β = {βj} is called a linear filter. X ′ is a linear function of X and it is a filtered
version of X. Linear filtering, where β is assumed to be a known collection of numbers, is
often used to identify patterns in a noisy time series.

Filtering involves a convolution between the two series X and β. The convolved series is
then X ′. At time instant t, the convolution is the sum of the product between the β series
going forward and the series X centered at time t going backward.

· · · xt+3, xt+2, xt+1, xt, xt−1, xt−2, xt−3 · · ·
× × × × × × ×

· · · β−3, β−2, β−1, β0, β1, β2, β3 · · ·

with
∑︁∞

−∞ |βj | <∞.

2.1.4 Multivariate Time Series

Looking at the time series from a univariate perspective means that only the present and
past values of the time series in question are available for fitting the forecasting model.
However, in nowadays rapidly growing digital environments and Internet-of-Things systems,
the representation of time series data involves most often multiple interdependent variables,
creating thus a Multivariate Time Series (MTS) data [17]. This data represents an enriched
form of information about the application.

Definition 7 Multivariate Time Series An MTS X is composed of multiple time series
variables, i.e. X = {X1, X2, · · · , XN}, that are interdependent. The MTS X1:T recorded
until a time instant T can be formally described as N × T -dimensional matrix, with Xt =
{x1

t , x
2
t , · · · , xN

t }, ∀t ∈ [1, T] which represent the spatial dimension of X at a fixed time instant
t and Xi

1:T represents the evolution of X over the temporal dimension on the time series
variable Xi.

X1:T =



x1
1 x1

2 · · · x1
T −1 x1

T
...

...
...

...
...

xi
1 · · · · · · xi

T −1 xi
T

...
...

...
...

...
xN

1 · · · · · · xN
T −1 xN

T


=



X1
...

Xt

...
XT



⊤

24

2.1 Time Series

In this work, the time series variables of an MTS are assumed to be recorded simultaneously
with the same frequency.

2.1.5 Time Series Distance Measures

In the context of MTS, it is most often required to measure the similarity between its composing
time series [16]. It is also possible to demand a computation of similarity between a set of
candidate univariate time series, i.e., individual time series for classification or clustering tasks.
Several similarity/distance measures have been proposed in the ML literature [73]. In this
section, we present some of the commonly used measures. Denote by Xi and Xr two time
series recorded until time T .

Minkowski Distance DMink [74] is a generalization of both Euclidean DE and Manhattan
DMan distances. The Minkowski distance between Xi and Xr, is given by:

DMink =
(︁ T∑︂

t=1
|xi

t − xr
t |q
)︁1
q

(2.21)

If q = 1, Equation 2.21 defines the Manhattan distance DMan. If q = 2, DMink gives then
the Euclidean distance DE , which is known to be more sensitive to outlier values in the time
series sequence due to its non-linear character. The main advantage of Minkowski distances is
that they are straightforward to compute and interpret. Minkowski distances do not take into
consideration the time interval between measurements, allowing them to be applied generally
to unequally spaced observations. Even though Minkowski distances, including Euclidean
distance DE and the Manhattan distance DMan, are mathematically simple, they have some
limitations. Most notably, they do not take into account the non-stationarity of variance or
temporal cross-correlations in the time series [75]. Consequently, the time series observations
with the largest variance will be overlooked by Equation 2.21 as they contribute more strongly
to the similarity [74]. To mitigate this issue, the Mahalanobis distance DMah is proposed [76]:

DMah =
√︂

(xi
t − xr

t)⊤Σ−1(xi
t − xr

t) (2.22)

where Σ is the covariance matrix of the time series, which needs to be estimated beforehand.
The assumption behind the DMah is that all the data points in a time series have temporal
distributions that can be represented by Σ. The major drawback of DMah is the need for prior
information on the covariance matrix.

Correlation measures The Pearson correlation coefficient DP C , also referred to as Pearson’s
r or the bivariate correlation, is a statistic that measures the linear correlation between Xi

and Xr and is given by:

DP C = E[(X i − µXi)(Xr − µXr)]
sXisXr

(2.23)

where µXi and µXr are the means of Xi and Xr, respectively, and sXi and sXr are their
corresponding standard deviations.

The Spearman’s rank correlation coefficient DSC , named after Charles Spearman, is a
non-parametric measure of rank correlation (statistical dependence between the rankings of

25

2. Background

two variables). It measures how well the relationship between two Xi and Xr can be described
using a monotonic relationship. A monotonic relationship checks whether the value of one
variable increases, so does the value of the other variable, or if the value of one variable
increases, the other variable value decreases. First, Xi and Xr are converted to to ranks R(Xi)
and R(Xr).

DSC = γ(R(X i),R(Xr))
sR(Xi)sR(Xr)

(2.24)

where γ(R(X),R(Y)) is the covariance of the rank variables, and sR(Xi)sR(Xr) are their
standard deviations.

The main difference between the two correlation coefficients is that Pearson’s correlation
is better suited when a linear relationship between the two variables exists. In contrast,
Spearman’s correlation works for monotonic relationships in general. Another difference is that
Pearson’s correlation is computed on raw data values of the variables, whereas Spearman’s
correlation is computed with rank-ordered variables.

Dynamic Time Warping Distance DTW has been introduced in the literature by
Vintsyuk, T.K. (1968) for audio time series data [77]. DTW can also be used for time series of
different lengths. We consider time series of the same length in our case. DTW searches for
the temporal alignment that minimizes Euclidean distance between aligned series. A temporal
alignment can be defined as a matching between time indices of two time series. More formally,
the optimization problem is given by:

DTWq(X i, Xr) = min
π∈A(Xi,Xr)

 ∑︂
(t,t′)∈π

DE(xi
t, x

r
t′)q

 1
q

(2.25)

Here, an alignment path π of length L is a sequence of indices pairs
(︂
(t0, t′0), . . . , (tL−1, t

′
L−1)

)︂
and A(Xi, Xr) is the set of all admissible paths. In order to be considered admissible, a path
should satisfy the following conditions:

• The beginning (respectively the end) of the time series are matched together:

– π0 = (0, 0).

– πL−1 = (T − 1, T − 1)

• The sequence is monotonically increasing in both t and t′ and all time series indices
should appear at least once, which can be written:

– tj−1 ≤ tj ≤ tj−1 + 1

– t′j−1 ≤ t′j ≤ t′j−1 + 1

The optimal alignment path, also called the warping path, can be computed using dynamic
programming. The matrix in Figure 2.6 shows the optimal warping path on the distance
matrix of the two time series. All warping paths start at the lower left corner and go to the
upper right corner. The optimal warping path has the lowest cost in this way. The cost of a
matrix cell (n,m) is (xr

n−xi
m)2, and the cost of a path takes the sum of all matrix cells it uses.

26

2.1 Time Series

Figure 2.6: The warping path between the two series Xi and Xr on the distance matrix. The
bounds with distance R are the Sakoe-Chiba-Band that is used to constrain the warping path.

Solving this dynamic programming problem has a complexity of O(T 2) given T is the length
of the time series. This makes DTW expensive to compute compared to Euclidean distance
with O(T) complexity. A simple constraint that decreases the computational cost of DTW is
the Sakoe-Chiba-Band [78]. A Sakoe-Chiba-Band of size R adds a constraint for the warping
paths. The elements of the warping path are not allowed to be further away than R from the
diagonal of the matrix. We also see this constraint in the matrix in Figure 2.6. The DTW
distance is between two time series using the warping path with minimal cost.

There has been a lot of research works focused on reducing the computational cost of
DTW and on its application for time series classification [79]–[81], clustering [82], and indexing
[83]. The State-of-the-Art implementation for subsequence search with DTW is called the
UCR Suite and is presented in [84]. The implementation utilizes multiple optimizations that
compute lower bounds of the DTW distance. If the computed lower bound value is already
higher than the current smallest distance, there is no need to calculate the real DTW distance.
A set of lower bounds with increasing complexity is computed, and only in the worst case
the full DTW computation is required. The computed subsequence match remains identical,
while the computational costs are reduced significantly. The introduced optimizations allow
the extensive use of similarity search using DTW [84], [85].

Fourier-based Distance The Fourier transform presented in Section 2.1.3 can be used to
transform the time series Xi and Xr into a set of scaled cosine waves with unique amplitude

27

2. Background

Aj and phase shift ϕj :

x
i/r
t = A

i/r
0 +

L−1∑︂
j=1

A
i/r
j cos(2πjt+ ϕ

i/r
j) (2.26)

where i/r denote the time series with index i or r with:

A
i/r
j =

√︃
(F i/r

j,c)2 + (F i/r
j,s)2 (2.27)

and

ϕ
i/r
j = arctan(

F
i/r
j,c

F
i/r
j,s

) (2.28)

j is the frequency of the Fourier transform components (i.e., the number of cosine wave
cycles over the time series), F c

j and F s
j are the real and imaginary parts in Euler’s equation,

respectively. Together Aj and ϕj describe the j-th frequency FT component as one cosine
wave in the frequency domain, whereas the sum of the cosine waves represents the original
time series [86]. The Fourier distance measure is given by the Euclidean distance between m

selected amplitude and phase components of the discrete Fourier transform:

DF T =

⌜⃓⃓⎷ m∑︂
j=0

(Ai/r
j −A

i/r
j)2 +

m∑︂
j=0

(ϕi/r
j − ϕ

i/r
j)2 (2.29)

Since the Fourier transform contains amplitude and phase, it is sensitive to amplitude scaling,
time scaling, and translation.

2.2 Concept Drift

In Section 2.1.2, we presented the notion of stationary time series. Hence, a time series is
considered stationary if its mean, variance, and autocorrelation structure are static over time.
Time series stationarity is closely linked to the phenomenon of the so-called concept drift [87].
When non-stationary occurs in a time series, it is considered subject to concept drift. In other
words, concept drift represents changes in the underlying process generating the time series
being followed. This change in the process naturally impacts the data distribution of the time
series, yielding it to change.

Even though the number to be predicted is referred to as the concept, it can also refer to
phenomena of interest other than the target idea, such as an input. However, it should be
noted that in the case of (real) concept drift, we refer to the change in the decision boundary
P (Y = output|X = input) [88]. In the case of data drift (or virtual drift), the boundary
remains the same even though P(X) has changed [88]. In this thesis, we will tackle data drift
for different variables of interest, such as error or correlation time series. Since these variables
are of interest for tracking significant changes in the forecasting methods, they are treated as
’concepts’, and we use concept drift to refer to drift detection in these variables.

28

2.2 Concept Drift

2.2.1 Concept Drift Types

Different types of concept drift can be distinguished [89]. Abrupt concept drift occurs when
the process generating the data suddenly changes. This type of drift can occur due to, for
example, some accidents. Incremental and gradual concept drifts happen when the data
distribution changes smoothly. This occurs due to, for instance, a trend component in the
time series. Reoccurring concept drift indicates cyclic changes in the dynamics of the time
series. One very common aspect that induces this type of concept drift is seasonality. Concept
drift is one of the major challenges when forecasting time series data. It generally happens
in dynamically changing environments and complicates the forecasting task [89]. Therefore,
forecasting methods should be able to cope with the non-stationary behavior of time series.
Particularly, according to Gama et al. (2014) [89], predictive models should be able to detect
concept drift as early as possible. It is also important that the models can distinguish between
concept drift and noisy time series data points, i.e., points that denote irregular values that
fall outside the standard behavior of the data. In other words, predictive models should be
adaptive to concept drift but at the same time robust to noise.

2.2.2 Concept Drift Adaptation

A taxonomy of adaptive algorithms designed to cope with concept drift is presented with
details in [89]. This taxonomy is organized according to different perspectives: memory, change
detection, learning, and loss estimation. In this part, we focus on the learning component
since it is per se enclosing the strategies that forecast the future behavior of time series and
update the predictive model over time. This is one of the major goals of this thesis. A complete
taxonomy overview is presented in [89].

Concept drift adaptation using learning strategies can be grouped into three main families.
The first family focuses on the learning mode. Hence, a predictive model may be retrained or
incrementally updated. The former regularly, for example, when a new time series observation
is available or periodically, e.g., with the collection of a certain number Tp of observations,
discards the current model and retrains a new one from scratch. Opposingly, incremental
approaches update the current model using incoming observations.

The second family focuses on the model adaptation fashion itself. In this family of methods,
we may distinguish two main types of adaptations, blind and informed. The blind adaptation
methods update the predictive models without any explicit detection of concept drift. Periodic
retaining and incremental algorithms are an example of this approach. Contrariwise, informed
adaptation approaches are put into action when some trigger is launched, for example, an alarm
that concept drift has occurred. Informed adaptation mechanisms are typically followed by
model retraining mode to adapt to the detected drifts. Finally, the third family includes model
management approaches that maintain a pool of different predictive models combined to make
predictions. This type of approach is commonly known in the ML literature as ensemble learning
[90]. The combined prediction is usually a weighted average of the individual predictions.
Ensemble models cope with concept drift by changing these weights over time. Ensemble
weights can be changed blindly by simply tracking the performance of the predictive models
over some validation time windows and setting their values such that the worst-performing

29

2. Background

models are penalized [12], [16]. These models are known in the literature as dynamic ensembles
[91]. In Section 2.6, we dive further into ensemble model learning for time series forecasting.

2.3 Time Series Learning Tasks

Before diving into the details of the forecasting task, we give a brief overview of the learning
tasks that occupy the attention of most time series analysis research [72].

• Indexing: consists of searching the similar time series from a database to a query time
series [92].

• Clustering: consists of finding groupings of time series in a database using a similarity
measure [93].

• Classification: consists of learning the relationship between a time series and a
categorical class label [20].

• Summarization: consists of determining an approximation of a very long time series,
i.e., composed of an extremely large number of data points. This approximation should
maintain the essential characteristics of the original time series but fits it to a single
executive summary such as a computer screen [94].

• Anomaly Detection: consists of detection parts in the time series that contain
anomalies, abnormal or novel behavior given some model/ knowledge of “normal” behavior
[95], [96].

2.4 Forecasting

One of the major goals of time series analysis is to predict the future behavior of the data. This
process is commonly known as forecasting, which consists of predicting the future values of a
time series as accurately as possible, given all the information available, including historical
data and knowledge of any future events that might impact the forecasts [54]. Forecasting is a
typical statistical task for several business structures since it plays a central role in decision-
making in many processes, such as scheduling and managing production, transportation, and
resources. In addition, forecasting helps to provide a guide for long-term strategic planning,
such as decisions on investments.

The forecasting horizon is defined depending on the specific application at hand. We may
distinguish between short-term, medium-term, and long-term forecasts. Short-term forecasts
are usually needed for scheduling purposes such as the scheduling of transportation, where
for instance, forecasts of demand are also most often required. With respect to medium-term
forecasts, they are usually related to the planning of future resource requirements, for example,
purchasing raw materials, hiring personnel, or buying machines and equipment. Long-term
forecasts are required in strategic planning. Such decisions must take into account some other
knowledge about the application. Such knowledge can be incorporated into the forecasting
model. For example, investment decisions should consider some information about market
opportunities, environmental factors, and internal resources.

30

2.4 Forecasting

In practice, it is advised that organizations develop a forecasting system that includes
several methods for predicting uncertain events [54], [97]. Such a forecasting system requires the
development of expertise in identifying forecasting problems, applying a range of forecasting
methods, selecting appropriate methods for each problem over time, and evaluating and
updating these methods over time. This emphasizes equally the strong need for online adaptive
forecasting methods.

In the early stages of a forecasting project, the problem has to be well-defined so that the
correct decision about what should be forecast is made. For example, in manufacturing, where
forecasts are required for quality prediction, it is necessary to make clear whether forecasts are
needed for every product line or group of products. Should it be based on weekly, monthly, or
annual data? It is also necessary to consider the suitable forecasting horizon for the application.
The frequency with which the forecasts need to be produced is also application-dependent.
Usually, forecasts that need to be produced frequently are better done using an automated
system than with methods that require careful manual work. For many applications, exchange
with domain experts is also required to ensure an adequate understanding of their needs and
how the forecasts are to be used efficiently before launching extensive work in producing the
forecasts.

Once the forecasting problem requirements are well-defined, it is then necessary to collect
the data that will be used to produce the forecasts. In the current information era, recorded
and stored data availability is continuously increasing. The forecaster’s task is often to identify
where and how the required data is stored. It has been reported that the largest part of a
forecast expert’s time is spent in locating and collating the available data before developing
suitable forecasting methods [54].

2.4.1 Definitions

Definition 8 Univariate Time Series Forecasting Given a historical realization of the
time Series X process, recorded until time t, {x1, x2, · · · , xt}, the goal is to forecast the
realization of this process at a horizon h. In other words, predict the value of X at t+ h, i.e.,
xt+h.

Definition 9 Multivariate Time Series (MTS) Forecasting Given Historical realizations
of time series processes Xi, ∀i ∈ [1, N] and X1:t denotes its corresponding Euclidean space
defined in Definition 7, the goal is to forecast all the N realizations of X at time instant t+ h.

Note that for MTS forecasting, it is possible to define one target time series Xi with
i ∈ [1, N] and the goal is then to predict the value of Xi at t+ h, xi

t+h using MTS forecasting
techniques.

2.4.2 Basic Steps

A forecasting task usually involves five basic steps.

1. Problem definition: This is the most critical step. Defining the problem precisely requires
a correct understanding of the task, who requires the forecasts, and how the forecasts will
be used in the application. To do this, a forecaster needs to spend some time talking to

31

2. Background

domain experts who can be involved partially in collecting data, maintaining databases,
and using the forecasts for future planning.

2. Data and Information Collection: Two types of information are most often required,
namely historical data and domain knowledge collected from the accumulated expertise
of the experts involved in the application. Sometimes it is difficult to collect enough
historical data due to, for example, the high costs related to data collection and storage
in many applications or data privacy and legal issues such as in the healthcare field. Old
historical data may also be outdated due to structural changes in the data generating
process. In this case, one may only use the most recent observations. However, it should
be noted that dynamic adaptive time series analysis methods can adjust the time window
involved in the learning process to overcome this issue [98], [99].

3. Exploratory Time Series Analysis: This analysis aims to discover the time series’
main component, such as the trend or seasonality components. It also investigates
the importance of such component and their relation to the dynamics of the time series.
It is also important to determine the available time series variables in the case of MTS
data and investigate the relationships between them. Various tools are available to
support this analysis. Further details are provided in Chapter 3.

4. Model Selection and training: The model selection consists of choosing the best forecasting
model to be used given the available historical time series data, the existing relationships
between time series variables, if many are available, and any other existing explanatory
variable. Model selection usually refers to the selection of the best model parameters
for one specific model, e.g., the parameters of the Auto-Regressive Integrated Moving
Average (ARIMA) model. It can also denote the selection between many forecasting
models. To generate these models initially, different hypotheses about the data and the
forecasting task modeling have to be drawn. Further details about forecasting models
are provided in Sections 2.4.3, 2.4.4 and 2.4.5.3.

5. Forecasting Model Evaluation: Once a model is selected and its parameters are estimated,
it can then be deployed to produce forecasts. However, the evaluation is only done once
the true values of the time series become available for that forecast period. Several
metrics have been proposed for assessing forecasting accuracy. Some of these metrics are
presented in Section 2.4.6.

2.4.3 Simple Forecasting Models

Some forecasting models are designed based on simple modeling assumptions. These models
have been shown to be effective in many applications [97]. In this section, four simple forecasting
models that are usually used as benchmarks are presented.

2.4.3.1 Mean Model

Using this model, the future forecast values are assumed to be equal to the mean value of the
historical data. Then assuming that measurements of X are collected until time t, the forecast

32

2.4 Forecasting

value hatxt+h of X at t+ h can be written as:

x̂t+h = X̄1:t = (x1 + · · ·+ xt)
t

. (2.30)

2.4.3.2 Naïve Model

For the Naïve model, we simply consider the forecast value to be exactly equal to the value of
the last observation. That is,

x̂t+h = xt (2.31)

This method is considered to be quite well-performing for many economic and financial
applications [54].

2.4.3.3 Seasonal Naïve Model

A similar model to the Naïve model that is useful for time series data depicting high seasonality
is given by the Seasonal Naïve Model. In this case, each forecast is set to be equal to the last
observed value from the same season. Formally, the forecast value at time t+ h is given by:

x̂t+h = xt+h−m(k+1) (2.32)

where m is the seasonality period, and k is the integer part of h−1
m (i.e., for example, the

number of complete years in the forecast period prior to time t+ h). For example, with weekly
data, the forecast for all future Tuesday values of transportation demand is equal to the last
observed Tuesday values. Similar rules are applicable to monthly and quarterly data and for
other seasonal periods.

2.4.3.4 Drift Method

A variation of the Naïve model that allows the forecasts to increase or decrease over time, with
the amount of change in the time series over time, here is called the Drift method. The forecast
value is set to the average change observed in the historical data. Therefore, the forecast value
at time t+ h is computed by:

x̂t+h = xt + h

t− 1

t∑︂
j=2

(xj − xj−1) = xt + h

(︃
xt − x1
t− 1

)︃
. (2.33)

This is equivalent to drawing a line between the first and last observations and extrapolating
it into the future.

2.4.4 General Auto-Regression Models

Auto-Regressive models are commonly used for time series forecasting. This family of models
projects a time series into a Euclidean space according to Taken’s method on time-delay
embedding [100]. Following the common ML setting for regression tasks, a set of observations
(zt, xt) is then constructed [9]. In each observation, each time series value xt is modeled based
on its own p past/lagged values, i.e., zt = {xt−p, · · · , xt−2, xt−1}, where, xt ∈ X ⊂ R, which

33

2. Background

represents the vector of values we want to predict, and zt ∈ Z ⊂ Rp represents the feature
vector for xt. The goal is then to build a regression model f̂ for approximating f : Z → X,
where f denotes the true function. Hence, this approach is based on modeling the conditional
distribution of the tth value of the time series based on its previous p values: f(zt|xt). Formally,
this approach is a regression problem. The temporal dependency structure is then modeled
using past observations as explanatory variables. This auto-regressive modeling is the essence
of many important forecasting models in the ML literature, for example, ARIMA [61]. The
time-delay embedding approach described above requires the determination of the number of
past values or lags p to be used, i.e. the embedding dimension which represents how far back
in time the auto-regressive process should go.

Over this section, we present forecasting models, for univariate time series, i.e single time
series but most of them can be generalized to MTS, as the time-delay embedding can also be
generalized to MTS data X = {X1, X2, · · · , XN}, by maps a set of observations from each
time series variable Xr ∈ X to a p × N -dimensional feature space corresponding to the p
past lagged values of each observation in each time series variable in X. Each observation is
then composed of a feature vector zr

t ∈ Z ⊂ Rp×N , which denotes the previous p values of
each variable in X, and a target vector xr

i ∈ X ⊂ R, which represents the value of the time
series variable we want to predict. The goal of MTS forecasting is then to construct a model
f : Z→ X, where f denotes the regression function.

2.4.4.1 ARIMA Family of Models

In this section, we present a special family of Auto-Regressive models which is based on a
combination of Auto-Regressive and Moving Average processes.

Auto-Regressive model X is considered to follow an Auto-Regressive process of order p
denoted by AR(p) if it satisfies:

xt = ϕ0 + ϕ1xt−1 + ϕ2xt−2 + · · ·+ ϕpxt−p + ϵt (2.34)

where ϵt is a white noise and the parameters {ϕj}j∈[0,p] are the AR model parameters. The
forecast value of a series can be interpreted as a slight perturbation of a simple function of the
most recent p observations.

Moving Average Series X is called to follow a Moving Average process of order q, MA(q),
if it satisfies the following:

xt = θ0 + ϵt + θ1ϵt−1 + · · · θqϵt−q (2.35)

where ϵt is a white noise and {θj}j∈[0,q] are the model parameters. It is easy to distinguish
between MA and AR series by analyzing the behavior of their AutoCorrelation Function
(ACF): the ACF of MA cuts off sharply while the ACF of AR decays in an exponential fashion.
For ACF computation, see Equation 2.18.

34

2.4 Forecasting

Integrated Model In this approach, the differentiated series of X can be modeled using a
white noise process. In general, the order of differentiation d is determined as the minimum
number of times the series needs to be differentiated to reach stationarity. A random walk
process is an example of an Integrated Model I(d) of order d. For d = 1:

x′
t = xt − xt−1 = ϵt (2.36)

where the values of the differentiated time series x′
t are just a function of the random term ϵ.

Auto-Regressive Moving Average Series X is assumed to be an Auto-Regressive Moving
Average process of order (p, q), ARMA(p,q) if it satisfies:

xt = ϕ0 + ϕ1xt−1 + · · ·+ ϕpxt−p + ϵt + θ1ϵt−1 + · · ·+ θqϵt−q (2.37)

where {θj}j∈[1,q] and {ϕj}j∈[0,p] are the ARMA model’s parameters.

Auto-Regressive Integrated Moving Average Model If a differentiated series of X
of order d, is an ARMA(p,q) process, then X is said to be an Auto-Regressive Integrated
Moving-Average series ARIMA(p,d,q). To fit the appropriate ARIMA model to the time
series X, the model orders p and q, and the differentiation order d need to be identified
accurately. First, the integration or differentiation parameter d is set up to stationarise the
time series and remove the responsible features of seasonality. For example, if the resulting
time series depicts a strong trend, e.g. growth or decline, then the process is clearly non-
stationary, and it should be differentiated at least once. The second test that can be used is
to examine the estimated autocorrelation of the time series. For a stationary time series, the
auto-correlations will typically decay rapidly to 0. For a non-stationary time series, the auto-
correlations will typically decay slowly if at all. Suppose that we have identified a particular
ARIMA(p,d,q) model which seems to represent a given time series. The second step would be
to fit the identified model to the data to estimate its parameters. Fitting the model can be
performed using Maximum Likelihood Estimation (MLE) procedures which allow producing
both estimates and standard errors for the model parameters. Once a model is fitted on a
time series sequence, it is important to assess the quality of fitness. This is because the quality
of forecasts depends largely on the appropriateness of the fitted model. The standard way
for evaluating the goodness of fit is through the evaluation of the residuals (i.e. deviations of
predicted from actual empirical values of the data). A simple investigation is to simply plot
the residuals and examine whether they are similar to a white noise series. After selecting the
appropriate model, estimating its unknown parameters, and verifying that the model fits well
the data, we can proceed to forecast the future values of the time series. Once the forecast
x̂t+1 is obtained for t+ 1, we can use it to obtain a forecast for xt+2 and then use these two
forecasts to generate a forecast for xt+3, and so on. The process can be then continued to
obtain forecasts out to any horizon h in the future by computing x̂t+h. However, it is important
to note that uncertainty increases as long as we predict further and further from the data.
Therefore, we can expect the standard errors associated with the predictions to increase.

35

2. Background

In practice, the Box-Jenkins approach [61] can be used for identifying, estimating, and
evaluating ARIMA models. The approach is based on a three-step iterative cycle of:

• Identification.

• Estimation.

• Verification

For identification, the data may require some pre-processing to make it stationary before
the differentiation procedure. To achieve stationarity, some or a combination of the following
operations may be required:

• Re-scale the time series data, e.g. by using a logarithmic or exponential transform.

• Remove deterministic components.

Then, the differentiation is carried out until stationarity is reached. In practice, usually, d = 1
or 2 should be sufficient. Assuming that the time series is stationary or made stationary.
The model identification is performed by evaluating the sample AutoCorrelations (ACF) and
Partial AutoCorrelations (PACF) (see Equations 2.18 and 2.19). First, we fit an ARMA(p,q)
model to the differentiated series. It is important to note:

• An MA(q) process has negligible ACF after the q-th term.

• An AR(p) process has negligible PACF after the p-th term.

• An ARMA(p,q) process has k-th order sample ACF and PACF decaying geometrically
for k > max(p, q).

In the estimation procedure of an ARMA model, it is possible to start estimating the
likelihood based on the early recorded time series observations. The identification procedure
requires substantial intervention from forecast experts to compute the above statistics.
Therefore, several attempts have been made to automate the model identification procedure.
The most straightforward method fits a set of models to the time series, then selects the “best”
model following some criteria. The most typical criteria to select the best model among a set
of candidates are:

• Small Schwarz criterion or BIC criterion [101].

• Small Standard Error (SEE) [102].

• High coefficient of determination R2 score [103].

The third stage in the Box-Jenkins procedure is to check whether the model fits the
observed time series data. There are several ways to do so:

• Check for overfitting by adding extra parameters to the model, e.g. regularisation
parameters, and using a likelihood ratio test or t-test to check that they are not meaningful
[104].

• Analyzing residuals by computing them and using the autocorrelation functions, ACFs,
PACFs, and spectral densities estimates, to check whether they denote a white noise
process.

36

2.4 Forecasting

2.4.4.2 Exponential Smoothing

Similar to an AR(p) model, the Exponential Smoothing model [105] expresses the future time
series observations as a linear combination of its past observations. In addition, the Exponential
Smoothing model attributes weights to the past values, such that they follow an exponential
decay giving lower weights, i.e. lower relevance, to older observations [54]. For instance, using
a simple exponential smoothing method, the forecast at t+ 1 of X is given by:

x̂t+1 = η0xt + η1xt−1 + η2xt−2 + · · · (2.38)

where the {ηj}j≥0 are the weights of past observations. Several exponential smoothing methods
are presented in the literature. For a comprehensive reading, we refer to the work by Hyndman
and Athanasopoulos (2018) [54].

2.4.4.3 Vector Auto-Regressive Model

In this section, we present the generalization of the AR process to MTS data. This is framed
under the Vector Auto-Regressive (VAR) model [17], [106]. The VAR model is one of the
most commonly applied models to handle dependencies among multiple random processes for
forecasting purposes [67]. Similarly to ARMA models, VAR departs also from a stationarity
assumption and possesses order p. It can be described as follows:

X̂t = Xt−1
⊤Φ1 + Xt−2

⊤Φ2 + · · ·+ Xt−p
⊤Φp + ϵt

=
∑︁p

j=1 Xt−j
⊤Φj + ϵt

(2.39)

where Φ = (Φ1, . . . ,Φp) ∈ RN×N , where N is the number of variables in the MTS (See
Definition 7), are the model’s parameters while ϵt is a vector white noise, i.e., E(ϵt) = 0.

The traditional VAR models share most of the properties, issues, and training schema as
for the above-mentioned ARMA ones. Naturally, the parameter matrices can easily scale up to
high dimensionality. Similarly to other regression frameworks, it is expected that the model
complexity increases, thus leading (with a high likelihood) to sparse solutions.

2.4.5 Deep Neural Networks

2.4.5.1 Some Deep Learning Notions

Artificial Neural Networks (ANNs) have been successfully applied to a wide variety of learning
tasks, including time series forecasting. ANNs are composed of a collection of connected units
or nodes called artificial neurons which are conceptually inspired by biological neurons. Each
connection is providing the output of one neuron as an input to another neuron and is assigned
a weight that represents its relative importance. A given neuron can have multiple input and
output connections. Basically, every single neuron takes some inputs, processes them, and
computes an output by some function (usually non-linear and called activation function) of
the sum of its inputs, weighted by the weights of the connections from the inputs to the
neuron (a bias term is added to this sum). The initial inputs are a sample of the external data
or its feature values. The ultimate outputs are intended to solve the learning task, such as
forecasting the next value of a time series. Typically, neurons are aggregated into layers. The

37

2. Background

layer that receives external data is called the input layer. The layer that outputs the final
prediction is called the output layer. In between these layers, there are zero or more hidden
layers. Single-layer and unlayered networks can also be used. Between two layers, multiple
connection patterns can exist. They can be fully connected such that every neuron in one
layer is connected to every neuron in the next layer. They can be pooling, where a group
of neurons in one layer is connected to a single neuron in the next layer, resulting thus in
reducing the number of neurons in that layer. They can be convolutional layers which are
the major building blocks used in Convolutional Neural Networks (CNNs). As mentioned in
Section 2.1.3.6, convolution is the simple application of a filter to an input that results in
activation. Repeated application of the same filter to an input results in a map of activations
called a feature map or activation map, indicating the locations and strength of a detected
feature in the input, such as specific regions in an image. Neurons with connections forming
a directed acyclic graph are called feedforward networks. Alternatively, networks that allow
connections between neurons in the same or previous layers are known as Recurrent Neural
Networks (RNNs). A deep neural network (DNN) is an artificial neural network (ANN) with
multiple layers between the input and output layers.

2.4.5.2 Learning a Deep Neural Network

Deep Learning incorporates new representations of the raw data in Z through transformations
ϕ : Rp → Rp′ that map the raw data to another space ϕ(Z) = Rp′ . In the learning process,
i.e., ϕ = ϕθ, is fitted to some sample of data. As we mentioned above, DNNs learn ϕθ in
multiple levels of abstraction. Each level corresponds to one layer of the network. The overall
DNN can be viewed as nested layer transformations f(zt) = f (l)(f (l−1)(· · · f (1)(zt)) where l is
the depth of the network. Each layer f (i) : Rp(i−1) → Rp(i) applies two operations. First, an
affine transformation that consists of a weighted sum or a convolution is computed. Then, an
activation function, e.g., tanh or ReLU activation, is applied. Each layer is parametrized by
the weights used in the affine transformation, while the activation function is usually fixed.
These weights are learned automatically using an optimization procedure that minimizes an
objective loss function. In order to estimate the loss/error of some given weights values, a
differentiable loss function is then defined. The most commonly used loss function in DNNs
for the forecasting task is the Mean Square Error loss [107]:

L(xt) = (xt − x̂t)2 (2.40)

with x̂t is the forecast value xt. Similarly, we can define the average loss for a whole training
composed, for example, of T pairs of (zt, xt) by:

J(ω) = 1
T

T∑︂
t=1

L(xt) (2.41)

with ω is the set of weights to be learned by the network. The loss function is minimized to
learn the weights in ω using a gradient descent method:

w = w − α∂L
∂w
|∀w ∈ ω (2.42)

38

2.4 Forecasting

with α is the learning rate of the optimization algorithm. By subtracting the partial derivative,
the model is actually auto-tuning the parameters w ∈ ω in order to reach a local minimum of
J . Since the partial derivative with respect to certain parameters w ∈ ω can not be in most of
the cases computed directly, a chain rule of the derivative is employed using the well-known
backpropagation algorithm [108].

2.4.5.3 Deep Learning for Forecasting

DNNs have shown the ability to automatically learn new, complex, and enriched feature
representation from input data [109], thus achieving a good performance in solving a wide
variety of tasks. Multi-Layer Perceptrons (MLPs) mlp, Recurrent-based Neural Networks
such as Long Short-Term Memory Networks (LSTMs) [110], as well as Convolutional Neural
Networks (CNNs) [111], have been widely used as State-of-the-Art neural networks architectures
for solving the forecasting task [112], [113]. Many improvements over these network architectures
have been proposed in the literature, ranging from optimizing the architecture structure to
combining these networks together in one single forecasting task [113]–[115].

2.4.5.4 Multi-Layer Perceptron

The MLP usually consists of an input layer, one or more hidden layers, and an output layer.
The input layer has p variables, i.e., the dimension of zt, and it is fed to the first hidden layer.
The neuron output from the first hidden layer is fed as the input to the following hidden
layer, and so on. The neuron output from the last hidden layer is fed to the output layer. The
neuron’s output is given by:

xt = f(ωzt + b) = f(
p∑︂

j=1
wjxt−j + b) (2.43)

where zt is the input variable, f is a nonlinear activation function, ω = {wj}j∈[1,p] and b are
the weight and bias of the linear transformation. Rectifier linear unit (ReLU) is most often
applied as an activation function in the hidden layers, as shown in Equation 2.44, and the
output layer does not apply any activation function in the forecasting task.

f(a) = {0, if a < 0 and a, if a ≥ 0} (2.44)

The MLP models the relationship between input and output pairs by learning from the
recorded time series data. Mean squared error (MSE) is applied as a loss function (see Equation
2.40). Figure 2.7 shows an example of an MLP architecture for the task of time series forecasting.
The input layer uses the p-lagged values for each time series data point xt, represented by the
vector of values zt. These p-lagged values are considered as the input feature and are fed to
the first hidden layer that has n neurons. The neuron output from the first hidden layer is
fed as input to the next hidden layer, and so on, until the last hidden layer. Finally, the last
hidden layer output feeds into the output layer.

It should be noted that there are some problems related to the application of MLPs for
time series forecasting. For instance, the length of the input sequence to be fed to the network,
i.e. the number of lagged values p to be used, is difficult to determine. In addition, it is difficult

39

2. Background

Figure 2.7: MLP architecture for time series forecasting.

Figure 2.8: Unfolded basic RNN architecture for time series forecasting.

to achieve convergence when learning the network’s weights and easy to fall into the local
minimum problem [116]. The network structure, e.g., the number of hidden layers, is also hard
to determine beforehand.

2.4.5.5 Recurrent Neural Networks

The Recurrent Neural Network (RNN) is a class of neural networks that allow output from
some nodes to affect subsequent input to the same nodes. This allows it to exhibit temporal
dynamic behavior. Opposingly to MLPs, RNNs do not consume all the input data at once.
They display a sort of memory by handling sequential data, accepting the current input data,
and previously received inputs. They can memorize previous inputs due to their internal
memory. At each step, the RNN does a series of calculations before producing an output. The
output, known as the hidden state, is then combined with the next input in the sequence to
produce another output. This process continues until the model is programmed to finish or
the input sequence ends. An example of unfolded basic RNN architecture is shown in Figure
2.8, xt is the input at time t that will be fed into the hidden state (ht), and yt is the output.
The hidden states computations are shown in Equations 2.45 and 2.45.

ht = tanh(ωhhht1 + ωxhxt) (2.45)

yt = ωhyht (2.46)

Even though RNNs have a timing concept in their architecture and seem to be more
suited for handling time dependencies in a sequence of time series observations for forecasting
purposes, they have serious problems, most gravely the rapid gradient degradation, also known
as the vanishing gradient problem [116] meaning that in training, the gradient becomes too
small, and the parameter updates become insignificant. This makes the learning of long
data sequences difficult. LSTMs are a special kind of RNNs capable of learning long-term

40

2.4 Forecasting

Figure 2.9: Hidden layer neuron structure of an LSTM neural network.

dependencies by remembering information for long periods. To do so, some modifications are
introduced to the computation of the hidden states. LSTMs were first introduced by Hochreiter
and Schmidhuber (1997) [117] and were refined and popularized by many following works [70],
[110], [118], [119]. The Hidden layer neuron structure of an LSTM neural network is described
in Figure 2.9.

We can distinguish four gates:

• Forget Gate (ft):
ft = σ(ωf .[ht−1, xt] + bf) (2.47)

where σ is a sigmoid function, t is the current time step, ft is the forget gate at time t,
xt is the input, ht−1 is the previous hidden state, ωf is the weight matrix between forget
gate and input gate, and bt is the connection bias at time t.

The forget gate is devised to select which information needs attention and which can be
ignored. The information from the current input xt and the hidden state h(t− 1) are
passed through the sigmoid function σ. Sigmoid outputs values between 0 and 1 to decide
whether the part of the old output is necessary to keep by generating a value close to 1.
This value output by ft will be used later by the cell for point-by-point multiplication.

• Input Gate (it):

it =σ(ωi.[ht−1, xt] + bi) (2.48)

C̃t = tanh(ωC̃ .[ht−1, xt] + bC̃) (2.49)

where t is the current time step, it is the input gate at time t, ωi is the weight matrix
of the sigmoid operator between the input and output gates, and bi is the bias vector,
and C̃t is the value generated by tanh, and ωC̃ is the weight matrix of the tanh operator
between cell state information and the network output and bC̃ is the bias at t w.r.t ωC̃ .

The input gate computes a set of operations to update the cell status. First, the current
state xt and previously hidden state ht−1 are passed into the second sigmoid function. The
output values are converted to 0 for referring to "important" and 1 for "not important."
Second, the same hidden and current state information is forwarded to the tanh function,

41

2. Background

which outputs the vector C̃t that produces values between −1 and 1 to regulate the
network. These output values computed by the activation functions will also be used for
point-by-point multiplication in the cell gate.

• Cell Gate (Ct):

Ct = ft.Ct−1 + it.C̃t (2.50)

where t is the current time step, Ct is the cell state information, ft is the forget gate at
time t, it is the input gate at time t, Ct−1 is the previous cell state and C̃t is the value
generated by tanh at time t. After receiving the computed information from the forget
gate and input gate, this step is devised to select and store the information from the new
state in the cell state. To do so, the previous cell state Ct−1 gets multiplied with forget
vector ft. If the output is 0, then values will get dropped in the cell state. Next, the
network takes as output the value of the input vector i(t) and computes point-by-point
addition, which updates the cell state giving the network a new cell state C(t).

• Output Gate (ot):

ot = σ(ωo.[ht−1, xt] + bo) (2.51)

ht = ot. tanh(Ct) (2.52)

The output gate computes the value of the next hidden state, which in its turn contains
information from previous inputs. The values of the current state and previous hidden
state are forwarded to the third sigmoid function. Then, the new cell state generated
from the cell state is passed through the tanh function. These two outputs are multiplied
point-by-point. Based on the final value, the network makes the decision on which
information the hidden state should receive. This hidden state is used for prediction.
Finally, the new cell state and new hidden state are brought to the next time step.

To sum up, the forget gate ft determines which pertinent information from the prior steps is
required. The input gate selects which relevant information can be counted in the current step,
and the output gate finalizes the next hidden state.

2.4.5.6 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are initially designed for image data by considering
feature extraction from two-dimensional data. A similar one-dimensional architecture of CNNs
can be used for univariate time series classification, and forecasting [111], [120].

In the case of a univariate time series, convolution can be interpreted as applying and
sliding a filter over the time series. Opposingly to the case of image data, the filters operate
only on one dimension, i.e., time dimension, instead of two dimensions like the case for images,
i.e., width and height. The filter can also be considered as a generic non-linear transformation
of the raw time series data. A general form of applying the convolution on the time series X

42

2.4 Forecasting

at a centered time stamp t is given by:

Ct = f(K ◦Xt− l
2 :t+ l

2
+ b) (2.53)

with K is a filter of length l, Xt− l
2 :t+ l

2
is the subsequence of the time series X centered at time

t, ◦ is the convolution operator (a discrete convolution of two one-dimensional signals f and g,
written as f ◦ g, is defined as f ◦ g(i) =

∑︁∞
j=−∞ f(i)g(i− j) and if the signals are finite, the

infinite convolution may be truncated), b is a bias parameter, and f is a non-linear function
such as the Rectified Linear Unit (ReLU). Several filters are usually applied to the time series.
An intuition behind applying several filters on an input time series would be to learn multiple
new features useful for the forecasting task [121]. In order to learn automatically the values
of the filter K, the convolution should be followed by a discriminative classifier. It should be
noted that some pooling operations, such as average or maximum computation, can also be
applied after the convolution to reduce the time series length by aggregating it over a sliding
window. A batch normalization operation can also be performed to accelerate the network’s
convergence. In the context of time series, batch normalization is performed over each channel,
preventing thus the internal covariate shift across one mini-batch training of the time series.

The architecture of a CNN used for time series forecasting usually consists of an input
layer, a convolutional layer, a pooling layer, a flattened layer, a fully connected layer, and an
output layer. The input features are fed into the convolution layer. A filter is applied to an
input feature in the convolution layer to produce a feature map. The activation function is
applied to the results. The output from the convolution layer is fed to a pooling layer which
performs an aggregation operation to reduce the size of the feature map. The pooled feature
map is passed into a flattened layer to convert the data into a one-dimensional array for
inputting it into the next layer. The flattened layer output is fed to a fully connected layer.
The weights are applied to process the data in the fully connected layer. The fully connected
layer output is fed into the output layer. The ReLU is usually applied in the convolution layer
as an activation function. The activation function is not applied to the remaining layers. An
example of a one-dimensional convolutional neural network (1D-CNN) is shown in Figure 2.10.

2.4.6 Forecasting Evaluation Metrics

Evaluation metrics are required to quantify the predictive performance of a forecasting model.
Typically, one way is to measure the deviation between the predicted values output by the
forecasting model and the true values of the time series. However, there is no single unified
way for measuring this deviation, i.e., error, that performs well under all situations [54]. In
fact, it is difficult to define an error measure that works for any type of non-stationarity in
the time series [1]. In addition, selecting the appropriate error metric for a given forecasting
task is highly domain and application-dependent. This is why evaluating forecasting models’
performance is still an active area of research [1], [122]. In the following, we present four error
measures that though having some problems, are still commonly used for the evaluation of
forecasting models’ performance. These measures are the Mean Absolute Scaled Error (MASE)
[123], the symmetric Mean Absolute Percentage Error (sMAPE) [124], the Mean Absolute
Error (MAE) [125], and the Root Mean Squared Error (RMSE).

43

2. Background

Figure 2.10: One-dimensional convolutional neural network (1D-CNN) architecture for the time
series forecasting.

MASE =
∑︁T

t=1 |xt − x̂t|
lnaive

(2.54)

where lnaive represents the average loss of the naive method in the training set used to build
the respective forecasting model.

sMAPE = 100%
n

T∑︂
t=1

|xt − x̂t|
xt+x̂t

2
(2.55)

MAE =
∑︁T

t=1 |xt − x̂t|
T

(2.56)

RMSE =

√︄∑︁T
t=1(xt − x̂t)2

T
(2.57)

For time series datasets that contain zero-valued observations, computing the sMAPE error
measure may result in divisions by zero. Therefore, one variant of the sMAPE was presented
in [126] to solve the issue of small values and divisions by zero of the original sMAPE by
adding an additional component to the denominator of sMAPE. Furthermore, sMAPE breaks
symmetry because under-prediction gives higher errors than over-prediction, even though
the computed absolute error looks the same. The MASE avoids the problems stated for the
sMAPE metrics such as symmetry issues and divisions by zero. Its only issue arises when
the naive forecast has very different performance for different parts of the time series (e.g.,
different time windows). As a general guideline, scale-dependent error measures such as the
MAE or the RMSE are advised to be considered first [1]. In fact, they are straightforward to
interpret and do not share many of the drawbacks of the other measures. MAE is minimal
for a forecast that is the median of the forecasting distribution, while RMSE is minimal for
its mean. As such, the only drawback of the RMSE is the high sensitivity toward outliers.

44

2.5 Model Selection

For the MAE, in the case of a series with over 50% zeros, called intermittent time series, the
best-performing model will be the one with a forecast heavily biased towards zero.

2.5 Model Selection

Forecasting models’ performance estimation is not only used for reporting to the end-user
an estimate of the expected generalization ability of a given forecasting model but also for
performing the adequate model selection. Model selection is usually performed among a set of
possible alternative models that can belong to the same family but have different parameter
settings or to different families of models. A significant amount of work in the literature
addresses the former for the time series forecasting task [122], [127]–[129]. In this work, we
address the latter problem.

The main goal of model selection is to determine which model yields the best predictive
performance because the exact model that describes the time series generating process is
unknown. Therefore, model selection is usually based on comparing competing models and
selecting the best that models accurately the time series. Model selection is a challenging task
in time series analysis in general and in time series forecasting in particular. This is due to
the time-changing nature of time series, which in turn affects the forecasting models [130]. An
improper model selection leads to choosing a poor model with low prediction accuracy. As
we mentioned, a forecasting model is an approximation to the time series generative process.
Thus, it is crucial to reject a model far from reality and select the model that enhances the
quality of such approximation [128].

Several methods for model selection have been presented in the literature over the last
decades. For instance, in [131], [132], the authors claim that model selection should be conducted
as a result of its predictive performance on an independent time series dataset, e.g., validation
or test set. In this way, enhanced model performance can be achieved through adequate
performance-based model selection. In this context, forecasting evaluation metrics can be used
for model selection [133]–[135]. The Mean Squared Error is used in [133] as a criterion for
model selection and claimed that it is more suitable than using the Residual Sum of Squares
(RSS) which is also known as the Sum of Squared Residuals (SSR) or the Sum of Squared
estimate of Errors (SSE) and is computed using the sum of the squares of residuals, a small
RSS indicates a tight fit of the model to the data. Opposingly, authors in [134] suggested the
use of RSS for model selection.

In [136], the authors argue that in addition to a good predictive performance on some data
samples, model selection has to take into account how well the model approximates the true
time series process. Therefore, many works [128], [132], [137] suggest the use of an Information
Criterion that measures the quality of a model by taking into account how well it fits the
data and its complexity. Akaike Information Criterion (AIC) [138], Bayesian information
criterion (BIC) [139] and Structural Risk Minimization (SRM) [140] are the most widely used
information criteria for model selection [130], [141]. A comprehensive reading about these
criteria for model selection can be found in [132]. The authors of [135] suggested using an
unbiased Akaike Information Criterion (AICu) and argued that it outperforms AIC and the
biased correction Akaike Information Criterion (AICc). However, in a recent study [142], it

45

2. Background

has been shown that AIC outperforms several other tools and methods of model selection.
In [141], the author shows that the ultimate decision to use the AIC or BIC depends on
many factors, including the loss function employed, the study’s methodological design, the
substantive research question, and the notion of a true model and its applicability to the study
at hand.

To sum up, different methods and tools for model selection for the task of time series
forecasting have been proposed in the ML literature ranging from domain or application-specific
to general. However, it is also a piece of evidence that there is no unified method or way for
model selection [141], but it is important to note that some of the procedures recommended
in the literature, especially the methods that are based on computing statistical estimates
for information criterion or data likelihood, are complex, laborious, and time-consuming, and
even though more theoretical than empirical, are less effective [130]. In addition, most of the
above-mentioned works present offline model selection methods in the sense that the selection
is made once at a time and kept static in the forecasting stage. There have been some recent
but very scarce attempts to address the problem of time series forecasting using online learning
[143]. Again, most of these methods rely mainly on blind model selection updates in the
sense that even though the model selection is performed in an online manner, it does not
take into account explicitly the significant changes in the time series data and the models’
performance over time [143]–[145]. For instance, In [144], an online approach that relies on
regret minimization techniques is adapted to ARMA family of models. A new model is learned
(i.e., new ARMA model parameters and coefficients are estimated) each time a new time
series observation is acquired. Using the same learning fashion, an online learning method
to estimate the parameters of ARIMA models by reformulating it into a full information
online optimization task (without random noise terms) is presented in [145]. This is achieved
by adopting a game-theory-based approach, where an online player sequentially executes a
decision (i.e., ARIMA’s coefficient setting) and then suffers from a loss that may be unknown
to the decision maker ahead of time. It can be adversarial or even depend on the actions
taken by the decision maker. More recently, an online model selection has been performed
based on the predicted forecasting error [146]. Candidate models are ranked according to their
predicted performance, i.e., model comparison. The model with the lowest predicted error
measure gets selected. The selection is updated without any indication of whether the change
in the candidate models’ ranking, i.e., performance, is significant or not.

2.6 Ensemble Learning for Time Series Forecasting

Despite the wide range of models that have been developed and applied for time series
forecasting, it is widely accepted that none of these models is universally valid for every
forecasting application and every time series data [1], [9], [10], [53]. This statement is confirmed
empirically through the experiments conducted by Aiolfi and Timmermann (2006) [147], which
reported the relatively different performance of the forecasting models over different time series.
A larger empirical evaluation is presented in [1] where an experimental evaluation of 13 different
baseline forecasting models on 58 data sets that include both real-world and competition time
series datasets covering various domains is reported. The results of the evaluation showed that

46

2.6 Ensemble Learning for Time Series Forecasting

none of the models is the best performing in all the cases. Instead, these models have a large
variance in performance over different time series datasets. This also seems to be a particular
case of the No Free Lunch theorem by Wolpert (1996) [21], which states that no learning
algorithm is best suited for all the learning tasks. Furthermore, models have a time-dependent
performance even for the same forecasting application. In other words, forecasting models’
performance change over time. This has also been confirmed in the study carried out by Aiolfi
and Timmermann (2006) [147] that have shown that while some forecasting models denote a
varying relative performance over time and some others maintain good (or bad) throughout
the whole time series. This behavior of the models is also time series dependent and varies
from one case to another. In this context, one reasonable solution is combining forecasts of
different models to obtain one desired forecast value. This is formally broached in the ML
literature by ensemble learning. Ensemble methods [9], [11], [16], [29]–[31], [148] have been a
very popular research topic during the last decades. The success of ensemble methods stems in
part from the fact that they offer attractive solutions to a wide variety of learning problems
from the past and the present, such as improving predictive performance [16], [29], learning
from multiple physically distributed data sources [46], scaling inductive algorithms to large
databases [149] and learning from concept-drifting data streams [16].

Ensemble construction can be divided into three main stages:

1. Ensemble members generation: This stage consists of learning single individual models
composing the ensemble. To do so, M possible hypotheses are formulated to model a
given learning task. This results in M different individual models called base models or
ensemble members.

2. Ensemble pruning: In this stage, only a subset of k < M hypotheses is kept. This stage
is devised to reduce the ensemble size and corresponding resource consumption while
promoting its performance.

3. Ensemble aggregation: The kept hypotheses from the pruning stage are aggregated
together into one single model using some aggregation rule, e.g., majority voting or
averaging.

In this thesis, we are particularly focusing on linearly aggregated ensembles, i.e., linearly
weighted, where the aggregation rule is time-dependent. In other words, the weights are set
sequentially following an online learning fashion to cope with the time-changing nature of time
series data.

Definition 10 Sequential Convex Ensemble Aggregation for Time Series Forecast-
ing

Denote with P = {f1, f2, · · · , fM} a pool of M forecasting models trained to approximate a
true unknown function f that generated the time series X. Let x̂t+h = (x̂f1

t+h, x̂
f2
t+h, · · · , x̂

fM
t+h)

be the vector of forecast values of X at a future time instant t+ h, h ≥ 1 (i.e. xt+h) by each of
the models in P. An ensemble model f̄P of P at time instant t+ h can formally be expressed as
a convex combination of the forecasts of the models in P.

f̄P(x̂t+h) =
M∑︂

i=1
wi,t+hx̂

fi
t+h (2.58)

47

2. Background

where wt+h = {wi,t+h}i∈[1,M] are the ensemble weights. The weights are constrained to be
positive and sum to one. This constraint is necessary for some of the following results. These
weights are the result of some adopted aggregation rules.

The aggregation rule can be determined or learned using several approaches. Further details
are provided in Section 2.6.3.

2.6.1 Ensemble Error Decomposition

The expected error of the ensemble of the models in P ef̄ at a future data point xt+h can be
expressed as follows [150]:

ef̄ (xt+h) = (xt+h − f̄(x̂t+h))2

=
M∑︂

i=1
wi,t+h(xt+H − x̂fi

t+h)2 −
M∑︂

i=1
wi,t+h(x̂fi

t+h − f̄(x̂t+h))2 (2.59)

= ē(xt+h)− ā(xt+h)

The left term in Equation 2.59 refers to the weighted average error of the base models ē and
the right term to the ensemble ambiguity ā which is simply the variance of the ensemble
around the weighted mean and it measures the disagreement between the models, i.e. ensemble
members, on xt+h. The trade-off between these two determines how well the ensemble performs
at this data point. The above relations can be averaged over several H time steps and the
ensemble generalization error can be written as:

Ef̄ = 1
H

H∑︂
h=1

ef̄ (xt+h)

= 1
H

H∑︂
h=1

(ē(xt+h)− ā(xt+h)) (2.60)

= Ē − Ā

Equation 5.9 expresses the decomposition into bias and variance in the ensemble. If the
ensemble is strongly biased, the ambiguity is expected to be small. This is mainly due to the
single models implementing very similar functions and thus the agreement between them is
expected to be big even on data points outside the training set. Therefore, the generalization
error of the ensemble will be essentially equal to the weighted average of the generalization
errors of its members. However, in the opposite case, if the ambiguity is high, i.e. there is
a large variance, and in this case, the generalization error will be smaller than the average
generalization error. In addition, it is important to note that Ef̄ is positive. Therefore, Ā
can be viewed as a lower bound for Ē. This explains why promoting diversity by increasing
ambiguity leads at some point to an increase in the average error of the ensemble members.
Therefore, a trade-off between the average of the members’ errors and the ambiguity should
be established.

In the case of an equally-weighted ensemble with fixed weights over time, i.e., wi,t+h =
1

M , ∀i ∈ [1,M], ∀h ∈ [1, H], ef̄ can be arranged and decomposed into bias, variance and
covariance [148]. Since we train the single models fi, ∀i ∈ [1,M] on a training time series data,

48

2.6 Ensemble Learning for Time Series Forecasting

i.e., a sequence of the time series X of some length Ttrain, which is a historical realization of
some random process that generates X, and the pool of models P may include some models
that require some parameters’ initialization drawn according to a random variable, e.g., the
weights of a neural network, we use the expectation operator E{.} is with respect to these
random variables:

ef̄ (xt+h) = bias
2 + 1

M
var + (1− 1

M
)covar (2.61)

with

bias = 1
M

M∑︂
i=1

(︁
E{fi(xt+h)}− < xt+h >

)︁
(2.62)

where < xt+h > denotes the expected value of X at time t+ h given the noise.

var = 1
M

M∑︂
i=1

E{
(︁
fi(xt+h)− E{fi(xt+h)}

)︁2} (2.63)

covar = 1
M(M − 1)

∑︂
i

∑︂
j,j ̸=i

E{
(︁
fi(xt+h)− E{fi(xt+h)}

)︁(︁
fj(xt+h)− E{fj(xt+h)}

)︁
} (2.64)

The decomposition presented in Equation 2.61 shows that in addition to the bias and
variance of the individual ensemble members, the ensemble error also depends on the covariance
between the members. While the bias and variance terms are restrained to be positive, the
covariance between the single models can take some negative value. The covariance term
reflects some extent the diversity between the ensemble members and appears as an extra
degree of freedom in the bias-variance dilemma. This extra degree of freedom is beneficial
in the sense that it allows the ensemble model to approximate functions that are difficult to
determine using a single model [151].

It is also important to note the differences between the two decompositions. Opposingly to
the error-ambiguity decomposition (Equation 2.59), the bias-variance-covariance (Equation
2.61) does take into account the distribution over possible training sets or possible single
models’ parameter initialization [152]. Therefore, it is deemed to be more useful since we are
generally interested in, of course, the expected error on future time series data points given
these distributions.

2.6.2 Ensemble Pruning

Ensemble pruning has been widely studied in the literature for classification problems [29],
[30], [153]–[156]. Few works tackled this issue for time series forecasting, especially in an online
dynamic fashion [157]. Therefore, this section discusses the works on ensemble pruning in
general and shows which methods have been transferred from classification or devised for time
series forecasting. Ensemble pruning is a desirable and widely popular method to overcome
the deficiency of high computational costs of traditional ensemble learning techniques and
improve their performance. An ensemble with a very large number of models may add a lot of
computational overhead due to the large memory requirements of some of its base models, e.g.,
decision trees [28]. The optimization of run-time overhead is imperative for certain applications
where real-time requirements have to be met, such as in online forecasting. In addition, when

49

2. Background

models are distributed over a network, the reduction of models leads to a reduction in the
resulting communication costs [30]. Furthermore, both theoretical and empirical studies have
shown that ensemble performance depends on the performance of its members and how diverse
they are [29], [148], [154], [155]. All the previous works agree that encouraging diversity is
beneficial for enhancing the ensemble’s performance, but it is hard to tell the theoretical
properties of diversity in an ensemble [29]. Therefore, understanding and promoting ensemble
diversity remains an important research question for ensemble learning.

The generalization performance of an ensemble depends on its empirical error and diversity
[29]. It is thus reasonable to design the model selection criterion accordingly. However, it is
very challenging to decide which models exactly need to be selected. Hence, given a set of
base learners, it is not easy to estimate the generalization performance of a sub-ensemble.
In addition, finding the optimal subset is a combinatorial search problem with exponential
computational complexity. Thus, it is infeasible to compute the exact solution by exhaustive
search and an approximate search is needed. Several methods have been proposed in the ML
literature to solve this issue by searching near-optimal solution either directly using global
search [158]–[160] or iteratively using greedy search [154], [161]. Greedy search methods can
be further divided into greedy forward pruning which starts with an empty set and iteratively
adds the learners optimizing a certain criterion, and greedy backward pruning that starts
with the complete ensemble and iteratively eliminates learners. It has been shown that greedy
pruning methods are able to achieve comparable performance and robustness with global
search methods but at much smaller computational costs [29]. Both global and greedy search
methods can be further divided into three main families based on the paradigm used for the
search [30].

The first family encloses ranking-based methods where the ensemble members are sorted
according to a selection criterion. Kappa pruning [28] is amongst the most popular methods
in this family for classification and uses a diversity measure for the selection. It ranks all
pairs of base classifiers based on the κ statistic of agreement calculated on the training set.
Kappa pruning could be applied to regression or forecasting by formulating a suitable pairwise
diversity measure. In this context, Ma et al. [162] transferred several selection criteria such as
Complementarity [163], Concurrency [164], and Reduce Error [28], for rank-based ensemble
pruning using a forward greedy search procedure, to time series forecasting. It was shown
that Complementarity and Reduce Error have the same flaw since they can not guarantee
that the base model supplementing the ensemble the most at a given iteration is the one that
will be selected. This is mainly explained by the fact that the forecasting error is directional.
Therefore, it is not very reasonable to only focus on decreasing the value of the forecasting
error while ignoring its direction. Reduce Error-trend that takes into account the trend of
the time series and the direction of the forecasting error, is then suggested by the authors to
mitigate the above issue.

The second family relies on clustering [165], [166]. Methods of this family include two
stages. First, a clustering algorithm is employed in order to discover groups of models that
are similar, i.e., make similar predictions. In the second stage, a selection of each cluster’s
representative is performed to increase the overall diversity of the ensemble. The main issue
in this method is the choice of the similarity measure according to which the models will be

50

2.6 Ensemble Learning for Time Series Forecasting

evaluated and clustered, as well as the optimal number of clusters, i.e. the resulting ensemble
size after pruning [30].

The third family of methods includes optimization-based methods. Different optimization
techniques can be employed, including genetic algorithms [167], semi-definite programming
[153], hill climbing [155] and meta-learning [168]. In the context of forecasting, a meta-learning
approach for the estimation of ensemble forecast errors using regression is used in [157] to
implement the selection procedure for each forecast. A more sophisticated approach inspired
by classification is proposed for time series forecasting in [169], where Extreme Learning
Machines (ELMs) and Hierarchical Extreme Learning Machines (H-ELMs) are integrated as
the base models, i.e. ensemble members, and four distinct meta-attributes collections, i.e., hard
prediction, local accuracy, global accuracy, and prediction confidence, are presented. Each set
of meta-attributes is joined to a specific model performance assessment criterion, constructing
thus a meta-data set. A meta-learner is trained on this data and used subsequently for deciding
whether a base learner should be included in the ensemble or not.

This list of pruning method families is not exhaustive and several paradigms are used to
serve this task. A comprehensive review can be found in [30]. However, most importantly
for the time series domain, pruning methods need to be dynamic in order to cope with the
time-evolving nature of time series that can be subject to significant changes, more precisely
to the so-called concept drift phenomenon [11], [89], [170].

2.6.3 Ensemble Aggregation

This section is dedicated to briefly describing the State-of-the-Art approaches for ensemble
aggregation, called also ensemble members combination. We enumerate their characteristics
and limitations.

2.6.3.1 Averaging Approaches

One of the most common aggregation strategies in ensemble models is to simply compute
the average of the outputs from its individual composing models. The averaging method can
be improved further by performing ensemble pruning before aggregation [16]. An alternative
method is to compute a weighted average. One suitable weighting schema for time series
forecasting is to use a time-sliding window approach, in which, the weights are set to be
inversely proportional to some ensemble error measure [12], [16]. In addition, a forgetting
mechanism can be employed to the time window in order to increase the impact of the recent
observations (i.e., most recent performance) [99], [171]. Essentially, these approaches are based
on the assumption that the immediate future is more likely to resemble the most recent past. A
method for dynamically adjusting the weights of an ensemble of LSTM networks is presented
[171]. The weights at each time step are set in an adaptive and recursive way by using both
past prediction errors and a forgetting weight factor.

