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Abstract
Site-specific heterogeneity of solid protein samples can be exploited as valuable information to answer biological questions 
ranging from thermodynamic properties determining fibril formation to protein folding and conformational stability upon 
stress. In particular, for proteins of increasing molecular weight, however, site-resolved assessment without residue-specific 
labeling is challenging using established methodology, which tends to rely on carbon-detected 2D correlations. Here we 
develop purely chemical-shift-based approaches for assessment of relative conformational heterogeneity that allows iden-
tification of each residue via four chemical-shift dimensions. High dimensionality diminishes the probability of peak over-
lap in the presence of multiple, heterogeneously broadened resonances. Utilizing backbone dihedral-angle reconstruction 
from individual contributions to the peak shape either via suitably adapted prediction routines or direct association with a 
relational database, the methods may in future studies afford assessment of site-specific heterogeneity of proteins without 
site-specific labeling.
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Introduction

Protein disorder plays a significant role in various cellular 
processes (Uversky 2013, 2018). Intrinsically disordered 
proteins (IDPs) and intrinsically disordered protein regions 
(IDRs), due to their high flexibility and high accessibil-
ity, are crucial elements of transcription factors (Sammak 
and Zinzalla 2015), voltage-dependent gating (Zhou et al. 
2001; Kjaergaard and Kragelund 2017), protein phase sepa-
ration (Turoverov et al. 2019), and many others. Intrinsic 
disorder gives proteins the ability to form low-affinity but 
highly specific complexes, which is important for regulatory 
pathways (Uversky 2013). Similarly, ensembles of partially 
folded intermediates can provide valuable insight into pro-
tein folding, mis- or refolding (Havlin and Tycko 2005a; Hu 

et al. 2009; Potapov et al. 2015). Whereas NMR has proven 
to be an invaluable tool to characterize the level of disor-
der in solution (Lindorff-Larsen et al. 2004; Nielsen and 
Mulder 2020), static disorder in the solid state, either related 
to the conformational ensemble of the protein in solution 
or as a biological property on its own, can be assessed by 
solid-state NMR spectroscopy (Siemer 2020). Upon aggre-
gation, solidification, or even crystallization, disorder can 
be captured for part of the protein sequence, even if other 
parts transition into well-ordered structural elements. As a 
consequence, heterogeneity in the solid state is of signifi-
cance for example for understanding the aggregation mecha-
nisms of amyloids (Morris et al. 2012; Elkins et al. 2016; 
Xiang et al. 2017) as well as the formation principles of 
complex biological conjugates such as spider silk (Asakura 
et al. 2013a, b). “Arrested dynamic disorder” can be quanti-
fied in freeze-trapped solutions (Havlin and Tycko 2005b; 
Heise et al. 2005), which can capture the previous physi-
ologically relevant conformational distribution. Disorder in 
the solid state may manifest itself in the presence of a low 
number of distinct forms, as it is sometimes the case for 
proteins in polymorphic amyloid assemblies (Paravastu et al. 
2008; Tycko 2011, 2014; Amo et al. 2012; Jaroniec 2019). 
Alternatively, a distribution of numerous conformations can 
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arise, as sometimes found for membrane protein prepara-
tions already at room temperature (Su and Hong 2011), for 
crystalline proteins upon freezing (Luo and Yu 2008; Linden 
et al. 2011; Siemer et al. 2012; Endapally et al. 2019), for 
folding intermediates (Chimon and Ishii 2005; Havlin and 
Tycko 2005b), or freeze-trapped IDRs (Hu and Tycko 2010), 
which in the extreme case can span a continuously sampled 
conformational space. With significant recent improve-
ments in hardware, there is a growing interest in utilization 
of solid-state NMR assessment not only using standard MAS 
approaches but also—given the intrinsically low sensitivity 
of frozen solutions and the general hurdle of broad (and 
thus lower-height) peaks—via dynamic nuclear polarization 
(DNP) techniques (Siemer et al. 2012; Uluca et al. 2018; 
Jeon et al. 2019).

Different approaches toward quantitative characterization 
of the static disorder have been described, where either iso-
tropic chemical shifts, CSA, or dipolar coupling correlations 
are used and translated into best-fit ensemble models via 
principle-component analysis of spectral features or via MD-
derived ensembles a-posteriori weighted by comparison of 
in-silico with experimental data. Despite the enormous chal-
lenges on the way, e. g., the faithful simulation of isotropic 
chemical shifts of individual conformer contributions, the 
often-underdetermined relationship between experimental 
values and dihedral properties, as well as the resolution limi-
tations occurring for the desired type of experiment for a 
more complex target protein, quantitative insights into sec-
ondary-structure polymorphism have been obtained in sev-
eral studies by deconvolution of 13C-detected NMR spectra. 
Some examples are an analysis of measured and simulated 
peaks in static 2D spin-diffusion experiments in model poly-
mers (Asakura et al. 2001) or spider silk with isotope labe-
ling by residue type (Kümmerlen et al. 1996), assessment 

of spider silk via DOQSY spectra (Beek et al. 2000), the 
conformation of peptide T in frozen glycerol/water solution 
using 2D 13C–13C exchange spectroscopy (Dios et al. 2004), 
double quantum/zero quantum- (DQ–ZQ) spectroscopy of 
the neurotensin peptide without cryoprotectant (Heise et al. 
2005), a linear combination of “clean” SQ/SQ spectra or 
correlated anisotropic interactions of carbonyls for assessing 
the unfolding of HP35 (Havlin and Tycko 2005a; Hu et al. 
2009; Hu and Tycko 2010), PCA analysis of melittin spectra 
interrupted upon folding (Hu et al. Oct. 2009), selectively 
labeled α-synuclein in frozen solution (Uluca et al. Apr. 
2018), and others. One of the biggest hurdles in the presence 
of conformational ensembles is sufficient signal dispersion 
for downstream processing of NMR data for more in-depth 
analyses. To overcome it, selective amino acid labeling is 
often used (Tycko 2014), which, however, largely reduces 
the information content per sample and necessitates a high 
reproducibility of the sample preparation in case multiple 
sites are to be investigated.

In this work, to enable the readout of multiple heteroge-
neously broadened peaks (from different residues) at once, 
we explore two purely chemical-shift-based approaches for 
residue-specific evaluation of the dihedral angle distribution 
in conjunction with higher-dimensionality spectra. The first 
one relies on exploiting chemical-shift based dihedral-angle 
predictions, most importantly via TALOS-N (Shen and Bax 
2013). A complementary approach is a direct chemical shift 
database comparison (Fig. 1). For a possible utilization for 
future biological questions, we specifically include chemical 
shifts of backbone HN, NH, and Cα nuclei as well as Cβ (i.e. 
four dimensions) to achieve a chemical shift dispersion as 
large as possible, which gives access to peak features within 
the higher-dimensionality shift correlations. To be able to 
interpret the resulting conformational ensembles in terms 

Fig. 1   Flowchart of the two developed approaches to study peak 
shapes in higher-dimensionality solid-state NMR spectra of hetero-
geneous proteins via chemical-shift patterns. Left: PACSY data base-

derived reconstruction of conformational ensembles, right: predic-
tion-based assessment of backbone dihedral-angle distributions
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of a degree of conformational heterogeneity, we suggest a 
series of scores, which we apply to the outcomes of both 
reconstruction frameworks.

