
Mesh Optimization based on a Neo-Hookean

Hyperelasticity Model

Dissertation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

Der Fakultät für Mathematik der

Technischen Universität Dortmund

vorgelegt von

Malte Schuh

im April 2023

Dissertation

Mesh Optimization based on a Neo-Hookean Hyperelasticity Model

Fakultät für Mathematik

Technische Universtität Dortmund

Tag der mündlichen Prüfung: 21. 06. 2023

Erstgutachter: Prof. Dr. Stefan Turek

Zweitgutachter: Prof. Dr. Christian Meyer

ii

“So eine Arbeit wird eigentlich nie fertig, man muss sie für fertig erklären, wenn man

nach Zeit und Umständen das Mögliche getan hat.”

Johann Wolfgang von Goethe

iv

Abstract

For industrial applications CFD-simulations have become an important addition to ex-

periments. To perform them the underlying geometry has to be created on a computer

and embedded into a computational mesh. This mesh needs to meet certain quality cri-

teria. This mesh needs to meet certain quality criteria, which are not commonly met

by many conventional mesh-generation tool. However, automated tools are necessary to

simulate experiments with a time-dependent geometry, for example a rising bubble or

fluid-structure interaction.

In this thesis, we study the automatic optimization of a mesh by minimizing a neo-

hookean hyperelasticity model. The aim of our mesh optimization is to either smoothen

a mesh, or to adapt a mesh to a given geometry. In the first part of the thesis we propose a

specific energy model from this class and investigate if a solution to the minimization of

this specific energy exists or not.

To solve this minimization problem we need to develop an algorithm. After this we have

to investigate if this specific energy function fulfills all requirements of this algorithm.

The chosen algorithm is an adaptation of Newton’s method in a function space. To global-

ize the convergence of Newton’s method we use operator-adaption techniques in a Hilbert

space. This makes the algorithm a Quasi-Newton-Method. We proceed to add other ele-

ments that are known from optimization so that the algorithm becomes even more robust.

Finally we perform several numerical tests to investigate the performance of this method.

In our studies we find that for a certain set of parameters the solution of the minimization

problem exists. This set of parameters is limited, but the limits are reasonable for most

practical use-cases. During our numerical tests we find the method to be stable and robust

enough to automatically smoothen a mesh, but to adapt a given mesh to a given geometry

our results are unclear: For simulations in two dimensions, the developed method seems

to perform well and we get promising results with even just a type of Picard-iteration. For

simulations in three dimensions, some adaptations might be necessary and more tests are

required.

v

vi

Acknowledgements

There are many people I would like to thank. First of all, I would like to thank my su-

pervisor, Prof. Dr. Stefan Turek, for giving me the opportunity to research this topic.

Also, whenever I had problems, he had an open ear and supported me on the way to

find a solution to it. I also would like to thank Prof. Dr. Christian Meyer. Initially, he

was not involved in this work, but in the whole process he became a supervisor for the

optimization-related part of this work. Without his support, some parts of this work would

not have been possible.

Furthermore, I would like to thank all my colleagues from the chair of Applied Mathemat-

ics and Numerics for their support and fruitful discussions. While I should list probably

all of them, some of them really stood out: Jonas Dünnebacke, Maximilian Esser, Dirk

Ribbrock and Peter Zajac for their development of Feat3. Also, whenever I had some

special requests for changes or needed support during the implementation you were great

and helped me. Naheed Begum, Robert Jendrny, Timm Treskatis and Katharina Wegener:

You were great discussion-partners during the whole time and a huge emotional support

during all those years. It helped a lot to just discuss my ideas with you. Also, special

thanks to Timm for proof-reading my work. Mirco Arndt: You were also a huge emo-

tional support during the whole time.

I also would like to thank my whole family for their support during this time. Without

your support this would not have been possible.

Dortmund, April 2023

Malte Schuh

vii

viii

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Matrices and Tensors . 5

2.2 Functionals and derivatives . 6

2.3 Function spaces . 7

2.4 Specialisations for Hilbert-Spaces . 9

2.5 Optimization . 9

2.6 Nonlinear continuum mechanics . 13

2.7 Geometric entities and meshes . 14

2.8 Finite Elements and parametric families of finite element spaces 17

2.9 Interpolation estimates for affine-equivalent finite elements 19

2.10 Interpolation estimates for finite elements with nonlinear transformations 20

3 Mesh optimisation 23

3.1 Mesh quality . 23

3.2 Deformations and variations . 26

3.3 Reference cells . 27

3.4 Existence of minimizer . 29

3.5 Optimization algorithm . 33

4 Choice and analysis of the energy functional 37

4.1 Choice of the Energy functional . 37

4.2 Analysis of the energy function . 38

4.3 Modification of the stored energy function 40

4.4 Analysis of the derivatives . 42

5 Numerical results I 47

5.1 Implementing the algorithm . 47

5.2 First tests - smoothing a mesh . 50

5.3 Effects µ and λ . 55

5.4 Finer mesh . 56

5.5 Initial antigradient steps . 58

5.6 Different testcases in 2D . 60

ix

Contents

5.7 Triangle meshes . 64

5.8 3D Testcase . 67

6 Numerical results II - r-Adaptivity 69

6.1 Adapting a square to a circle . 70

6.2 Adapting a square to a circle - small cells 74

6.3 Adapting a square to a circle - triangle mesh 78

6.4 3D Testcase . 79

7 Conclusions and Outlook 83

Bibliography 87

x

1
Introduction

In modern science and engineering it is common practice to use computer simulations to

predict results. To do so, the physical properties of something have to be modeled. This

model is then implemented in special software where it is solved. If one is not familiar

with this topic this sounds like an easy step, but it is actually quite challenging. One

example to think of is the simulation of a car in a wind tunnel. First of all, the physical

behavior of this is modeled by partial differential equations (PDEs), the Navier-Stokes

equations. Additionally, the software also needs to „know“ about the wind-tunnel and the

car. To keep this picture as simple as possible, a real-world-task that can be compared to

this would be to fill everything of the wind-tunnel that is not part of the car with for exam-

ple cubes. In a software-package, the cubes are called „elements“ and the „net“which is

defined by the edges and vertices of the cubes is called „mesh“. The challenge is that for

most software-packages the cubes have to share all their vertices with their neighboring

cubes.

To avoid this kind of problem, other techniques (for example fictitious boundary methods)

have already been developed that could be applied. These techniques can be applied by

using a mesh that has an easy structure and is generated very easily. Examples of these

techniques can be found in [TWR03], [BCD09], [LV07] or [MI05]. These approaches

have in common that they introduce a new type of error: How good can the geometry be

represented in these type of meshes?

When the simulation is run on a computer, it is intuitive that smaller elements provide a

finer resolution of the solution which might be necessary to capture some important ef-

fects. The drawback of a finer resolution is that the simulations take much more time. To

account for this, it is common to create a mesh that is fine only where it needs to be and

coarser everywhere else.

Both of the goals can be achived using the so-called h-adaptivity which is a powerful tool.

h is usually a measurement for the size of the elements, and h-adaptivity roughly works by

locally refining (and thus inserting) or merging elements. Some aspects of it are described

in [Bän91]. However, this method also has some disadvantages. The most notable one

is that either the software needs to be able to handle so called „hanging nodes“ (a vertex

1

Introduction

of one cube is in the middle of an edge or a face of another cube) or is limited to a very

specific pattern of inserting new elements (which avoids „hanging nodes“, but to achieve

this it has to refine a larger area than desired).

In this work, we will not study one of the mentioned methods. Instead, we will focus

on another method: r-adaptivity. The idea of this method is that instead of adding new

vertices (which is what h-adaptivity does) the already existing vertices are moved so that

a better approximation of a geometry or a high resolution mesh in regions of interest is

possible. The main advantage of this method is that the connectivity of the vertices does

not change. This makes it an attractive method for time-dependent simulations where the

geometric setup changes over time, for example a moving object like a rising bubble: Be-

cause the connectivity of the vertices does not change, many datastructures can be reused

for each timestep. R-adaptivity can also be combined with fictitious boundary methods.

This can be a powerful combination: In the first step one creates a simple mesh, and

subsequently it gets adapted in every timestep. By doing so, the error that the fictitious

boundary method introduces due to its lack of representing the correct geometry can be

reduced to a great extend.

However, this leaves the question: How do we move the vertices? In two dimensions

we can directly spot a problem: If we move one vertex of a square onto the diagonal of

the square, then this square becomes a triangle. Most simulation codes cannot deal with

such a situation. And are there other criteria that decide if a mesh is „good“ or „bad“? In

this work, we are going to discuss these questions and present an algorithm that solves

this problem. The idea to some of the content of this work is the result of some discus-

sions with Jordi Paul after he finished [Pau17]. This thesis is extending his work in some

way by investigating another functional with different properties. Since we worked at

the same chair and used the same software to work on similar topics (both of us had the

same goal: creating a smooth mesh in the software that is developed at the chair, but Jordi

Paul used a different energy that has different properties) some parts from this thesis can

be more or less identical to his thesis, for example geometry definitions, definitions of

finite elements, interpolation estimates, quotes on existence theorems etc. In this work,

follow this approach but are going to choose a different functional with different proper-

ties. Our main goal is to extend this framework and incorporate Newton’s method as a

solver for the nonlinear problem. Newton’s method seems promising because of its fast

local convergence, but it is also challenging at the same time because this convergence is

only guaranteed if we are close enough to the solution of the problem. Therefore, we are

going to investigate the properties of the chosen functional, Newton’s method and other

components from the field of optimization to compose a robust solver for this nonlinear

problem in a function space. This is a challenge on its own because most of the time, the

algorithmic approaches assume a function F : RN → R. While this assumption is often

true after the discretisation (which is necessary to solve a problem on a computer), many

of these methods modify the hessian of the functional. While this seems viable at first, it

becomes a challenge to store the matrix: If the original hessian is sparse, after a few steps

with these modifications it becomes a dense matrix. While we could try some so-called

low-memory-versions of these modifications, we instead approach the problem in a func-

tional space and discretise the result so that we still have a sparse problem.

This work is structured as follows: In Chapter 2 we are showing theorems from the dif-

ferent mathematical fields and from nonlinear continuum mechanics so that we have a

2

common base. This base is formulated as seen from someone with a background in the

field of numerics, someone with a different background might choose this different. Af-

ter this we are discussing the basics of PDE-based meshoptimization and meshquality in

Chapter 3. Since this is PDE-based we also have to discuss the conditions for the exis-

tence of one optimal mesh and line out an algorithm how to compute it. This outline is

used to find additional requirements that are imposed by the algorithm (for example on

second derivatives). After we have collected all constraints we are analyzing our chosen

energy functional in Chapter 4. In Chapter 5 we then present the final implementation

of the algorithm, validate it, use it to smoothen meshes and study its properties. After

we know that it works in this case we modify it in Chapter 6 to adapt meshes to a given

geometry. Finally, we will briefly summarize the work in Chapter 7 and give an outline

of other ideas that could be tested as well.

3

CHAPTER 1. Introduction

4

2
Preliminaries

In this chapter we are going to establish some basic notation and recap some definitions

and key theorems that we are going to use. This work was done at a numerics-oriented

mathematical chair, so we focus our recap on other fields of mathematics and mechanics.

However, we also present some definitions and theorems that are familiar in numerics to

establish the notation.

2.1. Matrices and Tensors

For A ∈ Rm×n (the vector-space of real m× n matrices) its elements will be denoted by

Ai j. Equipped with the inner product

(A,B) = A : B =
m

∑
i=1

n

∑
j=1

Ai jBi j

this vector-space becomes a Hilbert-space.

For square matrices A ∈ Rn×n we define

• Tr as the trace-operator with Tr(A) = ∑Aii

• det(A) as the determinant of A

• GLn := {A ∈ Rn×n|det(A) 6= 0} the general linear group of invertible matrices

• SLn := {A ∈ Rn×n|det(A)> 0} the special linear group of invertible matrices with

positive determinant

• SOn := {A ∈ Rn×n|AT A = Idn,det(A) = 1} the special orthogonal group

• Cof(A) as the cofactor matrix. Let A(i, j) ∈Rn−1×n−1 be the matrix obtained from A

by deleting row i and column j. Then Cof(A)i, j = (−1)i+ j det(A(i, j))

5

CHAPTER 2. Preliminaries

The inner product and the trace have the following properties:

A : B = B : A

A : B = Tr(AT ·B)
The trace-operator also is invariant to cyclic permutations, which means that

Tr(A ·B) = Tr(B ·A)
Tr(A ·B ·C) = Tr(C ·A ·B) = Tr(B ·C ·A)

Therefore, the following identity holds as well:

A : B = B : A = Tr(BT ·A) = Tr(A ·BT)

The three principle invariants of a three-dimensional tensor A are

I1 = Tr(A) (2.1.1)

I2 =
1

2
((Tr(A))2−Tr(A2)) = Tr(Cof(A)) (2.1.2)

I3 = det(A) (2.1.3)

2.2. Functionals and derivatives

Since we later are going to discuss minimizing an energy functional we need to remind

ourselves of differentiation in Banach spaces.

Definition 2.1 (Directional derivative): Let X , Y be real normed vector spaces and Ω⊂ X

an open subset, x ∈ X , h ∈ X , τ ∈ R and F : Ω 7→ Y . If

F ′(x)h := lim
τ↘0

F(x+ τh)−F(x)

τ

exists then F ′(x)h is called the directional derivative of F at x in direction h

Definition 2.2 (Gâteaux-derivative): Let X , Y be real normed vector spaces and Ω ⊂ X

an open subset, x ∈ X , h ∈ X , τ ∈ R and F : Ω 7→ Y . If F ′(x)h exists and there exists

A ∈ L(X ,Y) with

F ′(x)h = Ah ∀h ∈ X

then F is Gâteaux-differentiable in x and A is the Gâteaux-derivative of F in x.

Note that if F : X→R then F ′(x) ∈ L(X ,R) which is X∗. We will define X∗ in Definition

2.8.

Definition 2.3 (Fréchet-derivative): Let X , Y be real normed vector spaces and Ω ⊂ X

an open subset, x ∈ X , h ∈ X , τ ∈ R and F : Ω 7→ Y . If F ′(x)h exists and there exists

A ∈ L(X ,Y) with

F ′(x)h = Ah ∀h ∈ X

||F(x+h)−F(x)−Ah||
||h|| −−−−→

||h||→0
0

then F is Fréchet-differentiable in x and A is the Fréchet-derivative of F in x.

6

2.3. Function spaces

When comparing the Gâteaux- and Fréchet-derivative we notice that they are defined

similarly, but the Fréchet-derivative adds a constraint to the operator A. Therefore, we

can conclude that they are calculated in a similar manner and after this we check if this

constraint is fulfilled or not. There are many cases where this is not practical, and another

way of checking the if the derivative is a Fréchet-derivative is the following theorem:

Theorem 2.4: If the Gâteaux-derivative F ′(x) exists in some neighborhood of x and is

continuous at x, then F is also Fréchet-differentiable at x and F ′(x) is also the Fréchet-

derivative.

Proof. The proof can be found in [Pat18, Th. 3.3]

Remark 2.5 (Second derivatives): If F : Ω ⊂ X 7→ Y and F ′(x) ∈ L(X ,Y), then we can

apply the same definitions on the operator F ′(x) to define the second derivative. The

resulting operator F ′′(x) ∈ L(X ,L(X ,Y)) is applied by (F ′′(x)h1)h2 and obviously needs

two directions. We can also denote it as F ′′(x)[h1,h2] and we should mention that it is a

bilinear form (in h1 and h2). Note that for Fréchet-differentiable functionals the second

derivative is a symmetric bilinear form [Pat18, Th. 3.11]

2.3. Function spaces

Definition 2.6: Let Ω⊂ Rn. We define the space C∞
c (Ω) by

C∞
c (Ω) := { f : f ∈C∞(Ω)|supp(f) is compact}

Definition 2.7: Let Ω⊂Rn, k ∈N, p ∈ [1,∞]. We define the space Lp(Ω) by the space of

equivalence classes of functions f : Ω 7→ R that only differ on K ⊂ Ω with |K| = 0 and

fulfill || f ||Lp(Ω) < ∞ with

|| f ||Lp(Ω) =

{

(
∫

Ω | f |pdx)
1
p for p 6= ∞

esssup | f | for p = ∞

We also need to remember the definition of the dual space:

Definition 2.8: Let X be a a banach space. Its dual space X∗ is the space of all linear

continuous functionals x∗ : X 7→ R with the norm

||x∗||X∗ = sup{|x∗(x)| |x ∈ X , ||x||X ≤ 1}

We will denote the application of x∗ on x also by (x,x∗) or (x∗,x) and call this the dual

pairing. [Sch, p. 69]

Definition 2.9: The equation

(x∗,Jxx)X∗,X∗∗ := (x,x∗)X ,X∗

for x ∈ X and x∗ ∈ X∗ defines an isometric mapping Jx ∈ L(X ,X∗∗). A banach space X is

called reflexive if the mapping Jx is surjective.

7

CHAPTER 2. Preliminaries

[Alt12, Def. 6.7]

To specify the derivatives in the n-dimensional case we need the so-called multiindex: For

α =
(
α1, . . . ,αn

)
∈ Nn we set

|α| := ∑
i

αi α! := ∏
i

αi!

With the multiindex we set

Dα f := D
α1
1 D

α2
2 · · ·Dαn

n f =
∂|α| f
∂xα

=
∂|α| f

∂x
α1
1 ∂x

α2
2 · · ·∂x

αn
n

and define the set of all partial derivatives of order k with

Dk f := {Dα f : |α|= k}

Definition 2.10: Let Ω⊂ Rn, k ∈ N, p ∈ [1,∞] The Sobolev-Space W k,p is defined by

W k,p(Ω,R) := {u ∈ Lp(Ω,R)|Dαu ∈ Lp(Ω,R)∀α ∈ Nn, |α| ≤ k}

with the norm

||u||W k,p := ∑
|α|≤k

||Dαu||Lp

and the seminorm

|u|W k,p := ∑
|α|=k

||Dαu||Lp

An alternative and equivalent norm and seminorm is given by

||u||p
W k,p := ∑

|α|≤k

||Dαu||pLp

|u|p
W k,p := ∑

|α|=k

||Dαu||pLp

These Sobolev-Spaces are Banach-Spaces [Sch]. For p = 2 we denote Hk :=W k,p. Note

that Hk equipped with the dot-product

(f ,g)Hk := ∑
|α|≤k

(Dα f ,Dαg)L2 = ∑
|α|≤k

∫
Ω

Dα f Dαg

is a Hilbert-space. In this case the alternative norm is actually the naturally induced norm

from this dot-product which is why for Hk it is the preferred choice.

Definition 2.11: Let Ω⊂ Rn, k ∈ N, p ∈ [1,∞] The Sobolev-Space W
k,p
0 is defined by

W
k,p
0 (Ω,R) := {u ∈W k,p(Ω,R)|∃u j ∈C∞

c (Ω) : ||u−u j||W k,p −−−→
j→∞

0}

Note that if Ω is bounded, the W k,p(Ω,R) seminorm is a norm on W
k,p
0 (Ω,R) that is

equivalent to the standard norm [AF08, Cor. 6.29]

8

2.5. Specialisations for Hilbert-Spaces

2.4. Specialisations for Hilbert-Spaces

In our case we will apply all previous definitions on a functional F : H1
0 7→ R. Since H1

0

is a Hilbert space we can use the Riesz representation theorem and reformulate a some of

these theorems a definitions.

Theorem 2.12 (Riesz representation theorem): Let X be a Hilbert space. Then for every

x∗ ∈ X∗ there exists a unique Riesz representative x ∈ X such that

x∗(z) = (x,z)X ,X ∀z ∈ X

Furthermore, ||x||X = ||x∗||X∗

Proof. The proof can be found in [Cla20, Th. 16.1]

Since this is an isomorphism we can identify the dual space of a Hilbert space with the

Hilbert space itself.

With this in mind let us again have a look at Definition 2.3: For F : X 7→ R F ′(x) ∈ X∗.
But if X is a Hilbert space, we can identify X∗ with X , so we can actually calculate a

Riesz-representative of F ′(x) that is in X . We can also have another look at Remark 2.5:

If F ′′(x)∈L(X ,X∗), then we can identify this with L(X ,X). Note that this view is focuses

on its behavior if one argument is provided. If you focus on the way this operator behaves

if both arguments are provided, this is in the form F ′′(x)[h1,h2] : X ×X 7→ R while being

linear in h1 and h2, so it is a bilinear form.

2.5. Optimization

Now let us recall some theorems and definitions from optimization. We are going to min-

imize, so let us just define the minimum and remind us on the conditions for its existence.

For this part we assume that X is a Hilbert space.

Definition 2.13: Let f : X → R. x ∈ X is called a (local) minimum if f (x)< f (y) ∀y ∈
Bε(x) for some ε > 0

Definition 2.14: A functional f : X →R is called weakly lower semicontinuous (w.l.s.c.)

if for every weakly convergent sequence xn ⇀ x in X it follows that

f (x)≤ liminf
n→∞

f (xn)

[DLR15, Def. 3.2]

Theorem 2.15: If f : X → R is w.l.s.c. and radially unbounded, i.e.

lim
||x||→∞

f (x) = +∞

then f has a global minimum.