2.6.3.2 Regret Minimization

The notion of regret was first introduced in Freund et al. (1997) [172] and compares the error
suffered by a rule R to the one of a given single model fi only on time instants when fi was

51

2. Background

active, i.e. selected or gets non-null weight. We denote the regret of R with respect to fi up to
time T by RT (R, fi). First, a loss function ℓt evaluating the accuracy of the forecasts output
by the rule R at each time instant t, has to be defined: ℓt :W → R:

ℓt(wt) = ℓ

(︃∑︂
j∈St

wi,tx̂
fi
t , x

fi
t

)︃
(2.65)

for all wt ∈ W , and St the set of single active models at a given time instance t, St ⊂ P. The
goal of regret minimization-based approaches is to design sequential convex aggregation rules
R with a small cumulative error

∑︁T
t=1 ℓt(pt). To reach this goal, the regrets Rt(R, fi), ∀fi ∈ P

(with respect to fixed experts, to fixed convex combinations of experts, or to sequences of
experts with few shifts) should be small. The regrets are given by:

RT (R, fi) =
T∑︂

t=1

(︁
ℓt(wi,t)− ℓt(δi)

)︁
I{i∈St}, ∀fi ∈ P (2.66)

where δi ∈ W is the Dirac mass on fi (the convex weight vector with weight 1 on fi).
These approaches assume that both time series true and predicted values are bounded so

does their associated loss functions (i.e convex and bounded). In the following, we present the
widely used methods in the Literature that use the principle of regret minimization [173]–[177],
the Exponentially Weighted Average forecaster (EWA), the Fixed Share forecaster (FS), and
the POLynomially weighted average forecaster with MuLtiple learning rates (MLPOL).

The Exponentially Weighted Average Aggregation Rule: referred to as EWA is an
online convex aggregation rule introduced in learning theory by Vovk (1990) [178]. It relies
on a parameter η > 0 and will thus be denoted by Eη. At the time t, it assigns to the single
model fi the weight ŵi,t. It chooses ŵi,1 to be the uniform distribution over S1 and uses at
time instance t ≥ 1 the convex weight vector ŵt such that:

ŵi,t =
eηRt−1(Eη ,fi)I{fi∈St}∑︁

fk∈St
eηRt−1(Eη ,fk) , ∀fi ∈ P (2.67)

which is exponentially small in the cumulative loss suffered so far by the single model. When
the learning parameter η is properly tuned, it has a small average regret RT = O

(︂
1/
√
T
)︂

with respect to the best-fixed set of single models.

The Fixed Share Forecaster is first presented in [179]. It has the advantage of competing
with both the best fixed single model and the best set of single models that may change only a
small number of times. This is especially interesting in non-stationary environments, in which
the best single model is changing most of the time and should thus be regularly updated. FS
uses a learning parameter η, as well as a mixing parameter, called α ∈ [0, 1], that evaluates
the number of changes in the sequence of single active models it is competing with. The initial
weight distribution is uniform ŵ0 = (1/M, . . . , 1/M). Then, at each time instant t, the weights
are updated twice. First, a loss update takes into account the new loss induced by every single

52

2.6 Ensemble Learning for Time Series Forecasting

model fi:

µ̂fi,t =
ŵi,t−1e

ηRt−1(Eη ,fi)I{fi∈St}∑︁
fk∈St

ŵk,t−1eηRt−1(Eη ,fk) , ∀fi ∈ P (2.68)

Second, another update is introduced to ensure that every single model receives a minimal
weight α

M by assigning:
ŵi,t = (1− α)µ̂fi,t + α

M
(2.69)

This update captures the possibility that the best single model may have exchanged at time t.
FS had some nice theoretical properties and vanishing average regret RT with respect to sets
of single models with few shifts.

The Polynomially Weighted Average Forecaster with Multiple Learning Rates
MLPOL is inspired by the polynomially weighted average forecaster presented in [180]. The mul-
tiple learning rate addition is proposed by Gaillard et al. (2014) [173]. The weights setting rule by
MLPOL is referred to asM. First, the initial weights are set to be equal ŵ0 = (1/M, . . . , 1/M)
and the regrets suffered by each model R0(M) = (R0(M, f1), . . . , R0(M, fM)) = (0, . . . , 0).
Then, for each time instant t. The learning rates for each model fi ∈ P are set such that:

ηi,t−1 = 1/
(︄

1 +
t−1∑︂
t′=0

(︁
ℓt′(ŵt′)− ℓt′(δi))

)︁2)︄ (2.70)

where δi ∈ W is the Dirac mass on fi (the convex weight vector with weight 1 on fi). The next
step consists of forming the weights mixture ŵt defined component-wise for each model fi by:

ŵi,t = ηi,t−1 (Rt−1(M, fi))+ / ηt−1 · (Rt−1(M))+ (2.71)

where the symbol + denotes the vector of non-negative parts of the components of Rt−1(M, fi).
Then, the prediction by the weighted ensemble of single models is computed using Equation
2.58. Finally, the regret for every single model fi is updated:

Rt(M, fi) = Rt−1(M, fi) + ℓt(ŵt)− ℓt(δi) (2.72)

Gaillard et al.(2014) [173] proved the regret bound RT (M) = O
(︁
1/
√
T
)︁

with respect
to the best fixed single model. MLPOL is particularly interesting since it offers theoretical
tuning of its learning parameters, opposingly to EWA and FS, which require some tuning of
their learning parameters. The authors of [176] proposed an empirical tuning of the learning
parameters of EWA and FS, which comes with no theoretical guarantees but works empirically
well.

It is important to note that the above-described versions of EWA, FS, and MLPOL compete
only with the best-fixed single model. However, they cannot per se ensure vanishing average
regret RT with respect to the best-fixed convex combination of single models. A reduction of
the problem from competing with the best convex combination of a set of single models to the
goal of competing with the best fixed single model can be helpful in this case. This reduction
is a well-known trick in the literature on individual sequences and is usually referred to as the
gradient trick [181].

53

2. Background

2.6.3.3 Meta-Learning Strategies

Ensemble aggregation can also be solved using meta-learning. Meta-learning is defined as a
way of modeling the learning process of a given learning algorithm, and it can be employed
for ensemble combination to learn combination rules for the ensemble members using an ML
algorithm [33], [182] and can be used for dynamic aggregation as well [9], [10]. In other words,
another ML model called the meta-model is trained to learn the ensemble weights. To do so,
a meta dataset is constructed such that each observation is composed of the single models’
outputs at a given time instant t, treated as input features, joined to one target that consists
of the time series true observed value at that time instant. Naturally, this method allows
different types of models combination, i.e. linear and non-linear, depending on the used ML
meta-model learning paradigm.

2.6.4 Bagging and Boosting for Time Series Forecasting

Bagging and boosting are considered the most two popular techniques for ensemble learning in
a wide variety of learning tasks [183]–[185]. They have also been successfully applied to time
series forecasting [186], [187]. Ensemble models based on the bagging and boosting paradigms
are considered the State-of-the-Art ensemble methods for time series forecasting in many recent
works [9], [10].

2.6.4.1 Bagging

Bootstrap aggregation (bagging) was first proposed by Leo Breiman [31]. Bagging is motivated
by reducing the variance without increasing the bias of the predictions and thus helps to achieve
better prediction accuracy [188]. In bagging, ensemble members are built using bootstrapping
on the original data sample. Outputting a prediction for a new data point is achieved by
applying all the base models to this new data point and then combining their predictions
using an aggregation operation,e.g., averaging. In this way, bagging includes different forms
of uncertainty about data modeling derived from the different hypotheses drawn from the
different bootstrapped samples. This uncertainty covers data uncertainty, model uncertainty,
and parameter uncertainty.

Even though it seems to be well-established and theoretically motivated in several machine
learning contexts, it is just very recently that bagging has been applied successfully for the
task of time series forecasting [128], [187], yielding for example very competitive results on
the M3 competition dataset [142]. For time series data, the main challenge is the possible
presence of non-stationarity sources in the data and the fact that auto-correlation must be
taken into account when applying bootstrapping to the data. Hence, non-stationarity makes it
very difficult to produce bootstrapped samples that share the same main characteristics of the
original time series data. It should also be noted that in the context of time series forecasting,
sometimes simple, low-variance models work quite well for many applications, rendering thus
the expected benefit of bagging as a variance reduction technique less promising.

54

2.6 Ensemble Learning for Time Series Forecasting

2.6.4.2 Boosting

Boosting-based methods adaptively perturb, re-weight, and re-sample training data to create
the ensemble members. These methods work in an iterative fashion, focusing at each iteration
on harder-to-learn data points, thereby outputting diverse predictions aggregated in a dynamic
and adaptive fashion [189]. Therefore, the newest member is created to compensate for the
instances incorrectly predicted by the previous members.

Reasoning on time series forecasting task, after applying time delay embedding of dimension
p to the time series as explained in Section 2.4.4 and assuming we have T pairs of data point
(zt, xt) resulting from the embedding procedure, the boosting algorithm executes J boosting
iterations to approximate the true function f that generates the time series X by a model f̂
such that x̂t = f̂(zt) and some loss function l(xt, x̂t) is minimized.

In this section, we detail the AdaBoost algorithm, which is considered one of the most
widely used boosting algorithms in research and practice [190]. More specifically, we present
the gradient boosting procedure for mean regression, also called L2 Boost [191]. Therefore, the
l2 loss is used l2 = (xt − xt̂)2. The different steps of the gradient boosting algorithm can be
written as follows:

1. Initialize the function estimate {hatx[
t0]}t∈[1,T] with starting values. The unconditional

mean and is a natural choice for mean regression.

2. Specify the pool of M ensemble members, and set j = 0. The members are just some
simple regression models on a subset of the initial set of p-dimensional input variables zt

and a single time series value xt. One way to build these models is to consider an additive
model. In this manner, each base model is dependent on exactly one input variable out
of the p variables, i.e., the p-lagged values for each value xt of the time series. Note also
that only one ensemble member gets selected for each boosting iteration.

3. Increment the number of iterations j by 1.

4. (a) Compute the negative gradient of the loss function evaluated at the function estimate
of the previous iteration {x̂[j−1]

t }t∈[1,T]:

v[j] =
(︁
− ∂

∂x̂
[j−1]
t

L(xt, x̂
[j−1]
t

)︁
t∈[1,T] (2.73)

For mean regression, that is, with the l2 loss function, the negative gradients are
given by:

v[j] =
(︁
− 2(xt − x̂[j−1]

t)
)︁

t∈[1,T] (2.74)

(b) Fit each of the M members specified in step 2 using the negative gradient vector
v[j] as the response with the corresponding input variable.

(c) Select the best-performing member, i.e., the model that minimizes the residual
sum of squares, and let b̂[j]

t , ∀t ∈ [1, T] be the fitted values of the best-performing
member.

(d) Update the current function estimate by adding the fitted values of the best-
performing base model to the function estimate of the previous iteration j − 1:

55

2. Background

x̂
[j]
t = x̂

[j−1]
t + νb̂

[j]
t (2.75)

where 0 < ν ≤ 1 is a shrinkage factor.

(e) Stop if j has reached the maximum number of iterations J , or go to step 3.

Following the above-detailed steps, the final function estimate f̂ can be presented as
follows:

f̂(zt) = x̂
[0]
t +

J∑︂
j=1

νb̂
[j]
t , ∀t ∈ [1, T] (2.76)

and since each component û[j] depends only on one variable k, k ∈ [1, p], the final estimate
can be written as an additive model f̂ :

f̂(zt) = f̂̄ [0](zt) +
p∑︂

k=1

∑︂
j:kselected

νb̂
[j]
t⏞ ⏟⏟ ⏞

âk
t

(2.77)

= f̂̄ [0](zt) +
p∑︂

k=1
âk

t (2.78)

where âk
t is the relative contribution of the variable k to the final estimate, and p is the

number of initial input variables (i.e. the dimensionality of zt = Xt−p:t−1).

2.7 Explainable Machine Learning for Time Series

With the increasing use of complex forecasting models such as DNNs and their ensembles,
a need for comprehending their behavior has increased over the recent years, particularly
in high-risk and safety-critical forecasting application domains, e.g., intensive medical care
applications, autonomous driving, extreme weather conditions forecasting, to name but a few
[192]–[194]. These complex models are also known in the ML literature as black-box models. A
model is said to be a black box if it is difficult for humans to understand why certain decisions
have been made by this model [40]. Some other definitions go beyond and suggest that a model
is a black box if it is not easy to comprehend how the input data is processed and transformed
in the modeling process to reach the delivered output [195].

Since most of the time series forecasting models are involved in a decision-making process or
a recommendation system and sometimes in safety-critical applications, building a certain level
of trust in their output should be established. One of the crucial requirements to build this trust
is to be able to understand these models. In this context, several Explainable Machine Learning
(XML) techniques have been developed to facilitate human understanding of black-box ML
models and frameworks. Explainability has been defined across different studies [40], [196],
[197]. For instance, one definition by Miller et al. (2019) [196] states that explainability "is the
degree to which a human can understand the cause of a decision." Another definition given
by Keem et al.(2016) [197] is "Explainability is the degree to which a human can consistently
predict the model’s result." However, there is an agreement between all these works that
the higher the explainability of an ML model is, the easier it is for a human to understand

56

2.7 Explainable Machine Learning for Time Series

why certain decisions or predictions have been made. In this sense, a model is considered to
be better explainable than another if its predictions or decisions are easier for a human to
comprehend than the predictions from the other model.

Several XML techniques, as well as their taxonomies, have been presented in the ML
literature [40], [198]. These techniques can be used to explain a single ML model, ensembles of
ML models, as well as an ML-based framework, e.g., model selection framework. XML can be
grouped into different families according to various criteria.

The first criterion is defined by when the explainability results should be delivered. Pre-
model methods are usually independent of a specific model or architecture and delivered before
model training. Common examples of these methods are the Principal Component Analysis
(PCA) and t-distributed stochastic neighbor embedding [199]. It is also possible to integrate
the explainability tool into the ML model. This is known as the in-model approach, such
as association rule mining [200]. Different approaches produce explanations after learning
the model; therefore, these approaches are called post-model. These approaches can produce
important penetrations concerning what a model has learned after training, for example,
SHapley Additive exPlanations (SHAP) values [201].

The second criterion denotes whether the explainability technique is local or global. For
instance, local explainable methods are dedicated to explaining a specific prediction or result
of the model. They can be acquired by representing mechanisms that determine the reason
for individual predictions. Opposingly, global approaches focus on the whole ML model
or framework and use the model’s complete knowledge, learning, and input data. These
approaches seek to define the nature, behavior, and performance of the model in common.
Feature importance analysis is a very common example of these approaches that studies the
features or characteristics that are generally responsible or liable for the model’s better and
more reliable performance amongst all present features in the data [202].

The third criterion concerns the format of the generated explanations. Some explainability
methods rely on visual explanations in an image or figure format, e.g., heat-maps or box-plots
[202], [203] while some others use another model to explain the back-box model. This operation
is referred to as surrogate modeling. The surrogate model is an ML model that is considered
to be explainable per construction and trained to approximate the predictions of the black-box
model [40], [204].

Another criterion involves the ML model type. In this context, we distinguish between
model-agnostic and model-specific approaches. Model-agnostic approaches are appropriate
for every family of ML models and are not restricted to a fixed model type or architecture.
These approaches do not generally deliver direct access to the main model properties or
parameters, e.g., Partial Dependency plots (PDP) [40], Local Interpretable Model-agnostic
Explanations (LIME) [195]. Model-specific approaches depend upon specific families of ML
models, e.g., tree-based models such as decision trees or random forests, and neural networks
family of models like DNNs. Some models, like DNNs, denote some complex structure that
requires precise knowledge of the models. Therefore, several methods have been developed to
explain them [203], [205], [206]. These methods are used to make DNNs’ decision process more
transparent by providing some understandable representations of their latent space [207] or by
extracting salient parts in their input data like saliency maps for highlighting important regions

57

2. Background

in image data [203], [208]. It should be noted that it is possible to use model-agnostic methods
for explainability, such as LIME, to explain individual predictions of DNNs [195]. However,
two main reasons why it is necessary to consider explainability methods specifically developed
for DNNs. First, neural networks learn features and concepts in their hidden layers. Therefore,
specific tools are required to reveal them. Second, the gradient can be exploited to implement
explainability methods that are much more efficient than model-agnostic methods since they
look into the inside dynamics of the DNN. A wide variety of this type of explainability methods
has been presented in the literature [40], [203], [208]–[210]. These methods can be grouped
into three main families.

The first family includes the so-called "conceptual" explanations. A concept can be defined
as any abstraction, e.g., a color in an image, an object, a data property, or even an idea. Given
any user-defined concept, although a neural network might not be explicitly trained with the
given concept, the concept-based approaches are devised to determine whether this concept is
embedded within the latent space learned by the DNN or not [211], [212].

The second family of methods is model-based approaches that use model distillation to
explain a neural network with a simpler model [213], [214]. For example, in [213], the authors
express the knowledge acquired by the neural net in a decision tree that generalizes better than
the one learned directly from the raw training data. Since it relies on hierarchical decisions,
explaining a particular decision is made much easier.

The third family of methods consists of visualization-based approaches where either new
learned features by the DNN [215] or the most important input data regions for the DNN’s
output (i.e., decision) [203], [216] are visualized. In the former, feature visualization is used
to represent the learned features in an explicit way. Feature visualization for a "unit" of a
neural network (i.e., a "unit" refers either to individual neurons, feature maps (channels), entire
layers, or the corresponding pre-softmax neuron in the case of classification) is accomplished
by finding the input of the unit that maximizes the corresponding activation. In the latter, the
so-called heat or saliency maps are used to establish a relationship between the output and the
input of a DNN given fixed weights. These maps are widely used in the context of computer
vision with CNNs to create class-specific heat maps based on a particular input image, and a
chosen class of interest [203], [208]. These maps are used for visualizing regions in the input
image that are the most important for a particular prediction/decision of the model. They are
computed using the gradient of the network’s prediction with respect to the input, holding the
weights fixed. This determines which input regions (e.g., which pixels in the case of an image
input) need to be changed the least to affect the prediction the most.

Heat maps can be successfully transferred to the context of time series [217]. These maps
are then used to understand which time intervals are mostly responsible for a given prediction
in the case of univariate time series. For MTS, the maps are exploited for explaining during
which time intervals the joint contribution of all the single time series is most important for
that prediction. However, only a few works tackled DNNs explainability using heating maps
for time series [217], [218]. In [217], an explainable CNN architecture is used to classify MTS
data and explain the predictions. The CNN architecture consists of two stages with particular
kernel sizes, which allows applying gradient-based techniques for generating heat maps for both
temporal and spatial dimensions. Kusters et al. [212] have introduced "conceptual" explanations

58

2.8 Quality Predictive Analytics

for DNNs by describing the relation between both global and local input properties of time
series, e.g., time series components, stationarity, presence of outliers, etc., and the network’s
accuracy. Opposingly to heat-mapping methods that focus only on locally relevant input parts
triggering the network prediction, the authors suggest also focusing on a global view of the
time series to cover global causes behind a particular behavior of the DNN by evaluating the
effect of abstract (local or global) input properties. The proposed method is model-agnostic
and enables the utilization of domain knowledge.

XML has mainly focused on static learning tasks so far and on explaining learning models
themselves. More recently, the focus has been shifted toward explaining online learning
processes and other steps within these processes, such as model and parameter selection or
model change and adaptation, instead of exclusively concentrating on the model’s outcome. For
instance, the explainability of online adaptive model change has recently been tackled in [219],
[220]. First, model change is quantified using an approximation of the expected discrepancy.
Then, significant changes are detected using ADWIN (ADaptive WINdowing) approach [89].
An explanation of the change is created and presented to the user using thresholding on
the expected discrepancy and Permutation Feature Importance (PFI) which evaluates how
the prediction error increases when a feature is not available. A method for automatically
determining regions in the input data space that are affected by a given model adaptation
and thus should be explained is presented in [221], [222]. Explaining model adaptation is
performed using contrastive explanations (i.e. explaining why an event occurred in contrast
to another). The above-mentioned works tackle the classification task. In this thesis, we also
consider XML in the context of online learning in dynamic environments, particularly for
online model selection but for the task of time series forecasting, where models are continuously
adapted and changed over time.

2.8 Quality Predictive Analytics

Industry 4.0 is the new direction of automation and digital data transfer in manufacturing,
including Internet of Things (IoT) settings, cyber-physical systems, cloud computing, systems
integration, and big-data analytics that help in establishing smart industries and factories.
Industry 4.0 encloses large-scale machine-to-machine communication, the integration of AI-
based technologies, and the use of ML models in industries [223].

2.8.1 Model-based Quality Prediction

In manufacturing systems, quality deviations only detected at the end of the production chain
may result in high amounts of rejected products that require laborious and costly rework
or need to be scrapped [224]. To prevent such events, an early quality prediction has to be
achieved. Hence, corrective actions are expected to have the largest impact if they are executed
as early as possible in the process, avoiding thus costly rework and waste of resources through
further processing of defective components [45], [46]. A key requirement for early quality
prediction is the full coverage of the product quality in the early stages of the manufacturing
process or within the execution of some stages, especially in those where quality testing of the
product itself is not possible.

59

2. Background

Nowadays, in the context of industry 4.0, the linkage of the production environment
through Information and Communication Technologies (ICT) to cyber-physical systems with
the goal of monitoring, controlling, and optimizing complex manufacturing systems, enables
real-time capable approaches for process data acquisition, analysis, and knowledge discovery
[8], [18], [224]. This is achieved in practice by collecting and analyzing sensor data. As a
result, data-driven approaches for predicting process quality in real-time and deriving adequate
process control interventions in a timely manner can be developed [8], [45]. Sensors are able to
generate mass quantities of sensor data as responses to some types of inputs from the physical
production environment. Most often, each of these data points is captured at specific time
stamps, effectively transforming sensor data into time series data that can be analyzed across
this additional dimension [46].

ML algorithms trained on sensor data are used to gain knowledge that can be generalized
and used to predict unknown future events, i.e. new data points. A quality prediction that
is performed using ML is referred to in Industry 4.0 as model-based quality prediction [224].
To do so, the description of the product or process quality and all the related information
should be done at the first step, especially in highly complex dynamic production systems with
non-linear interactions between their steps. The second step consists of building and training
a predictive model that maps the available quality-related information, e.g., operating states
sensor data, process input parameters, to the resulting process/product quality label [45], [46],
[225]. This model can be used afterward for predicting the expected quality given a set of input
values of non-tested new products. Several industrial applications utilize already existing ML
methods and algorithms to solve actual problems in manufacturing from an engineering point
of view [224]. These applications cover a wide range of industrial fields, including electronics
[224], metallurgical [45], [46], [225], and machining industries [47]. Likewise, the adopted ML
solutions are not limited to a specific family of models but include, amongst others, Artificial
Neural Networks (ANNs) [47], Support Vector Machines (SVMs) [46], and Decision Trees
(DTs) [45]. Most of the aforementioned works focused on quality prediction at the end of the
production chain with the goal of reducing the costs of quality inspection assigned by humans
or special machines [45], [46], [224]. However, only a few studies have achieved and investigated
the impact of early quality prediction in the very early stages of multi-staged processes or
within their execution [45].

Quality can be described in the form of continuous real-valued measurements of some
process-related physical quantities over time. In this context, time series forecasting methods
can be used to predict the correct quality of a process or a product [145]. Industrial processes
are subject to changes that are inherently due to the dynamic nature of the process itself [47]
or to some external factors in the industry, e.g., change in the environment temperature or
some incidents [46]. Therefore, online model adaptation is most often required. This covers the
online adaptive model selection and the online management of many models.

2.8.2 Learning from Process Simulation

The performance of machine learning depends to a great extent on the quality and quantity of
data available for training [226], [227]. Large data sets are most often required for training
[228]. However, data collection from sensors in some industrial settings can turn out to be very

60

2.9 Final Remarks

challenging due to the high costs related to data collection or storage or to some difficulties in
accessing the data due to some privacy issues [47], [229]. Therefore, the fusion of data sets
from multiple sources can be helpful but also very challenging [228]. More recently, process
simulation has appeared to be a very attractive solution for generating synthetic data for
learning purposes. Simulations are most often considered the ground truth because they are
based on theoretical knowledge of the specific application domain. Hence, they are used for
testing learning models or annotating the data. Simulations are used as experimental test beds
that offer scientists the chance to study a range of phenomena in a structured way. This is a
standard procedure in computer science (e.g., [230]) as well as in engineering [47] and physics
[231], to name but a few. Many investigations of multi-sensor fusion have used simulation
environments only for testing their frameworks [232]. Process simulations are also established
instruments to investigate processes in a virtual environment prior to deployment [47]. More
recently, simulations have been conceived as powerful data generators, providing thus promising
opportunities for simulation data mining [233]. However, simulations have many limitations
in practice. They cannot provide a completely accurate representation of reality in real-time
[234] and usually have only a limited prediction accuracy when modeling complex phenomena
[235]. In contrast, ML models can be applied in real-time and offer the opportunity to predict
events based on the analysis of a set of explanatory variables. Therefore, new trends in applied
ML aim at replacing simulation models with surrogate ML models that have been trained on
simulation data [236]. Some recent works focused on learning from simulation data to monitor
the real-world process and predict upcoming unknown events with a reasonable accuracy [237].

2.9 Final Remarks

The time-evolving nature of time series and its complex structure that may involve non-
stationary processes make time series forecasting one of the most challenging research topics in
the ML literature of knowledge discovery from databases. Several ML-based frameworks have
been developed to learn from this data by proposing some modeling of how past historical data
is linked to future observations. These models are used for predicting the future behavior of the
time series. However, forecasting is still considered to be challenging, and further ML-based
solutions development is required.

In this chapter, we presented an overview of the ML literature related to the topics evoked
in this thesis. More precisely, we presented the main time series characteristics. Then, we
revised previous work, with a particular emphasis on the topics of concept drift detection
and adaptation, model selection, ensemble learning, and explainability. From the applied
ML perspective, we covered the topic of ML model-based quality prediction of industrial
processes in which online adaptive model learning is most often required in addition to data
enrichment from heterogeneous sources, more precisely, simulations. In the following chapters,
we explore these topics in more detail. Indeed, we suggest facing the main limitations of the
current State-of-the-Art by developing novel methods for online time series forecasting that
are adaptive to changes in this data in an explainable manner. The ultimate goal behind our
work is to support organizations and industries exploiting historical data to make correct
explainable data-driven decisions about the future.

61

Part II

Forecasting

63

3
Online Adaptive Time Series Variables

Selection

The main goal of this part of the dissertation is to develop novel ML methods for tackling
the time series forecasting task. To accomplish this, we previously highlighted the need for
building online adaptive forecasting models. However, before the model-building stage, we
need to select time series input variables to be fed to the model in the case of the availability
of MTS data. This selection has to be made online and adaptively to the changes in the MTS
data and in the time-dependent dependencies among its composing time series variables. The
performance of the forecasting model resulting from a given selection of time series input
variables can also be tracked to inform about the adequacy of the selection and whether some
model updates have to be performed. In this chapter, we then address the task of time series
variables selection and online model adaptation for MTS forecasting.

3.1 Introduction

On the one hand, MTS data represents an enriched form of information about the application.
On the other hand, the number of its composing variables can increase drastically and might
include irrelevant and redundant ones. This may heighten the curse of dimensionality. Therefore,
it is necessary to select the most important time series variables carefully. The evolution of
MTS is spatio-temporal, along with the different variables and over time, respectively. However,
this spatio-temporal data may involve multiple non-stationary processes and the dependencies
among its composing variables may also follow a non-stationary process. As a result, the
relationship between some time series variables and a target one might change significantly
over time and be subject to concept drifts [89]. Hence, previously learned concepts about data
become no longer valid, making the offline input variable selection procedures inappropriate
for making future predictions. Therefore, the selection of time series variables should cope
with the evolving nature of the spatio-temporal dependencies in the MTS data. In addition to
adaptive time-dependent spatial variables selection, adequate model selection and adaptation

65

3. Online Adaptive Time Series Variables Selection

are required to cope with the time-evolving characteristics of MTS data [170], [238]. Most
of the existing MTS forecasting models operate in a static manner, i.e., the model is trained
offline using some collection of historical data and a fixed selection of input variables. Its
parameters are optimized once at training time. At test time, the model is deployed with fixed
learned parameters and fixed information about temporal and spatial data [17]. Even though
optimizing the input of learning models through feature extraction and selection has proven
to be very useful in improving the accuracy of a wide variety of time series learning tasks,
including classification [49], [239], [240], clustering [241], [242] and forecasting [243], [244], few
works tackled input variable selection for online MTS forecasting [16], [245], [246].

Methods for online MTS forecasting focus either on a very specific application/setting [247]
or use a very specific family of ML models, such as Neural Networks [248], [249]. More recently,
a drift-aware Vector Autoregressive (VAR) model has been proposed in [16]. In contrast to
the classic VAR model, which takes as input, all the variables of the MTS [17], an adaptive
selection procedure of a subset of input variables is done in the drift-aware VAR. The update
of this subset depends on a change in the Pearson-Correlation (PC) [73] measured between two
variables over a time-sliding window, which is assumed to occur due to the presence of concept
drift. Even though the proposed method is online and adaptive, it focuses only on a particular
model, namely the VAR. In addition, the time series variables selection is made by ranking
them according to their relevance to the target time series using PC. No further analysis is
carried out to investigate the redundancy in the selected subset. The relevance/similarity to
the target is measured using the PC coefficient. However, it has been proven that there is
no single universal measure for the similarity between two time series either for relevance or
redundancy analysis [73]. The quality of the achieved results in this context depends to a large
extent on the used time series measure [73].

In this context, we propose an online adaptive framework for MTS forecasting which
performs both input time series variables and adequate forecasting model selection. Model
selection is performed since the success of the MTS forecasting task is model-dependent. In
addition, changes in the input variables selection trigger an update of the ML model. Input
variables selection is made following a two-staged procedure based on relevance and redundancy
analysis. The selection is made dynamically and adaptively in an informed manner following
concept drift detection. The concept drift detection covers the two MTS dimensions, namely
spatial and temporal. Spatial dependencies indicate the similarity between the input variables
at one time instant. We monitor the change in the similarity values over time. Temporal
dependencies indicate the patterns discovered within the same spatial dimension over time.
The drift detection within the temporal dimension is ensured by tracking the change in the
estimated model’s performance on the target time series variable over time. In addition, the
choice of adequate relevance and redundancy measures, as well as the forecasting model, is
done in an automated fashion using meta-learning on well-devised MTS meta-features. Our
framework is denoted in the rest of the thesis, OAMTS: Online Adaptive Multivariate Time
series forecasting. We further conduct a comprehensive empirical evaluation to validate our
method using 66 real-world MTS datasets from different domains. We have created separate
meta-data which cover a collection of real-world and synthetic MTS with various characteristics
for the meta-learning task. The obtained results show that our method achieves excellent results

66

3.2 Related Works

in comparison to the SoA approaches for MTS forecasting. We note that all the experiments
are fully reproducible and that both the code and datasets are publicly available 1.

The main contributions of this part of the thesis can be summarized as follows:

• We present a novel method for online drift-aware input time series variables selection
using relevance and redundancy analysis.

• The drift detection mechanism is devised to operate on both spatial and temporal
dimensions.

• We fully automate the choice of relevance and redundancy measures for MTS, as well as
the forecasting model selection using meta-learning.

• We provide a comparative empirical study with SoA methods and discuss its implications
in terms of predictive performance and scalability.

3.2 Related Works

In contrast to univariate time series forecasting, i.e., the forecast of a single time series, where
several methods for online adaptive single model selection [23] or ensemble learning [9], [10]
have been proposed, most of existing methods for MTS forecasting are devised to operate in a
static manner [17], [247], [248]. In other words, the models in these methods are learned offline
using a collection of historical MTS data, their parameters are optimized using these datasets
and stored to be used at test time to make the predictions. In addition, most of these methods
are either application-specific [247] or model specific, i.e., use an arbitrarily selected machine
learning model family [17]. The most widely used models are VAR [16], [17] or DNNs [248], [249].
In [247], the forecasting of an MTS of energy consumption in smart buildings is transformed
into a standard regression task using time series embedding, and then, different types of feature
selection methods for regression tasks are applied. The features are extracted offline once and
kept static at test time. More recently, some works have exploited the success of some DNNs
architectures in computer vision-related applications and successfully transferred and adapted
them to MTS forecasting by treating temporal and spatial dimensions in MTS as the 2d
dimensions in images. Some of the other works focused on introducing some improvements or
adaptations over existing DNNs to cope with the characteristics of MTS [248], [249]. In [249],
the authors argued that random weights initialization in Recurrent Neural Networks (RNNs)
disallows the neurons from learning the latent features of the correlated variables of the MTS.
Therefore, they suggest using a pre-trained LSTM combined with a stacked auto-encoder
to replace the random weight initialization strategy adopted in deep RNNs. In [248], Graph
Neural Networks (GNNs) are adapted to MTS forecasting by adding a mix-hop propagation
layer and a dilated inception layer to capture the spatial and temporal dependencies within
the MTS. This is done to make GNNs capable of handling relational dependencies that are not
known in advance like in the case of MTS. Even though dependencies between the variables
of the MTS may change significantly over time, most of the aforementioned works do not
consider a time-dependent selection of the input time series variables for the MTS forecasting

1https://www.dropbox.com/sh/z2g0us0nti3nqzg/AAAJ6_6JcGZHN_y10q8XDYa_a?dl=0

67

https://www.dropbox.com/sh/z2g0us0nti3nqzg/AAAJ6_6JcGZHN_y10q8XDYa_a?dl=0

3. Online Adaptive Time Series Variables Selection

model. The choice of the model is most often arbitrary or transferred from another domain
like computer vision or regression. In addition, once the model is chosen, its corresponding
parameters are kept fixed. It is important to note that it exists some methods for model
adaptation to data changes and model performance, more particularly to concept drift in
the context of streaming data classification [98], [99] and univariate time series forecasting
[16]. These methods can be grouped into two main families, namely blind adaptation and
informed adaptation. As we mentioned in Section 2.2.2, in blind adaptation, the model is
retrained either at each time instant with each upcoming observation or over a fixed period
in time without any consideration of possible data or model performance changes. However,
this family of methods is known to be time-intensive, resource-consuming, and unpractical for
online forecasting [16]. Informed adaptation methods use some statistical information about
the data or model performance to inform the model about the occurrence of concept drift and,
if necessary, trigger input data update using adaptive time-windowing approaches and input
re-selection [98], [99] and subsequently, model retraining [16] or a new model selection [16].

Our method is based on an informed adaptation for MTS forecasting. This is done
by monitoring the changes in spatio-temporal dependencies in the MTS and the model
performance over time. Since the results achieved in various time series tasks such as
clustering and classification depend to a large extent on the used measures for evaluating time
series dependencies/similarities [73], we suggest also automating the choice of the adequate
dependencies measures as well as the selection of the adequate model for a particular application
by means of meta-learning.

It is worth mentioning that many SoA approaches for feature selection by combining
relevance and redundancy analysis of the features using a forward sequential search that
repeatedly adds the feature which has the best ratio between relevance and redundancy to the
already selected features [250]–[252]. These methods have quadratic computational complexity.
Adding constraints on the number of features to be considered or selected using thresholding
techniques helps in reducing the overall run-time [252], [253], but the thresholding parameter
needs to be tuned, which increases the overall run-time again. Opposingly, in our framework,
we use backward search where we remove in one run N − top−N features using similarity to
the target variable ranking. The remaining top−N are reduced further by means of clustering,
which has been widely proven to be effective in grouping similar high dimensional continuous
features [253], [254]. Many of the mentioned works investigated the aspect of feature selection
stability, which refers to the robustness of the selected features, with respect to data sampling
and to its stochastic nature [251], [255], [256]. For instance, in [256], a fast and efficient method
based on an ensemble technique such that the stability of feature selection comes with little
or even no extra run-time is presented. However, the method is based on a cross-validation
technique which should be revisited for time series data [257]. Since we base our analysis on
the assumption that the relevance and/or redundancies of the variables would change in the
course of time, we did not focus on the stability aspect of MTS variable selection.

68

3.3 Drift-aware Input Time Series Variables Selection

3.3 Drift-aware Input Time Series Variables Selection

In this section, we present our input variables selection procedure and its main stages. Figure
3.1 shows a visualization of an MTS X collected till time t. The choice of the target time
series variable is application-dependent (i.e., a variable of interest for the user). It is worth
mentioning that traditional MTS methods like VAR take as input all the variables and output
simultaneously N -dimensional vector of forecast values for the N time series variables of the
MTS. Our goal is to improve the accuracy of the MTS forecasting task through adaptive
timely time series variables selection. Therefore, if all the variables are evaluated of the same
importance and need to be predicted. Our selection procedure can then be computed for all
the MTS variables. For simplicity, we assume in the following that we have only one time
series variable of interest, i.e., the target variable. However, the reasoning applied to one target
variable can be generalized to all the remaining variables.

Figure 3.1: An MTS X collected till time t

For a given MTS data, the input time series variables to be used for forecasting are
determined in a timely manner by computing their relevance to the target time series
variable. Once the most relevant variables are identified, redundancy analysis through time
series clustering is carried out to remove redundant variables. The choice of adequate time
series measures for relevance and redundancy is determined beforehand by the meta-learning
component that decides as well which model to be used for a particular MTS data. Both input
time series variables and model updates are triggered once a concept drift in the spatio-temporal
dependencies among these variables or/and model performance is detected. Basically, new
variables are selected, and time windows are adjusted to update the time series variables with
recent observations.

3.3.1 Preliminaries

3.3.1.1 Notations

Given the MTS X = {X1, X2, · · · , XN}, and the target time series variable Xr with r

some arbitrary index in [1, N], the goal of online input variables selection is to determine
which time series variables Xi, i ∈ [1, N]\{r} should be fed into the forecasting model at
time t to forecast the next value at time t + 1. We denote by Xi

ts:te
the subsequence of

Xi starting at time instant ts and ending at time instant te. We divide the MTS X into
Xtrain

ω = {X1
1:t−ω, X

2
1:t−ω, · · · , XN

1:t−ω} and Xval
ω = {X1

t−ω+1:t, X
2
t−ω+1:t, · · · , XN

t−ω+1:t}, with ω
a provided window size. Xtrain

ω is used for training the forecasting model, and Xval
ω is used

69

3. Online Adaptive Time Series Variables Selection

to compute the relevance and redundancy measures, since both input and target time series
variables are required to be known.

3.3.1.2 Forecasting Model Learning

Standard approaches for addressing MTS forecasting tasks include traditional techniques for
MTS analysis, such as the popular Vector Autoregressive VAR family of methods [17], or
ARIMAX [54] which is the extension of Autoregressive Integrated Moving Average model
(ARIMA) (See Section 2.4.4.1) to MTS where some input time series variables are provided as
exogenous variables to forecast the dependent variable, i.e., the target variable. These models
take as an input multiple time series sequences X1:t. In addition, regression models can be
employed in the context of MTS forecasting by using a time-delayed embedding (See Section
2.4.4). To optimize further the MTS forecasting task, we aim to select the forecasting model
given the characteristics of the MTS data in question. This is done by the meta-learning
components in Section 3.4. Therefore, we consider a pool of candidate forecasting models P
which is designed to contain a set of various and heterogeneous models, such as VAR [17],
Gaussian processes [258], support vector regression [259], and DNNs [15]. The candidate models
are trained on Xtrain

ω using the same number p of lagged values for each variable in the MTS
as input to model the following value in the time series.

3.3.2 Adaptive Input Time Series Variables Selection

Given a target time series Xr ∈ X, in order to forecast its value at a future time instant
t + h, h ≥ 1 (for simplicity of notation, we assume h = 1), the selection of the time series
variables Xi, i ∈ [1, N]\{r} whose p-lagged values will be used as input for the forecasting
model in addition to the p-lagged values of the target time series Xr, has to be determined in a
timely-manner at t. The selection is decided by measuring how much each of Xi, ∀i ∈ [1, N]\{r}
is relevant to Xr and whether Xi is redundant in the presence of the other variables.

3.3.2.1 Relevance

The relevance of each Xi, ∀i ∈ [1, N]\{r} to Xr is measured by computing the similarity
between them on the time window T val

ω = [t− ω + 1, t], denoted by:

si,r
t = sim(X i

t−ω+1:t, X
r
t−ω+1:t). (3.1)

The time series variables Xi, ∀i ∈ [1, N]\{r} are sorted according to their si,r
t and the top-n

most similar variables to Xr are selected. There is no single universal similarity measure
between time series that is valid for every application. The choice of an adequate similarity
measure is made by considering the characteristics of the MTS in question.

3.3.2.2 Redundancy

The top-n selected input time series variables may include some redundant variables that would
lead to increasing the dimensionality of the MTS forecasting task without contributing to the
model’s accuracy. Relying on the computed similarity measures is not sufficient since they are
measured over a time window of observations T val

ω . For instance, two candidate variables can

70

3.3 Drift-aware Input Time Series Variables Selection

have the same level of similarity to the target variables while being effectively similar to it on
two distinct time intervals included within T val

ω . Therefore, we suggest removing redundancies
by clustering the top-n variables and selecting only one-time series representative per cluster.
To compute clusters for time series, several techniques are proposed in the literature, which
can be classified based on the way they treat the data and how the underlying grouping is
performed [260]. One classification depends on whether the whole series, a subsequence of
it, or individual time points are to be clustered. In our case, we cluster the subsequences
{X1

t−ω+1:t, X
2
t−ω+1:t, · · · , XN

t−ω+1:t}. On the other hand, the clustering itself may be shape-
based, feature-based, or model-based. The choice of time-series representation and the clustering
algorithm has a big impact on performance with respect to the clustering quality and execution
time [84], [93], [261]. Again, no single clustering method is universally valid, and the success
of the method depends on the characteristics of the time series data [260]. Denote with
the ci,j

t the clustering measure used for computing the distance between the two sequences
Xi

t−ω+1:t and Xj
t−ω+1:t, with i, j ∈ TOPn and TOPn denotes the subset of selected input time

series variables,i.e., |TOPn| = topn. The choice of the clustering algorithm, together with the
corresponding distance measure, is decided by the meta-learning component. Further details
are provided in Section 3.4.

3.3.2.3 Drift-aware Variables Selection Adaptation

Both relevance and redundancies are monitored continuously over time. For relevance, with
each upcoming data observation at t+ h, h ≥ 1, we slide T val

ω by one step, i.e. to include the
observation at t+ h, and we measure si,r

t+h, ∀i ∈ [1, N]\{r}. Then, we compute:

smin
t+h = min

i∈[1,N]\{r}
si,r

t+h (3.2)

in order to determine the distance between the target sequence and the most dissimilar sequence
within the N − 1 input variables. Then, we compare it to the initial calculated distance smin

ti
.

In our case, ti = t indicates the start of the online forecasting stage. The distance is treated as
time series where smin

t+h is its value at time t+ h.

Definition 11 (Weak Stationary Similarity) The similarity structure between a set of
input time series variables and a target time series is said to be weakly stationary if the true
mean of ∆s is 0, with:

∆s
t+h =

⃓⃓
smin

t+h − smin
ti

⃓⃓
(3.3)

Following this definition, we can assume that the distance between the target time series
sequence and the most dissimilar input sequence sets its boundary under a form of a logical
diameter. If this boundary diverges in a significant way over time, a drift is assumed to take
place. We propose to detect the validity of such an assumption using the well-known Hoeffding
Bound [262], which states that after ω independent observations of a real-valued random
variable with range R, its true mean has not diverged if the sample mean is contained within
±ζ and ζ is given by:

ζ =

√︄
R2 ln(1/µ)

2ω (3.4)

71

3. Online Adaptive Time Series Variables Selection

with a probability of 1− µ (µ is a user-defined hyperparameter).
Once the condition of the weak stationary similarity presented in Definition 11 is violated

at tds , a drift is assumed to take place at tds . A relevance re-computation is then triggered.
A re-clustering is also performed, the selection of the variables is updated and the reference
diameter smin

ti
is reset by setting ti = tds . This drift type is denoted Drift Type I.

Similarly, for the redundancy, we continuously monitor the distance measure used for
clustering ci,j

t+h, ∀X i, Xj ∈ TOPn, which results in the similarity matrix given by:

Ct+h = (ci,j
t+h)1≤i,j≥topn ∈ Rtopn×topn (3.5)

Then, we place all the elements of Ct+h in a vector ςt+h, where ςj,t+h ≥ ςj−1,t+h, ∀j ∈
{1, · · · , top2

n}. Let ςti denote the value of ς at the initial instant ti = t of the generation
of C. We monitor the deviation ∆ς

t+h similarly to ∆s
t+h:

∆ς
t+h =

⃓⃓
ς1,t+h − ς1,ti

⃓⃓
(3.6)

We test the occurrence of concept drift within the clusters following the same condition
defined in Definition 11. If a concept drift is detected at tdc , both relevance and redundancies
re-computation are triggered, and a re-selection of input variables is performed. We reset then
ςti = ςtdc

. This drift type is denoted Drift Type II.

3.3.3 Forecasting Model Adaptation

Drifts in the relationships among the time series variables, i.e., Drift Type I and/or Drift

Type II trigger the update of their selection. This update has an impact on the model naturally
since, with each new selection, a new model has to be trained. However, the change in the
dependencies structure of time series variables with the target variable or among each other is
not the only indicator of outdated or irrelevant input. The increase in the forecasting error
may indicate a possible change in the relationship between the input variables and the target
time series and/or outdated model parameters due to outdated time series observations that
were used for training. Therefore, necessary measures such as input variables re-selection and
model re-training with recently acquired data have to be taken. To do so, the forecasting error
ϵ is estimated using the Root Mean Square Error (RMSE) and is monitored over the sliding
window of the recent observations T val

ω . The error can be viewed as a time series, and at t+h:

ϵωt+h = 1
ω

t+h−1∑︂
j=t+h−ω

(xr
j − x̂r

j)2 (3.7)

with x̂r
j the predicted value of Xr at time j.

Naturally, with time-evolving data, the model’s error changes over time and may follow
non-stationary concepts. Let ϵti denote ϵ value at the initial instant of its generation ti = t.
Since the forecasting error is directional, drift detection using the absolute value of the error
deviation with the Hoeffding-bound can be misleading. Therefore, we suggest using the Page-
Hinkley Test [89] to detect significant increases in the forecasting error. The pseudo-code of
the Page-Hinkley Test is described in Algorithm 1.

72

3.4 Online Automated MTS Forecasting

Algorithm 1: Page-Hinkley Test for Error Drift Detection
Data: Error time series: ϵt; Admissible Change ν; Threshold ϱ
Result: Drift at time tdϵ : alerttdϵ

1 /* Initialize CUSUM and the error estimator: E(0) = 0, cusum(0) = 0 ,MT = 1;
2 alert0 = 0 ;
3 for i ∈ {1...∞} do
4 E(i)← E(i− 1) + ϵt+i−1 ;
5 cusum(i)← cusum(i− 1) + ϵt+i−1 − E(i)

i − ν ;
6 MT ← min(MT , cusum(i)) ;
7 if (cusum(i)−Mt) ⩾ ϱ then
8 alerti = 1;
9 tdϵ = t+ i;

10 else
11 end

where ν and ϱ are user-defined hyper-parameters, where ν is the tolerable change in the
estimated error and ϱ is a threshold. A larger ϱ avoids detecting false drift alarms but can
also lead to missing true drifts [89]. The error drift detection is denoted Drift Type III. An
alert at time tdϵ declares the occurrence of Drift Type III and triggers the update of the
input variables through new selection, i.e., new relevance and redundancy re-computation,
and updates the current model with new inputs and recent observations. It also restarts the
Page-Hinkley Test from the beginning. The model also gets updated with the update of the
input triggered by Drift Type I and/or Drift Type II.

3.4 Online Automated MTS Forecasting

As discussed above, there are no single universal similarity measures for relevance and
redundancies. Similarly, for the forecasting model, adequate model selection has to be performed
to cope with the characteristics of the MTS data in question. Once the model is selected, the
online adaptation scheme in our framework (See Section 3.3.3) takes care of the adaptation
of the model in an informed manner to the real-time changes in the data and the model’s
performance. To automate the choice of the measures and the model, we use meta-learning.
Let S and C be the spaces of the relevance and redundancy measures, respectively. Denote
with M the space of candidate models to solve the MTS forecasting task. Using a set of m
MTS characteristics represented here by the so-called meta-features, the goal of the meta-task
is to fit model fmeta : Rm → S × C ×M to predict the best combination of relevance and
redundancies measures and forecasting model choice given a vector of m MTS meta-features
as input.

3.4.1 MTS Meta-Features

Several works have been proposed for extracting Univariate Time Series (UTS) meta-features
[97]. Therefore, most of the existing works that tackled the same task for MTS use the same
features developed for UTS by extracting meta-features from each time series variable in the
MTS and concatenating them in one feature vector [247]. In this work, in addition to the

73

3. Online Adaptive Time Series Variables Selection

transfer of the most often used meta-features in the context of univariate time series to the
MTS domain, we propose to add MTS-specific meta-features. We additionally adapted the
concept of land-marking developed for meta-tasks in classification, and regression [34] to MTS
data. The extracted meta-features can be grouped into three main families.

3.4.1.1 UTS-specific Features

For each time series variable in the MTS, we extract different time series-specific features that
can be grouped into three families, including descriptive statistics, frequency domain, and
auto-correlation features [135]. The list of these features includes the trend, skewness of series,
turning points, kurtosis of series, step changes, length of series, non-linearity measure, the
standard deviation of de-trended series, maximal value, no. of peaks not lower than 60% of the
max, Auto- and Partial Correlations at lags one and two, and seasonality. Since the number of
variables in the MTS can be very big, we compute the mean and the standard deviation of
each extracted feature over the different variables.

3.4.1.2 MTS-specific Features

We suggest investigating the relationships/dependencies among the MTS variables. To do so,
we compute several similarity measures [73], including Pearson Correlation, Euclidean distance,
Dynamic Time Warping distance, Mahalanobis distance, Amplitude and Phase differences of
the Fourier Transform (FT), and Shape similarity based on derived FT amplitude and phase
differences, between each pair of variables. These similarity computations result in similarity
matrices for each measure. Instead of concatenating all the coefficients of all the matrices in
one feature vector and increasing the meta-task input dimensionality, we suggest computing
the diversity in similarity/dependence along with all the variables pairs for each similarity
matrix. Denote with S ∈ RN×N the resulting similarity matrix of a given similarity/distance
s between all the N MTS variables. We define diversity as (note the similarity values are
normalized between −1 and 1) :

div(S) = 1− 1∑︁
1≤i̸=j,≤N

∑︂
1≤i̸=j,≤N

s(X i, Xj) (3.8)

3.4.1.3 Landmarking-based Features

This type of meta-features is designed to describe the performance of some learning algorithms,
called landmarkers, in various learning contexts on the same data. Landmarkers are ML
models that are relatively computationally cheap either in training or testing compared to
other models. So far, all the proposed landmarkers and corresponding meta-features have
been proposed for classical meta-learning applications to classification problems, and one work
has added an extension of this concept to regression [34], whereas we focus on landmarkers
integration for MTS forecasting. In regression, the process starts by creating one landmarking
model over the entire training set. A small artificial neighborhood for each training example is
created using Gaussian noise. Then descriptive statistics of the models’ output, mean, stdev.,
1st/3rd quantile, are extracted. In our case, we use, LASSO, 1NN , MARS and CART , as

74

3.5 Empirical Experiments

landmarkers [34] and train them on Xtrain
ω . We can distinguish three types of Landmarking

features:

• Global landmarking: We evaluate each model on Xval
ω , and we extract the descriptive

statistics of the models’ output.

• Performance-based local landmarking: we split Xval
ω into equally-sized non-overlapping

time windows of size nω . We evaluate each model on each time window, and we extract
for each window the descriptive statistics of the models’ output.

• Model-based local landmarking: This type of local landmarking is designed to characterize
the landmarkers within a particular time series region, in our case, each time window of
size nω. To do so, we extract the knowledge that the landmarkers have learned about
each window. In addition to the prediction of each landmarker on each window, we
compute the depth of the leaf which makes the prediction and the number of examples
in that leaf, and the variance for each window for CART, the average over each window
of the width and mass of the interval in which each time value falls for MARS, and the
average over each window of the absolute distances to the nearest neighbor for 1NN.

The different stages of OAMTS are illustrated in Figure 4.1.

Cluster and
select cluster

representatives
Select Top-K

Original
Time Series

Data

Selected time
series

Feature Selection

New example

Remove
redundant

time series by
clustering

Feature Selection

Train the
model

Check for
drift in the
similarities

Drift Detection

Trigger an alarm and
reselect Check for

drift in the
error

Trigger an alarm

Sliding validation
window

Estimate the error

and retrain

Meta-Learning
Component

Predict the best
model-relevance/

redundancy
measures

Select the
most relevant

time series

Figure 3.2: Schematic visualization of OAMTS.

3.5 Empirical Experiments

We present the experiments carried out to validate OAMTS and to answer these research
questions:

• Q1: How does OAMTS perform compared to the SoA and existing online methods for
MTS forecasting?

• Q2: What is the importance of each component, namely relevance, and redundancy, in
the input time series variables selection on the performance?

• Q3: What is the benefit of each drift type detection for the performance of OAMTS?

75

3. Online Adaptive Time Series Variables Selection

• Q4: To which extent is it necessary to automate the choice of adequate relevance and
redundancies measures, as well as the forecasting model choice?

• Q5: How scalable is OAMTS in terms of computational resources compared to the most
competitive online model selection methods? and what is the computational advantage
of the drift-aware adaptation of the framework?

3.5.1 Experimental Setup

The methods used in the experiments were evaluated using the Root Mean Squared Error
(RMSE) (see Equation 2.57). We collected a total of 166 MTS from various real-world
applications. 100 MTS are exclusively used for the meta-learning task, while the remaining 66
MTS are used for testing the meta-model, which recommends which relevance and redundancy
measures and forecasting model from the pool of candidate models that we have devised to use.
Following the recommendation of the meta-model, these 66 MTS are used to validate the online
forecasting performance of OAMTS. Each of the 66 MTS was split using 50% for training
(Xtrain

ω), and 25% for validation (Xval
ω) and 25% for testing. Note that in each MTS, we have

chosen one variable as the target one depending on the application and the remaining variables
as different input variables. However, for some applications like taxi demand forecasting, all
the variables can play the role of the target one and change the role between variables. A full
list of the used datasets, together with a description, is given in the Appendix Tables A.1 and
A.2, and the code repository is given under this link 2.

3.5.1.1 Candidate Models Setup

We construct the pool P of candidate models. We mentioned earlier that there is no single
method for MTS forecasting that outperforms all the other methods on every time series.
Hence, we incorporate and test different families of models.

• Traditional MTS forecasting model: Vector Auto-Regressive (VAR) [17].

• Regression models are also included in P and are applied after using MTS embedding of
dimension N × p. These models include:

– Gradient Boosting Machines (GBM) [263].

– Support Vector Regression (SVR)[264].

– Random Forest (RF)[31].

– Projection Pursuit Regression (PPR) [265].

– MARS (MARS) [266].

– Partial Least Squares Regression (PLS) [267].

• Neural networks: that are designed for the time series forecasting task are introduced to
P such as:

– Multi-Layer Perceptron (MLP) [268].
2https://www.dropbox.com/sh/z2g0us0nti3nqzg/AAAJ6_6JcGZHN_y10q8XDYa_a?dl=0

76

https://www.dropbox.com/sh/z2g0us0nti3nqzg/AAAJ6_6JcGZHN_y10q8XDYa_a?dl=0

3.5 Empirical Experiments

– Bidirectional-LSTM (bi-LSTM) [110].

– Convolutional Neural Network LSTM (CNN-LSTM) [269].

– Convolutional-LSTM (Conv-LSTM) [269].

Using different parameter settings for each family of models, we generated a pool of 20
candidate models.

3.5.1.2 Meta-learning Task Setup

The list of similarity measures considered to measure the relevance of the variables includes:

• Pearson Correlation.

• Spearman Correlation.

• Euclidean Distance.

• Dynamic Time Warping Distance.

• Manhattan Distance.

• Fourier-based Distance.

For a detailed description of each measure, see Section 2.1.5. For redundancies, we have chosen
K-means [22] as the clustering algorithm with distance measures either Euclidean distance or
Dynamic Time Warping distance. For the models, we consider the selection from the pool P.

Note that for the meta-data labeling, we consider all the possible combinations of relevance,
redundancy measures, and model type, and we evaluate our framework performance on each
MTS dataset in the meta set by splitting it into 80% for training the framework and 20% for
validation. Even though the meta-task is performed fully offline (only meta-model predictions
are output online), this annotation is very resource-consuming because of the big number of
combinations. That is why we restrained the size of the metadata to 100 MTS. However, we
aim to enlarge this data in the future.

There are different options on how to tackle the meta-learning task. One possible option
would be to encode all the combinations of relevance, redundancy measures, and model type,
which would lead to a high number of classes compared to the size of the meta-data. Another
option is to consider it as a multi-label classification task. However, a classifier’s performance
on different labels can vary significantly. Therefore, we have chosen to split the task into
three learning tasks. The first one is for relevance measure prediction and is a multi-class
classification task solved with SVM [264]. The second task is for redundancy measure prediction
and is a binary classification task solved with SVM [264]. The third task is for model selection
and is a multi-class classification task solved with RF [31]. The choice of the learning algorithm
is decided using a cross-validation evaluation of the accuracy of the meta-data.

3.5.1.3 OAMTS Setup:

OAMTS also has a number of hyper-parameters that are summarized in Table 3.1.
We compare OAMTS against the following approaches, which include SoA methods for

MTS forecasting. Some of them operate in an online fashion.

77

3. Online Adaptive Time Series Variables Selection

Table 3.1: Hyper-parameters of OAMTS and their values for the experiments.

Parameter Description Value
p number of lagged values from each variable 5
ω size of validation set 25% of the dataset length
µ Hoeffding-Bound parameter 0.05
ν Admissible change in the Page-Hinkley Test 0.005
ϱ Page-Hinkley Test threshold 0.025

SoA Forecasting Models:

• ARIMAX [54]: Auto-Regressive Moving Average model with exogenous variables.

• LSTM [110]: Long Short Term Memory Network which has shown better performance
than the remaining neural networks such as MLP and CNN-LSTM and comparable
performance with bi-LSTM.

• VAR [17]: Traditional Vector Autoregressive model. Its order is tuned using Akaike
Information Criterion (AIC) using the R-package ’vars’.

• Drift-aware VAR [16] A recent framework that selects the relevant variables using Pearson-
Correlation for the VAR model and updates them following concept-drift detection. It also
uses L1-regularization to prevent over-fitting. However, redundancies are not removed.

OAMTS Variants:

• OAMTS-Ran: The variant of OAMTS that is computed using a random selection of
relevance and redundancies measures and model.

• OAMTS-VAR: The variant of OAMTS that uses VAR as the forecasting model instead
of the automatic model selection. Relevance and Redundancies are selected by the
meta-model.

• OAMTS-Rel: The variant of OAMTS that performs adaptive input selection by
considering only the relevance.

• OAMTS-Red: The variant of OAMTS that performs adaptive input selection by
considering only the redundancy.

• OAMTS-DI-II: The variant of OAMTS that performs model adaptation following concept
drift in the input structure (Drift type I and Drift type II.

• OAMTS-DIII: The variant of OAMTS that performs model adaptation following the
changes in the error (Drift type III).

• OAMTS-Per: The variant of OAMTS that performs model adaptation periodically
without any consideration of concept drift occurrence, with each upcoming 10% MTS
observations.

• OAMTS-BG: The variant of OAMTS where we assume we know the background truth
of which relevance and redundancies measures to use and which model to select. This is

78

3.5 Empirical Experiments

done by evaluating all the possible combinations on the test set. This variant is used as
a reference model to know how well the meta-learning component performs.

3.5.2 Comparing OAMTS to the State-of-the-Art

Table 3.2 presents the average ranks and their deviation for all the methods. A rank of 1 means
the method is the best on all the data sets. Therefore, the lower the rank is, the better the
method is. For the paired comparison, we compare our method OAMTS against each of the
other methods. We counted the wins and losses on each dataset using the RMSE scores. We
use the non-parametric Wilcoxon Signed Rank test [270] to compute significant wins and losses
(significance level 0.05). In the results in Table 3.2, OAMTS outperforms the baseline methods

Table 3.2: Comparison of OAMTS to different SoA for 66 time series. The rank column presents
the average rank and its standard deviation across different time series. A rank of 1 means the
model was the best performing on all time series. We report only significant wins and losses of
OAMTS against the remaining methods.

Method Our Method
Wins Losses Avg.rank

VAR 40 0 7.7±0.9
ARIMAX 20 20 3.0±2.2
LSTM 40 0 7.8±1.4
Drift-aware VAR 40 0 6.7±0.9
OAMTS-VAR 40 0 7.6±0.7
OAMTS-Ran 40 0 5.0±0.9
OAMTS-Rel 40 0 5.9±1.3
OAMTS-Red 40 0 6.3±0.6
OAMTS-Per 39 1 4.3±0.8
OAMTS-DI-II 30 10 3.2±1.2
OAMTS-DIII 7 33 2.9±0.7
OAMTS - - 2.2±0.5
OAMTS-BG - - 1.9±0.6

in terms of wins/losses in the pairwise comparison. The online MTS forecasting methods,
e.g., the Drift-aware VAR [16] and OAMTS-VAR show inferior performance compared to
OAMTS. VAR and LSTM, SoA methods for MTS forecasting, are considerably worse in average
rank compared to OAMTS. The most competitive SoA approach to OAMTS is ARIMAX.
Nevertheless, it has a higher average rank and a lower performance than our method. VAR
is considered to be the most widely used method for MTS forecasting, but it can be seen
from OAMTS-VAR that it is not always the best model choice. This is also confirmed by the
Drift-aware VAR performance. These results address the research question Q1.

3.5.3 Comparing OAMTS to its Variants

It can also be seen that none of OAMTS-Rel and OAMTS-Red is able on its own to reach
the performance of OAMTS which shows the importance of both relevance and redundancies
consideration in the input selection.

From Table 3.2, we can also see that none of the drift adaptation methods is able on its
own to perform as well as OAMTS, which deploys the three drift types to monitor changes
in the input dependence structure as well as the model performance. In addition, OAMTS
which relies on the informed adaption of the framework using concept drift detection, is better

79

3. Online Adaptive Time Series Variables Selection

than OAMTS-Per. This can be explained by the fact that unnecessary updates are not always
beneficial. This answers the research questions Q2-Q3.

3.5.4 Importance of the Meta-learning Component

Table 3.3 presents some examples where we show the ground truth of which are the best
relevance and redundancies measures, as well as the model choice for some data sets. It is

Table 3.3: Ground truth of the best model and relevance/redundancies measures for some datasets.

Dataset Model Similarity measure Clustering method
Taxi-1 PLS Pearson correlation DTW
Taxi-2 MARS Euclidean distance DTW
Taxi-3 PLS Spearman correlation DTW
Taxi-4 PLS Pearson correlation k-Means
Taxi-5 PLS Spearman correlation k-Means
Chengdu-city-1 MARS Euclidean distance k-Means
Chengdu-city-2 PLS Spearman correlation DTW
Chengdu-city-3 MARS Spearman correlation Euclidean

clear from Table 3.3 that there is no one single best relevance and redundancies measures,
as well as one optimal model choice, even for MTS data sets extracted from the same data
source like Taxi1, 2, 3, 4, and 5, that are extracted from NYC Trip Record Data (Yellow taxi
2021). This justifies the necessity of automating these choices. Random choices would lead to
considerably worse performance which is reflected in the performance of OAMTS-Ran in Table
3.2. In addition, comparing OAMTS to OAMTS-BG, we can see a slight difference in the ranks
in favor of the course of OAMTS-BG, but it highlights the usefulness of the meta-learning
component in our framework for automating all the choices. These results address the research
question Q4.

