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Abstract In this work we test the numerical behaviour of matrix-valued fields approximated by finite element
subspaces of [H1]3×3, [H(curl)]3 and H(sym Curl) for a linear abstract variational problem connected to the relaxed
micromorphic model. The formulation of the corresponding finite elements is introduced, followed by numerical
benchmarks and our conclusions. The relaxed micromorphic continuum model reduces the continuity assumptions of
the classical micromorphic model by replacing the full gradient of the microdistortion in the free energy functional
with the Curl. This results in a larger solution space for the microdistortion, namely [H(curl)]3 in place of the
classical [H1]3×3. The continuity conditions on the microdistortion can be further weakened by taking only the
symmetric part of the Curl. As shown in recent works, the new appropriate space for the microdistortion is then
H(sym Curl). The newly introduced space gives rise to a new differential complex for the relaxed micromorphic
continuum theory.

Keywords Approximation error · Finite elements · Nédélec elements · Relaxed micromorphic continuum ·
Relaxed micromorphic complex · sym Curl elements

1 Introduction

Today there exist various formulations of micromorphic continua [1–4] and higher gradient theories [5] with the
common goal of capturing micro-motions that are unaccounted for in the classical Cauchy continuum theory. The
unifying characteristic of all micromorphic theories is the extension of the mathematical model with additional
degrees of freedom (called the microdistortion) for the material point. Consequently, in the general micromorphic
theory, as introduced by Eringen [6] and Mindlin [7], each material point is endowed with nine extra degrees of
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freedom given by the matrix P , capturing affine displacements that are independent of the translational degrees of
freedom, such as rotation or expansion of the micro-body.

The relaxed micromorphic continuum [4,8] differs from other micromorphic theories by reducing the continuity
assumptions on these micro-motions. Instead of incorporating the full gradient DP of the microdistortion into the
free energy functional, the relaxed micromorphic continuum assumes only the Curl of the microdistortion to produce
significant energies. As a result, the natural space for the microdistortion in the relaxed micromorphic continuum
is [H(curl)]3 (see also the related microcurl and gradient plasticity theories [9–12]). Further, the micro-dislocation,
i.e. Curl P , remains a second-order tensor, in contrast to the general micromorphic theory where the full gradient
yields a third-order tensor DP ∈ R

3×3×3. Possible applications for the relaxed micromorphic theory, such as the
simulation of metamaterials and bandgap materials, are demonstrated in [13,14]. Further, closed-form solutions for
specimen under shear, bending and torsion have already been derived in [15–17]. A first numerical implementation
for a relaxed micromorphic model of antiplane shear can be found in [18], followed by an implementation for
plain-strain models [19] and lastly, an implementation of the full three-dimensional model [20].

In recent works [21–26] it was shown that the continuity assumptions on the microdistortion can be weak-
ened further by considering solely the symmetric micro-dislocation sym Curl P . The corresponding space for the
microdistortion is the Hilbert space H(sym Curl). A version of this space is also used for some formulations of the
biharmonic equation [27], with a restriction to trace-free tensors.

In order to gain insight into the numerical behaviour of the microdistortion in these spaces and the potential
meaning for the relaxed micromorphic continuum theory, we investigate three finite element formulations for
P ∈ [H1]3×3, P ∈ [H(curl)]3 and P ∈ H(sym Curl) on an abstract problem derived from the relaxed micromorphic
continuum. We compare standard Lagrangian, Nédélec- [18,28–31] and the recently introduced H(sym Curl)-base
functions [32], respectively.

This paper is organized as follows: In the first two sections we introduce the relaxed micromorphic continuum
and derive a related abstract problem. Section 4 is devoted to the description of the finite element formulations. In
Sect. 5 we present numerical examples and investigate their behaviour. The last section presents our conclusions
and outlook.

2 A relaxed micromorphic complex

The relaxed micromorphic continuum [4,8] is described by its free energy functional, incorporating the gradient of
the displacement field, the microdistortion and its Curl

I (u, P) = 1

2

∫
�

〈Ce sym(Du − P), sym(Du − P)〉 + 〈Cmicro sym P, sym P〉

+〈Cc skew(Du − P), skew(Du − P)〉 + μmacro L
2
c ‖CurlP‖2 dX −

∫
�

〈u, f〉 − 〈P, M〉 dX,

Du =
⎡
⎣u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

⎤
⎦ , CurlP =

⎡
⎢⎣

curl
[
P11 P12 P13

]
curl

[
P21 P22 P23

]
curl

[
P31 P32 P33

]