Proof. The proof can be found in [DLR15, Th. 3.1]

9

CHAPTER 2. Preliminaries

If the functional is directionally differentiable then we can formulate the following con-

dition:

Theorem 2.16 (First order neccesary condition): Let C ⊂ X be a nonempty subset of the

real normed space X and F : C→ R.

For x ∈C the direction v− x ∈ X is called admissible if there exists a sequence {tn}n∈N
with 0 < tn→ 0 such that x+ tn(v− x) ∈C ∀n ∈ N

Suppose that x̄ ∈ C is a local minimum and v− x̄ is an admissible direction. If F is

directionally differentiable at x̄ in direction v− x̄ then

F ′(x̄)(v− x̄)≥ 0

Proof. The proof can be found in [DLR15, Th. 3.2]

In numerical algorithms it is difficult to work with a variational inequality. In the uncon-

strained case it is easy to obtain the equation F ′(x̄)h = 0∀h ∈ X , but this will not help us

much. However, if the optimum lies in the interior of a domain this holds true as well:

Corollary 2.17: If the conditions of Theorem 2.16 hold and x̄ lies in the interior then

F ′(x̄)h = 0∀h ∈ X

Proof. Let us define the directions v(ε) = x̄+ εh and w(ε) = x̄− εh.

We can find ε > 0 so that both directions are admissible directions for the variational

inequality. Therefore

F ′(x̄)(v(ε)− x̄) = F ′(x̄)(x̄+ εh− x̄) = F ′(x̄)εh≥ 0

F ′(x̄)(w(ε)− x̄) = F ′(x̄)(x̄− εh− x̄) =−F ′(x̄)εh≥ 0

Therefore, F ′(x̄)h = 0

There are many possible ways to find the minimum, but we will focus on a descent

method.

Definition 2.18 (Descent direction): For F : X 7→ R and a given iterate xk we call δk a

descent direction if

F(xk +σδk)< F(xk)

for some σ > 0 and all σ̃ with σ≥ σ̃ > 0. σ is called the step size.

Lemma 2.19: If the directional derivative in F ′(xk)δk exists Definition 2.18 implies that

δk is a descent direction⇔ F ′(xk)δk < 0.

Proof.

F(xk +σδk)< F(xk)

because σ > 0:

F(xk +σδk)−F(xk)

σ
< 0

10

2.5. Optimization

Since this should hold for some σ > 0 and all σ̃ with σ ≥ σ̃ > 0 this holds true when we

take the limit for σ→ 0.

Also, if F ′(xk)δk < 0 we know that the directional derivative exists. By definition this

means that

F ′(xk)δk = lim
σ↘0

F(xk +σδk)−F(xk)

σ
< 0

For σ sufficiently small this means that F(xk +σδk)< F(xk).

One obvious choice for δk is the direction of−∇F(xk). This leads to the so called steepest

descent or gradient method. Note that in this context, ∇F(xk) actually means its Riesz

representative (compare Theorem 2.12). (see [DLR15, p. 44f]) A more general approach

to the descent directions are the so called gradient related descent directions which should

satisfy the so called angle condition

Definition 2.20 (Angle condition): For F : X 7→R a descent direction δk satisfies the angle

condition if

−(∇F(xk),δk)X ≥ η||∇F(xk)||X ||δk||X (2.5.1)

for some η ∈ (0,1)

This condition has a geometrical interpretation: for F : R2 7→ R,

cos(θ) =
(−∇F(xk),δk)X

||∇F(xk)||X ||δk||X
where θ is the angle between the antigradient and the direction δk. [DLR15, p. 45] There-

fore, with η one basically chooses „how much δk should point in direction of −∇F(xk)“,

so η > 0 is a very common choice. The optimal step width σopt would be the σ with

σopt = argmin
σ∈R

F(xk +σδk)

but since F is generally nonlinear, this usually is too expensive to calculate. Instead, one

usually uses a so called line search method. Generally we require the step width σk to

fulfill the following properties:

F(xk +σkδk)< F(xk) ∀k = 1,2, . . . (2.5.2)

F(xk +σkδk)−F(xk)−−−→
k→∞

0⇒ (∇F(xk),δk)X

||δk||X
−−−→
k→∞

0 (2.5.3)

With these requirements to the step width we can write up a general descent algorithm:

Algorithm 2.1 General descent algorithm

Choose x0 ∈ X and set k = 0

repeat

Choose a descent direction δk that fulfills the angle condition (2.5.1)

Find σk such that the properties (2.5.2) and (2.5.3) hold

Set xk+1 = xk +σkδk

Set k = k+1

until stopping criterion

11

CHAPTER 2. Preliminaries

Theorem 2.21: Let F be continuously Fréchet differentiable and bounded from below.

Let {xk}, {δk} and {σk} be sequences generated by Algorithm 2.1 with (2.5.1), (2.5.2)

and (2.5.3) holding. Then

lim
k→∞

∇F(xk) = 0

and every accumulation point of {xk} is a stationary point of F .

Proof. See [DLR15, Theorem 4.2]

There are many possibilities to calculate the step width. The one we are using is the so

called Armijo rule.

Definition 2.22: Let X be a Banach space, F : X → R Fréchet-differentiable, xk be the

current iterate, δk a descent direction. A step size σk satisfies the Armijo condition if

F(xk)−F(xk +σkδk)≥ βσk(−∇F(xk),δk) (2.5.4)

with β ∈ (0,1). A common choice is β = 10−2.

Using the notation Φ(σ) := F(xk +σδk) the Armijo-Condition can be rewritten as

Φ(σ)≤Φ(0)+βΦ′(0)

[DLR15, P. 47].

Theorem 2.23: Let X be a reflexive Hilbert space, F : X → R Fréchet-differentiable, xk

be the current iterate, δk a descent direction, α ∈ (0,1), β ∈ (0,1). The Algorithm

1. Choose an initial step width σ and some value for β

2. If σ does not fulfill the Armijo-condition update σ with σ = ασ.

to calculate a step size that fulfills the Armijo-condition converges.

Proof. All the algorithm is doing is taking the limit for σ→ 0 on (2.22). The existence of

the Fréchet-derivative implies the existence of the limit

lim
σ→0

F(xk)−F(xk +σδk)

σ
=−F ′(xk)δk

Because δk is a descent direction we know that −F ′(xk)δk > 0 and −(F ′(xk),δk) > 0.

β ∈ (0,1), so −F ′(xk)δk >−βF ′(xk)δk. Therefore, there exists σ∗ such that

F(xk)−F(xk +σδk)≥ βσ(−∇F(xk),δk) ∀σ ∈ (0,σ∗)

12

2.6. Nonlinear continuum mechanics

A common choice is α = 0.5. In the rest of the work we will use both common choices

for α and β. An alternative line search method would be to meet the Wolfe-conditions

F(xk)−F(xk +σkδk)≥ βσk(−∇F(xk),δk)

(∇F(xk +σkδk),δk)≥ β2(∇F(xk),δk)

or the strong Wolfe-conditions (see [DLR15, page 49])

F(xk)−F(xk +σkδk)≥ βσk(−∇F(xk),δk)

|(∇F(xk +σkδk),δk)| ≥ β2 |(∇F(xk),δk)|

with 0 < β < β2 < 1. Because the condition (2.5.3) is more difficult to show in practice

we also note

Theorem 2.24: Define the level set

N
ρ
0 := {x+d : F(x)≤ F(x0), ||d|| ≤ ρ}

for some ρ > 0 and let ∇F be uniformly continuous on it. If the iterates generated by

Algorithm 2.1 with {σk} satisfying the Armijo condition (2.5.4) are such that

||δk|| ≥
−(∇F(xk),δk)

||δk||

then {σk} satisfies (2.5.3).

Proof. See [DLR15, Proposition 4.1]

This can easily be checked after the computation.

2.6. Nonlinear continuum mechanics

Since this work uses some ideas from nonlinear solid continuum mechanics we also need

to establish some basic terminology here. If not stated otherwise we follow [Cia88, Ch.

1]. In the field of mechanics the body Ω „before it is deformed“ is said to be the reference

configuration, and because the whole body with its surfaces is subject to the deformation

a mapping is applied onto Ω̄.

Definition 2.25 (Orientation preserving): Let γ : Rn→ Rn, γ ∈ C1. γ is called orientation

preserving if det∇γ > 0.

Definition 2.26 (Deformation): A mapping γ : Ω̄→Rd (where d is the spatial dimension,

so usually 3) that maps the reference configuration onto a new configuration is called

deformation if it is smooth enough, injective (except possibly on the boundary of Ω) and

orientation preserving.

This is not a sharp definition as it misses the regularity, but this is mainly because there

exist some applications that require higher regularity than others so this is depending on

the application itself.

The deformation gradient is defined by the following definition:

13

CHAPTER 2. Preliminaries

Definition 2.27 (Deformation gradient): For a given deformation γ the deformation gra-

dient is defined by

∇γi, j = ∂ jγi

The models that are used in mechanics should not depend on the motion and position of

the observer. A model that fulfills this property is called objective. In the case of energy

functionals one can show that this is the case if the energy functional depends on the right

Cauchy-Green strain tensor:

Definition 2.28 (Right Cauchy-Green strain tensor): For a given deformation γ with the

deformation-gradient ∇γ the right Cauchy-Green strain tensor is defined by C := ∇γT ∇γ.

If a configuration of a body gets deformed, its energy-state changes. A way of modeling

this is to define an energy functional. This energy functional assigns the „deviation from

the reference configuration“ (as this is basically what the deformation is) a number. For

obvious reasons, this number should be objective which is why we are going to use an

energy that depends on the right Cauchy-Green tensor.

2.7. Geometric entities and meshes1

Definition 2.29 (s-dimensional Simplices): Let s ≤ d and a0, . . . ,ad ∈ Rd such that ∀i ∈
{1, . . . ,s} (ai−a0) are pairwise linearly independent.

i) The set

S :=

{

x ∈ Rd : x =
s

∑
i=0

λiai with
s

∑
i=0

λi = 1 and λi ≥ 0∀i
}

(2.7.1)

is called a (non-degenerated) s-dimensional simplex in Rd and a0, . . . ,as are called

its vertices.

ii) The λi from (2.7.1) are called barycentric coordinates of x with regard to S.

iii) For r ∈ {1, . . . ,s} and a′0, . . . ,a
′
r ∈ {a0, . . .as} pairwise unequal

S′ :=

{

x ∈ Rd : x =
r

∑
i=0

λia
′
i with

r

∑
i=0

λi = 1 and λi ≥ 0∀i
}

is called r-dimensional sub-simplex of S.

iv) The s-simplex defined by a0 = 0, ai = ei ∀i = 1, . . . ,s is called the s-dimensional

unit simplex and denoted by Ŝ with the points x̂

1This section follows a similar section in [Pau17] because we used the same software and worked at

the same chair

14

2.7. Geometric entities and meshes

v) The mapping T : Ŝ→ S defined by

T (x̂) = a0 +
d

∑
i=1

x̂iai

is called the parametrization of S over Ŝ. Because it is linear it is called the P1-

parametrization or -transformation.

Because of the linearity of the P1-transformation the simplices have straight edges. In

contrast to the simplices the hypercubes are more difficult to describe. The reason for this

is that there are no barycentric coordinates for hypercubes.

Definition 2.30 (s-dimensional Hypercube): Let s≤ d and a0, . . . ,a2s−1 ∈ Rd

i) The set Q̂ := [−1,1]s is called the s-dimensional reference hypercube. For s > 1 its

faces (or (s−1)-dimensional sub-hypercubes) are

s = 2

Q̂′0 = [−1,1]×{−1} Q̂′1 = [−1,1]×{1}
Q̂′2 = {−1}× [−1,1] Q̂′3 = {1}× [−1,1]

s = 3

Q̂′0 = [−1,1]× [−1,1]×{−1} Q̂′1 = [−1,1]× [−1,1]×{1}
Q̂′2 = [−1,1]×{−1}× [−1,1] Q̂′3 = [−1,1]×{1}× [−1,1]

Q̂′4 = {−1}× [−1,1]× [−1,1] Q̂′5 = {1}× [−1,1]× [−1,1]

For s = 3 the 2-dimensional reference sub-hypercubes Q̂′k are 2-dimensional ref-

erence hypercubes embedded into 3d so their faces are well-defined and form the

1-dimensional reference sub-hypercubes of Q̂3.

ii) Let us define the following functions Φi : Q̂s→ Rd , i = 0, . . . ,2d−1 by

d = 1

Φ0 (x̂) =
1

2
(1− x̂0) Φ1 (x̂) =

1

2
(1+ x̂0)

d = 2

Φ0 (x̂) =
1

4
(1− x̂0)(1− x̂1) Φ1 (x̂) =

1

4
(1− x̂0)(1+ x̂1)

Φ2 (x̂) =
1

4
(1+ x̂0)(1− x̂1) Φ3 (x̂) =

1

4
(1+ x̂0)(1+ x̂1)

d = 3

Φ0 (x̂) =
1

8
(1− x̂0)(1− x̂1)(1− x̂2) Φ1 (x̂) =

1

8
(1+ x̂0)(1− x̂1)(1− x̂2)

Φ2 (x̂) =
1

8
(1− x̂0)(1+ x̂1)(1− x̂2) Φ3 (x̂) =

1

8
(1+ x̂0)(1+ x̂1)(1− x̂2)

Φ4 (x̂) =
1

8
(1− x̂0)(1− x̂1)(1+ x̂2) Φ5 (x̂) =

1

8
(1+ x̂0)(1− x̂1)(1+ x̂2)

Φ6 (x̂) =
1

8
(1− x̂0)(1+ x̂1)(1+ x̂2) Φ7 (x̂) =

1

8
(1+ x̂0)(1+ x̂1)(1+ x̂2)

15

CHAPTER 2. Preliminaries

Let a0, . . . ,a2s−1 ∈ Rd and define

T : Q̂s→ Rd T (x̂) =
2s−1

∑
i=0

Φi (x̂)ai

and Q := T
(
Q̂
)
. Q is called non-degenerated d-dimensional hypercube if and only

if

∀x̂ ∈ Q̂ :

{

∇T (x̂) ∈ GLd s = d

∇T (x̂)T ∇T (x̂) ∈ GLd s < d

The points a0, . . . ,a2s−1 are called the vertices of Q and T is called the parametrization of

Q over Q̂. Because it is a bilinear we call it the Q1-parametrization or Q1-transformation.

For l ∈ {0, . . . ,2s−1} the sets T (Q̂′l) are called (s-1)-dimensional sub-hypercubes and are

not degenerated if Q is not degenerated.

It is possible to show that the Q1-transformation T : Q̂→ Q is linear if and only if Q is a

parallelpiped.

Definition 2.31: Let K ⊂ Rd

i)

h(K) := sup{||x1− x0|| : x0,x1 ∈ K}

is called the diameter of K

ii)

ρ(K) := 2sup{r : ∃x : Br(x)⊂ K}

is called the in-circle diameter of K.

iii)

σ(K) :=
h(K)

ρ(K)

is called the aspect-ratio of K

Later, we will also use σ as a symbol for a step-size, but from the context it should be

clear which meaning σ has.

Definition 2.32 (conformal mesh): Let Ω ⊂ Rd be a polygonally bounded domain. A

finite set T of d-simplices or d-hypercubes is called partitioning of Ω or mesh on Ω if and

only if Ω̄ = ∪K∈TK

This mesh is called conforming if and only if

i) ∀K0,K1 ∈ T, K0 6= K1: K̊0∩ K̊1 = /0

16

2.8. Finite Elements and parametric families of finite element spaces

ii) ∀K0 ∈ T: ∀(d− 1)-dimensional sub-simplices or sub-hypercubes K′ of K0: K′ ⊂
∂Ω or ∃!K1 ∈ T \ {K0} such that K′ is a (d− 1)-dimensional sub-simplex or sub-

hypercube of K1.

Definition 2.33: Let (Ti)i∈N be a family of meshes. It is called a regular family of meshes

if and only if

i) sup{σ(K) : K ∈ ∪i∈NTi}=: σ < ∞

ii) For h(Ti) := maxK∈Ti
h(K) it holds that

lim
i→∞

h(Ti) = 0

2.8. Finite Elements and parametric families of finite ele-

ment spaces

This section follows [Pau17, Section 2.3] which in itself follows [Cia78, Chapter 2]

Definition 2.34 (Finite Element): Let K ⊂ Rd be closed, K̊ 6= /0, ∂K ∈ C0,1. Let P be

a space of real-valued functions defined over the set K and Σ be a finite set of linearly

independent linear forms φi, 1≤ i≤ N defined over the space P. Let further be

∀α1, . . . ,αN ∈ R : ∃!p ∈ P : ∀i = 1, . . . ,N : φi(p) = αi

meaning that Σ is P-unisolvent. Furthermore, kΣ := max{ki : i = 1, . . .N} and Σ⊂ Ck(K)

i) The triple (K,P,Σ) is called a Finite Element.

ii) The linear forms φi are called the degrees of freedom.

iii) The functions pi ∈ Pi i ∈ {1, . . . ,N} satisfying φ j(pi) = δi j which exist and are

unique due to the P-unisolvence are called the finite element basis functions

By definition, we have dimP = dimΣ = N and

∀p ∈ P : p =
N

∑
i=1

φi(p)pi

Other common names for the degrees for freedom are node functionals or dual basis.

Definition 2.35 (P-Interpolation-Operator): For a finite element (K,P,Σ) and a function

v ∈ CkΣ(K) define the P-interpolant IPv by

IPv =
N

∑
i=1

φi(v)pi

IPv ∈ P is unambiguously defined because of the P-unisolvence of Σ.

Definition 2.36: Let (Ki,PKi
,ΣKi

)i∈N be a family of finite elements. It is called regular if

and only if

17

CHAPTER 2. Preliminaries

i) σ := supi∈Nσ(Ki)< ∞

ii) limi→∞ h(Ki) = 0

Definition 2.37 (Equivalent finite elements): Let the reference finite element (K̂, P̂, Σ̂) be

given. Let K ⊂ Rd be open and T : K̂→ K be a diffeomorphism such that ∀i = 1, . . . ,d :

Ri ∈ G with ∃m ∈ N : G⊆ Pm(Ŝ). Define

Pk := {p : K→ R : ∃ p̂ ∈ P̂ : p = p̂◦T−1
k }

Σk := {Φ̂(p◦Tk) : Φ̂ ∈ Σ}

Then (K,Pk,Σk) is called

i) affine equivalent to (K̂, P̂, Σ̂) if and only if G = P1(K̂)

ii) isoparametrically equivalent to (K̂, P̂, Σ̂) if and only if G = P̂ or

iii) subparametrically equivalent to (K̂, P̂, Σ̂) if and only if G (P̂

iv) superparametrically equivalent to (K̂, P̂, Σ̂) if and only if G) P̂

Definition 2.38 (Parametric family of finite elements): Let a reference element (K̂, P̂, Σ̂)
be given. A family (Ki,PKi

,ΣKi
)i=1,...,N of finite elements is called either affine, isopara-

metric, subparametric of superparametric (with regard to the reference element) if and

only if ∀i = 1, . . . ,N : (Ki,PKi
,ΣKi

) is affine (or isoparametric or subparametrically or su-

perparametrically) equivalent to (K̂, P̂, Σ̂). If the family is in either of the three categories

we call it parametric family.

Definition 2.39: Let Ω ⊂ Rd , d = 1,2,3 be polygonally bounded and T be a regular and

conforming mesh on Ω. Define the degrees of freedom

Σ̂ = {Φi(p) = p(ai) : ai ∈ V(K̂)}

and the conforming Pk and Qk reference elements

(Ŝ,Pk(Ŝ), Σ̂)

(Q̂,Qk(Q̂), Σ̂)

and the conforming Lagrange spaces

Pk(T) :=(K,PK,ΣK)K∈T∀K ∈ T : (K,PK,ΣK) is affine equivalent to (Ŝ,Pk(Ŝ), Σ̂)

= {v ∈ C
0(Ω) : ∀K ∈ T : ∃P1(K̂) 3 Tk : K̂→ K a diffeomorphism

and ∃v̂ ∈ P(K̂) : v = v̂◦T−1
k }

Q1(T) :=(K,PK,ΣK)K∈T∀K ∈ T : (K,PK,ΣK) is isoparametrically equivalent to (Q̂,Q1(Q̂), Σ̂)

= {v ∈ C
0(Ω) : ∀K ∈ T : ∃Q1(K̂) 3 Tk : K̂→ K a diffeomorphism

and ∃v̂ ∈ P(K̂) : v = v̂◦T−1
k }

18

2.10. Interpolation estimates for affine-equivalent finite elements

2.9. Interpolation estimates for affine-equivalent finite ele-

ments

This section follows [Pau17, Section 2.4] which just collects a few results from [Cia78]

Lemma 2.40: Let K̂, K⊂Rd be affine equivalent under the mapping T :Rd→Rd , T (x)=
Bx+ x0, T (K̂) = K and open. Let m ∈ N, p ∈ [1,∞] and v ∈W m,p(K). Define v̂(x̂) =
v◦TK(x̂). Then v̂ ∈W (K̂)m,p and

∃C =C(m,d) : ∀v ∈W (K)m,p :|v̂|m,p,K̂ ≤C(det(B))−
1
p ||B||m|v|m,p,K.