3.5.5 Scalability Analysis

In the next experiment, we compare the run-time of OAMTS and its variants against some
SoA methods in Table 4.3.

All the reported run-times concern only the online predictions and any operation computed
offline is not taken into account. The results demonstrate that OAMTS has a lower run-time
than OAMTS-Per. This is due to using drift detection to update the model and the selection
of input data only when necessary. This results in faster predictions and less computational
requirements. The high deviation of the run-time of OAMTS is due to the different numbers
of drifts per time series. This answers the question Q5.

3.5.6 Discussion

The empirical results indicate that OAMTS has performance advantages compared to popular
MTS forecasting methods. We show that our method, for adaptively selecting input MTS
variables and performing the model update, is able to gain excellent and reliable empirical
performance in our setting. The informed adaptation following concept drift detection makes
our method in addition to better predictive performance, computationally cheaper than blind

80

3.6 Concluding Remarks

Table 3.4: Empirical run-time comparison between different methods in Seconds.

Method OAMTS OAMTS
-Per LSTM

Avg. Runtime 34.26 72.12 150.09
± Std. 94.51 35.29 29.26

adaptation methods like periodic ones. In future work, we plan to enhance further the meta-
learning component by adding more datasets and annotating them, and establishing a direct
mapping to the best combination of measures and model choice as target labels as we assume
that there is a link in addition to the MTS characteristics that we tried to cover from different
perspectives, between relevance and redundancies measures and the chosen forecasting model.
This investigation will make the scope of our future work. In addition, we count on adding more
time series clustering algorithms so that we change the mapping to the clustering algorithm
directly instead of the relevance measure. We may also think about enlarging the pool P.

3.6 Concluding Remarks

This chapter introduces OAMTS: a novel, practically useful online adaptive framework for
multivariate time series forecasting. OAMTS uses adaptive input time series variables selection
by investigating relevance and redundancies. Both input variables and learning models are
updated in an informed manner following the detection of different types of concept drifts.
More specifically, we distinguish between drifts in the dependencies structure between the time
series variables and in the forecasting model’s performance. The choice of the relevance and
redundancies measure, as well as the model, is automated using meta-learning. An exhaustive
empirical evaluation, including several real-world datasets and multiple algorithms comparisons,
showed the advantages of OAMTS in terms of performance and scalability.

The choice of the forecasting model is automated using meta-learning that exploits the
characteristics of the MTS data in question. The model is updated by updating the input with
recent time series observations from the same time series variables or newly selected variables.
However, once selected, the model type, e.g., VAR or LSTM, is kept fixed. However, we have
discussed in the previous chapters that there is no single universal model that is valid for
every time series and over time. This is mainly due to the time-varying forecasting models’
performance that can be subject to concept drift, as we have shown in this chapter. Therefore,
we will investigate next the online single model selection and ensemble members selection, i.e.,
ensemble pruning over time in an adaptive informed manner.

81

4
Online Adaptive Single Model Selection

and Ensemble Pruning

In this chapter, we propose a set of methods that are devised to select either a single forecasting
model or many models to construct an ensemble model in an online adaptive manner.

4.1 Introduction

As we mentioned before, none of the proposed forecasting models in the Literature is universally
valid for every application [9]. Even if we consider a particular application, forecasting models’
performance is time-dependent [9], [10], [22]. This can mainly be explained by the fact that
different forecasting models have different areas of expertise placed over different parts, i.e.,
time series subsequences, in the input time series. Each of these parts is usually referred
to as the so-called region of expertise or a Region-of-Competence(RoC) of the model that
achieves the best predictive performance for that part, called the expert model [10]. Therefore,
appropriate and adaptive model selection in real-time is often required to cope with the
time-evolving nature of time series and the fact that forecasting models have a certain expected
level of competence in predicting a particular region in the time series. Various tactics have
been proposed for selecting a single model, ranging from statistical estimations to the use of
meta-learning to learn an appropriate selection strategy.

While some works have focused on the online selection of a single model [271], others
have extended on the assumption that no single model is an expert all the time and have
proposed to adaptively combine multiple forecasting models into an ensemble model [9], [10],
[22]. Ensemble members must also be carefully selected in real-time to account for changes in
both the time series and the time-changing forecasting performance of the members. Similar
techniques for single model selection can be used for ensemble member selection, i.e., ensemble
pruning. As discussed in Section 2.6.2, ensemble pruning is very challenging since finding the
optimal subset of models is a combinatorial search problem with exponential computational
complexity. Therefore, it is not possible to compute the exact solution by exhaustive search,

83

4. Online Adaptive Single Model Selection and Ensemble Pruning

and an approximate search is required [29], [30]. A taxonomy of ensemble pruning methods
using approximate search is presented with details in Section 2.6.2. In this context, Section
4.3 is dedicated to an online adaptive ensemble pruning method that can be applied for
single model selection, using a combination of a ranked-based approach together with a
clustering-based approach. The ensemble members’ ranking stage is made to be drift-aware
of the members’ performance over time to improve the ensemble’s accuracy. Then, a model
clustering procedure is applied to enhance the ensemble diversity. This method is denoted
in the following by DEMSRC: Drift-aware Ensemble Members Selection using a mixture of
Ranking and Clustering-based approaches.

More recently, the concept of Regions of Competence (RoCs) has been used for both the
selection of a single model [22] and the selection of ensemble members [10], [22] in the task
of time series forecasting. Different ways to determine these RoCs have been proposed [9],
[22]. Model-type-independent approaches use meta-learning by either training meta-models to
predict the performance of candidate models on the most recent time series pattern of p-lagged
values [22] or at a particular test time [9], [10]. Model selection approaches in these works
are performed online in a blind manner at each time step, i.e., without taking into account
the occurrence of significant changes in either the time series data or the performance of the
candidate models.

In Section 4.4, we present an online adaptive model selection method that is based on an
online clustering of a set of time series sequences contained in an adaptive sliding-window
validation set and an evaluation of the candidate models. The RoCs of these models are created
by assigning each cluster to the model with the best performance. The proposed method
is suitable for both single model selection and ensemble member selection. This method is
referred to as OMS-ROC: Online Model Selection using Regions of Competence in the rest of
the paper.

In section 4.5, we show how the computed RoCs provide an explanatory tool for the reason
for outputting a particular forecast value at a particular time instant and for the reason for
selecting a particular individual model or an ensemble member at a particular time instant or
interval. Since the RoCs are calculated independently from the model family, the provided
explanations are model-agnostic.

We further conduct a comprehensive empirical analysis to validate our methods using
100 real-world time series datasets from different domains. The obtained results show that
our methods achieve excellent results in comparison to SoA approaches for the selection of a
single model and/or ensemble members and to different baselines for time series forecasting.
Note that the time series used for the validation of our methods are univariate. However, the
methods can be generalized to MTS data. Further details are given in Chapter 9- Section 9.2.3.

84

4.2 Related Works

4.2 Related Works

4.2.1 On Online Model Selection and Ensemble Pruning

4.2.1.1 Online Single Model Selection

Online single model selection has been revealed to be challenging in the context of time
series forecasting due to the dynamic nature of time series data [9], [10] and the difficulty in
estimating the resulting time-evolving models’ performance/competence [122]. Given a set of
candidate models for performing a well-defined forecasting task, different tactics ranging from
statistical estimations to applying meta-learning to learning the adequate selection strategy
have been suggested. The approaches for online single model selection can be divided into
three main families. The first family of methods is based on approximating a posterior over the
expected error of the different candidates using parametric [272] or non-parametric estimation
methods [26]. These methods are not practical in the context of online forecasting since
continuous composite densities for the error-derived as a function of target and estimated
time series values have to be approximated. The results depend largely on the quality of
the approximation. The second family consists of using empirical estimation of the unseen
error of a given model using an independent validation/calibration dataset. Models with the
lowest estimated error are selected subsequently [27]. These methods are quite ineffective in
practice since the estimated empirical error is usually lower than the true error. The third
family is based on the meta-learning paradigm, where the selection of the adequate method
is decided by another machine learning model that learns from the evaluation of previous
selection realizations characterized by a set of devised meta features [9]. The design of the
meta-learning task, more specifically the meta-data, is generally very challenging due to the
difficulty of determining the most adequate meta-feature to be designed to characterize the task
and the data [34]. Therefore, model selection is performed in a static manner, i.e., the decision
is made once at a time in favor of one model, and this model is used subsequently to forecast
all the required values online at test time. The selection can also be updated continuously (i.e.,
blindly at each time instant or periodically) [9], [10]. However, this is usually expensive in
terms of time and resources.

4.2.1.2 Online Ensemble pruning

For online ensemble members selection (i.e., pruning), both theoretical and empirical studies
have shown that ensemble performance depends on the performance of its individual models
and how diverse they are [29]. However, it is very challenging to decide which models exactly
need to be selected in real-time, and even though all the previous works agree that encouraging
diversity is beneficial to the performance of an ensemble, but it is hard to enforce it in practice
[148], [152]. Therefore, understanding and promoting ensemble diversity remains an important
research question in online ensemble learning.

Similarly to single model selection, meta-learning-based methods can be used for ensemble
pruning [157], [168]. A meta-learning approach for the estimation of ensemble forecast errors
using regression is used in [157] to implement the selection procedure online for each forecast.
Another approach that uses lasso regression as a meta-learner is proposed in [273] to combine

85

4. Online Adaptive Single Model Selection and Ensemble Pruning

the forecasts of four base models: a global Recurrent Neural Network (RNN), Theta [274],
Trigonometric Box-Cox ARMA Trend Seasonal (TBATS) [275], and Dynamic Harmonic
Regression ARIMA (DHR-ARIMA) [97]. Both meta-learner and forecasting models are kept
static over time.

In addition to meta-learning, as we mentioned in general for ensemble pruning in Section
2.6.2, ranking and clustering-based approaches are used. Several studies used ranking of the
ensemble members following a selection criterion that takes into account the ensemble members’
errors and/or ambiguity [30], [162]. However, most of the devised criteria ignore the fact that
the error in time series forecasting is directional, and this may lead to inadequate ensemble
members selection [162]. In clustering-based approaches, ensemble members are clustered, and
a selection of clusters’ representatives is performed to increase the overall diversity of the
ensemble. The main issue in this method is the choice of the clustering similarity measure, and
the optimal number of clusters, i.e., the resulting ensemble size after pruning [30]. The last
thing to note is that the ensemble combination/aggregation stage can also be used to serve
the pruning stage implicitly by learning sparse ensemble weighting schemes. This is achieved
by assigning different weights to the ensemble members and setting some to zero in order to
exclude some of the members. Several methods for automatically learning dynamic ensemble
weighting schema for time series forecasting are suggested in the literature [176], [177], [276].
However, not all of them guarantee that some of the weights would be set to zero [176], [276].

Again, Dynamic methods can adapt the pruning strategy either in a blind manner over
time, i.e., at each time instant at test time, or periodically [9], [10], [157]. However, to the
best of our knowledge, none of the existing works in the literature performs online ensemble
pruning adaptation in an informed fashion following concept-drift detection in the time series
or the ensemble members’ performance over time.

4.2.2 On the Use of Regions of Competence for Model Selection

More recently, the concept of the Regions of Competence (RoCs) has been used both for
the selection of a single model as well as for ensemble members [9], [10], [22] in the time
series forecasting task. In [22], at test time, the most similar pattern to the current input (i.e.
in this case, a time series input sequence) is determined, and the model with the smallest
error on that pattern is selected for prediction. In [9], [10], meta-learning is used to build
ML models capable of modeling the competence of each of the ensemble members across the
input space. The authors frame their ensemble learning as a ranking task, in which ensemble
members are ranked sequentially by their decreasing weight (i.e., the one predicted to perform
better is ranked first). Correlation among the output of the members is used to quantify their
redundancy. A given learner is penalized for its correlation to each learner already ranked. If it
is fully correlated with other learners already ranked, its weight becomes zero. Opposingly,
if it is completely uncorrelated with its ranked peers, it gets ranked with its original weight.
In the above methods, the meta-models responsible for computing the RoCs are kept static
over time. Only distances or error comparisons are performed online in a blind manner at each
time step, i.e., without taking into account the occurrence of significant changes in either the
time series data or the performance of the candidate models.

86

4.3 Drift-aware Ensemble Members Selection using a Ranking-Clustering-based Approach

Sliding-Window
Average

Clustering
Top-

Base Models
Selection

Ensemble
Members

Original
Model Pool

Sliding Window
Validation

Ensemble
Prediction

Trigger Alarm

New ExampleDrift
Detection

Pruning

Combination

Adaption

Figure 4.1: DEMSRC Framework.

4.3 Drift-aware Ensemble Members Selection using a Ranking-
Clustering-based Approach

This Section introduces DEMSRC and its three basic components:

• First, we describe the drift-aware pre-selection step to get the top best-performing single
models.

• The second stage consists of first clustering these top models and selecting one
representative model for each cluster.

• Finally, each selected model’s output is integrated into a weighted average where the
weights are set to be inversely proportional to the model’s recent loss over a time sliding
window.

Figure 4.1 summarizes the main components of DEMSRC.

4.3.1 Preliminaries

We consider the pool P of M forecasting models as defined previously, trained to forecast a
time series X. Let x̂t+h = (x̂f1

t+h, x̂
f2
t+h, · · · , x̂

fM
t+h) be the vector of forecast values of X at a

future time instant t+ h, h ≥ 1 (i.e. xt+h) by each of the models fi, i ∈ [1,M] in the pool P
and f̄P an ensemble model of P at time instant t+ h.

Definition 12 Online Ensemble Pruning Problem Definition The goal of dynamic
online ensemble pruning is to identify the subset of models S ⊂ P that should compose the
ensemble at each time step t+ h such that the expected prediction error of the pruned ensemble
is reduced compared to the full ensemble f̄P for each forecast.

argmax
S⊂P

E
[︁(︁
xt+h − f̄P(x̂t+h)

)︁2|X1:t+h−1
]︁
− E

[︁(︁
xt+h − f̄S(x̂t+h)

)︁2|X1:t+h−1
]︁

(4.1)

87

4. Online Adaptive Single Model Selection and Ensemble Pruning

To reach this goal, a two-staged selection procedure is devised. The first stage is a pre-
selection stage which aims to keep only accurate single models’ forecasts using drift detection
in models’ performance over time. This stage discards models with poor performance, i.e.,
whose forecasts inclusion in the ensemble would deteriorate the forecasting accuracy. This
deterioration is more perceptible using a simple average for integration and can be covered to
some extent using a weighting strategy. The second stage aims to enhance the diversity aspect
with the use of clustering.

4.3.2 A Drift-Aware Ensemble Members Pre-Selection

In the previous chapter, the drift-based time series selection is applied in the context of
spatio-temporal features selection to be the input of an MTS forecasting model (See Section
3.3.2). Similarly, we can treat the set of ensemble members’ forecasts as a set of explanatory
variables or causes to our target time series X. To do so, dependencies between the set
of ensemble members’ forecasts and the time series X can be continuously computed and
monitored over a sliding-window validation set. Suppose we want to compute the prediction
for time instant t + 1, the validation sliding-window of size ω over X is defined by the
sequence Xt−ω+1:t = {xt−ω+1, xt−ω+2, · · · , xt}. Let X̂fi

t−ω+1:t = {x̂fi
t−ω+1, x̂

fi
t−ω+2, · · · , x̂

fi
t } be

the predicted sequence of values by the model fi on Xt−ω+1:t, ∀fi ∈ P.
A subset K of highly correlated models with the target time series X denoted “top-K”

based models are selected using a sliding-window similarity measure computed on the time
interval [t−ω+ 1 : t]. K is a user-defined hyperparameter. Hereby, we propose to use a custom
measure based on Pearson’s correlation distance between Xt−ω+1:t and X̂

fi

t−ω+1:t for all the
models fi ∈ P and (See Section 2.1.5) denoted as SRC - Scaled Root Correlation and defined
as:

corr(X̂fi

t−ω+1:t, Xt−ω+1:t) = τ−

∑︁ω

j=1 x̂
fi
t−ω+j

∑︁ω

j=1 xt−ω+j

ω√︃∑︁ω

j=1(x̂fi
t−ω+j)2−

(
∑︁ω

j=1 x̂
fi
t−ω+j

)2

ω

√︃∑︁ω

j=1(xt−ω+j)2−
(
∑︁ω

j=1 xt−ω+j)2

ω

(4.2)

SRC(X̂fi

t−ω+1:t, Xt−ω+1:t) =

√︄
1− corr(X̂fi

t−ω+1:t, Xt−ω+1:t)
2 ∈ [0, 1] (4.3)

where τ =
∑︁ω

j=1 x̂
fi
t−ω+jxt−ω+j . Naturally, with time-evolving data, dependencies change over

time and may follow a non-stationary process. Stationarity in this context can be formulated
as follow:

Definition 13 Weak stationary Models Dependencies Let Ct ∈ RM×M be a resulting
symmetric similarity matrix between the candidate ensemble members and the target time series
over the sliding window of size ω (i.e., derived from the above similarity metric Equation 4.3),
where M = |P| and ct be a vector containing all the elements in Ct where cj,t ≥ cj−1,t, ∀j ∈
{1 . . .M2}. Let ν denote the minimum SRC coefficient of P at the initial instant of its generation
ti. The dependence structure is said to be weakly stationary if the true mean of ∆ct is 0:

∆ct =
⃓⃓
c1,t − ν

⃓⃓
(4.4)

88

4.3 Drift-aware Ensemble Members Selection using a Ranking-Clustering-based Approach

Following this definition, we can assume that the distance between the most dissimilar
model within the same pool of models to the target time series sets its boundary under a
form of a logical diameter. If this boundary diverges in a significant way over time, a drift is
assumed to take place. We propose to detect the validity of such an assumption using the
Hoeffding Bound [262], which states that after ω independent observations of a real-valued
random variable with range R, its true mean has not diverged if the sample mean is contained
within ±ϵF :

ζ =

√︄
R2 ln(1/µ)

2ω (4.5)

with a probability of 1− µ (a user-defined hyperparameter). Once the condition of the weak
stationary dependencies presented in Definition 13 is violated, an alarm is triggered, and the
top single models using Ct are updated. Afterward, the dependency monitoring process is
continued by sliding the time window for the next prediction, and the reference diameter ν is
reset by setting ti = td, where td is the time instant at which the drift is detected.

4.3.3 Model Clustering

One of the most important aspects of successful ensembles is diversity [10], [148], [151], [152].
Typically, this diversity is initially reflected in the distinctive patterns of the ensemble members’
inductive bias derived from the different hypotheses on which each base learner is built to model
the input data and its dependence structure. As we mentioned, the enforcement and evaluation
of diversity on ensembles for time series data are still quite an unexplored topic-especially for
forecasting problems [11]. However, the expected error decomposition for ensemble schema, in
general, helps to get an intuition about the importance of diversity [148], [150], [277]. More
details are provided in Section 2.6.1. More precisely, the expected error of the ensemble can be
decomposed into bias, variance, and covariance terms (See Equation 2.61).

In DEMSRC, we propose a second-stage selection that tries to ensure such diversity
through clustering. Predictions of top-K selected models of the time sequence Xt−ω+1:t are
considered as ω-dimensional feature vectors to cluster these models. To compute clusters for
time series, several techniques are proposed in ML literature such as K-means and hierarchical
clustering, Dynamic Time Warping clustering [82], [261], [278]. However, one of the main
issues presented by time series clustering is the choice of similarity/distance measure as we
mentioned and investigated in the previous chapter. Most of the typical distance measures,
such as Euclidean distance, do not take dependence structures of time series data into account
[83]. To overcome this issue, we used an Improper Maximum Likelihood Estimator based
Clustering method (IMLEC) [279], which is based on a multivariate Gaussian model where
parameters are estimated using Expectation Maximization algorithm [280]. This method has
the advantage over Euclidean Distance-based clustering methods by contributing to achieving
near-zero covariance between the time series sequences belonging to different clusters and thus
to the reduction of the overall ensemble error. For instance, traditional clustering methods
like K-Means with Euclidean distance do not take into account the covariance of the time
series. If we consider two candidate time series that have dependence over a high number of
components of their ω-dimensional feature space (i.e., high covariance is assumed to take place),
the probability of attributing them to the same cluster by fitting the adequate parameters

89

4. Online Adaptive Single Model Selection and Ensemble Pruning

of the Gaussian mixture to the data is higher than simply using a Euclidean Distance-based
method, which would probably assign them to different clusters based on their closeness to
the current cluster centers. As a result, models belonging to different clusters have a more
likely near zero covariance. Therefore, the final step in the selection consists of selecting one
representative model for each cluster. We simply select the closest model to each cluster center.

4.3.4 Model Combination

The final selected models are integrated using a sliding-window weighted average [12]. Let S be
the pool of final selected models, i.e., ensemble members selected to take part in the ensemble
for the prediction of time instant t+ 1. The final prediction is obtained by:

x̂t+1 =
∑︂

fi∈|S|

[︂(︁
1− χi,t

)︁
x̂fi

t+1

]︂
∑︁

fi∈|S|

(︂
1− χi,t

)︂ : χi,t ∈ [0, 1], ∀i, t (4.6)

where χi,t is a normalized version of the recent loss of the model fi on [t − ω + 1, t] which
computation is given by an evaluation metric of interest (i.e., normalized version of the Root
Mean Square Error (RMSE) (See Equation 2.57) in our case).

This combination stage using adaptive weighting schema following the recent performance
of the final selected ensemble members further enhances the ensemble accuracy and allows for
a blind adaptation to drift by shifting the importance of the models in the final decision.

DEMSRC is exhaustively tested over data collected from 100 real-world time series datasets.
Details about these experiments are provided in the following Section.

4.3.5 Empirical Experiments

In this section, we present the experiments carried out to validate DEMSRC and to answer
the following research questions:

Q1: How is the performance of single candidate models over time and across different time
series?

Q2: How is the performance of DEMSRC compared to the State-of-the-Art methods for time
series forecasting and to existing dynamic ensemble selection approaches?

Q3: What is the advantage of the performance drift detection mechanism, which triggers the
ensemble members’ pre-selection, in terms of accuracy?

Q4: What is the impact of clustering, and how does the IMLEC-clustering perform compared
to commonly used clustering methods for time series data?

Q5: What is the impact of different combination strategies on performance?

Q6: Is there an advantage in terms of computational resources if the ensemble members
selection is made in an informed fashion (i.e., only triggered by drift detection alarms)?

90

4.3 Drift-aware Ensemble Members Selection using a Ranking-Clustering-based Approach

4.3.5.1 Experimental Setup

The methods used in the experiments are evaluated using the root mean squared error (RMSE)
(See Equation 2.57). In each experiment, the time series data was split into 75% for training
and 25% for testing. The results are compared using the non-parametric Wilcoxon Signed
Rank test [270]. We use 100 real-world time series from a diverse set of application scenarios,
such as transport data, sensor readings, and financial indices. A full list of the used datasets,
together with a description, is given in the Appendix in Table A.3 and the code repository is
available under this URL 1.

Base Models Setup: We construct the pool P of candidate single models. We mentioned
earlier that there is no single ML model for forecasting that outperforms all the other models
on every time series. Hence, we incorporate and test different families of models.

• Traditional time series forecasting:

– Auto-Regressive Integrated Moving Average ARIMA [67].

– Exponential Smoothing ETS [54].

• Regression models: are also included in P and are applied after using time series embedding
of dimension p = 5 (For more details, see Section 2.4.4). These models include:

– Gradient Boosting Machines: GBM [263].

– Gaussian Processes: GP [281].

– Support Vector Regression: SVR [264].

– Random Forest: RF [31].

– Projection Pursuit Regression: PPR [265].

– Multivariate Adaptive Regression Splines: MARS [266].

– Principal Component Regression: PCMR [282].

– Decision Tree Regression: DT [167].

– Partial Least Squares Regression: PLS [267].

• Neural networks:

– Multi-Layer Perceptron: MLP[268].

– Long Short-Term Memory network: LSTM [118].

– Bidirectional LSTM: bi-LSTM [110].

– Convolutional Neural Networks:

∗ CNN-LSTM [283]: convolutional layers of different filter sizes, followed by a
max pooling layer, an LSTM layer, a dense layer, and an output layer.

∗ Conv-LSTM [269]: the convolutional reading of input is built directly into
each LSTM unit. The Conv-LSTM was developed for reading two-dimensional
spatial-temporal data but can be adapted for use with univariate time series
data.

1https://github.com/AmalSd/DEMSC

91

https://github.com/AmalSd/DEMSC

4. Online Adaptive Single Model Selection and Ensemble Pruning

Using different parameter settings for each family, we generate a pool of 43 candidate models.

DEMSRC Setup DEMSRC has a number of hyperparameters that are summarized in
Table 4.1. For IMLEC-clustering, we used the R-package of the authors of [279]. The maximum
number of clusters is a user-defined parameter. However, it can be automatically reduced by
removing outliers and noisy data that cannot be fitted to any cluster. We compare DEMSRC

Table 4.1: Hyperparameters of DEMSRC and their chosen values for the experiments.

Parameter Value
Number of Top-K Base models Half of candidate pool P
Maximum number of clusters Half of Top-K Base models
Hoeffding-Bound δ 0.95
Size of Sliding Window ω 20

against the following approaches, which include State-of-the-Art (SoA) methods for single
model selection and ensemble pruning methods for forecasting. Some of them operate in an
online fashion. Since DEMSRC contains a model combination/aggregation stage, we compare
DEMSRC against SoA methods for online ensemble aggregation. We also compare DEMSRC
with some variants of itself. All of these variants, except one, use sliding window weighting for
combining the ensemble members’ predictions.

SoA Forecasting Models These models include: ARIMA [61], ETS [97], LSTM [118], and
CNN-LSTM [112].

SoA for Ensemble Learning These models include: GBM [263], RF [31].

SoA for Online Ensemble Pruning These methods use the same pool of candidate models
P as DEMSRC.

• Ran: consists of a random selection of single models to construct the ensemble.

• Ens: is an ensemble of all the models in P and uses a simple average to aggregate them.
Note that even selecting all the models in the pool P to take part in the ensemble can be
considered a pruning decision.

• SW-Ens [12]: is an ensemble of all the models in P and uses a sliding-window weighted
average to aggregate all the models (See Equation 4.6).

• ADE [9], [10]: was recently developed for an online dynamic ensemble of forecasters
construction. A meta-learning strategy is used that specializes candidate single models
across the time series to determine their Regions-of-Competence (RoCs). More specifically,
it uses a meta-learner to predict the candidate models’ errors and selects a set of models
based on the estimated errors. Weighting is also based on the estimated errors combined
with a softmax. Weights are additionally adapted to take diversity between ensemble
members into account such that additional members are discarded.

• DETS [9]: is considered as an advanced version of SW-Ens, selects a subset of members
based on recent errors, and uses a smoothing function on the average of recent errors for
weighting.

92

4.3 Drift-aware Ensemble Members Selection using a Ranking-Clustering-based Approach

• KNN-RoC(5) [22]: computes static RoCs using a fixed splitting of a validation set into
small intervals as input and the rank of the best performing individual candidate model
on each interval as a label for a KNN classifier, using DTW distance and for many
models selection, K = 5 is used for comparison. At test time, the KNN predicts which
candidate models should be selected.

SoA for Online Ensemble Aggregation

• OGD: Online Gradient Descent [284] aggregation over all the models in P. An approach
based on online gradient descent that provides theoretical loss-bound guarantees.

• FS: Fixed Share method [276] for aggregation over all the models in P. More details
about FS are provided in Section 2.6.3.

• EWA: Exponential Weighting [276] Aggregation over all the models in P. More details
about EWA are also provided in Section 2.6.3.

• MLPOL: Polynomial Potential aggregation rule [175] for aggregation over all the models
in P. More details about MLPOL are also provided in Section 2.6.3

• Stacking [33]: An approach for ensemble aggregation using Random Forest as a meta-
learner to learn the ensemble weighting schema.

DEMSRC Variants

• OCL: Same as our method but without the Top-K single models selection stage. Clusters
are updated in a drift-aware manner as described for DEMSRC.

• OTOP: Only the drift-aware pre-selection of the Top-K models based on correlation (no
clustering is applied afterward).

• DEMSRC-kMeans: The clustering method is replaced with K-Means with Euclidean
distance (the number of clusters is tuned using the average silhouette method).

• DEMSRC-DTW: The clustering method is replaced with Dynamic Time Warping
clustering.

• DEMSRC-stacking: The stacking variant differs from our method only in the combination
step. Instead of using a sliding window weighted average, a stacking approach is used in
this variant for aggregation, and PLS is used as the meta-learner.

4.3.5.2 On the Performance of Single Candidate Models

As a preliminary analysis, we evaluate the performance of these models on a subset of the
100 datasets and compute the rank of each model based on its RMSE. A rank of one on one
dataset means that the corresponding model is the best-performing one on that dataset.

Figure 4.2 demonstrates that all the forecasting models have a high variance as their
performance changes across different time series, showing that there is no obvious best-
performing model. This prompts the fact that not only an ensemble of diverse forecasting

93

4. Online Adaptive Single Model Selection and Ensemble Pruning

Figure 4.2: Distribution of the ranks of the single models across 20 different time series datasets,
models within the same family in the x-axis have similar names attached to different numbers for
stating different models’ parameters.

models is a more desirable option, but also efficiently selecting and combining them would
make forecasting more accurate.

4.3.5.3 Comparing DEMSRC to the State-of-the-Art

Table 4.2 presents the average ranks and their deviation for all methods. For the paired
comparison, we compare our DEMSRC against each of the other methods. We counted the
wins and losses for each dataset using the RMSE scores (See Equation 2.57). We use the
non-parametric Wilcoxon Signed Rank test [270] to compute significant wins and losses, which
are presented in parenthesis (i.e., the significance level =0.05).

DEMSRC has advantages over the compared methods except for ADE. The approaches
for pruning and combining individual forecasters, which are Ens, SW-Ens, DETS, OGD, FS,
EWA, MLPOL, and KNN-RoC(5), show a big difference in the average rank compared to
DEMSRC. ARIMA, ETS, and LSTM, the SoA method for forecasting, have a big difference in
the average rank compared to DEMSRCas well. Common ensemble methods like RF, GBM,
SW-Ens, and Stacking compare poorly to all methods specialized for combining forecasters.
The two competitive approaches to our method are ADE and DETS, with DETS having a
higher average rank but performing well in the pairwise comparison. ADE is competitive to
DEMSRC. It is comparable to DEMSRC in terms of wins and losses but has also a higher
average rank. Regarding research question Q2, our results show that DEMSRC is competitive
with ADE and outperforms other SoA approaches for time series forecasting, including the
online methods. The average rank of DEMSRC is better than ADE, but we do not see the main
advantage of our method in the performance but more in the complexity and computational
requirements, which we will discuss later.

94

4.3 Drift-aware Ensemble Members Selection using a Ranking-Clustering-based Approach

Table 4.2: Paired comparison between DEMSRC and different baseline methods for 100 time series
datasets. The rank column presents the average rank achieved by each model and the standard
deviation of the rank across the different datasets. A rank of 1 means the model was the best
performing in all these datasets.

Method Our Method
Losses Wins Avg. Rank

RF 10(5) 89(73) 16.25± 2.7
GBM 9(3) 91(16) 18.07± 2.0

ARIMA 10(1) 87(71) 13.50± 4.1
ETS 11(1) 85(71) 14.37± 3.2

LSTM 11(3) 86(71) 13.85± 5.3
CNN-LSTM 12(4) 85(71) 12.76± 6.5

Ens 13(2) 85(73) 11.42± 3.8
SW-Ens 15(4) 82(74) 11.85± 3.5

ADE 48(20) 50(40) 4.24± 3.0
DETS 30(15) 67(50) 7.15± 4.8

KNN-RoC(5) 32(15) 68(54) 6.48± 3.5
EWA 29(11) 71(62) 7.3± 2.6

FS 18(10) 80(63) 9.5± 3.6
OGD 25(14) 70(62) 6.8± 2.5

MLPOL 22(10) 74(60) 7.2± 3.5
Stacking 15(8) 85(74) 14.9± 3.8

OCL 30(25) 70(64) 7.9± 3.7
OTOP 17(12) 83(74) 10.2± 4.9

DEMSRC-kMeans 14(9) 86(76) 10.7± 5.1
DEMSRC-DTW 22(18) 78(70) 11.6± 3.5

DEMSRC-stacking 31(9) 69(56) 5.7± 5.3
DEMSRC - - 3.87± 2.7

4.3.5.4 Comparing DEMSRC to its Variants

Comparing the three different clustering methods (DEMSRC-kMeans, DEMSRC-DTW,
DEMSRC(IMLEC)), we can see the clear advantage of the IMLEC-clustering. Using Dynamic
Time Warping clustering gives a slight improvement over K-Means, but both of them do not
improve the pre-selection. Using IMLEC-clustering improves the performance drastically. This
can be explained partially by enhancing the ensemble diversity aspect discussed in Section
2.6.1.

We see that the aggregation part of our method has a small impact by comparing DEMSRC
to DEMSRC-stacking. Both variants using IMLEC-clustering, with either a sliding window
weighted average or a stacking approach for the aggregation stage, have clear advantages over
the other clustering variants (see question Q4). To further investigate the differences in the
average ranks, we use the post-hoc Bonferroni-Dunn test [285] to compute critical differences.
We present in figure 4.3 the critical differences of the methods by considering the average rank.
The only variant where the difference in average rank to DEMSRC is not critically different
is the stacking variant (DEMSRC-stacking). However, the stacking variant’s average rank is
higher. This answers the research question Q5 regarding the impact of each component of the
method.

95

4. Online Adaptive Single Model Selection and Ensemble Pruning

Figure 4.3: Critical difference diagram for the post-hoc Bonferroni-Dunn test, comparing OAMTS
against variants of our method.

4.3.5.5 Importance of the Drift-aware Models Selection

We can also answer the research question Q3, asking about the impact of using drifts detection
in the models’ dependence on the target time series to trigger the new ensemble members’
re-selection. Performance-wise, we can see that our method performs on the same level or even
slightly better than the best online SoA approach, namely ADE. The motivation for using
drift detection is to update the ensemble only when necessary. This should result in faster
predictions and lower computational requirements (see question Q6). We see in Table 4.3 that
the average run-time of ADE is more than twice as long as the run-time of our method. The
high deviation in the run-time of our method is due to different datasets having more or fewer
drifts detected.

Table 4.3: Empirical run-time comparison between DEMSRC and the most competitive State-of-
the-Art method (ADE).

Method Avg. Run-time in sec.
DEMSRC 97.69± 54.4
ADE 166.95± 15.3

4.3.5.6 Final Remarks

We presented results that empirically showed that DEMSRC has performance advantages
compared to other ensemble methods for forecasting and is competitive with the most recent
SoA approaches for dynamically pruning and combining forecasting methods.

We show that our method, using a combination of a performance-based pre-selection and
clustering, is able to perform at a high level. The pre-selection ensures that only accurate models
are used in the ensemble. The clustering groups similar models based on their predictions
together. We then select only clusters’ representatives. This leads to an ensemble with accurate
and diverse members, which has been theoretically shown to be required for an ensemble
to outperform its members. None of these two stages is able on its own to reach the full
performance of DEMSRC, but the combination of both is very powerful.

96

4.4 Online Model Selection using Regions of Competence

The usage of a drift detection mechanism for model selection enables our method to
construct a new ensemble, given changes in the nature of the dependencies between the single
candidate models and the target time series. If there is no change, then there is also no need
to construct a new ensemble. Therefore, drift detection reduces computational efforts.

DEMSRC method and the complex meta-learning approach of ADE perform on the same
level. To reach the same performance, we only need pre-selection and clustering triggered by
drift detection. Therefore, compared to ADE, which needs to train a meta-model for each
candidate, our method is computationally cheaper. For the experiments, a prediction with
ADE needed, on average, twice as long as our method.

DEMSRC is also suited to online single model selection by selecting the Top-1 best-
performing model in the pre-selection stage.

4.4 Online Model Selection using Regions of Competence

In this section, we present OMS-ROC and its main stages.

• In the first stage, we train several candidate forecasting models from different families of
models offline.

• The second stage consists of determining the RoCs of these models using sliding windows
over a validation set. The RoCs are computed by splitting the validation set into equally-
sized sequences and clustering them. An evaluation of the candidate models on the
sequences in each cluster is performed. The model with the best average performance for
a given cluster is considered as the expert for that cluster. In other words, this cluster is
considered an RoC for this model.

• In the third stage, to generate a forecast at a given time tf , the distance from the current
input time sequence of p observations to the calculated cluster centers (i.e., RoCs centers)
is measured. When a single model is selected, the model corresponding to the RoC center
with the smallest distance is selected to predict the time series value at tf . In the case
of ensemble pruning, a distance ranking is computed, and the top models with the top
closets RoCs are selected to form the ensemble. The final prediction is computed using
averaging.

The RoCs (i.e., clusters) are continuously updated by adding the most recent recorded pattern
at the time of testing to the RoC of the model with the best performance on that pattern,
regardless of its proximity to the other RoCs. A concept-drift detection mechanism is used to
check for the occurrence of significant changes in each cluster over time. If at least one change
is detected, a re-clustering is triggered, and the assignment of RoCs to the different candidate
models is updated. In addition, the RoCs can be used to provide suitable explanations for
the reason for selecting a particular model(s) at a particular time interval or point in time.
Practical examples of these explanations are presented in detail in Section 4.5.

4.4.1 Preliminaries

We use the same notations defined in Section 4.3.1. We divide the time series Xt into Xtrain
ω =

{x1, x2, · · · , xt−ω} and Xval
ω = {xt−ω+1, xt−ω+2, · · · , xt}, with ω a provided window size. Xtrain

ω

97

4. Online Adaptive Single Model Selection and Ensemble Pruning

is used for training the models in P and Xval
ω is used to compute the RoCs since to measure

models performance, both true and predicted values of the time series are required. For
OMS-ROC, the candidate models in P are trained on Xtrain

ω using the same number p of
lagged values of the time series as input to model the following value in the time series.

4.4.2 Online Model Selection

4.4.2.1 RoCs Computation

First, we divide Xval
ω into equally sized subsequences of length p. In order to increase the

number of resulting subsequences, the division is performed in a step-wise manner, i.e., at each
time step tj , ∀tj ∈ [t− ω + 1, t− p+ 1], we extract the following p− 1 values. The extracted
subsequence at time tj is denoted by sp

tj
= {xtj , xtj+1, · · · , xtj+p−1}. Since all the models are

built to predict the future value of a time series using the past lagged p values, for each sp
tj

,
we also store the subsequent value xtj+p (i.e., the value coming after the p observations),
denoted here as xsp

tj . The subsequences Sp = sp
tj
, ∀tj ∈ [t− ω + 1, (t− p+ 1)] are clustered

into K-clusters using K-Means clustering with Euclidean distance DE . Each cluster is expected
to enclose subsequences that reveal similar patterns. The next step consists of determining
which candidate model is an expert than the others in predicting the upcoming values once
observing a pattern similar to the patterns enclosed in each cluster. To do so, for each cluster
Ck, ∀k ∈ [1,K], an evaluation of each of the models in P on predicting the value coming after
each subsequence in Ck is performed.

ϵfi
Ck

= 1
ck

∑︂
sp

l
∈Sp

k

(︁
xsp

l − (x̂sp
l)fi

)︁2 (4.7)

where ck is the size of the cluster Ck, Sp
k is subset of Sp that are enclosed in the cluster

Ck, i.e., Sp
k contain sp

l with l ∈ [1, ck], xsp
l is the subsequent value of each sp

l and (x̂sp
l)fi its

corresponding forecast by fi ∈ P. Ck gets assigned as the RoC of the model fz satisfying:

fz = argmin
fi∈P

ϵfi
Ck
, ∀k ∈ [1,K] (4.8)

In this way, each cluster Ck, ∀k ∈ [1,K] is assigned to an expert model fz, z ∈ [1,M]. One
model can acquire more than one RoC (i.e., cluster) as it can be an expert in more than one
particular pattern. It is also possible that one model never gets selected if it performs worse
than the remaining candidates on all the clusters. Its RoCs are then empty. The set of RoCs of
a model fz are denoted by RoCz = {R1

z, · · · , Rnz
z }. Since Rn

z , n ∈ [1, nz] is originally a cluster,
its center is denoted by r̄n

z .

4.4.2.2 Online Forecasting

At test time, after computing the candidate models’ RoCs, an online decision on model selection
for forecasting the value of X at t+ h (assume h = 1 for simplicity) has to be made.

Single Model Selection The models in P are devised such that they use the same p-lagged
values of the time series as input, inputpt = {xt−p+1, · · · , xt}, (t ≥ p). To perform the selection,

98

4.4 Online Model Selection using Regions of Competence

the distance of the input pattern inputpt to the RoCs centers of each candidate model is
measured. Euclidean distance DE is used to measure the similarity between inputpt and each
r̄n

z , ∀n ∈ [1, nz], ∀z ∈ [1,M], The model fs satisfying :

fs = argmin
n∈[1,nz];
z∈[1,M]

DE(r̄n
z , input

p
t) (4.9)

is selected to forecast t+ 1.

Ensemble Pruning As we mentioned before, the expected error of the ensemble of models
in P at t+ 1 can be decomposed into a weighted average error term of the single models in P
which reflects the ensemble accuracy and an ambiguity term which is simply the variance of the
ensemble around the weighted mean of its members and it reflects the ensemble diversity [148],
[150] (More details in Section 2.6.1). Since different RoCs (i.e. clusters of patterns) centers
may belong to the RoCs set of the same model, we start first by computing the minimum
distance dt

z of inputpt to the set of RoCs per model fz, ∀z ∈ [1,M].

dt
z = min

n∈[1,nz]
DE(r̄n

z , input
p
t) (4.10)

We sort these computed minimums in an ascending order Dt = {dt
z1 , d

t
z2 , · · · , d

t
zT opK

, · · · , dt
zzN
}

with zj ∈ [1,M], ∀j ∈ [1,M]. We select the set of Top-K models ST opK
⊂ P corresponding to

the TopK smallest dt
z. Considering only the minimum distances to the RoCs for the selection of

many models (Equation 4.9) may lead to the selection of the same models more than one time
since one model can be an expert on more than one RoC. However, computing the minimum
per model (Equation 4.10) enforces the selection of distinct models that are experts on different
clusters of patterns. This encourages ensemble diversity which is a desirable property for
ensemble learning. In addition, the selection following the minimum per model guarantees also
the selection of models that have expertise in similar patterns to the current pattern, which
enhances the ensemble accuracy.

4.4.2.3 RoCs Adaptation

At test time, the RoCs of the models are enriched continuously with new patterns that reveal
new potential areas of the models’ competence. That is why in the first stage, we select the
model whose RoCs will be enriched based on the performance, and in the second stage, we
consider the closeness. After forecasting the value of X at t+ 1, the most recent pattern inputpt
is added to the RoC of the model with the best performance at t+ 1 using inputpt as input,
regardless of its proximity to the other RoCs:

fb = argmin
fj∈P

(︁
xt+1 − x̂

fj

t+1
)︁2 (4.11)

Since fb may have many RoCs (i.e., many clusters of patterns) RoCb = {R1
b , · · · , R

nb
b },

inputpt is added to Rnc
b whose center is the closest:

Rnc
b = argmin

n∈[1,nb]
DE(r̄n

b , input
p
t) (4.12)

99

4. Online Adaptive Single Model Selection and Ensemble Pruning

where r̄n
b is the center of Rn

b .
Changes in the clusters are continuously monitored over time. Once an update of a cluster

Rnc
b that belongs to the RoCs of model fb takes place, we test whether a significant change

has been applied to this cluster or not. To do so, we compute the distance between the two
most dissimilar sequences in this cluster and compare it to the initial calculated distance δi.
The distance is treated as time series where δtd

is its value at time td. If at this time instant,
Rnc

b does not undergo any change, the difference automatically gets the value of the previous
time instant, i.e.,δtd

= δtd−1. If it gets updated, we compute the new distance by taking into
account the addition of the new pattern.

Definition 14 (Weak stationary RoC structure) The RoC structure is said to be weakly
stationary if the true mean of ∆t is 0 with:

∆t =
⃓⃓
δt − δi

⃓⃓
(4.13)

As we explained previously for different drift types, e.g., drift in the models’ errors, and
drift in the dependencies between the models, following this definition, we can assume that the
distance between the two most dissimilar sequences within the same RoC sets its boundary
under a form of a logical diameter. If this boundary diverges in a significant way over time, a
drift is assumed to take place. We propose to detect the validity of such an assumption using
the Hoeffding Bound [262], which states that after N independent observations of a real-value
random variable with range R, its true mean has not diverged if the sample mean is contained
within ±ζ:

ζ =

√︄
R2 ln(1/µ)

2N (4.14)

with a probability of 1− µ (a user-defined hyperparameter). Once the condition of the weak
stationary RoC structure presented in Definition 14 is violated, a re-clustering is triggered, and
the RoCs assignment is updated. This adaptation ensures the enrichment of RoCs without
altering the homogeneity of the clusters over time. This makes our selection procedure accurate
over time since we only consider the distances to the centers of the clusters and also promotes
the proposed explainability aspects that rely on clusters’ visualization. Further details are
provided in Section 4.5.

4.4.3 Empirical Experiments

We present the experiments carried out to validate OMS-ROC and to answer these research
questions:

• Q1: How does OMS-ROC perform compared to the State-of-the-Art (SoA) and existing
online single model selection and online ensemble pruning methods for time series
forecasting?

• Q2: What is the advantage of updating the RoCs by taking into account at the first
stage the models’ performance and then the topological closeness?

• Q3: What is the advantage of updating the RoCs in an informed fashion (i.e., after drift
detection)?

100

4.4 Online Model Selection using Regions of Competence

• Q4: How scalable is OMS-ROC in terms of computational resources compared to the most
competitive online model selection methods? and what is the computational advantage
of the drift-aware adaptation of the models’ RoCs?

4.4.3.1 Experimental Setup

The methods used in the experiments are evaluated using the root mean squared error (RMSE)
(See Equation 2.57). The used time series was split using 50% for training (Xtrain

ω), and 25%
for validation (Xval

ω) and 25% for testing. We use the same 100 real-world time series datasets
described in the previous experiments and presented with the details in the appendix Table
A.3. We use the same pool P of candidate models as in the previous experiments composed of
the 43 forecasting model. For further details, see Section 4.3.5.1. The code of the method can
be found under this repository 2.

OMS-ROC Setup: OMS-ROC has also a number hyperparameters that are summarized in
Table 4.4.

Table 4.4: Hyperparameters of OMS-ROC and their values for the experiments.

Parameter Description Value
p number of lagged values 5

(input pattern and the RoCs subsequences sizes)
ω size of validation set 25% of the dataset length
K number of clusters in K-means automatic in R-package NbClust
topK selected top of models in the ensemble 5
µ Hoeffding-Bound parameter 0.05

SoA Methods Setup We denote by OMS-ROC-single, the variant of our method that selects
the best single model, and by OMS-ROC-ens the variant of our method that performs ensemble
pruning (See Section 4.4.2). We compare OMS-ROC against the following approaches, which
include SoA methods for single model selection and ensemble pruning for time series forecasting.
Some of them operate in an online manner.

SoA Forecasting Models:
These models include:ARIMA [61], ETS [97], LSTM [118], and CNN-LSTM [112].
Online SoA for single model selection:
OMS-ROC-single is compared against these methods.

• KNN-RoC(1) [22] computes static RoCs using a fixed splitting of a validation set into
small intervals as input and the rank of the best performing individual candidate model
on each interval as a label for a KNN classifier, using DTW distance and for single model
selection K = 1, is used for comparison. At test time, the KNN predicts which candidate
model should be selected.

• ADE-Single [9], [10] ADE was recently developed for an online dynamic ensemble of
forecasters construction. A meta-learning strategy is used that specializes candidate
single models across the time series to determine their RoC (See Section 4.2.2 and Section

2https://www.dropbox.com/sh/4wy44r4cfnsq6yr/AACYU5QKs9AVwMEL1MzVLddGa?dl=0

101

https://www.dropbox.com/sh/4wy44r4cfnsq6yr/AACYU5QKs9AVwMEL1MzVLddGa?dl=0

4. Online Adaptive Single Model Selection and Ensemble Pruning

4.3.5.1). However, instead of selecting many models, we select the best-performing model
using the same principle.

• DETS-single [9], at each test time instant, it picks a single base model to make a
prediction. The picked model is the one that has the lowest loss prediction by the meta
models (See Section 4.3.5.1).

Online SoA for ensemble pruning: OMS-ROC-ens is compared against these methods
that use the same pool of candidate models P as OMS-ROC-ens: Ran, Ens, KNN-RoC(5),
ADE, and DETS are the same SoA ensemble methods described in Section 4.3.5.1. We also
compare OMS-ROC-ens to our previously developed method DEMSRC and its variants OCL
and OTOP.

OMS-ROC-single/ens Variants: we compare OMS-ROC, i.e., in both cases OMS-ROC-
single or OMS-ROC-ens denoted here by OMS-ROC-single/ens to various variants of themselves:

• OMS-ROC-single/ens-st: is the same as OMS-ROC-single/ens, but the RoCs are not
updated using the drift detection mechanism. The RoCs are computed and stored offline,
and only model selection takes place online.

• OMS-ROC-single/ens-Per: is the same as OMS-ROC-single/ens, but the RoCs are
updated periodically in a blind manner (i.e., without taking into account the occurrence
of concept drifts) with a periodicity of each upcoming 10% time series data observations.

• OMS-ROC-single/ens-dis: is the same as OMS-ROC-single/ens, but the update of the
RoCs is done by considering only the closeness to the pre-computed RoCs independently
of the models’ performance.

4.4.3.2 Comparing OMS-ROC to the State-of-the-Art

For the paired comparison, we compare our method OMS-ROC against each of the other
methods. We counted the wins and losses of OMS-ROC on each dataset using the RMSE
scores. We use the non-parametric Wilcoxon Signed Rank test [270] to compute significant
wins and losses, which are presented in parenthesis (significance level 0.05). Tables 4.5 and
4.6 present the average ranks and their deviation for all methods for OMS-ROC-single and
OMS-ROC-ens, respectively.

From the results in these two Tables, we can see that OMS-ROC-single outperforms
the baseline methods in terms of wins/losses in the pairwise comparison. The online single
model selection approaches, e.g., KNN-RoC(1), ADE-Single, and DETS-single show inferior
performance compared to OMS-ROC-single. ARIMA, ETS, LSTM, and CNN, SoA methods
for forecasting have considerably worse average ranks compared to OMS-ROC-single. Similarly,
OMS-ROC-ens outperforms all the online SoA methods for ensemble pruning, namely, KNN-
RoC(5), ADE, DETS, OCL, OTOP, and DEMSRC, as well as the standard ensembling
techniques such as averaging all the methods in Ens or opting for random pruning in Ran.
The ensemble version of OMS-ROC also has performance advantages over the single model
selection version.

102

4.4 Online Model Selection using Regions of Competence

Table 4.5: Comparison of OMS-ROC-single to different SoA methods on 100 time series. The
rank column presents the average rank and its standard deviation across different time series. A
rank of 1 means the model was the best performing in all the time series.

Method Losses Wins Avg. Rank
ARIMA 9(8) 91(89) 9.90± 4.39
ETS 7(6) 92(84) 10.04± 4.87
lSTM 19(10) 80(70) 8.97± 3.61
CNN-LSTM 20(8) 75(73) 8.00± 3.70
KNN-RoC(1) 25(7) 72(70) 7.39± 3.59
ADE-Single 22(14) 75(71) 7.8± 4.18
DETS-Single 22(16) 78(73) 8.41± 2.95
OMS-ROC-single-Per 45(19) 55(30) 3.11± 2.7
OMS-ROC-single-st 45(19) 57(30) 4.28± 3.90
OMS-ROC-single-dis 40(28) 60(40) 5.01± 3.1
OMS-ROC-single - - 2.3± 2.0

Table 4.6: Comparison of OMS-ROC-ens to different SoA methods on 100 time series datasets.
The rank column presents the average rank and its standard deviation across different time series.
A rank of 1 means the model was the best performing in all the time series.

Method Losses Wins Avg. Rank
ARIMA 5(3) 95(93) 15.90± 4.35
ETS 4(3) 96(96) 16.04± 4.26
lSTM 15(8) 85(83) 12.97± 3.60
CNN-LSTM 20(6) 80(78) 10.00± 3.60
Ran 20(6) 80(71) 10.30± 3.59
Ens 17(12) 83(72) 11.84± 4.18
KNN-RoC(5) 22(16) 78(73) 8.41± 3.59
ADE 31(22) 69(61) 6.28± 4.18
DETS 21(18) 79(67) 9.37± 3.95
OTOP 30(18) 70(65) 6.7± 2.90
OCL 32(21) 68(64) 6.2± 2.60
DEMSRC 32(21) 68(64) 6.15± 4.35
OMS-ROC-ens-Per 38(21) 62(61) 5.45± 4.26
OMS-ROC-ens-st 34(26) 66(61) 6.08± 3.60
OMS-ROC-ens-dis 36(25) 64(59) 5.67± 3.59
OMS-ROC-single 45(40) 55(50) 3.3± 2.7
OMS-ROC-ens - - 2.9± 2.18

103

4. Online Adaptive Single Model Selection and Ensemble Pruning

More particularly, we can see in Table 4.6 that OMS-ROC is considerably better than
DEMSRC. This can be explained by the fact that while OMS-ROC starts in the first place by
clustering the models to promote ensemble diversity and then introducing ranking to eliminate
the worst performing models, DEMSRC starts by performing ranking at the first place which
may kill to some extent diversity. Hence, even though clustering is performed afterward to
select diverse models, the ranking can already lead to clustered models around the most recent
pattern (i.e., high agreement between the models). As a result, the second stage of clustering
becomes profitless. These results address the research question Q1.

4.4.3.3 Comparing OMS-ROC to its Variants

Comparing OMS-ROC-single/ens to their different variants, we see a clear advantage in using
all the choices in our method. First, the update of the RoCs by considering in the first place
the candidate models’ performance, and then in the second place, the topological closeness
to the pre-computed RoCs is shown to be better than updating the RoCs whose patterns
are the closest to the current one. This is proven by the clear better performance of OMS-
ROC-single/ens compared to OMS-ROC-(single/ens)-dis. This answers the research question
Q2.

4.4.3.4 Importance of the Drift-aware Adaptation

Our RoCs adaptation manner contributes to creating richer information about possible new
appearing RoCs of the different candidates that are included within the recently acquired time
series data points. OMS-ROC-(single/ens)-st is even better than OMS-ROC(single/ens)-Per,
which shows that unnecessary updates are not always beneficial. Opposingly, OMS-ROC-
(single/ens), which relies on an informed adaptation of the RoCs using concept drift detection,
is better than OMS-ROC(single/ens)-Per and OMS-ROC(single/ens)-st. This can be explained
by the fact that the update of the RoCs is only beneficial when concept drifts in the RoCs
structure are detected. These drifts indicate either a change in the competence of the models
over time or the appearance of new regions with the newly acquired patterns which have not
been seen before and may be relevant for model selection for future forecasts. Taking into
account the probable appearance of new patterns in the time series data is helpful for the
selection of models since a knowledge of which models are more adequate to handle these
patterns if they ever reoccur again is gained, and the old sets of RoCs are enriched.

Figure 4.4 shows an illustrative example of the RoCs computation before and after drift
detection. New RoCs are discovered, and new models appear to be competent, such as CNN-
LSTM1 and CNN-LSTM3. The RoCs (clusters) get more refined, and their homogeneity is
restored after the adaptation. For example, RF2 and SVR-rbf3 disappeared to give their place
to SVR-rbf1/2 and SVR-ln2. This answers the research question Q3.

4.4.3.5 Scalability Analysis

In the next experiment, we compare the run-time of OMS-ROC-(single/ens) and its variants
to some SoA methods, namely ADE-Single [10] (forOMS-ROC-single) and DEMSRC(for OMS-
ROC-ens), in Table 4.7. Note that the computation of the RoCs is done offline, and the reported

104

4.4 Online Model Selection using Regions of Competence

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

RF2

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

SVR−lap1

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

RF3

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

SVR−rbf1

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

LSTM2

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

CNN−LSTM2

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

SVR−lap3

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

SVR−rbf3

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

MLP1

(a)

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

RF2

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

MLP3

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

RF3

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

SVR−rbf1

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

LSTM1

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

SVR−lap1

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

SVR−lap1

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

SVR−rbf2

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

SVR−ln2

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

CNN−LSTM1

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

RF1

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

CNN−LSTM3

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

MLP1

0

200

400

600

1 2 3 4 5
time.indx

Va
lu

e

CNN−LSTM3

(b)

Figure 4.4: RoCs for the candidate models before (top) and after (bottom) drift detection. Note
same model name with different numbers means the same family of models but with different
parameters, like MLP1 and MLP3 have different numbers of layers.

run-time is calculated only for computing the time series predictions in real-time by searching
the most similar RoC to the current input pattern inputpt . OMS-ROC relies on informed
updates (i.e., using a drift detection mechanism). OMS-ROC-Per relies on a periodic update of
the RoCs. The reported run-time for OMS-ROC-(single/ens) and OMS-ROC-(single/ens)-Per
takes into account the computation of new RoCs once a drift is detected. ADE-Single [9] relies
on a blind update of the meta-learning strategy behind the selection. DEMSRC relies on a
drift-aware update of the ensemble pruning as explained in Section 4.3.2. All the reported run
times concern only the online predictions, and any operation computed offline is not taken
into account.

The results demonstrate that OMS-ROC-(single/ens) and its variants have a lower average
run-time than ADE-Single and are comparable to DEMSRC. OMS-ROC-(single/ens) has
lower run-time compared to OMS-ROC-(single/ens)-Per. This is achieved thanks to the
informed RoCs adaptation using drift detection. This results in faster predictions and lower
computational requirements. The high deviation of the run-time of OMS-ROC-(single/ens) is
due to the different numbers of drifts per time series. This answers the question Q4.

4.4.3.6 Final Remarks

The empirical results indicate that OMS-ROC has performance advantages compared to
popular forecasting methods and the most recent SoA approaches for online model selection
and ensemble pruning for time series forecasting. We show that OMS-ROC designed for

105

4. Online Adaptive Single Model Selection and Ensemble Pruning

Table 4.7: Empirical run-time comparison of different methods in Seconds.

Method Avg. Run-time ± Std.
ADE-Single 157.87 56.40
DEMSRC 8.42 18.30
OMS-ROC-single 5.33 4.80
OMS-ROC-single-st 0.90 1.65
OMS-ROC-single-Per 154.11 204.22
OMS-ROC-ens 6.03 4.6
OMS-ROC-ens-st 1.08 1.8
OMS-ROC-ens-Per 168.71 208.9

adaptively computing the RoCs of different forecasters, is able to gain excellent and reliable
empirical performance in our setting. The informed update of the RoCs following concept drift
detection makes our method, in addition to better predictive performance, computationally
cheaper than the most competitive SoA methods, namely ADE-single and DEMSRC.

4.5 Explainable Online Model Performance and Selection

In this section, we show how OMS-ROC can be used to provide appropriate explanations for
why a particular model or a set of models are selected at a particular time interval or point
in time and why a particular forecast value can be expected to be output by this selection.
To do so, we exploit the visualization of the time-adaptive clustering procedure involved in
OMS-ROC to provide visual explanations for the model behavior and selection process.

The visualization of the RoCs helps in understanding the expertise of the candidate models.
For example, Figure 4.4 shows that while SVR-lap-based models are experts in predicting
accurately sharp patterns, SVR-rbf-based models are better in predicting valley-shaped patterns.
"rbf" and "lap" denote radial basis function and laplacian kernels, respectively.

In addition, visualizing both the input patterns and their subsequent values help in
predicting or anticipating the forecasting model’s output which is considered to be one of
the most important aspects of Explainability in ML [195]–[197]. Figure 4.5 demonstrates an
example of a single model selection process using OMS-ROC-single by showing a comparison
between the current input time series pattern inputpt (left part in black) with the closest cluster
of RoCs of the selected model to perform the forecast. A clear similarity between both patterns
can be observed. A clear similarity between the output forecast by the model and the values
that are subsequent to the RoCs sequences (dotted line) is also observed. This also justifies our
choice of the RoCs attribution to expert models based on the performance of these models on
the subsequent values to the candidate sequences (i.e., the patterns of p lagged values for each
data point) (See Equation 4.8). These similarities also highlight the importance of updating
the RoCs by considering, in the first place, models’ performance on the newly acquired pattern
before the topological information (See Equation 4.11 and Section 4.4.2.3 for more details).
In addition, it justifies at test time the choice of the model that has been proven to show
some degree of competence in forecasting using similar patterns to the selected RoC cluster of
patterns as input (See Equation 4.9).

The selection process of one or many models can also be understood by visualizing a
comparison between the current time series pattern inputpt and the pre-computed RoCs

106

4.6 Concluding Remarks

0

200

400

600

2 4 6
time.indx

va
lu

e
Ground_Truth

Prediction

Example prediction

0

200

400

600

2 4 6
time.indx

va
lu

e

 Regions of Competence

Figure 4.5: Comparison of the current input pattern to the closest RoC.

clusters of the candidate models. A more general overview of the RoCs and the selection
process for ensemble pruning using OMS-ROC-ens is provided in Figure 4.6. We plot only the
RoCs centers (i.e., cluster centers). The selected models are marked in red rectangles. The
selection is made in favor of models whose patterns are similar to the current pattern, which
encourages ensemble accuracy. In addition, the minimum distance is computed per model (See
Equation 4.10) which enforces the selection of distinct models experts with different clusters of
patterns which encourages ensemble diversity. Even though two Random Forests are selected
RF1 and RF3, but they do have different hyper-parameters that are also different from the
other RFs in the pool P, which highlights the importance of the timely selection of the models’
hyper-parameters when considering the same family of models. Regarding the forecast value,
it can be seen that averaging the subsequent values (dotted lines in the three red marked
rectangles) in each of the selected patterns results approximately in the true observed value
that is subsequent to the current pattern, which explains the output forecast value by the
ensemble.

4.6 Concluding Remarks

We have devised two main methods for online single model selection and ensemble pruning for
the task of time series forecasting.

First, DEMSRC: a novel, practically useful dynamic ensemble members selection framework
is developed. DEMSRC uses a two-stage selection procedure. On the one hand, DEMSRC
enhances the ensemble’s accuracy by performing an informed ensemble pruning adaptation at
test time using candidate models’ performance drift detection mechanism. On the other hand,
DEMSRC enhances the ensemble’s diversity using an online models’ clustering procedure.

Second, OMS-ROC: a novel, practically useful online model selection method is presented.
OMS-ROC uses the concept of adaptive Region of Competence (RoCs) and is suitable for
online single model selection, as well as online ensemble pruning. These RoCs are computed
using an adaptive clustering procedure of input time series subsequences. In addition, the
RoCs are updated in an informed manner using concept drift detection in the computed
RoCs structure. OMS-ROC can also be successfully used for providing useful explanations for

107

4. Online Adaptive Single Model Selection and Ensemble Pruning

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x

Value

LS
TM

1

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x

Value

SV
R−

lap
1

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x
Value

CN
N−

LS
TM

3

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x

Value

SV
R−

ln2

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x

Value

SV
R−

lap
1

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x

Value

LS
TM

2

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x

ValueRF
3

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x

Value

CN
N−

LS
TM

3

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x

Value

SV
R−

rb
f2

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x

Value

CN
N−

LS
TM

3

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x

Value
SV

R−
ln2

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x
ValueRF

1

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x

Value

SV
R−

lap
3

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x

ValueML
P1

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x

Value

SV
R−

lap
1

0

20
0

40
0

60
0

2
4

6
tim

e.i
nd

x

Value

Cu
rre

nt
 pa

tte
rn

Figure 4.6: Example of ensemble pruning for Ab.Heartbeat data using OAMTS

108

4.6 Concluding Remarks

model(s) selection and observed forecast values which help in simulating and understanding
the behavior of forecasting models.