⎤
⎥⎦ , curlv = ∇ × v, (2.1)

where 〈·, ·〉 denotes the scalar product on R
3×3, � ⊂ R

3 is the domain and u : � ⊂ R
3 → R

3 and P : � ⊂
R

3 → R
3×3 represent the displacement and the non-symmetric microdistortion, respectively. The volume forces

and micro-moments are given by f and M. Here, Ce and Cmicro are standard fourth elasticity tensors and Cc is a
positive semi-definite coupling tensor for rotations. The macroscopic shear modulus is denoted by μmacro and the
parameter Lc > 0 represents the characteristic length scale motivated by the microstructure. The corresponding
Hilbert spaces and their respective traces read
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Fig. 1 An example for a vector field p ∈ H(curl, �). Note that p /∈ [H1(�)]2 since on the interface �, only the tangential component
of the vector field is continuous

H1(�) = {u ∈ L2(�) | ∇u ∈ [L2(�)]3}, trH1 u = u

∣∣∣∣
∂�

, (2.2)

H(curl,�) = {p ∈ [L2(�)]3 | curl p ∈ [L2(�)]3}, trH(curl) p = p × ν

∣∣∣∣
∂�

. (2.3)

Here, ν denotes the unit outward normal on the surface. Existence and uniqueness of the relaxed micromorphic
model using X = [H1(�)]3 × [H(curl,�)]3, where [H(curl,�)]3 is to be understood as a row-wise matrix of the
vectorial space, is derived in e.g. [33–35]. An example for a function belonging to H(curl) while not belonging to
H1 is given in Fig. 1.

Although the weak formulation of the relaxed micromorphic model does not represent a mixed formulation and
therefore, does not require the use of the commuting de Rham complex for existence and uniqueness in the discrete
case, it does introduce the so-called consistent coupling condition [8,36]

P × ν = Dũ × ν on �D, (2.4)

where ũ is the prescribed displacement field on the Dirichlet boundary �D = �u
D = �

p
D . The condition can only be

satisfied exactly in the general discrete case, if commuting projections in the sense of a continuous-to-discrete de
Rham complex are employed, compare with [37]. Further, when the characteristic length goes to infinity Lc → ∞,
a mixed formulation introducing a new variable for the hyperstress D = μmacro L2

c Curl P is required to guarantee
existence and uniqueness, as shown in [18]. Consequently, the appropriate complex for the relaxed micromorphic
model is the classical de Rham complex [38] in three dimensions Fig. 2, where

H(div,�) = {p ∈ [L2(�)]3 | div p ∈ L2(�)}, Div P =
⎡
⎢⎣

div
[
P11 P12 P13

]
div

[
P21 P22 P23

]
div

[
P31 P32 P33

]

⎤
⎥⎦ , div p = ∇ · p . (2.5)

The continuity assumptions on the microdistortion field P can be further reduced by taking only its symmetric
part sym Curl instead of the full Curl [21,23–26]
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Fig. 2 The classical de Rham exact sequence. The range of each operator is exactly the kernel of the next operator in the sequence,
assuming a contractible domain �

I (u, P) = 1

2

∫
�

〈Ce sym(Du − P), sym(Du − P)〉 + 〈Cmicro sym P, sym P〉

+ 〈Cc skew(Du − P), skew(Du − P)〉 + μmacro L
2
c ‖ sym CurlP‖2 dX −

∫
�

〈u, f〉
− 〈P, M〉 dX. (2.6)

Since ‖ sym Curl P ‖2 ≤ ‖ Curl P ‖2, this is a considerably weaker formulation than Eq. (2.1).
The appropriate Hilbert space for P now reads

H(sym Curl,�) = {P ∈ [L2(�)]3×3 | sym Curl P ∈ [L2(�)]3×3}, trH(sym Curl) P = sym[P Anti(ν)T]
∣∣∣∣
∂�

,

(2.7)

where Anti(·) generates the skew symmetric matrix from a vector ν ∈ R
3

Anti(ν) = [
0 −ν3 ν2 ν3 0 −ν1 − ν2 ν1 0

] ∈ so(3), Anti(ν)v = ν × v, v ∈ R
3, (2.8)

The existence of minimizers for Problem. 2.6 is shown in [25,26]. The difference in smoothness between
[H(curl)]3 and H(sym Curl) can be observed when considering spherical matrix fields P = p 1 ∈ R · 1

trH(curl) P = P Anti(ν)T
∣∣∣∣
∂�

= p1 Anti(ν)T
∣∣∣∣
∂�

= p Anti(ν)T
∣∣∣∣
∂�

∀P ∈ R · 1,

trH(sym Curl) P = sym[P Anti(ν)T]
∣∣∣∣
∂�

= sym[p Anti(ν)T]
∣∣∣∣
∂�

= 0 ∀P ∈ R · 1 . (2.9)

The latter identity is evident due to p Anti(ν) ∈ so(3) and ker(sym) = so(3). Consequently, the H(sym Curl)
space captures discontinuous spherical tensor fields. A possible interpretation for the kinematics of such a field
is depictable under the assumption that the field P represents a micro-strain field in the domain. In which case,
material points can undergo discontinuous dilatation, see Fig. 3.