Analogusly, the estimate

∃C =C(m,d) : ∀v̂ ∈W (K̂)m,p :|v|m,p,K ≤C(det(B))
1
p ||B−1||m|v̂|m,p,K̂

Proof. See [Cia78, Theorem 3.1.2].

Lemma 2.41: Let (K̂, P̂, Σ̂) be a finite element. Let k,m ∈ N and p,q ∈ [1,∞] such that

W k+1,p ↪→ C
kΣ(K̂) (2.9.1)

W k+1,p ↪→W m,q(K̂) (2.9.2)

Pk(K̂)⊂ P̂⊂W m,q(K̂) (2.9.3)

Then there exists a constant C = C(K̂, P̂, Σ̂) such that for all affine-equivalent finite ele-

ments (K,P,Σ) and ∀v ∈W k+1,p(K) the estimate

|v− Ipv|m,q,K ≤C(K̂, P̂, Σ̂)vol(K)(
1
q− 1

p)
h(K)k+1

ρ(K)m
|v|k+1,p,K

holds.

Proof. See [Cia78, Theorem 3.1.5].

Lemma 2.42: Let (Ki,P,Σ)i∈N be a regular affine family of finite elements whose refer-

ence finite element (K̂, P̂, Σ̂) satisfies the assumptions (2.9.1)-(2.9.3). Then there exists a

constant C =C(K̂, P̂, Σ̂) such that

∀Ki : ∀v ∈W k+1,p(Ki) : |v− IPv|m,q,Ki
≤C(K̂, P̂, Σ̂)vol(Ki)

1
q− 1

p
h(Ki)

k+1

ρ(Ki)m
|v|k+1,p,Ki

Proof. See [Cia78, Theorem 3.1.6].

Theorem 2.43: Let Ω⊂ Rd be polygonally bounded, (Th) be a regular family of meshes

such that ∀K ∈ Th : (K,P,Σ) are affine-equivalent to a single reference finite element

(K̂, P̂, ˆSigma). Let Xh ⊂ C0(Ω) be the finite element spaces formed by the families of

finite elements such that Xh ⊂V ⊂ H1(Ω). Let k, l ∈ N such that

Pk(K̂)⊂ P̂⊂ H l(K̂)

Hk+1(K̂) ↪→ C
kΣ̂(K̂)

Then ∃C > 0 independent of h such that ∀v ∈ Hk+1(Ω)∩V :

∀0≤ m≤min{1, l} : ||v− Ipv||m,Ω ≤Chk+1−m|v|k+1,Ω

∀2≤ m≤min{k+1, l} :
√

∑
K∈Th

||v− Ipv||m,K ≤Chk+1|v|k+1,Ω

Proof. See [Cia78, Theorem 3.2.1].

19

CHAPTER 2. Preliminaries

2.10. Interpolation estimates for finite elements with non-

linear transformations

This section follows [Pau17, Section 2.5].

The estimates from Section 2.9 always assume that the transformation T : K̂→K is linear.

While these results can be applied to the P1-transformation, this is quite a limitation:

To archive a better boundary approximation one can use a Pk-transformation with k >
1. Another application of these transformations are the so called isoparametric finite

elements. Also, general hypercube meshes cannot be used in combination with a linear

transformation: We mentioned in Definition 2.30 that the Q1-transformation is linear only

for parallelpipeds.

Lemma 2.44: Let K̂,K ⊂ Rd be open and bounded such that ∃T : K̂ → K sufficiently

smooth, one-to-one and with sufficiently smooth inverse T−1 : K → K̂. Let v̂ : K̂ → R.

If for some l ≥ 0, p ∈ [1,∞] the function v̂ ∈W l,p(K̂) then v = v̂ ◦ T−1 : K → R and

v ∈W l,p(K) and there exist constants C such that

∀v̂ ∈ Lp(K̂) : |v|0,p,K ≤
(

|∇T |0,∞,K̂

) 1
p |v̂|0,p,K̂

∀v̂ ∈W 1,p(K̂) : |v|1,p,K ≤C
(

|∇T |0,∞,K̂

) 1
p |T−1|1,∞,K|v̂|1,p,K̂

∀v̂ ∈W 2,p(K̂) : |v|2,p,K ≤C
(

|∇T |0,∞,K̂

) 1
p
(

|T−1|21,∞,K|v̂|2,p,K̂ + |T−1|2,∞,K|v̂|1,p,K̂
)

∀v̂ ∈W 3,p(K̂) : |v|3,p,K ≤C
(

|∇T |0,∞,K̂

) 1
p
(

|T−1|31,∞,K|v̂|3,p,K̂ + |T−1|1,∞,K|T−1|2,∞,K|v̂|2,p,K̂
+|T−1|3,∞,K|v̂|1,p,K̂

)

Proof. See [Cia78, Theorem 4.3.2].

Theorem 2.45: Let Ω̂⊂ Rd be open with C0-boundary, T : Ω̂→ Rd , T (Ω̂) = Ω be a Ck-

diffeomorphism for some k ∈N. Let Π̂ ∈ L(W k+1(Ω̂),W m,p(Ω̂)) with 0≤m≤ k+1 and

with the property

∀v̂ ∈ Pk : Π̂v̂ = v̂

Define Π ∈ L(W k+1,p(Ω),W m,p(Ω) by

∀v ∈W k+1,p : Π̂v = Π̂v̂

Then there exists a constant C =C(d,k,m, p,Ω̂,Π̂) such that

∀v ∈W k+1,p(Ω) : |v−Πv|m,p,Ω ≤C

(
supx̂∈Ω̂ |det(∇T (x̂))|
infx̂∈Ω̂ |det(∇T (x̂))|

) 1
p

(
m

∑
l=1

∑
i∈I(l,m)

sup
x∈Ω

m

∏
λ=1

||DT−1(x)||iλ
)

·
(

k+1

∑
l=1

|v|l,p,Ω ∑
j∈I(l,k+1

sup
x̂∈Ω̂

k+1

∏
λ=1

||DT (x̂)||iλ
)

20

2.10. Interpolation estimates for finite elements with nonlinear transformations

where

I(l,m) := {a ∈ Nm : ||a||1 = l,
m

∑
k=1

kak = m}

Proof. See [CR72, Theorem 1]

21

CHAPTER 2. Preliminaries

22

3
Mesh optimisation

The interpolation estimates from Section 2.9 and 2.10 are the basis of the discretisation

error ||u−uh|| for many different problems and finite element spaces and corresponding

norms || · ||·. Examples for these can be found in [Cia78, Chapter 3-7] or [Bra07]. The

details of these are out of scope for this work because this depends on exact setting that is

used to solve the underlying partial differential equation.

However, we can recall the reference mapping T : K̂ 7→ K from Definition 2.37 and its

global version T : Ω̂→ Rd from eg. Theorem 2.45 where we can see the dependence of

the interpolation error estimate on the term det(∇T). We also see in Theorem 2.43 and

Theorem 2.45 that these estimates require a regular family of meshes (Th). Therefore, if

we want to see convergence of the discrete solution to the continuous solution in terms of

lim
h→0
||u−uh||= 0

then we have to make sure that (Th)h is a regular and conforming family of meshes.

This is surely possible with certain refinement strategies, however it becomes increasingly

difficult if the geometry becomes more complex or is not static anymore (e.g. a rising

bubble). A global refinement strategy which would reduce the error ||u− uh|| usually

comes at a large computational cost, and with strategies that just locally refine the mesh

we cannot guarantee the regularity of the family (Th) a priori. This is where the idea of r-

adaptivity arises: Instead of globally refining the mesh and therefore creating unnecessary

many vertices and thus increasing the computational cost or locally refining the mesh and

losing the regularity of the mesh-family the strategy is to move vertices from areas where

no high resolution is needed to areas where high resolution is required. In this work we

will not discuss how to obtain this information, but how to continue once this information

is available so that it is possible to create a „good“ mesh.

3.1. Mesh quality

For optimizing the mesh we need to discuss mesh quality: What is it and how can we

measure it? In one dimension this is relatively easy as meshes have only one variable (the

23

CHAPTER 3. Mesh optimisation

size of a cell), but in two or three dimensions the shape of a cell becomes an aspect of

its quality as well. One approach to take this into account is to define an optimal cell,

a mapping between the real and the - for this cell - optimal cell and a functional that

depends on this mapping. By summing up these values for each cell of a mesh we can

quantify the quality of the mesh.

With these thoughts we directly assume that our understanding of mesh quality is of the

form

Q = ∑
T∈Th

µT

∫
T

W (x,γ)dx (3.1.1)

where γ is the mapping from the optimal cell to the actual cell, W measures the local

quality of this cell and µT is a possible local weight-factor.

So now, let us discuss what we do expect from the local measurement W :

1. The quality of a cell should be frame independent. In other words, it should not

matter if we move or rotate the cell.

2. To normalize the functional W should be zero if we have an optimal mesh. The

worse the mesh, the higher the value of the functional.

3. If a cell gets compressed very much this cell should be marked as bad and result in

a high value for this cell. The same should hold true if a cell becomes very large.

These expectations are also requirements in the field of nonlinear continuum mechan-

ics [Mos14] where they are requirements for energy functios. In the field of continuum

mechanics the requirement (1) is met in the following way: Let γ be the mapping be-

tween the deformed and the undeformed body, F the energy functional and W the local

measurement for the mesh quality. Then the energy functional

F(γ) = ∑
T∈Th

µ

∫
T

W (x,γ)dx

should depend only on the right Cauchy-Green-Tensor ∇γT ∇γ. Requirement (3) is ex-

pressed by

det(∇γ)↘ 0⇒W → ∞ (3.1.2)

||∇γ||+ ||Cof(∇γ)||+det(∇γ)→ ∞⇒W → ∞ (3.1.3)

Because of the geometrical interpretation of these terms these expressions are very rea-

sonable. In three dimensions

• ||∇γ||Fro expresses the change of length of curvature under the transformation γ
[Cia88, Section 1.8]

• Cof(∇γ) is related to the change of area under the transformation γ [Cia88, Th.

1.7-1]

• det(∇γ) is ratio the volume changes under the transformation γ [Cia88, Section 1.5]

24

3.1. Mesh quality

If we now apply this to meshdeformation requirements (3.1.2) and (3.1.3) help to estab-

lish some regularity in the resulting mesh: For a 2D-Hypercube mesh it becomes unlikely

that the inner angle of a quadrilateral converges to 0. The reason for this is easy to spot:

If the inner angle converges to zero, one can either preserve the volume of the cell or the

length of all edges, but not both at the same time. If the length of all edges stays the same,

the volume must decrease. This relates to det(∇γ)→ 0 and condition (3.1.2) makes this

a less favorable solution. On the other hand, if the volume should be preserved and the

length of the edges have to be stretched. This correlates to ||∇γ||F → ∞ and then condi-

tion (3.1.3) makes this less favorable. By combining these conditions we can expect some

sort of balance between both extremes that should have inner angles that are „not too bad“.

As we compared this to nonlinear continuum mechanics before, one thought comes up

quite naturally: We measure the mesh quality for one cell by the amount of energy that is

required to deform an optimal cell to it. The optimal mesh therefore is a mesh that requires

the least amount of energy for all deformations. This thought and modeling gives us the

advantage to utilize existing theorems from the field of nonlinear continuum mechanics.

From a mathematical point of view it would be nice if the energy would be convex (this

would make it easier to show the existence of a minimizer), but in [Cia88, Theorem 4.8-1]

it was shown that a convex energy cannot meet the required growth conditions.

Before we continue, we would like to formalize what we mean with expectation 1 (which

was formulated in a very loose manner so that it does not hide the main idea): If our

functional is of the form

F(γ) = ∑
T∈Th

µ

∫
T

WT (x,γ)dx

then we would like to see translational invariance:

WT (x,γ) =WT (x,γ+ c) ∀c ∈ Rn

which implies that

WT (x,γ) =WT (x,∇γ)

Translational invariance means that the quality of a cell does not depend on its position

but only on its shape. Furthermore, we expect frame indifference

∀Q ∈ SOd : W (∇γ) =W (Q∇γ)

which means that the quality of a cell should not depend on the position of the observer.

As we mentioned, this can be guaranteed if the W is formulated in the right Cauchy-

Green tensor because if W (∇γ) =W (C) we just need to verify that C(∇γ) =C(Q∇γ), and

because C(∇γ) = ∇γT ∇γ and Q∈ SOd this is clearly the case. Finally, we expect isotropy:

∀Q ∈ SOd : W (∇γ) =W (∇γQ)

which means that the quality of a cell should not depend on the coordinate system of the

reference cell. Here it helps again to formulate W in the right Cauchy-Green-Tensor be-

cause C(∇γQ)=QT ∇γT ∇γQ. Since Q∈ SOd we know that this is C(∇γQ)=Q−1∇γT ∇γQ,

25

CHAPTER 3. Mesh optimisation

so this is a similarity transformation of ∇γ. If the model is formulated using the invariants

of C then this is fulfilled by definition of the invariants.

Because for every matrix A ∈ Rd×d there exists a left polar decomposition A = Q(AT A)
1
2

with Q ∈ SLd and a right polar decomposition A = (AT A)
1
2 Q with Q ∈ SLd we can use

these together with the frame indifference and isotropy to deduce with help of the Rivlin-

Erikson Representation Theorem [Cia88, Theorem 3.6-1] that

W (x,γ) =W (||∇γ||2F , ||Cof(∇γ)||2F ,det(∇γ))

3.2. Deformations and variations

Now we need to discuss the kind of deformations we are going to allow. Mainly, we

do not want to allow any deformation that leads to deterorientation, for example self-

intersections. For this, we are going to follow [Pau17, Section 3.1]. Note that the term

variations is taken from [Rum96].

Definition 3.1 (The space of admissible deformations): Let Ω⊂Rd , d = 2,3 be a bounded

domain with

∂Ω ∈ C
0,1,Γ0,Γ1,Γ2 ⊂ ∂Ω,vold−1(∂Ω\ (Γ0∪Γ1∪Γ2)) = 0

i) The set

D̃op :=
{

Φ : Ω→ Rd : ∀x ∈Ω : ∇Φ(x) ∈ SLd

}

(3.2.1)

is called the space of orientation preserving deformations.

ii) Let Ωh be a polygonal approximation of Ω and Th a regular, conforming mesh on

Ωh. Define the discrete space of orientation preserving deformations as

D̃op,h := D̃op,h(Th) := D̃op∩Vh, Vh =

{

P1 K̂ = Ŝ

Q1 K̂ = Q̂
(3.2.2)

iii) Our main focus in this work are deformations that preserve the boundary ∂Ω. There-

fore, we also define the subspace of boundary preserving deformations

D̃bp :=
{

Φ ∈Dop : ∀x ∈ ∂Ω : Φ(x) ∈ ∂Φ(Ω)
}

D̃bp,h := D̃bp,h(Th) :=
{

Φ ∈Dop,h : ∀x ∈ ∂Ωh : Φh(x) ∈ ∂Φh(Ωh)
}

To these spaces a variety of boundary conditions can be applied and constraints can be

imposed. Some examples are

iv) Displacement boundary condition: If Φ0 : Γ0→ Rd is sufficiently smooth require

that

∀x ∈ Γ0 : dσ a.e. : Φ(x) = Φ0(x)

26

3.3. Reference cells

v) Traction boundary condition: If T̂ : Ω̄× SLd → Rd×d is a response function for

the first Piola-Kichhoff stress and ν is the outer unit normal field, then a traction

boundary condition is

∀x ∈ Γ1 dσ a.e. : T̂ (x,∇Φ(x))ν(x) = ĝ(x,∇Φ(x))ν(x)

vi) Unilateral boundary condition of place: For a given Γ⊂ Rd require that

∀x ∈ Γ2 : dσ a.e. : Φ(x) ∈ Γ

vii) Injectivity constraint

∫
Ω

det(∇Φ(x))dx≤ vol(Ω)

viii) Locking constraint: See Remark 3.8

With this definition of admissible deformations it is possible to formulate everything, but

there can be situations where this getting tricky: If ∂Ω = ∪iΓi with Γi being a smooth

surface segment, the definition of deformations does not prevent vertices of a mesh Th on

a polygonal approximation Ωh of Ω from switching between Γi and Γ j with i 6= j. This in

turn could then worsen the approximation of Ω with Ωh. As [Pau17] and [Rum96] state

this would need combinatorial treatment which does not fit well into a variational setting.

Therefore, let us introduce variations:

Definition 3.2 (The space of admissible variations): Let Ω ⊂ Rd and ∂Ω =]d−1
m=0∂Ωm

where ∂Ω0 is a set of singular points and ∂Ωm are sets of relatively open, smooth m-

dimensional manifolds.

i) Then

D :=
{

Φ ∈ D̃bp : ∀m = 0, . . . ,d−1 : ∀Γ ∈ ∂Ωm : ∀x ∈ Γ : Φ(x) ∈ Γ
}

(3.2.3)

is called the space of admissible variations.

ii) If Ωh is a polygonal approximation of Ω and Th a regular conforming mesh on Ωh

and ∀m = 0, . . . ,d−1: ∂Ωm
h are the sets of polygonal approximations to ∂Ωm define

the space of discrete variations as

Dh =Dh(Th) :=
{

Φ ∈ D̃bp,h : ∀m = 0, . . . ,d−1 : ∀Γ ∈ ∂Ωm
h : ∀x ∈ Γ : Φ(x) ∈ Γ

}

(3.2.4)

3.3. Reference cells 1

When introducing the mesh quality we just had mentioned some optimal cell - or refer-

ence cell - and not discussed it and its properties.

Firstly, the optimal cell should not depend on any input mesh because this would mean

1Jordi Paul used the same software, so the reference cells are identical to those in [Pau17] and therefore,

we follow [Pau17] here

27

CHAPTER 3. Mesh optimisation

that we need always a good input mesh and then mesh-optimization seems somehow

pointless. Therefore, it should be independent of the computational domain for the partial

differential equation that should be solved on the mesh. One important choice of reference

cells are those where all edges and all interior angles are identical. This ensures that one

problems cannot arise: Imagine if in two dimensions the reference cell for a quadrilateral

would not be a square but rather a rectangle. If now the cell in the mesh is a rectangle as

well, it could happen that we map the „short“ edge of the cell in the real mesh onto the

„long“ edge of the optimal cell. This could then indicate a bad quality of this cell, when

everything that might have been necessary was to just rotate the reference cell.

K̂ K

T

Figure 3.1: Reference cell should be rotated

With this in mind we can define the optimal cell (up to a scaling by volume): For hyper-

cubes, this is easy as the well known unitcube fulfills the requirements:

Q̂n = [−1,1]d

For simplices, we set

Ŝn = {x ∈ Rd : x =
s

∑
i=0

λiai with ∀i ∈ {1, . . . ,s} : λi ∈ R≥0

s

∑
i=1

λi = 1}

with






a0 = (0,0)T ,a1 = (1,0)T ,a2 =
(

1
2 ,
√

3
2

)T

d = 2

a0 = (0,0,0)T ,a1 = (1,0,0)T ,a2 =
(

1
2 ,
√

3
2 ,0

)T

,a3 =
(

1
2 ,
√

3
6 ,
√

6
3

)T

d = 3

These choices for Ŝn have the benefit that no combinatorial testing for the evaluation of the

local integrand is required because they are invariant with respect to their local numbering.

For simplices, one can get all local numberings by taking the even permutations If this

property cannot be archived, one has to calculate the energy for all combinations that are

possible and meaningful and then take the smallest value of all of them.

For more details about this see [Pau17, Section 3.5.3]

28

3.4. Existence of minimizer

(a) Reference triangle Ŝ2 (b) Reference square Q̂2

Figure 3.2: Reference elements in 2D

(a) Reference tetrahedron Ŝ3 (b) Reference hypercube Q̂3

Figure 3.3: Reference elements in 3D

3.4. Existence of minimizer

Let us now discuss the properties we need to show the existence of a minimizer. This part

is going to follow [Pau17, Section 3.5.6] 2 and [Cia88, Section 7], which itself is based

on [Bal76] where the real pioneering work was done. Since convexity of the energy was

ruled out, the concept of polyconvexity was introduced by [Bal76]. For our purpose, the

following definition taken from [Cia88, Section 4.9] is sufficent

Definition 3.3 (Polyconvexity): A stored energy function f : Ω̄×SL3→R is called poly-

convex if for each x ∈ Ω̄ there exists a convex function

f̂ (x, .) : R3×3×R3×3× (0,∞]→ R

such that

f (x,G) = f̂ (x,G,Cof(G),det(G)) ∀G ∈ SL3

The next theorems are adaptions of theorems to our situation: The general definition of

polyconvexity is found in Definition 3.3 and then required in the existence theorems in

[Bal76] and [Cia88], but the energy we are going to choose does not depend on Cof∇γ
(see (4.1.1)). Therefore, this requirement has to be modified.