An exhaustive empirical evaluation, including 100 real-world time series datasets from
various application domains and multiple algorithms comparisons from SoA under different
perspectives, shows the advantages of both methods, DEMSRCand OMS-ROC, in terms of
performance and scalability.

In the next chapter, we will introduce two methods specifically devised for online single
DNN selection and an ensemble of DNNs pruning. We will explain the reasons behind this
special attention to DNNs in this thesis. We will also provide the details of these methods.

109

5
Explainable Online Adaptive Deep

Neural Network Selection

In this chapter, we specifically focus on Deep Neural Networks (DNNs) for three main reasons.
First, DNNs are nowadays widely used in the context of time series forecasting. Second,
DNNs are usually known to be extensive resource-consuming models making thus their online
management, including online single DNN selection or ensembles of DNNs pruning, very
challenging, especially in resource-constrained environments. Third, these models are also
known to be very complex and usually referred to as black-box models, making thus their
explainability very challenging but also highly required. Therefore, we will show in this chapter
how the gradient-based training mechanism of DNNs, which offers rich information about the
internal structure of the DNN, can be exploited for both DNN-based model selection and
explainability.

5.1 Introduction

More recently, Deep Artificial Neural Networks (DNNs) have shown some improvements over
previous shallow ANN architectures [112] and have been successfully applied to solve the
time series forecasting task [112], [286]. This success is mainly explained by their ability to
automatically learn new, complex, and enriched feature representations from input data [109].
Recurrent-based NNs such as Long Short-Term Memory Networks (LSTMs) [118], as well as
Convolutional Neural Networks (CNNs) [114], have been widely used as State-of-the-Art NN
methods in the context of forecasting [112], [113]. Many improvements over these networks’
architectures have been proposed in the literature, ranging from optimizing the architecture
structure to combining these networks together in one single forecasting task [113], [114].
However, DNNs typically have high variance, and low bias [113]. In complex and dynamic
application environments, it is difficult for an individual deep learning model to maintain a
high forecasting accuracy [287]. This is due to the fact that, as we mentioned before, different

111

5. Explainable Online Adaptive Deep Neural Network Selection

DNNs have different areas of expertise or Regions of Competence in the time series and varying
forecasting performance over time [9], [10], [22].

Two possible solutions to mitigate this issue are either to perform adequate and adaptive
single DNN selection in real-time or to combine forecasts of different DNNs in an ensemble
model.

The selection of the adequate DNN is also known as the selection of the adequate DNN
architecture [116]. However, the search for an optimal network architecture for a given
application is still an open research question [116]. This is even more challenging in the
case of online forecasting, where the decision for adequate architecture has to be made in
real-time. Due to their high training run-time and general resource consumption, it is usually
impractical to search for adequate architecture at test time at each time instant or even
in a periodic manner. Therefore, we focus in this chapter on approaching this problem by
considering different candidate models of DNNs with different architectures (e.g., based on
CNNs combined with other NNs models) and performing the online selection of the adequate
architecture in real-time in an adaptive informed manner.

The first method is called in the following OS-PGSM: Online CNN-based models Selection
using Performance Gradient-based Saliency Maps. We start by computing the Regions of
Competence (RoCs) of candidate CNNs using saliency maps. Saliency maps are usually used
to establish a relationship between the output and the input of a neural net given fixed
weights. They are widely used in the context of computer vision with CNNs to create a
class-specific heat map based on a particular input image and a chosen class of interest [288],
also called class-activation maps. These maps are used for visualizing the regions of input that
are “important” for predictions by the model and for understanding a model’s predictions [203].
We suggest not only transferring class-activation maps from the context of classification to
forecasting but also establishing a mapping between the input time series and the performance
of candidate CNNs so that dynamic RoCs are computed for each single CNN. Opposingly
to the aforementioned approaches, the RoCs are considered as dynamic since their size is
automatically decided and changed over time by the saliency map depending on the input
time series sequence and the corresponding CNN performance. The RoCs are computed using
a time-sliding window over a validation set. At test time, we produce forecasts step by step. At
each time step, the distance between the recently observed window of time series observations
(i.e., p-lagged values used to compute the forecast) and the pre-computed RoCs is determined.
The model corresponding to the RoC with the smallest distance is selected to output the
forecast. Additionally, the pre-computed RoCs are adaptively updated in case a concept drift
is detected in the time series by sliding the validation set to take into account the probable
presence of new concepts in the data when computing RoCs.

The second method is an extension of the first method to an ensemble of DNNs pruning.
We introduced some modifications to the way of computing the DNNs’ RoCs, and we provided
some theoretical insights guiding the construction of the ensemble and helping in setting up
its final size, i.e., number of its composing models. More precisely, we propose a two-stage
online pruning procedure for an ensemble of DNNs for time series forecasting. Since, as we
discussed Section 2.6.2, the performance of the ensemble depends largely on the performance
of its members and on the diversity amongst them [19], [29], [30], [156], our pruning procedure

112

5.2 Related Works

is devised to take into account these two aspects. This is achieved by comparing the computed
RoCs of the DNNs to each other and to the most recent time series sequence pattern of p
observations. The RoCs are computed using saliency maps, derived similarly to the way used
in OS-PGSM by establishing a mapping between the input time series and the performance
of the DNNs. On the one hand, diversity is encouraged using clustering of the corresponding
DNNs RoCs, thus promoting the selection of diverse patterns by considering only cluster
representatives. On the other hand, the second selection stage takes into account the accuracy
of the cluster representatives by considering their closeness to the most recently acquired time
series pattern. The distance between the current pattern and the most distant RoC from
the selected models in the second stage sets its boundary under a form of a diameter. By
setting up the number of clusters from the first stage, a bound for this diameter is derived,
which automatically determines the final number of models that should be selected so that the
expected ensemble error over the most recent time series window is reduced. At test time, we
produce forecasts step by step. In the first time step, we perform the pruning as explained
above. Afterward, at each time step, we compute the minimum distance between the RoCs
of the candidate DNNs and the current time series pattern, i.e., the most recently observed
window of time series observations. We keep monitoring the deviation of this minimum distance
from the initial computed minimum. If this deviation diverges significantly over time, a drift in
the dependency structure between the candidate DNNs and the target time series is assumed
to take place (i.e., similar to the way the candidate models’ dependence structure to the
time series is monitored in DEMSRCin Chapter 4) and the ensemble pruning is updated
by recomputing the models’ selection using the most recently acquired time series pattern
following the same methodology. The deviation is tested incrementally using the well-known
Hoeffding Bound [262]. Another drift-detection mechanism is employed to test the presence
of drifts in the time series values. The occurrence of such drift triggers the update of both
RoCs and the pruning strategy. This method is denoted in the following OEP-ROC: Online
Ensemble Pruning using performance saliency maps-based Regions-Of-Competence.

Since DNNs selection is based on the pre-computed saliency maps-based RoCs, suitable
explanations of both single DNN selection, as well as an ensemble of DNNs pruning are
provided. In addition, we explain their resulting performance.

We further conduct a comprehensive empirical analysis to validate both OS-PGSM and
OEP-ROC using the same 100 real-world time series datasets used to validate DEMSRC and
OMS-ROC. The obtained results demonstrate that both methods achieve excellent or on-par
results in comparison to State-of-the-Art (SoA) approaches for DNNs selection and an ensemble
of DNNs pruning and learning as well as to several baselines for time series forecasting.

5.2 Related Works

In Section 4.2.1.1, we have presented and discussed the related works on online model selection
and ensemble pruning for time series forecasting. In this section, we discuss related works to
the recent developments in deep learning for time series forecasting and the use of saliency
maps to promote explainability in the deep learning context.

113

5. Explainable Online Adaptive Deep Neural Network Selection

5.2.1 On the Recent Developments in Deep Learning for Time Series
Forecasting

Over recent years, deep learning models have been successfully applied to a wide variety of
learning tasks, including time series forecasting [114], [115], [289]. Currently, Recurrent Neural
Networks (RNNs), and particularly Long-Short Term Memory (LSTM) nets, are considered to
be State-of-the-Art in time series forecasting [114], [115], [290]. Thanks to their design based
on recurrent connections (See Section 2.4.5.5), these networks have the ability to learn from
the entire history of previous time series values. Another alternative for the use of DNNs in the
forecasting task is to employ a Convolutional Neural Network (CNN) with multiple layers of
dilated convolutions [291]. The dilated convolutions are based on filters allowing to skip certain
elements and others representing certain repeating patterns in the input series. The layered
structure of CNNs enables them to work well in noisy series, by removing the noise within
each subsequent layer and extracting only meaningful patterns, performing thus similarly to
neural networks which use the wavelet transform on input time series [290]. This also allows
for the receptive field of the network to expand exponentially, thereby making the network,
similar to RNNs, access a wide range of historical data. Due to the convolutional structure of
the network, CNNs have fewer trainable weights than recurrent networks, allowing them thus
to be much more efficient in training and predicting [290].

Some works have focused on improving CNN-based architectures by combining a CNN and
an LSTM in one single model to take advantage of the ability of LSTMs to cope with long
temporal correlations [114], [115]. In [292], the authors propose an undecimated convolutional
network for time series forecasting using the undecimated wavelet transform. An autoregressive
weighting schema for forecasting financial time series is presented in [293] where the weights
are learned through a CNN. However, convolutional architectures in literature are much more
commonly applied to time series classification problems compared to forecasting [120], [290].

The aforementioned works have focused on searching the most suitable network architecture
for a well-defined application. At test time, the architecture and the learned weights are kept
fixed and used to produce forecasts. However, as we mentioned before, to cope with the time-
evolving nature of time series data, the forecasting schema has to be designed in a dynamic
adaptive manner. Since the same model can’t be guaranteed to hold the same performance
over time [9], [10], [22], online adequate model selection is required. This is usually hard to
achieve with DNNs in general since the architecture tuning and the re-training of such models
are intensively time-consuming operations [114], [290]. We suggest mitigating this problem by
training different CNN-based models with various architectures offline and deciding on the
online selection of the adequate network at each time instant at test time. The selection is
achieved using a computation of the so-called RoCs using saliency maps.

5.2.2 Saliency Maps for DNNs

Saliency maps (i.e., known in the context of classification as attribution heat maps or Class
Activation Maps (CAMs)) [288] were originally designed for computer vision classification
tasks to visualize which part of an image is of high relevance to the network to make its
decision [203], [288]. They are considered as tools for better understanding a model’s behavior,
e.g., by providing insights into model failure modes [288]. Many saliency map generation

114

5.3 Online Deep Neural Network Selection using Adaptive Saliency Maps

methods are post-hoc methods in the sense that they are applied to an already-trained model.
This is distinct from trainable attention, which involves learning how to produce attention
maps during training by learning particular parameters.

CAMs use feature maps produced by the last convolutional layer of a CNN. This is
motivated by the fact that the last convolution layer is expected to contain both high-level
semantic and detailed spatial information [203]. More recently, CAMs have been applied in
the context of time series classification to explain which features and which joint contribution
of all the features during which time interval are responsible for a given time series class [218].
However, to the best of our knowledge, our method OS-PGSM is the first work to apply
saliency maps for online CNN-based model selection for time series forecasting. The generation
of these maps is performed in an informed, adaptive fashion. In addition, they are exploited to
provide explanations for particular timely model selections.

5.3 Online Deep Neural Network Selection using Adaptive
Saliency Maps

This section introduces OS-PGSM and its main stages:

• In the first stage, we train different candidate CNN-based models with various
architectures offline.

• The second stage consists of determining the RoCs of these models using sliding windows
over a validation set. The RoCs are computed using a modified version of CAMs, in the
sense that instead of using these maps as a class attribution method, we employ them to
establish a relation between a relative "good" performance of a given candidate CNN and
a particular pattern within the input time-sliding window sequences. We base our method
on a gradient-based technique for generating saliency maps called Grad-CAM [203]. We
call our modified version in the following "Performance Gradient-based Saliency Maps
(PGSMs)".

• In the third stage, in order to produce a forecast at a given time instant tf , the distance
of the current input time sequence (i.e., time series observations from tf − p to tf − 1,
tf > p) to the computed RoCs of each model is measured. The model corresponding to
the RoC with the smallest distance is selected to forecast the time series value at tf . A
concept drift detection mechanism in the time series is employed at test time (i.e., during
forecasting). Once a drift is detected, an alarm is triggered to update the validation set
by taking into account the new observed time series values and subsequently updating
the RoCs.

The PGSMs can be used to provide suitable explanations for the reason behind selecting a
specific model at a certain time interval or instant. Practical examples of these explanations
are shown with details in Section 5.5.

115

5. Explainable Online Adaptive Deep Neural Network Selection

5.3.1 Preliminaries

We keep the same notations as in the previous chapter. However, the pool of candidate
models P contains a set of trained CNN-based models fi, i ∈ [1,M]. Similarly, let x̂t+h =
(x̂f1

t+h, x̂
f2
t+h, · · · , x̂

fM
t+h) be the vector of forecast values of the time series X recorded until time

t at time instant t+ h, h ≥ 1 (i.e. xt+h) by each of the models in P.
We divide the time series sequence X1:t into Xtrain

ω = {x1, x2, · · · , xt−ω} and Xval
ω =

{xt−ω+1, xt−ω+2, · · · , xt}, with ω a provided window size.
Xtrain

ω is used for training the models in P and Xval
ω is used to compute the RoCs using

the PGSMs since to measure models’ performance, both true and predicted values of the
time series are required. The RoCs for each model fi, i ∈ [1,M] are obtained by performing
time-sliding window operations of size nω, nω < ω over Xval

ω either by one step or by z steps.

5.3.2 Candidate CNN Architectures

The candidate models are CNN-based models that share more or less the same basic types
of layers. The common basic structure consists of a sequence of 1D-convolutional layers with
different filter and kernel sizes, followed by a batch normalization layer, in some cases an
LSTM layer, and an output layer of one neuron. The different architectures are obtained by
varying the number of the convolutional layers and their corresponding parameters (i.e., the
size of filters and kernels) and, in some cases adding or removing another neural network type
to the last convolutional layer, like an LSTM layer. To obtain further architectures variations,
the number of units in the LSTM layer is also varied.

5.3.3 Online Model Selection

5.3.3.1 Performance Gradient-based Saliency Maps

The PGSMs are inspired by the class activation saliency maps, more specifically, Grad-
CAM [203]. We choose Grad-CAM since it is considered one of the most successful methods for
generating saliency maps [208], [218]. In fact, this method has been proven to successfully pass
commonly used sanity checks, which are devised to check whether the saliency map is truly
providing insights into what the model is doing or not [208]. However, instead of using these
maps to derive the importance of certain features for a given class, we use them to map the
performance of a given forecasting model to a specific time interval. The performance of each
model fi, i ∈ [1,M] is evaluated using an error-related measure, namely the Mean Squared
Error, ϵij on Xval,j

nω
: the jth time interval window of Xval

ω of size nω. Assume that it starts at
the instant t = tj , then ϵij is given by:

ϵij = 1
nω

tj+nω−1∑︂
l=tj

(xl − x̂fi
l)2 (5.1)

Our goal is to estimate the importance of each value in Xval,j
nω

to the measured error ϵij of fi.
This can be interpreted similarly to Grad-CAM as exploiting the spatial information that is
preserved through the convolutional layers in order to understand which parts of an input
image are important for a classification decision. However, we are focused here on the temporal

116

5.3 Online Deep Neural Network Selection using Adaptive Saliency Maps

information explaining certain behavior/performance of fi. To do so, the last layer, which
has produced the last feature maps feamaps is considered. For each activation unit u at each
generic feature map A, an importance weight wϵ associated with ϵij , is obtained. This is done
by computing the gradient of the ϵij with respect to A. Subsequently, a global average over all
the units in A is computed:

αϵ = 1
U

∑︂
u

∂ϵij
∂Au

(5.2)

where U is the total number of units in A. We use αϵ to compute a weighted combination
between all the feature maps for a given measured value of the error ϵij . Since we are mainly
interested in highlighting temporal features contributing most to ϵij , a ReLU is used to remove
all the negative contributions by:

Li
j = ReLU(

∑︂
feamaps

αϵA) (5.3)

Li
j ∈ RU is used to find the regions in Xval,j

nω
that have mainly contributed to ϵij of the network

fi. Note that the candidates are designed such that U < nω.

5.3.3.2 RoCs Computation

Our goal is to determine the Region of Competence of each model on Xval
ω . However, one single

evaluation of the models on Xval
ω obviously leads to just one best model. Therefore, we need

to split Xval
ω into equally sized time intervals of size nω, so that different evaluations of the

candidate models are performed and different rankings are derived. To increase this number of
evaluations, the intervals of size nω can be obtained using a time-sliding window approach
over Xval

ω where the sliding operations are performed each z-steps. The lower z, the higher
the number of evaluations is. If z is set to 1, the sliding window approach is performed in a
step-wise manner. After evaluating the models on each of the Xval,j

nω
, the RoC of the model

with the lowest error is computed using Li
j of the PGSMs, where i the index of the candidate

model fi satisfying:
fi = argmin

z∈{1,··· ,M}
ϵzj (5.4)

To obtain one continuous region RoC Ri within the time series sequence Xval,j
nω

, a smoothing
operation is applied to Li

j . This is achieved by normalizing Li
j values between 0 and 1 and

applying a threshold τ = 0.5 to filter out smaller values (i.e., these values are set to 0). Further
smoothing using a moving-average operation of size 3 is applied where each point is compared
to the previous and the subsequent value. Whenever Ri of model fi is computed, it is added
to a corresponding RoCi buffer which includes all collected RoCs for the model fi (i.e. since
fi can be the best performing model on different Xval,j

nω
).

5.3.3.3 Online Forecasting

For forecasting the value of X at t + h (assume h = 1 for simplicity), the candidate CNNs
are devised such that they use the same p-lagged values of the time series as input, inputpt =
{xt−p+1, · · · , xt}, (t ≥ p). To perform the selection, the distance of the input pattern inputpt

to the RoCs for each model in P is measured. The RoCs of a given model fi, i ∈ [1,M] are

117

5. Explainable Online Adaptive Deep Neural Network Selection

already collected in RoCi = {Ri
1, R

i
2, · · · , Ri

M i}, where M i is the total number of regions of
competence that have been determined by the PGSMs. Since the length of each RoC can be
different from p (i.e. length of inputpt), Dynamic Time Wrapping (DTW) [77] (See Section
2.1.5) is used to measure the similarity between inputpt and each Ri

z, z ∈ [1,M j] within each
RoCi, i ∈ [1,M]. The model fb satisfying :

fb = argmin
i∈[1,M];
z∈[1,M i]

DTW (Ri
z, input

p
t) (5.5)

is selected to forecast t + 1. The following steps are forecasted using the same principle by
moving inputpt by one value.

5.3.3.4 RoCs Update

As explained above, the RoCs are computed offline using the validation set Xval
ω . However,

due to the dynamic behavior of time series, The RoCs have to be updated to take into account
the possible presence of new patterns after the occurrence of significant changes framed under
the so-called concept drifts and also to gain knowledge of which models are more adequate to
handle these patterns if they ever reoccur again (i.e., note that the already computed RoCs are
preserved and enriched with the new ones). Once a drift in the time series is detected, an alarm
is triggered to update the ROCs by sliding Xval

ω to include the new recent observations. The
detection of concept drifts is performed by monitoring the deviation ∆mth

in the mean of the
time series, similar to the different drift types we detected in the previous methods presented in
this thesis, such as the drifts in the forecasting error in OAMTSor in the dependence structure
between the candidate model in DEMSRC:

∆mth
= E(X1:th

)− δ (5.6)

with δ = E(X1:t), t ≤ th, the initial computed mean of X up to time t, a drift is assumed to take
place at th if the true mean of ∆mth

diverges in a significant way from 0. We propose to detect
the validity of this using the Hoeffding-Bound [262], which states that after ω independent
observations of a real-value random variable with range R, its true mean has not diverged if
the sample mean is contained within ±ζ:

ζ =

√︄
R2 ln(1/µ)

2ω (5.7)

with a probability of 1− µ (a user-defined hyperparameter). Once the bound is violated, an
alarm is triggered, and the reference mean δ is reset by setting t = th. This checking procedure
is continuously applied online at forecasting time. All the steps of OS-PGSM are summarized
in Algorithm 4.

In addition to the pseudo-code for our OS-PGSM algorithm 4, we also show how it works
in Figure 5.1. There, we show an example time series Xval

ω with the sliding window approach
of step size z. For each window of size nω, we compare the prediction of all models fj ∈ P from
the model pool and choose the best performing one. Then, for this model, we compute the
region of competence (shown in red) and add it to the corresponding RoCj buffer.

118

5.3 Online Deep Neural Network Selection using Adaptive Saliency Maps

Algorithm 2: OS-PGSM
Data: Parameters: size of the validation set: ω; size of time windows within the

validation set: nω; CNNs Pool: P.
1 Models Training and RoCs Computation: ;
2 Train each fi ∈ P, i ∈ [1,M] on Xtrain

ω . ;
3 Initialize RoC buffers RoCi for each fi, i ∈ [1,M] ;
4 for each Xval,j

nω
∈ Xval

ω do
5 Determine the best performing fi.;
6 Compute the corresponding Ri

j using PGSMs (i.e. Li
j Equation 5.3);

7 Add Ri
j to the corresponding buffer RoCi ;

8 end
9 Online Forecasting: Forecasting next H values:;

10 predict xt+1 by the model fb selected using Equation 5.5;
11 for j ∈ [2, H] do
12 if an alarm is triggered (concept drift detected) then
13 Update Xval

ω = {xt−ω+j , xt−ω+2, · · · , xt+j−1} ;
14 Recompute and add new RoCs (steps:4-7);
15 end
16 Predict xt+j by the model fb selected using Equation 5.5 ;
17 end

Trained
CNNs PGSM

Evaluate and
select best Update

Figure 5.1: Schematic visualization of OS-PGSM extracting RoCs from the validation time series.

5.3.4 Empirical Experiments

We present the experiments carried out to validate OS-PGSM and to answer these research
questions:

• Q1: How does OS-PGSM perform compared to the State-of-the-Art (SoA) and existing
online model selection methods for time series forecasting?

119

5. Explainable Online Adaptive Deep Neural Network Selection

• Q2: What is the advantage of reducing the step size z for sliding the window of size nω

over Xval
ω on the performance of OS-PGSM?

• Q3: What is the advantage of updating the RoCs in an informed fashion (i.e., following
drift detection)?

• Q4: How scalable is OS-PGSM in terms of computational resources compared to the most
competitive online model selection methods? and what is the computational advantage
of the drift-aware adaption of the models’ RoCs?

5.3.4.1 Experimental Setup

The methods used in the experiments were evaluated using the root mean squared error
(RMSE). The used time series was split using 50% for training (Xtrain

ω), and 25% for validation
(Xval

ω) and 25% for testing. We use the same 100 real-world time series as in the previous
chapter and presented in the appendix Table A.3. In addition, a full list of these datasets,
together with a description, is given in the code repository1.

OS-PGSM Setup and Baselines We construct a pool P of CNN-based candidate models
using different parameter settings (e.g., number of filters varies in {32, 64, 128}, kernel size
varies in {1, 3}) like explained in Section 5.3.2. By combining these different parameters and
adding or removing LSTM layers, 12 different CNNs with different architectures are created.
OS-PGSM also has a number of hyperparameters that are summarized in Table 5.1. In our

Table 5.1: Hyperparameters of OS-PGSM and their values for the experiments.

Parameter Description Value
p number of lagged values (size of the input to CNNs inputpt) 5
ω size of validation set 25% of the dataset length
nω size of time windows within the validation set 5
z number of time steps with which time windows 1

within the validation set are slided
µ Hoeffding-Bound parameter 0.05

experiments, p is set equal to nω, and the RoCs (after computation and smoothing) result in an
even smaller size than p. However, this is not problematic since we are interested in extracting
distinctive patterns that are responsible for the good performance of a given candidate. The
difference in lengths of the RoC and the input sequence (p) are handled by the DTW distance.

We compare OS-PGSM against the following approaches, which include SoA methods
for forecasting and model selection methods devised for the task of forecasting. Some of
them operate in an online fashion. First, we compare against ARIMA [61] and Exponential
Smoothing ETS [97]. Next, we add the two best-performing candidate models, denoted as CNN
[15] and CNN-LSTM [112]. Additionally, a simple LSTM is added for comparison [118]. Next,
we also compare ourselves against a simple validation procedure where the CNNs are evaluated
offline, and the best model is selected to forecast all the upcoming data points [27]. We compare
also OS-PGSM against KNN-RoC(1) [22], ADE-single [9]. For further details about these
methods, see Section 4.4.3.1. As Stacking, we denote a method where a meta-learner (Random

1https://github.com/MatthiasJakobs/os-pgsm/tree/ecml2021

120

https://github.com/MatthiasJakobs/os-pgsm/tree/ecml2021

5.3 Online Deep Neural Network Selection using Adaptive Saliency Maps

Forest) is trained to predict which model to select using a set of meta-features consisting of
input time sequence statistical characteristics and performance-based features [33]. Finally, we
compare ourselves against Adaptive Mixture [294], which consists of some experts (Shallow
CNNs) and a gating network. The gating network acts as a selector by performing a single
output stochastic switch to select a given expert with the estimated switch probability. Note
we input the same pool P of candidate models as OS-PGSM to KNN-RoC(1), ADE-single,
Stacking, and Adaptive Mixture methods.

We also compare OS-PGSM against the recently presented Deep Learning models for time
series forecasting in the literature. Many of these models are transferred from computer vision
or speech recognition domains and adapted to time series. We include these methods as they
are also presented as bench-marking methods in the Monash repository [1] and almost all of
our evaluation datasets in Table A.3 are extracted from the Monash repository. These models
include:

• DeepAR [295]: Probabilistic forecasting with Autoregressive Recurrent networks [295],
is based on an autoregressive RNN architecture. Technically, any network that used
previous data from a sequence to predict a future value in that sequence can be considered
autoregressive. The difference is that the network processes all the historical time series
data without explicit setting of the number of lags by the user. Hence, the DeepAR
algorithm trains an RNN that learns an approximation of the time series generating
process and uses it to predict how the time series evolves in the future. The model can
also handle time series that are associated with a vector of time-invariant categorical
features and a vector of time-variant features, denoted exogenous time series. the DeepAR
model is trained by randomly sampling training examples from the time series. Each
training example is composed of a window of lagged values joined to a prediction window
with a fixed predefined length.

• N-BEATS [296]: consists of a DNN architecture based on backward and forward residual
links and a very deep stack of fully-connected layers.

• N-BEATS-Ensemble [296]: The ensemble version of N-BEATS. The ensemble is built
using several sources of diversity. First, the ensemble members are fit on three different
metrics: sMAPE, MASE, and MAPE, a version of sMAPE that has only the ground
truth value in the denominator. Second, individual models are trained on input windows
of different lengths. Thus, the overall ensemble exhibits a multi-scale aspect. Finally, a
bagging procedure [31] is applied, and models that are trained with different random
initializations are added.

• WaveNet [290]: An adaptation of the recent Deep Convolutional WaveNet architecture
to time series forecasting is proposed. The network contains stacks of dilated convolutions
that allow it to access a broad range of history when forecasting, a ReLU activation
function, and conditioning that is performed by applying multiple convolutional filters
in parallel to separate time series windows which allows for the fast processing of data,
and the exploitation of the correlation structure in the case of multivariate time series.

121

5. Explainable Online Adaptive Deep Neural Network Selection

• Transformer [297]: consists of an adaptation of the sequence transduction model to time
series forecasting. The model is based solely on attention mechanisms, dispensing with
recurrence and convolutions entirely.

We have also tried to adapt the popular ROCKET framework [239], [240] widely and
successfully used for time series classification to forecasting, but the first results on some
datasets from Table A.3 were not promising (i.e., performs worse than many poor baselines).
ROCKET transforms the time series by first convolving each series with a huge number
of random convolutional kernels. The random convolutional kernels have random lengths,
weights, bias, dilation, and padding. Then, it separately applies global max pooling and PPV
“Proportion of Positive Values” pooling to the convolutional output to produce two features
per kernel, one feature for each pooling method. The poor performance in the context of
forecasting can be explained by the large number of produced features compared to the size of
the time series datasets. In addition, capturing the dependence structure between subsequent
observations in a time series which is required for forecasting, can be lost along the huge
number of transformations. In addition, the most critical element of ROCKET that contributes
to its high accuracy is the PPVs that are devised to indicate how to weight the prevalence
of a pattern captured by the kernel, which is more suited for classification. Therefore, future
investigations and adjustments of the method are required to be applied for forecasting.

We also compare OS-PGSM with some variants of itself. Note that OS-PGSM uses the
Hoeffding-based drift detection mechanism to update the RoCs.

• OS-PGSM-Int: Same as our method, but the time windows of size nω are slided with
step size z = nω.

• OS-PGSM-Euc: Instead of using DTW as a distance measure, we use Euclidean distance.
However, values in the RoC corresponding to 0 are not taken into consideration in the
sequence of the p-lagged values (inputpt).

• OS-PGSM-Int-Euc: It is a combination of OS-PGSM-Int and OS-PGSM-Euc.

• OS-PGSM-St: Same as our method, but the RoCs are not updated using the drift
detection mechanism. The RoCs are computed and stored offline. Only the selection
takes place online.

• OS-PGSM-Per: Same as our method, but the RoCs are updated periodically in a blind
manner (i.e., without taking into account the occurrence of concept drifts) with the
periodicity of each upcoming 10% data points.

5.3.4.2 Comparing OS-PGSM to the State-of-the-Art

Table 5.2 presents the average ranks and their deviation for all the methods. For the paired
comparison, we compare our method OAMTS against each of the other methods. We counted
the wins and losses for each dataset using the RMSE scores. We use the non-parametric
Wilcoxon Signed Rank test [270] to compute significant wins and losses, which are presented
in parenthesis (significance level 0.05). In the results in Table 5.2, OS-PGSM outperforms
the baseline methods in terms of wins/losses in the pairwise comparison. The online model

122

5.3 Online Deep Neural Network Selection using Adaptive Saliency Maps

Table 5.2: Comparison of OS-PGSM to different SoA methods for 100 time series. The rank
column presents the average rank and its standard deviation across different time series. A rank of
1 means the model was the best performing on all the time series datasets.

Method Our Method
Losses Wins Avg. Rank

ARIMA 5(4) 95(93) 15.90± 4.35
ETS 3(3) 97(96) 18.04± 4.26

LSTM 15(8) 85(83) 12.97± 3.60
CNN 16(6) 84(80) 14.00± 3.60

CNN-LSTM 21(6) 79(71) 12.30± 3.59
DeepAR 21(6) 79(70) 12.90± 4.65

N-BEATS 3(3) 97(96) 14.04± 4.86
N-BEATS-Ensemble 15(8) 85(83) 13.97± 3.80

WaveNet 16(6) 84(80) 16.00± 3.61
Transformer 21(6) 79(71) 15.30± 5.59
Validation 18(12) 82(72) 8.84± 3.18
KNN-RoC 20(16) 80(73) 7.96± 3.45

ADE-Single 30(19) 70(61) 4.78± 3.90
Stacking 9(9) 91(80) 13.11± 4.12

Adaptive Mixture 15(8) 85(84) 11.95± 4.78
OS-PGSM-Int 38(7) 62(54) 3.62± 2.80
OS-PGSM-Euc 34(10) 66(56) 3.86± 3.10

OS-PGSM-Int-Euc 31(9) 69(66) 3.98± 3.15
OS-PGSM-St 47(10) 53(44) 3.01± 2.65
OS-PGSM-Per 43(7) 57(46) 3.19± 3.44
OS-PGSM - - 2.75± 2.63

selection approaches, e.g., KNN-RoC(1), ADE-Single, and Adaptive Mixture show inferior
performance compared to OS-PGSM. ARIMA, ETS, LSTM, and CNN, SoA methods for
forecasting are considerably worse in the average rank compared to OS-PGSM. CNN-LSTM
shows slightly better performance but is still worse than OS-PGSM. Comparing OS-PGSM
to State-of-the-Art Deep Neural Networks [1] such as N-BEATS, WaveNet, and Transformer
shows that opting for deep architecture is not always beneficial. This can be explained by the
fact that these models are prone to overfitting, especially with relatively small to medium-sized
time series datasets. These networks are transferred from domains where usually huge amounts
of training data are available. In addition, capturing the dependence structure between time
series observations should be taken into account in the design of these networks. This explains
why DeepAR has a relatively better performance.

The most competitive SoA approach to OS-PGSM is ADE-Single. Nevertheless, it has a
higher average rank and a lower performance than all the variants of OS-PGSM.

To further investigate the differences in the average ranks, we use the post-hoc Bonferroni-
Dunn test [285] to compute critical differences. We present the critical differences between the
methods relative to each other in figure 5.2. We note critical differences between OS-PGSM
and most of the other methods, with the exception of ADE-Single. However, unlike OS-PGSM
ADE-Single does not share critical differences with the other methods. These results address
the research question Q1.

123

5. Explainable Online Adaptive Deep Neural Network Selection

2 3 4 5 6 7 8 9

CD

OS−PGSM
ADE−Single
CNN−LSTM

KNN−RoC
Validation

CNN

LSTM
Adaptive Mixture
Stacking
ARIMA
ETS

Figure 5.2: Critical difference diagram for the post-hoc Bonferroni-Dunn test, comparing OS-
PGSM with the other baseline ensemble methods.

5.3.4.3 Comparing OS-PGSM to its Variants

Comparing OS-PGSM to its different variants, we see a clear advantage in using all the
choices in our method. First, the DTW distance is better in sketching the similarities between
the input sequences and the RoCs, especially when both have different lengths as explained
above. This explains why the variants using Euclidean distance have worse performance. In
addition, by setting z = 1, a higher number of windows of size nω are created, and as a result,
a higher number of RoCs are computed (See Section 5.3.3.2). This contributes to creating
richer information about the RoCs of different candidates, compared to setting z = nω in
OS-PGSM-Int and OS-PGSM-Int-Euc. This answers the research question Q2.

5.3.4.4 Importance of the Drift-aware Adaptation

OS-PGSM-St is even better than OS-PGSM-Per, which shows that unnecessary updates are not
always beneficial and additional computational efforts are invested without gaining advantages
in terms of performance. Opposingly, OS-PGSM which relies on an informed adaption of the
RoCs using concept drift detection, is better than OS-PGSM-Per and OS-PGSM-St. This can
be explained by the fact that the update of the RoCs is only beneficial for datasets where
concept drifts can be detected, and more probably, taking into account these newly appearing
concepts is helpful for the selection of models since a knowledge of which models are more
adequate to handle these patterns if they ever reoccur again is gained, and the old sets of
RoCs are enriched. Figure 5.3 show an illustrative example of the RoCs of the candidate CNN
C7 before and after drift detection. New patterns are added as new RoCs to the old RoCs of
C7. This answers the research question Q3.

In the next experiment, we compare the run-time of OS-PGSM and its variants against
the most competitive SoA method, ADE-Single, in Table 5.3. Note that the computation of
the RoCs is done offline, and the reported run-time is calculated only for computing the time
series predictions in real-time by searching the most similar RoC to the current input pattern

124

5.4 Online Ensemble of Deep Neural Networks Pruning

0 1 2 3
0.5

1.0

1.5

2.0

RoC7 before drift

0 1 2 3 4

1

0

1

2

RoC7 after drift

Figure 5.3: RoCs for the candidate model C7 before and after drift detection.

Table 5.3: Empirical run-times comparison between different methods in Seconds.

Method ADE-Single OS-PGSM OS-PGSM
St

OS-PGSM
Int

OS-PGSM
Per

Avg. Run-time 157.87 9.45 2.15 0.95 160.15
± 58.40 19.35 5.80 3.65 205.25

inputpt . OS-PGSM relies on informed updates (i.e., using drift detection). OS-PGSM-Per relies
on a periodic update of the RoCs. The reported run-times for OS-PGSM and OS-PGSM-Per
take into account the computation of the new RoCs. ADE-Single [10] relies on a periodic
update of the meta-learning strategy behind the selection (same periodicity as OS-PGSM-Per).
All the reported run-times concern only the online predictions, and any operation computed
offline is not taken into account. The results demonstrate that OS-PGSM and its variants have
lower average run-times than ADE-Single. OS-PGSM-Int is faster than OS-PGSM-St since
fewer evaluation windows of size nω are created, and as a result, a lower number of RoCs is
generated for distance comparisons. OS-PGSM has a lower run-time than OS-PGSM-Per. This
is due to using drift detection to update the RoCs only when necessary. This results in faster
predictions and less computational effort. The high deviation of the run-time of OS-PGSM is
due to the different numbers of drifts per time series. This answers the research questionQ4.

5.3.4.5 Final Remarks

The empirical results indicate that OS-PGSM has performance advantages compared to popular
forecasting methods and the most recent SoA approaches for online forecasting model selection.
We show that our method, using PGSMs for adaptively computing RoCs of different CNN-based
forecasters, is able to gain excellent and reliable empirical performance in our setting. The
informed update of the RoCs following concept drift detection makes our method, in addition
to better predictive performance, computationally cheaper than the most competitive SoA,
namely ADE-single. OS-PGSM can also successfully be used for providing useful explanations
behind model selection which can be used to optimize our framework further.

5.4 Online Ensemble of Deep Neural Networks Pruning

OEP-ROC: Online Ensemble Pruning using Regions-of-Competence, is an online two-staged
ensemble pruning framework based on clustering and ranking. It is developed to prune an
ensemble of deep learning models for time series forecasting by taking into account both

125

5. Explainable Online Adaptive Deep Neural Network Selection

ensemble accuracy and diversity at each stage. Both stages are dependent on each other, and a
bound for the optimal number of final models to be kept is derived. The pruning is not directly
performed using the candidate deep models’ outputs but is based on their pre-computed
Regions-of-Competences (RoCs), which have been proven to be very useful for single online
DNNs selection for time series forecasting, as we have shown in the previous Section. The
pruning is also made in an adaptive informed manner following concept drift detection in time
series and models’ RoCs structure. More details about the method are provided in this Section.
The RoCs are calculated using the PGSMs, i.e., Performance Gradient-based Saliency Maps, a
method similar to the way presented in the previous Section for OS-PGSM.

5.4.1 Preliminaries

We keep the same notations used in the previous Section for the time series, the pool of models,
and the forecasts. The ensemble model of the pool P is denoted by f̄P. For simplicity, we set
the weights to be equal, i.e., wi = 1

M ∀i ∈ [1,M]. As we mentioned in Section 2.6.2, the goal
of dynamic online ensemble pruning is to identify the subset of models S ⊂ P that should
compose the ensemble at each time step t+ h such that the expected prediction error of the
pruned ensemble is reduced compared to the full ensemble f̄P for each forecast.

The pruning is performed using the RoCs of the candidate DNNs computed by the PGSMs
derived in Section 5.3.3.1. Xtrain

ω is used for training the models in P and Xval
ω is used to

compute the RoCs using the PGSMs.

5.4.2 Base Learners

Similarly to the pool P of candidate CNNs considered in the previous Section for OS-PGSM,
the ensemble base models in OEP-ROC are CNN-based models that share more or less the same
basic types of layers. The common basic structure consists of a sequence of 1D-convolutional
layers with a different number of filters, followed by a batch normalization layer, in some cases
an LSTM layer, and an output layer of one neuron. The different architectures are obtained by
varying the number of the convolutional layers and their corresponding parameters (i.e., the
number of filters) and, in some cases adding or removing another neural network type to the
last convolutional layer, e.g., an LSTM layer. To obtain further architectural variations, the
number of units in the LSTM layer is also varied. The candidate CNNs are devised such that
they use the same p-lagged values of the time series as input to forecast the subsequent value.

5.4.3 RoCs Computation

As we mentioned, the RoCs of the candidate DNNs are computed using the PGSMs introduced
in Section 5.3.3.1. However, for this method, the performance (i.e., the forecasting error) of all
the candidate models is measured, and the RoCs for each model are computed. This can be
viewed as computing the most important time series interval responsible for a certain observed
performance of each base model in the ensemble. In this way, a buffer RoCi that contain
all the pre-computed RoCs Ri

j on the different validation windows Xval,j
nω

, j ∈ [1, Z] for each
model fi, i ∈ [1,M] is created, i.e., RoCi = {Ri

1, · · · , Ri
Z}. It is important to note that in order

to obtain one continuous region RoC Ri
j within the time series sequence Xval,j

nω
, a smoothing

126

5.4 Online Ensemble of Deep Neural Networks Pruning

operation is applied to Li
j (Equation 5.3). This is done by normalizing Li

j values between 0
and 1 and applying a threshold τ = 0.1 to filter out smaller values (i.e., these values are set to
0). In addition, a moving average is applied where each point is compared to the previous and
the subsequent value. After the smoothing operation, some regions may become empty. This is
mainly due to some low Li

j values (i.e., low relevance of the time point) or high discontinuity.
The base models use the same p-lagged values of the time series as input, inputpt+h−1 =

Xt+h−p:t+h−1 = {xt+h−p, · · · , xt+h−1}, (t + h ≥ p). In addition to the smoothing operation
applied similarly to OS-PGSM, in order to constrain the RoCs lengths to be equal to p, we
reject the smoothed RoCs with lengths different from p. At test time, in order to forecast the
value of X at t+h, h ≥ 1, the similarity between the input pattern inputpt+h−1 and the RoCs for
each model in P is computed. Euclidean distance DE can now be used to measure the similarity
between inputpt+h−1 and each Ri

j , ∀j ∈ [1, Z], ∀i ∈ [1,M] within each RoCi, ∀i ∈ [1,M] buffer.
For each model fi, ∀i ∈ [1,M], the RoC Ri satisfying :

Ri = argmin
Ri

j∈RoCi

DE(Ri
j , input

p
t+h−1) (5.8)

is selected to represent fi for the ensemble pruning at t+ h.

5.4.4 Online Ensemble Pruning

The pruning decision is performed in a step-wise manner online at each time forecast t+h, h ≥ 1.
For simplicity of notation, we assume h = 1. The ensemble generalization error can be written
as (See Section 2.6.1):

Ef̄ = Ē − Ā (5.9)

The RoCs Ri, ∀i ∈ [1,M] of each candidate model indicate the degree of expertise of the
corresponding model in forecasting given the most recent input time series sequence pattern
that is acquired to forecast the value of X at t+ 1, i.e., inputpt = Xt−p+1:t (See Equation 5.8).
Since this selection is made based on the closeness of Ri to inputpt , Ri can also be viewed as
an estimate of inputpt by fi. In other words, the prediction by fi of the data points in inputpt

are represented approximately by the data points rl
i ∈ Ri, ∀l ∈ [1, p]:

xt+l−p ≈ rl
i, ∀l ∈ [1, p], t ≥ p− 1 (5.10)

The ensemble f̄ of P can be expressed as:

f̄P(xt+l−p) = 1
M

M∑︂
i=1

rl
i = r̄l (5.11)

127

5. Explainable Online Adaptive Deep Neural Network Selection

The ensemble error on the pattern inputpt using RoCs approximation R = {R1, · · · ,RM} by
the models in P can be then written as:

ER
f̄

= 1
p

p∑︂
l=1

(xt+l−p − r̄l)2

= 1
p

p∑︂
l=1

(1
M

M∑︂
i=1

(xt+l−p − rl
i)2)− 1

p

p∑︂
l=1

(1
M

M∑︂
i=1

(r̄l − rl
i)2) (5.12)

= Ē
R − ĀR

where ĒR = 1
p

∑︁p
l=1(1

M

∑︁M
i=1(xt+l−p − rl

i)2) and Ā
R = 1

p

∑︁p
l=1(1

M

∑︁M
i=1(r̄l − rl

I)2). It is very
intuitive to see from Equation 5.12 that the selection should be made in favor of models whose
RoCs are closer to the current pattern (i.e., considering the Euclidean distance) in order to
minimize ĒR and diverse from each other in order to maximize ĀR. To do so, we perform a
two-staged pruning procedure.

In the first stage, we start by clustering the candidate models using Euclidean distance
into K clusters and select only cluster representatives to take part in the second pruning
stage. Models belonging to different clusters are expected to have a higher distance between
them compared to models belonging to the same cluster. As a result, clusters’ representatives
have a higher average distance to the average pattern R̄p = {r̄1, · · · , r̄p}, which contributes to
increasing ĀR. In addition, models belonging to the same cluster have more or less the same
distance to the current pattern inputpt . Therefore, the average error induced by all the models
is expected to be similar to the average error induced by the clusters’ representatives since one
representative shows the same error level as all the models belonging to that same cluster. As
a result, ĒR is approximately preserved. In this way, we promote diversity without increasing
the averaged error, which reduces the expected ensemble error ER

f̄
on inputpt . The selection of

a model fr, r ∈ [1, NC] to be representative of a given cluster of models Cm, ∀m ∈ [1,K] where
NC is its size, is done based on its closeness to the current pattern inputpt .

fr = argmin
Ri∈Cm

DE(Ri, input
p
t+h−1), ∀m ∈ [1,K] (5.13)

This helps to reduce the average error of the base models. The clustering of the RoCs is done
using K-means [298] with Euclidean distance as a similarity measure.

In the second stage, a selection of the best-performing clusters’ representatives, denoted
here as top-K models, is computed using ranking. As the second stage is dedicated to reducing
the averaged error ĒR while promoting the diversity even further, the ranking is computed
using the distance of the candidate clusters’ representatives to the current pattern inputpt and
a bound for the radius γ of the p-sphere of center inputpt enclosing the top-K models that
should be preserved in this stage, is derived:

1
2

√︄∑︁p
l=1
∑︁K

i=1(r̄l − rl
i)2)

K
≤ γ ≤

√︄∑︁p
l=1
∑︁K

i=1(xt+l−p − rl
i)2

K
(5.14)

where K is the number of clusters (i.e., number of selected models from the first stage). Note
that the ensemble’s error is always positive, meaning that the ambiguity can be considered as

128

5.4 Online Ensemble of Deep Neural Networks Pruning

a lower bound of the averaged error of the base models. This applies to the ensemble of the
K clusters’ representatives ER

K . We have then Ē
R
K ≥ Ā

R
K which means that we always satisfy

that the upper bound of Equation 5.14 is bigger than the lower bound of the same equation.

Proof 15 To ensure a reduction of the averaged error, the error Ē
R
top-K induced by the

subset of the top-K models should be lower than Ē
R
K induced by the subset of K of clusters’

representatives.

Ē
R
top-K ≤ Ē

R
K

1
p

p∑︂
l=1

1
| top-K |

|top-K|∑︂
i=1

(xt+l−p − rl
i)2 ≤ 1

p

p∑︂
l=1

1
K

K∑︂
i=1

(xt+l−p − rl
i)2

where |top-K| is the cardinality of the top-K models. Since they are contained within the
p-sphere of center inputpt , we have

∑︁p
l=1(xt+l−p− rl

i)2 ≤ γ2, ∀i ∈ [1, |top-K|]. Therefore, every
single model fi contained within the sphere has at the most a distance of γ to inputpt . As a
result:

γ2

p
≤ 1
p

1
K

p∑︂
l=1

K∑︂
i=1

(xt+l−p − rl
i)2

γ2 ≤ 1
K

p∑︂
l=1

K∑︂
i=1

(xt+l−p − rl
i)2

δ ≤

√︄∑︁p
l=1
∑︁K

i=1(xt+l−p − rl
i)2

K

In addition, we want to ensure that the second stage either preserves the promoted diversity
from the clustering stage or enhances it even further by preserving or increasing the ambiguity:

Ā
R
top-K ≥ Ā

R
K

1
p

p∑︂
l=1

1
| top-K |

|top-K|∑︂
i=1

(r̄l − rl
i)2) ≥ 1

p

p∑︂
l=1

1
K

K∑︂
i=1

(r̄l − rl
i)2)

The average pattern RL of the top-K models is contained within the p-sphere of center
inputpt and the distance between Ri and R̄p can be then at most 2γ for all the models fi with
i ∈ [1, |top-K|]. Therefore:

4γ2

p
≥ 1
p

p∑︂
l=1

1
K

K∑︂
i=1

(r̄l − rl
i)2)

γ ≥ 1
2

⌜⃓⃓⎷ 1
K

p∑︂
l=1

K∑︂
i=1

(r̄l − rl
i)2)

In practice, in order to identify the top-K models for a fixed number of clusters K, we
start by clustering the M models in P and we compute the clusters’ representatives (See
Equation5.13). Then, we calculate the distance of their RoCs to the current pattern inputpt .
We set γ simply to the upper bound of Equation 5.14 (i.e., in this case, the lower bound is
naturally verified) and models whose distance is lower or equal to γ are selected as the top-K

129

5. Explainable Online Adaptive Deep Neural Network Selection

models to compose the ensemble that forecasts the value of X at t+ 1. The upper bound of
Equation 5.14 can then be interpreted as promoting the selection inside the p-sphere close to
the true recent pattern inputpt which reduces the averaged error while the lower bound can
be viewed as a regularization parameter that disallows radius values that would result in a
clustering of the base models very closely around inputpt which decreases the ambiguity.

The models selected to compose the ensemble at t+ 1 (i.e., top-K) are assumed to remain
valid for the following time instants t+h with h > 1 unless a concept-drift either in the models’
performance or in the time series data is detected. If a drift is detected, an alarm to update the
pruning decision (i.e.top-K models) is triggered. More details are provided in the following
Subsection.

5.4.5 Drift-aware Pruning Update

In order to update the pruning decision at test time in an informed manner, two drift detection
mechanisms are deployed.

5.4.5.1 Concept Drift in Time Series

Concept drift in the time series data is detected by monitoring the deviation in the mean of
the time series over time, similarly to the way described in Section 5.3.3.4. The detection of a
drift in the time series triggers the update of the RoCs. The update of the RoCs triggers, in
its turn, the update of the pruning decision. Since new RoCs can be added to the different
RoCs buffers, changes in the distances of these RoCs to the most recent pattern inputpt+h−1
are expected. As a result, new RoCs representatives of the models can appear (See Equation
5.8). Therefore, a re-clustering of the models and a re-selection of the top-K models become
then necessary.

5.4.5.2 Concept Drift in Models’ Performance

Base models’ performance is reflected using the distance of their representative RoCs to the
current pattern. If we consider forecasting the time series value at t+ 1, the distances measured
using the most recent pattern inputpt can be viewed as a measure of dependencies between the
set of candidate models and the target time series. These dependencies can be continuously
computed and monitored over time. The distance dt

i of the model fi to inputpt is calculated
using its representative RoC Ri for the forecasting at time t+ 1 (Equation 5.8).

dt
i = DE(inputpt ,Ri), ∀i ∈ [1,M] (5.15)

Naturally, with time-evolving data, dependencies between the current pattern and the
computed RoCs change over time and follow non-stationary concepts. Stationarity in this
context can be formulated as follows:

Definition 16 Weak Stationary RoCs Structure Let Dt = {dt
1, · · · , dt

M} ∈ RM be a
resulting similarity vector between the base models and the target time series inputpt over a
window of size p (i.e., derived from the above similarity evaluation in Equation 5.15). We
sort the value of Dt in an ascending order so that Dt = {d1,t, · · · , dM,t} with d1,t ≤ · · · ≤ dM,t

130

5.4 Online Ensemble of Deep Neural Networks Pruning

. Let δd denote the minimum value in Dt at the initial instant of its generation ti = t. The
dependence structure is said to be weakly stationary if the true mean of ∆dift is 0:

∆dift = |d1,t − δd| (5.16)

Following this definition, we can assume that the distance between the most similar models
to the current pattern within the same pool of models P sets its boundary under a form of a
logical diameter. If this boundary diverges in a significant way over time, a drift is assumed
to take place. We propose to detect the validity of such an assumption using the Hoeffding
Bound ζ similarly to the way suggested for detecting the drift in the deviation of the mean
of the time series (Equation 5.7). Once the condition of the Weak Stationary RoCs Structure
presented in Definition 16 is violated, an alarm is triggered, the ensemble pruning is updated by
re-clustering of the models and re-selecting new top-K models. Afterward, the dependencies
monitoring process is continued by sliding the time window to update inputpt by one value to
produce the next forecast. Once a drift is detected at time instant td, the reference diameter
δd is reset by setting ti = td.

The concept drift detected in the time series is denoted as Drift Type I while the drift in
the candidate models’ performance is denoted as Drift Type II. All the steps of OEP-ROC
are summarized in Algorithm 3.

5.4.6 Empirical Experiments

We present the experiments carried out to validate OEP-ROC and to answer these research
questions:

• Q1: How does OEP-ROC perform compared to the State-of-the-Art (SoA) and existing
online ensemble pruning methods for time series forecasting?

• Q2: What is the importance of each pruning stage in OEP-ROC?

• Q3: What is the impact of different values of the number of clusters K on the performance
of OEP-ROC?

• Q4: What is the impact of choosing the size of top-K automatically using the bound in
Equation 5.14?

• Q5: What is the benefit of each drift type detection for the performance of OEP-ROC?

• Q6: How scalable is OEP-ROC in terms of computational resources compared to the
most competitive online model selection methods? What is the computational advantage
of the drift-aware adaptation of pruning?

• Q7: How can different aggregation techniques benefit from our pruning method?

5.4.6.1 Experimental Setup

The methods used in the experiments were evaluated using the root mean squared error
(RMSE). The used time series was split into three parts, where the first 50% is used for training
(Xtrain

ω), the next 25% for validation (Xval
ω), and the last 25% for testing. The results are

131

5. Explainable Online Adaptive Deep Neural Network Selection

Algorithm 3: OEP-ROC
Data: Parameters: Parameters: Number of Lags: p; size of the validation set: ω;

size of time windows within the validation set: nω; CNNs Pool of size M : P;
Number of clusters: K.

1 Models Training and RoCs Computation: ;
2 Train each fi ∈ P, i ∈ [1,M] on Xtrain

ω . ;
3 Initialize RoC buffers RoCi for each fi, i ∈ [1,M];
4 for each Xval,j

nω
∈ Xval

ω do
5 Compute the corresponding Ri

j using PGSMs (i.e. Li
j Equation 5.3). ;

6 Add Rj
i to the corresponding buffer RoCi ;

7 end
8 Online Forecasting: Forecasting next H values :;
9 To forecast t+ 1:;

10 for each i ∈ [1,M] do
11 Select the representative RoC Ri for fi (Equation 5.8).;
12 end
13 Cluster the models into K clusters using their representative RoCs;
14 Select the K clusters’ representatives following Equation 5.13;
15 Sort the K representatives according to their distance to inputpt .;
16 Select the top-K models whose distances are lower than the upper bound in Equation

5.14.;
17 Predict xt+1 using the selected top-K models using Equation 2.58 by setting all the

weights to be equal to 1
|top-K| ;

18 To forecast t+ h:;
19 for h ∈ {2, · · · , H} do
20 if Drift Type I detected then
21 Update Xval

ω = {xt−ω+h, xt−ω+2, · · · , xt+h−1} ;
22 Recompute and add new RoCs (steps: 4-7) ;
23 end
24 if Drift Type I ∨ Drift Type II detected then
25 Use the most recent pattern inputpt+h−1 ;
26 Re-cluster and re-select the top-K models (steps: 11-17) ;
27 end
28 end

132

5.4 Online Ensemble of Deep Neural Networks Pruning

compared using the non-parametric Wilcoxon Signed Rank test [270]. We use the same 100
real-world time series datasets as in the experiments in the previous Section 5.3 to validate
OEP-ROC. These datasets are described in the Appendix Table A.3.

OEP-ROC Setup and Baselines We construct a pool P of CNN-based candidate models
using different parameter settings (e.g., the number of filters varies in {32, 64, 128}, kernel
size varies in {1, 3}) like explained in Section 5.4.2. For the construction of the candidate
models, we define four architectural building blocks. Our notation of layer1-layer2 implies
a sequential connection between the two layers. Let Conv1 be a sequential sub-net made up
of one convolutional layer with ReLU activation, followed by a batch normalization layer.
Conv2 is similar, except that we use max pooling instead of batch normalization. Conv3 is the
same as Conv1, but the number of filters for the convolutional layer is reduced by half. Lastly,
we define a ResidualBlock as Conv-BatchNorm-ReLU-Conv-BatchNorm-ResidualConnection-
ReLU. From these building blocks, we create our base learners as in Table 5.4, where each
Dropout layer has a probability parameter of 0.9, and FCN refers to a Fully-Connected layer.
There, we also show the different configurations we created by varying the number of filters in
the convolutional layers as well as the number of hidden units in the LSTM layer. In total,
this results in 33 candidate DNNs.

Table 5.4: Configurations and architectures for all candidate DNNs. Different configurations are
generated by taking all combinations of filters and hidden units as described in the last column. In
total, this results in 33 candidate DNNs.

Base learner Architecture Configurations
Shallow FCN Conv1-Dropout-FC nfilters ∈ {32, 64, 128}

Small CNN Conv2-LSTM nfilters ∈ {32, 64, 128}
nhidden ∈ {10, 30}

Medium CNN Conv1-Conv1-LSTM nfilters ∈ {32, 64, 128}
nhidden ∈ {10, 30}

Large CNN Conv1-Conv1-Conv1-LSTM nfilters ∈ {32, 64, 128}
nhidden ∈ {10, 30}

Fewer Filter CNN Conv3-Conv3-LSTM nfilters ∈ {32, 64, 128}
nhidden ∈ {10, 30}

One Residual ResBlock-Dropout-FCN-Dropout-FCN nfilters ∈ {32, 64, 128}

Two Residual ResBlock-Resblock-Dropout-
FCN-Dropout-FCN nfilters ∈ {32, 64, 128}

OEP-ROC has also a number hyper-parameters that are summarized in Table 5.5.

Table 5.5: Hyperparameters of our method and their values for the experiments.

Parameter Description Value
N Size of the Pool of base models P 33
nω Size of time windows within the validation set 60
z Number of steps for sliding the nω time windows 25
p Number of lags for training the base models 5
K Number of base models clusters {5, 10, 15, 20}
µ Hoeffding-Bound parameter 0.05

SoA Methods Setup We compare OEP-ROC against the following approaches, which
include SoA methods for forecasting and ensemble pruning methods devised for time series

133

5. Explainable Online Adaptive Deep Neural Network Selection

forecasting. Some of them operate in an online fashion. The SoA Forecasting Models include
ARIMA [61], LSTM [118], ETS [97], CNN [15], CNN-LSTM [112]: The two best performing
base models.

The online SoA pruning Methods include:

• Ran-Pr-m: consists of a random selection of candidate models to construct the ensemble
with m indicating the ensemble size, Ens that denotes the ensemble of all the DNNs in P.

• NCL [299]: is the Negative correlation Learning for pruning ensembles of deep learning
methods. We use the same pool of base models as P.

• OCL: is the variant of DEMSRC presented in Chapter 4-Section 4.3.5.1. More details
about OCL are given in Chapter 4-Section 4.3.5.1. We feed the candidate DNNs in P to
OCL.

• OTOP: is the variant of DEMSRC presented in Chapter 4-Section 4.3.5.1. More details
about OTOP are given in Chapter 4-Section 4.3.5.1. We feed the candidate DNNs in P
to OTOP.

• DEMSRC: is the online ensemble pruning method presented in Chapter 4-Section 4.3.5.1
that uses covariance-based model clustering. We feed the candidate DNNs in P to
DEMSRC.

• DEMSRC-K: is the online ensemble pruning method presented in Chapter 4-Section
4.3.5.1 that uses K-Means-based model clustering using DTW distance. We feed the
candidate DNNs in P to DEMSRC-K.

• OS-PGSM: is the online single DNN selection presented in Section 5.3.

• OS-PGSM-Int: is a variant of OS-PGSM (See Section 5.3.4.1).

OEP-ROC Variants :

• OEP-ROC-C: is the variant of OEP-ROC that uses only clustering without top-K
selection.

• OEP-ROC-TOP: is the variant of OEP-ROC that performs top-K selection without
clustering.

• OEP-ROC-ST: is the static variant of OEP-ROC. Pruning is decided at the initial
forecasting instant and kept fixed along testing.

• OEP-ROC-Per: is the variant of OEP-ROC where the pruning is updated periodically in
a blind manner (i.e., without taking into account the occurrence of the drift).

• OEP-ROC-I: is the variant of OEP-ROC that takes into account only the occurrence of
Drift Type I.

• OEP-ROC-II: is the variant of OEP-ROC that takes into account only the occurrence of
Drift Type II.

134

5.4 Online Ensemble of Deep Neural Networks Pruning

• OEP-ROC-K: is the variant of OEP-ROC indicating the number K of clusters used in
the clustering stage of OEP-ROC.

• OEP-ROC-K-top-K-j: In OEP-ROC and all its above variants the size of top-K (i.e.
|top-K|) is decided automatically using the bound in Equation 5.14. In this variant, we
set the size of the top-K models to select to a fixed value j.

Aggregation Methods Setup : We also evaluate how different ensemble aggregation
methods (i.e., ensemble weighting methods) can benefit from our pruning strategy. Instead of
feeding all the candidate DNNs in P into the aggregation schema, we only input the models
selected by the pruning procedure of OEP-ROC. To do so, we report the evaluation results
over various aggregation methods, including:

• OEP-ROC-SW: is the variant of OEP-ROC that uses sliding-window ensemble [12] for
aggregation instead of equal weighting.

• SW: Sliding-window ensemble [12] over all the models in P.

• OEP-ROC-OGD: is the variant of OEP-ROC that uses Online Gradient Descent for
ensemble aggregation [284].

• OGD: is the Online Gradient Descent aggregation [284] over all the models in P.

• OEP-ROC-FS: is the variant of OEP-ROC that uses the Fixed Share method for
aggregation [180].

• FS: is the Fixed Share method for aggregation [180] over all the models in P. Further
details about FS are provided in Section 2.6.3.2.

• OEP-ROC-EWA: is the variant of OEP-ROC that uses Exponential Weighting for
ensemble aggregation [276].

• EWA: Exponential Weighting aggregation [276] over all the models in P. Further details
about EWA are provided in Section 2.6.3.2.

• OEP-ROC-MLPOL: is the variant of OEP-ROC that uses the Polynomial aggregation
rule with different learning rates for each candidate DNN for aggregation [173].

• MLPOL: is the Polynomial aggregation rule for aggregation [173] over all the models in
P. Further details about MLPOL are provided in Section 2.6.3.2.

5.4.6.2 Comparing OEP-ROCto the State-of-the-Art

Table 5.6 presents the average ranks and their deviation for OEP-ROC, its variants, and SoA
methods for time series forecasting and online ensemble pruning. For the paired comparison, we
compare our method OEP-ROC against each of the other methods. We counted the wins and
losses for each dataset using the RMSE scores. We use the non-parametric Wilcoxon Signed
Rank test [270] to compute significant wins and losses, which are presented in parenthesis
(significance level 0.05).

135

5. Explainable Online Adaptive Deep Neural Network Selection

Table 5.6: Comparison of OEP-ROC with K = 15 to different SoA methods on 100 time series.
The rank column presents the average rank and its standard deviation across different time series
for each method. An average rank of 1 means the model was the best performing on all the datasets.