This new formulation gives rise to a corresponding complex, designated here the relaxed micromorphic complex,
see Fig. 4, where the H(div Div) space is defined as

H(div Div,�) = {P ∈ [L2(�)]3×3 | div Div P ∈ L2(�)}. (2.10)

The complex can be seen as an extension of the div Div-sequence [27,39], in which only trace-free (deviatoric)

gradient fields dev Du are concerned , where dev X = X − 1

3
tr(X)1. In fact, the right half of the complex is the

same due to

range(sym Curl dev) = range(sym Curl) ⊂ ker(div Div), (2.11)
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Fig. 3 Depiction of a field P = P1 ∪ P2 ∈ H(sym Curl, �), such that P /∈ [H(curl)]3. The circles illustrate the intensity of the
spherical part of P , which is discontinuous along the dashed line

since (for a full derivation see Appendix A)

div Div sym Curl P = 0, (2.12)

and

sym Curl P = sym Curl

[
dev P +1

3
tr(P) 1

]
= sym Curl dev P ∀ P ∈ R

3×3. (2.13)

The left side of the complex [26] is derived from (see Appendix A)

ker(sym Curl) = D[H1]3 ∪ R · 1 . (2.14)

As shown in [27], the div Div-complex is an exact sequence for a topologically trivial domain. Since the right half
of the relaxed micromorphic complex is the same as the right half of the div Div-complex and due to the exactness
of Eq. (2.14) as derived in [26], the relaxed micromorphic complex is also an exact sequence for a topologically
trivial domain.

Remark 21 The relaxed micromorphic complex serves to better understand the behaviour of the model with respect
to the characteristic length Lc. Let Lc → ∞, the next space in the sequence H(div Div) is needed to approximate
the hyperstress field

D = μmacro L2
c sym Curl P ∈ H(div Div,�) ∩ Sym(3),

and to express a stable mixed formulation, compare with [18]. The construction of H(div Div)-conforming finite
elements is beyond the scope of this work.
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Fig. 4 The relaxed micromorphic complex for the microdistortion P and the corresponding curvature sym Curl P . The kernel
ker(H(sym Curl, �)) is given fully by gradients of D[H1(�)]3 and spherical tensors R · 1. The kernel ker(H(div Div, �)) is given by
sym CurlH(sym Curl, �). Finally, div DivH(div Div, �) is a surjection onto L2(�). For all these relations we assume a contractible
domain

3 Abstract variational problem

In order to compare the behaviour of linear finite elements on [H1]3×3, [H(curl)]3 and H(sym Curl), the following
abstract variational problem is introduced, drawing characteristics from the relaxed micromorphic model

I (P) = 1

2

∫
�

‖ sym P‖2 + ‖ sym Curl P ‖2 dX −
∫

�

〈P, M〉 dX → min, (3.1)

δ I =
∫

�

〈sym P, sym δP〉 + 〈sym Curl P, sym Curl(δP)〉 − 〈δP, M〉 dX = 0. (3.2)

The associated strong form is derived by partial integration

sym P + Curl(sym Curl P) = M in �, (3.3)

sym[P Anti(ν)T] = sym[ P̃ Anti(ν)T] on �D, (3.4)

sym Curl P × ν = 0 on �N , (3.5)

where P̃ is the prescribed field on the Dirichlet boundary �D and �N represents the Neumann boundary.

Remark 31 Note that the variational problem resembles a vectorial Maxwell [30] problem v + curl curl v = m
for some vector field v : � �→ R

3. However, in Eq. (3.3) the vectorial rows of P are highly coupled and the
symmetrization of the Curl operator intervenes.

For a predefined field P̃ where the entire boundary is prescribed (∂� = �D) the micro-moment M is given by

M = sym P̃ + Curl(sym Curl P̃), (3.6)

and the analytical solution is P = P̃ . Due to the generalized Korn’s inequality [23–26,40,41], the variational
problem Eq. (3.1) and the weak form Eq. (3.2) are well-posed in the space H(sym Curl,�).