2As already mentioned, discussions between Jordi Paul and us happend, and in this work we wanted to

try a different energy-functional, so in some way this work is also based on the experiences from [Pau17]

and a continuation of it

29

CHAPTER 3. Mesh optimisation

Theorem 3.4 (Existence of minimisers for pure displacement problems): Let Ω ⊂ R3 a

given domain such that ∂Ω = Γ0∪Γ1 Γi dσ-measurable and vol2(Γ0) > 0. Assume that

W : Ω×SL3→ R with the following properties

i) Polyconvexity: For almost all x∈Ω there exists a convex function Ŵ (x, ., .) :R3×3×
(0,+∞)→ R such that Ŵ (x,F,det(F)) =W (x,F)∀F ∈ R3×3

ii) Stability

∀x ∈Ωa.e. : lim
detF→0+

W (x,F) = +∞

iii) Coerciveness: There exist α, β, p, q, r such that

α > 0, p≥ 2,q≥ p

p−1
,r > 1 :

W (x,F)≥ α(||F ||p + ||CofF ||q +(det(F))r)+β

Let Φ0 ∈ L1(Γ0,R
3) such that

DΦ0
:=
{

Φ ∈W 1,p(Ω) :Cof∇Φ ∈ Lq(Ω),det(∇Φ) ∈ Lr(Ω),

∀x ∈Ωa.e. : det(∇Φ)(x)> 0,

∀x ∈ Γ0dσa.e. : Φ(x) = Φ0(x)
}

is not empty. Let f ∈ Lq(Ω) and g ∈ Ls(Γ1) with 1
p
+ 1

s
= 1 such that the linear form

l : W 1,p(Ω)→ R, l(Φ) :=
∫

Ω
f Φdx+

∫
Γ1

gΦdσ

is continuous and define

F(Φ) :=
∫

Ω
W (x,∇Φ)dx− l(Φ)

Under the assumption that ∃Φ ∈DΦ0
: F(Φ)<+∞ there exists at least one function

Φ∗ ∈DΦ0
: F(Φ∗) = inf

Φ∈DΦ0

F(Φ)

Proof. See [Cia88, Theorem 7.7-1] and the corresponding proof.

Remark 3.5: If we consider a 2d-problem and we choose p = q = 2 then the coercivity

condition in 3.4 can be modified to

W (x,F)≥ α(||F ||p +(det(F))r)+β

because in this case ||F || and ||CofF || are equivalent.

Remark 3.6: We should note the following things:

30

3.4. Existence of minimizer

i) The condition DΦ0
6= /0 is a condition on Φ0 in general as the traces of W 1,p(Ω)-

functions might not have enough regularity [Cia88, Theorem 6.1-7]. In case of

deformations, the boundary deformation still has to admit some orientation pre-

serving deformation of Ω, meaning self-intersections of the boundary should not

occur.

ii) The resulting problem is a pure displacement problem.

iii) The minimizer is not unique in general. This can be observed.

Theorem 3.7 (existence of minimizers for problems with a unilateral boundary condition

of place and a locking constraint): Assume Ω⊂ R3 to be a given domain such that ∂Ω⊃
Γ0,Γ1,Γ2 and vol2(∂Ω \ {Γ0∪Γ1∪Γ2}) = 0. Let Γi be dσ-measurable, relatively open,

disjoint and vol2(Γ0)> 0. Assume further that we have W : Ω×SL3→ R with the same

properties as in Theorem 3.4 (polyconvexity, regularity, coerciveness). Let Λ : SL3→ R

be a polyconvex function such that

∃Λ̂ : SL3×SL3× (0,+∞)→ R : ∀F ∈ SL3 : Λ(F) = Λ̂(F,det(F))

Let further Γ⊂ R3 be closed and Φ0 ∈ L1(Γ0,R
3) such that

/0 6=DΦ0,Γ := {Φ ∈W 1,p(Ω) :Cof∇Φ ∈ Lq(Ω),det(∇Φ) ∈ Lr(Ω),

∀x ∈Ωa.e. : det(∇Φ)(x)> 0,

∀x ∈Ωa.e. : Λ(∇Φ(x))≤ 0,

∀x ∈ Γ0dσa.e. : Φ(x) = Φ0(x),

∀x ∈ Γ2dσa.e. : Φ(x) ∈ Γ2}

Let f ∈ Lq(Ω) and g ∈ Ls(Γ1) with 1
p
+ 1

s
= 1 such that the linear form

l : W 1,p(Ω)→ R,l(Φ) :=
∫

Ω
f Φdx+

∫
Γ1

gΦdσ

is continuous and define

F(Φ) :=
∫

Ω
W (x,∇Φ(x))dx− l(Φ)

Under the assumption that ∃Φ ∈DΦ0,Γ : F(Φ)<+∞ there exists at least one function

Φ∗ ∈DΦ0,Γ : F(Φ∗) = inf
Φ∈DΦ0,Γ

F(Φ)

Proof. See [Cia88, Theorem 7.8-1] and the corresponding proof.

Remark 3.8: We should note

i) A variant of this theorem with proof for the discrete case can be found in [Rum96].

ii) The additional boundary condition in Theorem 3.7 is a unilateral boundary condi-

tion of place as defined in Definition 3.1. It is particular useful for the application

for mesh deformations and the underlying mathematical property of the definition

of the space of variations (see Definition 3.2)

31

CHAPTER 3. Mesh optimisation

iii) The function Λ in Theorem 3.7 defining an additional constraint is a locking func-

tion as per Definition 3.1. The notion of a locking constraint was introduced for

linearised elasticity in [Pra57] for materials that become locked if some measure of

strain reaches a critical level. For the nonlinear case, [CN85] proposed a locking

constraint based on the deviatoric part of the Green-St.-Vernant stress: Let α ∈ R+

and define

E := (∇Φ)T ∇Φ− I3, Ed = E− 1

3
Tr(E)I3

Λ : SL3→ R Λ(F) := ||Ed||2F −α

The locking constraint is entirely optional. Although it has not been used in the

current work, it could provide an additional tool to further improve the method.

Theorem 3.9 (Existence of minimizers for displacement-traction problems with injectiv-

ity constraint): Assume Ω⊂R3 to be a given domain such that ∂Ω⊃ Γ0,Γ1 and vol2(∂Ω\
{Γ0∪Γ1}) = 0. Let Γi be dσ-measurable, relatively open, disjoint and vol2(Γ0)> 0. As-

sume further that we have W : Ω×SL3→ R with the same properties as in Theorem 3.4

(polyconvexity, regularity, coerciveness) with p > 3.

Let further Φ0 ∈ L1(Γ0,R
3) such that

/0 6=DΦ0
:= {Φ ∈W 1,p(Ω) :Cof∇Φ ∈ Lq(Ω),det(∇Φ) ∈ Lr(Ω),

∀x ∈Ωa.e. : det(∇Φ)(x)> 0,

∀x ∈ Γ0dσa.e. : Φ(x) = Φ0(x),∫
Ω

det(∇Φ)dx≤ vol(Φ(Ω))}

Let f ∈ Lq(Ω) such that the linear form

l : W 1,p(Ω)→ R,l(Φ) :=
∫

Ω
f Φdx

is continuous and define

F(Φ) :=
∫

Ω
W (x,∇Φ(x))dx− l(Φ)

Under the assumption that ∃Φ ∈DΦ0
: F(Φ)<+∞ there exists at least one function

Φ∗ ∈DΦ0
: F(Φ∗) = inf

Φ∈DΦ0

F(Φ)

and all minimizers Φ∗ : Ω→ R3 are injective in Ωa.e.

Proof. See [Cia88, Theorem 7.9-1] and the corresponding proof.

Remark 3.10: We should note that

i) The assumption that there is no surface force g was made in [Cia88, Theorem 7.9-1]

only for simplicity.

ii) The results can be extended to the case p > 2.

32

3.5. Optimization algorithm

iii) The additional injectivity constraint
∫

Ω det(∇Φ)dx ≤ vol(Φ(Ω)) is fulfilled auto-

matically in the case of a pure displacement problem vol2(∂Ω \Γ0) = 0 in The-

orem 3.4 or fixed in combination with a unilateral boundary condition of place

(vol2(∂Ω\{Γ0∪Γ2}) = 0. and vol2(∂Φ(Ω)\{Φ0(Γ0)∪Γ}) = 0 in Theorem 3.7)

fulfilling an appropriate condition on the volume.

Remark 3.11: The coercivity condition reads different than one might expect. Its purpose

is to ensure there is a lower bound to the functional when minimizing. This is in some

way similar to radially unbound (Theorem 2.15).

3.5. Optimization algorithm

We have discussed the existence of a minimizer, so now we are discussing how we are

going to calculate it and develop an algorithm. The minimizer itself is a function and

we are minimizing a functional, so we are looking into Optimization in Banach spaces.

Each algorithm has its own requirements to the functional, so after this section, we know

which aspects of the functional we need to investigate. Therefore, we are not discussing

requirements or regularity of γ here. As we have indicated earlier we are going to focus

on descent methods, in particular Newton’s method. The other options that we are not

going to discuss here include

• Nonlinear steepest descent method: This method sets the search-direction as δk =
−F ′(γk)

• Nonlinear conjugate gradient: δk+1 = βkδk − F ′(γk) or preconditioned nonlinear

conjugate gradient: δk+1 = βkδk−B−1F ′(γk) with δ0 =−F ′(γk)

For the nonlinear conjugate gradient method the choice of βk is not as unique as for the

linear conjugate gradient method. In the nonlinear case the different choices have different

properties. Some choices are

• The Hestenes-Stiefel-Update [HS52]

βHS
k+1 =

(
B−1F ′(γk+1),F

′(γk+1)−F ′(γk)
)

(F ′(γk+1)−F ′(γk),δk)

• The Fletcher-Reeves-Update [Fle64]

βFR
k+1 =

(
B−1F ′(γk+1),F

′(γk+1

)

||F ′(γk)||

• The Polak-Ribiere-Polyak-Update [PR69] [Pol69]

β̃PRP
k+1 =

(
B−1F ′(γk+1),F

′(γk+1)−F ′(γk)
)

||F ′(γk)||

Because this does not guarantee a descent direction this is usually modified:

βPRP
k+1 = max{0, β̃PRP

k+1}

33

CHAPTER 3. Mesh optimisation

• The Dai-Yuan-Update [DY99]

βDY
k+1 =

(
B−1F ′(γk+1),F

′(γk)
)

(F ′(γk+1)−F ′(γk),δk)

• The Hager-Zhang-Update [HZ05]

βHZ
k+1 =

(
B−1F ′(γk+1)

(F ′(γk+1)−F ′(γk),δk)
,F ′(γk+1)−F ′(γk)−

2||F ′(γk+1−F ′(γk)||2
(F ′(γk+1−F ′(γk),δk)

δk

)

As we showed in Corollary 2.17 we are looking for a solution γ∗ such that F ′(γ∗)h = 0 ∀h
(assuming that the optimum lies in the interior). One possibility to solve this nonlinear

equation is the Newton-Scheme. Normally, the Newton-Scheme is presented to solve

the equation G(x) = 0, but if we apply this general notation from a Banach-Space (see

[Deu11, Section 1.2] for example) on the equation F ′(γ∗)h = 0 we can derive the follow-

ing algorithm:

Algorithm 3.1 Newton-Scheme for optimization

given: Initial guess γ0

while do||F ′(γk)|| 6= 0

Solve F ′′[δk,φ](γk) =−F ′(γk)φ ∀φ
Update: γk+1 = γk +δk

end while

Therefore, we now know that the second derivative should exist. Let us now investigate if

this method qualifies as a descent-method as this would allow us to apply Theorem 2.21.

Recall Lemma 2.19 which states that a direction is a descent direction if

F ′(γk)δk < 0

In this case, we have

F ′(γk)φ =−F ′′[δk,φ](γk) ∀φ (3.5.1)

so clearly if we can pick φ = δk then

F ′(γk)δk =−F ′′[δk,δk](γk)

Therefore, if−F ′′[δk,δk](γk)< 0 then this qualifies as a descent method. This is the case if

F ′′[h1,h2](γk) is a positive definite operator. The benefit of this requirement is that it helps

to ensure that equation (3.5.1) has a solution. If the operator is not positive definite, we

need an alternative. Therefore, we directly are going to resort to a Quasi-Newton method.

The main idea is that instead of F ′′[h1,h2](γk) we use an approximation H[h1,h2](γk).
One can show that if this approximation Hk fulfills the Dennis-Moré-Condition

||(Hk−F ′′(γ∗))(γk+1− γk)||
||(γk+1− γk)||

−−−→
k→∞

0 (3.5.2)

34

3.5. Optimization algorithm

we still can expect to observe superlinear convergence for {γk} [BMdY11].

Since we are going to use an approximation it might be good to test if the search-direction

δk is still a gradient-based search-direction and fulfills the angle-condition (Definition

2.20)

−(∇F(γk),δk)X ≥ η||∇F(γk)||X ||δk||X

If it does not fulfill the angle-condition we are going to use −∇F(γk) as search-direction

- or rather its Riesz-representative, which we have to calculate. After we know the update

direction we are going to use the Algorithm from Theorem 2.23 to generate a step size

that fulfills the Armijo-Condition (recall (2.5.4))

F(xk)−F(xk +σkδk)≥ βσk(−∇F(xk),δk)

After we have determined both update-direction and step-size we have to update:

γk+1 = γk +σkδk

This update will not be performed directly, but instead it will be done by moving the

coordinates of the mesh. This is possible because γ is mapping the optimal cell to the

current cell, so the effect of a change in γ is a change of the mesh.

35

CHAPTER 3. Mesh optimisation

36

4
Choice and analysis of the energy functional

4.1. Choice of the Energy functional

In [Pau17] or [Rum96] the idea was to use a hyperelasticity-functional as a mesh-quality

functional. Here, we are going to follow the same approach. We will use a so called

Neo-Hooke model.

Definition 4.1 (Neo-Hooke-Model): A model is called a Neo-Hookean-Model if it only

depends on the first and third invariant (see (2.1.1)-(2.1.3)) of the right Cauchy-Green-

Tensor. The dependency on the first invariant must be linear.

We are going to use the following energy functional:

F(γ) =
∫

1

2
λ[log(det(∇γ))]2 +

1

2
µ[Tr(∇γT ∇γ)−d]−µ log(det(∇γ))dx (4.1.1)

where λ and µ are the known Lamé constants. For our purpose we can assume that both

are positive.

The obvious benefit of this kind of functional is that it is cheaper to compute or eval-

uate than a model which depends on all three invariants or the cofactor matrix (which

appears in the original definition of polyconvexity). This is important to us because mesh-

optimization is almost always done as a preprocessing for a simulation, so it should not

take too much computational time. On a side note we would like to mention that it is

well-known in continuum mechanics that a model which should reflect large deforma-

tions cannot be linear.

37

CHAPTER 4. Choice and analysis of the energy functional

4.2. Analysis of the energy function

Objectivity

Let us quickly check that we can reformulate it depending on the right Cauchy-Green

tensor of the deformation γ:

F(C) =
∫

1

2
λ[log(

√

det(C))]2 +
1

2
µ[Tr(C)−d]−µ log(

√

det(C))dx (4.2.1)

By doing so, we directly showed that this energy functional is objective and that it is

indeed a Neo-Hooke model.

Growth conditions

Recall the growth-conditions (3.1.2) and (3.1.3):

det(∇γ)↘ 0⇒W → ∞

||∇γ||+ ||Cof(∇γ)||+det(∇γ)→ ∞⇒W → ∞

Let us now verify that our model fulfills them:

Proof. If det(∇γ)↘ 0 then log(det(∇γ))→−∞ and thus [log(det(∇γ))]2→+∞. There-

fore:

1

2
λ[log(det(∇γ))]2

︸ ︷︷ ︸

→∞

+
1

2
µ[Tr(∇γT ∇γ)−d]
︸ ︷︷ ︸

=Tr(C)−d

=||∇γ||2F−d>−d

−µ log(det(∇γ))
︸ ︷︷ ︸

→−∞
︸ ︷︷ ︸

→∞

−−−−−−→
det(∇γ)→0

∞

Therefore (3.1.2) holds.

For the other condition let us split the investigation by splitting the left hand side into

its three different terms. This is a valid idea because we know (because γ is orientation

preserving) that all three terms are positive. If det(∇γ)→ ∞, then

log(det(∇γ))→+∞

[log(det(∇γ))]2→+∞

Since this is of the type x2− x for x→ ∞ we know that for det(∇γ)→ ∞

1

2
λ[log(det(∇γ))]2−µ log(det(∇γ))→ ∞

Since

1

2
µ[Tr(∇γT ∇γ)−d] =

1

2
µ[||∇γ||2−d]>−1

2
µd

so if det(∇γ)→ ∞ then W → ∞.

Also, if ||∇γ|| → ∞ we know that

∃C ∈ R :
1

2
λ[log(det(∇γ))]2−µ log(det(∇γ))>C

38

4.2. Analysis of the energy function

and because

1

2
µ[Tr(∇γT ∇γ)−d] =

1

2
µ[||∇γ||2−d]

the growth condition (3.1.3) is also fulfilled. What remains is: Is there a possibility that

||Cof∇γ|| → ∞ but ||∇γ||<C1 and det(∇γ)<C2?

To answer this let us reformulate the second growth condition: Let f̃ : SLn→ R,

f̃ (A) = ||A||F + ||Cof(A)||F +det(A)

If f̃ (∇γ)→ ∞⇒W → ∞.

For n = 2 we can calculate that

A =

(
a11 a12

a21 a22

)

⇒ Cof(A) =

(
a22 −a21

−a12 a11

)

so obviously, ||A||F = ||Cof(A)||F and we do not need any further investigation.

For n = 3 we can calculate that for

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33



⇒ Cof(A) =





a22a33−a23a32 a23a31−a21a33 a21a32−a22a31

a13a32−a12a33 a11a33−a13a31 a12a31−a11a32

a12a23−a13a22 a13a21−a11a23 a11a22−a12a21





From this we can deduce that if ||Cof(A)||F → ∞ then for one of its entries (which have

the form of) ai jakl−amnaop

|ai jakl−amnaop| → ∞

which can only be true if

|ai jakl| → ∞ or |amnaop| → ∞

which can only happen if one of the factors → ∞. However, if this is the case then

||A||F → ∞. Therefore, we can conclude that the energy fulfills (3.1.3) as well.

Therefore, we now know that this energy functional meets the requirements that we have

taken over from the field of nonlinear continuum mechanics. We should note that the

„Stability“-requirement from Theorem 3.4 is identical to the growth-condition (3.1.2).

Polyconvexity

To investigate if the stored energy function

f (G) =
1

2
λ[log(det(G))]2 +

1

2
µ[Tr(GT G)−d]−µ log(det(G))

is polyconvex we split it into

f1(G) =
1

2
µ[Tr(GT G)−d] =

1

2
µ[||G||2Fro−d]

f2(δ) =
1

2
λ[log(δ)]2−µ log(δ)

f (γ) = f1(∇γ)+ f2(det(∇γ))

39

CHAPTER 4. Choice and analysis of the energy functional

It is obvious that f1 is convex. However, for f2 we can calculate that

f ′′2 (δ) =
λ+µ−2λ log(δ)

δ2

One can calculate that f ′′2 (δ)< 0 if δ > exp
(

µ
λ
+1
)
, so clearly f2 is not a globally convex

function. However, we can note that f2(δ) is convex for all δ < exp
(

µ
λ
+1
)
. We are just

going to keep this in mind and move on for now, but we will come back to this later.

Coerciveness

For a 2d problem we need to show that

f (γ)≥ α(||∇γ||pF +det(∇γ)r)+β

with α > 0, p≥ 2,r > 1. Recall the functional

f (γ) =
1

2
λ[log(det(∇γ))]2 +

1

2
µ[Tr(∇γT ∇γ)−d]−µ log(det(∇γ))

=
1

2
λ[log(det(∇γ))]2−µ log(det(∇γ))+

1

2
µ[||∇γ||2F −d]

Just by comparison we see that the term ||∇γ||2F is a big advantage because this means we

can pick p = 2 which allows us to solve the problem in the Hilbert space H1. However,

the terms depending on the determinant are problematic as they do not fulfill the required

growth condition (log(x)2− log(x)> x holds true only on a short interval, and we would

need log(x)2− log(x) > xr with r > 1.) Hence, we have to modify the stored energy

function.

For 3d, we would have to show that

f (γ)≥ α(||∇γ||pF + ||Cof∇γ||qF +det(∇γ)r)+β

Since f (γ) does not depend on Cof∇γ this cannot be shown directly, but with another

modification (similar to the one we do for the determinant) it would be possible.

4.3. Modification of the stored energy function

As we have seen in the previous section our energy is neither polyconvex nor coercive. In

both cases the term that depends on the determinant of ∇γ is the one that is violating the

requirement. Therefore, we are now modifying our stored energy function:

f̃ (γ) =
1

2
λ[log(det(∇γ))]2 +

1

2
µ[Tr(∇γT ∇γ)−d]−µ log(det(∇γ))

+κ

((

det(∇γ)− exp
(µ

λ
+1
))

+

)2

with some κ ∈R. We are going to determine constraints for κ during the analysis. Before

we continue here let us discuss the reasoning behind this modification: In practice, we

40

4.3. Modification of the stored energy function

do not want to actually have to deal with the additional term, so we want it to be zero in

all „real life situations“. In the field of nonlinear continuum mechanics,µ and λ are fixed

material parameters that cannot be chosen free, they are chosen by the material that has to

be simulated. In our case, however, they are free parameters. We know (as stated shortly

after (3.1.3)) that det(∇γ) is the ratio of the volume change under the transformation γ.