Method Our Method
Losses Wins Avg. Rank

OS-PGSM 35(23) 65(59) 4.76± 3.11
Ran-Pr-5 20(5) 80(69) 18.35± 4.93
Ran-Pr-10 25(6) 75(68) 15.91± 5.03
Ran-Pr- 15 31(3) 69(61) 12.82± 6.17

CNN 14(7) 86(66) 20.32± 6.90
ETS 11(4) 89(71) 24.98± 9.36

Ran-Pr-20 32(16) 68(58) 10.42± 6.17
ARIMA 16(7) 84(73) 14.91± 9.69
OTOP 25(5) 75(60) 15.32± 9.89

OEP-ROC-PER 27(9) 73(61) 10.07± 5.84
OS-PGSM-Int 31(18) 69(63) 5.30± 4.84
DEMSRC-K 19(7) 81(60) 15.52± 7.45
CNN-LSTM 26(12) 74(62) 12.63± 7.55
DEMSRC 32(19) 68(55) 13.68± 7.66

OEP-ROC-I 33(7) 67(35) 8.98± 5.69
OEP-ROC-II 30(7) 70(42) 10.08± 5.83

LSTM 43(30) 57(49) 8.88± 8.41
OEP-ROC-15-top-K-8 33(15) 67(36) 5.59± 4.53

NCL 49(25) 51(26) 9.07± 9.28
OEP-ROC-15-top-K-6 33(11) 67(33) 6.25± 5.19

Ens 47(27) 53(33) 7.73± 3.34
OEP-ROC-15-top-K-10 39(10) 61(35) 4.90± 4.55

OEP-ROC-TOP 38(13) 62(33) 4.97± 5.84
OCL 36(17) 74(61) 6.17± 6.66

OEP-ROC-C 39(13) 61(33) 3.79± 3.42
OEP-ROC-ST 37(10) 63(34) 6.31± 4.83
OEP-ROC - - 3.29± 3.08

136

5. 4 O nli n e E n s e m bl e of D e e p N e u r al N e t w o r k s P r u ni n g

●● ●●
●●

●●

0

1 0

2 0

3 0

O
E

P
−

R
O

C

O
E

P
−

R
O

C
−

C

O
E

P
−

R
O

C
−
1
5
−t

o
p

m
−
1
0

O
E

P
−

R
O

C
−

T
O

P

O
E

P
−

R
O

C
−
1
5
−t

o
p

m
−
8

O
E

P
−

R
O

C
−
2
0

O
E

P
−

R
O

C
−
1
0

O
E

P
−

R
O

C
−
1
5
−t

o
p

m
−
6

O
E

P
−

R
O

C
−

S
T

O
E

P
−

R
O

C
−I

O
E

P
−

R
O

C
−

P
er

O
E

P
−

R
O

C
−I
I

O
E

P
−

R
O

C
−
5

R
a
nk

Fi g u r e 5. 4: Di stri b uti o n of t h e r a n k s of O E P- R O C wit h K = 1 5 i n c o m p ari s o n t o it s v ari a nt s
a cr o s s t h e di ff er e nt ti m e s eri e s.

I n t h e r e s ult s i n T a bl e 5. 6, O E P- R O C o ut p erf or m s al m o st all t h e b a s eli n e s i n t er m s of r a n k s,

wi n s, a n d l o s s e s i n t h e p air wi s e c o m p ari s o n. E n s, O C L, a n d N C L s e e m t o h a v e q uit e g o o d

p erf or m a n c e. H o w e v er, t h eir a v er a g e r a n k s ar e a p pr o xi m at el y m or e t h a n d o u bl e t h e a v er a g e

r a n k of O E P- R O C. T h e o nli n e e n s e m bl e p r u ni n g m et h o d s, e. g., O C L, O T O P, D E M S R C,

a n d D E M S R C- K, s h o w i nf eri or p erf or m a n c e c o m p ar e d t o O E P- R O C. A RI M A, E T S, a n d

C N N, S o A m et h o d s f or f or e c a sti n g a r e c o n si d e r a bl y w o r s e i n t h e a v e r a g e r a n k c o m p a r e d t o

O E P- R O C. L S T M a n d C N N- L S T M s h o w b ett er p erf or m a n c e, b ut still w or s e t h a n O E P- R O C.

T h e e n s e m bl e E n s t h at u s e s all of t h e 3 3 m o d el s al s o h a s a w or s e a v er a g e r a n k c o m p ar e d t o

O E P- R O C w hi c h u s e s o n a v er a g e o nl y 6 D N N s w hi c h i s al m o st a fift h of t h e p o ol P si z e. I n

a d diti o n, a p pl yi n g o nli n e pr u ni n g m et h o d s t o t h e p o ol P s u c h a s O C L, O T O P, D E M S R C, a n d

D E M S R C- K w hi c h ar e g e n er al m et h o d s a p pli c a bl e t o a n y f a mil y of f o r e c a sti n g m o d el s, s h o w s

i nf eri or p erf or m a n c e c o m p ar e d t o O E P- R O C a n d all it s v ari a nt s. T hi s hi g hli g ht s t h e u s ef ul n e s s

of d e v el o pi n g m et h o d s t h at ar e s p e ci fi c t o D N N s a n d t h at t a k e i nt o a c c o u nt t h e i nf or m ati o n

pr o vi d e d b y t h eir gr a di e nt- b a s e d tr ai ni n g m e c h a ni s m. F urt h er m or e, O E P- R O C i s b ett er t h a n

O S- P G S M i n t e r m s of a v er a g e r a n k, wi n s, a n d l o s s e s. T hi s hi g hli g ht s t h e a d v a nt a g e of t h e

g e n er al i d e a of u si n g a n e n s e m bl e of e x p ert s i n st e a d of o n e si n gl e e x p ert si n c e t h e mi xt ur e of

m a n y e x p ert s c o v er s t h e w e a k n e s s of s o m e a n d miti g at e s t o s o m e e xt e nt t h e wr o n g s el e cti o n of

s o m e l e a r n e r s. T h e s e r e s ult s a d dr e s s t h e r e s e ar c h q u e sti o n Q 1 .

5. 4. 6. 3 C o m p a ri n g O E P- R O C t o i t s V a ri a n t s

Fi g u r e 5. 4 r e pr e s e nt s t h e a v er a g e r a n k, a n d r e s p e cti v e st a n d ar d d e vi ati o n, of O E P- R O C

a n d it s v ari a nt s. T a bl e 5. 7 pr e s e nt s t h e a v er a g e r a n k s a n d t h eir d e vi ati o n f or O E P- R O C

a n d it s v ari a nt s. It c a n b e s e e n fr o m T a bl e 5. 7 t h at n o n e of t h e pr u ni n g st a g e s o n it s o w n

(i. e., O E P- R O C- C or O E P- R O C- T O P) i s a bl e o n it s o w n t o a c hi e v e g o o d r e s ult s si mil ar t o

O E P- R O C. T hi s hi g hli g ht s t h e i m p ort a n c e of e a c h pr u ni n g st a g e a s e a c h of t h e m i s c ar ef ull y

d e si g n e d t o pr o m ot e o n e of t h e m ai n e n s e m bl e pr o p erti e s, n a m el y a c c u r a c y a n d di v e r sit y . It i s

al s o cl e ar t h at O E P- R O C- C h a s b ett er p erf or m a n c e t h a n O E P- R O C- T O P si n c e p r o c e e di n g b y

o nl y r a n ki n g t h e c a n di d at e m o d el s a c c or di n g t o t h eir cl o s e n e s s t o t h e c urr e nt p att er n kill s

1 3 7

5. Explainable Online Adaptive Deep Neural Network Selection

Table 5.7: Comparison of OEP-ROC with K = 15 to its variants on 100 time series datasets. The
rank column presents the average rank and its standard deviation across different time series. An
average rank of 1 means the model was the best performing on all the datasets.

Method Avg. Rank
OEP-ROC-II 9.98± 5.91
OEP-ROC-I 8.88± 5.76

OEP-ROC-TOP 4.86± 5.55
OEP-ROC-PER 9.96± 5.91

OEP-ROC-15-top-K-8 5.84± 4.61
OEP-ROC-5 6.50± 6.28

OEP-ROC-15-top-K-6 6.14± 5.27
OEP-ROC-15-top-K-10 4.79± 4.62

OEP-ROC-10 5.73± 5.87
OEP-ROC-20 5.74± 5.27
OEP-ROC-C 3.68± 3.49
OEP-ROC-ST 6.19± 4.91

OEP-ROC 3.18± 3.15

the diversity (i.e., the selection is made in favor of RoCs that are most similar to the current
pattern and as a result more or less similar to each other). In this way, the ensemble ambiguity
is decreased even though the average error of its members is decreased. This shows that our
two-staged procedure helps to establish a trade-off between ensemble diversity and accuracy.
This answers the research question Q2.

5.4.6.4 Usefulness of the Theoretical Insights

The right set-up of the number of clusters K to be computed seems also to be an important
factor for the performance. While it can be seen from Table 5.7 that low values of K like 5 do
not help to achieve a good performance, increasing the value of K seems to improve largely
the rank of OEP-ROC (i.e., decreasing the rank which means better performance across all
the datasets). This can be mainly explained by the fact that a small number of clusters would
lead to bigger clusters sizes which means that the selection of the clusters’ representatives will
no longer be representative of the same error level by all the candidate models belonging to
the same cluster, so the control over the average error of these models is lost. Increasing the
value of K too much is also not desired since it would lead to small cluster sizes and more
similar clusters’ representatives, which may alter the diversity by decreasing the ambiguity.
This answers the research question Q3.

Table 5.7 also shows the usefulness and the benefits of our theoretical insights in setting
up the number of top-K automatically. This number is set up by the derived bound (See
Equation 5.14) such that the ensemble members’ average error is reduced and the ambiguity is
increased. Fixed values for j for |top-K| could not achieve the same performance as OEP-ROC.
The best-fixed model selection configuration is for j = 10 OEP-ROC-15-top-K-10 which has a
bigger average rank than OEP-ROC. This addresses the research question Q4.

5.4.6.5 Importance of the Drift-aware Adaptation

It can be seen from Table 5.7 that none of the drift detection mechanisms (i.e., OEP-ROC-I
and OEP-ROC-II) is able on its own to achieve a good performance. The combination of both
is necessary to update the pruning at the right moment when it is needed. Further details are

138

5.4 Online Ensemble of Deep Neural Networks Pruning

given in Sections 5.4.5.1 and 5.4.5.2. It is also clear that performing the updates periodically
in a random blind manner with OEP-ROC-Per does not necessarily help in improving the
performance even though it is designed to trigger more updates than all the drift-aware
methods. This demonstrates that informed adaptation is always beneficial. This answers the
research question Q5.

Table 5.8: Average run-time plus variance (both in seconds) for three variants of OEP-ROC over
5 datasets.

Method Mean run-time (in seconds) Variance of run-time (in seconds)
OEP-ROC 14.41 13.03
OEP-ROC-ST 0.49 0.24
OEP-ROC-Per 27.61 0.66

To compare scalability between our configurations, we considered OEP-ROC, OEP-ROC-
Per, and OEP-ROC-ST, because these configurations nicely illustrate which steps of our
algorithm are most costly. We show the results in Table 5.8. As can be seen, OEP-ROC-ST is
by far the fastest method on average since it does not adapt its RoCs during the run-time of
the algorithm. We noticed that recreating the RoCs takes by far the longest time duration
in comparison to other steps of the algorithm, and we plan to address this in future work.
OEP-ROC-Per illustrates this problem the best since it blindly and frequently recreates the
RoCs and re-clusters the models. Thus, its run-time is always higher, no matter if an adaption
to new time series properties is necessary or not. OEP-ROC strikes a balance between these
two extremes and detects whether or not an adaption to drifts is necessary. As can be seen
from Table 5.8, this results in a high variance in the run-time since some datasets contain more
concept drifts than others. We see this behavior as a benefit since OEP-ROC outperforms the
other two variants, indicating that sometimes a higher run-time can be justified by overall
better performance.

5.4.6.6 Impact of Different Aggregation Techniques

Table 5.9 shows the average ranks, and respective standard deviations, of different aggregations
methods taking as input at one time the pruned models by OEP-ROC and all the base models
in P at a second time. It can be seen from this table that all aggregation methods achieve better
results when combined with OEP-ROC than using all the candidate models in P as input.
The advantage in performance is clearly seen, especially for SW, EWA, and MLPOL. This can
be explained by the fact that the dimension of the input for the ensemble’s weights learning
is reduced from M = 33 to an average of |top-K| = 6. This makes the regret minimization
problem in EWA and MLPOL easier to solve (See Section 2.6.3.2). In addition, the weighting
schema is focused more on the most suitable models in terms of accuracy and diversity. The
difference in performance between the methods can be explained by the difference in the weight
learning paradigms behind each method. This addresses the research question Q7.

5.4.6.7 Final Remarks

The empirical results indicate that OEP-ROC has performance advantages compared to
popular forecasting methods and SoA approaches for online ensemble pruning. We show that

139

5. Explainable Online Adaptive Deep Neural Network Selection

Table 5.9: Comparison of OEP-ROC with K = 15 combined with different aggregation methods
for 100 time series datasets.

Method Avg. Rank
SW 7.10± 2.54

OEP-ROC-SW 6.21± 3.95
EWA 6.83± 2.78

OEP-ROC-EWA 5.25± 2.24
OGD 4.81± 1.52

OEP-ROC-OGD 4.75± 1.75
FS 5.11± 2.75

OEP-ROC-FS 4.61± 2.16
MLPOL 3.85± 1.71

OEP-ROC-MLPOL 3.11± 2.05

our method using RoCs-based pruning in two well-studied stages is able to gain excellent
and reliable empirical performance in our setting. The informed adaptation and update of
the pruning decision following concept drift detection in both time series and candidate
models’ performance make our method, in addition to having a better predictive performance,
computationally cheaper.

The gradient-based saliency maps PGSMs used to compute the candidate models’ RoCs
can be used for the explainability of online DNN selection and ensemble of DNNs pruning.
More details and examples are presented in the following Section.

5.5 Explainable Deep Neural Network Selection

In this section, we show how the computed saliency maps to determine the DNNs’ RoCs,
inspired by the Grad-CAM, can be exploited to explain the online selection of DNNs and helps
in understanding their expertise/competence. Similarly to the previous Chapter 4-Section 4.5
and to the way the saliency maps produced by the Grad-CAM are exploited for explainability
in Computer Vision [203], [300], we provide visualization-based explanations.

First, we show how OS-PGSM is used to provide suitable explanations for the reason
behind selecting a specific single DNN at a certain time interval or instant in Section 5.5.1.
Second, in Section 5.5.2, we present how OEP-ROC is exploited to explain the reason behind
selecting specific DNNs to compose the ensemble at a certain time interval or instant. In
addition, OEP-ROC is also used to provide reasonable explanations for the performance of a
pruned ensemble at a certain time interval or instant.

5.5.1 Single Deep Neural Network Selection

We provide some insights into how OS-PGSM can be used to provide suitable explanations for
the reason behind model selection. Note we use the notation Ci for the candidate models in
the figures instead of fi to remind that we deal with a pool of candidate CNN-based models.
Figure 5.5 shows a comparison between the current input time series pattern inputpt (left part
in black) and the RoC of the selected model to perform the forecast (right part in blue). A clear
similarity between both patterns can be observed, which justifies the choice of this model since
it has been proven to show some degree of competence in forecasting using similar patterns as
input. This is further validated when also comparing the true time series value (ground truth,

140

5.5 Explainable Deep Neural Network Selection

4 5 6 7 8 9
t

0.5

0.0

0.5

1.0

1.5
y

Prediction using model C11 and ground truth
Ground truth
Prediction

0 1 2
t

0.6

0.8

1.0

1.2

1.4

y

Closest time-series in ROC of C11

Figure 5.5: Comparison of the current input pattern to the closest RoC (C11). The Forecaster C11
was chosen to predict the next value (left plot, green line) because the input (left plot, black line)
was closest (in terms of DTW) to the time series on the right side from C11’s region of competence
R11

0 1 2 3

2

0

C0 C1

0 1 2 3 4
2

0

2
C2 C3

0 1 2 3 4

2

0

C4

0 1 2 3 4

1

0

1

2
C5

C6

0 1 2 3
0.5

1.0

1.5

2.0

C7

0 1 2

0

1

C8 C9 C10

0 1 2 3 4 5 6 7 8

2

0

2

C11

Figure 5.6: Visualization of RoCs for AbnormalHeartbeat data using OEP-ROC.

green) and the predicted value (red). while these two values differ slightly, an evaluation of all
the candidates at this point showed that our selected model C11 has the smallest error.

A more general overview of the RoCs for AbnormalHeartbeat dataset is shown in Figure
5.6. Some models have quite similar RoCs (patterns). For example, C0 appears to be an expert
in increasing linear trend patterns or in peaks followed by a slight plateau, while C7 is the
best in dealing with sharp peaks. As can be seen with the varied amount of transparency
of lines of the RoCs, many identical RoCs are collected for each model, confirming thus the
assumption that certain models are experts on specific input regions of the time series. Some
models do not have any RoC. This can be explained by the fact that they never get selected in
the validation process, or their PGSMs are too small to form a pattern which is why they get
filtered out in the smoothing procedure. This also leads to better explainability in the sense
of sparseness since not every model is forced to contribute to the forecasting. Hence, models
that are poorly designed or not well-trained get ignored during the selection. Practitioners
of our method can then use this insight to focus their attention on improving certain poorly
performing models or remove the unused models entirely to save run-time.

141

5. Explainable Online Adaptive Deep Neural Network Selection

10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

t

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
y

xtest

prediction
C8
C0

Figure 5.7: A visualization of model selection on the AbnormalHeartbeat dataset.

Another visualization aspect of the forecasting is shown in Figure 5.7. The prediction
of OS-PGSM is shown in red in contrast to the ground truth values (black). We focus for
visualization clarity reasons on the two models (C8 and C0). We highlight regions where
they are selected by OS-PGSM. Notice that preceding every decision where C0 is chosen, the
time series exhibits a peak, which corresponds to the model’s RoCs in Figure 5.6. The same
conclusion can be drawn for C8, which is picked after valley-shaped parts. While the two
models are not picked for all peaks and valleys, our method clearly aligns certain time series
regions with specific models.

5.5.2 Ensemble of Deep Neural Networks Pruning

We provide some insights into how OEP-ROC can be used to provide suitable explanations for
the reason behind specific candidate models selection to construct the ensemble at a specific
time instant of interval. First, we compare the clusters’ representatives of OEP-ROC-10 (top
row) and OEP-ROC-10-top-K-6 in Figure 5.8. The current input pattern is shown in black
on the right side. It can be clearly seen that OEP-ROC selects the RoCs that are quite
different from each other without being too far from the current pattern, which shows the
trade-off established by OEP-ROC between ensemble accuracy and diversity. OEP-ROC-10-
top-K-6 promotes the selection of diverse patterns. However, the fixed size results in too many
uninformative models (i.e., models outside the p-sphere; See Section 5.4.4 for further details)
being picked, leading thus to a higher averaged error.

Second, Figure 5.9 shows a comparison between the current input time series pattern
inputpt (left part in black) with the RoCs of the pruned ensemble to perform the forecast
on the right. A clear similarity between the trend in both patterns can be observed, which
justifies the choice of this ensemble construction since it has been proven to show some degree
of competence in forecasting using patterns with a similar trend to the input. This is further
validated when also comparing the true time series value (ground truth, red) to the predicted
value (green). While these two values differ slightly, an evaluation of all the candidates at
this point by integrating all of them in an averaged ensemble showed that the ensemble by
OEP-ROC has a smaller error.

142

5.6 Concluding Remarks

d = 1.63 d = 9.62 d = 6.26 d = 10.85 d = 27.40 d = 7.48 d = 9.43 d = 2.77 d = 6.42 d = 9.34 input pattern

d = 1.63 d = 27.40 d = 4.72 d = 7.48 d = 9.43 d = 6.42 d = 9.62 d = 10.85 d = 1.77 d = 2.77 input pattern

OEP-ROC-10 (top row): amb = 25.53 OEP-ROC-10-topm-6 (bottom row) amb = 28.93

Figure 5.8: Comparison of the clusters’ representatives of OEP-ROC-10 (top row) with K = 10
and OEP-ROC-10-top-K-6 (low row) (also K = 10) on the Abnormal Heartbeat dataset. We report
the ambiguity amb of the clustered ensemble as well as the Euclidean distance of each RoC to the
input pattern, which is shown in the rightmost column. In red, we visualize the models that were
chosen by each method for prediction.

2.0

1.5

1.0

0.5

Example prediction from OEP-ROC-10

Ground truth
Prediction 1.0

0.5

0.0

0.5

Regions of Competence

Figure 5.9: Left: For the time series to predict (black), we show the ground truth value (red) as
well as the prediction of OEP-ROC-10 (green). Right: Visualization of each nearest RoC from the
selected models (light blue), as well as the mean RoC (dark blue). Both plots were generated on
the Abnormal Heartbeat dataset.

5.6 Concluding Remarks

In this chapter, we have presented two methods for online DNNs selection in the task of time
series forecasting.

First, OS-PGSM: a novel, practically useful online CNN-based model selection uses
Performance Gradient-based Saliency Maps PGSMs to derive the Region of Competence
RoCs of a set of candidate CNNs. These RoCs are updated in an informed manner using
concept drift detection in the time series.

Second, OEP-ROC: a novel, practically useful online ensemble of DNNs pruning method
also uses the principle of PGSMs. The pruning is updated online in an informed manner using
concept drift detection in both time series and ensemble members’ performances. The different
pruning steps, in addition to the size of the resulting pruned ensemble, are supported by
theory.

The PGSMs in these two methods can be used to support the explainability of both online
single DNN selection as well as an ensemble of DNNs pruning.

An exhaustive empirical evaluation, including 100 real-world datasets and multiple
comparison algorithms, showed the advantages of OS-PGSM and OEP-ROC in terms of
performance and scalability.

In the last two chapters, we have investigated the task of ensemble pruning, where we
highlighted the main challenges imposed by the nature of this task, the requirements that have

143

5. Explainable Online Adaptive Deep Neural Network Selection

to be fulfilled to cope with the time-evolving nature of time series data, and their impact on
improving the ensemble’s performance once online adaptive pruning methods are developed
and deployed. In the following chapter, we will explore the next stage in ensemble model
construction, namely ensemble aggregation. More precisely, we develop a novel online adaptive
ensemble aggregation schema using Deep Reinforcement Learning.

144

6
Online Ensemble Aggregation using

Deep Reinforcement Learning

In this chapter, we study the last ensemble construction stage, namely ensemble aggregation or
combination. More precisely, we develop an online novel weighting schema for linearly-weighted
ensembles using the Reinforcement Learning paradigm.

6.1 Introduction

Several approaches, ranging from simple and enhanced averaging tactics to applying meta-
learning, have been proposed to learn how to combine individual models in an ensemble. Hence,
as we have already detailed in Section 2.6.3, aggregation strategies in an ensemble can be
categorized into three main groups. The first group (e.g., bagging [31]) is based on voting
schemes that use either a majority or a (weighted) average of the votes to decide the final
output. The outputs of the individual models are repeatedly added to the training set once at
a time in the second group of methods, which uses the cascading paradigm. The third group
is based on a stacking technique [21], and in this context, meta-learning is used to learn the
aggregation of actual outputs from prior experiences. That is, individual models’ outputs are
usually mapped to the true time series values and fed to an ML model that is trained to learn
an aggregation rule, i.e., model’s parameters, that minimizes the loss between predicted and
target values, i.e., true time series values [34]. For more details, see Section 2.6.3.3.

However, there is no single way to estimate the weights of each model in a linearly weighted
ensemble; thus, learning the optimal aggregation strategy remains an open research question
[10], [36]. The online ensemble aggregation task is also very challenging since high-dimensional
continuous weights’ values have to be accurately estimated in real-time. In time series analysis,
we additionally need to take the temporal properties of the underlying process into account.
More specifically, since time series are inherently time-ordered, and the forecasting task hence
depends on a sequential analysis that can capture the temporal patterns in this data, we
consider a sequential approach based on Reinforcement Learning (RL) for dynamic ensemble

145

6. Online Ensemble Aggregation using Deep Reinforcement Learning

aggregation. Hence, we leverage a Deep Reinforcement Learning (DRL) framework for learning
linearly weighted ensembles as a meta-learning method.

In this method, we first create a set of individual models that are trained in parallel and
separately from each other. Second, we take an aggregation policy based on a weighted average,
in which the outcomes of these individual models are averaged linearly to generate the ensemble
outcome. Consequentially, the set of optimal weights is learned using a DRL approach in a
continuous space of weights that would lead to the most accurate ensemble construction given
a finite window of recent time series observations. This method is denoted in the following as
OEA-DRL: Online Ensemble Aggregation using DRL.

Since the time series can be subject to significant changes, i.e., concept drifts, the aggregation
policy of an ensemble requires to be dynamically adapted to these changes. Therefore, the
considered sequential approach based on DRL is devised such that it is able to capture the
temporal changes that occur in the data and the ensemble’s performance and provide the
optimal set of weights in real-time for online applications.

OEA-DRL is based on an actor-critic approach in deep learning settings to learn the
aggregation policy of a linearly weighted ensemble. In this context, we exploit the idea from
Lillicrap et al. (2015) [301] to learn an RL policy in continuous action space, in which the actions
are considered to be the set of weights of the ensemble. These weights are determined online by
applying the learned policy to the recently observed sliding window of time series observations.
In addition, the policy is updated online each time a concept drift in the performance of the
ensemble learned using the weights derived from previous policies is detected.

We further conduct a comprehensive empirical analysis to validate OEA-DRL using the
100 real-world time-series datasets used in the previous experiments of the Chapters. The
obtained results demonstrate that OEA-DRL outperforms standard State-of-the-Art methods
for ensemble learning and aggregation.

6.2 Related Work

Related works on ensemble aggregation are presented with details in Section 2.6.3. In this
section, we present a few works that went in the direction of exploiting RL in the context of
ensemble aggregation.

For OEA-DRL, we exploit the paradigm of RL to learn an aggregation policy as a meta-
learning technique. However, it should be noted that some approaches address the opposite
task of Meta-RL, which denotes meta-learning on RL problems [302], [303]. There are merely
a few approaches in the literature that leverage RL in the context of ensemble learning.
Partalas et al. [168], [304] propose an algorithm based on Q-learning for ensemble pruning in
classification problems, i.e., whether to include or exclude a classifier from the ensemble by
searching the space of models. Nevertheless, the approach performs in a static setting and is a
search algorithm rather than a learning scheme. RL is used for model selection in a time series
forecasting task [305]. In this approach, a tabular Q-learning agent learns the optimal policy
of selecting the best model from a pool of forecasting models for every time step. In both
methods, the RL algorithm is developed in the finite state and action spaces, which renders a

146

6.3 Online Ensemble Aggregation

straightforward learning procedure. In the latter case, the discrete action space consists only
of binary vectors indicating the fact of switching from a given selected model to a new one.

In OEA-DRL, we aim at directly learning the weights in continuous action space, in which
the optimal aggregation policy is updated online following changes in the performance of the
ensemble. In other words, the previously learned policy for aggregation is no longer accurate
and has to be updated using recently collected time series observations. Once the optimal
aggregation policy is learned, it is immediately applied to serve the online forecasting stage.

6.3 Online Ensemble Aggregation

This section presents OEA-DRL which uses DRL for learning the optimal ensemble aggregation
policy. The informed update of the aggregation policy in an online learning setting is also
explained.

6.3.1 Preliminaries

We keep the same notations as in the previous chapter, Section 5.4.1 for the time series, the
pool of forecasting models, and the vector of forecast values at t+ h.

We remind that an ensemble f of the pool of models P can formally be written at t+ h as
a convex combination of the individual predictions of the models in P at t+ h.

f̄P(x̂t+h) =
M∑︂

i=1
wi,t+hx̂

fi
t+h = x̂

f̄P
t+h (6.1)

where wi,t+h, i ∈ [1,M], determine the weights attributed to the model fi. The weights are
shown to be time-dependent (as shown in Equation 6.1) since the optimal weight setting (i.e.,
aggregation policy) should naturally be dependent on the dynamics of the time series data
that change over time as we have already explained in Section 2.6. We thus aim to find a set
of weights for the ensemble that minimizes the expected prediction error for the next forecast

argmin
wi,t+h,∀i

E
[︁ (︂
f(xt+h)− f(xt+h)

)︂2
|X1:t+h−1

]︁
,

s.t. wi,t+h ≥ 0, ∀i ∈ [1,M],
M∑︂

i=1
wi,t+h = 1

(6.2)

In OEA-DRL, the weights are adaptively changed over time following the predicted policy by
the DRL component and the detected drifts in the ensemble performance, which show that
previous aggregation policies are no longer valid and the DRL component has to be updated
by taking into account recently acquired time series observations.

A Reinforcement Learning RL task is formally expressed through a Markov Decision
Process (MDP) [306]. An MDP is defined by the tuple (S,A,R,P, γ), in which S are the
states, A the actions, R : S → R the reward function, P : S ×A → S is the transition function,
and γ is the discount factor. The goal in RL is to learn a policy π : S → A that maximizes the
total obtained reward.

In the phase of offline learning, we first split X1:t into Xtrain
ω = {x1, x2, · · · , xt−ω} and

Xval
ω = {xt−ω+1, xt−ω+2, · · · , xt}, with ω a provided window size. Xtrain

ω is used for learning

147

6. Online Ensemble Aggregation using Deep Reinforcement Learning

and Xval
ω is used for meta-learning. Subsequently, we train each of the individual M models

on Xtrain
ω or its corresponding embedding (i.e., used for standard regression learning models).

In this work, the pool of single models P is designed to contain a set of heterogeneous models,
such as Gaussian processes, support vector regression, and neural networks, in order to boost
ensemble diversity, which is proven in the literature [148], [150], [152] and over the previous
Chapters, to be one of the most important aspects in constructing ensemble models. The
diversity is hence reflected in the distinctive patterns derived from the inductive bias of each
individual learner, given various hypotheses on which each learner is built to model the input
data and its dependence structure.

6.3.2 Learning the Optimal Ensemble Weights

In this section, we present the details of our framework for online adaptive linear ensemble
aggregation using DRL. RL is an iterative process devised to learn the impact of possible taken
actions in the context of different states, i.e., situations, in order to determine the actions that
result in maximizing the overall reward. Therefore, the application of RL requires first the
definition of the corresponding environment composed of the set of states, actions, transitions,
and rewards.

In OEA-DRL, our goal is to assign the optimal weights to the ensemble’s members, given
time series observations in a defined time interval, i.e., window. Since our main goal is to
forecast future time series values step by step and monitor the learned policy continuously
over time, all the RL environment components are time-dependent. Assume our goal is to
forecast the time series value at t+ h. Consequentially, the MDP is described as follows.

6.3.2.1 The MDP Framework

Before applying RL, the corresponding environment should be well-defined to suit the
approached problem. An action at+h ∈ A corresponds to the vector of weights assigned
to each of the M base models in the ensemble at time instant t+ h (i.e., the time instant at
which we want to produce the forecast and the optimal aggregation are required). The action
space is a continuous M -dimensional space.

at+h = (w1,t+h, w2,t+h, · · · , wM,t+h)T = wt+h. (6.3)

As previously indicated, current works that employed RL for model selection or ensemble
pruning employed a static state specification that mainly consisted of the names or IDs of the
candidate models to be selected and were not directly related to the data. In other words, these
models did not take into account changes within the modeled data. However, because we are
dealing with time-evolving data and the performance of the base models is related to the data
sequence we are looking at, the state definition should be linked to the time series values or the
values of a particular sequence of interest and the combination policy should be tailored to the
data characteristics. The validation set at t+ h defined by Xt+h−ω:t+h−1 includes a window of
previous ω values of the time series until time t+ h− 1, i.e. {xt+h−ω, xt+h−ω+1, · · · , xt+h−1}.
We consider a state s ∈ S to be the current window of time series that is used for forecasting
the next value, i.e., xt+h. However, the next state s′ ∈ S should be defined in a way that

148

6.3 Online Ensemble Aggregation

shows the impact of a taken action at+h at state s. Therefore, we instead take the output
of the ensemble in the given window of size ω as the state since it reflects the result of the
aggregation and is dependent on Xt+h−ω:t+h−1 itself. That means:

s = {f̄P(x̂t+h−ω), f̄P(x̂t+h−ω+1), · · · , f̄P(x̂t+h−1)} (6.4)

where f̄P(x̂t) is the ensemble output at time t given by Equation 6.1 and using the weight
vector at+h. Note that the transition function P(s′|s, a) is deterministic in our setting.

We further define the reward of taking action at+h on the state s as a function R(s, a),
which for simplicity in notation, we denote by r. In the RL setting, the learning process is
devised to optimize the resulting reward. Hence, one intuitive way of setting up the reward is to
opt for an ensemble error-related measure since our goal is to determine the optimal aggregation
that would result in the most accurate ensemble model. Nevertheless, the magnitude of this
error does not only depend on its performance or on the performance of the individual models
but also relates to the time-varying structure of the time series itself. This can result in a
slower convergence rate of the RL algorithm. Therefore, to stabilize the reward, we opt for a
rank-based definition instead.

r = M + 1− ρf̄P , (6.5)

with M is the size of the pool P of individual models to which we add the ensemble model
to form a total of M + 1 models. Subsequently, a ranked list of all the models (including the
ensemble) is compiled using their corresponding forecasting error, in which ρf̄P indicates the
rank of the ensemble. The lower the rank ρf̄P is, the more accurate the ensemble is (i.e., a
rank 1 means f̄P performs the best) and the higher the reward r is. An empirical evaluation of
the importance of the adequate choice of the reward function is illustrated in Section 6.4.

6.3.2.2 Learning the Aggregation Policy

Once the meta-learning task is phrased in an MDP framework, a policy π is learned in favor
of maximizing the reward r, which positively correlates to a measure of the ensemble accuracy.
Consequently, the objective function presented in Equation 6.2 is turned into learning the
optimal policy of the MDP via an RL algorithm. We employ the idea from [301] to learn an
optimal policy in a continuous action space using an actor-critic approach. This approach is
selected since it is well-suited for both continuous and high-dimensional action and state spaces.
In fact, enlarging the pool size M of the single models or ω the size of the validation set leads
to high-dimensional action and/or state vectors. In this architecture, the actor is accountable
for selecting an action given the current state, and the critic estimates a value function that
provides adequate evaluation for the actor’s action. Both parts can be represented by (Deep)
Neural Networks that can be optimized by a gradient descent-based method. As a result, the
actor and the critic networks are called the policy network and the value network, respectively.
The value network predicts the value of an action at+h on the state s via Q(s,at+h|ϕ), where
ϕ is the parameter vector of the value network. On the other hand, the policy network learns a
policy π(s|θ), which yields a deterministic policy on the state s given the network parameters
θ. During the learning, the actor takes the gradients derived from the policy gradient theorem
and adjusts the policy parameters θ, and the critic network estimates the approximate value

149

6. Online Ensemble Aggregation using Deep Reinforcement Learning

function for the current policy π. The steps of learning the optimal aggregation policy using
the actor-critic approach as explained in [301] are detailed in Algorithm 4. For simplicity of
notation, we denote at+h by a.

Algorithm 4: Learning the Optimal Aggregation Policy
Data: Parameters: discount factor: γ; number of episodes: max.ep; a number of

iterations: max.iter; learning rate: α
1 Initialize randomly the parameters θ and ϕ of the actor and critic networks,

respectively. ;
2 Initialize a replay buffer R;
3 for episode = 1 ∈ max.ep do
4 Initialize a random process N (0, 1) for actions exploration.;
5 Receive initial observation state s1.;
6 for i = 1 ∈ max.iter do
7 Select action ai = π(si|θ).;
8 Execute action ai and observe reward ri and new state si+1.;
9 Store transition (si,ai, ri, si+1) in R. ;

10 Sample a random mini-batch of N transitions (sk,ak, rk, sk+1) from R.;
11 Update Q(s,a|ϕ) using target yk = rk + γQ(sk+1, π(sk+1|θ)|ϕ).;
12 Evaluate Âπ(sk,ak) = rk + γQ(sk+1, π(sk|θ)|ϕ)−Q(sk, π(sk−1|θ)|ϕ).;
13 Update the actor policy using the sampled policy gradient:;
14

∇θJ ≈
∑︂

k

∇θlogπ(s|θ)Âπ(sk,ak)

15 Update policy network: θ = θ + α∇θJ .;
16 end
17 end
18 Return policy network π(s|θ).

6.3.3 Online Aggregation Update and Forecasting

Assume we want to forecast future values of the time series at t+h starting from t+1, i.e., h ≥ 1.
After the policy network π(s|θ) is learned, we apply the model for predicting the weights of the
ensemble (i.e., actions at+h) that will be used for predicting the future values of time series
in an online manner. Starting at t+ 1, the state s is set to {f̄(x̂t−ω+1), f̄(x̂t−ω+2), · · · , f̄(x̂t)}
, the predicted weights via at+1 are used to predict xt+1. Afterward, the ω-length vector of
time-series Xt+1−ω:t (i.e., the state s) is moved forward by one value. That means the oldest
value is removed, and the predicted value f̄(x̂t+1) is added to the current window. The new
state s′ and π(s|θ) are employed to predict the weights of the ensemble to forecast the next
value of the time series.

The problem consists of forecasting future values step by step in a streaming online manner.
Once the value at t+ h is collected, a time series of the ensemble’s residuals RES can start to
be collected in a buffer Bf̄P with:

RES
f̄P
h = |xt+h − f̄P(x̂t+h)| (6.6)

150

6.4 Empirical Experiments

We keep continuously monitoring the residual time series RES. If a drift is detected in RES,
it indicates a significant change in the performance of the ensemble. This can be interpreted
by the fact that the old ensemble construction, i.e., aggregation policy, is no longer accurate
and unable to capture the new dynamics in the time series. For this purpose, we employ
the Page-Hinkley (PH) test [307], a well-known change detection method. Its pseudo-code is
introduced in Algorithm 1 in Section 3.3.3. Once a drift alarm is triggered in a given instant
t + hd (i.e., the output of the PH-test), a new aggregation policy has to be recomputed.
Naturally, upon an alarm trigger, the error estimators of the PH-test are restarted alongside
the overall algorithm. The steps of the online policy update and forecasting are summarized in
Algorithm 5.

Algorithm 5: Online Policy Update and Forecasting in OEA-DRL
Data: Validation set Xt+1−ω:t; Policy π(s|θ) ; Window size: ω

1 Initialize residuals buffer for the ensemble Bf̄P ;
2 Initialize the Boolean variable Alarm to False ;
3 if h == 1: Forecasting the value of X for t+ 1 then
4 Set s to {x̂f̄P

t−ω+1, x̂
f̄P
t−ω+2, · · · , x̂

f̄P
t } ;

5 Learn the combination policy π(s|θ);
6 Predict at+1 = wt+1 using π(s|θ);
7 Predict xt+1 using Equation 6.1;
8 Compute RES f̄P

t+1 using Equation 6.6 ;
9 Add RES

f̄P
1 to Bf̄P ;

10 end
11 for h ∈ {2, · · · , Nf} do
12 update s by removing oldest value xt+h−ω and adding xt+h−1
13 Predict wt+h using π(s|θ);
14 Predict xt+h using Equation 6.1;
15 Compute RES f̄P

h using Equation 6.6 ;
16 Add RES

f̄P
h to Bf̄P ;

17 Set Alarm to True if a concept drift in the time series sequence collected in Bf̄P is
detected.;

18 if Alarm==True then
19 Set s to {x̂f̄P

t+h−ω, x̂
f̄P
t+h−ω+1, · · · , x̂

f̄P
t+h−1};

20 Learn a new aggregation policy π(s|θ);
21 The error estimators of the PH-test are restarted alongside the overall

algorithm.
22 end
23 end

6.4 Empirical Experiments

In this section, we present the experiments that evaluate the performance of OEA-DRL for
forecasting to answer the following research questions.

• Q1: How does OEA-DRL perform compared to the State-of-the-Art and existing online
ensemble aggregation methods for time series forecasting?

151

6. Online Ensemble Aggregation using Deep Reinforcement Learning

• Q2: How critical the reward function choice is for the convergence of the reinforcement
learning approach?

• Q3: What is the impact of the informed update of the aggregation policy in OEA-DRL
in terms of computational resources compared to the most successful online ensemble
approaches for forecasting?

• Q4: What is the benefit of using OEA-DRL as an aggregation method for pruned
ensembles using our recently developed online pruning methods, namely DEMSRC,
OMS-ROC-Ens, and OEP-ROC?

6.4.1 Experimental Setup

We conduct our experiments on the 100 real-world time series used to validate the previous
methods in Chapters 4 and 5. They are also presented and described in the Appendix Table
A.3. Each dataset is further split into training and testing sets via a 75% − 25% ratio. We
evaluate various methods in terms of the Root Mean Squared Error (RMSE), and the error
is used to create a ranked list of models according to their performance that serves as the
evaluation metric in our analysis. The results are further assessed using the non-parametric
Wilcoxon signed-ranked test [270] to compare pairs of models across the 100 datasets. Moreover,
an embedding dimension of p = 5 is used for all the time series. The code is included under
this repository 1.

We used the same pool P of 43 heterogeneous models as the one used for DEMSRC and
OMS-ROC in Chapter 4. Except for addressing the research question Q4, a pool P of 33
candidate DNNs is considered, i.e., the same used for the online ensemble of DNNs pruning
method OEP-ROC presented in Chapter 5. For clarity of notations and to avoid confusion with
the pool P of the 43 heterogeneous models, we denote it by PDNNs in the following. We apply
first pruning to PDNNs using each time one of these three methods: DEMSRC, OMS-ROC-Ens,
or OEP-ROC. Afterward, selected models by each of the pruning methods are aggregated
using OEA-DRL.

6.4.1.1 OEA-DRL Setup

In OEA-DRL setting, both policy and value networks are based on MLPs, which perform simple
regression and multi-regression (M -dimensional vector of weights =43 or 33), respectively.
In addition, a standard normalization is applied to the output of the policy network so that
all the weights are positive and sum to one. The hyperparameters of OEA-DRL are tuned
by model selection which results in the discount factor γ = 0.9, the learning rate α = 0.01,
and max.ep and max.iter equal to 100. The parameters of the Page-Hinkley test ν and ϱ are
tuned using grid-search in [0, 1] with a step size of 0.1.

6.4.1.2 State-of-the-art Methods

We compare the performance of OEA-DRL against several standard baselines as well as
State-of-the-Art approaches: ARIMA [61], LSTM [118], StLSTM [113] (Stacked LSTM), RF

1https://www.dropbox.com/sh/qgi26uhf5yd38a5/AABq4EZ32xMzVTCBK_KK3l5ba?dl=0

152

https://www.dropbox.com/sh/qgi26uhf5yd38a5/AABq4EZ32xMzVTCBK_KK3l5ba?dl=0

6.4 Empirical Experiments

[31], GBM [263], Ens [308], SW-Ens [12], EWA [180], FS [174], OGD [284], MLPOL [173],
Stacking [33], OCL, OTOP, and DEMSRC. For more details about these methods, see Section
4.3.5.1. Note that our recently developed methods OCL, OTOP, and DEMSRC presented
in Chapter 4, even though they are specifically designed for ensemble pruning, they use an
adaptive aggregation schema that sets the ensemble weights using an inverse measure of the
recent loss of each ensemble member on a time-sliding window of observations. That is why we
compare them to OEA-DRL.

6.4.1.3 OEA-DRL Variants

We also added two variants of OEA-DRL.

• SRL: A method that uses Deep RL for learning linearly weighting aggregation policy
offline. The policy is kept static at test time. This is the static version of OEA-DRL
developed and presented by the author of this thesis in [36].

• OEA-DRL-Per: is a variant of our method where instead of updating the policy in an
informed manner following concept drift detection, the policy is updated blindly in a
periodic manner with periodicity for each upcoming 10% data points.

6.4.2 Comparing OEA-DRL to the State-of-the-Art

We first evaluate the rank of all the methods across different time series datasets. Table 6.1
shows the average rank achieved by each model and the standard deviation of the rank across
various time series (the lower, the better: a rank of one means that the model is the best
performing on all datasets) and the pairwise comparisons between OEA-DRL and the baseline
approaches using the non-parametric Wilcoxon signed-ranked test [270]. The results exhibit
the number of wins and losses of OEA-DRL compared to the other methods in the table. The
numbers in parenthesis represent significant wins/losses with a probability above 95%.

Table 6.1 illustrates that our approach achieves the best performance among the evaluated
methods. Hence, OEA-DRL outperforms the baseline methods in terms of wins/losses in
the pairwise comparison, however not OEA-DRL-Per. The approaches that are based on
combining individual forecasters, including the online ones, e.g., SE, SWE, EWA, and FS, and
common ensemble methods, such as RF, GBM, StLSTM (Stacked LSTM), and Stacking, show
inferior performance compared to OEA-DRL. ARIMA and LSTM, State-of-the-Art methods
for forecasting, have a considerable difference in the average rank compared to OEA-DRL
as well. The most competitive approaches to our method are DEMSRC and SRL, which
perform well in the pairwise comparison. Nevertheless, both attain a higher average rank.
OEA-DRL includes online updates of the aggregation policy/strategy, while SRL is devised
offline. The policy is learned once on historical data, and only policy prediction is performed
online in a step-wise manner. Per-OEA-DRL outperforms OEA-DRL. However, the number of
significant losses of OEA-DRL against Per-OMS-ROCis relatively small, and the difference in
their average rank is also small. This answers the research question Q1.

153

6. Online Ensemble Aggregation using Deep Reinforcement Learning

Table 6.1: Pairwise comparisons between OEA-DRL and baseline methods averaged over all the
100 datasets (ω = 10).

Method Pairwise comparison
Losses Wins Avg. Rank

ARIMA 18(8) 81(76) 15.75± 5.2
RF 13(2) 87(85) 16.35± 3.5
GBM 11(0) 89(88) 16.61± 2.0
LSTM 24(0) 76(72) 13.43± 5.5
StLSTM 11(0) 89(88) 14.98± 3.4
SE 25(5) 75(70) 10.95± 2.5
SWE 14(2) 86(85) 11.85± 2.3
EWA 25(7) 75(70) 7.44± 3.3
FS 26(9) 74(69) 7.15± 2.8
OGD 30(11) 70(69) 6.48± 4.3
MLPOL 32(14) 68(66) 6.14± 2.5
Stacking 12(0) 88(86) 14.35± 3.5
OCL 44(21) 67(65) 6.85± 6.0
OTOP 30(12) 70(69) 9.01± 3.2
DEMSRC 37(25) 65(55) 4.13± 3.8
SRL 38(23) 62(54) 3.01± 3.7
OEA-DRL-Per 53(46) 47(39) 2.15± 3.8
OEA-DRL - - 2.35± 3.9

6.4.3 Importance of the Rank-based Reward Setup

In the next experiment, we study the convergence of the deep actor-critic Algorithm 4 using
two different settings for the reward function. Figure 6.1 (top) shows the results for the reward
defined as 1−NRMSE, where NRMSE is the normalized RMSE of the computed ensemble using
the corresponding action (i.e., weights) on Xt+1−ω:t, while Figure 6.1 (bottom) uses the reward
as defined in Equation 6.5. The same setup of OEA-DRL is applied for the second approach
using the NRMSE as a reward function. As it is mentioned in Section 6.3.2.1, Algorithm 4 does
not converge using the first definition of the reward since the magnitude of forecasting errors
does not only depend on the models but is also changing over the course of time. Thus, the
choice of the reward function is critical for the convergence of the actor-critic DRL algorithm.
This answers the research question Q2.

0.
2

0.
8

R
ew

ar
d

Episodes

Figure 6.1: Learning curves of Algorithm 4 [301] with two different reward definitions. (a) Reward
computed using 1 − NRMSE. (b) Reward computed using Equation 6.5. On the x-axis is the
number of episodes. On the y-axis is the average reward over each episode.

154

6.4 Empirical Experiments

Table 6.2: Number of times of policy update comparison between Per-OEA-DRL and OEA-DRL.

Method Number of times of policy update
Per-OEA-DRL 57.33± 10.05
OEA-DRL 5± 3.55

Table 6.3: Empirical run-time comparison between SRL, OEA-DRL-Per, and OEA-DRL.

Method Avg. Run-time in sec.
SRL 217± 30.85
OEA-DRL-Per 10314± 1908
OEA-DRL 911± 621

6.4.4 Importance of the Drift-aware Policy Adaptation

OEA-DRL-Per relies on much more updates of the policy than OEA-DRL. Table 6.2 shows
a comparison between the average number of updates of the ensemble aggregation policy
between OEA-DRL-Per and OEA-DRL. While our method relies on informed updates that
show that the previously learned policy is unable to deliver accurate ensemble construction
that can deal with the current dynamics of time series data, OEA-DRL-Per is based on blind
updates that are performed in a periodic manner with relatively high periodicity and therefore
able to align better to small changes in the data that are not captured by the drift detection
in the ensemble’s performance. However, in terms of scalability, it can be seen in Table 6.3
that OEA-DRL-Per has a bigger run-time compared to OEA-DRL and to the static RL
approach SRL, which can be considered as a reason for its applicability limitation to online
forecasting scenarios that require small forecasting horizon. Similarly, even though OEA-DRL
has a considerably lower run-time than OEA-DRL-Per, its applicability depends on whether
the forecasting task horizon allows for the retraining of the two deep neural networks, namely
the actor and the critic networks to learn new aggregation policy (Algorithm 4). SRL2 has a
lower average run-time since the computation of the policy is done once offline (i.e., we run
Algorithm 4 only once offline and keep the policy network parameters fixed afterward) and
never gets updated in the online forecasting phase. It only outputs predictions of the action a

using the updated state s that contains the recently acquired ω time series observations but
with the parameters θ fixed. This answers the research question Q3.

6.4.5 Combining Pruning Methods with OEA-DRL

Last but not least, we investigate how our recently developed online pruning methods, namely
DEMSRC, OMS-ROC-Ens, and OEP-ROC can be joined together with OEA-DRL. Hence,
once the pruning is achieved by one of these three methods (i.e., final individual models to
appear in the ensemble are selected), comes the decision on how to aggregate their outputs
at each time instant into one single output. This decision is made by the learned ensemble
weighting policy in OEA-DRL. Since the only requirement to use OEP-ROC is to input a pool
of CNN-based forecasting models, we use the pool PDNNs of candidate individual models for
all the methods (see Section 6.4.1). Table 6.4 shows the average ranks and respective standard
deviations of different pruning methods using an averaging technique to combine the individual
models at one time, and combined with OEA-DRL that takes care of the aggregation stage at

2An RL-based aggregation method that we have developed and published prior to OEA-DRL in [36]

155

6. Online Ensemble Aggregation using Deep Reinforcement Learning

a second time. The notation MethodX -OEA-DRL stands for one of the methods DEMSRC
or OMS-ROC-Ens or OEP-ROC combined with OEA-DRL. Note that our pruning methods
include different drift detection mechanisms that update the selection of the ensemble members,
i.e., the individual models. With each of these updates, we also update the aggregation policy
in OEA-DRLas new input individual models are present.

Table 6.4: Comparison of OEA-DRL combined with different pruning methods for 100 time series
datasets.

Method Avg. Rank
DEMSRC 4.20± 1.74

DEMSRC-OEA-DRL 4.03± 1.95
OMS-ROC-Ens 3.83± 2.12

OMS-ROC-Ens-OEA-DRL 3.49± 2.24
OEP-ROC 2.95± 1.92

OEP-ROC-OEA-DRL 2.18± 1.75

It can be seen from this table that all the pruning methods achieve better results when
combined with OEA-DRL compared to simply using a weighted average aggregation. For
DEMSRC and OMS-ROC-Ens, the difference in the average rank is not big compared to
DEMSRC-OEA-DRL and OMS-ROC-Ens-OEA-DRL, respectively. This can be explained by
the fact that opposingly to OEP-ROC, DEMSRC and OMS-ROC-Ens are not specifically
designed to prune an ensemble of DNNs, and the quality of the pruned ensemble naturally
has some impact on the aggregation stage. Hence, OEP-ROC-OEA-DRL achieves the lowest
average rank, highlighting thus the need for both adequate pruning and combination methods
that cope with the nature of the task, the data, and candidate individual models. It should
be noted that the combination of these methods in one framework increases the forecasting
solution complexity and computational resources. Therefore, the choice of opting for the
combination should be based on a trade-off between accuracy and computational costs, which
is application-dependent, e.g., in short-horizon forecasting applications, computational resources
and execution time should be taken into account and managed efficiently. This is out of the
scope of this thesis but will make the subject of future work.

6.5 Concluding Remarks

We introduced OEA-DRL: a novel and practically effective online ensemble aggregation
framework for time series forecasting that employs a Deep Reinforcement Learning approach
as a meta-learning technique. We used an actor-critic algorithm, in which the actor is taught
to learn how to determine the best set of weights given prior experiences on individual model
aggregation in the ensemble. The aggregation policy is updated in an informed manner following
concept drift detection in the performance of the ensemble constructed based on previously
learned policy.

An extensive empirical evaluation of OEA-DRL on 100 real-world datasets demonstrated
that OEA-DRL outperformed multiple baseline algorithms and achieved competitive perfor-
mance with the State-of-the-Art.

156

6.5 Concluding Remarks

In the next Part of this thesis, we present three applications of model-based quality
prediction of industrial processes. Some of the time series forecasting methods presented in
the previous Chapters are transferred and applied to these applications.

157

Part III

Applications

159

7
Real-time quality prediction in

NC-Milling

In this Chapter, we focus on the real-time model-based quality prediction of a milling process
using Machine Learning. In mechanical engineering, milling is one of the most important
machining operations with a wide variety of application use cases, e.g., the machining of
structural components for the aerospace industry, dental prostheses, or forming tools in the
context of tool and die manufacturing. Milling can be classified as a cutting operation using
defined cutting edges. The material removal is performed by superimposing a rotational
movement of the tool rotation axis and a translational movement of the tool relative to the
workpiece defined by a Numerically Controlled (NC) path, where a chip per cutting operation
is removed from the material. Figure 7.1 depicts an example of a pocket milling process.

7.1 Introduction

The optimization of milling operations is one of the most important topics in the context of
production engineering [309], [310] since the capability to conduct high-performance cutting
processes is indispensable for increasing the manufacturing efficiency in numerous branches of
industry, e.g., to reduce tool vibrations in the aerospace industry [47] or to avoid tool wear for
processes of the tool and mold manufacturing [311]. Due to different process states, which can
change continuously throughout the progression of the regarded process, especially when tool
wear characteristics can be expected for the considered process configuration, the monitoring
of machining processes and real-time predictions of cutting tool conditions as well as the
quality of the machined workpiece are vital for enhancing the manufacturing productivity.
However, providing reliable and practicable solutions is still a challenging task for milling
operations [312], [313]. The estimation of cutting forces is a crucial aspect since many process
and tool-related characteristics are linked to them, such as tool wear [314].

Abrasive tool wear often reaches critical and non-negligible levels during the machining
of hardened or difficult-to-cut materials and when long-running processes are required to

161

7. Real-time quality prediction in NC-Milling

Figure 7.1: Pocket milling process.

manufacture the desired final contour of the component. Figure 7.2 shows a milling tool and
optical measurements of a cutting edge for two different wear states, which are correlated by
the number of machined slots using the regarded tool. Different values for the width of flank
wear, i.e., the wear which occurred on the flank face of a cutting edge, are annotated in the
figure and can be used as a measure for the wear state of the tool. The wear induced altered
characteristics of the engagement situation between the tool and the workpiece can change
the directions and amplitudes of the cutting forces affecting the tool, which can result in an
alteration of the excitation of the dynamic behavior of the process and a shift of the stability
border [311], [315]. In addition, tool wear can result in a deterioration of the quality of the
machined workpiece surface, an increase in the temperature in the area of engagement, and a
faster progression of tool wear. As a result, monitoring process forces in real-time is crucial as
they enable the adaption of process parameter values [316], monitoring of tool conditions [317]
and ensure high-quality and stable milling [318].

In this Chapter, we investigate a slot milling process by predicting active and passive forces
in real-time using both sensor and simulation data. The use of simulation is motivated by
the fact that it is usually expensive to collect enough data amounts using real-world sensors.
In addition, in the case of NC-milling, geometrically-based simulations are able to generate
additional information about the process that can not be measured directly using sensors in a
reasonable amount of time [47].

Simulations are most often considered as the ground truth because they are based on
theoretical knowledge of the particular application domain. Hence, they are used for testing
learned models or annotating the data. Simulations are used as experiments that offer scientists
the chance to study a range of phenomena in a structured way. This is a standard procedure
in computer science [230] as well as in engineering [47], and physics [231], to name but a
few. Many investigations of multi-sensor fusion have used simulation environments only for
testing their frameworks [232], [319]. Process simulations are also established instruments to
investigate processes in a virtual environment prior to deployment [47], [237]. More recently,
simulations have been conceived as powerful data generators, providing promising opportunities

162

7.1 Introduction

500 µm

29 µm
89 µm

100 slots

500 µm

163 µm
152 µm

180 slots

Cutting edge

Milling tool

Tool holder

Figure 7.2: Comparison between tool wear states after milling 100 slots and 180 slots.

for simulation data mining [233]. However, simulations have many limitations in practice. They
cannot provide a completely accurate representation of reality in real-time [234] and usually
have only a limited prediction accuracy when modeling complex relationships [235]. For example,
Finite-Element (FE)-based simulations, which are widely used in many mechanical applications,
are intensively resource-consuming and not adequate for real-time application [234]. In addition,
analytical approaches often provide only a limited prediction accuracy when modeling complex
relationships [235], [320].

In contrast, ML models can be applied in real-time and offer the opportunity to predict
events based on the analysis of a set of explanatory variables. Therefore, new trends aim at
replacing simulation models with surrogate ML models that have been trained on simulation
data [236], [237]. Some recent works focus on learning from simulation data to monitor the
real-world process and predict upcoming unknown events with a reasonable accuracy [229],
[237]. However, none of these approaches used simulation data to enrich sensor data for a given
learning task.

In this context, we present a framework that performs simulation-sensor data fusion. First,
it formally validates the use of simulation as a synthetic data generator in NC-milling by
fulfilling certain conditions, namely completeness, conciseness, and correctness. It also suggests
solving possible data mismatches between sensors and simulation using ML-based methods.
Additionally, our framework challenges the typical data and model handling for ML applications
in the sense that it allows for more flexibility in the fusion of sensor data and simulation. In
particular, it automatically selects between two different integration levels.

Data-level fusion The integration of sensor observations and simulation is not restricted
to the raw data of observations. Instead, a common representation for both is created
and then enhanced by feature extraction, generation, and selection. The performance of

163

7. Real-time quality prediction in NC-Milling

Table 7.1: Experimental process parameter values.

Tool diameter D = 10 mm
No. of cutting edges z = 2

Depth of cut ap = 0.2 mm
Width of cut ae = 0.2 mm

Inclination angle rθ = 30°
Tooth feed fz = 0.06 mm or 0.12 mm

Cutting speed vc = 100–500 m/min

the model which is trained on these enhanced data is the criterion that guides feature
engineering.

Model-level fusion Simulation and sensor data can be used independently for training single
models, one on each data source. The resulting models may then be combined to output
the prediction using an ensemble model. Weighting the two models adapts the framework
to the application at hand.

Level choice decision Moreover, the framework automatically decides which level to take
based on a derived threshold for the co-variance of the single models. The criterion states
that the variance-based error will be reduced by transiting from the data to the model
fusion level if this co-variance is lower than the threshold.

The fusion framework is applied to an NC-milling use case for real-time cutting forces
prediction where force sensors deliver online streaming time series measurements of the
process forces during the conduction of milling experiments, and a geometric physically-based
simulation system is used to generate pre-calculated features that cannot be measured by
sensors. In addition, once the adequate fusion level is decided automatically using our fusion
framework, we apply the online forecasting methods we presented in the previous Chapters.

7.2 Use Case Description

Slot milling experiments were conducted using a ball-end milling tool. For the workpiece
material, the high-speed steel 1.3344, with a hardness of 62 HRC, was used, resulting in the
occurrence of abrasive tool wear mechanisms throughout the process, which influence the
amplitudes of the process forces. The parameter values of the process are summarized in
Table 7.1. We vary the values of the cutting speed in 100–500 m/min with a step of 100 m/min.
For each value of the speed, two different configurations for the tooth feed were used: 0.06 mm
and 0.12 mm, resulting in a total number of 10 different process scenarios or configurations.
For each scenario, a time series of cutting forces were measured using a force dynamo-meter
Kistler 9257B, which was mounted on the machine table. The forces were measured in a
three-dimensional coordinate system using a sampling frequency of 20 kHz, resulting in three
force signals, denoted as Fx, Fy and Fz.

Due to the characteristics of the interrupted cut and the low immersion values, there are
periods between each tooth engagement visible with no occurring process forces. In addition,
there are also no forces during the approach movement between the two slots. As a consequence,
two different process states are distinguished: an engagement between the cutting tool and the

164

7.2 Use Case Description

0 1100 2200 3300 s 5500
Time

400

200

0

200

400

N

800

Fo
rc
e

0.00 0.01 0.02 0.03 s 0.05
Time

40

20

0

20

40

N

80

Fo
rc
e

Figure 7.3: Measured process forces in z-direction using a cutting speed of 500 m/min and a
tooth feed of 0.06 mm depicted through two perspectives: (a) the total time series, which results
from 180 milled slots and is approx. 90 min in duration and (b) five tooth engagements.

workpiece as well as periods of no engagement. To reduce the amount of data, which has to be
processed, the active forces F i

a and passive forces F i
p for each tooth engagement i are used for

the learning procedure and calculated at time t as:

F i
a,t =

√︂
|F i

x,max − F i
x,min|2 + |F i

y,max − F i
y,min|2 (7.1)

F i
p,t = |F i

z,max − F i
z,min| (7.2)

where F i
x,min, F i

x,max, F i
y,min, F i

y,max, F i
z,min and F i

z,max are the minimal and maximal values
of the forces of tooth engagement i in x-, y- and z-direction recorded until time t, respectively.

The Forces are aggregated using an aggregation period of 0.1 ms and predicted each 0.1 ms
for the next 10 ms. The resulting length of the time series for each scenario depends on the
values of the input parameters and varies from 13250 to 54500 observations. Figure 7.3 shows
the force progression using a cutting speed of 500 m/min and a tooth feed of 0.06 mm as
well as forces for five tooth engagements of this time series. There are no sensor outages and
the signal can clearly be distinguished from noise, indicating a suitable signal quality of the
measurements.

For the simulation data, a geometric physically-based simulation system is used [47]. Due
to the simplifications of the simulation models, simulation data can be generated in a feasible
run-time, even for the investigated long-running machining process. A major advantage of the
simulation approach is the capability of generating features that typically cannot be measured

165

7. Real-time quality prediction in NC-Milling

during the process. For this purpose, the chip volume, the sum of time of engagement, the feed,
directions in the three-dimensional coordinate system, which corresponds to the coordinate
system of the force dynamo-meter, and the mean of the cutting speeds, which can be calculated
at different positions along the cutting edges of the ball-end milling tool, are generated for
each point in time to potentially enrich the feature space of the forces measurements. The
simulation is therefore used for feature enrichment.

7.3 Learning from Process Simulation

In addition to their major use as virtual test-beds [232], [321], [322], simulations are considered
as data sources [233], [237]. However, generating data with simulations is a challenging process
[237]. First, simulations are models for reality and they are not perfectly mirroring the exact
real-world situation. Even though in many real-world settings, it is possible to rely on simulation
models, the mismatch between simulation and real-world situations has to be solved in order
to succeed the fusion and avoid data conflicts. Second, some simulation models, like Finite-
Element based simulations [237], are intensive-resource consuming and not real-time capable
[47], which makes data generation not possible in real-time. However, Fusion is still possible in
real-time by using online streaming sensor data together with pre-calculated simulation data.

7.3.1 Major Uses

We can distinguish three major uses of simulations as data generators.

Additional observations generation Simulation is employed to generate more observa-
tions of a given process.