4 Finite element formulations

In the following we introduce finite elements using Voigt notation. As a result, the microdistortion and micro-
moment fields P and M are given by nine-dimensional vectors and the symmetry by the nine-by-nine matrix S

P = [
P11 P12 P13 P21 P22 P23 P31 P32 P33

]T
, P, M ∈ R

9, S ∈ R
9×9. (4.1)

All formulations apply to a linear tetrahedral element with a barycentric mapping (see Fig. 5)

x(ξ, η, ζ ) = (1 − ξ − η − ζ ) x1 + ξ x1 + η x2 + ζ x3, J = Dx = [
x2 − x1 x3 − x1 x4 − x1

]
, (4.2)
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Fig. 5 Affine mapping from the reference element to the physical domain

where J is the Jacobi matrix.

4.1 Lagrangian [H1]3×3-element

The functionals of Lagrangian finite elements are defined by point-wise evaluation

li (u)

∣∣∣∣
x j

= δi j u

∣∣∣∣
x j

, (4.3)

where δi j is the Kronecker delta. For the construction of the linear Lagrangian element, the evaluation of the degrees
of freedom for the polynomial space P1 = span{1, ξ, η, ζ } on the reference element yields the same barycentric
base functions used for the element mapping

n1(ξ, η, ζ ) = 1 − ξ − η − ζ, n2(ξ, η, ζ ) = ξ, (4.4)

n3(ξ, η, ζ ) = η, n4(ξ, η, ζ ) = ζ. (4.5)

The entire ansatz matrix for the interpolation of a nine-dimensional vector can be built accordingly

N = [
n1 19 n2 19 n3 19 n4 19

] ∈ R
9×36, 19 ∈ R

9×9, [19]i j = δi j , i, j ∈ {1, 2, . . . , 9}, (4.6)

where 19 is the nine-dimensional unit matrix. The curl of a row of P with respect to the physical domain is retrieved
following the standard chain rule

curlx pi = J−T curlξ pi = J−T Anti(∇ξ )pi . (4.7)

The matrix Curl operator is defined by the row-wise application of the curl operator. The resulting element stiffness
matrix reads

K lag =
∫

�

(NT
S N + Curl(N)T

S Curl N) dX ∈ R
36×36, (4.8)
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where S defines the equivalent matrix symmetry operator in Voigt notation. The Lagrangian element belongs to
L1 ⊂ H1 and its interpolant produces the error estimate

‖u − �Lu‖L2 � h2 |u|H2 , (4.9)

where u is the exact solution, �L is the Lagrangian interpolant and h is a measure of the element’s size.

4.2 Nédélec [H(curl)]3-element

Nédélec [28] finite elements are conforming in H(curl). This is achieved by controlling the tangential projections
of the base functions on the edges of a finite element. The lowest degrees of freedom, namely edge type, are defined
as integrals along the curve of the element’s edge

li j (p) =
∫
si
q j 〈p, τ 〉 ds ∀ q j ∈ Pp−1(si ). (4.10)

Here q j are test functions. The adequate polynomial space is defined in [28] as

Rp = [Pp−1]3 ⊕ Sp, Sp = {p ∈ [̃Pp]3 | 〈p, x〉 = 0}, (4.11)

where P̃ is the space of homogeneous polynomials. For linear polynomials p = 1 the space reads

R1 = span

⎧⎨
⎩

⎡
⎣1

0
0

⎤
⎦ ,

⎡
⎣0

1
0

⎤
⎦ ,

⎡
⎣0

0
1

⎤
⎦ ,

⎡
⎣ 0

ζ

−η

⎤
⎦ ,

⎡
⎣−ζ

0
ξ

⎤
⎦ ,

⎡
⎣ η

−ξ

0

⎤
⎦

⎫⎬
⎭ , dim R1 = 6. (4.12)

The latter describes the polynomial space for linear Nédélec elements of the first type N 0
I . Evaluating the degrees

of freedom on the reference tetrahedron using the test functions q j = 1 yields the corresponding base functions
(see Fig. 6)

ϑ1 =
⎡
⎣1 − η − ζ

ξ

ξ

⎤
⎦ , ϑ2 =

⎡
⎣−η

ξ

0

⎤
⎦ , ϑ3 =

⎡
⎣ η

1 − ξ − ζ

η

⎤
⎦ ,

ϑ4 =
⎡
⎣ ζ

ζ

1 − ξ − η

⎤
⎦ , ϑ5 =

⎡
⎣−ζ

0
ξ

⎤
⎦ , ϑ6 =

⎡
⎣ 0

−ζ

η

⎤
⎦ . (4.13)

Remark 41 The zero power notation of the space N 0
I reminds that the base functions generate constant tangential

projections on the edge. An alternative construction using the full polynomial space is given by the Nédélec elements
of the second type N 1

I I [29].