Materials and methods

Uniformly labelled (13C, 15 N)-GGAGG pentapeptide was 
purchased from Thermo Fischer. An inhomogeneous sample 
was prepared by dissolving the peptide in 1 mL of ddH2O, 
flash-freezing in liquid nitrogen, and drying in a vacuum 
chamber at 0.01 bar. Spectra of GGAGG were recorded on 
a Bruker Avance 800 MHz NMR spectrometer in a 1.3 mm 
MAS rotor. The rotor was filled by overnight centrifugation 
of the sample and spun at 40 kHz at a temperature of 10 °C. 
A 4D hCBCANH spectrum (Xiang et al. 2016) of GGAGG 
was acquired non-uniformly with 5% sampling density 
(19,208 points). A Poisson-Gap schedule and hmsIST as the 
reconstruction method were chosen based on previous work 
(Burakova et al. 2020). The DREAM (Verel et al. 2001) 
scheme was used to achieve Cα–Cβ magnetization transfer. 
Digital resolution in the indirect dimensions was 127.7 Hz 
for nitrogen and 251.0 Hz in both carbon dimensions. The 
spectrum was recorded in seven blocks of eight scans to 
allow for manual field correction in between. Each block 
was recorded for ca. 2.5 days. The 2D correlation spectra 
were referenced to an external DSS standard as described 
in Aeschbacher et al. (2012). The 4D hCBCANH was indi-
rectly referenced by superimposing the 2D projections with 
the 2D DREAM correlation. For details on acquisition and 
processing parameters see Table S1. Apodization had no 
significant effect on the GGAGG peak shapes and widths 
in comparison to the inhomogeneous broadening (see Fig. 
S1). Spectral processing was done using NMRPipe software 
(Delaglio et al. 1995).

The CSV-formatted PACSY database (version from Dec, 
28 2020) (Lee et al. 2012), cleansed by methodology pre-
sented in Fritzsching et al. (2016), was analyzed and visu-
alized using Python and Python-based packages including 
NumPy (Harris et al. 2020), NMRglue (Helmus and Jaroniec 
2013), Pandas (McKinney et al. 2010) and others (Hunter 
2007; Waskom et al. 2017; Fundamental Algorithms for Sci-
entific Computing in Python et al. 2020).

Results

Model heterogeneous sample

We developed our approach on a short model heterogene-
ous sample of u-(13C, 15 N)-GGAGG pentapeptide, checked 
for purity by mass spectrometry and analytical HPLC. We 
introduced a permanent conformational disorder by first 

flash-freezing in water and then freeze-drying to 10 mbar, 
resulting in a glass. Being minimally restrained by steric 
properties, the G-A-G peptide bonds in this sample can be 
assumed to represent an extreme example of dihedral-angle 
variability. In this sample, peak broadening can be assumed 
to derive almost exclusively from conformational hetero-
geneity, as long-range modulation of the chemical shift by 
ring-current effects were specifically avoided. Contribu-
tions from intermolecular contacts to the heterogeneous line 
shape, beyond the backbone dihedral angles of interest, can 
be assumed to be largely limited to the H and N shifts (due to 
differential H-bonding interactions). These are an acceptable 
compromise for developing the demonstrated algorithms, 
as in future applications in frozen solutions these would be 
severely reduced and because carbon shifts are less suscep-
tible to intermolecular contacts. (See a discussion of this 
limitation below.)

As opposed to the previous works, we intended to uti-
lize correlated chemical-shift data from as many nuclei as 
possible, expanding cross-polarization-based NMR experi-
ments to four dimensions, which was put into practice via 
a 4D hCBCANH correlation. (See Materials and Methods 
and Table S1 for experimental details.) When applied to 
more complex proteins in the focus of biological questions 
in future studies, the 4D experiments will increase disper-
sion of the signals without individual site-specific labeling. 
Dispersion is a main bottleneck for the residue-resolved 
assessment of sample heterogeneity in case of severe peak 
broadening when many residues bear isotope labels. As 
expected, whereas the anti-correlated chemical-shift dis-
tributions of Cα and Cβ (see carbon–carbon correlation in 
Fig. 2B) resemble what would be expected for a distribution 
of different dihedral angles based on the statistical data (Lee 
et al. 2012), the H and N distributions can be assumed to be 
more strongly influenced by homogeneous line broadening 
and heterogeneous contributions independent of dihedral 
angles. Therefore, in this preparation, these dimensions 
predominantly represent the purpose of chemical-shift dis-
persion. In DNP assessment of flash-frozen preparations 
(where intermolecular protein contacts are avoided due to 
an excess of solvent), however, H and N shifts may serve 
as a more faithful reporter on secondary structure as well.

Conformational analysis based on predictions 
of TALOS‑N

TALOS-N (Shen and Bax 2013) is a recent and widely-used 
program for predicting protein backbone dihedral angles 
from successive NMR chemical shifts that relies on an arti-
ficial neural network. The neural network ((φ, ψ)-ANN) is 
derived from proteins for which crystal structures are avail-
able together with their nearly complete backbone chemi-
cal shifts. The task of identifying the most likely (φ, ψ) 
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combination for a given set of isotropic chemical shifts is 
closely related to the analysis desired here, where individual 
elements of the heterogeneously broadened peak need to 
be analyzed individually and an integrated distribution of 
angles be produced. In TALOS, the initial prediction of (φ, 
ψ) angle probability distribution is done with (φ, ψ)-ANN 
based on the chemical shift input for five consecutive resi-
dues. Then, the algorithm selects those 25 heptamer frag-
ments with the best matching geometry and chemical shifts 
of the central residue to classify the result by quality and, if 
possible, find the most likely combination of (φ, ψ) angles.