Additional features generation Simulation model is used to generate additional computed
features that cannot be measured directly using sensors. In this case, simulations are used
for feature enrichment. This can be done by using physical models directly or building
surrogate ML models that learn the simulation model in order to generate new features
for real-world data.

Data annotation Simulation is used as a data annotator to generate data labels. This scenario
is mostly required when data annotation by sensors or human oracles is expensive.

7.3.2 Synthetic Data Quality Assessment

We suggest three criteria to which simulation data source should comply, namely completeness,
conciseness, and correctness.

Completeness measures the amount of data in terms of the number of attributes and checks
for missing values in each data instance. This operation can be performed on the batch
data or instance per instance on a stream. Data instances with a high number of missing
attributes are removed from the data source. If the number of missing attributes is
relatively small, data imputation handles the missing values.

166

7.4 Simulation-Sensor Data Fusion

Conciseness measures the importance of an object/item representation in the data. Since we
are mainly interested in data enrichment either in terms of features or in terms of creating
new instances, we regard simulated data as the more important, the less redundant they
are, and we give privilege to real sensor data in the case where simulation and sensor
data are measuring the same properties of the same data instance.

Correctness measures whether the simulation data corresponds to the reaL-world. An
interaction with domain experts is required to validate whether the simulation model
is robust enough to generate data that can be useful for learning real-world process
characteristics. Alternatively, Machine Learning itself can be deployed to validate the
correctness of simulation data using approaches that have been developed in the context
of deep generative models to assess the quality of artificially generated data [323], [324].
For instance, a distribution distance-based measure can be used to evaluate similarities
between both simulation and sensor empirical data distributions. In addition, in case
a simulation is used for the generation of additional observations, similar to what has
been proposed for evaluating the quality of data sequences generated by a GAN model
[324], a Train on Real sensor data and test on Simulation data (TRTS) and a Train on
Simulation data and test on Real sensor data (TSTR) strategies can be used to validate
the correctness and the usefulness of simulation data in learning an ML model.

Similar criteria can be checked for sensor data to ensure high-quality data acquisition
from both sources. Same aspects for completeness and conciseness could be applied to sensor
data. For correctness, erroneous measurements and downtimes in sensor data can be detected
using anomaly detection techniques. Such measures enable solving data conflicts issues, namely
uncertainty, and contradiction. In fact, completeness enables to avoid uncertainty which
consists of a conflict between a non-null value and one or more null values that are all used
to refer to the same characteristic of the same data instance. Hence, uncertainty caused by
missing information (i.e., null values in a source or a completely missing attribute) is solved
by checking completeness. In the meanwhile, correctness enables to solve contradiction which
is a conflict between two or more very different non-null values that are all used to describe
the same property of the same data instance. Contradiction is caused by different sources
providing different values for the same attribute of a real-world entity. For sensors, erroneous
measurements and downtimes are detected using anomaly detection techniques. Simulation
correctness is assessed as described above. Further conflicts between both sources that may
affect the correctness of the fused data are addressed by solving mismatches between simulation
and sensors by means of synchronization and calibration. Further details are provided in Section
7.4.2.

For our case study, the simulation is used for additional feature generation as we explained
in the previous section. An interaction with domain experts enabled us to verify that the
geometric physically-based simulation fulfills the above-detailed criteria.

7.4 Simulation-Sensor Data Fusion

The proposed fusion framework is shown in Figure 7.4. The data acquisition process takes raw
sensor data and acquires from the simulation the adequate data form depending on the use

167

7. Real-time quality prediction in NC-Milling

Fusion Framework

Fusion in one data
representation2

Automatic feature
engineering3

Feature extraction
and generation

Feature selection

E
v
a
lu

a
ti
o
n
 &

 u
p
d
a

te

No Mis-
match

Calibration and/or
synchronization

Model training
and prediction

4

1
Data mismatch

evaluation
1 Mismatch

Level fusion
selection

Train model
on each

data source

Covariance threshold
 & average

bias checking

Figure 7.4: Simulation-Sensor Data Fusion Framework.

168

7.4 Simulation-Sensor Data Fusion

scenario of the simulation as a data generator. In our case, the simulation generates additional
describing features for each data sample, i.e., in this case, a data sample corresponds to a
milling experiment described by a set of input parameters.

Then, the quality of all sensor data and simulation data are checked according to three
criteria detailed in Section 7.3.2. Simulation-sensor data mismatch is first solved. Feature
engineering is used for enhancing the data quality by redundancy and correlations analysis,
filtering strategies, new features generation, etc., that can be applied to data once data sources
are fused into one unified data representation.

7.4.1 Data Quality Assessment

In case the simulation is used to generate features if the same feature is measured by the sensor,
data quality criteria can be used to check which source is more reliable to consider and no
further mismatches need to be solved. If the feature can only be generated by the simulation,
the correctness criterion (Section 7.3.2) is sufficient to check mismatches with reality. In case
the simulation is used as a data annotator, due to the absence of ground truth, one possible
way is to interact with domain experts as has been already mentioned in the correctness
criterion for synthetic data. Another possible way is to use an ML model to decide which
instances to label. More precisely, an ML model can be used to determine which instances
of real-world data are similar to simulation instances. If the similarity is high, the real-world
data instance is to be annotated by the simulation (i.e., simulation is treated as an expert in
instances that are similar to its own generated instances). In practice, this can be done by
training a model to learn the labels using simulated data and using it to predict the labels of
real-world data. Instances with high estimated prediction uncertainty are removed.

7.4.2 Simulation-Sensor Data Mismatch Solving

7.4.2.1 Synchronization

The fusion or the combination of data collected from both sources into a single data
representation is not straightforward, and data mismatch checking between both sources
is required, especially since both sources are heterogeneous and built by different paradigms.
Data mismatch is not concerned with different data sources attributing different values to
the same instance. A mismatch here is caused essentially by different data alignments due
to different data sampling strategies and sampling frequencies of simulation and sensor data.
The measurement frequency of a data source is defined by the number of times the source
delivers data to the fusion framework per time unit. The simulation sampling frequency is set
by domain experts and basically limited by the computational expensiveness. The higher the
desired sampling frequency, the longer the simulation runs and the more memory it uses. The
association and integration of sensors and simulation data require their synchronization with
the environment description. The environment description is characterized by the adequate
time of measurement. In order to obtain a precise synchronization, a sufficiently accurate
global time of measurement for sensors and simulation and the fusion system is required
to be defined or derived using synchronization techniques [325]. In fact, assuming a general
sensor-simulation configuration, a data fusion system has to cope with different and varying

169

7. Real-time quality prediction in NC-Milling

Figure 7.5: Comparison of measured and simulated forces in x-, y- and z-direction with a time-
related delay between the time series.

measurement frequencies, measurement latency as well as asynchronous measurement times.
Synchronization techniques can be divided into deterministic and non-deterministic ones. In a
deterministic setting, the measurement times of each data source (i.e., sensors and simulation)
have to be known in advance, and synchronization is performed on the slowest data source
using aggregation techniques [325]. In a non-deterministic setting, simulation, and sensors are
assumed to be asynchronous, and there is no knowledge about measurement times or latencies.
The frequency can be non-constant. In such situations, recursive filtering approaches such as
the Kalman filter or recursive auto-regressive filters can be used for synchronization [326].

For our case study, a time-related delay between simulated and measured data is observed.
Therefore, data synchronization is required. Figure 7.5 shows a comparison between simulated
and measured forces with a visible delay between them.

Both simulated and sensor data are acquired using the same sampling frequency so that
only a constant time shift between each of the two time series has to be determined. This can be
achieved, e.g., manually, using change points estimated by auto-regressive approaches [328] or
by analyzing the continuous wavelet transform of the time series [327] (For more details about
the transform See Section 2.1.3.3). Figure 7.6 shows a comparison between the transformed
time series of measured and simulated forces of two tooth engagements using the Mexican hat
wavelet

Ψ(t) =
(︂
1− t2

)︂
e−(t2

2), (7.3)

as mother wavelet [329]. By identifying the points in time where the intensity of the wavelet
transforms at the tooth engagement frequency is greater than zero, the time-related delay
between the two investigated time series can be identified.

7.4.2.2 Calibration

In addition, different hypotheses for drawing data samples from sensors and simulation may also
lead to a mismatch in the sense of learning from different underlying distributions. Therefore,

170

7.4 Simulation-Sensor Data Fusion

Figure 7.6: Wavelet transform of measured and simulated time series using the Mexican hat
mother wavelet [327].

either sensor or simulation calibration is needed. In this setting, since one of the goals is to
extract useful information about the real-world process, the calibration of simulation models
on the real-world process is generally performed.

For example, in milling processes, the parameter values of different models inside simulation
systems have to be calibrated on specific process configurations, e.g., the used workpiece material
or tool geometry of the real-world process. Most often, simulation parameters are the ones
to be calibrated or estimated as the posterior distribution to reproduce real data. Machine
Learning is also useful in this context since the simulation calibration can be treated as a form
of data assimilation. Suppose we use both sensors and simulation to monitor a given target
variable y. The simulation model usually produces y as a function of some input variables x
and simulation parameters θ. To perform the calibration, one of the possible ways would be to
express the simulation model fsim(x; θ) as a combination of a series of kernel mean embedding
methods, where θ are the simulation parameters to be calibrated. When Gaussian noise is
assumed with the function fsim(x; θ), the likelihood is expressed as:

p(y|x, θ) = 1√︂
2πσ2

0

exp
(︁ 1
2σ2

0
∥y − fsim(x; θ)∥2

)︁
, (7.4)

where σ2
0 is a constant of observation noise. More generally, the likelihood can be expressed as:

L(θ) =
n∑︂

i=1
(yi − fsim(xi; θ))2 , (7.5)

171

7. Real-time quality prediction in NC-Milling

where n is the number of observations, and xi is the set of input variables corresponding to
the output yi. When the likelihood function is differentiable, a gradient-based optimization
method can be solved to determine the simulation parameters θ. However, the likelihood
function is most often non-differentiable owing to the simulation model fsim(x; θ). In this case,
the conventional statistical methods of parameter estimation are not applicable to simulation
calibration owing to the properties of the likelihood function: intractable or non-differentiable.
The posterior mean to be obtained is formulated as p(θ|x, y) = p(y|x, θ)π(θ)/Z(x, y), where
π(θ) is the prior distribution and Z(x, y) is a regularization constant. Hence, the simulation
parameters can be estimated as a kernel mean of the posterior distribution by using, for
example, kernel approximated Bayesian computation [330]. After computing the kernel mean
of the posterior distribution, a posterior sample can be obtained using kernel herding [331].

For our case study, data calibration is required since measurement deviations between
both sources are observed. In fact, due to the simplified models in the simulation system
and the negligence of complex engagement behaviors, e.g., frictional effects, which are used
to ensure a reasonable run-time, non-negligible deviations between simulation data and
measurements of the corresponding process characteristics can occur, especially for process
forces or tool vibrations. This deviation can differ for different process parameter values.
Due to measurement noise and uncertainties, the quantification of simulation accuracy is a
challenging task. Nevertheless, using measurements as ground truth, the simulation models
can be calibrated on the used combination of the tool geometry and the workpiece material.
For simulated forces, for example, the parameters θ of the force model fsim(t, θ) (i.e., time
series model) could be determined by applying an optimization procedure to minimize the
squared Euclidean distance between simulated and measured forces with sensors fsen(t) (i.e.,
equivalent to maximizing the likelihood in Equation 7.4).

L(θ) =
n∑︂

i=1
(fsen(ti)− fsim(ti, θ))2 , (7.6)

The data is acquired using the same process parameter values for both the machining process
and the corresponding simulation conduction. In this context, several optimization algorithms
can be applied to solve the minimization task. However, in practice, quasi-Newton approaches
often outperform other methods. Using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [332]
optimization algorithm, for example, an approximation of the Hessian matrix Hk is estimated,
which is updated at each iteration k of the procedure. According to Newton’s method, the
parameter values of the next iteration:

θk+1 = θk + αksk (7.7)

are given by the line search along the descent direction:

sk = −Hk∇L(θk) (7.8)

by estimating αk through:

α̂k = argmin
α

L(θk + αsk). (7.9)

172

7.4 Simulation-Sensor Data Fusion

The update of Hk is performed by adding a rank-two correction:

Hk+1 = Hk + auuT + bvvT , (7.10)

u = δk = θk+1 − θk, v = Hkγk = Hk∇L(θk+1)−∇L(θk) (7.11)

are typically chosen so that the quasi-Newton condition:

Hk+1γk = Hkγk + auuTγk + bvvTγk = δk (7.12)

is satisfied, resulting in:

Hk+1 = Hk + δkδ
T
k

δT
k γk
− Hkγkγ

T
k Hk

γT
k Hkγk

. (7.13)

7.4.3 Unified Data Representation

After checking and solving mismatches between both data sources, the second step consists of
unifying them into one unified representation, preparing thus for feature engineering in the
following step. The data representation is decided based on the use scenario of the simulation
as a data generator. If the simulation is used for generating additional features, these features
are added as new columns to the dataset. It is important to mention that in this case, some of
the features measured by sensors can also be generated by simulations. However, this format
of redundancy will be solved in the feature engineering step by removing redundant features.
If the simulation is used to annotate the data, annotations are just an additional column. If
the simulation is used to generate new data instances, these are just new rows of the dataset.

In our case study, due to the difficulty of taking tool wear mechanisms into account
reasonably for the calculation of process forces using a geometric approach for the representation
of the tool-workpiece-engagement, simulated forces are not accurate for the regarded milling
process and, therefore, not used as additional features for the learning task in this contribution.
We rely exclusively on the measured real forces by the dynamo meters. Nevertheless, simulation
is used to generate additional process features. In fact, utilizing the feed directions, the
determination of the engagement time, and the cutting speed, generated by the simulation
system is analytically accurate. Using the NC path of the milling process and modeling the
tool using the corresponding tool properties, e.g., the tool diameter and the number of cutting
edges, are also necessary. The simulated chip volume is chosen to be qualified as an additional
feature since it contains crucial information about the engagement situation between the tool
and the workpiece, which is not represented by any other simulated or measured feature.
Therefore, after solving possible mismatches between both sources, a unified feature set was
created by joining new features generated by the simulation together with the lagged sensor
measurements of the cutting forces as sensor features. The target is simply the future time
series observations values of both active and passive forces (Equations 7.1 and 7.2).

173

7. Real-time quality prediction in NC-Milling

7.4.4 Automated Feature Engineering

One of the issues in data fusion while reducing data mismatch is underestimating the fused
objects’ co-variance due to the existing correlations inside one data source as well as inter-source
correlations [333]. This leads to redundancies and sub-optimal knowledge extraction. In this
context, feature engineering appears as one of the efficient ways not only to improve the
accuracy and efficiency of a learning model but also to succeed in the fusion task since most
of the preparation techniques of data fusion, such as filtering, redundancies, and correlation
analysis, are the essence of features engineering paradigms [334], [335]. Feature engineering plays
a key role in the success of ML algorithms that are trained to model the underlying relationship
between a set of features and some defined target variable [336]. Feature engineering consists of
the process of transforming raw data into features that provide an enhanced representation of
the underlying problem to the predictive models, resulting in an improved model accuracy on
the unseen data using a variety of operations. These operations include feature transformation,
generation, extraction, selection, and evaluation. The traditional approaches consist of manual
feature engineering to build features once at a time using data analysis and domain knowledge.
Such approaches are tedious, time-consuming, error-prone, and usually not adaptive to data
changes. Hence, some approaches have been conducted for automated feature engineering [337]
and some tools have already been published [338]. Many widely used programming languages
and software for data mining and Machine Learning, support tools, and libraries for automated
feature engineering. For example, RapidMiner [339] enables automated feature engineering using
Automatic Feature Engineering operator based on a multi-objective evolutionary algorithm.
Python supports featuretools, which is an open-source library for feature engineering based on
“Deep Feature Synthesis” [338]. For a principled view of fully automated feature engineering for
time series, see [49]. The user can decide on the adequate approach by evaluating its accuracy
using validation techniques and its stability. The accuracy of an approach is decided based on
feature analysis and evaluation, which is a crucial step for assessing the usefulness of selected
features in relation to the performance of the ML model in question, also giving feedback to
the user about the choice of the feature engineering method. The stability of a feature selection
method refers to the robustness of its features preference, with respect to data sampling and
to its stochastic nature [340]. An algorithm is ‘unstable’ if a small change in data leads to large
changes in the chosen feature subset. Therefore, a desired property in feature selection is to be
‘stable’. Many quantifications of stability, each with different motivations and justifications,
have been proposed in literature [340].

7.4.5 Model Learning

In our use case, we use 5 lagged values for the time series of the forces as sensor features. For
each time step t, lagged sensor values are joined together with the simulation features for the
current time step (i.e., simulation features were pre-calculated and stored, and only sensor
data was streaming). In addition to these features, we have also devised a binary feature based
on the simulation features called ‘activity feature’, which indicated the engagement situation
of the tool (0: no engagement, 1: engagement) and is added to the fused set of features. The
target variables are the values of the forces Fa and Fp at t+ h. As mentioned in Section 7.2,
the Forces are aggregated using an aggregation period of 0.1 ms and predicted each 0.1 ms

174

7.4 Simulation-Sensor Data Fusion

for the next 10 ms. So, in this application, the forecasting horizon h is set to 10 ms, which is
different from the step size between two subsequent observations and the forecasting frequency,
i.e., 0.1 ms. However, using this joined set of features mapped to the target variables in the
format of tabular data, the forecasting task can be approached as a general regression task as
explained in Section 2.4.4.

7.4.6 Automated Fusion Level Selection

7.4.6.1 General Methodology

Once adequate features are extracted and selected. A model is trained on these features to
solve a given learning task. We refer to this in our work as data-based fusion. However, this
is not always sufficient to build a robust model with enriched data. Therefore, we propose
to automatically select between the data-level and the model-level fusion. The model-level
fusion builds an ensemble of individual models trained separately on each data source. Several
approaches for data fusion use different fusion levels without giving any justification [319],
[341], [342]. However, it is known that a good ML model should establish a trade-off between
bias and variance. Such a statement is derived from the error decomposition schema of an ML
model, but it gives a guide on how to automate the decision for the fusion level. In fact, given
a learned model f̂ that approximates an unknown true model f , the expected mean square
error between the target variable y = f(x) and the model’s predictions on an unseen sample x,
can be decomposed into bias, variance, and an irreducible error term :

E
[︂(︁
f(x)− f̂(x)

)︁2]︂ = Bias
[︁
f̂(x)

]︁2 + Var
[︁
f̂(x)

]︁
+ σ2 (7.14)

where Var
[︁
f̂(x)

]︁
= E

[︁
f̂(x)2]︁ − E

[︁
f̂(x)

]︁2
,Bias

[︁
f̂(x)

]︁
= E

[︁
f̂(x)

]︁
− E

[︁
f(x)

]︁
. The expectation

ranges over different choices of the training set {x1, . . . , xn, y1, . . . , yn}, all sampled from the
same joint distribution {P (x, y)} and σ2 is an irreducible error term that will be ignored in
the following. One way to reduce the variance-type error is to use an ensemble technique
based on bagging-based techniques [343] (See Section 2.6.4.1). Such a statement can also be
derived from the ensemble error decomposition. For more details, see Section 2.6.1 where we
showed that for an average-based ensemble model f equally weighted (i.e. f = 1

M

∑︁M
i=1 fi ,

fi, i ∈ [1,M]), the expected error can be decomposed into Bias, V ariance, and Covariance.
The variance in this decomposition is the average variance divided by the number of single

models M . When M is big enough, the variance term will diminish. However, the averaged
bias and co-variance should be taken into account while adding more and more models. In our
setting, we are concerned with a small number of single models (i.e., mainly 2 one built on
sensor data and the other on simulation data). In addition, the decision of the transition from
a single model to an ensemble has to be made. Therefore, it is more straightforward to deal
with the whole term 1

M V ar + (1− 1
M)Covar, as a variance-type error for the ensemble model

and the corresponding bias as the average bias of single models Bias since

Bias
(︁
f
)︁

=
(︁
E
[︁
f
]︁
− f

)︁
=
(︁
E
[︁ M∑︂

i=1

1
M
fi
]︁
− f

)︁
= Bias. (7.15)

175

7. Real-time quality prediction in NC-Milling

While empirically evaluating the decomposition of the expected error term for a given model,
there is no rule or reference for deciding whether the variance term is high or not. It is only
possible to compare variance and bias terms for two candidate models to decide which one
is better. However, a decision for the transition from a data-based fusion to a model-based
fusion should be based on the level of the expected variance-type error together with the
expected bias of the data-based fusion model without the need to explicitly compare it with
the ensemble model (i.e., without the need for computing the ensemble model, considering it
as a single model and checking its variance). Therefore, we propose to compute the normalized
versions of the expected variance type-error of the data-based fusion and the single models
trained separately using each data source and derive a threshold for the co-variance between
the single models that guarantees that the transition to the model-based fusion will reduce the
variance-type error and check the average bias later.

Lemma 17 Given a set of models fi, i ∈ [1,M] each trained on a single data source and
a model ffus trained using a data-based fusion approach. The model-based fusion using an
averaged ensemble with equal weights contributes to reducing the variance-type error compared
to the data-based fusion model if and only if the average co-variance between the single models
is lower than

Covar ≤ M

M − 1
(︁
V ar(ffus)− 1

M

M∑︂
i=1

V ar(fi)
)︁
. (7.16)

where M is the number of single models.

Proof 18 ⇒ Start with Equation 7.16 and rearrange to obtain the variance term in Equation
2.61 lower than V ar(ffus).
⇐ Suppose that 1

M V ar + (1 − 1
M)Covar ≤ V ar(ffus) and rearrange to obtain Equation

7.16.

Corollary 18.1 Let fsim and fsen, two models each trained on simulation and sensors data,
respectively. The model-based fusion using an averaged ensemble with equal weights has a lower
variance-type error than the data-based fusion model ffus if

Covar(fsim, fsen) ≤ τ, (7.17)

where the threshold τ = 2
(︁
V ar(ffus)− V ar(fsim)+V ar(fsen)

2
)︁

Equation 7.16 complies with the decomposition in Equation 2.61, stating that a lower
covariance is always desired to reduce the overall ensemble error. It also confirms that enforcing
a degree of diversity between the ensemble members through low covariance is always favorable
[148]. Furthermore, once the single models are trained and built, the average co-variance term
can be estimated entirely without any knowledge of the true data labels or the real function
f to be approximated. From a practical point of view, this result confirms the usefulness of
using simulation for enriching data with samples that reflect different patterns than the ones
observed with sensor data, either with new features that can not be measured by sensors or
with observations that can not be detected with sensors.

A good ML model should establish a trade-off between bias and variance. The bias of
the ensemble model will be equal to the average bias of the single models in case of equal

176

7.4 Simulation-Sensor Data Fusion

Table 7.2: Comparison between the NRMSE of predicted active and passive forces using different
methods.

Method NRMSE Fa NRMSE Fp

RFSimu 15.29 %± 3.70 % 21.50 %± 11.15 %
RFSen 24.24 %± 5.95 % 33.63 %± 5.38 %
RFdata-level fusion 9.95 %± 2.90 % 13.30 %± 6.30 %

weights. So, it will achieve a lower bias than the single model with the highest bias. If the
covariance between single models is lower than the derived threshold τ in Equation 7.17, the
system then compares their average bias with the bias of the data-based fusion model to check
if the variance-type error reduction with the average bias will establish a better bias-variance
trade-off or not. if it is not, the system sticks to the data-level fusion. For instance, in the case
where the covariance is lower than the threshold, a reduction in the variance type error is
expected. However, we may have an averaged bias that is significantly higher than the bias
of the data-level fusion model. In this case, we earn in terms of reducing the variance-type
error, but the bias is altered by the ensemble, and the bias-variance trade-off doesn’t hold
anymore. This is possible, especially in the case of small-size ensembles (i.e., small number of
single models, like our setting M = 2) where the weakness of one model can not be totally
covered by the other ones.

7.4.6.2 Application to Simulation-Sensor Data Fusion in NC-Milling

In the following, we showcase how the automated fusion level selection is performed in our use
case. To do so, in order to forecast the future values of the forces, namely Fa and Fp, over
time, we select as an example the Random Forest (RF) [31] as a forecaster since it presented a
relatively good performance compared to other forecasting models. However, a similar analysis
can be conducted for any forecasting model. We used the p = 5-lagged values for each force as
input to the forecasting model in addition to the features generated by the simulation and
devised ‘activity feature’ as exogenous variables (see Section 7.4.5). Since we have 10 different
realizations of the milling process given by 10 different input parameters configurations, i.e.,
10 different time series, in order to model the effect also of the input parameters on the future
values of the forces so that the model learns to predict the forces even with unseen new input
parameters, we use a 10-fold cross-validation procedure where 9 scenarios (i.e., time series)
are kept for training and 1 scenario for testing for each fold. The prediction error is evaluated
using the Normalized Mean Squared Error (NRMSE):

NRMSE = RMSE

|MaxX −minX |
(7.18)

where MaxX and minX are the maximum and minimum values, respectively, of the predicted
time series X, i.e., in this case, Fa and Fp. The results, which can be seen in Table 7.2 show
that the data-level fusion model outperformed single models trained separately on each data
source. The data-level means, in our case, one single model, i.e., RF, is trained on the fused set
of features from the simulation and the sensors. The error rates are reduced by 35% and 39%
for Fa and Fp compared to the single source model with the lowest error rate for each case.

177

7. Real-time quality prediction in NC-Milling

Table 7.3: Comparison between the NRMSE of predicted active and passive forces using data-level
and model-level fusions.

Method NRMSE Fa NRMSE Fp

RF Feature-based fusion 9.95 %± 2.90 % 13.30 %± 6.30 %
RF Model-based fusion 16.25 %± 4.27 % 19.69 %± 5.37 %

Table 7.4: Comparison between different measures for the level fusion selection.

Measure Fa Fp

Covar (RFSimulation, RFSensors) 21.18 4750.80
Threshold τ 109.92 -13092.95
Average bias (RFSimulation, RFSensors) 782.50 13714.16
Bias (RF data-level fusion) 121.21 3204.13
Var (RF data-level fusion) 330.40 8614.31
Var (RFModel-level fusion) 140.86 13367.52

The fusion level is set up automatically to the data-level fusion after empirically checking
the threshold τ derived in Equation 7.17 for the covariance and the average bias of the single
models trained separately on each data source. To show the validity of our decision and
theoretical insights, we have conducted experiments using an ensemble of both single models
only for comparison reasons. These results can be seen in Table 7.3 and show that the data-level
fusion model outperformed the model-level fusion using an averaged ensemble, confirming the
validity of our automated decision about selecting the fusion level.

Furthermore, examples of empirical evaluations of the covariance, the threshold τ derived
in Equation 7.17, the average bias of single models, and the empirical bias of the data-level
fusion model for the predictions of Fa and Fp are shown in Table 7.4 to describe how the fusion
level decision is made in detail. In addition, the model variances of the model-level fusion
(i.e., ensemble) and the data-level fusion are reported to show the validity of our theoretical
insights, which indicated that the ensemble computation is not necessary and the decision
can be made based on the covariance and average bias of single models. For Fa, the value
of the covariance between single models is lower than the threshold, which guarantees that
computing the ensemble model will reduce the variance type error, and this is confirmed by
the reported variance values in Table 7.4. However, validating the covariance threshold is
not sufficient. The average bias of single models should also be compared to the bias of the
data-level fusion model. Comparing these values, it is clear that the model-level fusion will
contribute to reducing the variance type error but will also alter the bias by increasing it
by more than a factor of six. For Fp, the value of the covariance between single models was
higher than the threshold, which indicated that computing the ensemble model will not help
to reduce the variance-type error, and this is confirmed by the reported variance values in
Table 7.4. In addition, the bias of the data-level fusion is lower than the reported average bias.
This observation confirmed that the model-level fusion would not improve the variance or the
bias.

7.5 Online Cutting Forces Prediction

In this stage, we construct a pool P of forecasting models composed of RF [31], MLP [268],
GBM [263], GP [281], SVR [264], PPR [265], LSTM [118] and CNN-LSTM [115]. For a detailed

178

7.5 Online Cutting Forces Prediction

Table 7.5: Comparison between the NRMSE of predicted active and passive forces using different
forecasting methods.

Method NRMSE Fa NRMSE Fp

GBM 11.97 %± 3.92 % 15.42 %± 7.82 %
RF 9.95 %± 2.90 % 13.30 %± 6.30 %
Ens 9.37 %± 3.92 % 13.01 %± 5.21 %
SW-Ens 8.37 %± 5.28 % 12.19 %± 7.92 %
KNN-RoC(5) 8.25 %± 4.78 % 12.05 %± 6.32 %
DEMSRC 8.07 %± 5.28 % 11.95 %± 5.56 %
OEA-DRL 7.83 %± 4.38 % 11.34 %± 5.86 %
OMS-ROC-Single 8.11 %± 3.89 % 12.01 %± 7.81 %
OMS-ROC-Ens 7.27 %± 2.97 % 10.98 %± 7.62 %

description of the models, see Section 4.3.5.1. A pool P of size 34 is obtained using different
parameter settings for each model. We found that the adequate fusion level for each of the
models in P is the data-level fusion like the case for the RF model shown in Section 7.4.6.2.
Therefore, all the models in P are trained similarly to the way explained above for the RF
model, i.e., using the set of fused features.

Next, we apply some of the online forecasting methods for single model selection as well as
for ensemble learning that we presented in the previous Chapters, namely DEMSRC,OMS-
ROC-Single, OMS-ROC-Ens, and OEA-DRL. Some State-of-the-Art SoA methods such as Ens,
RF, GBM, SW-Ens, and KNN-RoC(5) are also used for comparison. Note also that further
details about these methods can be found in the previous Chapters, and SoA methods are
described in Section 4.3.5.1.

Table 7.5 shows a comparison between the NRMSE of predicted active and passive forces
using these methods. The results of Table 7.5 demonstrate that our developed methods for
online adaptive time series forecasting clearly outperform the SoA methods in this use case.
This can be explained by the dynamic nature of the NC-milling process cutting forces that
show a clear non-stationary behavior (See Figure 7.3) and change their patterns drastically
when different tool engagement situations are present (i.e., especially in the change between
engagement and no-engagement situations). Hence, this dynamic nature of the time series
of Fa and Fp requires the use of online adaptive methods and justifies the success of our
methods. It can also be seen that DEMSRC, OEA-DRL and OMS-ROC-Ens have relatively
better performance than OMS-ROC-Single. In this case, the use of a heterogeneous ensemble
schema seems to be beneficial. This can be explained by the fact that using a pool of different
families of forecasting models in DEMSRC, OEA-DRL and OMS-ROC-Ens empowers the
diversity aspect of the ensemble implicitly and contributes thus to a better performance by
combining the predictions of well-selected experts efficiently by our methods. Hence, DEMSRC,
OEA-DRL and OMS-ROC-Ens perform ensemble pruning and/or aggregation over a pool of
34 models. Finally, performing this online prediction task as accurately as possible is crucial
for this application, where cutting forces predicted values are to be used in a sub-module for
a recommendation system that will produce smart live recommendations for automatically
adjusting the process parameter values to ensure good quality and stable milling process.

179

7. Real-time quality prediction in NC-Milling

7.6 Concluding Remarks

In this chapter, a novel approach for real-time cutting forces prediction in NC-milling, which
incorporates ML methods, is presented. To achieve improved prediction accuracy, a data
fusion approach utilizing pre-calculated simulation features and measured data, which can
be acquired by sensors in real-time, is developed. The simulation data is generated using a
geometric physically-based simulation system, providing non-measurable process characteristics,
which add additional knowledge and information for the analysis of the engagement situations
between the tool and the workpiece while training the model. The fusion framework decides
automatically for the adequate fusion level, namely data-level and model-level. In the presented
use case, the data-level fusion is more efficient, and by fusing features from both simulation
and measurements, improved accuracy can be achieved compared to incorporating only one
data source. Using the developed methodology, cutting active and passive forces can be
predicted in real-time with a reasonable forecast horizon in order to achieve the possibility of
adapting or stopping the process even before unwanted events would occur. Some of the online
adaptive forecasting methods presented in this thesis are applied successfully to this use case,
highlighting thus the usefulness of online adaptive approaches in a complex non-stationary
environment.

Further research will be conducted in the context of transferring these approaches to more
complex engagement situations. In addition, the interaction between tool wear, process stability
, and the online adaptation of process parameter values will be investigated in succeeding
research activities.

180

8
Explainable Quality Prediction in

Industrial Applications

In the context of applied ML to quality prediction, we investigate two additional use cases
from Industry 4.0. Previously, we have developed approaches that provide explainability for
ML model selection and performance. In this chapter, we dive further into ML models’ output
explainability for quality prediction-related tasks. Note the presented use cases do not involve
a forecasting task, but one of them consists of a time series classification task. In addition,
we investigate both of them to dive further into the use of the Grad-CAM method [203] (i.e.,
the method from which we got inspired to develop the Performance Gradient-based Saliency
Maps-PGSMs) for tabular and time series data to serve explainability purposes.

8.1 Introduction

Nowadays, in the context of Industry 4.0, the linkage of production environments through
Information and Communication Technologies (ICT) to cyber-physical systems with the goal
of monitoring, controlling, and optimizing complex manufacturing systems, enables real-time
capable approaches for process data acquisition, analysis, and knowledge discovery [8], [224].
This is achieved in practice by collecting and analyzing sensor data. As a result, data-driven
approaches for predicting process quality in real-time and deriving adequate process control
interventions in a timely manner can be developed [8], [45], [225], [229], [344]. In some cases,
sensors are able to generate mass quantities of sensor data as responses to some types of inputs
from the physical production environment. Most often, each of these data points is captured
at specific time stamps, effectively transforming sensor data into time series data that can be
analyzed across this additional dimension [8], [18].

Machine Learning algorithms trained on sensor data are able to ensure model-based quality
prediction [224]. To do so, the description of the product or process quality and all the related
information should be done in the first step, especially in highly complex dynamic production
systems with non-linear interactions between their steps. The second step consists of building

181

8. Explainable Quality Prediction in Industrial Applications

and training a predictive model that maps the available quality-related information, e.g.,
operating states, sensor data, and process input parameters, to the resulting process/product
quality [18]. This model can be used afterward for predicting the expected quality given a set
of input values.

More recently, DNNs have been successfully applied in the context of process quality
prediction with high accuracy [229], [345], [346]. Their success is mainly due to their ability
to learn new complex enriched feature representations in an automated manner from the
input data [109]. Thus, they achieve a good performance in solving a wide variety of complex
tasks such as quality prediction where the expected process/product quality is affected by
multi-interacting features in complex manufacturing settings [8], [45], [224]. as we mentioned
in previous chapters, DNNs are known to be complex black-box models that mostly give better
accuracy in their predictions, at the cost of a low explainability [40]. However, likewise, high
prediction accuracy, both interpretability, and explainability can be of the same importance
and sometimes even more substantial for quality prediction-related applications [347]. Hence,
understanding the model’s predictions, i.e., “Why” a certain quality label is predicted, and
the model’s dynamics, i.e., which model’s parameters are taken into account or if the model
contains any bias, can be of great help for subsequent decision-making by process experts on
process optimization, such as adjusting process parameters, or early stopping of the process if
desired quality standards will not be reached, etc.

In this Chapter, we study the task of model-based quality prediction using DNNs for two
industrial use cases, and we use explainability tools to provide an understanding of the process
features that led to expected process quality. We also show how explainability results can be
exploited by domain experts.

First, early quality prediction of a bolting process in a real-world automotive industry use
case is performed using 1D-CNN. The quality of a bolt is described by eight discrete labels
indicating whether it is “defective” or “non-defective”. In the case of “defective”, seven types of
defects can be identified. The quality label is described by a time series feature. The learning
task can formally be described as a multi-class Time Series Classification (TSC). We devised
a training mechanism such that a 1D-CNN is trained on the training set composed of the
full-length time series features. Then, a heat-mapping gradient-based explanation method,
namely Grad-CAM is used to highlight the most important discriminative patterns on input
time series on a validation set. These maps are used not only for providing explanations but
also to determine where the discriminative patterns can be localized so that a reliable early
quality prediction can be achieved by means of sampling, i.e., deriving a shorter length of the
time series window to be used for early prediction of the quality. The 1D-CNN is retrained
using the input time series with the newly derived length. We demonstrate how this training
mechanism can be used to achieve better prediction accuracy using carefully selected time
series subsequences on the described use case.

Second, Surface Mount Technology (SMT) in electronics manufacturing use case is presented.
More specifically, we employ a 1D-CNN for quality prediction of well-defined Fields Of View
(FOVs) of Printed Circuit Boards (PCBs). Explanations for the model’s predictions are provided
under various perspectives using a Grad-CAM to highlight the contribution of both local and
global PCBs’ characterizing features to the quality predictions. This helps to reveal the most

182

8.2 Related Works

decisive features for a given quality assignment and understand which process parts are the
most responsible for such a decision. Finally, the deployment of the model-based predictive
analytics and parts of the prescriptive analytics supported by the provided explanations is
achieved using Edge Cloud Computing technology.

8.2 Related Works

Several industrial applications utilize already existing ML methods and algorithms to solve
actual problems in manufacturing from an engineering point of view [224]. These applications
cover a wide range of industrial fields, including electronics [224], metal [8], [45], [225], and
process industries [229], [344]. Likewise, the adopted ML solutions are not limited to a specific
family of models but include, amongst others, Artificial Neural Networks (ANNs) [229], Support
Vector Machines (SVMs) [8], and Decision Trees (DTs) [45]. Most of the aforementioned works
focused on quality prediction at the end of the production chain with the goal of reducing the
costs of quality inspection by humans or special machines [8], [45], [224]. However, only a few
studies have achieved and investigated the impact of early quality prediction in the very early
stages of multi-staged processes or within the execution of the process [225], [229].

8.3 Explainable Early Quality Prediction in Automotive Man-
ufacturing

In manufacturing systems that are organized according to the flow principle, quality deviations
that are only detected at the end of the production chain may potentially result in high
amounts of rejected products that require laborious and costly rework or need to be scrapped
[224]. To prevent such events, early quality prediction has to be achieved. Hence, corrective
actions are expected to have the largest impact if they are executed as early as possible in
the process, avoiding thus costly rework and waste of resources through further processing of
defective components [8], [45], [225]. A key requirement for early quality prediction is the full
coverage of the product quality in the early stages of the manufacturing process or within the
execution of some stages.

8.3.1 Use Case Description

Bolted connections are commonly used mechanical connections in industrial products. The
non-linear tightening process of the bolts is generally distributed into four different zones that
can be visualized using the torque diagram, which is a commonly used monitoring tool for
the quality of bolted connections in the industry. The four zones are the rundown, alignment,
elastic clamping, and post-yield zone. Figure 8.1 shows an example of these zones. Note that
the torque is shown as a function of the angle of the turn. However, the angle itself is a function
of time, and a nearly similar curve of the torque can be observed in the course of time.

By strengthening and plastic deformation of the bolts, a clamping force is generated between
the connected parts. However, under realistic process conditions, many different complex factors
influence the quality of the part connections: e.g., connected parts might move during the
screwing, the equipment condition might be deficient, or the quality of the bolts might differ,

183

8. Explainable Quality Prediction in Industrial Applications

Figure 8.1: The Four zones of a bolt tightening process [348].

leading to quality problems in the final product. When the occurrence and the causes of the
fault in the bolt connection are detected at an early stage in the process, countermeasures
can be taken so that potential quality problems can ideally be avoided. However, monitoring
methods are mainly based on the comparison of the torque with a preset standard value,
ignoring the analysis of the torque diagram. As a result, various errors remain hidden. For this
reason, the use of more sophisticated methods, such as data mining is desirable to achieve an
improvement in quality analysis within bolting processes. A historical data set covering 233138
industrial bolting cases represented by time series torque sequences from the same workplace
and product type is used for this case study. The data set consists of eight different classes,
with one class representing the "non-defective" cases while the remaining depict seven different
types of defects. Only 358 cases are labeled as "defective" which induces a highly imbalanced
multi-class classification problem. The sensory data is described by a univariate time series
feature of the normalized torque that is measured during the execution of the bolting process.

8.3.2 Modeling

8.3.2.1 Preliminaries

Let the input data denoted as a multi-set D = (X,Y) = {(X(i)
1:t , y

(i))}1≤i≤n which consists of
|D| = n input data points X(i)

1:t and their corresponding label y(i). Each input data point X(i)
1:t

consists of a univariate time series X(i) recorded till time t. The time series subsequence of
X(i) starting from time instant t and can be denoted as X(i)

t:l = {x(i)
t , x

(i)
t+1, · · · , x

(i)
t+l−1} , where

l is the length of the subsequence.
The goal of predictive ML models is to approximate some true function f∗ : X → Y , where

X denotes the input data space and Y is the target variable to be predicted space. In our case,
the predictive ML model is built to predict a discrete quality label given an input univariate
time series. Therefore, X = Rd is the input time series feature space, where the dimension d

can be equal to t if the whole recorded time series is used for training the predictive model
or l if only time series subsequences of length l are alternatively used. Y = {c1, c2, · · · , cj} is
the target variable that can take j possible values mutually exclusive. The learning task can

184

8.3 Explainable Early Quality Prediction in Automotive Manufacturing

be formalized as a multi-class TSC. The prediction of Y is carried out by the application of
a model fθ : X → Y. Usually, a fixed structure of fθ is chosen that is parametrized by some
vector θ ∈ Rp. Learning from data X ∈ X consists then of basically fitting θ to X, so that
fθ ≈ f∗. Convolutional Neural Networks (CNNs) are a special class of these predictive models
(More details about CNNs are provided in Section 2.4.5.6).

8.3.2.2 1D-CNN Architecture

The architecture of the CNN used in this work is inspired by [349]. The basic block is composed
of a convolutional layer followed by a batch normalization layer and a ReLU activation layer.
The the convolution operation is fulfilled by 1-D kernels. The blocks are repeated four times,
varying at each time the number of applied filters and their corresponding length. The basic
convolution block excludes any pooling operation to prevent overfitting. Batch normalization
is applied to speed up the convergence. After the convolution blocks, the features are fed
into a Global Average Pooling (GAP) layer. However, opposingly to [345], instead of directly
connecting the GAP layer to the final softmax layer, we feed its output to three dense layers.
Even though this strategy would lead to increasing the number of weights, it results in better
generalization [120]. The final discriminative layer L takes the new representation of the input
time series, i.e., resulting from the applied convolutions, and gives a probability distribution
over the class variables in the data set using a softmax operation:

ŷk(X) = ef (L−1)∗wk+bk∑︁j
z=1 e

f (L−1)∗wz+bz
(8.1)

with yk̂ denoting the probability of X having the class y equal to class ck out of the j
classes and wk the set of weights (and the corresponding bias bk) for each class ck connected
to each previous activation in layer L− 1.

8.3.2.3 Grad-CAM for Extracting Explanations

Heat maps are one of the tools for providing visual explanations for CNNs, applied widely in
computer vision-related applications [203], [208], [300]. Grad-CAM is one of the most popular
methods for producing heat maps [120], [208].

Grad-CAM is applied to an already-trained neural network after training is completed
and the parameters are fixed. We feed the time series input into the network to calculate
the Grad-CAM heat map for that input belonging to a given class of interest. The output of
Grad-CAM is a "class-discriminative localization map", i.e., a heat map where the hot part
corresponds to a part in the input that is of the most importance for assigning a particular
class to this input by the classifier. For example, in the case of images, this part corresponds
to the most important regions in the image for classifying an object within the image. In our
case, it highlights the input time series subsequence that is of high relevance for deciding
the class of the whole time series. The length and the beginning of the subsequence are then
automatically decided by the Grad-CAM.

In order to obtain this map for any class ck, ∀k ∈ [1, j], the gradient of yck before applying
the softmax (i.e., the score of the class ck) with respect to feature maps Am, ∀m ∈ [1, fmaps] of
the last convolutional layer, is computed. These gradients flowing back are global average-pooled

185

8. Explainable Quality Prediction in Industrial Applications

to obtain the neuron importance weights:

αck
m = 1

Z

∑︂
u

∂yck

∂Au
m

(8.2)

where Z is the total number of units u in Am. Note that in the 2D case, the activation unit u
has 2−D coordinates {i, j}. In our case, it has only a 1−D dimension corresponding to the time
dimension. This weight αck

m represents a partial linearization of the deep network downstream
from Am, and depicts the importance of this feature map for the class ck. Afterward, a weighted
combination of forward activation maps is computed:

Lck
Grad−CAM = ReLU(

fmaps∑︂
m=1

αck
mAm) (8.3)

The ReLU is applied to remove the negative contributions since we are mainly interested in the
input part that has a positive influence on the class of interest ck, i.e., in the case of images,
pixels whose intensity should be increased in order to increase the distinguishability of ck.
Without this ReLU, localization maps sometimes highlight more than just the desired class
and achieve lower localization performance [208]. Lck

Grad−CAM is used to find the subsequences
in the input time series that has mainly contributed to the decision of the network for the
class ck.

The Grad-CAM computation can result in highlighted sparse time series data points. In
order to highlight subsequences so that clear patterns can be observed and distinguished, we
apply a smoothing procedure. Hence, for an input time series X belonging to the class ck, i.e.,
y = yck , we normalize the Lck

Grad−CAM values between 0 and 1 and we apply a moving average
smoothing procedure of window size 3. It should be noted that many subsequences can be
highlighted in one single time series. This can be explained by the fact that different regions
in the time series are of similar importance to the classifier, as it can be the case that the
classifier needs the joint contribution of these subsequences to make its decision.

8.3.2.4 Important Time Series Subsequences Identification

The produced heat maps by the Grad-CAM can be used to identify the length and the temporal
location of the most discriminative subsequences within the input time series. This would also
help to check whether a reliable decision on performing early quality prediction can be made
or not. In other words, these maps can be used to decide if the early subsequences in the input
time series are, on average, the most important subsequences for correctly assigning the time
series to its true class. To do so, we split D into two sets, Dtrain and Dval. Dtrain is used to
train the 1D-CNN. Dval where the class labels for each time series are assumed to be known,
is used for producing the heat maps. Note that by means of random data shuffling, the data
split and the 1D-CNN training are repeated until we ensure the condition C1.

Condition 7 (Condition C1) The condition C1 corresponds to the two following points:

• All the classes ck, ∀k ∈ [1, j] are represented in Dval.

• At least one time series sample from each class is correctly classified by the 1D-CNN.

186

8.3 Explainable Early Quality Prediction in Automotive Manufacturing

Then, we select time series samples from Dval that are correctly classified by the 1D-CNN, i.e.,
time series samples X(s) ∈ XDval

that fulfill the condition C2.

Condition 8 (Condition C2) Construct with X(s) containing all the series X(i) ∈ XDval

fulfilling:
ŷ

(i)
X(i) = y(i) (8.4)

For each selected time series X(s) ∈ X(s) with y(s) = ck, we compute Lck
Grad−CAM to

highlight the most important subsequence X(s)
ti:l of length l starting at time ti, for assigning the

correct class membership to X(s). Then, we compute the average length la of all the computed
subsequences starting from ti = t0, where t0 is the initial instant of the process time series
generation. That means we determine the furthest time point in each time series X(s) ∈ X(s)

at which the last highlighted subsequence ends. These points are denoted by t
(s)
end. Then, la

gets the average value of these points.

la = 1
|X(s)|

∑︂
X(s)∈X(s)

t
(s)
end (8.5)

Finally, we compare la to the average length lm of the original full-length input time series
in XD:

lm = 1
n

∑︂
X∈XD

length(X) (8.6)

We verify afterward if the condition C3 is fulfilled.

Condition 9 (Condition C3) The condition C3 is given by:

la < lm and lm − la ≥ τ (8.7)

where τ is the admissible time duration required to perform process optimization, e.g., corrective
measures and process parameters adjustment. τ is a user-defined hyperparameter as it is
application-dependent, and interaction with domain experts is required to set up its value.
If the condition C3 is fulfilled, it is possible then to reliably perform early quality prediction
before the termination of the process. The 1D-CNN is then retrained on the input time series
subsequences of Dtrain of length la. This operation can be viewed as an input feature selection
where only la input time series points are fed to the 1D-CNN. The above steps are summarized
in Algorithm 6.

8.3.3 Quality Prediction Results

8.3.3.1 Experimental Setup

The available data set is split into 75% for training and 25% for testing. The 75% are split
into 75% for Dtrain and 25% for Dval. A 10-fold cross-validation procedure is employed for
the evaluation of our method. The reported results are the averaged metrics values over all
the folds. Since the data set reveals high imbalance ratios towards some classes, both random
over-sampling and under-sampling are employed to mitigate this issue [350]. More precisely,
we under-sampled the "non-defective" class and over-sampled the seven different defect classes.
In addition, the time series data have different lengths. Zero-padding is employed to bring the

187

8. Explainable Quality Prediction in Industrial Applications

Algorithm 6: Important Time Series Subsequences Identification: ITSSI
Data: Data set: D; Admissible time duration for process adaption: τ .

1 Repeat D split into Dtrain and Dval and the 1D-CNN training until C1 is fulfilled. ;
2 Select time series samples from Dval that fulfill C2 and put them in X(s).;
3 for X(s) ∈ X(s) do
4 We compute Ly(X(s))

Grad−CAM to highlight X(s)
ti:l.;

5 Set up all the ti to t0.;
6 Calculate the lengths of the subsequences starting from t0 including the computed

X
(s)
ti:l.;

7 end
8 Compute the average length la (Equation 8.5).;
9 Verify the validity of C3: la < lm and lm − la ≤ τ ;

10 if C3 is fulfilled then
11 The 1D-CNN is retrained on the input time series subsequences of Dtrain of length

la.
12 end

input time series to the same length. For the 1D-CNN, all convolutions have a stride equal
to 1 with zero padding to preserve the exact length of the time series after the convolution.
The first convolution contains 128 filters with a filter length equal to 10, followed by a second
convolution of 128 filters with a filter length equal to 8, then a third convolution of 256 filters
with a filter length equal to 5, which in its turn fed to a fourth and final convolutional layer
composed of 128 filters, each one with a length equal to 3. The three dense layers are composed
of 500, 300, and 100 neurons, respectively, each one using the ReLU activation function. The
number of neurons in the final softmax classifier is equal to 8, i.e., the number of classes in the
data. The model’s weights are learned using a variant of Stochastic Gradient Descent (SGD),
namely, Adam [351]. The number of training epochs is set to 2000.

8.3.3.2 Evaluation Metrics

To evaluate the achieved results, the confusion matrix 8.1 is utilized. This matrix represents
all prediction results of a given model for multi-class as follows: The Recall metric calculates

Table 8.1: Confusion Matrix

Predicted Value

Actual Value

Class A Class B Class C
Class A Aa Ab Ac
Class B Ba Bb Bc
Class C Ca Cb Cc

the proportion of actual positives that are correctly identified. For example, for class A:

Recall(A) = TruePredictedA

TotalTrueA
= Aa

Aa+Ab+Ac
(8.8)

The Precision describes what proportion of positive identifications are actually correct:

Precision(A) = TruePredictedA

TotalPredictedAsA
= Aa

Aa+Ba+ Ca
(8.9)

188

8.3 Explainable Early Quality Prediction in Automotive Manufacturing

The F1-score represents the trade-off between Precision and Recall. They are calculated as
follows for class A:

F1− score = 2× Precision ∗Recall
Precision+Recall

(8.10)

These metrics are calculated per class. There are two ways to compute their average: Macro
Average (M.Avg), which is a simple arithmetic mean of the metrics per class, and Weighted
Average (W.Avg), which is a weighted mean based on the number of samples per class. For
example:

M.AvgRecall =
∑︁
RecallPerClass

TotalNumberOfClasses
(8.11)

= Recall(A) +Recall(B) +Recall(C)
3

W.AvgRecall =
∑︁

(RecallPerClass ∗NumberOfSamplesPerClass)
TotalNumberOfSamples

(8.12)

The Micro Average (Mi.Avg) is a metric that is used for the whole model. For example:

Mi.AvgRecall =
∑︁
TruePredictedPerClass∑︁
TotalTruePerClass

(8.13)

Following the same idea, the macro, weighted, and micro averages definitions can be extended
to Precision and F1-Score. However, in the case of micro average, it should be noted that
based on its definition, the following equation is valid:

Accuracy = Mi.AvgRecall = Mi.AvgPrecision = Mi.AvgF1-Score (8.14)

= TotalTruePrediction

TotalNumberOfSamples

8.3.3.3 Results

Table 8.2 encloses descriptive statistics of the results on the prediction performance of the
1D-CNNs trained on the full-length time series data and on the identified subsequences by
Algorithm 6, denoted CNNfull and CNNIT SSI , respectively. The length of the input time
series for the CNNfull is 727 time steps. However, the average length la derived following the
procedure explained in Algorithm 6 is 250 time steps. So, CNNIT SSI is trained on the input
subsequences of length la.

Following Table 8.2, it can be seen that feeding the most important, i.e., discriminative time
series patterns to the 1D-CNN improves its predictive performance. Since the data is highly
imbalanced, the micro and the weighted average measures are biased towards the majority
classes that are more accurately predicted by the classifier and much more represented in the
data set. A better overview of the performance on minority classes can be seen using the macro
measures that reflect the averaged measures independently from their representation in the
data. A clear improvement in the Precision is achieved by the CNNIT SSI while preserving a
similar Recall. This results in an increase of 8% in the F1-score compared to the CNNfull. With
respect to the CNNIT SSI , the prediction accuracy is improved using shorter time series inputs
(i.e., lower dimensionality). The dimension is reduced up to the third from 727 time points to

189

8. Explainable Quality Prediction in Industrial Applications

250. Therefore, our method can also be viewed as input feature selection (i.e., specific time
series data points selection), which also helps in reducing the general resource consumption
required for model training.

Relying only on the first 250 time steps to make a decision within the execution of the
process enables to do corrective actions, thus avoiding costly rework and waste of resources
through further processing of defective components, and also anticipating the type of defect
helps to estimate the reworking time to correct it which varies from 5 seconds to 5 hours.
From a practice point of view, if C3 is fulfilled with lm = 500 and la = 250 which means some
reactivity time τ is left, the process can be stopped to execute these actions so that expected
quality deviations can be corrected.

Table 8.2: Average Performance Comparison of CNNIT SSI vs. CNNfull

Metric Precision Recall F1-score
CNNfull CNNIT SSI CNNfull CNNIT SSI CNNfull CNNIT SSI

M.Avg 58% 66% 77% 77% 63% 68%
W.Avg 99% 98% 94% 97% 96% 97%
Mi.Avg − − − − 94% 97%

8.3.4 Explainable Quality Prediction

Figures 8.2 and 8.3 show the localization of some examples of the identified subsequences for
different classes and the differences between them.

Figure 8.2: Examples of heat-maps produced by the Grad-CAM for two examples of input
time series for the "non-defective" class. The x-axis is the time, while the y-axis is the recorded
torque value as the time series value. The red color is used for highlighting the most important
subsequences and the blue for less important parts.

In Figures 8.2 and 8.3, the most important subsequences are highlighted in red, while
the least important are present in dark blue. It can be seen that the "non-defective" class
presents some regularity in the patterns (Figures 8.2). The most important subsequences are
almost localized at the beginning of the process. Clear different patterns can be distinguished
in the highlighted subsequences for the "defective" classes compared to the "non-defective"
class patterns. They are also different from each other, confirming thus that they represent
two different types of defects. Their localization, on average also confirms the validity of the

190

8.4 Explainable Quality Prediction in Electronics Manufacturing

Figure 8.3: Examples of heat-maps produced by the Grad-CAM for two examples belonging to
two different "defect" classes. The x-axis is the time, while the y-axis is the recorded torque value
as the time series value. The red color is used for highlighting the most important subsequences
and the blue for less important parts.

derived length la = 250 by the ITSSI Algorithm 6 since almost all of them are located before
time t = 250.

These patterns can be shown to domain experts so that they can determine which part
of the torque is affected the most. For example, in the left torque curve in Figure 8.3, it can
be seen that the defect is located in the alignment zone, while in the right torque curve, it is
located in the elastic clamping zone. Such localization visualization validates the robustness
of the 1D-CNN as it builds its decision on clear anomalous subsequences when comparing
Figure 8.3 to Figure 8.2. In addition, different torque zone identification helps in determining
necessary corrective measures and corresponding resources in an adequate manner.

The most important subsequence localization can be further optimized by also tuning ti
instead of setting it to t0 and by ensuring equal length sequences to be fed to the 1D-CNN
using zero padding.

8.4 Explainable Quality Prediction in Electronics Manufactur-
ing

Due to a combination of different effects such as increasing competitive pressure, globalization,
and supply shortages resulting from external factors (i.e., lockdown in different countries along
the supply chain, chip shortages, etc.), the production of zero-defect products is becoming an
important competitive factor for modern and successful electronic manufacturing companies.
In SMT manufacturing, expensive high-end inspection systems (such as X-ray machines) are
usually used to inspect the quality of high-volume products at the End-Of-Line (EOL) to
ensure the delivery of zero-defect products [224]. These optical inspection systems provide
quality assessments that subsequently lead to conclusions about corrective actions to correct or
enhance the quality of the product [224]. While these measurements are necessary to prevent
the delivery of defective products, quality testing is often prone to become a bottleneck of the
production line because of the highly time-consuming inspection process [224], [352], [353].

191

8. Explainable Quality Prediction in Industrial Applications

Recently, through the use of low-cost sensors and storage devices in SMT manufacturing,
extensive amounts of data have been collected and stored by manufacturers [224], offering
enormous potential not only for real-time process monitoring but also for gaining valuable
insights and knowledge about processes [8]. Consequently, model-based quality prediction
is employed to replace the offline time-consuming traditional testing procedures in SMT
manufacturing. The prediction of the final product quality in conjunction with sample-based
physical testing is then used to derive corrective measurements for quality control [224]. Thus,
a paradigm shift from descriptive (monitoring and summarising process data) to predictive
analytics (using ML models to predict possible future quality indicators) has been observed
[8], [45], [225]. The application of model-based quality prediction combined with an interlinked
production environment leads to real-time capable approaches to resolve quality deviations
through corrective measurements early in the process and to improve the overall product
quality. Quality prediction in the electronics manufacturing industry is a widely discussed
topic in the literature (e.g., [354]–[356]), reflecting the wide diffusion of ML applications in
electronics manufacturing.

In this context, we employ a 1D-CNN for quality prediction in SMT manufacturing. We
compare the obtained results with conventional methods such as MLP [264], GBM [263] and
RF [31]. For explainability, in order to investigate the process from different perspectives,
we use the 1D-CNN given the flexibility that it offers with regard to data reshaping so that
a distinction between global and local features and their corresponding importance can be
easily made. The task is to map process features of previous processing steps to binary quality
labels of the EOL-testing, differentiating between the Ok- and Not-Ok (NOk) pieces and can
therefore be described as a binary classification. We use a heat map gradient-based visualization
technique, again Grad-CAM, to make the output of the 1D-CNN explainable to the user. As a
further step, an edge cloud computing architecture is described for the model deployment to
give the reader a guideline on how explainability methods can be applied in Industry 4.0 for
process optimization and recommendation systems building.

8.4.1 Use Case Description

The case study is conducted on an SMT production line where an X-ray inspection system is
used for quality control at the End Of the production Line, i.e., EOL quality testing. Since
the X-ray inspection induces high resource consumption, quality control is to be made faster
by the application of ML model-based quality prediction. This use case has been part of other
publications that serve as a reference for our experiments [224]. The SMT assembly process
is a process chain consisting of the following consecutive steps: First, a raw Printed Circuit
Board (PCB) is inserted into a printer via a conveyor belt, then the solder paste is printed
onto the PCB. Following this, Solder Paste Inspection (SPI) is applied in a visual inspection
station to assess the quality of the solder paste position. Afterward, individual components are
automatically placed on the board and are then transported by conveyor belts to the re-flow
soldering process, where the applied solder paste is melted in various heat zones to connect
the components with the PCB. After the soldering process, the components of the PCBs
are examined by an Automatic Optical Inspection (AOI). Depending on the product type,
subsequent additional X-ray inspection is carried out. The AOI captures surface properties.

192

8.4 Explainable Quality Prediction in Electronics Manufacturing

Figure 8.4: Field of Views (FOVs) of the selected panel variant in X2.

Opposingly, the X-ray inspection, which is used to detect pins located beneath the surface of
the components, must be performed in a separate batch process. As a result, a long inspection
time is expected.

The case study covers a specific product variant of a connector PCB and considers the
corresponding manufacturing process in the SMT line as well as the information from the SPI
and the X-Ray inspection. During the manufacturing process, the individual PCBs are grouped
together by 48 units as one panel. Depending on the orientation of the panel, each PCB has a
different number of pins, 79 for X1 orientation (Top) and 52 for X2 (Bottom). Since it would
take too much time to assess the quality at the pin level, the quality information of the panels
is aggregated at a Field-Of-View (FOV) level, which corresponds to the aggregation level of
the X-Ray inspection. One FOV consists of 6 PCB boards and is denoted as NOk if one PCB
is detected as defective, whereas it is declared as Ok when all PCBs are defect-free. Similarly,
Each PCB is labeled as defective if at least one pin in at least one orientation is defective.
Otherwise, the PCB is considered defect-free. Figure 8.4 shows an example panel of PCBs
and corresponding FOVs in the orientations X2. The FOVs are the six big squares with red
borders. Each data point corresponds to one pin described by a set of numerical features from
the SPI (see Table 8.3).

Table 8.3: Descriptive PCB features on the pin level.

SPI feature Height Shape 2D Shape 3D Surface Volume Offset X Offset Y
Unit % % % % % µm µm

For the case study, the dataset covers a period of five production months containing a total
of 1, 461, 037, 321 data points. Because decisions on dynamic X-ray inspection or alternative
routings can be made only on higher aggregation levels and because the supervision of the
PCBs on the pin level is not feasible, the solder pins are aggregated to a PCB level leading to
a relatively higher dimensional quality prediction task, i.e., For the X1 orientation 7× 79 and
for the X2 orientation 7× 52. Afterward, decisions for the quality of FOVs can be derived as
explained above.

193

8. Explainable Quality Prediction in Industrial Applications

8.4.2 Modeling

8.4.2.1 Preliminaries

Let the input data be denoted as a multi-set D = (X,Y) = {(x(i), y(i))}1≤i≤n which consists of
|D| = n input data point x(i) ∈ Rd and their corresponding label y(i). The data is transformed
such that each data point corresponds to one PCB in a given orientation. Each data point is
described by x(i), which consists of a d-dimensional vector of feature values and a corresponding
quality label, denoting whether the PCB is OK or NOK. The goal is to train a predictive ML
model to approximate some true function f : X → Y , where X denotes the input feature space
and Y is the target variable to be predicted. In our case, the predictive ML model is built
to predict a discrete binary quality label given an input feature vector. Therefore, X = Rd

and Y = {0, 1} is the target variable that can take two possible values mutually exclusive. If
yi = 0, the corresponding PCB is considered as NOK. In the opposite case, it is treated as
OK. The learning task can be formalized as a binary classification task. The prediction of
Y is carried out by the application of a model fθ : X → Y. Usually, a fixed structure of fθ

is chosen that is parametrized by some vector θ ∈ Rp. Learning from data X ∈ X consists
then of basically fitting θ to X, so that fθ ≈ f . Random Forest (RF) [31], Gradient Boosting
Trees (GBT) [263], Multi-Layer Perceptron (MLP) [268], and Convolutional Neural Networks
(CNNs) [120] are special classes of predictive models.