The base functions are vectors defined on the reference element. In order to map them to the physical domain we
employ the covariant Piola transformation

θ i = J−T ϑ i . (4.14)
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Fig. 6 Linear Nédédelec base functions on the reference tetrahedron

Further, the curl of vectors undergoing a covariant Piola mapping is given by the contravariant Piola transformation

curlx θ i = 1

det J
J curlξ ϑ i . (4.15)

Remark 42 Note that Piola transformations guarantee a consistent projection on the element’s boundaries in terms
of size. However, the transformation does not control whether the tangential projections of neighbouring elements
are parallel or anti-parallel, since the vectorial base functions are mapped to the physical domain separately by the
corresponding Jacobi matrix of each element. Consequently, a correction function is employed to assert consistency,
compare with [18].

For the construction of the finite element we define a corresponding ansatz matrix

� =
⎡
⎣ θ1 o o θ2 o o θ3 o o θ4 o o θ5 o o θ6 o o
o θ1 o o θ2 o o θ3 o o θ4 o o θ5 o o θ6 o
o o θ1 o o θ2 o o θ3 o o θ4 o o θ5 o o θ6

⎤
⎦ ∈ R

9×18, (4.16)

where o = [
0 0 0

]T
is a three-dimensional vector of zeros. The Curl of the microdistortion P is calculated using

Eq. (4.15) for each base function

Curl � =
⎡
⎣curl θ1 o o curl θ6 o o

o curl θ1 o · · · o curl θ6 o
o o curl θ1 o o curl θ6

⎤
⎦ ∈ R

9×18. (4.17)

Consequently, the element stiffness matrix reads

K néd =
∫

�

(�T
S � + Curl(�)T

S Curl �) dX ∈ R
18×18. (4.18)

The Nédélec element belongs to the subspace N 0
I ⊂ H(curl). The corresponding interpolant yields the following

error estimate

‖v − �N v‖L2 � h |v|H1 , (4.19)

where v is the exact solution, �N is the Nédélec interpolant and h is a measure of the element’s size.
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4.3 The H(sym Curl)-element

Due to the following inclusion the two former finite element formulations are possible candidates for computations
in H(sym Curl). However, as denoted by the trace in Eq. (2.9) and shown in [26], the H(sym Curl) space is strictly
larger

[H1]3×3 ⊂ [H(curl)]3 ⊂ H(sym Curl). (4.20)

Consequently, there can exist solutions that belong to H(sym Curl) while not belonging to [H(curl)]3, as demon-
strated in Sect. 5.3. For the design of an H(sym Curl)-conforming finite element [32], the trace must vanish on the
interface of neighbouring elements. In other words, a function P belongs to H(sym Curl) if

[[trH(sym Curl)(P)]]
∣∣∣∣
�i

= 0 ∀�i in �, (4.21)

where [[·]] represents the jump operator and �i is an interface between neighbouring elements. The trace condition
can be reconstructed as

sym[P Anti(ν)T] = 0 ⇐⇒ 〈P Anti(ν)T, Si 〉 = 0 ∀ Si ∈ Sym(3). (4.22)

A simple basis for Sym(3) is given by the symmetric decomposition of a matrix filled with ones (A=∑
i
∑

j 1 ei ⊗ e j )

Sym(3) = span{e1 ⊗ e1, e2 ⊗ e2, e3 ⊗ e3, sym(e1 ⊗ e2), sym(e1 ⊗ e3), sym(e2 ⊗ e3)}. (4.23)

Accordingly, any affine transformation F that maps to linearly independent vectors allows to generalize the basis

Sym(3) = span{F e1 ⊗ e1FT, . . . , sym(F e2 ⊗ e3FT)}, F ∈ GL(3). (4.24)

Clearly, the transformation leaves the symmetry invariant. Defining a ∈ R
3,b ∈ R

3 such that F = [
a b ν

] ∈ GL(3),
where ν is a normal on an element’s face, we observe that five conditions instead of six suffice to assert Eq. (4.22)
since

〈P Anti(ν)T, ν ⊗ ν〉 = 〈P, ν ⊗ ν Anti(ν)〉 = 〈P, ν ⊗ ν × ν〉 = 0, (4.25)

is always satisfied. In other words, five conditions control whether P is point-wise H(sym Curl)-conforming on a
face

〈P Anti(ν)T , a ⊗ a〉 = 0 , 〈P Anti(ν)T , b ⊗ b〉 = 0 , 〈P Anti(ν)T , sym(a ⊗ b)〉 = 0 ,