Given the explicit expectation of non-standard secondary 
structural properties, our TALOS-N based approach to static 
conformational disorder (see Fig. 2, right) utilizes only the 
18 × 18 grid (φ, ψ) distribution obtained from (φ, ψ)-ANN 
(324 φ/ψ combinations). No other output data (the most 
likely (φ, ψ) combination, secondary structure propensity, 
prediction of side-chain rotamers) is used. To analyze the 
entire, heterogeneously broadened peak, the volume occu-
pied by signal intensity above a given threshold (here: 20% 
of peak maximum intensity, signal-to-noise ratio of 15) was 
probed for intensity at discrete grid points of the chemical-
shift space obtained via regular sampling intervals. Sam-
pling resolution needs to be sufficient to differentiate the 
areas expected for different secondary structural properties 
(compare Fig. 3A). For the alanine cross-peak in GGAGG 
we used a spacing of 0.4, 1.0, 1.5, and 1.5 ppm in the 1HN, 
13Cα, 13Cβ and 15N dimensions, respectively, corresponding 

to 1407 (4 + 1)D grid points (four frequency dimensions 
plus one dimension for intensity). The expected homogene-
ous linewidths (at 700–750 MHz and 40 kHz MAS) are on 
the order of 360, 20, and 80 Hz (0.5, 0.3, 0.5 ppm) in 1H, 
15N, and 13C dimensions, respectively (Zhou et al. 2007; 
Linser et al. 2011). The inhomogeneously broadened lines 
of this sample (Fig. 3A), on the other hand, cover a shift 
range of several (~ 7–8) ppm in each dimension, which is in 
line with the expected large difference between helical and 
extended conformations present. As such, both the homoge-
neous contributions to the linewidth as well as the spacing 
of grid points are here sufficiently narrow in comparison to 
the extent of heterogeneous contributions but may have to 
be tightened in samples/residues with lesser extent of con-
formational heterogeneity.

In TALOS-N, secondary-structural assessment is strongly 
improved by including additional residues before and after 
the residue of interest (ROI). However, in the analysis of 
heterogeneous peak shapes, it is close to impossible to deci-
pher which individual peak sections of the neighbor peaks 
are connected with which peak elements of the ROI, in the 
sense that they stem from the same molecule (or at least 
similar conformations). (Additional inter-residual dimen-
sions, in addition to the multiple intra-residual ones, as well 
as added magnetization transfer steps would be required, 
which is practically challenging.) Simplifying the chemical 
shifts of neighbor spins to one value (e. g., the global peak 
maximum position), on the other hand, would strongly bias 

Fig. 2   13C–13C 2D DREAM correlation of an inhomogeneous sam-
ple of GGAGG pentapeptide after freeze drying. A Full spectrum 
(line broadening coefficient LB = 20  Hz). B Overlay of 13Cα/13Cβ 
Ala cross-peak (black contours, with exponential line broadening 
of 150  Hz) with expected chemical-shift regions adopted by differ-
ent kinds of secondary structure. These entries are color-coded by 
their secondary-structure class according to the STRIDE classifica-
tion (Frishman and Argos 1995) with simplification: class “helices” 

includes alpha-, 3–10 and Pi-helices (H, G and I); “extended” class 
includes entries classified as E; other structures include the remain-
ing T, B and b classes. Contours start from 4% of absolute intensity 
and increase with a factor of 1.2. Compare Fig. S4 for generation of 
secondary-structural color shades. Random-coil chemical shifts result 
from fast averaging of different conformations in solution and have 
been omitted here
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the analysis of the ROI to the most populated conformation. 
Therefore, we introduced a step of translating the ROI pro-
pensity associated with each given shift combination (grid 
point) to neighbor residue shifts (see Fig. 2) before sub-
jecting the shift combination to ANN. For this purpose, the 
five-dimensional vector ri between each grid point i and the 
neighbor-corrected random-coil chemical shift was deter-
mined for the ROI, appropriately rescaled, and added to the 
neighbor’s (j ± 1 and j ± 2) neighbor-corrected random-coil 
chemical shift values (Tamiola et al. 2010). Rescaling of 
ri was done in nucleus- and residue-type-specific fashion 
that reflects the differential strength of shift modulation by 
secondary structure (Fig. S2), compared to the random-coil 
shifts, as determined using the conformation-specific cent-
ers of gravity for each nucleus and residue type (Fritzsching 
et al. 2016). For test purposes, we also artificially extended 

and translated the peptide chain by two glycine residues j ± 3 
at the termini before prediction, as the TALOS-N database 
search involves up to 7-mers to make a prediction. Fig. S3A 
and B show a comparison of TALOS-N predictions for the 
true (GGAGG) and extended sequence (GGG​AGG​G) for the 
same test coordinates. However, the differences were found 
to be negligible. The analysis in the following was anyways 
done on predictions for the extended sequence. Assessment 
of 1407 points by TALOS took about 5 h (running 3 subsets 
of points in parallel on 10 Intel® Core™ i7-8700 CPUs at 
3.20 GHz, 64 bit).

The grid of individual samples from the heterogeneous 
4D peak is shown (as a 2D projection) in Fig. 3A, overlaid 
there with the regions expected for different types of differ-
ent secondary structure. (See Fig. S4 for the generation of 
such secondary-structural regions.) The prediction results 
for five exemplary grid points selected to represent differ-
ent contributions to the volume of the overall heterogene-
ous peak, i.e., two samples from the helical region (Points 
1 and 3), two samples from the strand-like region (Points 2 
and 4), and the point of the maximum overall peak intensity 
(Point 5), are shown in Fig. 3B, panels 1–5. Final recon-
struction of the conformational distribution represented by 
the overall heterogeneous peak Dk (the probability density 
at each of the 324 φ, ψ angle combinations k) is achieved 
by summing up the 1407 individual probability maps Dki , 
weighted by the experimental intensity at each grid point Ii 
in the experimental 4D spectrum (Fig. 3B, last panel, “whole 
sample”):

with Dk—probability density for each φ/ψ combination k 
on the Ramachandran map; Ii is the NMR intensity at the 
position i from the 4D peak volume (“grid point”), and N is 
the number of grid points covered by the peak (in this case, 
N = 1407 ). Note that we will use the variable Dk for the 
height (probability) at a given point (k) in Ramachandran 
space irrespective of what the respective map looks like in 
detail.

As expected from the shift distribution of GGAGG in 
comparison with neighbor-corrected chemical shifts result-
ing for different secondary structures (Fig. 2B), for this 
extreme case of static disorder, the individual predictions 
sample almost the whole allowed Ramachandran space 
(Fig. 3). Points 2 and 4 correctly represent extended confor-
mation with φ = − 155 and ψ = 140, with some uncertainty 
for Point 2. Due to low relative intensity, these two points 
make only a minor contribution to the final result. Point 1, 
situated in the helical region of chemical shift distribution, 
correctly yields clear helical predictions. Interestingly, how-
ever, a mix of left- and right-handed helices is obtained. 