8.4.2.2 1D-CNN Architecture

The convolutional block of the 1D-CNN consists of several convolution layers followed by a
dropout layer, then a pooling layer, and a flatten layer. Dropout is a technique used to prevent
the model from overfitting. Dropout works by randomly setting the outgoing edges of the
hidden units (neurons that make up the hidden layers) to 0 at each update of the training
phase. The pooling layer performs a pooling operation like average or maximum computation
to each of the received feature maps from the convolutional layers. After the convolution blocks,
the features are fed into a Max Average Pooling (MAP) layer. Then, flattening is applied
to convert the data into a 1-dimensional (1-D) array for inputting it to the next layer. The
second block is a Fully-Connected (FC) block that includes the concatenation layer for merged
features of the convolutional block using two dense layers and an output layer with 1 neuron
with a softmax activation function to output a class probability.

8.4.2.3 CNN Visual Explanations

We are mainly interested in predicting and understanding the resulting quality of the FOVs for
each orientation of the panel, namely X1 and X2. Each orientation has a different number of
pins, and each pin is described by the 7 various physical quantities in Table 8.3. As a result, the
two orientations have a different number of features. Therefore, we train a specific ML model
for each orientation. We refer to these physical quantities in Table 8.3 that describe all the
pins as global features and to the set of pins describing each PCB in a given orientation with
their corresponding physical quantities as local features. It is interesting and more practical to
explain the models’ decisions from the perspective of both global and local features so that
engineers can understand which physical quantities need to be considered more closely and

194

8.4 Explainable Quality Prediction in Electronics Manufacturing

which pins are more prone to contain defects (i.e., which process parts are responsible for such
pins). Feature importance analysis can be considered as a tool to provide these explanations
[40]. Some ML models like RF [31] and GBT [263] are equipped with feature importance
measures. Since the features describing the PCBs are the set of local features, we can get feature
importance analysis exclusively on the pin level. Also, due to the high number of features,
it is very difficult to assess their importance with quick analysis using the standard feature
importance analysis and visualization methods, e.g., box-plots [40]. Opposingly, the 1D-CNN
can provide different overviews of the input data by allowing convolutions either along the
physical quantities or along the pins for each orientation. This would result in two different
1D-CNNs for each orientation. Afterward, a visualization heat-mapping-based explanation
method is used for each model to highlight the most important features for the prediction of
each class. In this way, feature importance analysis can be conducted for both global and local
features. In addition, heat maps are much easier to investigate visually and interpret. More
specifically, Grad-CAM [203] is employed to produce these heat maps. More details about
Grad-CAM are provided in the previous Section 8.3.2.3.

8.4.2.4 Model Deployment

The technical details of the deployment for this particular use case are already described in
[224]. We, therefore, focus on the conceptual details and briefly summarize the architecture.

Figure 8.5: Explainable predictive quality inspection in SMT manufacturing

Then, we discuss the extension part that is necessary for the use of the explainable predictive

195

8. Explainable Quality Prediction in Industrial Applications

quality inspection. The overall architecture is illustrated in Figure 8.5. ML model management,
i.e., training, updating, and storage, takes place on a computing cluster, which in this case
is a Spark cluster, while the storage of the data is handled in a datalake or data warehouse.
The SPI features are transmitted directly from the visual inspection machines to the edge
device, which in this case, is an industrial PC. The three components, i.e., the datalake or data
warehouse, the computing cluster, and the edge device, are connected via a network layer. To
reduce latency and bandwidth-related issues, the model is stored on the edge device. The ML
model classifies the PCBs of the FOV level to enable rerouting of the product. If the classifier
detects that a PCB is defective (NOk), the graphical user interface visualizes two perspectives,
i.e., the local as well as the global features to support explainability by depicting the location
of the defective pin areas and the deviating SPI features.

8.4.3 Quality Prediction Results

8.4.3.1 Experimental Setup

The available dataset D is split into 75% for training and 25% for testing. A 10-fold cross-
validation procedure is employed to evaluate the models. The reported results are the average
metric values over the 10 folds. The dataset reveals a high class-imbalance ratio. Therefore,
random over- and under-sampling strategies are combined and applied to the training data
[350]. For the GBT and RF, we use a grid-search procedure to tune their hyper-parameters.
For the MLP, we use five hidden layers. The MLP’s weights are learned using a variant of
the Stochastic Gradient Descent (SGD), namely, Adam [351]. The number of training epochs
is set to 1000. For the 1D-CNN, depending on the orientation and whether we perform the
convolution along the pins or the SPI (global) feature, the first convolution contains filters
with a number equal to the pins with a filter length equal to 7 (i.e., number of the SPI
features) or the way around. The size and lengths of the filters of the following layers depend
on the orientation (X1 or X2) and the convolution direction (i.e., pins or SPI features). The
number of neurons in the final softmax classifier is equal to 1, outputting a class membership
probability. Similarly to MLP, The model’s weights are learned using Adam [351] with 2000
training epochs.

8.4.3.2 Evaluation Metrics

The commonly used metrics for evaluating a binary classification task are derived using the
confusion matrix with the true predicted values TP = True Positive, TN = True Negative
and the false predicted values False Positive and False Negative. In this notation, the positive
class corresponds to the non-defective class and the negative class to the defective class.

The most commonly used metric for classification tasks is accuracy:

Accuracy = True Predicted Classes
Total Number of Predictions = TP + TN

TP + FP + TN + FN
(8.15)

However, the accuracy is insensitive to class imbalance, and therefore misleading [357].
Therefore, the recall measures the partition of correct prediction to the total amount of true

196

8.4 Explainable Quality Prediction in Electronics Manufacturing

values per class is also reported:

Recall = True Predicted Values
Total True Values (8.16)

Recall(NOk) = TN

TN + FP
(8.17)

Recall(Ok) = TP

TP + FN
(8.18)

The recall of the NOk class is of the highest importance since the manufacturer can not
tolerate NOk being classified as Ok.

8.4.3.3 Results

The results are presented in Table 8.4 and are averaged over X1 and X2 orientations. The
Table encloses descriptive statistics trained per PCB so that in the X1 orientation one data
point consists of 79 ∗ 7 = 553 features and in the X2 orientation of 52 ∗ 7 = 364 features.
Afterward, the results of the PCBs prediction are aggregated to the FOV level. Referring

Table 8.4: Average Performance Comparison of different classifiers

Metric Recall(NOk) Recall(Ok) Accuracy
RF 69.83% 53.76% 73.46%

GBT 73.98% 39.70% 43.26%
MLP 16.08% 95.13% 80.15%

1D − CNNglobal 66.92% 42.78% 65.12%
1D − CNN local 75.4% 43.85% 74.71%

GBT [224] 7.6% 29.4% 29.63%

to Table 8.4, it can be seen that the Recall on the NOK class has the highest value for the
1D-CNN trained using convolutions over the pins. It also maintains a relatively good recall
on the OK class. The reshaping of the data to highlight the global physical SPI features has
slightly worse performance since aggregation of these features over all the pins is performed.
However, a good trade-off of the recall on both classes is maintained. Traditional baselines like
RF and GBT have comparable performance. The difference in performance between our GBT
and the GBT in [224] is explained by the application of a class re-balancing strategy on the
training data in our case before training the ML models, which seems to be necessary since a
high-imbalance ratio introduces a high bias towards the majority class. The MLP has a higher
recall compared to the remaining methods on the OK class but a lower recall (except for GBT
[224]) which has a very poor performance on the class of interest NOK).

Based on the performance of both 1D-CNNs on the NOK class, we make the argument
that they can be used to give insight to the user into which physical quantities (global features)
and which specific pins (local features) influence the most the quality prediction. To do so, we
collect samples that are correctly classified by both 1D-CNNs per class and we compute the
Grad-CAM values and average them over all these samples for each class. Computing the maps
in an averaged manner over many samples leads to conclusions about process optimization or
product-specific measurements that can be taken by domain experts.

197

8. Explainable Quality Prediction in Industrial Applications

8.4.4 Explainable Quality Prediction

Heat maps for both classes for both CNNs are shown in Figures 8.6 and 8.7 . From these
Figures, a user can locate and infer the most discriminative features for each class and can get
a better understanding of the importance of global physical SPI features (the sub-figures at
the bottom of each Figure) and localize the main influencing pins, i.e., the local features (the
sub-figures at the top of each Figure). It can be seen that different global and local features
are highlighted for each class. Most importantly, for correctly predicting the NOK class, the
focus of the 1D-CNN is mainly on the SPI features DX and DY, a little less on DVolume
and DSurface. The remaining features seem to be irrelevant for making the decision toward
assigning, on average, the NOK pieces correctly to the NOK class. This may give some hints
to domain experts to investigate further DX and DY signals and, more importantly, to discover
the causes of deviations between these signals for the OK and the NOK classes. Looking also
at the pin level, it can be seen that the model’s focus is on some particular pins, namely from
1 to 5 and from 15 to 25. This shows that some pins are more prone to contain defects than
others. This may also give domain experts some hints on investigating which process parts or
machines are most often responsible for these particular pins and need to be tracked back.

8.5 Concluding Remarks

In this chapter, we present two applications of explainable quality prediction in Industry 4.0.
First, a novel approach for important time series subsequences identification for time series

classification is presented. This is achieved using a 1D-CNN model and a gradient-based heat-
mapping approach, namely Grad-CAM. The method demonstrates a satisfactory performance
not only in improving the classification accuracy but also in achieving early quality prediction
in a real-world use case in the automotive industry. Quality prediction explainability is also
promoted using the produced heat maps.

Second, an explainable model-based quality prediction in SMT manufacturing is presented.
This is also achieved using a 1D-CNN model and the Grad-CAM method. First, the predictive
model demonstrates satisfactory performance in the detection of quality deviations. Second,
the heat-mapping-based method is used to reveal the causes of quality deviations from two
different perspectives yielding corrective measures for these deviations. Lastly, the deployment
of the ML solution within an edge cloud computing-based architecture is described.

In both cases, further interaction with domain experts is required in order to qualify and
quantify the impact of our solution on a larger scale. In addition, the quantification should
go beyond standard ML measures such as recall or accuracy to include more application-
specific measures or indicators, e.g., energy consumption reduction, material savings, customer
satisfaction level, etc.

198

8.5 Concluding Remarks

Figure 8.6: Heat-maps averaged over many samples for X1-direction.x-axis shows the SPI-features,
y-axis the numbering of the pins, and the white coloring highlights the most discriminative regions
of the PCB (most important input features), i.e., highlighting local features (pins)

199

8. Explainable Quality Prediction in Industrial Applications

Figure 8.7: Heat-maps averaged over many samples for X1-direction. y-axis shows the SPI features,
x-axis the numbering of the pins, and the white coloring highlights the most discriminative regions
of the PCB (most important input features), i.e., highlighting the global features (physical SPI).

200

Part IV

Conclusions

201

9
Conclusions

9.1 Main Conclusions

Time series are omnipresent in a wide variety of fields and thus can be exploited to describe
many real-world phenomena in several domains of application, including industrial processes,
transportation, finance, and healthcare, to name but a few. The way we forecast how the time
series will evolve in the future extremely influences decision-making in the present. However,
due to the uncertainty related to the future of a time series, organizations are nowadays
focusing on data-driven approaches to build forecasting systems for decision-making.

In this context, the goal of this thesis is focused on devising methods for forecasting the
future behavior of time series online. That is, our objective is to leverage historical time series
data that is collected over time and support organizations in making accurate data-driven
decisions by forecasting the future in an accurate, timely manner. In particular, we framed our
objectives in two folds:

1. to develop new methods for automatically forecasting time series in an online adaptive
manner such that they are able to efficiently cope with potentially different types of
non-stationarities that most often characterize this data type and must be involved in its
modeling process. These methods are further promoted for the trustworthy application
of Machine Learning by being supported with explainability tools.

2. to build new methods for model-based quality prediction for Industry 4.0 applications in
a timely manner.

9.1.1 Forecasting

The thesis was split into two main parts according to the objectives stated above. In the
first main part dedicated to (Forecasting), we handled the task of time series forecasting,
denoting the prediction of the next value of a numeric time series using historical data. In the
introductory chapter of this thesis, we divided the first objective into four research questions.
We now recapitulate them and answer them in turn:

203

9. Conclusions

• RQ1 Given the time-evolving spatio-temporal dependencies among time series variables
in MTS, what is the most appropriate way of selecting the most relevant variables in a
timely manner to enhance the predictive performance of forecasting MTS models?

In Chapter 3, we address the problem of time series variables selection for MTS forecasting
by developing OAMTS: an online adaptive framework that performs both input time
series variables and adequate forecasting model selection. Input variables selection is made
in two stages using relevance and redundancy analysis. The selection is made dynamically
and adaptively in an informed manner following concept drift detection. The concept
drift detection covers the two MTS dimensions, namely spatial and temporal. Spatial
dependencies indicate the similarity between the input variables at one time instant. We
monitor the change in the similarity values over time. Temporal dependencies indicate
the patterns discovered within the same spatial dimension over time. The drift detection
within the temporal dimension is ensured by tracking the change in the estimated model’s
performance on a given target time series variable. In addition, the choice of adequate
relevance and redundancy measures, as well as the forecasting model, is done in an
automated fashion using meta-learning on well-devised MTS meta-features. OAMTS
is validated using a comprehensive empirical analysis with 66 real-world MTS datasets
from different domains. We have created separate meta-data which cover a collection of
real-world and synthetic MTS with various characteristics for the meta-learning task.
The obtained results show that OAMTS achieves excellent results in comparison to the
SoA approaches for MTS forecasting.

• RQ2 How can we dynamically select one or multiple forecasting models and cope with
non-stationary sources of variation that are frequently at play in time series and the time-
varying models’ performance?; RQ3 How can we provide suitable timely explanations
for the reason behind model selection at a given time instant or interval?

Several machine learning models have been used to solve the task of time series forecasting.
However, it is generally accepted that none of these models is universally valid for every
application and over time. Therefore, adequate and adaptive real-time model selection
is often required to cope with the time-evolving nature of time series and the fact that
models have specific Regions of Competence (RoCs) in the time series data. In Chapter
4, we have developed two methods that are suitable for both online single forecasting
model selection and an ensemble of heterogeneous forecasting models pruning.

The first method, called DEMSRC consists of a drift-aware meta-learning approach for
adaptively selecting and combining forecasting models. It is based on the assumption
that different forecasting models have different areas of expertise and varying relative
performance over time. Therefore, DEMSRC ensures the dynamic selection of initial
ensemble members through a performance drift detection mechanism. Since diversity
is a fundamental component in ensemble methods, a second stage selection of models’
clustering is added to DEMSRC and updated with each drift detection in the performance.
Predictions of the final selected models are combined into a single prediction. Exhaustive
empirical testing of DEMSRC was performed, evaluating both its generalization error
and scalability using time series from several real-world domains. Empirical results show

204

9.1 Main Conclusions

the competitiveness of the method in comparison to State-of-the-Art approaches for
combining forecasters.

Based on the fact that different forecasting models have different specific RoCs in the
time series data, the second method OMS-ROC performs online single model selection
for time series forecasting by using an adaptive clustering approach to compute the RoCs
of candidate models. This method can be extended to ensemble pruning by combining
clustering with a rank-based approach. In OMS-ROC, the selection of the appropriate
model(s) is made online, and the update of the RoCs responsible for the model selection
is done adaptively after the detection of concept drift in the structure of the RoCs.
Moreover, the computed RoCs can be used to provide appropriate explanations for
the reason for selecting certain model(s) in a certain time interval or instant and for
observing certain performances/outcomes. Since the RoCs are computed independently
of the family of forecasting models in question, the explanations we provide are model-
agnostic. An extensive empirical study on various real-world datasets shows that our
method achieves excellent or on-par results compared to state-of-the-art approaches and
various baseline solutions.

Finally, in Chapter 5, we have specifically investigated the online selection of DNNs
for time series forecasting. The reason behind this specific attention is that DNNs are
nowadays widely used in the context of time series forecasting. In addition, DNNs
are usually known to be extensive resource-consuming models making thus their
online selection and management very challenging, especially in resource-constrained
environments. These models are also known to be very complex and usually referred to
as black-box models, making thus their explainability very challenging but also highly
required. To do so, we first developed a method for online single DNN selection called
OS-PGSM which consists of a novel approach for online deep CNN selection using
saliency maps in the task of time series forecasting. We start with an arbitrarily set of
different CNN forecasters with various architectures. Then, we outline a gradient-based
technique for generating saliency maps with a coherent design to make them able to
specialize the CNN forecasters across different regions in the input time series using a
performance-based ranking. In this framework, the selection of the adequate model is
performed in an online fashion, and the computation of saliency maps responsible for
the model selection is achieved adaptively following drift detection in the time series. In
addition, the saliency maps can be exploited to provide suitable explanations for the
reason behind selecting a specific model at a certain time interval or instant.

The extension of OS-PGSM to an ensemble of DNNs pruning is presented by OEP-
ROCṪhe same principle of performance-based saliency maps is applied to prune the
ensemble by taking into account both aspects of accuracy and diversity. In addition, the
saliency maps can be exploited to provide suitable explanations for the reason behind
selecting specific models to construct an ensemble that plays the role of a forecaster at a
certain time interval or instant.

An extensive empirical study on various real-world datasets demonstrates that both
methods achieve excellent or on-par results in comparison to the State-of-the-Art
approaches as well as several baselines.

205

9. Conclusions

• RQ4 In the case of many models selection, how can we dynamically and adaptively
combine them to cope with the mentioned variations?

Several approaches, ranging from simple and enhanced averaging tactics to applying
meta-learning methods, have been proposed in the ML literature to learn how to combine
individual models in an ensemble. However, finding the optimal strategy for ensemble
aggregation remains an open research question, particularly when the ensemble needs
to be adapted in real-time. In Chapter 6, we leveraged a Deep Reinforcement Learning
framework for learning linearly weighted ensembles as a meta-learning method. In this
framework, the combination policy in an ensemble is modeled as a sequential decision-
making process, and an actor-critic model aims at learning the optimal weights in
continuous action space. The policy is updated following a drift detection mechanism
for tracking performance shifts of the ensemble model. An extensive empirical study on
many real-world datasets demonstrated that our method achieves excellent or on-par
results in comparison to the State-of-the-Art approaches as well as several baselines.

9.1.2 Model-based Quality Prediction

• RQ5 How can the developed methods be transferred efficiently to industrial case studies
to perform quality prediction in real-time? And how can the online management of
many models be exploited to integrate sensor and simulation data for Machine Learning
applications efficiently?

In Chapters 7 and 8, we investigated three different industrial applications of model-
based quality prediction. First, we applied our forecasting methods to predict the cutting
forces of an NC-milling process in real-time. The prediction can subsequently be used
to monitor the quality of the process online. But before, we enriched the time series
sensor data of the cutting forces with simulation data. To do so, we devised a fully
automated framework for simulation-sensor data fusion that efficiently integrates the
pre-calculated simulation data into sensor time series data and automatically selects the
suitable fusion level, namely data or model level. Our forecasting methods applied to the
fused data showed a better performance compared to the State-of-the-Art approaches
as well as several baselines. We also investigated the usefulness of exploiting DNNs’
heat maps in explaining model-based quality predictions for two case studies belonging
to the electronics and automotive industries, respectively. The produced explanations
were proven to be helpful in moving one step ahead in linking predictive analytics to
perspective analytics in Industry 4.0 applications.

9.2 Open Issues and Future Directions

The methods presented in the thesis can be improved in a number of ways. In this section, we
outline some potentially interesting research directions.

206

9.2 Open Issues and Future Directions

9.2.1 Towards a Fully Automated Forecasting Framework

ML plays an increasingly influential role in science and industry. However, ML-based solutions
application in the real world still requires huge efforts of technical expertise. Therefore, many
research efforts in the ML field are oriented toward automating ML to facilitate its use by
non-ML experts. We proposed a method OAMTS that selects the time series variables and the
forecasting models for MTS data automatically using meta-learning. The update of the selection
is also decided automatically in an informed manner following concept drift detection. The
quality of automation depends on the meta-learning model and the drift detection mechanism
accuracy. For this reason, further work is required to increase the amount of the meta-data
used in the meta-learning task and deploy further experimental efforts in tuning the hyper-
parameters of the drift-detection algorithms to reduce the rate of false alarms triggered by the
detection of false drifts.

Regarding DEMSRC and OMS-ROC which perform online model selection and/or ensemble
pruning and automatically adapt themselves to changes in the time series and candidate models
performance in an informed manner, there are still some important decisions left for the user,
for example, the number of final models to be kept in the case of ensemble pruning, the size of
the time series validation windows, or the hyper-parameters of the drift detection mechanisms.

In OS-PGSM and OEP-ROC the task of base CNNs generations can be automated by
considering a wide variety of architectures obtained from the automatic variation of, for
example, the number of convolution blocks, the type of the pooling layer or the architecture
of the fully-connected layer. Finally, the online aggregation framework OEA-DRL decides
automatically for the ensemble weights and updates the aggregation policy as well as the
weights in an informed fashion. The automation of this framework can be further enhanced by
incorporating the pruning into the aggregation using constraints on the weights to set some of
them to zero.

Last but not least, the choice between all the developed methods can be automated by
means of meta-learning, for example, which offers a higher level of automation when it comes
to the decision of the best online adaptive frameworks for time series forecasting.

We believe that automating all these tasks and developing a completely auto ML framework
for forecasting is important for increased adoption of ML solutions, especially by non-ML
experts [358]. We started the first step by developing an R-Shiny App that is devised to make
our methods easier to use and evaluate on new time series datasets. It is also straightforward to
use by non-ML domain experts, especially since online time series forecasting is required in a
wide range of application domains. The App can also be used by ML researchers to reproduce
our experiments easily. Our first plan is to finish the design of the App and publicly host it. In
addition, we plan to add an extension to the same App for time series explainability tools,
including the presented approaches in this thesis. In Appendix B, we aim to give an overview
of the first version of the App and our research vision for automating time series forecasting in
an understandable manner.

9.2.2 Beyond One-step ahead Forecasting

In the Forecasting part of the thesis, we formalized the forecasting task as predicting the
next value in a time series, i.e., one step ahead, in a step-wise manner. In other words, the

207

9. Conclusions

task in almost all the cases except for the milling use case is reduced to predicting xt+1 using
{x1, · · · , xt} which can be viewed as explanatory variables in the predictive models. However, it
should be noted that in the decision-making process, it is essential to quantify the uncertainty
behind predictions. Therefore, using probabilistic models in this context can be helpful. More
precisely, instead of forecasting the next time series point value x̂t+1 to approximate xt+1, it
may be more beneficial to give an estimate of the predictive probability distribution over the
future values [359], or a prediction time interval [360]. In addition, one may be interested in
predicting more than one step ahead in the future, for example, due to delayed feedback or to
the minimum required time of reactivity for decision-making which is application dependent.
Throughout this thesis, we based our work on the assumption of immediate availability of
feedback from the environment of applications, i.e., the t− th observation is assumed to be
known when predicting the next observation at t+1. Indeed, forecasting multiple steps ahead is
generally a more difficult task due to the increased related uncertainty [361]. In future research,
we plan to extend our methods to these scenarios. The reformulation of the forecasting task
as a general regression task with lagged time series values as explanatory variables allows
more flexibility to model xt+h, h > 1 using {x1, · · · , xt} We note that we address a simpler
predictive task because we focus on the dynamic online selection of a set of forecasting models
and their aggregation into one model, which is one of the main goals of one part of this thesis.

9.2.3 Beyond Univariate Time Series Forecasting

In Chapter 3, we showed the importance of input time series variables selection for MTS data
before starting the forecasting task. Indeed, after careful selection of the appropriate variables
using the selection procedure detailed in OAMTS, our online forecasting methods, including
the ones that use a single model or ensemble of models, can be extended to MTS data. For
DEMSRC and OMS-ROC, the extension is straightforward since these methods need just
as input the predictions of the forecasting models. Therefore, we train many models on the
selected variables of the MTS data in question. The selection is decided by OAMTS. Then, we
apply DEMSRC and OMS-ROC.

Regarding the methods that are DNNs-specific, namely OS-PGSM and OEP-ROC, further
efforts are required to transform the Performance-based Gradient Saliency Maps PGSMs
into multi-dimensional time series data. Therefore, important time series sequences that are
responsible for certain behavior of the MTS forecasting should be highlighted over multiple
spatial dimensions. That is, instead of outputting a vector of importance values by the Grad-
CAM, a matrix of importance values over time and space should be output. The resulting
RoCs will be thus in the format of MTS sequences. Such RoCs can potentially be used to
explain the dynamics of the relationships between the variables composing the MTS.

9.2.4 Towards More Time Series Specific Explainability Tools

We investigated the explainability of the online model selection process and, in some cases, the
output of the ML models using visualization approaches that rely on gradient-based saliency
maps or clustering visualization. However, a wide variety of explainability tools are presented
in the ML literature [40]. Therefore, future work focused on the adaptation of these tools to
the time series domain will be conducted in order to investigate which tools are more suitable

208

9.2 Open Issues and Future Directions

than others for this data type. This also requires, in its turn, further elaborated work in the
direction of evaluating different explainability methods.

9.2.5 On Empowering Process Simulation for Machine Learning Application

In the application part of the thesis, we investigated the task of model-based quality prediction.
In one case, we showed the advantages of integrating simulation data into the learning process.
However, simulations are most often simplistic representations of reality. Therefore, simulation
model calibration to the particular application is crucial to reduce the simulation-reality gap.
The computational cost of simulation calibration is high owing to the complexity of reality. In
this context, ML can be used to improve the simulation. First, it can be used to facilitate the
calibration process by turning it into a learning problem, i.e., learning simulation parameters
that reduce the gap between simulation results and true observed values. In future work, we
aim to apply Reinforcement Learning as a calibrator in the simulation environment. A second
aspect we consider studying in the future is the replacement of weak simulation parts, i.e.,
parts with a high gap, with ML generative models.

209

References

[1] R. Godahewa, C. Bergmeir, G. I. Webb, R. J. Hyndman, and P. Montero-Manso, “Monash
time series forecasting archive,” in Neural Information Processing Systems Track on
Datasets and Benchmarks, forthcoming, 2021.

[2] P. Esling and C. Agon, “Time-series data mining,” ACM Computing Surveys (CSUR),
vol. 45, no. 1, pp. 1–34, 2012.

[3] C. A. Ralanamahatana, J. Lin, D. Gunopulos, E. Keogh, M. Vlachos, and G. Das, “Mining
time series data,” in Data mining and knowledge discovery handbook, Springer, 2005,
pp. 1069–1103.

[4] J. D. Cryer, Time series analysis. Springer, 1986, vol. 286.

[5] E. Keogh and S. Kasetty, “On the need for time series data mining benchmarks: A survey
and empirical demonstration,” in Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, 2002, pp. 102–111.

[6] N. R. Council et al., When weather matters: Science and services to meet critical societal
needs. National Academies Press, 2010.

[7] T. Kimoto, K. Asakawa, M. Yoda, and M. Takeoka, “Stock market prediction system
with modular neural networks,” in 1990 IJCNN international joint conference on neural
networks, IEEE, 1990, pp. 1–6.

[8] M. Stolpe, H. Blom, and K. Morik, “Sustainable industrial processes by embedded real-
time quality prediction,” in Computational sustainability, Springer, 2016, pp. 201–243.

[9] V. Cerqueira, L. Torgo, F. Pinto, and C. Soares, “Arbitrated ensemble for time series
forecasting,” in Joint European conference on machine learning and knowledge discovery
in databases, Springer, 2017, pp. 478–494.

[10] V. Cerqueira, L. Torgo, F. Pinto, and C. Soares, “Arbitrage of forecasting experts,”
Machine Learning, 2018, issn: 1573-0565.

[11] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak, “Ensemble learning
for data stream analysis: A survey,” Information Fusion, vol. 37, pp. 132–156, 2017.

[12] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and L. Damas, “Predicting
taxi-passenger demand using streaming data,” IEEE Transactions on Intelligent
Transportation Systems, vol. 14, no. 3, pp. 1393–1402, 2013, issn: 15249050.

[13] T. Liebig, N. Piatkowski, C. Bockermann, and K. Morik, “Route planning with real-time
traffic predictions.,” in LWA, Citeseer, 2014, pp. 83–94.

211

REFERENCES

[14] A. G. Salman, B. Kanigoro, and Y. Heryadi, “Weather forecasting using deep learning
techniques,” in 2015 international conference on advanced computer science and
information systems (ICACSIS), Ieee, 2015, pp. 281–285.

[15] E. Hoseinzade and S. Haratizadeh, “Cnnpred: Cnn-based stock market prediction using
several data sources,” arXiv preprint arXiv:1810.08923, 2018.

[16] A. Saadallah, L. Moreira-Matias, R. Sousa, J. Khiari, E. Jenelius, and J. Gama, “Bright-
drift-aware demand predictions for taxi networks,” IEEE Transactions on Knowledge
and Data Engineering, 2018.

[17] R. S. Tsay, Multivariate time series analysis: with R and financial applications. John
Wiley & Sons, 2013.

[18] M. Stolpe, “The Internet of Things: Opportunities and challenges for distributed data
analysis,” SIGKDD Explorations, vol. 18, no. 1, pp. 15–34, Jun. 2016.

[19] A. Saadallah, F. Priebe, and K. Morik, “A drift-based dynamic ensemble members
selection using clustering for time series forecasting,” in Joint European conference on
machine learning and knowledge discovery in databases, Springer, 2019.

[20] P. Geurts, “Pattern extraction for time series classification,” in European conference on
principles of data mining and knowledge discovery, Springer, 2001, pp. 115–127.

[21] D. H. Wolpert, “The lack of a priori distinctions between learning algorithms,” Neural
computation, vol. 8, no. 7, pp. 1341–1390, 1996.

[22] F. Priebe, “Dynamic model selection for automated machine learning in time series,”
2019.

[23] Y.-A. Le Borgne, S. Santini, and G. Bontempi, “Adaptive model selection for time series
prediction in wireless sensor networks,” Signal Processing, vol. 87, no. 12, pp. 3010–3020,
2007.

[24] D. V. Oliveira, G. D. Cavalcanti, and R. Sabourin, “Online pruning of base classifiers for
dynamic ensemble selection,” Pattern Recognition, vol. 72, pp. 44–58, 2017.

[25] R. M. Cruz, D. V. Oliveira, G. D. Cavalcanti, and R. Sabourin, “Fire-des++: Enhanced
online pruning of base classifiers for dynamic ensemble selection,” Pattern Recognition,
vol. 85, pp. 149–160, 2019.

[26] R. Argiento, A. Guglielmi, and A. Pievatolo, “Bayesian density estimation and model
selection using nonparametric hierarchical mixtures,” Computational Statistics & Data
Analysis, vol. 54, no. 4, pp. 816–832, 2010.

[27] I. Rivals and L. Personnaz, “On cross validation for model selection,” Neural computation,
vol. 11, no. 4, pp. 863–870, 1999.

[28] D. D. Margineantu and T. G. Dietterich, “Pruning adaptive boosting,” in ICML, Citeseer,
vol. 97, 1997, pp. 211–218.

[29] N. Li, Y. Yu, and Z.-H. Zhou, “Diversity regularized ensemble pruning,” in Machine
Learning and Knowledge Discovery in Databases, P. A. Flach, T. De Bie, and N. Cristianini,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 330–345, isbn: 978-3-642-
33460-3.

[30] G. Tsoumakas, I. Partalas, and I. Vlahavas, “An ensemble pruning primer,” in Applications
of supervised and unsupervised ensemble methods, Springer, 2009, pp. 1–13.

212

REFERENCES

[31] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123–140, 1996.

[32] F. Zhang, J. Bai, X. Li, C. Pei, and V. Havyarimana, “An ensemble cascading extremely
randomized trees framework for short-term traffic flow prediction,” KSII Transactions
on Internet and Information Systems (TIIS), vol. 13, no. 4, pp. 1975–1988, 2019.

[33] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2, pp. 241–259,
1992.

[34] J. Khiari, L. Moreira-Matias, A. Shaker, B. Ženko, and S. Džeroski, “Metabags: Bagged
meta-decision trees for regression,” in Joint european conference on machine learning
and knowledge discovery in databases, Springer, 2018, pp. 637–652.

[35] A. Saadallah and K. Morik, “Online ensemble aggregation using deep reinforcement
learning for time series forecasting,” in 2021 IEEE 8th International Conference on Data
Science and Advanced Analytics (DSAA), IEEE, 2021.

[36] A. Saadallah, M. Tavakol, and K. Morik, “An actor-critic ensemble aggregation model for
time-series forecasting,” in IEEE International Conference on Data Engineering (ICDE),
2021.

[37] S. Thiebes, S. Lins, and A. Sunyaev, “Trustworthy artificial intelligence,” Electronic
Markets, vol. 31, no. 2, pp. 447–464, 2021.

[38] H. AI, High-level expert group on artificial intelligence, 2019.

[39] N. Bussmann, P. Giudici, D. Marinelli, and J. Papenbrock, “Explainable ai in fintech
risk management,” Frontiers in Artificial Intelligence, vol. 3, p. 26, 2020.

[40] C. Molnar, Interpretable machine learning. Lulu. com, 2020.

[41] J. Petch, S. Di, and W. Nelson, “Opening the black box: The promise and limitations of
explainable machine learning in cardiology,” Canadian Journal of Cardiology, 2021.

[42] A. Sanders, C. Elangeswaran, and J. P. Wulfsberg, “Industry 4.0 implies lean manufac-
turing: Research activities in industry 4.0 function as enablers for lean manufacturing,”
Journal of Industrial Engineering and Management (JIEM), vol. 9, no. 3, pp. 811–833,
2016.

[43] R. Y. Zhong, X. Xu, E. Klotz, and S. T. Newman, “Intelligent manufacturing in the
context of industry 4.0: A review,” Engineering, vol. 3, no. 5, pp. 616–630, 2017.

[44] C. A. Escobar, M. E. McGovern, and R. Morales-Menendez, “Quality 4.0: A review of
big data challenges in manufacturing,” Journal of Intelligent Manufacturing, vol. 32,
no. 8, pp. 2319–2334, 2021.

[45] D. Lieber, M. Stolpe, B. Konrad, J. Deuse, and K. Morik, “Quality prediction in interlinked
manufacturing processes based on supervised & unsupervised machine learning,” Procedia
Cirp, vol. 7, pp. 193–198, 2013.

[46] M. Stolpe, K. Bhaduri, and K. Das, “Distributed support vector machines: An overview,”
Solving Large Scale Learning Tasks. Challenges and Algorithms, pp. 109–138, 2016.

[47] P. Wiederkehr and T. Siebrecht, “Virtual machining: Capabilities and challenges of
process simulations in the aerospace industry,” Procedia Manufacturing, vol. 6, pp. 80–87,
2016.

213

REFERENCES

[48] J. Cuzick, “A wilcoxon-type test for trend,” Statistics in medicine, vol. 4, no. 1, pp. 87–90,
1985.

[49] I. Mierswa and K. Morik, “Automatic feature extraction for classifying audio data,”
Machine learning, vol. 58, no. 2, pp. 127–149, 2005.

[50] A. A. Cook, G. Mısırlı, and Z. Fan, “Anomaly detection for iot time-series data: A
survey,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6481–6494, 2019.

[51] M. F. Ghalwash, V. Radosavljevic, and Z. Obradovic, “Extraction of interpretable
multivariate patterns for early diagnostics,” in 2013 IEEE 13th International Conference
on Data Mining, IEEE, 2013, pp. 201–210.

[52] J. Asafu-Adjaye, “The relationship between energy consumption, energy prices and
economic growth: Time series evidence from asian developing countries,” Energy
economics, vol. 22, no. 6, pp. 615–625, 2000.

[53] C. Chatfield, The analysis of time series: an introduction. Chapman and hall/CRC, 2003.

[54] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice. OTexts,
2018.

[55] P. S. Cowpertwait and A. V. Metcalfe, Introductory time series with R. Springer Science
& Business Media, 2009.

[56] G. Rudebush, “On the power of dickey-fuller tests against fractional alternatives,”
Economics letters, vol. 35, pp. 155–160, 1991.

[57] Y.-W. Cheung and K. S. Lai, “Lag order and critical values of the augmented dickey–fuller
test,” Journal of Business & Economic Statistics, vol. 13, no. 3, pp. 277–280, 1995.

[58] J. Breitung and P. H. Franses, “On phillips–perron-type tests for seasonal unit roots,”
Econometric Theory, vol. 14, no. 2, pp. 200–221, 1998.

[59] G. Elliott, T. J. Rothenberg, and J. H. Stock, Efficient tests for an autoregressive unit
root, 1992.

[60] D. Kwiatkowski, P. C. Phillips, P. Schmidt, and Y. Shin, “Testing the null hypothesis of
stationarity against the alternative of a unit root: How sure are we that economic time
series have a unit root?” Journal of econometrics, vol. 54, no. 1-3, pp. 159–178, 1992.

[61] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

[62] E. Zivot and D. W. K. Andrews, “Further evidence on the great crash, the oil-price shock,
and the unit-root hypothesis,” Journal of business & economic statistics, vol. 20, no. 1,
pp. 25–44, 2002.

[63] S. Kanaya, “A nonparametric test for stationarity in continuous-time markov processes,”
Job Market Paper, University of Oxford, 2011.

[64] A. van Delft, V. Characiejus, and H. Dette, “A nonparametric test for stationarity in
functional time series,” arXiv preprint arXiv:1708.05248, 2017.

[65] R. J. Hyndman, G. Athanasopoulos, C. Bergmeir, G. Caceres, L. Chhay, M. O’Hara-Wild,
F. Petropoulos, S. Razbash, and E. Wang, “Package ‘forecast’,” Online] https://cran.
r-project. org/web/packages/forecast/forecast. pdf, 2020.

214

REFERENCES

[66] C. Croarkin, P. Tobias, J. Filliben, B. Hembree, W. Guthrie, et al., “Nist/sematech e-
handbook of statistical methods,” NIST/SEMATECH, July. Available online: http://www.
itl. nist. gov/div898/handbook, p. 24, 2006.

[67] G. E. Box and D. R. Cox, “An analysis of transformations,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 26, no. 2, pp. 211–243, 1964.

[68] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: A novel symbolic
representation of time series,” Data Mining and knowledge discovery, vol. 15, no. 2,
pp. 107–144, 2007.

[69] D. Criado-Ramón, L. Ruiz, and M. Pegalajar, “Electric demand forecasting with neural
networks and symbolic time series representations,” Applied Soft Computing, vol. 122,
p. 108 871, 2022.

[70] S. Elsworth and S. Güttel, “Time series forecasting using lstm networks: A symbolic
approach,” arXiv preprint arXiv:2003.05672, 2020.

[71] S. Lawrence, A. C. Tsoi, and C. L. Giles, “Noisy time series prediction using symbolic
representation and recurrent neural network grammatical inference,” Tech. Rep., 1998.

[72] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of time series,
with implications for streaming algorithms,” in Proceedings of the 8th ACM SIGMOD
workshop on Research issues in data mining and knowledge discovery, 2003, pp. 2–11.

[73] S. Lhermitte, J. Verbesselt, W. W. Verstraeten, and P. Coppin, “A comparison of time
series similarity measures for classification and change detection of ecosystem dynamics,”
Remote sensing of environment, vol. 115, no. 12, pp. 3129–3152, 2011.

[74] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” ACM computing
surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[75] G. M. Mimmack, S. J. Mason, and J. S. Galpin, “Choice of distance matrices in cluster
analysis: Defining regions,” Journal of climate, vol. 14, no. 12, pp. 2790–2797, 2001.

[76] P. C. Mahalanobis, “On the generalized distance in statistics,” National Institute of
Science of India, 1936.

[77] T. K. Vintsyuk, “Speech discrimination by dynamic programming,” Cybernetics, vol. 4,
no. 1, pp. 52–57, 1968.

[78] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken word
recognition,” IEEE transactions on acoustics, speech, and signal processing, vol. 26, no. 1,
pp. 43–49, 1978.

[79] F. Petitjean, G. Forestier, G. I. Webb, A. E. Nicholson, Y. Chen, and E. Keogh, “Dynamic
time warping averaging of time series allows faster and more accurate classification,” in
2014 IEEE international conference on data mining, IEEE, 2014, pp. 470–479.

[80] W. Nikolai, T. SCHLEGL, and J. DEUSE, “Feature extraction for time series classification
using univariate descriptive statistics and dynamic time warping in a manufacturing
environment,” in 2021 IEEE 2nd International Conference on Big Data, Artificial
Intelligence and Internet of Things Engineering (ICBAIE), IEEE, 2021, pp. 762–768.

[81] T. Górecki and M. Łuczak, “Multivariate time series classification with parametric
derivative dynamic time warping,” Expert Systems with Applications, vol. 42, no. 5,
pp. 2305–2312, 2015.

215

REFERENCES

[82] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah, “Time-series clustering–a decade
review,” Information systems, vol. 53, pp. 16–38, 2015.

[83] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time warping,”
Knowledge and information systems, vol. 7, no. 3, pp. 358–386, 2005.

[84] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Zakaria,
and E. Keogh, “Searching and mining trillions of time series subsequences under dynamic
time warping,” in Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2012, pp. 262–270.

[85] J. Klemming, Python Extension for the UCR-Suite, 2018. [Online]. Available: https:
//github.com/klon/ucrdtw.

[86] R. N. Bracewell and R. N. Bracewell, The Fourier transform and its applications. McGraw-
Hill New York, 1986, vol. 31999.

[87] J. C. Schlimmer and R. H. Granger, “Beyond incremental processing: Tracking concept
drift.,” in AAAI, 1986, pp. 502–507.

[88] V. Losing, B. Hammer, and H. Wersing, “Tackling heterogeneous concept drift with the
self-adjusting memory (sam),” Knowledge and Information Systems, vol. 54, pp. 171–201,
2018.

[89] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on concept
drift adaptation,” ACM computing surveys (CSUR), vol. 46, no. 4, pp. 1–37, 2014.

[90] T. G. Dietterich, “Ensemble methods in machine learning,” in International workshop on
multiple classifier systems, Springer, 2000, pp. 1–15.

[91] L. I. Kuncheva, “Classifier ensembles for changing environments,” in International
Workshop on Multiple Classifier Systems, Springer, 2004, pp. 1–15.

[92] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Locally adaptive dimensionality
reduction for indexing large time series databases,” in Proceedings of the 2001 ACM
SIGMOD international conference on Management of data, 2001, pp. 151–162.

[93] E. J. Keogh and M. J. Pazzani, “An enhanced representation of time series which allows
fast and accurate classification, clustering and relevance feedback.,” in Kdd, vol. 98, 1998,
pp. 239–243.

[94] J. Lin, E. Keogh, P. Patel, and S. Lonardi, “Finding motifs in time series, in proceedings
of the 2nd workshop on temporal data mining, at the 8th acm sigkdd international
conference on knowledge discovery and data mining,” Edmonton, Alberta, Canada, 2002.

[95] E. Keogh, S. Lonardi, and B.-c. Chiu, “Finding surprising patterns in a time series
database in linear time and space,” in Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, 2002, pp. 550–556.

[96] D. Dasgupta and S. Forrest, “Novelty detection in time series data using ideas from
immunology,” in Proceedings of the international conference on intelligent systems,
Citeseer, 1996, pp. 82–87.

[97] R. J. Hyndman, A. B. Koehler, R. D. Snyder, and S. Grose, “A state space framework
for automatic forecasting using exponential smoothing methods,” International Journal
of forecasting, vol. 18, no. 3, pp. 439–454, 2002.

216

https://github.com/klon/ucrdtw
https://github.com/klon/ucrdtw

REFERENCES

[98] R. Klinkenberg and T. Joachims, “Detecting concept drift with support vector machines.,”
in ICML, 2000, pp. 487–494.

[99] R. Klinkenberg and S. Rüping, “Concept drift and the importance of examples,” in Text
mining–theoretical aspects and applications, Citeseer, 2002.

[100] L. Noakes, “The takens embedding theorem,” International Journal of Bifurcation and
Chaos, vol. 1, no. 04, pp. 867–872, 1991.

[101] G. Schwarz, “Estimating the dimension of a model,” The annals of statistics, pp. 461–464,
1978.

[102] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statistical
learning: data mining, inference, and prediction. Springer, 2009, vol. 2.

[103] T. O. Kvålseth, “Cautionary note about r 2,” The American Statistician, vol. 39, no. 4,
pp. 279–285, 1985.

[104] T. Hastie, R. Tibshirani, and M. Wainwright, “Statistical learning with sparsity,”
Monographs on statistics and applied probability, vol. 143, p. 143, 2015.

[105] R. G. Brown, “Statistical forecasting for inventory control,” 1959.

[106] E. Zivot and J. Wang, “Vector autoregressive models for multivariate time series,”
Modeling Financial Time Series with S-Plus®, pp. 385–429, 2006.

[107] B. Lim and S. Zohren, “Time-series forecasting with deep learning: A survey,”
Philosophical Transactions of the Royal Society A, vol. 379, no. 2194, p. 20 200 209,
2021.

[108] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[109] P. E. Utgoff and D. J. Stracuzzi, “Many-layered learning,” Neural computation, vol. 14,
no. 10, pp. 2497–2529, 2002.

[110] Q. Sun, M. V. Jankovic, L. Bally, and S. G. Mougiakakou, “Predicting blood glucose
with an lstm and bi-lstm based deep neural network,” in 2018 14th Symposium on Neural
Networks and Applications (NEUREL), IEEE, 2018, pp. 1–5.

[111] E. Hoseinzade and S. Haratizadeh, “Cnnpred: Cnn-based stock market prediction using
a diverse set of variables,” Expert Systems with Applications, vol. 129, pp. 273–285,
2019, issn: 0957-4174. doi: https : / / doi . org / 10 . 1016 / j . eswa . 2019 . 03 . 029.
[Online]. Available: https : / / www . sciencedirect . com / science / article / pii /
S0957417419301915.

[112] P. Romeu, F. Zamora-Martınez, P. Botella-Rocamora, and J. Pardo, “Time-series fore-
casting of indoor temperature using pre-trained deep neural networks,” in International
conference on artificial neural networks, Springer, 2013, pp. 451–458.

[113] J. C. B. Gamboa, “Deep learning for time-series analysis,” arXiv preprint
arXiv:1701.01887, 2017.

[114] I. E. Livieris, E. Pintelas, and P. Pintelas, “A cnn–lstm model for gold price time-series
forecasting,” Neural Computing and Applications, pp. 1–10, 2020.

[115] T.-Y. Kim and S.-B. Cho, “Predicting residential energy consumption using cnn-lstm
neural networks,” Energy, vol. 182, pp. 72–81, 2019.

217

https://doi.org/https://doi.org/10.1016/j.eswa.2019.03.029
https://www.sciencedirect.com/science/article/pii/S0957417419301915
https://www.sciencedirect.com/science/article/pii/S0957417419301915

REFERENCES

[116] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[117] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[118] F. A. Gers, D. Eck, and J. Schmidhuber, “Applying lstm to time series predictable
through time-window approaches,” in Neural Nets WIRN Vietri-01, Springer, 2002,
pp. 193–200.

[119] G. Van Houdt, C. Mosquera, and G. Nápoles, “A review on the long short-term memory
model,” Artificial Intelligence Review, vol. 53, no. 8, pp. 5929–5955, 2020.

[120] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep learning
for time series classification: A review,” Data mining and knowledge discovery, vol. 33,
no. 4, pp. 917–963, 2019.

[121] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Transfer learning
for time series classification,” in 2018 IEEE international conference on big data (Big
Data), IEEE, 2018, pp. 1367–1376.

[122] V. Cerqueira, L. Torgo, and I. Mozetič, “Evaluating time series forecasting models: An
empirical study on performance estimation methods,” Machine Learning, vol. 109, no. 11,
pp. 1997–2028, 2020.

[123] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy,”
International journal of forecasting, vol. 22, no. 4, pp. 679–688, 2006.

[124] J. Tayman and D. A. Swanson, “On the validity of mape as a measure of population
forecast accuracy,” Population Research and Policy Review, vol. 18, no. 4, pp. 299–322,
1999.

[125] C. Sammut and G. I. Webb, Encyclopedia of machine learning. Springer Science &
Business Media, 2011.

[126] Z. Chen and Y. Yang, “Assessing forecast accuracy measures,” Preprint Series, vol. 2010,
pp. 2004–10, 2004.

[127] C. Bergmeir and J. M. Benıtez, “On the use of cross-validation for time series predictor
evaluation,” Information Sciences, vol. 191, pp. 192–213, 2012.

[128] C. Bergmeir, R. J. Hyndman, and B. Koo, “A note on the validity of cross-validation
for evaluating autoregressive time series prediction,” Computational Statistics & Data
Analysis, vol. 120, pp. 70–83, 2018.

[129] L. J. Tashman, “Out-of-sample tests of forecasting accuracy: An analysis and review,”
International journal of forecasting, vol. 16, no. 4, pp. 437–450, 2000.

[130] V. Cerqueira, L. Torgo, and C. Soares, “Model selection for time series forecasting:
Empirical analysis of different estimators,” arXiv preprint arXiv:2104.00584, 2021.

[131] S. M. Abdulrahman, P. Brazdil, J. N. van Rijn, and J. Vanschoren, “Speeding up
algorithm selection using average ranking and active testing by introducing runtime,”
Machine learning, vol. 107, no. 1, pp. 79–108, 2018.

[132] S. Arlot and A. Celisse, “A survey of cross-validation procedures for model selection,”
Statistics surveys, vol. 4, pp. 40–79, 2010.

218

http://www.deeplearningbook.org
http://www.deeplearningbook.org

REFERENCES

[133] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized linear
models via coordinate descent,” Journal of statistical software, vol. 33, no. 1, p. 1, 2010.

[134] J. Gama, P. P. Rodrigues, and R. Sebastiao, “Evaluating algorithms that learn from
data streams,” in Proceedings of the 2009 ACM symposium on Applied Computing, 2009,
pp. 1496–1500.

[135] R. Hyndman and Y. Yang, Tsdl: Time series data library, 2019.

[136] A. Benavoli, G. Corani, and F. Mangili, “Should we really use post-hoc tests based on
mean-ranks?” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 152–161,
2016.

[137] L. Breiman and P. Spector, “Submodel selection and evaluation in regression. the x-
random case,” International statistical review/revue internationale de Statistique, pp. 291–
319, 1992.

[138] Y. Sakamoto, M. Ishiguro, and G. Kitagawa, “Akaike information criterion statistics,”
Dordrecht, The Netherlands: D. Reidel, vol. 81, no. 10.5555, p. 26 853, 1986.

[139] D. L. Weakliem, “A critique of the bayesian information criterion for model selection,”
Sociological Methods & Research, vol. 27, no. 3, pp. 359–397, 1999.

[140] V. Vapnik, “Principles of risk minimization for learning theory,” Advances in neural
information processing systems, vol. 4, 1991.

[141] S. I. Vrieze, “Model selection and psychological theory: A discussion of the differences
between the akaike information criterion (aic) and the bayesian information criterion
(bic).,” Psychological methods, vol. 17, no. 2, p. 228, 2012.

[142] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The m4 competition: 100,000 time
series and 61 forecasting methods,” International Journal of Forecasting, vol. 36, no. 1,
pp. 54–74, 2020.

[143] W. Jamil and A. Bouchachia, “Model selection in online learning for times series
forecasting,” in UK Workshop on Computational Intelligence, Springer, 2018, pp. 83–95.

[144] O. Anava, E. Hazan, S. Mannor, and O. Shamir, “Online learning for time series
prediction,” in Conference on learning theory, PMLR, 2013, pp. 172–184.

[145] C. Liu, S. C. Hoi, P. Zhao, and J. Sun, “Online arima algorithms for time series prediction,”
in Thirtieth AAAI conference on artificial intelligence, 2016.

[146] R. Candela, P. Michiardi, M. Filippone, and M. A. Zuluaga, “Model monitoring and
dynamic model selection in travel time-series forecasting,” in Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, Springer, 2020, pp. 513–529.

[147] M. Aiolfi and A. Timmermann, “Persistence in forecasting performance and conditional
combination strategies,” Journal of Econometrics, vol. 135, no. 1-2, pp. 31–53, 2006.

[148] G. Brown, J. L. Wyatt, and P. Tiňo, “Managing diversity in regression ensembles,”
Journal of machine learning research, vol. 6, no. Sep, pp. 1621–1650, 2005.

[149] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for large-scale
classification,” in Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, 2001, pp. 377–382.

219

REFERENCES

[150] A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation, and active
learning,” in Advances in Neural Information Processing Systems, G. Tesauro, D.
Touretzky, and T. Leen, Eds., vol. 7, MIT Press, 1995. [Online]. Available: https://
proceedings.neurips.cc/paper/1994/file/b8c37e33defde51cf91e1e03e51657da-
Paper.pdf.

[151] G. Brown, “Ensemble learning.,” Encyclopedia of Machine Learning, vol. 312, 2010.

[152] G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity creation methods: A survey and
categorisation,” Information fusion, vol. 6, no. 1, pp. 5–20, 2005.

[153] Y. Zhang, S. Burer, W. Nick Street, K. P. Bennett, and E. Parrado-Hernández, “Ensemble
pruning via semi-definite programming.,” Journal of machine learning research, vol. 7,
no. 7, 2006.

[154] G. Martinez-Munoz, D. Hernández-Lobato, and A. Suárez, “An analysis of ensemble
pruning techniques based on ordered aggregation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 2, pp. 245–259, 2008.

[155] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes, “Ensemble selection from
libraries of models,” in Proceedings of the twenty-first international conference on Machine
learning, 2004, p. 18.

[156] Y. Yu, Y.-F. Li, and Z.-H. Zhou, “Diversity regularized machine,” in Twenty-Second
International Joint Conference on Artificial Intelligence, 2011.

[157] A. V. Krikunov and S. V. Kovalchuk, “Dynamic selection of ensemble members in multi-
model hydrometeorological ensemble forecasting,” Procedia Computer Science, vol. 66,
pp. 220–227, 2015.

[158] Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling neural networks: Many could be better
than all,” Artificial intelligence, vol. 137, no. 1-2, pp. 239–263, 2002.

[159] T. Zhang, “Covering number bounds of certain regularized linear function classes,”
Journal of Machine Learning Research, vol. 2, no. Mar, pp. 527–550, 2002.

[160] H. Chen, P. Tiňo, and X. Yao, “Predictive ensemble pruning by expectation propagation,”
IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 7, pp. 999–1013,
2009.

[161] I. Partalas, G. Tsoumakas, and I. Vlahavas, “A study on greedy algorithms for ensemble
pruning,” Aristotle University of Thessaloniki, Thessaloniki, Greece, 2012.

[162] Z. Ma, Q. Dai, and N. Liu, “Several novel evaluation measures for rank-based ensemble
pruning with applications to time series prediction,” Expert systems with applications,
vol. 42, no. 1, pp. 280–292, 2015.

[163] G. Martınez-Munoz and A. Suárez, “Aggregation ordering in bagging,” in Proc. of the
IASTED International Conference on Artificial Intelligence and Applications, Citeseer,
2004, pp. 258–263.

[164] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “Ensemble diversity
measures and their application to thinning,” Information Fusion, vol. 6, no. 1, pp. 49–62,
2005.

220

https://proceedings.neurips.cc/paper/1994/file/b8c37e33defde51cf91e1e03e51657da-Paper.pdf
https://proceedings.neurips.cc/paper/1994/file/b8c37e33defde51cf91e1e03e51657da-Paper.pdf
https://proceedings.neurips.cc/paper/1994/file/b8c37e33defde51cf91e1e03e51657da-Paper.pdf

REFERENCES

[165] G. Giacinto, F. Roli, and G. Fumera, “Design of effective multiple classifier systems
by clustering of classifiers,” in Proceedings 15th International Conference on Pattern
Recognition. ICPR-2000, IEEE, vol. 2, 2000, pp. 160–163.

[166] A. Lazarevic and Z. Obradovic, “Effective pruning of neural network classifier ensembles,”
in IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat. No.
01CH37222), IEEE, vol. 2, 2001, pp. 796–801.

[167] Z.-H. Zhou and W. Tang, “Selective ensemble of decision trees,” in International workshop
on rough sets, fuzzy sets, data mining, and granular-soft computing, Springer, 2003,
pp. 476–483.

[168] I. Partalas, G. Tsoumakas, I. Katakis, and I. Vlahavas, “Ensemble pruning using
reinforcement learning,” in Hellenic Conference on Artificial Intelligence, Springer, 2006,
pp. 301–310.

[169] J. Zhang, Q. Dai, and C. Yao, “Dep-tsp meta: A multiple criteria dynamic ensemble
pruning technique ad-hoc for time series prediction,” International Journal of Machine
Learning and Cybernetics, pp. 1–24, 2021.

[170] H. Yu and G. I. Webb, “Adaptive online extreme learning machine by regulating forgetting
factor by concept drift map,” Neurocomputing, vol. 343, pp. 141–153, 2019.

[171] J. Y. Choi and B. Lee, “Combining lstm network ensemble via adaptive weighting for
improved time series forecasting,” Mathematical Problems in Engineering, vol. 2018, 2018.

[172] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, “Selective sampling using the query
by committee algorithm,” Machine learning, vol. 28, no. 2-3, pp. 133–168, 1997.

[173] P. Gaillard, G. Stoltz, and T. Van Erven, “A second-order bound with excess losses,” in
Conference on Learning Theory, PMLR, 2014, pp. 176–196.

[174] P. Gaillard and Y. Goude, “Forecasting electricity consumption by aggregating experts;
how to design a good set of experts,” in Modeling and stochastic learning for forecasting
in high dimensions, Springer, 2015, pp. 95–115.

[175] O. Wintenberger, “Optimal learning with bernstein online aggregation,” Machine
Learning, vol. 106, no. 1, pp. 119–141, 2017.

[176] M. Devaine, P. Gaillard, Y. Goude, and G. Stoltz, “Forecasting electricity consumption
by aggregating specialized experts,” Machine Learning, vol. 90, no. 2, pp. 231–260, 2013.

[177] P. Gaillard, “Contributions to online robust aggregation: Work on the approximation
error and on probabilistic forecasting. applications to forecasting for energy markets.,”
HAL, vol. 2015, 2015.

[178] V. Vovk, “Aggregating strategies,” in COLT ’90, 1990.

[179] M. Herbster and M. K. Warmuth, “Tracking the best expert,” Machine learning, vol. 32,
no. 2, pp. 151–178, 1998.

[180] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games. Cambridge university
press, 2006.

[181] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks: Tricks of the trade,
Springer, 2012, pp. 421–436.

221

REFERENCES

[182] L. Todorovski and S. Džeroski, “Combining classifiers with meta decision trees,” Machine
learning, vol. 50, no. 3, pp. 223–249, 2003.

[183] J. R. Quinlan et al., “Bagging, boosting, and c4. 5,” in Aaai/Iaai, vol. 1, 1996, pp. 725–730.

[184] C. D. Sutton, “Classification and regression trees, bagging, and boosting,” Handbook of
statistics, vol. 24, pp. 303–329, 2005.

[185] N. C. Oza and S. J. Russell, “Online bagging and boosting,” in International Workshop
on Artificial Intelligence and Statistics, PMLR, 2001, pp. 229–236.

[186] M. H. D. M. Ribeiro and L. dos Santos Coelho, “Ensemble approach based on bagging,
boosting and stacking for short-term prediction in agribusiness time series,” Applied Soft
Computing, vol. 86, p. 105 837, 2020.

[187] F. Petropoulos, R. J. Hyndman, and C. Bergmeir, “Exploring the sources of uncertainty:
Why does bagging for time series forecasting work?” European Journal of Operational
Research, vol. 268, no. 2, pp. 545–554, 2018.

[188] T. Hastie and R. Tibshirani, “Generalized additive models: Some applications,” Journal
of the American Statistical Association, vol. 82, no. 398, pp. 371–386, 1987.

[189] Y. Freund, R. Schapire, and N. Abe, “A short introduction to boosting,” Journal-Japanese
Society For Artificial Intelligence, vol. 14, no. 771-780, p. 1612, 1999.

[190] R. E. Schapire, “The boosting approach to machine learning: An overview,” Nonlinear
estimation and classification, pp. 149–171, 2003.

[191] P. Bühlmann and B. Yu, “Boosting with the l 2 loss: Regression and classification,”
Journal of the American Statistical Association, vol. 98, no. 462, pp. 324–339, 2003.

[192] J.-B. Lamy, B. Sekar, G. Guezennec, J. Bouaud, and B. Séroussi, “Explainable artificial
intelligence for breast cancer: A visual case-based reasoning approach,” Artificial
intelligence in medicine, vol. 94, pp. 42–53, 2019.

[193] E. Tjoa and C. Guan, “A survey on explainable artificial intelligence (xai): Toward
medical xai,” IEEE transactions on neural networks and learning systems, vol. 32, no. 11,
pp. 4793–4813, 2020.

[194] É. Zablocki, H. Ben-Younes, P. Pérez, and M. Cord, “Explainability of vision-based
autonomous driving systems: Review and challenges,” arXiv preprint arXiv:2101.05307,
2021.

[195] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust you?" explaining the
predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 2016, pp. 1135–1144.

[196] T. Miller, “Explanation in artificial intelligence: Insights from the social sciences,”
Artificial intelligence, vol. 267, pp. 1–38, 2019.

[197] B. Kim, R. Khanna, and O. O. Koyejo, “Examples are not enough, learn to criticize!
criticism for interpretability,” Advances in neural information processing systems, vol. 29,
2016.

[198] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial intelligence: A survey,”
in 2018 41st International convention on information and communication technology,
electronics and microelectronics (MIPRO), IEEE, 2018, pp. 0210–0215.

222

REFERENCES

[199] A. Kharal, “Explainable artificial intelligence based fault diagnosis and insight harvesting
for steel plates manufacturing,” arXiv preprint arXiv:2008.04448, 2020.

[200] L. C. Brito, G. A. Susto, J. N. Brito, and M. A. Duarte, “An explainable artificial
intelligence approach for unsupervised fault detection and diagnosis in rotating
machinery,” Mechanical Systems and Signal Processing, vol. 163, p. 108 105, 2022.

[201] M. Sundararajan and A. Najmi, “The many shapley values for model explanation,” in
International conference on machine learning, PMLR, 2020, pp. 9269–9278.

[202] A. Inglis, A. Parnell, and C. B. Hurley, “Visualizing variable importance and variable
interaction effects in machine learning models,” Journal of Computational and Graphical
Statistics, pp. 1–13, 2022.

[203] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam:
Visual explanations from deep networks via gradient-based localization,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp. 618–626.

[204] A. Saadallah and K. Morik, “Active sampling for learning interpretable surrogate machine
learning models,” in 2020 IEEE 7th International Conference on Data Science and
Advanced Analytics (DSAA), IEEE, 2020, pp. 264–272.

[205] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,”
in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., Curran
Associates, Inc., 2017, pp. 4765–4774. [Online]. Available: http://papers.nips.cc/
paper / 7062 - a - unified - approach - to - interpreting - model - predictions . pdf
(visited on 02/06/2020).

[206] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,” in
Proceedings of the 34th International Conference on Machine Learning - Volume 70,
ser. ICML’17, Sydney, NSW, Australia: JMLR.org, Aug. 6, 2017, pp. 3319–3328. (visited
on 02/18/2020).

[207] Z. Chen, Y. Bei, and C. Rudin, “Concept whitening for interpretable image recognition,”
Nature Machine Intelligence, vol. 2, no. 12, pp. 772–782, Dec. 1, 2020, issn: 2522-5839.
doi: 10.1038/s42256-020-00265-z. [Online]. Available: https://doi.org/10.1038/
s42256-020-00265-z.

[208] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim, “Sanity checks
for saliency maps,” arXiv preprint arXiv:1810.03292, 2018.

[209] O.-M. Camburu, “Explaining deep neural networks,” arXiv preprint arXiv:2010.01496,
2020.

[210] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller, “Explaining
deep neural networks and beyond: A review of methods and applications,” Proceedings
of the IEEE, vol. 109, no. 3, pp. 247–278, 2021.

[211] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, et al., “Interpretability
beyond feature attribution: Quantitative testing with concept activation vectors (tcav),”
in International conference on machine learning, PMLR, 2018, pp. 2668–2677.