〈P Anti(ν)T , sym(a ⊗ ν)〉 = 0 , 〈P Anti(ν)T , sym(b ⊗ ν)〉 = 0 . (4.26)

Yet, these are not enough conditions to fully identify an element of R
3×3. The remaining conditions can be

defined as

〈P, b ⊗ (a × ν) − a ⊗ (b × ν)〉 = 0, 〈P, a ⊗ ν〉 = 0,

〈P, b ⊗ ν〉 = 0, 〈P, ν ⊗ ν〉 = 0, (4.27)
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which, together with the trace conditions, determine the element uniquely. Note that the latter identities are all in
ker(trH(sym Curl)) due to ν × ν = 0 and are therefore linearly independent of the trace conditions. To see their linear
independence from one another, simply map back to the Cartesian basis with F−1.

The conditions in Eq. (4.26) ensure conformity on a face. On an edge two faces meet and the conditions must be
satisfied for both. On each edge we define a = τ , b = γ i = τ × νi , where τ is the edge tangent, νi is the normal
on face i and γ i is the corresponding conormal. Considering the following identity

ν1 × γ 1 = ν2 × γ 2 = τ , (4.28)

the conditions for conformity can be reformulated as

〈P, τ ⊗ γ i 〉 = 0, 〈P, τ ⊗ τ + γ i ⊗ γ i 〉 = 0, 〈P, νi ⊗ γ i 〉 = 0, i = {1, 2} ,

〈P, τ ⊗ ρ1〉 = 0, 〈P, τ ⊗ ρ2〉 = 0, (4.29)

where ρ1 and ρ2 are two arbitrary vectors spanning the surface orthogonal to τ . The upper conditions allow to
determine eight terms of P . One term remains to be determined using

〈P, τ ⊗ τ 〉 = 0, (4.30)

which controls multiples of the identity matrix. The conditions are linearly independent as long as ν1 ∦ ν2.
The same methodology may be used to construct vertex conformity and uniqueness conditions. However, for an

unstructured mesh it is unclear how to do this in a way that is independent of the geometry. Consequently, at the
vertices we impose full continuity with the exception of the identity

P12, P13, P21, P23, P31, P32 = 0, P11 − P22 = 0, P22 − P33 = 0,

tr P = 〈P, 1〉 = P11 + P22 + P33 = 0, (4.31)

where the conditions in the upper row assert conformity and the trace controls the identity matrix.
Unlike for the previous elements that were constructed in the reference domain, the construction of the

H(sym Curl)-element is done directly on the grid using the degrees of freedom from Eq. (4.31). We reformu-
late the degrees of freedom for the linear element as vector operators

P11 − P22 : l1 = [
1 0 0 0 −1 0 0 0 0

]
, P22 − P33 : l5 = [

0 0 0 0 1 0 0 0 −1
]
,

tr P : l9 = [
1 0 0 0 1 0 0 0 1

]
, Pi j s.t. i �= j : li = eT

i , i ∈ {2, 3, 4, 6, 7, 8}, (4.32)

where ei is the unit vector in R
9. Consequently, the collection of the degrees of freedom can be defined as the

operator matrix

L = [
lT1 lT2 lT3 lT4 lT5 lT6 lT7 lT8 lT9

]T ∈ R
9×9. (4.33)

The ansatz matrix is given by the monomial basis

X = [
119 x 19 y 19 z 19

] ∈ R
9×36, 19 ∈ R

9×9. (4.34)
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In order to construct the corresponding base functions, the product L X is evaluated at each node of a finite element

C−1 =
[
(L X)T

∣∣∣∣
n1

(L X)T

∣∣∣∣
n2

(L X)T

∣∣∣∣
n3

(L X)T

∣∣∣∣
n4

]T

∈ R
36×36, (4.35)

where every column of C gives the constant factors for one base function. Therefore, the resulting local basis is
given by

B = X C ∈ R
9×36, P =

nelements⋃
e=1

B Pe . (4.36)

In order to find the Curl of P , we redefine the operator in Voigt notation

Curl P =
⎡
⎣Anti(∇) O O

O Anti(∇) O
O O Anti(∇)

⎤
⎦ P, Anti(∇) =

⎡
⎣ 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

⎤
⎦ , O =

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ . (4.37)

Consequently, the Curl of the base functions is given by

Curl B = (Curl X)C. (4.38)

The element stiffness matrix can now be defined as

K sym =
∫

�

(BT
S B + Curl(B)T

S Curl B) dX ∈ R
36×36. (4.39)

Remark 43 At the construction of the local–global map, eight of the nine degrees of freedom on a node are shared
by neighbouring elements. The ninth degree is built locally for each element and is not connected over the element’s
boundaries. With this characteristic, the lower continuity of the space is made possible.