Since in our case the γ maps from the optimal cell to the cell on the mesh this means that

the term will only get activated if one cell has a much volume that is exp
(

µ
λ
+1
)

times

bigger than the optimal cell, so we should always be able to pick µ and λ in such a way

that this does not happen. For polyconvexity we now have to investigate

f1(G) =
1

2
µ[Tr(GT G)−d] =

1

2
µ[||G||2Fro−d]

and

f2(δ) =

{
1
2λ[log(δ)]2−µ log(δ) δ≤ exp

(
µ
λ
+1
)

1
2λ[log(δ)]2−µ log(δ)+κ

(
δ− exp

(
µ
λ
+1
))2

δ > exp
(

µ
λ
+1
)

It is obvious that f1 is convex, but f2 needs further investigation. We have dealt with the

first case before and know that f2 is convex on part. For δ > exp
(

µ
λ
+1
)

we calculate that

f ′′2 (δ) =
λ+µ−2λ log(δ)+2δ2κ

δ2

Clearly, one can find κ that this is always positive (for example κ = λ), so f2 is convex on

this part as well. Because f2 ∈ C1 f2 is globally convex and our stored energy function is

polyconvex.

For coerciveness we have to find

α > 0, p≥ 2,r > 1 :

f (x,F)≥ α(||F ||pF +(det(F))r)+β

With this modification we now clearly chose p = 2 and r = 2. With the same split of f

we can estimate that

f1(G) =
1

2
µ[Tr(GT G)−d]

=
1

2
µ[||G||2F−d]

so α≤ µ
2 works fine, and β = −2d

µ
is a possible choice. For f2 it becomes less obvious:

Firstly, we need to note that f2 is continuous on (0,∞) and that we do not have to consider

the case det(∇γ)→ 0 because we just showed that for this case f → ∞, so surely the

estimate holds.

41

CHAPTER 4. Choice and analysis of the energy functional

For det(∇γ)> exp
(

µ
λ
+1
)

we know

f2(δ) =
1

2
λ[log(δ)]2−µ log(δ)+κ

(

δ− exp
(µ

λ
+1
))2

=
1

2
λ
(

log(δ)− µ

λ

)2
− µ2

2λ
+κ
(

δ− exp
(µ

λ
+1
))2

≥− µ2

2λ
+κ
(

δ− exp
(µ

λ
+1
))2

=− µ2

2λ
+ εκδ2 +κ(1− ε)

(

δ− 1

1− ε
exp
(µ

λ
+1
))2

+κ(1− ε)

((−1

1− ε
exp
(µ

λ
+1
))2

+
1

1− ε

(

exp
(µ

λ
+1
))2

)

≥− µ2

2λ
+ εκδ2 +κ(1− ε)

((−1

1− ε
exp
(µ

λ
+1
))2

+
1

1− ε

(

exp
(µ

λ
+1
))2

)

with some ε∈ (0,1). Therefore, we have shown the coerciveness if det(∇γ)∈ (exp
(

µ
λ
+1
)
,+∞).

For det(∇γ) ∈ (0,exp
(

µ
λ
+1
)
) we know that f2→ ∞ for det(∇γ)→ 0. We also know that

f2 is a continuous function and therefore has a minimum on this interval. Therefore, it is

possible to find some β̃ such that

f2(δ)≥−
µ2

2λ
+ εκδ2 +κ(1− ε)

((−1

1− ε
exp
(µ

λ
+1
))2

+
1

1− ε

(

exp
(µ

λ
+1
))2

)

+ β̃

with the ε from above. This means that our function is coercive.

4.4. Analysis of the derivatives

From Section 3.5 we know that we need the first and second derivative of the functional.

Formally we derive

F ′(γ)ϕ =
∫
[λ log(det(∇γ))(∇γ)−T −µ(∇γ)−T +µ∇γ] : ∇ϕdx (4.4.1)

F ′′(γ)[ϕ,ψ] =
∫

λ[(∇γ)−T : ∇ψ][(∇γ)−T : ∇ϕ]

+λ log(det(∇γ))(−(∇γ)−T (∇ψ)T (∇γ)−T) : ∇ϕ

−µ(−(∇γ)−T (∇ψ)T (∇γ)−T) : ∇ϕ

+µ∇ψ : ∇ϕdx

(4.4.2)

as candidates for the derivatives. For the presented algorithm we have to solve the partial

differential equation

F ′′(γ)[ϕ,δ] =−F ′(γ)ϕ∀ϕ ∈ V

in some space V. From Theorem 3.4 we know that this is going to be some subspace of

H1(Ω), and because we restrict ourselves to the case that some part of the boundary does

42

4.4. Analysis of the derivatives

not move we can restrict us to a subspace of H1
0 (Ω). We also know that the candidates

for the derivatives are not Fréchet-derivatives on the whole space H1
0 (Ω), so during our

analysis we are going to find further restrictions. For our analysis, we are going to equip

H1
0 (Ω) it with the dot-product

(u,v) =
∫

Ω
∇u : ∇vdx

and its induced norm ||u||2 =(u,u). If we use a more general variant of the Riesz represen-

tation Theorem 2.12, for example from [Sch, Theorem 6.4] we need to check that the right

hand side F ′(γ)ϕ and the bilinear form F ′′(γ)[ϕ,ψ] are continuous and that F ′′(γ)[ϕ,ψ] is

symmetric and coercive.

Continuity of the derivatives

For this part we need to keep in mind that because of the existence Theorems 3.4-3.9 we

can assume that γ ∈W 1,p(Ω), det(γ) ∈ Lr(Ω) and we chose p = 2 and r = 2. Because γ is

in fact a transformation we can also expect γ to be a diffeomorphism. It is not unrealistic

to assume that det(∇γ) ∈ L∞(Ω) because as we noted earlier, det(∇γ) reflects the change

of volume under the transformation γ (shortly after (3.1.3)). Also, ||∇γ||F ∈ L∞(Ω) and

||(∇γ)−1||F ∈ L∞(Ω) is a save assumption because ||∇γ||F reflects the change of the length

of curvature (as we mentioned at the same place). Both last assumptions can only be

made because we expect Ω to be bounded in our applications: There, we will be mapping

a bounded domain onto a bounded domain. Later we will also need that
»

((∇γ)−T)(x)⊗
»

((∇γ)−T)(x) ∈ L∞(Ω). The notation will become clear soon.

For F ′(γ)ϕ we can calculate that

F ′(γ)ϕ =
∫
[λ log(det(∇γ))(∇γ)−T −µ(∇γ)−T +µ∇γ] : ∇ϕdx

≤ sup
x∈Ω

(λ log(det(∇γ(x)))−µ)

︸ ︷︷ ︸

:=C

∫
(∇γ)−T : ∇ϕdx+µ(∇γ,∇ϕ)L2

=C((∇γ)−T ,∇ϕ)L2 +µ(∇γ,∇ϕ)L2

≤C||(∇γ)−T ||L2 ||∇ϕ||L2 +µ||∇γ||L2 ||∇ϕ||L2

= (C||(∇γ)−T ||L2 +µ||∇γ||L2)||ϕ||H1

where we used the Cauchy-Schwarz-inequality and then our choice of norm for the chosen

space. For F ′′(γ)[ϕ,ψ] we set

B1(γ)[ϕ,ψ] =
∫

λ[(∇γ)−T : ∇ψ][(∇γ)−T : ∇ϕ]dx

B2(γ)[ϕ,ψ] =
∫
(λ log(det(∇γ))−µ)(∇γ)−T (∇ψ)T (∇γ)−T) : ∇ϕdx

B3(γ)[ϕ,ψ] =
∫

µ∇ψ : ∇ϕdx

43

CHAPTER 4. Choice and analysis of the energy functional

such that

F ′′(γ)[ϕ,ψ] = B1(γ)[ϕ,ψ]+B2(γ)[ϕ,ψ]+B3(γ)[ϕ,ψ]

and calculate for B1:

B1(γ)[ϕ,ψ] =
∫

λ[(∇γ)−T : ∇ψ][(∇γ)−T : ∇ϕ]dx

= λ

∫
∑
i, j

((∇γ)−T)i(∇ψ)i((∇γ)−T) j(∇ϕ) j

where we rearranged the values from those matrices from Rd×d into vectors. In the next

few lines we are going to denote this like this:

B1(γ)[ϕ,ψ] = λ

∫
∑
i, j

»

((∇γ)−T)i

»

(∇ψ)i

»

((∇γ)−T) j

»

(∇ϕ) j

= λ

∫ (
»

∇ϕ,
(

»

((∇γ)−T)⊗
»

((∇γ)−T)
)

»

∇ψ
)

2

≤ λ

∫ (
»

∇ϕ,c
»

∇ψ
)

2

where

c = sup
x∈Ω

{

|Λ(x)| : Λ(x) eigenvalue of
»

((∇γ)−T)(x)⊗
»

((∇γ)−T)(x)
}

This in only possible if
»

((∇γ)−T)(x)⊗
»

((∇γ)−T)(x) ∈ L∞(Ω). We can reformulate this

estimate as

B1(γ)[ϕ,ψ]≤ cλ(∇ϕ,∇ψ)L2 ≤ λc||ϕ||H1 ||ψ||H1

where in the end we used again our choice of norm for the space H1
0 .

For B2 we can calculate

B2(γ)[ϕ,ψ] =
∫
(λ log(det(∇γ))−µ)(∇γ)−T (∇ψ)T (∇γ)−T) : ∇ϕdx

≤ sup
x∈Ω

(λ log(det(∇γ(x)))−µ)

︸ ︷︷ ︸

:=C

∫
(∇γ)−T (∇ψ)T (∇γ)−T) : ∇ϕdx

=C(∇γ)−T (∇ψ)T (∇γ)−T ,∇ϕ)L2

≤C||(∇γ)−T (∇ψ)T (∇γ)−T ||L2 ||∇ϕ||L2

||(∇γ)−T (∇ψ)T (∇γ)−T ||2
L2 =

∫
||(∇γ)−T (∇ψ)T (∇γ)−T ||2F

≤
∫
||(∇γ)−T ||2F ||(∇ψ)T ||2F ||(∇γ)−T ||2F

≤ sup
x∈Ω
||(∇γ)−T ||4F

∫
||∇ψ||2F

= sup
x∈Ω
||(∇γ)−T ||4F ||∇ψ||2

L2

44

4.4. Analysis of the derivatives

Therefore, in total we have that

B2(γ)[ϕ,ψ]≤ C̃2||∇ψ||L2 ||∇ϕ||L2 = C̃2||∇ψ||H1 ||∇ϕ||H1

Note that the last equality only holds because of our choice of space and norm.

B3 is obvious:

B3(γ)[ϕ,ψ] =
∫

µ∇ψ : ∇ϕdx

= µ(ψ,ϕ)H1

≤ µ||ψ||H1 ||ϕ||H1

as this is just the application of the Cauchy-Schwarz inequality on the chosen dot-product.

By showing the continuity of both derivatives, we have shown that both derivatives (4.4.1)

and (4.4.2) are Fréchet-derivatives if det(∇γ) ∈ L∞(Ω), ||∇γ||F ∈ L∞(Ω), ||(∇γ)−1||F ∈
L∞(Ω) and

»

((∇γ)−T)(x)⊗
»

((∇γ)−T)(x) ∈ L∞(Ω) (see Theorem 2.4).

Symmetry of the second derivative

It is obvious that B1 and B3 are symmetric. To investigate B2 we hide the scalar value of

(λ log(det(∇γ))−µ) in b:

B2(γ)[ϕ,ψ] =
∫

b((∇γ)−T (∇ψ)T (∇γ)−T) : ∇ϕdx

=
∫

bTr
(
(∇γ)−T (∇ψ)T (∇γ)−T)(∇ϕ)T

)
dx

=
∫

bTr
(
(∇ϕ)T (∇γ)−T (∇ψ)T (∇γ)−T)

)
dx

=
∫

bTr
(
(∇γ)−T)(∇ϕ)T (∇γ)−T (∇ψ)T

)
dx

=
∫

b((∇γ)−T (∇ϕ)T (∇γ)−T) : ∇ψdx

= B2(γ)[ψ,ϕ]

Therefore, F ′′(γ)[ϕ,ψ] is symmetric.

Coerciveness of the second derivative

We need to show that

||u||2 ≤CF ′′(γ)[u,u]

for some C > 0. Because B3(γ)[u,u] = b||u||2 and B1(γ)[u,u]≥ 0 we know that

||u||2 ≤ B1(γ)[u,u]+B3(γ)[u,u] (4.4.3)

but we cannot draw any conclusion for B2. However, because we come from a minimiza-

tion problem we know that if our iterate γk is close to γ∗ then the second derivative must

be coercive, but until we are close to it we know nothing about it.

45

CHAPTER 4. Choice and analysis of the energy functional

Since we anticipated this problem earlier we presented the Quasi-Newton methods where

approximations Hk are used instead of the second derivative. From here on, there are

many different possibilities with different approaches to approximate the second deriva-

tive, for example the BFGS or DFP-method [NW06, Section 6.1], rank-1 updates [NW06,

Section 6.2] or the Broyden-class [NW06, Section 6.3]. These methods work by taking an

initial approximation of the Hessian and then update it from iteration to iteration. These

methods have the disadvantage that they can produce dense matrices Hk which cannot

be stored for large problems. There do exist some „low-memory“-variants for some of

these algorithms (for example [Yam08] proposed a method), but we are not going to use

them. Instead, we are going to adapt a technique that has been carried out at this chair

a few times already, for example in [Man17]: In [Man17] the overall idea was to take a

parameter α ∈ (0,1] such that for α→ 0 the nonlinear solver was more like a fixed point

iteration and for α = 1 the nonlinear solver became a Newton solver.

We are adapting this by setting

Hk(γ,α)[ϕ,ψ] = B1(γ)[ϕ,ψ]+αB2(γ)[ϕ,ψ]+B3(γ)[ϕ,ψ]

with α ∈ (0,1]. This is an approximation of the Hessian on the continuous level which is

then discretized. The advantage is that this preserves the sparsity of Hk. Of course, we

have to choose α such that Hk is still coercive, but as we see in (4.4.3) this is possible be-

cause we can choose α arbitrary small. This setting guarantees that the partial differential

equation in the Newton-Scheme is always solvable and that the resulting searchdirection

is a descent direction: We are solving the equation

Hk(γ,α)[ϕ,δ] =−F ′(γ)ϕ ∀ϕ

where δ is the searchdirection. By choosing ϕ = δ we have

−Hk(γ,α)[δ,δ] = F ′(γ)δ

and because we just showed that Hk is coercive and thus a positive definite bilinear form

we have that

F ′(γ)δ < 0

which is just what we stated in Lemma 2.19.

Another advantage is that as long as α→ 1 if the nonlinear solver converges then this

fulfills the Dennis-Moré-Condition (3.5.2) even in a stronger sense: The condition only

requires for the values to converge, but in our case the whole operator converges.

Clearly, it is a benefit of this energy function that the approximation of F ′′(γ)[ϕ,ψ] for the

Quasi-Newton-Scheme arises almost „naturally“.

46

5
Numerical results I

Now we have analyzed the aspects of the functional and know that this is a basis to

mesh adaptations. Therefore, we are going to implement it. Remember the outline of the

Algorithm 3.1. In this chapter, we are going to adapt it to everything we learned during

the analysis and then verify the results. To do this, we are going to restrict ourselves to

a simple task: we are going to assume that a mesh generator created something that we

would like to smoothen.

5.1. Implementing the algorithm

Let us now briefly put together all components that we discussed. We have the initial

mesh from the mesh generator as an initial guess for the optimal mesh, and the according

situation is remembered as γ0. We also choose an initial value α0 for the approximation

of the second derivative, a parameter η for the angle condition, our common parameters

αArmijo = 0.5 and β = 10−2 for the Armijo-Scheme and of course some µ and λ. In each

iteration we have to solve

Hk(γ,α)[ϕ,δ] =−F ′(γ)ϕ ∀ϕ ∈ H1
0 (Ω) (5.1.1)∫

∇s : ∇ϕdx = F ′(γ)ϕ ∀ϕ ∈ H1
0 (Ω) (5.1.2)

to obtain a searchdirection δ̃ (or rather δ̃k as it belongs to this step) and the Riesz-

representative s of the gradient F ′(γ). After we have done that we check if our searchdi-

rection δ̃k fulfills the angle-condition

−(s, δ̃k)X ≥ η||s||X ||δ̃k||X

where the dot-product and the norm are discrete versions of our chosen H1
0 -norm. If this

not the case then we discard the „Quasi-Newton-direction“ δ̃k and use −s as searchdirec-

tion. This check helps us in an unexpected way as well: If our solution of δk is calculated

with an iterative solver, we might try to use a relatively „loose“ stopping criterion for it. If

47

CHAPTER 5. Numerical results I

it was „too loose“, the check of the angle-condition still prevents us from using it. Let us

denote the chosen search-direction as δk. We now use the Armijo-Scheme from Theorem

2.23 to calculate a stepsize σk that fulfills the Armijo-Condition (2.5.4):

F(γk)−F(γk +σkδk)≥ 10−2σk(−∇F(γk),δk)

where we directly use the common value β = 10−2. Note that we earlier calculated s =
∇F(γk), the dot-product (s, δ̃k) and ||s|| for the angle condition, so all we have to do here

is to update the coordinates of the mesh and evaluate the functional. Since γk + σkδk

is the next iterate, the cost of one Armijo-step is approximately one evaluation of the

functional which is an integral over the domain. We should also probably note that we

do need to modify-the Armijo-condition slightly and require that F(γk +σkδk) is in fact a

real number. This might seem odd at first, but since we have no initial constraint on the

stepsize σk it could happen that the mesh contains degenerated elements if σk is too large.

These degenerated elements can cause NaN or ∞ as functional value. Some programming

languages treat these values in ways that the condition would be fulfilled, but we do

not want any degenerated cells. After we updated the mesh we also update αk for the

approximation of the second derivative. In summary we have the following algorithm:

Algorithm to smoothen a mesh

given: Initial guess γ0 (in form of an initial mesh), α0, η, σ
(0)
k , kmin

while ||F ′(γk)|| 6= 0 do

if k > kmin then

Solve Hk(γk,αk)[δk,ϕ] =−F ′(γk)ϕ ∀ϕ
end if

Solve
∫

∇s : ∇ϕdx = F ′(γ)ϕ ∀ϕ
if −(s,δk)< η||s||||δk|| or k ≤ kmin then

δk← s

end if

Set σk = σ
(0)
k

while F(γk)−F(γk +σkδk)< 10−2σk(−∇F(γk),δk) do

σk← 0.5σk

end while

Update: γk+1 = γk +δk

Calculate αk+1

end while

The parameter kmin has the purpose of omitting to solve the Hk-equation in the first iter-

ations. This is mostly because of our experience that during the first few iterations there

are hardly benefits when trying out the Quasi-Newton-direction, but it is (numerically)

expensive to assemble the linear system and then solve it. So far, we have not explained

how we are going to calculate αk+1 and only stated at the end of our analysis that every

heuristic which guarantees αk→ 1 for ||F ′(γk)|| → 0 works. Our choice is an adaptation

of a strategy used in [Man17] and [Jened]

αk+1 = min
{

1,αk ·g
(
||F ′(γk)||/||F ′(γk−1)||

)}

48

5.1. Implementing the algorithm

with

g(x) = 0.15+
6.51657

3.66657+ exp(1.38629x)

which is shown in Figure 5.1 and going through the three points (0,1.5464), (1,1),
(2,0.4814)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

Figure 5.1: The function for calculating the new α

In some edge cases (for example if the linear solver for δk would not converge) we man-

ually set αk+1 = 0.1αk.

We also need to discuss how we are setting up the reference cells. Since we discussed

that the reference cell has a specific shape, we set up a list of d-dimensional volumes

where we store the desired volume for each cell. We then compose the mapping γ from

the transformation τ that is already included in the finite element software (going from the

„reference element for the basis functions“ K̃ to the actual element K) and a mapping from

a scaled version of the optimal cell to the cell K̃ so that the implementation is as displayed

in the Figures 5.2 and 5.3. All results shown in this work are a done on the servers at the

Technische Universität Dortmund using the software FEAT3 [RGR+21] which is part of

the FEAT and FeatFlow software family ([Tur99], [TGB+10], [KOS+12], [HKT14]).

K̂
K̃

K

τ1
τ

γ

Figure 5.2: Composing the mapping γ for triangles

49

CHAPTER 5. Numerical results I

K̂ K̃ K

τ1

τ

γ

Figure 5.3: Composing the mapping γ for quads

The main difference between these cases is that for the quadrilaterals we just need to

scale them, but for the triangles we do also need to change the shape because in Feat the

transformation τ is defined for a rectangular triangle, but as we discussed in Section 3.3

the mapping γ must start on an equilateral triangle. This composition is a valid approach

because we know that our functional is invariant with respect to translations and rotations

of the reference cell. Therefore, all we have to implement is the mapping τ1 in such a way

that it depends on the prescribed volume for the specific cell K.