(1)Dk =

N∑

i=1

DkiIi

Fig. 3   Process and results of TALOS analysis of the Ala cross peak 
in an hCBCANH spectrum of freeze-dried GGAGG. A Grid points 
within the peak (black crosses) and the selection of five test cases 
(“Points 1–5”, bold black crosses) over the orthogonal projections of 
the 4D peak (Cα/Cβ and H/N projection left and right, respectively) 
colored according to the chemical shifts expected for alanines (as 
occupied by 96% of the database entries, belonging to helical (red), 
extended structures (green), or other groups (purple)). Random coil 
(“C” class) entries have been left out—see caption to Fig. 2 and com-
pare to Fig. S4. B TALOS predictions of the grid points defined in A 
(Points 1–5) for the extendend sequence, (G)GGAGG(G) (see main 
text), as well as the “whole sample”. The latter is the summed-up φ/ψ 
distribution map of all the grid points of the peak shape, representing 
the overall conformational ensemble of alanine in the inhomogeneous 
(G)GGAGG(G) sample
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For Point 3, which is located in one of the turn regions, a 
left-handed helix is confidently predicted (or, according to 
classification in Hutchinson and Thornton (1994), a type I’ 
turn). In the case of an alanine surrounded by glycines—
residues without any Cβ—both senses of winding are indeed 
possible and—given the enantiomeric character of the left-
handed GGAGG helix relative to the right-handed one—
would lead to similar chemical shift. Notably, overall, this 
sample contains more left-handed helical propensity than the 
conventional α-helical, according to TALOS-N (see panel 
“whole sample”). However, this is a special exception for 
this sample. (Accordingly, the PACSY database does not 
differentiate well between right- and left-handed helix, see 
below). Fig. S3 compares predictions for GGAGG with pre-
dictions at the same three test coordinates but for LLALL 
and LLLALLL as input and adjusting the shift translation 
by taking the Leu (instead of Gly) random coil values into 
account. In principle, this should give identical results since 
chemical shifts are equivalently translated, with the differ-
ence that the result is now in a purely right-handed heli-
cal conformation. This is indeed the case. Hence, in further 
analysis and for the general case, we omitted the sense of 
winding and considered helical contributions in a general 
sense. As such, the two different senses of helical properties 
derived from the shift combination at Points 1 and 3 were 
merged into single helical predictions by reflecting the right 
half of the resulting Ramachandran map onto the left one 
(point reflection about the 0, 0 coordinate, referred to as 
“folding” in the following, Fig. 4A).

Eventually, Point 5 yields a broader distribution of angles. 
It is associated with “dynamic” properties by TALOS-N 
and denotes overlapping contributions from turn (φ = − 80, 
ψ = 150) and any of the helical conformations (the region 
around (φ = − 90, ψ = − 40) for alpha- and 3–10 helices and 
(φ = 80, ψ = 10) for the left-handed helix). For completely 
rigidified samples, averaging of chemical shifts to pure ran-
dom-coil values does not occur. Fig. S5A shows the entries 
from the PACSY data base, with the coil entries removed, 
colored according to dihedral-angle combinations (rather 
than the STRIDE system). Most of the turn conformations, 
with dihedral-angle combinations diverging from helical or 
extended conformations, are located in the central region of 
the chemical-shift space, similar to the coil shifts in solution. 
Whereas, within the turn conformations, the most extreme 
helical and sheet shifts are not adopted and certain trends are 
still obvious, the association between shift and angle com-
binations is much less clear than between the major classes 
of secondary structure (compare Figs S5C, E, and F, as well 
as Figs. S6 and S7). Hence, even though the occurrence of 
“neither-E-nor-H” cases in the data base is much lower than 
the more faithfully predictable E and H shifts, the ambiguity 
for predictions of intermediate shift combinations consti-
tutes a well-known shortcoming of shift-based secondary 

structure prediction. Equally importantly, every point in 
frequency space can be thought of as reflecting contribu-
tions from individual molecules with their specific backbone 
dihedral angles. However, intensity in central positions will 
always occur also as an artifact from overlap of individual 
peak “shoulders”, to an extent dependent on the level of 
homogeneous contributions to the linewidth and limited dig-
ital resolution. Hence, in addition to the turn residues reso-
nating with exactly these shift combinations (Fig. S5C and 
F), shoulders from the more helical and extended conforma-
tions (Fig. S5B and D) strongly blend into the contributions 
from the “turn” dihedral angles in this area. In this respect, 
the inhomogeneous prediction results for central shifts are 
not entirely wrong, as indeed they agree with the presence of 
a mixture. Hence, whereas the “mixed” prediction outcome 
for central shift combinations may have distortive character 
(when in reality a narrow distribution around one or more 
of the turn torsion angle combinations would be correct), a 
reasonably representative outcome can be expected for mix-
tures mainly comprised of different populations of the more 
prototypical (helical/extended) conformations. (In these 
cases, if not absent, central chemical shifts are derived from 
homogeneous line broadening.)

Quantification of heterogeneity

Since there is no standard for the quantitative level of site-
specific sample heterogeneity yet, here we explored different 
approaches to possibly represent the degree of heterogeneity 
in a fast and at least qualitatively reliable fashion. For this 
purpose, we considered eight distributions that represent 
a variety of possible scenarios: In addition to the "Points 
1–5″ and the overall inhomogeneous peak shape (“whole 
sample”) considered above, two additional points that rep-
resent the “purest” homogeneous cases (expected helical and 
strand chemical shifts) are included in the comparison for 
convenience. (TALOS predictions for these pure helical and 
extended-structure cases were generated for the 6th residue 
of a Leu 10-mer sequence with chemical shifts being set 
to the expected values of either helix or strand (Fritzsch-
ing et al. 2016).) The eight scenarios are ordered tentatively 
from pure to mixed conformational content; however, it is 
clear that different measures (see approaches of quantifica-
tion below) would be sensitive to specific features of the 
distribution. It may be useful to stress that, as a notion, the 
degree of heterogeneity makes sense only for the integral or 
“summed up” Ramachandran maps addressing the whole 
volume of a solid-state NMR peak (panel “whole sample” 
in Fig. 3B and the corresponding panel in Fig. 4A) and 
shall not be applied to the predictions from individual grid 
points of a heterogeneous peak (which were described in 
the previous section). In this section, we use the individual 
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Ramachandran maps for demonstration purposes only, as if 
they were obtained for separate, homogeneous peaks, since 
all calculations remain exactly the same.

In order to characterise (φ, ψ) distributions quantitatively, 
at first, methods of circular statistics were applied. Each pixel 
in the Ramachandran map represents the (weighted) incidence 
of a specific angle combination. When generating a circular 
average over an angular distribution, one imagines an averag-
ing of vectors in 2D space with an individual direction (given 
by the angle) and length (its weight within the ensemble). The 
(φ, ψ) distribution of the heterogeneous peak comprises of 180 
vectors �⃗vk (one for each (φ, ψ) combination k) with direction 

given by the pixel’s angles � and � and magnitude given by 
the pixel’s relative intensity Dk

∑180

k=1
Dk

 . Knowing the magnitude 

of an individual vector ||�⃗v||k and its angle(s), it can be dissected 
into vector components ���⃗|v|sin𝜃 and ���⃗|v|cos𝜃 using trigonomet-
ric relations ( � being � or � angles). The average vector �⃗v and 
its magnitude, ||�⃗v|| , can then be constructed via Pythagoras from 
the average vector components. In the case of only similar 
angles being populated in Ramachandran space, the average 
vector �⃗v is long (in the extreme case has a magnitude ||�⃗v|| of 1, 
as the sum of relative intensities is 1), whereas with a large 
variety of angles being populated, the vector sum or average 