Fig. 7 Finite element meshes from 40 to 5000 elements for the domain � = [−1, 1]3
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Fig. 8 Vortex field for various discretizations of the H(sym Curl)-element displaying the first row of P

The element belongs to T 1 ⊂ H(sym Curl) and its interpolant produces the standard Lagrangian error estimate
(see [32])

‖T − �T T‖L2 � h2 |T |H2 , (4.40)

where T is the exact solution tensor, �T is the interpolant and h is a measure of the element’s size.

5 Numerical examples

In the following we test the convergence of the three finite element formulations against various simple analytical
solutions. For all formulations we make use of the cube � = [−1, 1]3. The finite element meshes range from 40
to 5000 elements, see Fig. 7.

We measure convergence in the Lebesgue L2-norm

‖ P̃ − P ‖L2 =
√∫

�

‖ P̃ − P ‖2
FdX , (5.1)

and the H(sym Curl)-norm

‖ P̃ − P ‖H(sym Curl) =
√

‖ P̃ − P ‖2
L2 +

∫
�

‖ sym Curl( P̃ − P)‖2
FdX . (5.2)

5.1 Smooth solution field

In the first example we set the microdistortion to

P̃ = (1 − x)(1 + x)

⎡
⎣−y − z x x

−y − z x x
−y − z x x

⎤
⎦ . (5.3)
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Fig. 9 Convergence rates for the rotational benchmark

Effectively, the microdistortion is now a vortex field that must vanish at x = −1 and x = 1, see Fig. 8. Since
the microdistortion is clearly continuous, it is an element of [H1]3×3. The microdistortion field gives rise to the
micro-moment

M =
⎡
⎣ x2y + x2z − y − z 0.5(x2y − x3 + x2z + 9x − y − z) 0.5(x2y − x3 + x2z + 9x − y − z)

0.5(x2y − x3 + x2z + x − y − z) −x3 + x −x3 + 9x
0.5(x2y − x3 + x2z + x − y − z) −x3 + 9x −x3 + x

⎤
⎦ .

(5.4)

The convergence rates are given in Fig. 9. In the L2-norm, the Nédélec element converges linearly, whereas the
Lagrangian element and the H(sym Curl)-element converge quadratically, as expected for smooth fields. All three
formulations converge linearly in the H(sym Curl)-norm.

5.2 Discontinuous normal trace

In the following benchmark we define the discontinuous microdistortion field

P̃ =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎣ 1 0 0

0 0 0
0 0 0

⎤
⎦ for x < 0,

0 otherwise.

. (5.5)

The latter field belongs to [H(curl)]3 but not to [H1]3×3. This is because only the normal projection of the microdis-

tortion P is discontinuous with regard to the unit vector e1 = [
1 0 0

]T

trH(curl) P

∣∣∣∣
�1

= P Anti(e1)
T = 0, �1 ⊥ e1. (5.6)

The corresponding micro-moments are clearly

M = P̃ . (5.7)
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Fig. 10 Convergence for the discontinuous normal projection benchmark

Fig. 11 Discontinuous normal projection for various discretizations of the H1-element displaying the first row of P

The approximation captured by the various discretizations is depicted in Fig. 11, Fig. 12 and Fig. 13. The noise (small
vectors in x > 0) in the solution is apparent for the Lagrangian- and H(sym Curl)-formulations. The convergence
rates are given in Fig. 10. The Nédélec element finds the analytical solution immediately for all discretizations. Both
the Lagrangian formulation and the H(sym Curl)-formulation converge sub-optimally. In case of the H(sym Curl)-
formulation this is due to the higher continuity imposed at the vertices. Despite appearing similar, the values of the
convergence in the L2-norm are not equal to the values of the convergence in the H(sym Curl)-norm. However, the
difference is small.

5.3 Discontinuous identity

In the last benchmark we test the behaviour of a discontinuous identity microdistortion field

P̃ =
{
1 for x < 0
0 otherwise

, (5.8)
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Fig. 12 Discontinuous normal projection for various discretizations of the H(curl)-element displaying the first row of P

Fig. 13 Discontinuous normal projection for various discretizations of the H(sym Curl)-element displaying the first row of P

for which the micro-moment reads

M = P̃ . (5.9)

Clearly the solution is in H(sym Curl) but not in [H(curl)]3 or [H1]3×3 since

trH(curl) P

∣∣∣∣
�1

=
{

Anti(e1)
T for x < 0

0 otherwise
,

trH(sym Curl) P

∣∣∣∣
�1

= 0, (5.10)

where e1 = [
1 0 0

]T
and �1 ⊥ e1.