5.2. First tests - smoothing a mesh

Let us start with a testcase where we are able to predict the final mesh: We take the

square [0,1]2, refine it once, then move the midpoint to (0.26,0.26) and use this as a

starting mesh. We then prescribe that all quadrilaterals shall have the same volume. By

intuition we know that as long as the vertices on the boundary allow it we can deform

all quadrilaterals to optimal cells, and because of our refinement method the positions of

the vertices on the boundary allow this. For all tests, we are going to use P1 or Q1 finite

elements.

Validation on a coarse mesh

If we refine the described mesh three more times then we start with the mesh in Figure

5.4a. As a start we choose λ = 1, µ = 10, α0 = 0.3 and η = 0.6 To solve the linear

problems we choose Umfpack [Dav04] so that we do not introduce any other error here.

The final mesh in Figure 5.4b looks as expected, but for a better evaluation we need to

have a look at the quantities presented in Table 5.1. Note that ηk is the value calculated

for the angle-condition.

As expected, we see that the algorithm converges. The convergence is in three different

aspects: First of all, we notice that the Newton-defect converges to zero. This is mathe-

matically expected because we explained in Corollary 2.17 that the necessary condition

50

5.2. First tests - smoothing a mesh

(a) Initial mesh (b) Final mesh

Figure 5.4: First test: Smoothing a unitsquare

k σk
Armojo-

Steps

Newton-

defect
||δ|| F(γk) ηk αk

1 1 0 1.16E+01 2.11E+00 2.18E-01 0.77 0.30

2 1 0 3.12E+00 4.50E-01 1.74E-02 0.96 0.27

3 1 0 7.85E-01 1.40E-01 2.29E-03 1.00 0.38

4 1 0 3.17E-01 3.94E-02 1.48E-04 1.00 0.55

5 1 0 8.36E-02 8.06E-03 2.64E-06 1.00 0.74

6 1 0 1.15E-02 8.78E-04 2.13E-13 1.00 1.00

7 1 0 3.76E-06 1.84E-07 9.56E-17 0.97 1.00

8 1 0 6.06E-13 2.10E-14 3.16E-31 0.97 1.00

Table 5.1: Validation for the first testcase

for a minimum is F ′(γ∗) = 0 and the Newton-defect is F ′(γk)ϕ with some testfunction

ϕ. Second, we notice a convergence in F(γk). This is also expected because F(γ∗) is the

value of the functional with the optimal mesh which is what we are calculating. We can

also notice that ||δ|| → 0. This might seem obvious, but nevertheless we want to point out

the reason for this: If we are calculating an optimal mesh, at some point we do not need

to move the coordinates „a lot“. The movement of the coordinates is σkδk, so it seems

obvious that δk → 0. This information is really useful: If we switch to iterative solvers

for both linear problems, we now know that~0 as a starting vector is a good choice that

becomes better in each Newton-Iteration. Unfortunately, it is not possible to investigate

||γk− γ∗|| because we do not explicitly compose γ, and by our choice of function spaces

we would have to investigate ||∇γk−∇γ∗||L2 . Even if we apply our knowledge that γ∗ is

the identity, we do not see chances to find a mesh to compute this. The reason for this

is that by our composition of γ (see Figures 5.2 and 5.3) γ depends on the transformation

τ. (τ is the transformation from the finite element reference element to the actual mesh.)

51

CHAPTER 5. Numerical results I

While this has many advantages (for example that we could apply higher order transfor-

mations which help representing curved boundaries), the downside is that γ depends on

the mesh which should be deformed. However, to compute ||∇γk −∇γ∗||L2 we would

need to integrate over an optimal mesh because this is how γ is defined. To overcome

this problem and still get an idea of the convergence rate, we take a look at the euclidean

norm ||~γk−~γ∗||2 where~γk are the coordinates of the mesh in iteration k. This is a valid re-

placement since the coordinates of the mesh are the image of γ. We had to generate these

numbers in the postprocessing, which is why we trust them only for the first 5 iterations.

k ||~γk−~γ∗||2
0 3.48E+02

1 7.03E+01

2 1.88E+01

3 4.36E+00

4 5.76E-01

5 1.63E-05

Table 5.2: Convergence of the coordinates

In Table 5.2 we see that the coordinates converge faster than linear, so this is showing us

that the approach seems to work.

Rotated unitsquare

In our motivation and analysis we showed that the values are independent of the orien-

tation of the mesh. While this might seem obvious, we still choose to test the impact of

the orientation of the mesh by repeating the previous test and rotating the mesh by 27◦.
In Figure 5.5b we see that it works as well, and if we compare the date from Table 5.3

with Table 5.1 we see that overall it gets the same results, the only noticeable difference

is that it took one more Armijo-step. The reason for this is that while the functional value

does not depend on the rotation of the mesh, the chosen dot-product for our problem does.

Since we use the dot-product on several occasions during our algorithm (for example to

calculate the Riesz representative of F ′(γk)) we have to expect differences in the conver-

gence behavior, but the final mesh should be identical if we first rotate the mesh and then

smoothen it or the other way around.

52

5.2. First tests - smoothing a mesh

(a) Initial mesh (b) Final mesh

Figure 5.5: Test: Rotated unitsquare

k σk
Armojo-

Steps

Newton-

defect
||δ|| F(γk) ηk αk

1 1 0 1.16E+01 2.11E+00 2.18E-01 0.77 0.30

2 1 0 3.12E+00 4.50E-01 1.74E-02 0.96 0.27

3 1 0 7.85E-01 1.40E-01 2.29E-03 1.00 0.38

4 1 0 3.17E-01 3.94E-02 1.48E-04 1.00 0.55

5 1 0 8.36E-02 8.06E-03 2.64E-06 1.00 0.74

6 1 0 1.15E-02 8.78E-04 4.43E-11 1.00 1.00

7 1 0 3.76E-06 1.84E-07 4.41E-11 0.97 1.00

8 0.5 1 6.07E-13 2.12E-14 4.41E-11 0.97 1.00

Table 5.3: Rotated unitsquare

Iterative linear solver

Before we continue we have to investigate the runtime of our solver depending on the

level.

Before we discuss the results from Table 5.4 in details we need to clarify the content of

some columns:

• The total runtime is the time it took to smoothen the mesh. This includes solving the

equation with Hk and the representative of the antigradient, both using Umfpack.

• Init. Umfpack is the time it took to initialise all Umfpack-solvers for the Hk-

equation. This is the part where „the heavy work “ is done and the LU-decomposition

is calculated

53

CHAPTER 5. Numerical results I

Level
total

runtime

Init.

Umfpack

runtime

Umfpack

total

Umfpack

Newton-

Iterations

normalized

runtime

Umfpack

ratio

4 0.43 0.12 0.01 0.13 7 0.02

5 1.86 0.70 0.05 0.75 7 0.11 5.96

6 10.10 4.24 0.28 4.52 7 0.65 6.02

7 75.72 38.00 1.52 39.52 8 4.94 7.65

8 755.06 447.01 7.04 454.05 8 56.76 11.49

9 14797.54 9446.64 53.10 9499.73 12 791.64 13.95

Table 5.4: Runtime with Umfpack

• runtime Umfpack is the time it took to apply this LU-decomposition

• total Umfpack the sum of Init. Umfpack and runtime Umfpack

• Newton-Iterations is the Number of Newton-Iterations that were necessary to smoothen

the mesh

• normalized runtime Umfpack is
total Umfpack

Newton-Iterations

• ratio is the ratio how the total runtime increases per level

All times are given in seconds. Without going too much into details we can directly

observe that the runtime becomes really long, and in the end it increases roughly with a

factor of 14. When calculating the numerical cost by hand we can estimate that it is O
(
n2
)

because the matrix is a banded matrix. The reason we did not calculate it for level 10 is

because it did not finish in time, but we can estimate that it would take 12656s ≈ 3.5h

per Newton-Iteration just for the Hk-equation plus additional time for the calculation of

the Riesz-representative of the Antigradient. We can clearly see that this duration is not

acceptable. Therefore, let us now repeat the previous test and replace Umfpack with a

PCG(Jacobi)-solver ([MV15, Section 5.8]):

Level
total

runtime

Init.

PCG

runtime

PCG

total

PCG

Newton-

Iterations

normalized

runtime

PCG

ratio

4 0.24 0.00 0.02 0.02 7 0.00

5 0.75 0.00 0.12 0.12 7 0.02 5.85

6 3.45 0.00 0.90 0.90 7 0.13 7.72

7 26.95 0.02 11.01 11.02 8 1.38 10.68

8 188.38 0.07 93.69 93.76 8 11.72 8.51

9 3833.50 0.45 2598.96 2599.41 13 199.95 17.06

10 34454.64 2.33 24456.46 24458.78 15 1630.59 8.15

Table 5.5: Runtime with PCG

54

5.3. Effects µ and λ

In Table 5.5 we see a huge improvement: We were able to calculate on level 10. We

also see that PCG works different than Umfpack: For PCG the initialization is mostly the

creation of some vectors and most of the time is spent in the actual „solve-routine“ which

is the opposite of Umfpack. We also see a jump in the ratio at level 9, but we assume that

this is because until then a big portion of the data would fit into the CPU-cache. Let us

now therefore redo the test from Table 5.1 and replace every linear solver with a PCG.

The results of this are shown in Table 5.6.

k σk
Newton-

defect
||δ|| F(γk) ηk α Iter δ defect δ

Iter

s

defect

s

1 1 1.16E+01 2.11E+00 2.18E-01 0.77 0.30 1 7.40E-04 23 1.04E-03

2 1 3.12E+00 4.50E-01 1.74E-02 0.96 0.27 1 1.81E-04 23 2.90E-04

3 1 7.85E-01 1.40E-01 2.29E-03 1.00 0.38 1 3.92E-05 23 7.53E-05

4 1 3.17E-01 3.94E-02 1.48E-04 1.00 0.55 1 1.86E-05 24 1.67E-05

5 1 8.35E-02 8.06E-03 2.64E-06 1.00 0.74 1 4.46E-06 24 4.50E-06

6 1 1.15E-02 8.77E-04 2.30E-13 1.00 1.00 1 7.74E-07 24 6.25E-07

7 1 3.72E-06 2.20E-07 1.18E-16 0.97 1.00 1 1.72E-10 23 2.32E-10

8 1 1.72E-10 1.69E-11 1.35E-17 0.96 1.00 1 8.40E-15 24 9.93E-15

Table 5.6: Validation for the first testcase with PCG

We do not show figures of the mesh because they would look identical to Figure 5.4. What

stands out most is that one PCG-Iteration to solve the equation for δ is actually enough

to achieve a somehow similar result. While the residuals in Table 5.1 are smaller, this

is somehow expected and within tolerances for practical usecases. If one would need a

better solution, we can estimate that probably one iteration for δ would be good again. We

did not explicitly set the solver to 1 iteration, but rather we set it to stop if it either gained

4 digits or the residual is better then 10−3 times the Newton-defect. These numerical

tests show that we need a fast linear solver or else the algorithm will be impractical. Our

test then showed that a PCG-solver speeds up the process significantly, especially since

it was not necessary to do many PCG-steps. This might change for other geometries,

but for the moment this is sufficient. Overall, what we can estimate now is that solving

the equation for δ is not going to be „too expensive“ which means we might not need to

implement a multigrid-solver for this. On the other hand, the equation for s might become

more expensive to solve, but this is - at least in our case - solving a Poisson-equation. We

are leaving this open to discussions because there are better experts at solving a Poisson-

equation.

5.3. Effects µ and λ

Let us now repeat the previous test, but instead of refining it 3 times we refine it 6 times.

We then test different quantities of µ and λ. We also then just sum up the total number of

Armijo steps and total number of iterations for δ.

55

CHAPTER 5. Numerical results I

µ λ
Newton-

Iterations

Iterations

δ
Armijo-

Steps

δ
rejected

0.01 1 22 22 6 19

0.1 1 13 13 8 6

1 1 6 6 5 1

10 1 7 7 3 0

100 1 16 16 1 0

Table 5.7: Influence of µ and λ

K1 K2

K3K4

Figure 5.6: Example that is not covered from the theory

In Table 5.7 we see two different things: First of all we remind ourselves that our analysis

covers only cases where det(∇γ)< exp
(

µ
λ
+1
)
, so clearly we could not expect any good

results for µ = 0.01 or µ = 0.1. It does not necessarily have to diverge because imagine a

situation as presented in Figure 5.6: For K1, K2 and K3 the cells shrink, so the determinant

is smaller than 1. Therefore, for these cells we have coverage from our analysis. However,

for K4 this might not be the case, but because they share vertices this still might work well

even if our choice of µ and λ would not allow us to draw this conclusion.

We also notice that while µ = 100 is well covered and within the theory the general op-

timization problem seems to be „harder“ to solve here because we need more Newton-

Iterations. Therefore, we conclude from this test that we should use the smallest pair of

µ and λ that fulfills the condition det(∇γ) < exp
(

µ
λ
+1
)

for all cells. Since we do not

know this a priori and we would like to have a small safety-margin we choose µ = 10 and

λ = 1. The reason is that we gained only a little bit by choosing µ = 1 which would allow

det(∇γ)< 7.389, and a volume-change of 7 is no complete unreasonable assumption.

5.4. Finer mesh

We now refine the mesh up to level 9 and repeat the test. We get the iteration number

from Table 5.8.

We can clearly see that in the beginning, it seems as if the number of Newton-iterations

seems to be independent of the level, but at level 9 this rule does not apply any longer. We

also observe that the number of Armijo-Steps increase. Therefore, we check the details

of level 9 in Table 5.9

56

5.5. Finer mesh

Level
Newton-

Iterations

Armijo-

Steps

Iterations

δ
δ

rejected

Iterations

s

3 8 0 8 0 188

4 7 0 7 0 327

5 7 0 7 0 645

6 7 3 7 0 1265

7 8 3 8 0 2634

8 8 9 8 1 4841

9 13 33 13 1 17218

Table 5.8: Iterations on various levels

k
Armijo-

Steps

Newton-

defect
||δ|| F(γk) ηk α

Iter

δ
defect δ

Iter.

s
used s

1 6 1.96E+00 1.35E+02 2.57E+00 0.62 0.30 1 1.64E-04 1466 FALSE

2 11 1.71E+00 2.16E+03 2.49E+00 0.49 0.44 1 1.49E-04 1473 TRUE

3 4 1.28E+00 1.22E+02 2.17E+00 0.65 0.47 1 9.81E-05 1479 FALSE

4 4 1.05E+00 1.09E+02 1.90E+00 0.78 0.55 1 8.47E-05 1481 FALSE

5 0 9.21E-01 1.00E+02 1.44E-01 0.81 0.60 1 7.41E-05 1482 FALSE

6 2 4.94E-01 1.11E+01 8.19E-02 0.91 0.65 1 3.79E-05 1476 FALSE

7 5 3.08E-01 8.15E+00 7.71E-02 0.87 0.83 1 2.38E-05 1488 FALSE

8 1 2.77E-01 7.67E+00 2.25E-02 0.92 1.00 1 2.02E-05 1493 FALSE

9 0 1.51E-01 4.19E+00 1.98E-04 0.94 1.00 1 1.07E-05 1490 FALSE

10 0 4.04E-02 2.31E-01 8.78E-07 0.94 1.00 1 2.85E-06 1302 FALSE

11 0 8.30E-03 3.69E-03 1.79E-09 0.95 1.00 1 5.86E-07 732 FALSE

12 0 3.78E-04 1.12E-04 1.33E-14 0.95 1.00 1 2.66E-08 788 FALSE

13 0 9.10E-07 2.04E-06 1.22E-16 0.95 1.00 1 6.44E-11 1068 FALSE

Table 5.9: Iterations on levels 9

Summing this up, the total computational cost adds up to

• Assembling and solving 13 Poisson-equations

• Assembling Hk 13 times

• 13 PCG-Steps to solve the Hk-equation

• 33 Armijo-Steps

We observe that most Armijo-Steps were necessary during the first few Newton-Iterations,

and one time we obtained a direction δ that got discarded anyways. This is good and bad

in itself: It is good because we see that both the Armijo-scheme and the check of the

angle-condition are important to keep this method as robust as possible, but at the same

time it is bad because we put a lot of computational work in assembling and solving the

linear system for δ and evaluating the Armijo-condition, so we do want to try to avoid to

do this very often. This test shows us that we should work on reducing the computational

57

CHAPTER 5. Numerical results I

cost in the first few iterations. Therefore, we now investigate what happens if we do not

use δ in the first steps but directly switch to use s in the first 2-4 steps.

5.5. Initial antigradient steps

We are now repeating the previous test with one small modification: During the first two

Newton-Iterations we do not solve for δ and directly choose s as searchdirection. The

result can be found in Table 5.10

k
Armijo-

Steps

Newton-

defect
||δ|| F(γk) ηk α

Iter

δ
defect δ

Iter.

s
used s

1 11 1.96E+00 2.22E+03 2.58E+00 1.00 0.30 - - 1466 TRUE

2 7 1.32E+00 2.16E+03 1.69E+00 1.00 0.30 - - 1479 TRUE

3 0 4.55E-01 1.16E+02 8.07E-02 0.97 0.36 1 3.27E-05 1446 FALSE

4 0 1.49E-01 2.24E+01 4.22E-03 0.99 0.50 1 1.06E-05 1466 FALSE

5 0 4.09E-02 4.33E+00 9.85E-05 0.99 0.69 1 2.88E-06 1481 FALSE

6 0 6.77E-03 5.00E-01 4.13E-09 0.99 0.98 1 4.77E-07 1482 FALSE

7 0 5.13E-05 2.77E-03 1.43E-16 0.99 1.00 1 3.61E-09 1484 FALSE

8 0 3.92E-09 1.57E-07 5.30E-17 0.95 1.00 1 2.75E-13 1546 FALSE

Table 5.10: Iterations on levels 9 - two initial antigradient steps

In total the computational cost for this modification is

• Assembling and solving 8 Poisson-equations

• Assembling Hk 6 times

• 6 PCG-Steps

• 18 Armijo-Steps

Comparing this to Table 5.9 we notice that we saved

• Assembling and solving the Poisson-equation 5 times

• Assembling Hk 7 times

• 7 PCG-Steps to solve the Hk-equation

• 15 Armijo-Steps

and never rejected δ. This is clearly a huge improvement. If we push this idea and start

with three antigradient steps we obtain the results from Table 5.11.

so in total we have

58

5.5. Initial antigradient steps

k
Armijo-

Steps

Newton-

defect
||δ|| F(γk) ηk α

Iter

δ
defect δ

Iter.

s
used s

1 11 1.96E+00 2.22E+03 2.58E+00 1.00 0.30 - - 1466 TRUE

2 7 1.32E+00 2.16E+03 1.69E+00 1.00 0.30 - - 1479 TRUE

3 5 4.55E-01 1.65E+03 3.78E-01 1.00 0.30 - - 1446 TRUE

4 0 1.79E-01 5.69E+01 1.69E-02 0.99 0.42 1 1.28E-05 1487 FALSE

5 0 4.94E-02 1.10E+01 6.36E-04 0.99 0.56 1 3.50E-06 1515 FALSE

6 0 1.29E-02 1.72E+00 5.19E-06 0.99 0.80 1 9.13E-07 1514 FALSE

7 0 1.31E-03 1.25E-01 9.92E-13 0.99 1.00 1 9.29E-08 1510 FALSE

8 0 8.62E-07 3.62E-05 1.17E-16 0.96 1.00 1 6.08E-11 1516 FALSE

Table 5.11: Iterations on levels 9 - three initial antigradient steps

• Assembling and solving 8 Poisson-equations

• Assembling Hk 5 times

• 5 PCG-Steps

• 23 Armijo-Steps

This is almost comparable to two initial antigradient steps: 1 assembly of Hk and 5 PCG-

Steps vs. 5 Armijo-Steps, but the Newton-defect is slightly worse. One might get the idea

that this continues, but with 4 initial antigradient steps we get the results from Table 5.12

k
Armijo-

Steps

Newton-

defect
||δ|| F(γk) ηk α

Iter

δ
defect δ

Iter.

s
used s

1 11 1.96E+00 2.22E+03 2.58E+00 1.00 0.30 - - 1466 TRUE

2 7 1.32E+00 2.16E+03 1.69E+00 1.00 0.30 - - 1479 TRUE

3 5 4.55E-01 1.65E+03 3.78E-01 1.00 0.30 - - 1446 TRUE

4 3 1.79E-01 7.04E+02 2.96E-01 1.00 0.30 - - 1487 TRUE

5 0 2.05E-01 4.98E+01 1.97E-02 0.99 0.41 1 1.46E-05 1507 FALSE

6 0 7.68E-02 1.18E+01 2.32E-03 1.00 0.37 1 5.41E-06 1513 FALSE

7 0 2.99E-02 3.24E+00 1.71E-04 1.00 0.51 1 2.11E-06 1511 FALSE

8 0 9.21E-03 6.83E-01 4.43E-06 1.00 0.69 1 6.46E-07 1518 FALSE

9 0 1.57E-03 8.50E-02 8.50E-10 1.00 0.97 1 1.10E-07 1518 FALSE

10 0 2.29E-05 1.03E-03 1.06E-16 1.00 1.00 1 1.61E-09 1526 FALSE

11 0 1.64E-09 7.26E-08 4.16E-17 0.94 1.00 1 1.16E-13 1550 FALSE

Table 5.12: Iterations on levels 9 - four initial antigradient steps

We notice one important thing here: Even though is now getting more expensive it is still

cheaper than no initial antigradient step at all:

• Assembling and solving 11 Poisson-equations

• Assembling Hk 7 times

59

CHAPTER 5. Numerical results I

• 7 PCG-Steps

• 26 Armijo-Steps

We also see that one time, the heuristic for increasing α had to decrease α again, but this

just worked and did not cause any other problems. These experiments show us that using

the antigradient for the first few steps might save some computational cost and improve

convergence. If we do too many initial antigradient steps we eventually might end up with

a gradient method, so we should not push this too far, but it is a viable option for the first

2-4 steps.