Fig. 4   Exploration of various methods of quantification of heteroge-
neity in solid-state NMR samples, applied to TALOS-based recon-
struction of conformational distributions. A Folded Ramachandran 
maps of the test coordinates. Panel “Whole sample” corresponds to 
the weighted sum of predictions over the whole Ala peak of hetero-
geneous GGAGG. For generation of pure secondary structure, predic-
tions were made of the 5th Leu in a Leu10 chain with the correspond-
ing expected chemical-shifts values (taken from (Fritzsching et  al. 
2016)). Grayscale is normalized from 0 (black) to 1 (white, maximum 

value). B Ramachandran maps from A) in polar coordinates. In each 
pair, the left plot corresponds to φ and the right one to ψ distribu-
tions. Gray area denotes the non-valid φ region for the calculations 
due to folding (see main text for details). Black vectors point into the 
mean direction, their length is set here to represent the circular vari-
ance, not the length of the resulting vector for the distribution. C Rep-
resentation of different measures of heterogeneity (circular variance 
V, entropy S, flatness F, and secondary-structure ratio R) for the maps 
shown in A) as bar plots. See text for details
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has a short length (in the extreme case 0). The circular vari-
ance V (with higher values for broader distributions and vice 
versa) is reflected by 1–||�⃗v||:

V� thus ranges from zero to one, where lower values cor-
respond to concise distributions. Note that in our approach, 
the distibutions have a period of only 180° (π) for the φ 
dimension due to the above folding of left-handed into 
right-winded structures (see section Conformational analy-
sis based on predictions of TALOS-N). The Ramachandran 
plots (Fig. 4A) can be visualized using polar coordinates 
(Fig. 4B), in which the distribution of vectors (blue his-
tograms) and the average property (black) are visualized. 
Note that the magnitude of the black arrow was chosen to 
reflect the variance (1–||�⃗v|| ), not the resulting vector’s mag-
nitude. The rising trend of greater “inhomogeneity” in the 
individual panels (conf. H, conf. E, Points 1–5), which is 
apparent from both V� and V� , shows the uncertainty within 
the prediction of individual chemical shift combinations: In 
contrast to the clear (easy-to-predict) shift combinations, an 
increasingly large V is found for Points 3–5, i. e., when shifts 
do not adhere to the standard values expected for helical or 
extended structures. This is consistent with the above obser-
vation that shifts in central regions are inherently associated 
with a broader (φ, ψ) distribution on their own.

Alternatively, the level of heterogeneity contained in 
broad (φ, ψ) angle distributions can be measured by Shan-
non‘s entropy. In statistics and information theory, the con-
cept of entropy is widely used to quantify the amount of 
uncertainty in a given distribution of a random variable. 
Considering each φ/ψ combination k of the Ramachandran 
map as an independent state of an amino acid residue, with 
its intensity Dk representing its likelihood to be true/adopted, 
the entropy of a prediction would be calculated as follows:

(2)
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Entropy of a hypothetical case where only one state 
is populated equals zero; by contrast, it increases up to 
S = ln(180) ≈ 5.19 for the hypothetical case of a uniform 
distribution.* If the angle-specific contributions to the 
entropy are of interest, they can be calculated via pro-
jection of the Ramachandran probability map onto the 
individual axes and applying the above routine (then 
0 ≤ k ≤ 10 for �;Smax

�
= ln(10) ≈ 2.3 and 0 ≤ k ≤ 18 for 

� ; Smax
�

= ln(18) ≈ 2.9 ). When describing the full heter-
ogeneous peak, the Ramachandran map Dk refers to the 
result from weigthed averaging over the heterogeneous 
chemical-shift pattern (see Eq. 1). For the heterogeneous 
GGAGG sample of this study, the total entropy Stotal is 
4.46, whereas entropy values of individual (one-dimen-
sional) � and �  distributions amount to 2.07 and 2.56, 
respectively. Note that in Eq. 3.3, Dk (the probability for 
the φ/ψ combination k in the Ramachandran map) applies 
to the folded map with k = {1, …, 180}. For single-angle 
entropies (Eq. 3.1 and 3.2, k bearing 10 or 18 values for 
φ and ψ, respectively), Dk refers to probabilities for indi-
vidual φ or ψ values in one-dimensional Ramachandran 
maps. (Such projections are obtained by adding all those 
Dk values that are within the same column or row, respec-
tively). It may be useful to correct for the level of ambigu-
ity of the prediction for a well-defined event, which excess 
entropy results from simple subtraction of the entropy for 
a confined helix: ΔS = S − Sconf .H . For the heterogene-
ous GGAGG sample, the overall ΔS amounts to 1.30, the 
highest-possible (but sterically challenging) value would 
be 2.02.

A simple approach to probe the level of homogeneity 
found in a distribution is the measure of flatness, which 
gives the relative abundance of the highest-probability 
event (normalized by the sum of overall occurrence of 
different events of the prediction):

By definition, it is insensitive to the number of modes 
and rather characterizes how confined the distribution 
is overall (Fig. 4C). In addition, it may be interesting to 
consider the ratio between the population of helical and 
extended regions (R), as determined from the integral over 
relative densities in the typical areas of the Ramachandran 
plot.

where H and E are the integrals of the allowed regions in 
the folded φ / ψ maps. (Regions taken into account for H and 
E are depicted in Fig. S8.) Tables 1 and 2 and Figs. 4 and 5 

(4)F =
max

�
Dk

�

∑180

k=0

�
Dk

�

(5)R =

{
H∕E if H > E;

E∕H if H ≤ E
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show R for various cases. For the whole sample, R amounts 
to ~ 1.53, with a slight excess of helical properties.

Conformational analysis based on predictions 
of DANGLE

As an alternative approach to neural-network based tran-
formation of chemical-shift combinations into dihedral 
angle space, the DANGLE algorithm has been suggested 
(Cheung et al. 2010). DANGLE uses Bayesian inference-
based methodology and was set up in 2009 for improving 
predictions over the TALOS-N predecessor TALOS + (Shen 
et al. 2009) at the time. We subjected the 1407 chemical-
shift combinations covering the heterogeneous 4D peak 
derived above also to DANGLE, using exactly the same pro-
cedure as described in the framework of TALOS predictions. 
Quantitative evaluation of the predictions of the exemplary 
grid points described above (confined H, confined E, and 
Points 1–5) as well as the summed prediction for the entire 

heterogeneous peak was also done as described above (Fig. 
S9 and Table S3). A series of DANGLE test runs where—
as an alternative—the secondary-structure propensity of the 
middle residue (Ala) was not propagated to its neighbors 
(all four Gly) yielded identical φ/ψ maps for all grid Points 
1–5. With translation of secondary-structural propensity to 
neighbors (determining the deviation between the grid point 
shift combination to the random-coil shift combination and 
calculation of neighbor shift combinations from their ran-
dom-coil shifts by adding the same difference as found for 
the ROI, as described above), however, results were obtained 
that are very similar to the TALOS approach. In particular, 
the expected angular properties are faithfully reproduced for 
confined H, confined E, and Points 1, 2, 4, and 5. A devia-
tion is found only for grid point 3, which represents a rather 
sparsely populated area in chemical-shift space and also fails 
to yield faithful predictions in the approach based on direct 
data base correlations (see below). Generally, however, 
the individual predictions seem more discrete, and lower 