223

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.1038/s42256-020-00265-z
https://doi.org/10.1038/s42256-020-00265-z
https://doi.org/10.1038/s42256-020-00265-z

REFERENCES

[212] F. Küsters, P. Schichtel, S. Ahmed, and A. Dengel, “Conceptual explanations of neural
network prediction for time series,” in 2020 International Joint Conference on Neural
Networks (IJCNN), IEEE, 2020, pp. 1–6.

[213] N. Frosst and G. Hinton, “Distilling a neural network into a soft decision tree,” arXiv
preprint arXiv:1711.09784, 2017.

[214] X. Cheng, Z. Rao, Y. Chen, and Q. Zhang, “Explaining knowledge distillation by
quantifying the knowledge,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 12 925–12 935.

[215] C. Olah, A. Mordvintsev, and L. Schubert, “Feature visualization,” Distill, vol. 2, no. 11,
e7, 2017.

[216] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visu-
alising image classification models and saliency maps,” arXiv preprint arXiv:1312.6034,
2013.

[217] R. Assaf and A. Schumann, “Explainable deep neural networks for multivariate time
series predictions.,” in IJCAI, 2019, pp. 6488–6490.

[218] R. Assaf, I. Giurgiu, F. Bagehorn, and A. Schumann, “Mtex-cnn: Multivariate time
series explanations for predictions with convolutional neural networks,” in 2019 IEEE
International Conference on Data Mining (ICDM), IEEE, 2019, pp. 952–957.

[219] M. Muschalik, F. Fumagalli, B. Hammer, and E. Hüllermeier, “Agnostic explanation of
model change based on feature importance,” KI-Künstliche Intelligenz, pp. 1–14, 2022.

[220] B. Hammer and E. Hüllermeier, “Interpretable machine learning: On the problem of
explaining model change,” in PROCEEDINGS 31. WORKSHOP COMPUTATIONAL
INTELLIGENCE, vol. 25, 2021, p. 1.

[221] A. Artelt, F. Hinder, V. Vaquet, R. Feldhans, and B. Hammer, “Contrastive explanations
for explaining model adaptations,” in International Work-Conference on Artificial Neural
Networks, Springer, 2021, pp. 101–112.

[222] ——, “Contrasting explanations for understanding and regularizing model adaptations,”
Neural Processing Letters, pp. 1–25, 2022.

[223] I. Ahmed, G. Jeon, and F. Piccialli, “From artificial intelligence to explainable artificial
intelligence in industry 4.0: A survey on what, how, and where,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 8, pp. 5031–5042, 2022.

[224] J. Schmitt, J. Bönig, T. Borggräfe, G. Beitinger, and J. Deuse, “Predictive model-
based quality inspection using machine learning and edge cloud computing,” Advanced
engineering informatics, vol. 45, p. 101 101, 2020.

[225] D. Lieber, B. Konrad, J. Deuse, M. Stolpe, and K. Morik, “Sustainable interlinked
manufacturing processes through real-time quality prediction,” in Leveraging Technology
for a Sustainable World, Springer, 2012, pp. 393–398.

[226] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE conference on computer vision and pattern
recognition, Ieee, 2009, pp. 248–255.

224

REFERENCES

[227] G. Forestier, F. Petitjean, H. A. Dau, G. I. Webb, and E. Keogh, “Generating synthetic
time series to augment sparse datasets,” in 2017 IEEE international conference on data
mining (ICDM), IEEE, 2017, pp. 865–870.

[228] D. Lahat, T. Adali, and C. Jutten, “Multimodal data fusion: An overview of methods,
challenges, and prospects,” Proceedings of the IEEE, vol. 103, no. 9, pp. 1449–1477, 2015.

[229] A. Saadallah, F. Finkeldey, K. Morik, and P. Wiederkehr, “Stability prediction in milling
processes using a simulation-based machine learning approach,” Procedia CIRP, vol. 72,
pp. 1493–1498, 2018.

[230] P. M. Grulich, J. Traub, S. Breß, A. Katsifodimos, V. Markl, and T. Rabl, “Generating
reproducible out-of-order data streams,” in Proceedings of the 13th ACM International
Conference on Distributed and Event-based Systems, ser. DEBS ’19, Darmstadt, Germany:
ACM, 2019, pp. 256–257, isbn: 978-1-4503-6794-3. doi: 10.1145/3328905.3332511.
[Online]. Available: http://doi.acm.org/10.1145/3328905.3332511.

[231] A. Biland et al., “Calibration and performance of the photon sensor response of FACT
the first G-APD Cherenkov telescope,” Journal of Instrumentation, vol. 9, no. 10,
P10012–P10012, 2014, issn: 1748-0221. doi: 10 . 1088 / 1748 - 0221 / 9 / 10 / P10012.
[Online]. Available: http://stacks.iop.org/1748-0221/9/i=10/a=P10012.

[232] Y. Fischer and A. Bauer, “Object-oriented sensor data fusion for wide maritime
surveillance,” in 2010 International WaterSide Security Conference, IEEE, 2010, pp. 1–6.

[233] M. Bunse, A. Saadallah, and K. Morik, “Towards active simulation data mining,” in
European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD) Workshops, 2019, p. 104.

[234] Fischer, C., “Runtime and accuracy issues in three-dimensional finite element simulation
of machining,” International Journal of Machining and Machinability of Materials, vol. 6,
no. 1/2, p. 35, 2009, issn: 1748-5711 (P), 1748-572X (E).

[235] M. Tang, C. Yang, J. Yan, and Q. Yue, “Validity and limitation of analytical models for
the bending stress of a helical wire in unbonded flexible pipes,” Applied Ocean Research,
vol. 50, pp. 58–68, 2015, issn: 0141-1187. doi: 10.1016/j.apor.2014.12.004.

[236] G. Meschke, B. Cao, A. Egorov, A. Saadallah, S. Freitag, and K. Morik., “Big data
and simulation- a new approach for real-time tbm steering.,” Peila, D.; Viggiani, G.;
Celestino, T. (eds.), Tunnels and Underground Cities. Engineering and Innovation Meet
Archaeology, Architecture and Art, Proceedings of the WTC 2019 ITA-AITES World
Tunnel Congress (WTC 2019), Naples, Italy, Taylor and Francis, London, pp. 2681–2690,
2019.

[237] B.-T. Cao, S. Freitag, and G. Meschke, “A hybrid rnn-gpod surrogate model for real-time
settlement predictions in mechanised tunnelling,” Advanced Modeling and Simulation in
Engineering Sciences, vol. 3, no. 1, p. 5, 2016.

[238] I. Goldenberg and G. I. Webb, “Pca-based drift and shift quantification framework for
multidimensional data,” Knowledge and Information Systems, vol. 62, no. 7, pp. 2835–2854,
2020.

[239] A. Dempster, D. F. Schmidt, and G. I. Webb, “Minirocket: A very fast (almost)
deterministic transform for time series classification,” in Proceedings of the 27th ACM
SIGKDD conference on knowledge discovery & data mining, 2021, pp. 248–257.

225

https://doi.org/10.1145/3328905.3332511
http://doi.acm.org/10.1145/3328905.3332511
https://doi.org/10.1088/1748-0221/9/10/P10012
http://stacks.iop.org/1748-0221/9/i=10/a=P10012
https://doi.org/10.1016/j.apor.2014.12.004

REFERENCES

[240] A. Dempster, F. Petitjean, and G. I. Webb, “Rocket: Exceptionally fast and accurate time
series classification using random convolutional kernels,” Data Mining and Knowledge
Discovery, vol. 34, no. 5, pp. 1454–1495, 2020.

[241] X. Wang, A. Wirth, and L. Wang, “Structure-based statistical features and multivariate
time series clustering,” in Seventh IEEE international conference on data mining (ICDM
2007), IEEE, 2007, pp. 351–360.

[242] T. Räsänen and M. Kolehmainen, “Feature-based clustering for electricity use time
series data,” in International conference on adaptive and natural computing algorithms,
Springer, 2009, pp. 401–412.

[243] W. He, Z. Wang, and H. Jiang, “Model optimizing and feature selecting for support
vector regression in time series forecasting,” Neurocomputing, vol. 72, no. 1-3, pp. 600–611,
2008.

[244] S. Du, T. Li, Y. Yang, and S.-J. Horng, “Multivariate time series forecasting via attention-
based encoder–decoder framework,” Neurocomputing, vol. 388, pp. 269–279, 2020.

[245] L. Munkhdalai, T. Munkhdalai, K. H. Park, T. Amarbayasgalan, E. Batbaatar, H. W.
Park, and K. H. Ryu, “An end-to-end adaptive input selection with dynamic weights for
forecasting multivariate time series,” IEEE Access, vol. 7, pp. 99 099–99 114, 2019.

[246] X. Wang and M. Han, “Improved extreme learning machine for multivariate time series
online sequential prediction,” Engineering Applications of Artificial Intelligence, vol. 40,
pp. 28–36, 2015.

[247] A. Gonzalez-Vidal, F. Jimenez, and A. F. Gomez-Skarmeta, “A methodology for energy
multivariate time series forecasting in smart buildings based on feature selection,” Energy
and Buildings, vol. 196, pp. 71–82, 2019, issn: 0378-7788. doi: https://doi.org/10.
1016/j.enbuild.2019.05.021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0378778818338775.

[248] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting the dots:
Multivariate time series forecasting with graph neural networks,” in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2020, pp. 753–763.

[249] A. Sagheer and M. Kotb, “Unsupervised pre-training of a deep lstm-based stacked
autoencoder for multivariate time series forecasting problems,” Scientific reports, vol. 9,
no. 1, pp. 1–16, 2019.

[250] C. Ding and H. Peng, “Minimum redundancy feature selection from microarray gene
expression data,” Journal of bioinformatics and computational biology, vol. 3, no. 02,
pp. 185–205, 2005.

[251] G. Gulgezen, Z. Cataltepe, and L. Yu, “Stable and accurate feature selection,” in Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD
2009, Bled, Slovenia, September 7-11, 2009, Proceedings, Part I 20, Springer, 2009,
pp. 455–468.

[252] K. Michalak and H. Kwaśnicka, “Correlation-based feature selection strategy in
classification problems,” International Journal of Applied Mathematics and Computer
Science, vol. 16, no. 4, pp. 503–511, 2006.

226

https://doi.org/https://doi.org/10.1016/j.enbuild.2019.05.021
https://doi.org/https://doi.org/10.1016/j.enbuild.2019.05.021
https://www.sciencedirect.com/science/article/pii/S0378778818338775
https://www.sciencedirect.com/science/article/pii/S0378778818338775

REFERENCES

[253] L. Yu and H. Liu, “Efficient feature selection via analysis of relevance and redundancy,”
The Journal of Machine Learning Research, vol. 5, pp. 1205–1224, 2004.

[254] L. Parsons, E. Haque, and H. Liu, “Subspace clustering for high dimensional data: A
review,” Acm sigkdd explorations newsletter, vol. 6, no. 1, pp. 90–105, 2004.

[255] G. Jurman, S. Merler, A. Barla, S. Paoli, A. Galea, and C. Furlanello, “Algebraic
stability indicators for ranked lists in molecular profiling,” Bioinformatics, vol. 24, no. 2,
pp. 258–264, 2008.

[256] B. Schowe and K. Morik, “Fast-ensembles of minimum redundancy feature selection,”
Ensembles in Machine Learning Applications, pp. 75–95, 2011.

[257] V. Cerqueira, L. Torgo, J. Smailović, and I. Mozetič, “A comparative study of performance
estimation methods for time series forecasting,” in IEEE Int. Conference on Data Science
and Advanced Analytics (DSAA), IEEE, 2017, pp. 529–538.

[258] D. J. MacKay et al., “Introduction to gaussian processes,” NATO ASI series F computer
and systems sciences, vol. 168, pp. 133–166, 1998.

[259] G. Melki, A. Cano, V. Kecman, and S. Ventura, “Multi-target support vector regression
via correlation regressor chains,” Information Sciences, vol. 415, pp. 53–69, 2017.

[260] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah, “Time-series clustering–a decade
review,” Information Systems, vol. 53, pp. 16–38, 2015.

[261] A. Sardá-Espinosa, “Comparing time-series clustering algorithms in r using the dtwclust
package,” R package vignette, vol. 12, p. 41, 2017.

[262] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” in The
Collected Works of Wassily Hoeffding, Springer, 1994, pp. 409–426.

[263] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” Annals
of statistics, pp. 1189–1232, 2001.

[264] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, “Support vector
regression machines,” in Advances in neural information processing systems, 1997, pp. 155–
161.

[265] J. H. Friedman and W. Stuetzle, “Projection pursuit regression,” Journal of the American
statistical Association, vol. 76, no. 376, pp. 817–823, 1981.

[266] J. H. Friedman et al., “Multivariate adaptive regression splines,” The annals of statistics,
vol. 19, no. 1, pp. 1–67, 1991.

[267] B. Mevik and R. Wehrens, “Introduction to the pls package,” Help Section of The “Pls”
Package of R Studio Software, pp. 1–23, 2015.

[268] T. Koskela, M. Lehtokangas, J. Saarinen, and K. Kaski, “Time series prediction with
multilayer perceptron, fir and elman neural networks,” in Proceedings of the world congress
on neural networks, Citeseer, 1996, pp. 491–496.

[269] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, “Convolutional
lstm network: A machine learning approach for precipitation nowcasting,” in Advances
in neural information processing systems, 2015, pp. 802–810.

[270] F. Wilcoxon, “Individual comparisons by ranking methods,” in Breakthroughs in statistics,
Springer, 1992, pp. 196–202.

227

REFERENCES

[271] A. Saadallah, M. Jakobs, and K. Morik, “Explainable online deep neural network selection
using adaptive saliency maps for time series forecasting,” in Machine Learning and
Knowledge Discovery in Databases. Research Track, N. Oliver, F. Pérez-Cruz, S. Kramer, J.
Read, and J. A. Lozano, Eds., Cham: Springer International Publishing, 2021, pp. 404–420,
isbn: 978-3-030-86486-6.

[272] L. Birgé and P. Massart, “Gaussian model selection,” Journal of the European
Mathematical Society, vol. 3, no. 3, pp. 203–268, 2001.

[273] R. Godahewa, C. Bergmeir, G. I. Webb, and P. Montero-Manso, “An accurate and fully-
automated ensemble model for weekly time series forecasting,” International Journal of
Forecasting, 2022.

[274] V. Assimakopoulos and K. Nikolopoulos, “The theta model: A decomposition approach
to forecasting,” International journal of forecasting, vol. 16, no. 4, pp. 521–530, 2000.

[275] A. M. De Livera, R. J. Hyndman, and R. D. Snyder, “Forecasting time series with
complex seasonal patterns using exponential smoothing,” Journal of the American
statistical association, vol. 106, no. 496, pp. 1513–1527, 2011.

[276] P. Gaillard and Y. Goude, Opera: Online prediction by expert aggregation, R package
version 1.0, 2016. [Online]. Available: https://CRAN.R-project.org/package=opera.

[277] N. Ueda and R. Nakano, “Generalization Error of Ensemble Estimators,” in Neural
Networks, 1996., IEEE International Conference on, 1996, pp. 90–95.

[278] T. W. Liao, “Clustering of time series data—a survey,” Pattern recognition, vol. 38,
no. 11, pp. 1857–1874, 2005.

[279] P. Coretto and C. Hennig, “Robust improper maximum likelihood: Tuning, computation,
and a comparison with other methods for robust gaussian clustering,” Journal of the
American Statistical Association, vol. 111, no. 516, pp. 1648–1659, 2016.

[280] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal processing
magazine, vol. 13, no. 6, pp. 47–60, 1996.

[281] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning, 3. MIT
Press Cambridge, MA, 2006, vol. 2.

[282] R. Wehrens and B.-H. Mevik, “The pls package: Principal component and partial least
squares regression in r,” 2007.

[283] J.-W. Kim, J.-S. Jang, M.-S. Yang, J.-H. Kang, K.-W. Kim, Y.-J. Cho, and J.-W. Lee,
“A study on fault classification of machining center using acceleration data based on
1d cnn algorithm,” Journal of the Korean Society of Manufacturing Process Engineers,
vol. 18, no. 9, pp. 29–35, 2019.

[284] M. Zinkevich, “Online convex programming and generalized infinitesimal gradient ascent,”
in Proceedings of the 20th international conference on machine learning (icml-03), 2003,
pp. 928–936.

[285] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” Journal of
Machine Learning Research, vol. 7, pp. 1–30, 2006, issn: 1532-4435.

[286] S. B. Taieb, G. Bontempi, A. F. Atiya, and A. Sorjamaa, “A review and comparison
of strategies for multi-step ahead time series forecasting based on the nn5 forecasting
competition,” Expert systems with applications, vol. 39, no. 8, pp. 7067–7083, 2012.

228

https://CRAN.R-project.org/package=opera

REFERENCES

[287] S. Zhang, Y. Chen, W. Zhang, and R. Feng, “A novel ensemble deep learning model
with dynamic error correction and multi-objective ensemble pruning for time series
forecasting,” Information Sciences, vol. 544, pp. 427–445, 2021.

[288] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for
discriminative localization,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 2921–2929.

[289] K. Demertzis, L. Iliadis, and V.-D. Anezakis, “A deep spiking machine-hearing system for
the case of invasive fish species,” in 2017 IEEE International Conference on Innovations
in Intelligent Systems and Applications (INISTA), IEEE, 2017, pp. 23–28.

[290] A. Borovykh, S. Bohte, and C. W. Oosterlee, “Conditional time series forecasting with
convolutional neural networks,” arXiv preprint arXiv:1703.04691, 2017.

[291] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” arXiv
preprint arXiv:1511.07122, 2015.

[292] R. Mittelman, “Time-series modeling with undecimated fully convolutional neural
networks,” arXiv preprint arXiv:1508.00317, 2015.

[293] M. Binkowski, G. Marti, and P. Donnat, “Autoregressive convolutional neural networks
for asynchronous time series,” in International Conference on Machine Learning, PMLR,
2018, pp. 580–589.

[294] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures of local
experts,” Neural computation, vol. 3, no. 1, pp. 79–87, 1991.

[295] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “Deepar: Probabilistic
forecasting with autoregressive recurrent networks,” International Journal of Forecasting,
vol. 36, no. 3, pp. 1181–1191, 2020.

[296] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-beats: Neural basis expansion
analysis for interpretable time series forecasting,” arXiv preprint arXiv:1905.10437, 2019.

[297] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing
systems, vol. 30, 2017.

[298] J. Burkardt, “K-means clustering,” Virginia Tech, Advanced Research Computing,
Interdisciplinary Center for Applied Mathematics, 2009.

[299] A. Mozaffari and N. L. Azad, “Optimally pruned extreme learning machine with ensemble
of regularization techniques and negative correlation penalty applied to automotive engine
coldstart hydrocarbon emission identification,” Neurocomputing, vol. 131, pp. 143–156,
2014.

[300] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM:
Visual explanations from deep networks via gradient-based localization,” International
Journal of Computer Vision, vol. 128, no. 2, pp. 336–359, 2019, issn: 1573-1405. doi:
10.1007/s11263- 019- 01228- 7. [Online]. Available: https://doi.org/10.1007/
s11263-019-01228-7 (visited on 02/26/2020).

[301] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

229

https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7

REFERENCES

[302] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation
of deep networks,” in Proceedings of the 34th International Conference on Machine
Learning-Volume 70, JMLR. org, 2017, pp. 1126–1135.

[303] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural attentive meta-
learner,” in International Conference on Learning Representations, 2018.

[304] I. Partalas, G. Tsoumakas, and I. Vlahavas, “Pruning an ensemble of classifiers via
reinforcement learning,” Neurocomputing, vol. 72, no. 7-9, pp. 1900–1909, 2009.

[305] C. Feng and J. Zhang, “Reinforcement learning based dynamic model selection for short-
term load forecasting,” in 2019 IEEE Power & Energy Society Innovative Smart Grid
Technologies Conference (ISGT), IEEE, 2019, pp. 1–5.

[306] R. S. Sutton and A. G. Barto, Reinforcement learning, 1998.

[307] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no. 1/2, pp. 100–115,
1954.

[308] R. T. Clemen and R. L. Winkler, “Combining economic forecasts,” Journal of Business
& Economic Statistics, vol. 4, no. 1, pp. 39–46, 1986.

[309] J. Yan and L. Li, “Multi-objective optimization of milling parameters â the trade-offs
between energy, production rate and cutting quality,” Journal of Cleaner Production,
vol. 52, pp. 462–471, 2013, issn: 0959-6526. doi: 10.1016/j.jclepro.2013.02.030.

[310] C. Li, X. Chen, Y. Tang, and L. Li, “Selection of optimum parameters in multi-pass
face milling for maximum energy efficiency and minimum production cost,” Journal of
Cleaner Production, vol. 140, pp. 1805–1818, 2017, issn: 0959-6526. doi: 10.1016/j.
jclepro.2016.07.086.

[311] F. Finkeldey, S. Hess, and P. Wiederkehr, “Tool wear-dependent process analysis by
means of a statistical online monitoring system,” Production Engineering, vol. 11, no. 6,
pp. 667–686, Oct. 2017, issn: 0944-6524. doi: 10.1007/s11740-017-0773-0.

[312] M. Salehi, P. Albertelli, M. Goletti, F. Ripamonti, G. Tomasini, and M. Monno, “Indirect
model based estimation of cutting force and tool tip vibrational behavior in milling
machines by sensor fusion,” Procedia CIRP, vol. 33, pp. 239–244, 2015, issn: 2212-8271.
doi: 10.1016/j.procir.2015.06.043.

[313] C. Drouillet, J. Karandikar, C. Nath, A.-C. Journeaux, M. El Mansori, and T. Kurfess,
“Tool life predictions in milling using spindle power with the neural network technique,”
Journal of Manufacturing Processes, vol. 22, pp. 161–168, 2016. doi: 10.1016/j.jmapro.
2016.03.010.

[314] F. Klocke, Manufacturing Processes 1 – Cutting. Springer, 2011. doi: 10.1007/978-3-
642-11979-8.

[315] M. M. de Aguiar, A. E. Diniz, and R. Pederiva, “Correlating surface roughness, tool
wear and tool vibration in the milling process of hardened steel using long slender tools,”
International Journal of Machine Tools and Manufacture, vol. 68, pp. 1–10, 2013, issn:
0890-6955. doi: 10.1016/j.ijmachtools.2013.01.002.

[316] F. Cus, M. Milfelner, and J. Balic, “An intelligent system for monitoring and optimization
of ball-end milling process,” Journal of Materials Processing Technology, vol. 175, no. 1-3,
pp. 90–97, 2006.

230

https://doi.org/10.1016/j.jclepro.2013.02.030
https://doi.org/10.1016/j.jclepro.2016.07.086
https://doi.org/10.1016/j.jclepro.2016.07.086
https://doi.org/10.1007/s11740-017-0773-0
https://doi.org/10.1016/j.procir.2015.06.043
https://doi.org/10.1016/j.jmapro.2016.03.010
https://doi.org/10.1016/j.jmapro.2016.03.010
https://doi.org/10.1007/978-3-642-11979-8
https://doi.org/10.1007/978-3-642-11979-8
https://doi.org/10.1016/j.ijmachtools.2013.01.002

REFERENCES

[317] H. Saglam and A. Unuvar, “Tool condition monitoring in milling based on cutting forces
by a neural network,” International Journal of Production Research, vol. 41, no. 7,
pp. 1519–1532, 2003.

[318] P. Huang, J. Li, J. Sun, and J. Zhou, “Vibration analysis in milling titanium alloy
based on signal processing of cutting force,” The International Journal of Advanced
Manufacturing Technology, vol. 64, no. 5-8, pp. 613–621, 2013.

[319] T. Herpel, C. Lauer, R. German, and J. Salzberger, “Multi-sensor data fusion in
automotive applications,” in 2008 3rd International Conference on Sensing Technology,
IEEE, 2008, pp. 206–211.

[320] P. Valageas, “Accuracy of analytical models of the large-scale matter distribution,” Phys.
Rev. D, vol. 88, p. 083 524, 8 Oct. 2013. doi: 10.1103/PhysRevD.88.083524.

[321] P. Pohanka, J. Hrabovsk, and M. Fiedler, “Sensors simulation environment for sensor data
fusion,” in 14th International Conference on Information Fusion, IEEE, 2011, pp. 1–8.

[322] B. Chen, R. Jiang, T. Kasetkasem, and P. K. Varshney, “Channel aware decision fusion
in wireless sensor networks,” IEEE Transactions on Signal Processing, vol. 52, no. 12,
pp. 3454–3458, 2004.

[323] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing
systems, 2014, pp. 2672–2680.

[324] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medical) time series generation
with recurrent conditional gans,” arXiv preprint arXiv:1706.02633, 2017.

[325] N. Kaempchen and K. Dietmayer, “Data synchronization strategies for multi-sensor
fusion,” in Proceedings of the IEEE Conference on Intelligent Transportation Systems,
vol. 85, 2003, pp. 1–9.

[326] T. Huck, A. Westenberger, M. Fritzsche, T. Schwarz, and K. Dietmayer, “Precise
timestamping and temporal synchronization in multi-sensor fusion,” in 2011 IEEE
Intelligent Vehicles Symposium (IV), IEEE, 2011, pp. 242–247.

[327] K. Morik and W. (Rhode, “Technical report for collaborative research center sfb 876 -
graduate school,” TU Dortmund University, Tech. Rep., 2019.

[328] K. Yamanishi and J. Takeuchi, “A unifying framework for detecting outliers and change
points from non-stationary time series data,” in Proceedings of the Eighth ACM SIGKDD,
ser. KDD ’02, New York, NY, USA: ACM, 2002.

[329] W. K. Ngui, M. S. Leong, L. M. Hee, and A. M. Abdelrhman, “Wavelet analysis: Mother
wavelet selection methods,” in Advances in Manufacturing and Mechanical Engineering,
vol. 393, Nov. 2013, pp. 953–958.

[330] K. Fukumizu, L. Song, and A. Gretton, “Kernel bayes’ rule: Bayesian inference with
positive definite kernels,” The Journal of Machine Learning Research, vol. 14, no. 1,
pp. 3753–3783, 2013.

[331] Y. Chen, M. Welling, and A. Smola, “Super-samples from kernel herding,” arXiv preprint
arXiv:1203.3472, 2012.

231

https://doi.org/10.1103/PhysRevD.88.083524

REFERENCES

[332] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for bound
constrained optimization,” SIAM J. Sci. Comput., vol. 16, no. 5, pp. 1190–1208, Sep.
1995, issn: 1064-8275. doi: 10.1137/0916069.

[333] S. Matzka and R. Altendorfer, “A comparison of track-to-track fusion algorithms for
automotive sensor fusion,” in Multisensor Fusion and Integration for Intelligent Systems,
Springer, 2009, pp. 69–81.

[334] B. Krishnapuram, A. Harternink, L. Carin, and M. A. Figueiredo, “A bayesian approach
to joint feature selection and classifier design,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 26, no. 9, pp. 1105–1111, 2004.

[335] I.-S. Oh, J.-S. Lee, and B.-R. Moon, “Hybrid genetic algorithms for feature selection,”
IEEE Transactions on pattern analysis and machine intelligence, vol. 26, no. 11, pp. 1424–
1437, 2004.

[336] H. Liu and H. Motoda, Feature Selection for Knowledge Discovery and Data Mining.
Kluwer Academic Publishers, 1998.

[337] A. Severyn and A. Moschitti, “Automatic feature engineering for answer selection and
extraction,” in Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, 2013, pp. 458–467.

[338] J. M. Kanter and K. Veeramachaneni, “Deep feature synthesis: Towards automating
data science endeavors,” in 2015 IEEE International Conference on Data Science and
Advanced Analytics (DSAA), IEEE, 2015, pp. 1–10.

[339] M. Hofmann and R. Klinkenberg, RapidMiner: Data mining use cases and business
analytics applications. CRC Press, 2013.

[340] S. Nogueira, K. Sechidis, and G. Brown, “On the stability of feature selection algorithms.,”
Journal of Machine Learning Research, vol. 18, pp. 174–1, 2017.

[341] P. K. Varshney, “Multisensor data fusion,” Electronics & Communication Engineering
Journal, vol. 9, no. 6, pp. 245–253, 1997.

[342] M. H. Ko, G. West, S. Venkatesh, and M. Kumar, “Using dynamic time warping for online
temporal fusion in multisensor systems,” Information Fusion, vol. 9, no. 3, pp. 370–388,
2008.

[343] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[344] F. Finkeldey, A. Saadallah, P. Wiederkehr, and K. Morik, “Real-time prediction of
process forces in milling operations using synchronized data fusion of simulation and
sensor data,” Engineering Applications of Artificial Intelligence, vol. 94, p. 103 753, 2020.

[345] Z. Wang, B. Zhao, H. Guo, L. Tang, and Y. Peng, “Deep ensemble learning model for
short-term load forecasting within active learning framework,” Energies, vol. 12, no. 20,
p. 3809, 2019.

[346] S. Palani, S.-Y. Liong, and P. Tkalich, “An ann application for water quality forecasting,”
Marine pollution bulletin, vol. 56, no. 9, pp. 1586–1597, 2008.

[347] Z. Lv, Y. Han, A. K. Singh, G. Manogaran, and H. Lv, “Trustworthiness in industrial iot
systems based on artificial intelligence,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 2, pp. 1496–1504, 2020.

232

https://doi.org/10.1137/0916069

REFERENCES

[348] R. S. Shoberg, “Engineering fundamentals of threaded fastener design and analysis. i,”
Fastening, vol. 6, no. 2, pp. 26–29, 2000.

[349] G. Wang, A. Ledwoch, R. M. Hasani, R. Grosu, and A. Brintrup, “A generative neural
network model for the quality prediction of work in progress products,” Applied Soft
Computing, vol. 85, p. 105 683, 2019.

[350] N. V. Chawla, “Data mining for imbalanced datasets: An overview,” Data mining and
knowledge discovery handbook, pp. 875–886, 2009.

[351] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[352] L. Li, “Bottleneck detection of complex manufacturing systems using a data-driven
method,” International Journal of Production Research, vol. 47, no. 24, pp. 6929–6940,
2009.

[353] J. Wang, J. Li, J. Arinez, and S. Biller, “Quality bottleneck transitions in flexible
manufacturing systems with batch productions,” IIE Transactions, vol. 45, no. 2, pp. 190–
205, 2013.

[354] G. Köksal, İ. Batmaz, and M. C. Testik, “A review of data mining applications for quality
improvement in manufacturing industry,” Expert Systems with Applications, vol. 38,
no. 10, pp. 13 448–13 467, 2011, issn: 0957-4174. doi: https://doi.org/10.1016/j.
eswa.2011.04.063. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0957417411005793.

[355] Y. Li, K. Mohan, H. Sun, and R. Jin, “Ensemble modeling of in situ features for printed
electronics manufacturing with in situ process control potential,” IEEE Robotics and
Automation Letters, vol. 2, no. 4, pp. 1864–1870, 2017.

[356] S. Stoyanov and C. Bailey, “Machine learning for additive manufacturing of electronics,”
in 2017 40th international spring seminar on electronics technology (ISSE), IEEE, 2017,
pp. 1–6.

[357] A. Saadallah, N. Piatkowski, F. Finkeldey, P. Wiederkehr, and K. Morik, “Learning
ensembles in the presence of imbalanced classes.,” in ICPRAM, 2019, pp. 866–873.

[358] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter, “Efficient
and robust automated machine learning,” Advances in neural information processing
systems, vol. 28, 2015.

[359] T. Gneiting and M. Katzfuss, “Probabilistic forecasting,” Annual Review of Statistics
and Its Application, vol. 1, pp. 125–151, 2014.

[360] L. Torgo and O. Ohashi, “2d-interval predictions for time series,” in Proceedings of the
17th ACM SIGKDD international conference on Knowledge discovery and data mining,
2011, pp. 787–794.

[361] S. B. Taieb, G. Bontempi, A. F. Atiya, and A. Sorjamaa, “A review and comparison
of strategies for multi-step ahead time series forecasting based on the nn5 forecasting
competition,” Expert systems with applications, vol. 39, no. 8, pp. 7067–7083, 2012.

[362] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great time series
classification bake off: A review and experimental evaluation of recent algorithmic
advances,” Data Mining and Knowledge Discovery, vol. 31, pp. 606–660, 3 2017.

233

https://doi.org/https://doi.org/10.1016/j.eswa.2011.04.063
https://doi.org/https://doi.org/10.1016/j.eswa.2011.04.063
https://www.sciencedirect.com/science/article/pii/S0957417411005793
https://www.sciencedirect.com/science/article/pii/S0957417411005793

REFERENCES

[363] D. Dua and C. Graff, UCI machine learning repository, 2017. [Online]. Available: http:
//archive.ics.uci.edu/ml.

[364] A. Karatzoglou, A. Smola, K. Hornik, and M. A. Karatzoglou, “Package ‘kernlab’,”
CRAN R Project, 2019.

[365] D. Milborrow, “Wind power on the grid,” in Renewable Electricity and the Grid, Routledge,
2012, pp. 52–75.

[366] P. J. Green and B. W. Silverman, Nonparametric regression and generalized linear models:
a roughness penalty approach. Crc Press, 1993.

[367] R. C. Team et al., “R: A language and environment for statistical computing,” 2013.

[368] J. Padarian, B. Minasny, A. McBratney, and N. Dalgliesh, “Predicting and mapping
the soil available water capacity of australian wheatbelt,” Geoderma Regional, vol. 2,
pp. 110–118, 2014.

[369] J. Elith and J. Leathwick, “Boosted regression trees for ecological modeling,” R Documen-
tation. Available online: https://cran. r-project. org/web/packages/dismo/vignettes/brt.
pdf (accessed on 12 June 2011), 2017.

[370] G. Ridgeway, D. McCaffrey, A. Morral, B. A. Griffin, L. Burgette, M. L. Burgette, M.
Ridgeway, and M. Burgette, “Package ‘twang’,” 2015.

[371] P. McCullagh and J. A. Nelder, Generalized linear models. Routledge, 2019.

[372] M. Kuss and C. Rasmussen, “Gaussian processes in reinforcement learning,” Advances in
neural information processing systems, vol. 16, 2003.

[373] I. T. Jolliffe, “A note on the use of principal components in regression,” Journal of the
Royal Statistical Society: Series C (Applied Statistics), vol. 31, no. 3, pp. 300–303, 1982.

[374] A. Saadallah, H. Mykula, and K. Morik, “Online adaptive multivariate time series
forecasting,” in Joint European conference on machine learning and knowledge discovery
in databases, Springer, 2022.

[375] A. Saadallah, M. Jakobs, and K. Morik, “Explainable online ensemble of deep neural
network pruning for time series forecasting,” in Machine Learning Journal, Springer
International Publishing, 2022.

[376] A. Saadallah, J. Büscher, O. Abdulaaty, T. Panusch, J. Deuse, and K. Morik, “Explainable
predictive quality inspection using deep learning in electronics manufacturing,” Procedia
CIRP, vol. 107, pp. 594–599, 2022.

[377] A. Saadallah, O. Abdulaaty, J. Büscher, T. Panusch, K. Morik, and J. Deuse, “Early
quality prediction using deep learning on time series sensor data,” Procedia CIRP, vol. 107,
pp. 611–616, 2022.

[378] A. Saadallah, F. Finkeldey, J. Buß, K. Morik, P. Wiederkehr, and W. Rhode, “Simulation
and sensor data fusion for machine learning application,” Advanced Engineering
Informatics, vol. 52, p. 101 600, 2022.

[379] A. Saadallah, A. Egorov, B.-T. Cao, S. Freitag, K. Morik, and G. Meschke, “Active
learning for accurate settlement prediction using numerical simulations in mechanized
tunneling,” Procedia CIRP, vol. 81, pp. 1052–1058, 2019.

234

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

A
Time Series Data Sets and Learning

Algorithms

A.1 Data Sets

A.1.1 MTS Data Sets for the Meta-Learning Task in OAMTS

Name Nr of
time
series

Nr of
variables

Source Characteristics Target variable

Stock data 5 82 UCI 1 Daily Closing
Price
from 2010 to 2017

Close

NASA Flight data 20 30 NASA
2

Data collected ev-
ery
second from avia-
tion domain

alt

Air quality data 9 15 UCI 3 Hourly responses
of
gas multisensor
device

PT08.S1.CO.

Beijing
Guangzhou
Shanghai

9
17
8

86 UCI 4 Hourly data of the
PM2.5 data

PM_Dongsi
PM_City.Station
PM_Jingan

Maintenance of Naval
Propulsion Plants

12 16 UCI 5 Data collected
from
simulator of gas
turbines

V55

TLC Trip Record Data
(Yellow taxi - 2021-01)

20 16 NYC
6

New York taxi
trip data

total_amount

Table A.1: The summary of datasets used for the meta-learning in OAMTS.

235

A. Time Series Data Sets and Learning Algorithms

A.1.2 MTS Data Sets for OAMTS Evaluation

Name Nr of
time
series

Nr of
variables

Source Characteristics Target variable

TLC Trip Record Data
(Yellow taxi - 2021-07)

20 16 NYC
7

New York taxi
trip data

total_amount

Shenyang
Chendgu

19
10

86 UCI 8 Hourly data of the
PM2.5 data

PM_Taiyuanjie
PM_Caotangsi

Bike Sharing Dataset 17 16 UCI 9 Hourly count of
rental bikes be-
tween 2011 and
2012

cnt

Table A.2: The summary of datasets used for the evaluation of OAMTS.

A.1.3 Time Series Data Sets for DEMSRC, OMS-ROC, OS-PGSM, and
OEP-ROC, and OEA-DRL Evaluation

All used datasets, together with a short description, can be found in Table A.3. For the datasets
from the UEA & UCR Time Series repositories, we ”converted“ them to time series forecasting
datasets by taking the first feature vector X0 from the respective training set and using that
for splitting into training, validation and test parts. We also used a total of 98 datasets from
the M4 competition [142]. More precisely, we used columns of the hourly, monthly, weekly and
daily tables given by the challenge. The extracted columns were cleaned by skipping the NaN
values at the beginning and end of each time series, should they exist.

A.2 Learning Algorithms

We also use several standard regression learning algorithms in all our methods in addition to
the forecasting models that we have presented in Chapter 2. These algorithms were applied
in an autoregressive fashion using the time series embedding (See Section 2.4.4). The list of
learning algorithms is the following:

SVR: Support vector regression with linear, radial basis function, Laplacian, and polynomial
kernels. The parameter for cost of constraints violation is set to 1 (default), and the
epsilon in the insensitive-loss function is set to 0.1 (default). We used the implementation
from the R package kernlab [364];

1https://archive.ics.uci.edu/ml/datasets/CNNpred%3A+CNN-based+stock+market+prediction+
using+a+diverse+set+of+variables

2https://data.world/us-nasa-gov/f70d5ecd-0c18-4033-9568-416c4e14c96c
3https://archive.ics.uci.edu/ml/datasets/Air+Quality
4https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities
5https://archive.ics.uci.edu/ml/datasets/Condition+Based+Maintenance+of+Naval+Propulsion+

Plants
6https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
7https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
8https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities
9https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

236

https://archive.ics.uci.edu/ml/datasets/CNNpred%3A+CNN-based+stock+market+prediction+using+a+diverse+set+of+variables
https://archive.ics.uci.edu/ml/datasets/CNNpred%3A+CNN-based+stock+market+prediction+using+a+diverse+set+of+variables
https://data.world/us-nasa-gov/f70d5ecd-0c18-4033-9568-416c4e14c96c
https://archive.ics.uci.edu/ml/datasets/Air+Quality
https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities
https://archive.ics.uci.edu/ml/datasets/Condition+Based+Maintenance+of+Naval+Propulsion+Plants
https://archive.ics.uci.edu/ml/datasets/Condition+Based+Maintenance+of+Naval+Propulsion+Plants
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities
https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

A.2 Learning Algorithms

Name Nr. of
time series Source Characteristics

Amount registered 1 Bike sharing [9] Hourly, Jan. 1, to Mar. 01, 2011
AbnormalHeartbeat 1 3053 measurements (4kHz)
CatsDogs 1 14773 audio samples (16kHz)
Cricket 1 1197 accelerometer readings (184Hz)
EOGHorizontalSignal 1 UEA 1250 measurements (1kHz)
EthanolConcentration 1 & UCR [362] 1 second spectrum measurement
Phoneme 1 1024 samples of audio
Rock 1 2844 samples of spectrum analysis
SNP500 1
DJI 1 UCI [363][111] Daily closing, 2010 to 2017
NYSE 1
RUSSELL 1
Electricity (Hourly) 11 Energy consumption measurements
KDD Cup 2018 13 Monash Forecast air quality indices (AQIs)
Pedestrian Counts 12 Forecasting Hourly pedestrian counts from Melbourne
Solar (10 minutes) 12 Benchmark Solar power production
M4 (Daily) 12 [1] Daily time series from M4 dataset
M4 (Weekly) 13 Weekly time series from M4 dataset
Weather 15 Daily weather forecasts

Table A.3: List of datasets used for the experiments of DEMSRC, OMS-ROC, OS-PGSM, OEP-
ROC, and OEA-DRL.

MARS: Multivariate adaptive regression splines [266] with different parameters regarding
the maximum degree of interaction (Degree), and the maximum number of model terms
before pruning (No. terms). The forward stepping threshold is set up to 0.001 (default).
We the implementation from the R package earth is used [365].

RF: Random forests [343] with a varying number of trees ranging from 50 to 1000. The
number of variables to possibly split at in each node is set to a third of the number of
predictor variables [343].

PPR: Projection pursuit regression with different number of terms (2, 5), and two different
methods used for smoothing the ridge functions: the Friedman’s super smoother [265] or
the smoothing spline [366]. We used the implementation from the R package stats [367].

RBR: Rule-based regression based on Quinlan’s model tree [183] with a varying number of
boosting iterations ranging from 10 to 100. We used the implementation provided in the
cubist R package [368];

GBR: Generalized boosted regression [369] with a Gaussian or Laplacian distribution. The
number of trees is set in the range of 500 to 1000. The maximum depth of each tree is
set to 5 or 10, and the shrinkage parameter applied to each tree in the expansion is set
to 0.1 (default). We used the implementation from the R package gbm [370];

GLM: Generalized linear model [371] regression with a Gaussian distribution and a different
penalty mixing. When the penalty is set to 1, the algorithm represents LASSO (Least
Absolute Shrinkage and Selection Operator) regression, and Ridge regression when it is
set to 0. In between 0 and 1, the algorithm is a linear model with elastic net regularisation.
These models are implemented in the R package glmnet [133];

237

A. Time Series Data Sets and Learning Algorithms

GP: Gaussian processes [372] with linear, radial basis function, Laplacian, and polynomial
kernels. The tolerance of termination criterion is set to either 0.01 or 0.001. We used the
implementation provided in the R package kernlab [364];

PCR: Principal components regression [373] with a default parameter setting provided in the
pls R package [267];

PLS: Partial least squares (Geladi and Kowalski, 1986) regression with two different methods:
the kernel method, and the SIMPLS method. These are also provided in the pls R
package [267];

238

B
Online Adaptive Time Series

Forecasting-R Shiny Interactive Web
App

The developed R-Shiny App is devised to make our methods easier to use and evaluate on new
time series datasets. It is also straightforward to use by non-ML domain experts, especially
since online time series forecasting is required in a wide range of application domains such as
machining production, traffic prediction, and stock market indices forecasting, to name by a
few. The App can also be used by ML researchers to reproduce easily our experiments.

Our first plan is to finish the design of the App and publicly host it. In addition, we plan to
add an extension to the same App for time series explainability tools including the presented
approaches in this thesis.

In this Appendix, we aim at giving an overview of the first version of the App and our
research vision for automating time series forecasting in an understandable manner.

Uploading Time Series Data: The data can be stored in ".csv" file.

239

B. Online Adaptive Time Series Forecasting-R Shiny Interactive Web App

User Preferences Setting: The user can choose between different hyperparameters and
families of ML individual models. The online implementation of ARIMA [61] and ETS [97] is

also provided. The implementation of many SoA methods for online ensemble learning for
time series forecasting is also included in addition to our developed methods.

240

Evaluation Examples: Individual Models Evaluation

SoA Ensembles Evaluation

Example of DEMSRC and its variants evaluation

241

B. Online Adaptive Time Series Forecasting-R Shiny Interactive Web App

242

C
Publications, Joint Work and

Collaborations

This chapter gives an overview of publications, and how far material from them has been
included in this thesis. It further states the collaborations and contributions of other authors

to this work. Whenever "the author" appears, the author of this thesis is meant.
Parts of this thesis have been published in the following articles:

• A. Saadallah, H. Mykula, and K. Morik, “Online adaptive multivariate
time series forecasting,” in Joint European conference on machine learning
and knowledge discovery in databases, Springer, 2022: Almost all parts of this
publication are included in Chapter 3. All the parts have been written by the author. The
idea of the online drift-aware time series variables selection is developed by the author
to control spatial dependencies in MTS data. The idea of forecasting error monitoring is
suggested by Katharina Morik to control temporal dependencies in MTS data. The choice
of evaluating multiple dependencies measures as well as several MTS forecasting models
and different drift detection methods is made by the author. The idea of introducing
meta-learning to automate all the choices is made by the author. The choice and the
design of MTS meta-features including the introduction of the landmarking concept for
MTS data is made by the author. The organization of all the parts in one algorithm is
made by the author. The experiments are conducted by our student assistant Hanna
Mykula.

• A. Saadallah, M. Jakobs, and K. Morik, “Explainable online deep neural
network selection using adaptive saliency maps for time series forecasting,” in
Machine Learning and Knowledge Discovery in Databases. Research Track, N.
Oliver, F. Pérez-Cruz, S. Kramer, et al., Eds., Cham: Springer International
Publishing, 2021, pp. 404–420, ISBN: 978-3-030-86486-6: Almost all parts of
this publication are included in Chapter 5-Section 5.3 and have been slightly adapted for
presentation in this thesis. All these parts are written by the author. The idea and the

243

C. Publications, Joint Work and Collaborations

algorithm of the Performance Gradient-based Saliency Maps PGSMs to compute the RoCs
of candidate DNNs are developed by the author. The introduction of the drift-detection
mechanism to update the RoCs is suggested by the author. The implementation is done
by Matthias Jacobs. Comparisons with the recent SoA methods have been conducted by
the author.

• A. Saadallah, M. Jakobs, and K. Morik, “Explainable online ensemble of deep
neural network pruning for time series forecasting,” in Machine Learning
Journal, Springer International Publishing, 2022: Many parts of this publication
are included in Chapter 5-Section 5.4. These parts are written by the author. All the
rest of the work including the development of the method for online ensemble pruning,
the implementation, and the comparisons are carried out by the author and Matthias
Jacobs. The theoretical bound for the pruned ensemble size is derived by the author.

• A. Saadallah, F. Priebe, and K. Morik, “A drift-based dynamic ensemble
members selection using clustering for time series forecasting,” in Joint
European conference on machine learning and knowledge discovery in
databases, Springer, 2019: Almost all parts of this publication are included in Chapter
4-Section 4.3 and have been slightly adapted for presentation in this thesis. All these
parts are written by the author. The main idea of the drift-aware ensemble pruning, its
implementation, the experiments, and the comparisons are done by the author. Florian
Priebe helped with preparing the presentation of the results.

• A. Saadallah, M. Tavakol, and K. Morik, “An actor-critic ensemble aggrega-
tion model for time-series forecasting,” in IEEE International Conference
on Data Engineering (ICDE), 2021: Some parts of this publication are included
in in Chapter 6. The idea of using an actor-critic Reinforcement Learning approach is
suggested by Maryam Tavakol. The design of the RL environment to fit the forecasting
task is made by the author. Maryam Tavakol and the author collaborated together on
the writing. The implementation and evaluation of the method are made by the author.

• A. Saadallah and K. Morik, “Online ensemble aggregation using deep
reinforcement learning for time series forecasting,” in 2021 IEEE 8th
International Conference on Data Science and Advanced Analytics (DSAA),
IEEE, 2021: Some parts of this publication are included in in Chapter 6. All the
parts are written by the author. The idea of the online update of the RL policy, its
implementation, and evaluation is achieved by the author.

• A. Saadallah, J. Büscher, O. Abdulaaty, et al., “Explainable predictive quality
inspection using deep learning in electronics manufacturing,” Procedia CIRP,
vol. 107, pp. 594–599, 2022: Almost all parts of this publication are included in
Chapter 8-Section 8.4. The methodology part is written by the author. The idea of
opting for different reshaping of the data to enhance explainability aspects is suggested
by the author. The data and its description have been provided by Jan Büscher. The
data preprocessing is conducted by our student assistant Omar Abdulaaty.

244

• A. Saadallah, O. Abdulaaty, J. Büscher, et al., “Early quality prediction
using deep learning on time series sensor data,” Procedia CIRP, vol. 107,
pp. 611–616, 2022 Almost all parts of this publication are included in Chapter 8-
Section 8.3. All these parts are written by the author. The algorithm for early quality
prediction using time series data is developed by the author. The data for the case study
and its description have been provided by Jan Büscher. The experiments are conducted
by Omar Abdulaaty. Their description and discussion are done by the author.

• A. Saadallah, F. Finkeldey, J. Buß, et al., “Simulation and sensor data
fusion for machine learning application,” Advanced Engineering Informatics,
vol. 52, p. 101 600, 2022: Many parts of this publication are included in Chapter 7.
All these parts are written by the author except for the use case description and the
description of the application of synchronization and calibration to this use case are
written by Felix Finkeldey. The general methodology behind simulation synchronization
and calibration using ML techniques is detailed and written by the author. The automated
data fusion framework is designed and implemented by the author. The synchronization
and calibration parts for the presented use case are implemented by Felix Finkeldey
who also run the simulation and conducted the real-machining experiments. The use
case plots are created by Felix Finkeldey. The ML experiments including the automated
fusion level selection and online cutting forces prediction are conducted by the author.

In collaboration with other researchers on related topics to this thesis, the following additional
articles have been published:

• F. Finkeldey, A. Saadallah, P. Wiederkehr, et al., “Real-time prediction
of process forces in milling operations using synchronized data fusion
of simulation and sensor data,” Engineering Applications of Artificial
Intelligence, vol. 94, p. 103 753, 2020: The Machine Learning part including
development, description, implementation and evaluation is done by the author. The use
case data acquisition and preparation is carried out by Felix Finkeldey.

• A. Saadallah, F. Finkeldey, K. Morik, et al., “Stability prediction in milling
processes using a simulation-based machine learning approach,” Procedia
CIRP, vol. 72, pp. 1493–1498, 2018: The Machine Learning part including
development, description, implementation, and evaluation is done by the author. The
idea of the Active Learning method is proposed and implemented by the author. The
use case data acquisition and preparation and the presentation of the results are carried
out by Felix Finkeldey.

• A. Saadallah, L. Moreira-Matias, R. Sousa, et al., “Bright-drift-aware demand
predictions for taxi networks,” IEEE Transactions on Knowledge and Data
Engineering, 2018: The idea and the design of the framework are done by the author
and Luis Moreira-Matias. The implementation and evaluation of the drift-aware VAR
model as well as the ensemble pruning and aggregation are performed by the author.
GPs Data pre-processing for Stockholm and Shanghai data sets are performed by the
author. The presentation of the results is done by the author.

245

C. Publications, Joint Work and Collaborations

• A. Saadallah, N. Piatkowski, F. Finkeldey, et al., “Learning ensembles in
the presence of imbalanced classes.,” in ICPRAM, 2019, pp. 866–873: The
idea and the design of the framework as well as its implementation and evaluation are
done by the author. The derivation of a bound for the sampling rate is proposed by Nico
Piatkowski.

• A. Saadallah, A. Egorov, B.-T. Cao, et al., “Active learning for accurate
settlement prediction using numerical simulations in mechanized tunneling,”
Procedia CIRP, vol. 81, pp. 1052–1058, 2019: The idea and the design and the
implementation, as well as the evaluation of the Active Learning Procedure, are done by
the author. The writing is also done by the author. Ba Trung Cao contributed with the
use case data and its description.

• M. Bunse, A. Saadallah, and K. Morik, “Towards active simulation data
mining,” in European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD) Workshops,
2019, p. 104: The work is equally split between the author and Mirko Bunse.

• A. Saadallah and K. Morik, “Active sampling for learning interpretable
surrogate machine learning models,” in 2020 IEEE 7th International
Conference on Data Science and Advanced Analytics (DSAA), IEEE, 2020,
pp. 264–272: The design, implementation, and evaluation of the framework are carried
out by the author.

246

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	I Introduction
	1 Introduction
	1.1 Context
	1.2 Goals and Research Questions
	1.3 Thesis Contributions
	1.4 Thesis Outline

	2 Background
	2.1 Time Series
	2.1.1 Time Series Components
	2.1.2 Stationarity
	2.1.2.1 Stationarity Tests

	2.1.3 Time Series Transformations
	2.1.3.1 Temporal Space
	2.1.3.2 Frequency Space
	2.1.3.3 Wavelet Space
	2.1.3.4 Correlation Space
	2.1.3.5 Symbolic Representation
	2.1.3.6 Filters

	2.1.4 Multivariate Time Series
	2.1.5 Time Series Distance Measures

	2.2 Concept Drift
	2.2.1 Concept Drift Types
	2.2.2 Concept Drift Adaptation

	2.3 Time Series Learning Tasks
	2.4 Forecasting
	2.4.1 Definitions
	2.4.2 Basic Steps
	2.4.3 Simple Forecasting Models
	2.4.3.1 Mean Model
	2.4.3.2 Naïve Model
	2.4.3.3 Seasonal Naïve Model
	2.4.3.4 Drift Method

	2.4.4 General Auto-Regression Models
	2.4.4.1 ARIMA Family of Models
	2.4.4.2 Exponential Smoothing
	2.4.4.3 Vector Auto-Regressive Model

	2.4.5 Deep Neural Networks
	2.4.5.1 Some Deep Learning Notions
	2.4.5.2 Learning a Deep Neural Network
	2.4.5.3 Deep Learning for Forecasting
	2.4.5.4 Multi-Layer Perceptron
	2.4.5.5 Recurrent Neural Networks
	2.4.5.6 Convolutional Neural Networks

	2.4.6 Forecasting Evaluation Metrics

	2.5 Model Selection
	2.6 Ensemble Learning for Time Series Forecasting
	2.6.1 Ensemble Error Decomposition
	2.6.2 Ensemble Pruning
	2.6.3 Ensemble Aggregation
	2.6.3.1 Averaging Approaches
	2.6.3.2 Regret Minimization
	2.6.3.3 Meta-Learning Strategies

	2.6.4 Bagging and Boosting for Time Series Forecasting
	2.6.4.1 Bagging
	2.6.4.2 Boosting

	2.7 Explainable Machine Learning for Time Series
	2.8 Quality Predictive Analytics
	2.8.1 Model-based Quality Prediction
	2.8.2 Learning from Process Simulation

	2.9 Final Remarks

	II Forecasting
	3 Online Adaptive Time Series Variables Selection
	3.1 Introduction
	3.2 Related Works
	3.3 Drift-aware Input Time Series Variables Selection
	3.3.1 Preliminaries
	3.3.1.1 Notations
	3.3.1.2 Forecasting Model Learning

	3.3.2 Adaptive Input Time Series Variables Selection
	3.3.2.1 Relevance
	3.3.2.2 Redundancy
	3.3.2.3 Drift-aware Variables Selection Adaptation

	3.3.3 Forecasting Model Adaptation

	3.4 Online Automated MTS Forecasting
	3.4.1 MTS Meta-Features
	3.4.1.1 UTS-specific Features
	3.4.1.2 MTS-specific Features
	3.4.1.3 Landmarking-based Features

	3.5 Empirical Experiments
	3.5.1 Experimental Setup
	3.5.1.1 Candidate Models Setup
	3.5.1.2 Meta-learning Task Setup
	3.5.1.3 OAMTS Setup:

	3.5.2 Comparing OAMTS to the State-of-the-Art
	3.5.3 Comparing OAMTS to its Variants
	3.5.4 Importance of the Meta-learning Component
	3.5.5 Scalability Analysis
	3.5.6 Discussion

	3.6 Concluding Remarks

	4 Online Adaptive Single Model Selection and Ensemble Pruning
	4.1 Introduction
	4.2 Related Works
	4.2.1 On Online Model Selection and Ensemble Pruning
	4.2.1.1 Online Single Model Selection
	4.2.1.2 Online Ensemble pruning

	4.2.2 On the Use of Regions of Competence for Model Selection

	4.3 Drift-aware Ensemble Members Selection using a Ranking-Clustering-based Approach
	4.3.1 Preliminaries
	4.3.2 A Drift-Aware Ensemble Members Pre-Selection
	4.3.3 Model Clustering
	4.3.4 Model Combination
	4.3.5 Empirical Experiments
	4.3.5.1 Experimental Setup
	4.3.5.2 On the Performance of Single Candidate Models
	4.3.5.3 Comparing DEMSRC to the State-of-the-Art
	4.3.5.4 Comparing DEMSRC to its Variants
	4.3.5.5 Importance of the Drift-aware Models Selection
	4.3.5.6 Final Remarks

	4.4 Online Model Selection using Regions of Competence
	4.4.1 Preliminaries
	4.4.2 Online Model Selection
	4.4.2.1 RoCs Computation
	4.4.2.2 Online Forecasting
	4.4.2.3 RoCs Adaptation

	4.4.3 Empirical Experiments
	4.4.3.1 Experimental Setup
	4.4.3.2 Comparing OMS-ROC to the State-of-the-Art
	4.4.3.3 Comparing OMS-ROC to its Variants
	4.4.3.4 Importance of the Drift-aware Adaptation
	4.4.3.5 Scalability Analysis
	4.4.3.6 Final Remarks

	4.5 Explainable Online Model Performance and Selection
	4.6 Concluding Remarks

	5 Explainable Online Adaptive Deep Neural Network Selection
	5.1 Introduction
	5.2 Related Works
	5.2.1 On the Recent Developments in Deep Learning for Time Series Forecasting
	5.2.2 Saliency Maps for DNNs

	5.3 Online Deep Neural Network Selection using Adaptive Saliency Maps
	5.3.1 Preliminaries
	5.3.2 Candidate CNN Architectures
	5.3.3 Online Model Selection
	5.3.3.1 Performance Gradient-based Saliency Maps
	5.3.3.2 RoCs Computation
	5.3.3.3 Online Forecasting
	5.3.3.4 RoCs Update

	5.3.4 Empirical Experiments
	5.3.4.1 Experimental Setup
	5.3.4.2 Comparing OS-PGSM to the State-of-the-Art
	5.3.4.3 Comparing OS-PGSM to its Variants
	5.3.4.4 Importance of the Drift-aware Adaptation
	5.3.4.5 Final Remarks

	5.4 Online Ensemble of Deep Neural Networks Pruning
	5.4.1 Preliminaries
	5.4.2 Base Learners
	5.4.3 RoCs Computation
	5.4.4 Online Ensemble Pruning
	5.4.5 Drift-aware Pruning Update
	5.4.5.1 Concept Drift in Time Series
	5.4.5.2 Concept Drift in Models' Performance

	5.4.6 Empirical Experiments
	5.4.6.1 Experimental Setup
	5.4.6.2 Comparing OEP-ROCto the State-of-the-Art
	5.4.6.3 Comparing OEP-ROC to its Variants
	5.4.6.4 Usefulness of the Theoretical Insights
	5.4.6.5 Importance of the Drift-aware Adaptation
	5.4.6.6 Impact of Different Aggregation Techniques
	5.4.6.7 Final Remarks

	5.5 Explainable Deep Neural Network Selection
	5.5.1 Single Deep Neural Network Selection
	5.5.2 Ensemble of Deep Neural Networks Pruning

	5.6 Concluding Remarks

	6 Online Ensemble Aggregation using Deep Reinforcement Learning
	6.1 Introduction
	6.2 Related Work
	6.3 Online Ensemble Aggregation
	6.3.1 Preliminaries
	6.3.2 Learning the Optimal Ensemble Weights
	6.3.2.1 The MDP Framework
	6.3.2.2 Learning the Aggregation Policy

	6.3.3 Online Aggregation Update and Forecasting

	6.4 Empirical Experiments
	6.4.1 Experimental Setup
	6.4.1.1 OEA-DRL Setup
	6.4.1.2 State-of-the-art Methods
	6.4.1.3 OEA-DRL Variants

	6.4.2 Comparing OEA-DRL to the State-of-the-Art
	6.4.3 Importance of the Rank-based Reward Setup
	6.4.4 Importance of the Drift-aware Policy Adaptation
	6.4.5 Combining Pruning Methods with OEA-DRL

	6.5 Concluding Remarks

	III Applications
	7 Real-time quality prediction in NC-Milling
	7.1 Introduction
	7.2 Use Case Description
	7.3 Learning from Process Simulation
	7.3.1 Major Uses
	7.3.2 Synthetic Data Quality Assessment

	7.4 Simulation-Sensor Data Fusion
	7.4.1 Data Quality Assessment
	7.4.2 Simulation-Sensor Data Mismatch Solving
	7.4.2.1 Synchronization
	7.4.2.2 Calibration

	7.4.3 Unified Data Representation
	7.4.4 Automated Feature Engineering
	7.4.5 Model Learning
	7.4.6 Automated Fusion Level Selection
	7.4.6.1 General Methodology
	7.4.6.2 Application to Simulation-Sensor Data Fusion in NC-Milling

	7.5 Online Cutting Forces Prediction
	7.6 Concluding Remarks

	8 Explainable Quality Prediction in Industrial Applications
	8.1 Introduction
	8.2 Related Works
	8.3 Explainable Early Quality Prediction in Automotive Manufacturing
	8.3.1 Use Case Description
	8.3.2 Modeling
	8.3.2.1 Preliminaries
	8.3.2.2 1D-CNN Architecture
	8.3.2.3 Grad-CAM for Extracting Explanations
	8.3.2.4 Important Time Series Subsequences Identification

	8.3.3 Quality Prediction Results
	8.3.3.1 Experimental Setup
	8.3.3.2 Evaluation Metrics
	8.3.3.3 Results

	8.3.4 Explainable Quality Prediction

	8.4 Explainable Quality Prediction in Electronics Manufacturing
	8.4.1 Use Case Description
	8.4.2 Modeling
	8.4.2.1 Preliminaries
	8.4.2.2 1D-CNN Architecture
	8.4.2.3 CNN Visual Explanations
	8.4.2.4 Model Deployment

	8.4.3 Quality Prediction Results
	8.4.3.1 Experimental Setup
	8.4.3.2 Evaluation Metrics
	8.4.3.3 Results

	8.4.4 Explainable Quality Prediction

	8.5 Concluding Remarks

	IV Conclusions
	9 Conclusions
	9.1 Main Conclusions
	9.1.1 Forecasting
	9.1.2 Model-based Quality Prediction

	9.2 Open Issues and Future Directions
	9.2.1 Towards a Fully Automated Forecasting Framework
	9.2.2 Beyond One-step ahead Forecasting
	9.2.3 Beyond Univariate Time Series Forecasting
	9.2.4 Towards More Time Series Specific Explainability Tools
	9.2.5 On Empowering Process Simulation for Machine Learning Application

	References
	Appendix A Time Series Data Sets and Learning Algorithms
	A.1 Data Sets
	A.1.1 MTS Data Sets for the Meta-Learning Task in OAMTS
	A.1.2 MTS Data Sets for OAMTS Evaluation
	A.1.3 Time Series Data Sets for DEMSRC, OMS-ROC, OS-PGSM, and OEP-ROC, and OEA-DRL Evaluation

	A.2 Learning Algorithms

	Appendix B Online Adaptive Time Series Forecasting-R Shiny Interactive Web App
	Appendix C Publications, Joint Work and Collaborations