5.6. Different testcases in 2D

So far we only did tests on a unitsquare with a really extreme deformation. Now we want

to test this on other meshes as well.

Unitsquare - randomly distorted

We start with a unitsquare that is randomly distorted as in figure 5.7: We still know what

Figure 5.7: Randomly distorted unitsquare

the outcome should look like, but it might be a bit harder to solve because the deformation

is not unidirectional.

In Table 5.13 we see that also in this case it works out nicely. What we did not show is

the final result because this would just be a perfect regularly refined unitsquare.

Transition element

To refine a mesh locally from one quadrilateral to five quadrilaterals one can use a so

called „transition element“. We now test the behavior of this algorithm when we try to

60

5.6. Different testcases in 2D

k
Armijo-

Steps

Newton-

defect
||δ|| F(γk) ηk α

Iter

δ
defect δ

Iter.

s
used s

1 4 1.07E+01 3.85E+00 1.06E-01 1.00 0.30 - - 36 TRUE

2 4 3.29E+00 1.30E+00 8.29E-03 1.00 0.30 - - 39 TRUE

3 0 9.06E-01 2.66E-02 7.01E-04 0.98 0.42 1 6.51E-05 38 FALSE

4 0 2.92E-01 6.68E-03 3.75E-05 1.00 0.60 1 1.75E-05 38 FALSE

5 0 6.77E-02 1.36E-03 2.61E-07 1.00 0.84 1 4.02E-06 38 FALSE

6 0 5.66E-03 1.05E-04 2.29E-14 1.00 1.00 1 3.81E-07 30 FALSE

7 0 4.89E-07 2.53E-07 1.20E-16 0.97 1.00 1 3.24E-11 48 FALSE

8 0 3.24E-11 1.06E-11 1.46E-17 0.96 1.00 1 2.05E-15 49 FALSE

Table 5.13: Iterations randomly distorted unitsquare

(a) Initial mesh (b) Final mesh

Figure 5.8: Smoothing the transition element

smoothen it. In Figure 5.8 we evaluated the functional for each cell and colored the cell

according to this value. The lower the value is, the better this cell is considered. Visu-

ally we can see in Figure 5.8 that the result looks good, only the four corners become

worse, but if we see this element as part of a bigger mesh then these corners could move

as well and it might end up better. We also notice that the elements in the center are much

smaller than those close to the boundary. This is reflected by the functional value that

increases when close to the boundary. In Table 5.14 we see a relatively normal conver-

gence behavior as we expected from our previous experiments, but now we see one major

difference: In the last iteration we had to do two Armijo-Steps again. This is now new

to us, earlier they were necessary only during the first iterations and towards the end no

damping was required. While there is no proof for this theory, it seems plausible to us

that the main reason is that the four elements in the middle (which would be at the corners

of the original inner quadrilateral, compare Figure 5.8) can easily degenerate and this is

61

CHAPTER 5. Numerical results I

the reason for smaller stepsizes. This test shows us that there are limits to smoothening a

mesh, sometimes the connectivity or the geometry do not allow to create cells that have

the same size.

k
Armijo-

Steps

Newton-

defect
||δ|| F(γk) ηk α

Iter

δ
defect δ

Iter.

s
used s

1 4 6.27E+00 6.10E+01 5.2130 1.00 0.30 - - 37 TRUE

2 4 5.00E+00 5.44E+01 4.6063 1.00 0.30 - - 37 TRUE

3 0 5.92E+00 1.83E+00 3.4803 0.94 0.34 1 3.98E-04 37 FALSE

4 0 3.89E+00 9.09E-01 3.2009 0.95 0.30 1 2.52E-04 36 FALSE

5 0 1.11E+00 5.88E-01 3.1241 1.00 0.36 1 6.30E-05 38 FALSE

6 0 7.36E-01 3.09E-01 3.0803 1.00 0.51 1 3.20E-05 37 FALSE

7 0 2.66E-01 1.16E-01 3.0737 1.00 0.62 1 1.53E-05 38 FALSE

8 0 8.37E-02 2.89E-02 3.0730 1.00 0.85 1 5.31E-06 38 FALSE

9 0 8.09E-03 2.60E-03 3.0730 1.00 1.00 1 5.19E-07 38 FALSE

10 0 6.21E-06 1.20E-06 3.0730 0.95 1.00 1 3.37E-10 38 FALSE

11 2 3.36E-10 4.96E-11 3.0730 0.90 1.00 1 2.64E-14 54 FALSE

Table 5.14: Iterations transition element

This example also shows that we really should not „deactivate“ the Armijo-Scheme after

a few iterations. We also see that (because the final mesh cannot contain just optimal

cells) we can have a final value of F(γ) that is significantly greater than zero.

Unitcircle

Now let us try to smoothen a unitcircle: We directly can expect the outermost layer of

elements to have a bigger size than we prescribe them, and the inner ones have to com-

pensate for that and thus have to become smaller. The reason for this is that the number

of elements directly prescribes the „boundary-edge“, and then one layer to the interior the

same number of elements is used for a smaller diameter. The initial and final mesh are

shown in Figure 5.9. First of all we notice that the quality becomes much more uniform,

the only cells in the interior that are „not so good“ are those that stem from the corners

of the initial quadrilateral. We also notice that the outer cells are mostly flagged as bad is

because they became too large, the shape of them looks quite reasonable. Therefore, this

is as predicted. Let us also look into the details of the iterations in Table 5.15.

We can observe the same behavior as for the transition element, but the number of Armijo-

Steps increases even more. When looking at Table 5.15 and from the previous test Table

5.14 and looking at the norm of the update δ we start wondering if the last iterations are

actually necessary. Therefore, let us now show the iterations visually. In Figure 5.10

k = 0 would be the initial mesh. Visually, we can barely see a difference between k = 4

and the final mesh. This is a really important result because it allows us to reduce the

computational cost even more - at least for practical applications. We could now try to

62

5.6. Different testcases in 2D

(a) Initial mesh (b) Final mesh

Figure 5.9: Smoothing a unitcircle

k
Armijo-

Steps

Newton-

defect
||δ|| F(γk) ηk α

Iter

δ
defect δ

Iter.

s
used s

1 4 1.13E+01 4.43E+01 9.8954 1.00 0.30 - - 37 TRUE

2 4 1.12E+01 3.53E+01 9.1382 1.00 0.30 - - 37 TRUE

3 1 9.95E+00 1.76E+00 7.0451 0.96 0.30 1 5.36E-04 37 FALSE

4 0 2.17E+00 3.18E-01 6.9882 0.98 0.32 1 1.21E-04 36 FALSE

5 0 1.63E+00 1.87E-01 6.9567 0.99 0.47 1 8.64E-05 37 FALSE

6 0 6.30E-01 8.18E-02 6.9504 1.00 0.54 1 3.49E-05 37 FALSE

7 0 2.68E-01 2.72E-02 6.9493 1.00 0.73 1 1.64E-05 36 FALSE

8 0 5.12E-02 4.45E-03 6.9492 0.99 0.98 1 3.42E-06 36 FALSE

9 0 7.02E-04 5.14E-05 6.9492 0.99 1.00 1 4.07E-08 36 FALSE

10 19 4.78E-08 6.86E-09 6.9492 0.91 1.00 1 2.78E-12 48 FALSE

Table 5.15: Iterations unitcircle

work out a stopping criterion that would stop the algorithm as soon as nothing „visually“

changes, but from our experience this leads to other problems which we will discuss later.

We just should keep this in mind for Chapter 6. We also have just shown that it is possible

to smoothen a mesh that does have a different shape than the optimal cell.

63

CHAPTER 5. Numerical results I

Figure 5.10: Smoothing a unitcircle - mesh per iteration

5.7. Triangle meshes

So far we only showed results for quadrilaterals because they are the focus of our work.

Nevertheless our analysis showed that it should also work for triangles. Therefore, we

construct a testcase similar to the one for quadrilaterals: We take a mesh that in itself is an

equilateral triangle, refine it and after the refinement we move some of the inner vertices

so that the initial mesh looks like in Figure 5.11a.

The final mesh (Figure 5.11b) suggests that that the code works for triangles as well,

whereas the results in Table 5.16 seem to be a bit undecided because our functional value

is not as close to 0 as it was for the quadrilateral meshes. Looking more into details,

we see that the functional value on each cell is 7.6 · 10−4. This might be because either

the Newton-Iteration stopped too early or because our initial mesh was not an equilateral

64

5.7. Triangle meshes

(a) Initial mesh (b) Final mesh

Figure 5.11: Validation for triangles

k
Armijo-

Steps

Newton-

defect
||δ|| F(γk) ηk α

Iter

δ
defect δ

Iter.

s
used s

1 0 4.35E+00 4.84E-01 2.48E-01 0.98 0.30 1 2.28E-04 22 FALSE

2 0 1.63E+00 1.32E-01 2.00E-01 0.99 0.40 1 6.81E-05 21 FALSE

3 0 5.87E-01 4.24E-02 1.94E-01 1.00 0.55 1 4.28E-05 21 FALSE

4 0 1.66E-01 1.04E-02 1.93E-01 1.00 0.75 1 1.01E-05 21 FALSE

5 0 2.27E-02 1.21E-03 1.93E-01 1.00 1.00 1 1.30E-06 21 FALSE

6 0 1.95E-05 9.46E-07 1.93E-01 0.96 1.00 1 8.42E-10 21 FALSE

7 34 8.42E-10 1.16E-10 1.93E-01 0.96 1.00 1 3.84E-14 21 FALSE

Table 5.16: Iterations validation triangle

triangle: Because of the coordinates of the top corner, all y-coordinates are fractions of√
3. In the process of creating the mesh, we had to perform a few export- and import-

operations where we certainly have lost some digits. Therefore, all coordinates on the

boundary (except those at y = 0) are off a little bit, and our boundary-conditions fixed

their positions. This leads to each cell being „slightly non-optimal“ which causes a value

of 7.6 · 10−4 on it. Keeping this in mind and recalling (3.1.1) (where we state that our

assumed form is to sum up the quality of the cells) we consider this result close enough

for passing the test. This means that our algorithm works for triangles as well.

Nontrivial triangle mesh

Now we show a mesh that is now a bit of a challenge for triangles because of the way

the refinement works: Initially, we have just a set of cells and a very rough polygonal

approximation of the correct boundary. When we refine the mesh, we also want to have a

better approximation of the boundary. Therefore, after each step, the parametrization of

the boundary is applied to move the newly created boundary nodes to the real boundary.

When following this algorithm, something like in Figure 5.12a can happen, but as we see

in Figure 5.12b our algorithm manages to smoothen it.

65

CHAPTER 5. Numerical results I

(a) Initial mesh (b) Final mesh

Figure 5.12: Smoothing a triangle mesh

Let us look at the iterations in Table 5.17.

From the sheer number of iterations we already see that this was one of the harder meshes

that we tested, especially in the beginning the residual does not drop as fast as it did

on other meshes. However, at some point we saw the fast convergence of the Newton-

Scheme that we can expect. We also see that even though the initial mesh was mirror-

symmetric, the final mesh is not, it seems to be point-symmetric. This seems to be

counter-intuitive, but in the analysis we never showed the uniqueness of the solution,

only the existence (compare Theorem 3.4, 3.7 and3.9). Here we might have a case where

several local minimums exist because it seems that if we would mirror the deformations

from the left half and apply this version to the right half of the initial mesh (and for the

other half accordingly) we might have the same functional value. This could be a reason

why it was one of the harder meshes. This test has therefore shown us that the algo-

rithm works and creates a mesh of good quality even if we have no unique solution to the

problem.

66

5.8. 3D Testcase

k
Armijo-

Steps

Newton-

defect
||δ|| F(γk) ηk α

Iter

δ
defect δ

Iter.

s
used s

1 5 1.11E+01 5.47E+01 3.9848 1.00 0.30 - - 46 TRUE

2 8 2.38E+01 2.42E+01 3.7645 1.00 0.30 - - 43 TRUE

3 0 8.61E+00 1.07E+00 3.4523 0.80 0.13 1 6.28E-04 44 FALSE

4 0 8.07E+00 7.35E-01 3.2915 0.85 0.18 1 5.70E-04 46 FALSE

5 0 7.95E+00 6.76E-01 3.2838 0.78 0.19 1 5.65E-04 44 FALSE

6 0 4.32E+00 6.68E-01 3.2737 0.97 0.19 1 2.89E-04 46 FALSE

7 0 5.65E+00 6.20E-01 3.2197 0.92 0.24 1 3.62E-04 44 FALSE

8 0 3.67E+00 5.78E-01 3.2111 0.98 0.19 1 2.27E-04 47 FALSE

9 1 3.82E+00 5.59E-01 2.9995 0.97 0.24 1 2.34E-04 45 FALSE

10 0 3.43E-01 2.92E-02 2.9994 0.98 0.23 1 2.04E-05 43 FALSE

11 0 3.68E-01 2.19E-02 2.9992 0.99 0.35 1 2.30E-05 42 FALSE

12 0 3.20E-01 1.54E-02 2.9990 0.99 0.33 1 2.18E-05 42 FALSE

13 0 2.71E-01 1.10E-02 2.9989 0.99 0.36 1 1.72E-05 41 FALSE

14 0 2.34E-01 7.36E-03 2.9988 0.99 0.39 1 1.52E-05 41 FALSE

15 0 1.72E-01 4.56E-03 2.9988 0.99 0.43 1 1.21E-05 41 FALSE

16 0 1.23E-01 2.56E-03 2.9987 0.99 0.50 1 8.08E-06 40 FALSE

17 0 6.85E-02 1.17E-03 2.9987 0.99 0.58 1 4.60E-06 39 FALSE

18 0 2.98E-02 4.01E-04 2.9987 0.99 0.74 1 2.05E-06 39 FALSE

19 0 6.89E-03 7.09E-05 2.9987 0.99 0.99 1 4.46E-07 38 FALSE

20 0 7.21E-05 7.87E-07 2.9987 0.99 1.00 1 5.12E-09 38 FALSE

21 1 5.13E-09 1.78E-09 2.9987 0.96 1.00 1 3.31E-13 58 FALSE

Table 5.17: Iterations for this triangle mesh

5.8. 3D Testcase

When we presented all components and the reference cells we also showed them for three

dimensions. Therefore, we briefly want to show that this is also possible. We take the

same settings as in previous tests, but we will not do any initial antigradient steps. As

testcase, we create something similar to the first tests we did here: We take [0,2]3, refine

it once, move the midpoint to (1.2,1.2,1.2) and then continue to refine it (see Figure

5.13a). We are going to just focus on this one testcase with hypercubes even though many

other would be possible as well. We will also just show the tables for this case: For level 3

the details are shown in Table 5.18, and a summary for levels 3-6 is shown in Table 5.19.

We see a very similar behavior to the equivalent 2d case.

This test shows us that we can also smoothen 3D meshes using this algorithm. It also

suggests that solving for δ is not significantly harder than in 2D.

67

CHAPTER 5. Numerical results I

(a) Initial mesh (b) Final mesh

Figure 5.13: Selected cells of the 3D-mesh

k
Armijo-

Steps

Newton-

defect
||δ|| F(γk) ηk α

Iter

δ
defect δ

Iter.

s
used s

1 0 1.77E+00 5.14E+00 1.56E-01 0.99 0.30 1 8.35E-05 21 FALSE

2 0 6.31E-01 1.10E+00 1.40E-02 0.99 0.44 1 2.87E-05 20 FALSE

3 0 2.19E-01 2.52E-01 6.40E-04 1.00 0.61 1 1.05E-05 21 FALSE

4 0 5.02E-02 4.25E-02 4.08E-06 1.00 0.84 1 2.63E-06 21 FALSE

5 0 4.12E-03 2.93E-03 5.66E-14 1.00 1.00 1 1.75E-07 21 FALSE

6 0 5.98E-07 2.72E-07 4.51E-15 0.95 1.00 1 3.30E-11 20 FALSE

Table 5.18: Iterations for 3D hypercube on level 3

Level
Newton-

Iterations

Armijo-

Steps

Iterations

δ
δ

rejected

Iterations

s

3 6 0 6 0 124

4 6 0 6 0 249

5 6 0 6 0 496

6 6 0 6 0 994

Table 5.19: Iterations on various levels

68

6
Numerical results II - r-Adaptivity

So far, all we did was smoothing a mesh that came out of a meshgenerator. As we men-

tioned in Chapter 3, we smoothened the mesh to reduce the error ||u−uh||. This itself is

already a powerful tool, but there are other applications as well. One other application

is when we do time-dependent simulations and the geometry changes over time, for ex-

ample a rising bubble. Another application would be that the geometry is complicated to

mesh so that a fictitious boundary method is used: These methods become really powerful

tools if the approximation error of the boundary-approximation becomes small. For both

applications it can be an advantage to move the points inside a mesh so that an (internal)

object is resolved better. How does this now translate to our method? Actually, rezoning

- or r-adaptivity - is nothing else but choosing different scales for the reference cell. If we

assume that there is a function v(x) then we have basically two options:

i) We reformulate the model so that the cell sizes depend on the final position. This

would mean that γ �K would be something along the lines of

γ �K= γ(x,v(x∗))

This is possible and was examined in [Pau17], even though this introduces new

terms to the derivatives.

ii) We can do something like a Picard-Iteration: Initially, we set the cell sizes to v(γ0).
We then solve for this given cell sizes and call the result γfinal,i. Then we set γ0,i+1 =
γfinal,i, update the desired cell sizes to v(γ0,i+1) and repeat the process for i until it

converges.

This was also investigated in [Pau17], but there the results were not satisfying.

Even though the results in [Pau17] were not satisfying we are going to investigate the

second approach. There are three reasons for this: First, it does not require to calculate

new derivatives and the implementation of new terms which mean we can use the results

from Chapter 5 as a validation for our code. Second, we minimize a different functional

than [Pau17], so it is generally difficult to draw conclusions from this. Third, we also use

69

CHAPTER 6. Numerical results II - r-Adaptivity

a different solver to solve the minimization problem (a Quasi-Newton scheme, whereas

[Pau17] mainly relied on a NLCG). The second and third reason mean that we have a

completely different problem here.

Before we start to test this method we need to give some thought into the terms „solve“

and „converges“. From a pure mathematical point of view, we could very well do the

Newton-Iteration until the Newton-defect is smaller than 10−12 before we update the cell

sizes, but to define the convergence for the Picard-Iteration in a way that does not conflict

with the convergence of the Newton-Iteration becomes a real challenge: If we rely on just

F(γ), ||F ′(γ)|| or ||δ||we could very well just monitor that our Newton-Scheme converged

but gained no information if the mesh is now adapted to the intended situation.

After our tests in Chapter 5, especially as presented in Table 5.15 and Figure 5.10, we

think it is not necessary to solve the Newton-Iteration to a very small residual before

updating the desired cell volumes. Since we learned that during each iteration usually ||δ||
decreases, we are going to incorporate this in our criterion because it could be interpreted

as „with these desired cell volumes we have now an almost optimal mesh“, so we do not

spend time to „over-optimize“ it. Therefore, our strategy is going to be: Every time ||δ||
is below a certain threshold or every X steps we update the desired volumes. We stop

the Picard-Iteration if our Newton-defect is below a certain threshold and we updated the

desired volumes of the cells at least Y times. If the threshold for ||δ|| is not too small we

found this to be a practical approach. However, we also must recall the Armijo-Condition

2.5.4

F(xk)−F(xk +σkδk)≥ βσk(−∇F(xk),δk)

and one shortcut that came in handy when implementing: After the update of the volumes,

we are technically solving a new problem. Therefore, we cannot use F(xk) as F(xk +
σkδk) from the previous step but also have to update this.

We also have to manage our expectations here: Smoothing a mesh so that every cell

is optimal and adapting a mesh to a geometry are goals that are usually opposing each

other: Just think of a 2d-quadrilateral mesh with a circle as interior boundary. The smooth

optimal mesh would consist only of square cells, but the approximation of the circle would

be quite bad.