Table 1   Heterogeneity parameters obtained for the folded Ramachan-
dran maps predicted by TALOS-N for the local test scenarios as well 
as for the broad heterogeneous peak. Shown are the two reference 
cases (H and E), five individual coordinates from the Ala HNCACB 

peak (“Points 1–5"), and the cumulative peak volume in the GGAGG 
sample (bold, see Fig. 4A). The underlining in the sec. structure col-
umn denotes the excess of helical content

Scenario Sec. struct Circular variance V Entropy S Flatness F R

ϕ ψ ϕ ψ total ΔStotal

Conf. H H 0.07 0.13 1.54 1.68 3.17 0.00 0.886 25.89
Conf. E E 0.1 0.14 1.68 1.76 3.35 0.18 0.894 27.38
Point 1 H 0.15 0.32 1.82 2.10 3.68 0.51 0.904 7.53
Point 2 E 0.18 0.40 2.04 2.17 4.08 0.91 0.943 7.31
Point 3 H 0.26 0.41 2.04 2.33 3.99 0.82 0.923 5.80
Point 4 E 0.16 0.5 1.88 2.37 3.99 0.82 0.935 3.55
Point 5 H + E 0.18 0.68 1.96 2.47 4.24 1.07 0.949 1.99
Whole sample H + E 0.22 0.78 2.07 2.56 4.46 1.30 0.955 1.53

Table 2   Quantitative analysis of Ramachandran maps obtained using 
the PACSY approach, focusing on chemical-shift combinations 
of confined helix and sheet, Points 1–5, and the full heterogeneous 
GGAGG peak (bold). Since for the PACSY approach in clean cases 
no population of incorrect secondary structure is produced, the R val-

ues tend to be infinity (division by 0) or very high, which hence rep-
resents a clean prediction. N stands for the number of PACS entries at 
the respective chemical-shift grid point. The underlining in the sec. 
structure column denotes the excess of helical content

Scenario Sec. struct N Circular variance V Entropy S Flatness F R

ϕ ψ ϕ ψ Total ΔStotal

Conf. H H 2030 0.04 0.06 0.96 1.16 2.02 0.00 0.666 115.9
Conf. E E 105 0.12 0.08 1.70 1.55 3.04 1.02 0.911 inf
Point 1 H 1303 0.02 0.04 0.88 0.99 1.83 − 0.19 0.645 419.6
Point 2 E 60 0.09 0.09 1.51 1.45 2.61 0.59 0.786 inf
Point 3 H 6 0.28 0.22 1.36 1.09 1.36 − 0.66 0.671 0.72
Point 4 E 20 0.06 0.07 1.31 1.0.37 2.26 0.24 0.790 inf
Point 5 H + E 422 0.17 0.74 1.64 2.45 3.71 1.70 0.860 1.54
Whole sample H + E 13,565 0.17 0.80 1.78 2.36 3.94 1.92 0.869 1.52
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variability in the prediction results from individual chem-
ical-shift grid points is found. As a consequence, whereas 
the trends within the data set are qualitatively consistent 
with the expectation and with the TALOS-N approach, the 
exact values found in the various heterogeneity scores of the 
overall peak are generally lower. In contrast to the prediction 
by TALOS, where statistics are generally smoother, many 
zero values are obtained, and added care has to be taken to 
not overinterpret the resulting quantitative scores.

Conformational analysis driven by database search

A rather different approach to reconstructing the ensem-
ble of conformations from a heterogeneously broadened 
peak shape is the utilization of a database that directly 

associates backbone dihedral angles from PDB structures 
with chemical shifts. We used PACSY (Lee et al. 2012), a 
relational database that contains over 6000 protein chains 
to allow this correlation directly from individual entries. 
For this purpose, we constructed the following workflow 
(see Fig. 2, left). All data are taken from the PACSY table 
X_CS_DB2 (where X stands for one-letter residue code, 
here X = A), which relates chemical shift, dihedral angles, 
secondary structure classification (according to STRIDE 
algorithm (Frishman and Argos 1995)), and other infor-
mation. Residues that belong to the proteins marked as 
not passed PIQC were excluded from further analysis. 
All remaining entries within the populated 4D area of 
chemical shifts (the peak envelope) were used to recon-
struct the underlying conformational ensemble. In order 

Fig. 5   Selection of points and results of PACSY-based assessment of 
conformational heterogeneity in the GGAGG sample. A Representa-
tions of entries from the cleansed PACSY database for Ala, color-
coded by their secondary-structure class according to the STRIDE 
classification (Frishman and Argos 1995) with simplification: class 
“helices” includes alpha-, 3–10 and Pi-helices (H, G and I); the 
“extended” class includes entries classified as E; other structures 
include the remaining T, B and b classes; random coil entries were 
excluded from the presentation. Left: 13Cα / 13Cβ and right: 1H/15N 
projections of the data base and 4D hCBCANH spectrum. Contours 

start from 4% of absolute intensity and increase with a factor of 1.2. 
B Points from the data bank that belong to the 4D volume of the 
Ala cross-peak in the hCBCANH spectrum; Gray contours depict a 
bivariate weighted kernel density estimate: The weight of each point 
is a product of interpolated intensity of the 4D peak and the inverse 
point density in the PACSY database in the 4D chemical shift space. 
(Colors, as denoted in the bottom, refer to original (non-inverted) data 
bank entry density.) Contours start at 15% density and succeed with a 
factor of 1.1. C The same entries plotted in φ/ψ space
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to compensate for the random, shift-combination-specific 
sparsity of data bank entries and avoid the resulting bias 
that varying entry densities would have for reconstructing 
the ensemble, the elements were weighted in height by the 
inverted local 4D entry density. Then, to also reflect the 
actual peak shape (the experimental distribution of shift 
contributions), final weighting of the ith entry amounts to 
wi = Ii ∙ P

−1
i

 , where Ii is the peak intensity and Pi the den-
sity of data bank entries at the respective chemical-shift 
positions. The selected points are shown in Fig. 5 with 
colors of the points corresponding to the original entry 
density and sizes corresponding to the relative intensity 

of the 4D peak; Fig. S10 shows the density map without 
normalization by point density for comparison. The recon-
structed conformational ensemble is represented by the 
weighted entries depicted in the φ/ψ map (Fig. 5C). As 
an experiment, we calculated all mathematical scores for 
the extent of heterogeneity presented in the section Quan-
tification of heterogeneity also for the PACSY approach. 
In order to represent test Points 1–5 (compare respective 
panels in Fig. 4A) we selected entries belonging to an 
interval centered at each of these chemical shift combina-
tions (Fig. 6A). The interval was chosen equal to twice 
the TALOS grid resolution to represent a larger number 