As shown in Fig. 14, the H(sym Curl)-formulation finds the analytical solution immediately for all domain
discretizations, whereas the H1 and H(curl) formulations exhibit sub-optimal square root convergence. However, in
the H(sym Curl)-norm only the H1-formulation continues to converge, while the slope of the H(curl)-formulation

123



On [H1]3×3, [H(curl)]3 and H(sym Curl) finite... Page 17 of 21     5 

Fig. 14 Convergence rates for the discontinuous identity benchmark

Fig. 15 Discontinuous identity field for various discretizations of the H1-element displaying the last row of P

quickly tends to zero. The errors in the solution are clearly visible in the form of noise in Figs. 16,15, whereas Fig.
17 depicts the discontinuous field as captured by the H(sym Curl) formulation.

6 Conclusions and outlook

The relaxed micromorphic model with a symmetric micro-dislocation sym Curl P as curvature measure further
reduces the continuity requirements of the microdistortion field. As derived by the kernel of the trace and demon-
strated by our examples, discontinuous spherical tensors can be captured by the H(sym Curl)-space, as opposed
to the [H1]3×3 and [H(curl)]3 spaces. In addition, the tests show the corresponding finite element converges opti-
mally for discontinuous spherical fields in H(sym Curl), whereas the Lagrangian and Nédélec elements exhibit
sub-optimal square root convergence. Further, the convergence slope of the Nédélec-element rapidly flattens in the
H(sym Curl)-norm for discontinuous spherical fields.

These findings serve as a basis for understanding the behaviour of H(sym Curl)-elements in implementations
of the relaxed micromorphic continuum or in computations of the biharmonic equation [27]. The relaxed micro-
morphic complex is needed for future works, where mixed formulations of the relaxed micromorphic model with
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Fig. 16 Discontinuous identity field for various discretizations of the H(curl)-element displaying the last row of P

Fig. 17 Discontinuous identity field for various discretizations of the H(sym Curl)-element displaying the last row of P

H(sym Curl)- and H(div Div)-conforming elements are employed to stabilize evaluation with Lc → ∞. The latter
requires the introduction of the H(div Div)- or optimally H(div Div) ∩ Sym(3)-conforming finite elements.
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A Some mathematical identities

A.1 The range of sym Curl

In index-notation one finds Curl P = −Pi j,k ε jkl ei ⊗ el and as such

sym Curl P = −1

2
(Pi j,k ε jkl ei ⊗ el + Pi j,k ε jkl el ⊗ ei ). (A.1)

Eliminating the constant and applying the Div operator yields

−2 Div sym Curl P = (Pi j,kr ε jkr ei + Pi j,ki ε jkl el) = Pi j,ki ε jkl el , (A.2)

since the double contraction between the symmetric and anti-symmetric tensors Pi j,kr ε jkr is zero. The next diver-
gence operator kills the remaining term

−2 div Div sym Curl P = Pi j,kil ε jkl = Pi j,ikl ε jkl = 0, (A.3)

where the change in the order of the partial derivatives is due to Schwarz’s theorem. Therefore, there holds

div Div sym Curl P = 1

2
div Div Curl P +1

2
div Div(Curl P)T = 1

2
div Div(Curl P)T = 0, (A.4)

and

range(sym Curl) ⊂ ker(div Div). (A.5)

A.2 The kernel of sym Curl

The identity ker(Curl) = range(D) is derived directly by the row-wise application of ker(curl) = range(∇). For
the remaining part we consider ker(sym) = so(3) and as such

Curl P = A, A ∈ so(3) . (A.6)

Further, we can always write A = Anti(a) for some a ∈ R
3 and consequently

Curl P = Anti(a). (A.7)

Applying the divergence operator on both sides yields

Div Anti(a) = Anti(a),i ei = a,i × ei = − curl a = 0, (A.8)

since Div Curl P = 0. The latter is equivalent to a = ∇λ for some scalar field λ : � �→ R on the contractible
domain �. Now observe that Curl(λ1) = − Anti(∇λ) and thus P = λ1 satisfies Eq. (A.7). Clearly, any other
field T = Curl P where T /∈ so(3) is not in ker(sym Curl) simply because T is not purely anti-symmetric and
consequently, not in ker(sym). The remaining part of the kernel is given by gradient fields, finally yielding

ker(sym Curl) = range(D) ∪ R · 1 . (A.9)
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