Fig. 6   Distributions of dihedral angles for the entries of PACSY 
database selected by their chemical shifts to represent the scenarios 
considered in TALOS-based approach and their parameters. A Sets 
of entries in φ/ψ space. Width of each interval is 0.8  ppm for 1H, 
2 ppm for 13Cα, and 3 ppm for 13Cβ and 15 N dimensions. Selection 
for the entire heterogeneous peak as described in the main text. B 
Same distributions of PACSY entries, folded and represented in polar 
coordinates. In each pair, the left and right plot represent the individ-

ual φ and ψ distribution, respectively. Black bars represent circular 
variance and point to the mean direction. Entries around Point 3 are 
grayed out because they comprise too few points (N = 6). C Heteroge-
neity parameters for each set: circular variance V, entropy S, flatness 
F, and secondary-structure ratio R (see main text for the formulae). 
Results for the set around Point 3 are again bleached out due to too 
few database entries
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of data bank entries (i. e., 0.8 ppm in 1H, 2 ppm in 13Cα, 
and 3 ppm in both, 13Cβ and 15 N). Test Point 3 (Fig. 3A) 
appeared so far away from the main clusters of PACSY 
entries that it included only 6 points and was excluded 
from further consideration; all the results are, however, 
still presented here for consistency (Fig.  6). “Clean” 
cases of confined helix and extended structure were repre-
sented here with a selection belonging to the box centered 
around the mode for chemical shifts of, correspondingly, 
H- and E-classified alanines. Finally, the selection for the 
entire heterogeneous peak (“whole sample”) was made as 
described above.

Heterogeneity scores were calculated for the weighted 
and folded 10 × 18 maps converted to the format of the 
TALOS-based approach (Fig. S11). As in Fig. 4C, the bar 
charts in Fig. 6C (center row) only display absolute entro-
pies, whereas in Table 2 we also list excess entropy for 
the entire Ramachandran map, which is the difference of 
individual scenarios from the case of a clean helical shift 
taken again as a reference.

Compared to the TALOS-based procedure, the obtained 
results for the heterogenized GGAGG sample are in fact simi-
lar. Each of the individual grid points yields a prediction 
qualitatively consistent between the methods as well as in 
line with what is expected from the known chemical-shift 
trends depicted in Fig. 3A. For the entire peak, the expected 
broad conformational distribution with the highest contri-
bution for the angles corresponding to extended and heli-
cal conformation as well as a slight excess of helical con-
formations applies again. Even the quantitative assessment 
of heterogeneity across the full peak is highly consistent, 
which is gratifying to see given the various shortcomings 
for purely shift-based reconstruction mentioned throughout 
the manuscript. E.g., the parameter R, the ratio of populations 
associated with helical conformations and those associated 
with strand-like conformations, for the entire peak is 1.52, 
which is identical to the value obtained for TALOS-based 
maps (Table 2). The distribution of ϕ and ψ values adopted 
as measured by circular variance compares as 0.17 versus 
0.22 and 0.80 versus 0.78, respectively. The excess entropy 
compares as 2.07 versus 1.78 and 2.56 versus 2.36 for ϕ and 
ψ, respectively. (Theoretically possible values for the 10 × 18 
histogram lie between 0 and 2.3 for ϕ and between 0 and 2.9 
for ψ.) Applying the scores for determining the “degree of 
heterogeneity” to the individual chemical-shift grid points—
which is physically insensible—the trends are reasonably 
consistent and confirm the better predictability of more com-
mon vs. uncommon shifts. (Such test should in ideal cases 
yield low values and is expected to give more inhomogeneous 
predictions only for shift combinations outside the clean E 
or H conformations.) However, per pixel, only the predicted 
secondary structure is of interest in future applications, and 
the heterogeneity scores would be applied only to a whole 

heterogeneous peak. Eventually, future applications would 
always compare different residues of the same sample within 
the same methodology, and indeed these trends are fully in 
agreement with the expectation for all approaches tested.

Discussion

Even though different approaches have been proposed in the 
past, a detailed description of a conformational ensemble 
within a single sample has remained difficult to obtain. In 
previous studies, many of which are listed in the introduc-
tion, experimental means could often be used to disentangle 
disorder into individual samples for a reconstruction of their 
conformational properties. Alternatively, only few discrete 
conformations co-existed. In both cases, tailored spectro-
scopic methodology could be used to shed light on their site-
specific properties. Limitations to such approaches occur in 
the case when the biological sample cannot be physically 
disentangled. The same applies when broad distributions 
within the data are expected that are not resolved via the 
chemical-shift space available. Ensemble properties from 
such heavily overlapping patterns have been reconstructed in 
other approaches from accordingly, a-posteriori reweighted 
conformational ensembles, obtained from MD in conjunc-
tion with shift prediction. Although this represents a very 
elegant approach, even with perfect performance of the 
available chemical-shift prediction tools, such data patterns 
can be underdetermined, leading to multiple (different) 
ensembles being in reasonable agreement. This is even more 
likely in case of peak overlap, which causes high-complexity 
distributional properties of multiple sites to be entangled in 
a single, lower-complexity pattern.

Using chemical shifts as a direct reporter of dihedral-
angle properties is a rather straightforward and hence sensi-
tive approach that dispenses encoding of angular features 
by dedicated pulse sequence elements. This, conversely, 
facilitates the addition of multiple chemical-shift dimen-
sions for peak dispersion and voxel-specific interrogation. 
Higher-dimensionality chemical-shift correlations in the 
framework of proton detection in particular bear the prospect 
of creating sufficient space for peak dispersion, along with a 
high signal-to-noise ratio from small sample volumes. This 
largely facilitates a residue-specific assessment of disorder 
in solid preparations as a function of sequence that would 
be overlapped using lower dimensionality. The above data 
show that the correlation between shifts and dihedral angles 
is reasonably trustworthy for the extreme cases of secondary 
structure for carbon nuclei, which facilitates a faithful recon-
struction of the secondary-structural distributions within a 
heterogeneously broadened but non-overlapped peak. In 
congruency with the longstanding shortcomings of shift-
based dihedral-angle prediction for homogeneous samples, 
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however, the data also show that reliable reconstruction of 
heterogeneity around “intermediate” angle combinations 
(turn structures) is compromised by the general uncertainty 
of chemical shifts adopted in these cases—even when other 
factors modulating the shift are ignored. A good prediction 
will hence be obtained when the relative amount of helix 
and sheet is to be determined, whereas a poor prediction 
may arise when a residue comprises a narrow angular dis-
tribution around an intermediate angle combination that is 
difficult to interpret.

We expect that, often, the level of accuracy obtained for 
individual ensemble members within this framework is suf-
ficient to answer biological questions related to heteroge-
neous conformational distributions. Examples would be to 
residue-specifically quantify the ratio of extended to helical 
conformers within amyloid preparations, flash-frozen fold-
ing intermediates, or rigidified disordered parts within mem-
brane proteins. In such cases, the approach enables analysis 
with relatively low effort and costs. In addition, analysis 
of all residues within one preparation without selective 
labeling also bears the advantage of avoiding differences 
between samples (Xiang et al. 2017), which can compromise 
a consistent analysis. The maximal length of the primary 
sequence that can be subjected to the approach with rea-
sonable dispersion and measurement time depends on the 
degree of heterogeneity. This derives from the fact that wider 
peak shapes both, increase the probability of overlap and the 
signal to noise of the resultant data. Luckily, in most of the 
current studies on samples of biological interest by NMR, 
only part of the residues tend to be variable, which reduces 
the probabily of overlap even for longer primary sequences.

The voxel-specific, higher-dimensionality methodology, 
in particular sample preparation/requirements and hardware 
involved, is substantially different from any of the carbon-
detected approaches developed previously. As such, the 
results obtained here from the comparative implementation 
of prediction and direct data base approaches were only 
mutually validated by comparison with each other. Impor-
tantly, the introduced scores are designed as a measure for 
the sequence-specific degree of torsional variability over the 
ensemble, comparing different residues or samples within 
the same setting. Hence, self-consistency (i.e., the relative 
degree of disorder) within a single method is the most cru-
cial property. A truly orthogonal (experimental) method 
would be desirable to benchmark or even just validate the 
findings from a non-NMR perspective. Unfortunately, how-
ever, methods that yield faithful distributions of conforma-
tions in mixtures are rare. In fact, various other biophysical 
techniques can principally be utilized to verify or support 
MD and NMR results. However, it is very difficult, if not 
impossible, to experimentally assess site-specific proper-
ties of individual ensemble members outside of NMR. Even 
when different conformations imprint themselves in the 

overall data, as for circular dichroism, powder diffraction, 
or FTIR, the obtained patterns are usually not sufficiently 
specific to reconstruct the underlying ensemble with residue 
resolution. The major alternatives to NMR as high-resolu-
tion structural-biology methods, cryo electron microscopy 
(cryoEM) and single-crystal X-ray diffraction, by contrast, 
may only deal with/quantify a limited degree of disorder 
(Nwanochie and Uversky 2019).

Despite the encouraging methodological results described 
above, in both approaches, however, the well-known system-
atic and general shortcoming of using chemical shifts for 
assessing torsional properties is the inherent sensitivity of 
the chemical shift to various physical effects other than back-
bone dihedral angles. A first factor is the influence of direct 
spin–spin interactions (homogeneous contributions) to the pro-
ton line. However, the role of protons will be largely restricted 
to further dispersing the peaks, given the rather loose asso-
ciation between their shifts and dihedral angles. The poten-
tial impact of differential contacts with the lattice represents 
a source of additional peak broadening potentially involving 
all nuclei. However, this drawback is expected again more 
strongly for those nuclei involved in H-bonds (H/N), whereas 
carbon shifts are more faithful reporters on angular properties. 
In particular, the pair of Cα/Cβ shifts, probed in chemical-shift-
based approaches usually as a shift combination, bears oppo-
site secondary chemical-shift trends and is mostly influenced 
by dihedral angles. In fact, the populated shift space in the 
carbon/carbon plane, which reflects the anti-correlated trends 
of Cα and Cβ for secondary structure both for the heterogene-
ous peak of this study as well as the data base entries (Figs. 2 
and 6A), speaks against large additional contributions to the 
carbon pattern, both for our test sample as well as in general. 
This renders the chemical-shift-correlation approaches here 
(be it via prediction or data base matches) more resilient to 
other influences compared to the inhomogeneous chemical 
shift of a single dimension. Differential sidechain torsional 
angles, however, can be an added source of shift modulation. 
This effect is expected for fully rigidified, longer side chains 
(opposed to only the protein backbone or Ala residues) and is 
difficult to disentangle from secondary-structural modulation 
of the shift (Siemons et al. 2019). Lastly, on purpose, aromatic 
moieties, chemical or magnetic perturbations (e. g. differential 
oxidation states in cysteines/pseudo contact shifts etc.) were 
avoided for this low-molecular-weight peptide, as these can 
have longer-range effects on the chemical shifts of close-by 
nuclei (and in this case molecules). The Cα /Cβ shift pair as the 
most informative/convergent source of information both for the 
prediction as well as for the data base approach will mostly be 
influenced in a similar way by nearby ring currents, such that 
the shift difference remains largely untouched. Nevertheless, 
residues in close vicinity of aromatics probably need to be 
treated with care. In this special sample, additionally, only a 
low level of residual solvent is likely present, which renders 
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the H-bonding properties of the amides rather variable. For 
future samples with a high content of solvent, on the contrary, 
more consistent hydration properties of polar groups and larger 
spatial separation of individual molecules are expected. As 
such, the approach could turn out particularly useful for site-
specific insights in solidified systems with lots of frozen water 
(e.g., from flash-freezing without lyophilization), looked at by 
DNP. At least as a qualitative measure for the degree of how 
defined conformational properties are within a given primary 
sequence, the described methodology should turn out helpful 
and—given the availability of all Python-based workflows as 
a download—easy to set up.

Conclusion

We have proposed a higher-dimensionality NMR approach 
to assess the site-specific conformational content in hetero-
geneous samples. Employing a single 4D hCBCANH spec-
trum, we enable heterogeneously broadened peak shapes in 
which the chemical shifts from individual conformers are 
correlated in the sense of a shift quadruple, from which the 
distribution of ϕ/ψ dihedral angles present for a given resi-
due can be reconstructed. We demonstrate this reconstruc-
tion by two approaches, in a dihedral angle prediction-based 
and a data-base-derived manner, which—within the general 
limitations of shift-angle correlations—allow for reconstruc-
tion of the conformational distribution, in particular the ratio 
between sheet-like and helical conformers, of each residue 
that can be separated from other residues with four chemi-
cal-shift dimensions. As carbon shift combinations (i. e., the 
Cα/Cβ shift difference) are comparably weakly affected by 
contributions other than secondary structure, the approaches 
should represent both, a reasonable measure for qualitative 
but self-consistent assessment of conformational heteroge-
neity, as well as enable sufficient dispersion for assessing 
inhomogeneity of proteins as a function of sequence without 
specific labeling. This may facilitate probing site-specific 
conformational heterogeneity in whole amyloids and freeze-
trapped samples from protein folding. The mathematical 
approaches to analyze ϕ/ψ distributions shown here may 
be useful for quantification of variability in conformational 
ensembles of future research in general.
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