6.1. Adapting a square to a circle

With these things out of the way let us now take [−1,1]2 and adapt it to an interior circle

with the center (0,0) and the radius r = 0.7. All we do is set the desired cell volume to

v = 10−8 +

√
√

c2
x + c2

y−0.7

where cx and cy are the x- and y-coordinates of the geometric center of the cell. This

means that the cells should get smaller when they are closer to the circle. The 10−8

is just a small regularization parameter so that no cell has the volume zero. Note that

because these cell sizes might not sum up the 4 (the volume of our whole domain) we

treat these as relative cell sizes. If we apply the explained algorithm to a unitsquare on

level 5 we get the results from Table 6.1. The final result is in Figure 6.1. The total cost

70

6.1. Adapting a square to a circle

Figure 6.1: Adapting a square to a circle on level 5

was 35 Newton-Iterations, 84 Armijo-Steps and 407 steps with a PCG-solver to solve the

δ-equation. Even though we had to do 1044 PCG-Steps to solve the equation for s, this

is a Poisson-equation and there are better ways to solve it, but this is not the focus of this

work so we do not count these. The cell-volumes got updated after the Newton-Iterations

10,11,18,19,26,27 and 34. After the update, we treat this as a new problem and therefore

start with 2 steps in the antigradient direction.

In Figure 6.1 again a lower value means that the cell is closer to the optimal cell. While in

two instances we had to do many Armijo-Steps, overall this looks almost normal and as

expected. The reason for the huge number of Armijo-Steps in the Newton-Steps 27 and

35 might be that a larger stepsize would have caused a cell to degenerate. We also notice

here that even though we are optimizing the mesh an thus minimizing the functional, the

overall value of the functional increases with each update of the desired cell-volumes,

only to decrease from then on. This shows that our initial assumption of mesh-quality

opposing adaptation to a geometry was right.

Geometrically, we do see a problem here: Because of our chosen boundary condition, the

four cells in the corners of the mesh have only one vertex that can be moved, so these

cells cannot adapt too much. Our assumption here is that if we would allow the vertices

to slide on the boundary these cells would have a better quality. This also influences the

quality of the mesh in the surrounding cells.

Together, these tests show us that our approach to r-adaptivity with just choosing different

cell volumes is indeed valid and works. Also, the algorithmic idea with a Picard-Iteration

and the stopping- and update-criterion are effective.

If we repeat this on level 6 the overall adaption to the circle becomes better (see Figure

6.2). Even though this is somehow expected (we have more elements that we can deform)

71

CHAPTER 6. Numerical results II - r-Adaptivity

we still want to show this because we are not quite happy with the overall result on level

5, but it becomes difficult to see everything on the overview for level 6 (see Figure 6.2a).

(a) Adapting a square to a circle on level 6

(b) Adapting a square to a circle on level 6 -

zoom

Figure 6.2: Adapting a square to a circle on level 6

72

6.1. Adapting a square to a circle

k
Armijo-

Steps

Newton-

defect
||δ|| F(γk) ηk α

Iter

δ
defect δ

Iter.

s
used s

1 4 9.03E+00 5.80E+01 16.15 1.00 0.30 0 - 30 TRUE

2 4 6.25E+00 2.07E+01 14.48 1.00 0.30 0 - 31 TRUE

3 0 3.57E+00 6.07E-01 14.08 0.99 0.36 21 4.47E-03 31 FALSE

4 0 2.09E+00 2.72E-01 13.96 0.99 0.45 26 3.42E-03 31 FALSE

5 0 9.82E-01 1.01E-01 13.94 0.99 0.56 25 1.86E-03 31 FALSE

6 0 3.73E-01 2.67E-02 13.94 0.99 0.74 24 7.69E-04 30 FALSE

7 0 7.31E-02 3.70E-03 13.94 0.98 1.00 19 3.51E-04 30 FALSE

8 0 3.46E-04 9.98E-05 13.94 0.95 1.00 11 5.49E-05 29 FALSE

9 0 5.49E-05 1.50E-05 13.94 0.96 1.00 24 3.03E-07 31 FALSE

10 0 3.03E-07 3.03E-08 13.94 0.94 1.00 6 4.51E-08 29 FALSE

11 0 4.51E-08 8.94E-08 23.90 1.00 1.00 0 - 30 TRUE

12 4 5.47E+00 2.00E+01 22.40 1.00 1.00 0 - 30 TRUE

13 4 3.57E+00 4.89E+00 22.24 1.00 1.00 0 - 30 TRUE

14 0 3.53E+00 1.13E-01 22.11 0.96 1.00 26 3.05E-03 29 FALSE

15 0 1.75E-01 7.05E-03 22.11 0.87 1.00 13 2.50E-03 29 FALSE

16 0 2.55E-03 5.29E-04 22.11 0.97 1.00 14 1.21E-04 31 FALSE

17 0 1.21E-04 2.13E-05 22.11 0.94 1.00 18 2.29E-06 29 FALSE

18 0 2.29E-06 3.37E-07 22.11 0.91 1.00 12 1.05E-07 30 FALSE

19 0 1.05E-07 3.79E-07 22.40 1.00 1.00 0 - 33 TRUE

20 4 2.36E+00 8.13E+00 22.10 1.00 1.00 0 - 31 TRUE

21 4 1.37E+00 2.13E+00 22.08 1.00 1.00 0 - 30 TRUE

22 0 1.69E+00 3.41E-02 22.06 0.96 1.00 19 1.20E-03 29 FALSE

23 0 4.50E-02 1.07E-03 22.06 0.85 0.86 8 1.49E-03 28 FALSE

24 0 5.30E-03 3.05E-04 22.06 0.80 1.00 18 4.15E-05 29 FALSE

25 0 4.14E-05 1.39E-05 22.06 0.96 1.00 15 3.55E-06 31 FALSE

26 0 3.55E-06 6.49E-07 22.06 0.93 1.00 23 3.70E-08 30 FALSE

27 34 3.70E-08 4.38E-08 21.93 1.00 1.00 0 - 29 TRUE

28 3 8.13E-01 2.38E+00 21.91 1.00 1.00 0 - 31 TRUE

29 4 1.05E+00 1.93E+00 21.88 1.00 1.00 0 - 31 TRUE

30 0 1.19E+00 3.50E-02 21.87 0.94 0.83 23 8.86E-04 27 FALSE

31 0 1.87E-01 3.00E-03 21.87 0.97 0.76 13 9.85E-04 27 FALSE

32 0 3.89E-02 5.15E-04 21.87 0.96 1.00 15 1.84E-04 26 FALSE

33 0 1.88E-04 4.26E-05 21.87 0.94 1.00 11 3.41E-05 31 FALSE

34 0 3.41E-05 9.18E-06 21.87 0.96 1.00 23 1.63E-07 29 FALSE

35 19 1.63E-07 3.11E-07 22.25 1.00 1.00 0 - 31 TRUE

Table 6.1: Iterations adapting a square to a circle

73

CHAPTER 6. Numerical results II - r-Adaptivity

6.2. Adapting a square to a circle - small cells

In the previous section we showed that we can adapt a mesh to a circle by setting the

relative cell-volumes to

v = 10−8 +

√
√

c2
x + c2

y−0.7

which is effectively

v = 10−8 +d

where d is the distance to the surface. If one wants to get a finer resolution close to the

surface one could get the idea to set the relative cell-volumes to

v = 10−8 +dα

with α > 1. On the other hand we have a geometrical problem: If we do this on level

6, we only have 4225 vertices and 4096 cells, so the desired cell-volumes might require

extreme cell deformations. This was one of the problems [Gra08] could observe: Under

those circumstances, the cells began to deform in the way that they became very stretched

rhombi with interior angles coming close to π like in Figure 6.3.

Figure 6.3: Deformed rhombus with interior angle close to π

This way they met the requirement of the desired volume but were extremely deformed

so that it was difficult to run simulations on the resulting mesh. However, these extreme

deformations should be prevented by the growth-conditions of the functional ((3.1.2) and

(3.1.3)). Therefore, let us now investigate for α = 1,2,3,4 the quality of the mesh. Here,

we define the quality slightly different: we set the quality as the ratio

Q =
actual cell volume

desired cell volume

In this case is necessary for a new definition of quality because we are minimizing the

functional value, so the functional values in each cell will be relatively small. This can

actually be seen in Figure 6.5. In ideal situations the define cell quality should always be

close to one. However, we cannot really expect this when we are close to circle because

there d would be very small, but we expect the quality to be somehow close to one in

most parts of the mesh. In Figure 6.4 we see that with increasing α the quality decreases:

The part of the mesh where this ratio is extremely high is increasing, but the overall ge-

ometrical quality of the mesh stays good - except the corners, but we get to that. We

hereby see that the growth conditions actually help to get a geometrical good mesh and

the form of the functional „prefers“ a mesh that is geometrically good over a mesh where

all cell-volumes are exactly as prescribed. This is really good and can be used as a check

74

6.2. Adapting a square to a circle - small cells

when this method is applied to real simulations: If there are many cells where this ratio

is so bad, then the mesh might simply not have enough cells for the desired resolution,

so if a user needs the resolution that results from α = 3 or α = 4 then the user needs to

retry on a finer level. It is important to note that this information can be obtained by just

looking at the quality of one mesh. In contrast to this we would not be able to tell this

by checking only the functional value in each cell: Only when comparing the results for

different values of α we notice that the lower bound of the scale shifts by an order of

magnitude per increase in α, so this is some indication, but if we would have the result

from just one α we would not be able to judge based on that.

We do not consider the corners too much because we see this mesh more as a prototype

of a real-world situation where the mesh might extend even further. Because of the geo-

metrical situation we are in the boundary conditions allow only one vertex to be moved,

so obviously this will generate bad results for this one particular cell.

75

CHAPTER 6. Numerical results II - r-Adaptivity

(a) Quality for α = 1 (b) Quality for α = 2

(c) Quality for α = 3 (d) Quality for α = 4

Figure 6.4: Adapting a square to a circle on level 6 - Quality

76

6.2. Adapting a square to a circle - small cells

(a) Functional value for α = 1 (b) Functional value for α = 2

(c) Functional value for α = 3 (d) Functional value for α = 4

Figure 6.5: Adapting a square to a circle on level 6 - Functional values

77

CHAPTER 6. Numerical results II - r-Adaptivity

6.3. Adapting a square to a circle - triangle mesh

Let us now repeat the rest from Section 6.1 on a mesh with triangles on level 5.

As before, we judge the quality of a cell not only by the functional value but also by

Q =
actual cell volume

desired cell volume

In Figure 6.6 we see that visually, the result is very good. We also see some cells where

(a) Functional value (b) Quality

Figure 6.6: Adapting a square to a circle on level 4 on triangle mesh

it might have been necessary to add 10−8 to the relative cell volume because their center

is so close to the circle that else the desired cell volume might have been 0. While these

results look very promising, it took us 87 Newton-Iterations to the final result. Therefore,

we just give a brief summary of all numerical operations:

• Newton-Iterations: 87

• Total number Armijo-Steps: 237

• Total number of PCG-Steps for δ: 2187

• Total number of PCG-Steps for s: 3426

• δ rejected: 7 times

Before we interpret these results we should mention that triangle are generally more flex-

ible with respect to degeneration. This extra flexibility adds „more freedom to move the

vertices“ and therefore, with fewer cells than a mesh with quadrilaterals, a higher quality

can be achieved. Therefore, we cannot really compare it to a mesh with quadrilaterals.

78

6.4. 3D Testcase

Most likely, one could reduce the number of Newton-Iterations significantly by updating

the desired cell-volumes earlier as we did, and we took the settings from our experience

with the quadrilateral meshes. Because of the better quality of the adaptation compared

to the quadrilaterals we are undecided: It definitely takes longer to adapt a mesh that

contains triangles, but this is only because it allows more adaptation. If we need a quadri-

lateral mesh on level X because we need the good approximation to the geometry, we

might have to compare it to the cost of the mesh with triangles on level X−1. If however

we need level X for other reasons, we would have to compare the cost on the same level.

Since our focus was mostly on 2d quadrilateral meshes we conclude that we do not really

have enough to compare it to, and more tests would be necessary.

6.4. 3D Testcase

We now try something similar to Section 6.1, but in three dimensions. This means that we

start with a refined mesh of [−1,1]3 and try to adapt it to a sphere with the radius of 0.7.

To measure the quality, we use the same metric as in two dimensions and define describe

the quality of a cell not only by the functional value, but also by:

Q =
actual cell volume

desired cell volume

Even without going into details we can clearly see in both Figures 6.7 and 6.8 that the

method does not seem to work as intended in this case. In Figure 6.9 we see that it is

not just the quality that has a bad measurement, but also that the approximation of the

sphere is not good. There is no real indication in Table 6.2 that something went wrong

here. On a first glance one might think that the final Newton-defect is too large, but the

results from iteration 63 do not look any different, we just intentionally let the algorithm

run a bit longer. We also do not believe that there were not enough elements to fulfill this

geometrically (something that we investigated in 2D in Figure 6.4)because we tried this

on level 7, so there were 2097152 elements available. Therefore, we conclude that more

research needs to be done in the 3D-Case, our focus was mainly 2d.

79

CHAPTER 6. Numerical results II - r-Adaptivity

Figure 6.7: Adapting a cube to a sphere - functional value

Figure 6.8: Adapting a cube to a sphere - quality

80

6.4. 3D Testcase

Figure 6.9: Adapting a cube to a sphere - quality - zoom

k
Armijo-

Steps

Newton-

defect
||δ|| F(γk) ηk α

Iter

δ
defect δ

Iter.

s
used s

1 4 2.66E-01 9.26E+02 22.46 1.00 0.30 - - 120 TRUE

2 4 1.54E-01 2.48E+02 22.02 1.00 0.30 - - 120 TRUE

3 0 8.86E-02 5.84E+00 21.95 0.98 0.38 103 1.51E-04 113 FALSE

4 0 5.05E-02 2.16E+00 21.93 0.99 0.47 91 8.78E-05 118 FALSE
...

...
...

...
...

...
...

...
...

...
...

54 0 5.67E-06 1.31E-05 25.08 0.99 1.00 21 6.99E-08 82 FALSE

55 0 6.99E-08 3.51E-06 25.08 0.93 1.00 44 5.45E-09 105 FALSE

56 9 5.45E-09 4.00E-06 25.18 1.00 1.00 - - 105 TRUE

57 3 2.68E-02 1.37E+01 25.18 1.00 1.00 - - 103 TRUE

58 3 7.09E-03 7.66E+00 25.18 1.00 1.00 - - 106 TRUE

59 0 2.39E-03 3.82E-01 25.18 0.96 1.00 100 6.73E-06 115 FALSE

60 0 7.36E-06 6.19E-04 25.18 0.96 1.00 22 2.25E-06 114 FALSE

61 0 2.25E-06 2.89E-04 25.18 0.96 1.00 113 7.26E-09 107 FALSE

62 0 7.26E-09 3.29E-07 25.18 0.90 1.00 20 2.23E-09 110 FALSE

63 0 2.23E-09 2.01E-06 25.15 1.00 1.00 - - 112 TRUE

64 3 1.41E-02 5.67E+00 25.15 1.00 1.00 - - 101 TRUE

65 3 3.69E-03 3.05E+00 25.15 1.00 1.00 - - 105 TRUE

66 0 1.16E-03 1.50E-01 25.15 0.96 1.00 102 3.38E-06 110 FALSE

Table 6.2: Iterations adapting a cube to a sphere

81

CHAPTER 6. Numerical results II - r-Adaptivity

82

7
Conclusions and Outlook

In this thesis we discussed some aspects of PDE-based mesh optimization. While non-

PDE-based mesh optimization techniques exist, we chose the PDE-based approach be-

cause this allows the application of several theorems which guarantee the existence of the

solution and the convergence of the algorithm. Because it is a well-known fact in contin-

uum mechanics that large deformations can only be modeled with nonlinear models we

did not investigate the behavior of linear models, for example smoothing with a Laplace-

operator (as Paul tried in [Pau17]).

Therefore, we took a „slightly nonlinear“ model of the Neo-Hookean class to calculate

the deformation. There exist many possible solvers for nonlinear optimization, but our

goal was to benefit from the local fast convergence of the Newton-Scheme. The reason is

that for „real-life“ applications where the meshdeformation is just a part of for example a

CFD-simulation it is crucial to reduce the time spent in the preprocessing and meshgener-

ation, and mesh optimization is a part of this. For the optimization problems we generally

find two different approaches:

• First discretise the model and then apply an optimization method for functions F :

R
n→ R on this discretisation.

• Formulate the optimization method and all conditions for a functional F : Hk→ R

and then discretise those „sub-problems“.

In the optimization theory, both approaches often yield the same result, so theoretically

it should not matter which approach we choose. When looking deeper into Newton’s

methods for our problem we found that most of them have modifications to globalize the

convergence, but their downside is often that the linear equations that need to be solved

loose their sparsity. Therefore, we chose the other approach and formulated a Quasi-

Newton-Method in a Hilbert space. To do so, we had to find a continuous approximation

of the second derivative. We then showed that this approximation fulfills the Dennis-

Moré-Condition so that it conserves the local fast convergence of Newton’s method. Since

this approximation is based on a heuristic we have to check the angle-condition so that

we know the approximation is „not too bad“. After this we investigated other properties

83

CHAPTER 7. Conclusions and Outlook

of the functional to ensure that the equation for the Newton-Update (which is a PDE in

a function space) has a unique solution. During the literature research for this thesis we

found that there were only few algorithmic approaches in a function space (for example

[DLR15]), most of the literature was limited to existence theory.

Overall, we found that for our chosen functional a solution is only guaranteed to exist for

a certain set of Lamé parameters. While this is a serious drawback of this model in the

context of continuum mechanics, this is no problem for our approach: In the context of

continuum mechanics the task is to simulate a certain material. Each material comes with

its fixed set of material parameters, so the Lamé parameters are fixed. In our approach

the situation changes: We are not interested in a particular material behavior, so we can

choose them freely.

When putting all of this together, we found the expected problems of Newton’s method:

Usually, Newton’s method needs some sort of dampening, and the convergence is usually

not that good if the initial guess is too far away from the solution. If the mesh optimization

is applied in a time-dependent simulation (for example a rising bubble) where the mesh

does not change too much from one timestep to the other this might be the case, but we

chose to test it as a standalone tool. We therefore had to find methods to make the solver

more robust. This goal was achieved with two components:

• To calculate a damping parameter for Newton’s method the step size has to fulfill

the Armijo-condition. We talk about step size here and not about a damping pa-

rameter because when one writes it down, both mean the same but from a different

perspective.

• To overcome the slow convergence in the first steps we chose to use the negative

gradient as the direction of the update which results in a fixed point method. This

might seem counter intuitive, but if the initial mesh is „too far away“ from an op-

timal solution this gives better results. Additionally, it saves the time to assemble

and solve one partial differential equation.

With these modifications we then tested the approach to smoothen several 2d-meshes and

went on to adapt it to a circle. We also briefly tested the approach in 3d. During our tests

we found that the method looks very promising in 2d, but more investigations need to be

done to draw conclusions in three dimensions.

Outlook

Obviously we did not have the capabilities to test every single aspect of this method.

As we indicated during our tests, we still do not know the optimal stopping criterion for

Newton’s method. The reason is that for practical applications we should differ between

„optimal“ and „good enough“ meshes. What does this mean? When looking closer (for

example in Figure 5.10) we found that visually, the mesh does not change too much after

the first few iterations. However, when checking the Newton-defect (Table 5.15) we found

no reason to stop iterating. We also decided to not base the criterion on ||δ|| or its changes

because when still far away from the optimum, they might indicate to stop the iteration.

A better way to stop the iteration would surely help this in a real life application.

Another thing we noticed was that fixing the boundary nodes does not help the mesh-

quality. From a practical point of view, it would help to let the nodes slide on the bound-

84

ary segments, but from a theoretical point of view we need to be able to still solve this

problem in H1
0 so that we can choose (u,v) =

∫
∇u∇v as dot-product. This is a bit over-

looked in this work, but it is a huge advantage that the PDE for the Riesz-representative

of the antigradient is in fact a Poisson-equation: The Poisson-equation is well known

and many people have researched it, and many colleagues from my chair had developed

fast algorithms to solve it. This is the reason why we chose to not count these costs to

the numerical costs: For research purposes, we took a quite general approach to solve the

antigradient equation to be able to modify it easily, but in a real-life application this would

certainly be done better.

We should also note that we used only PCG to solve the linear problem for the Newton-

update. While this was certainly sufficient in most of our cases, there were some cases

where a Multigrid-Solver might have paid off, especially if one does further investigations

in 3d. To implement a multigrid solver for this problem comes with its own technical dif-

ficulties: We calculate the meshdeformation on the finest mesh, but then we have to use

this information to calculate the deformations for a full grid hierarchy. Since the mesh

changes in every iteration, one might think that you have to assemble the matrices on the

coarser grids and the transfer operators in each Newton-Iteration, but it might be worth

to investigate if this is really the case: We just pointed out earlier that the mesh does not

change too much after the first few iterations, so maybe everything on the coarser meshes

can be left untouched after these few iterations?

With this approach, further testing for 3d-meshes could be performed in a fast manner.

We indicated in Section 6.4 that further tests are necessary to investigate if this method

can be fully utilized in 3d. Further tests would be to adjust the choice of the cell volumes,

to incorporate the final position of the cells in the choice of volumes or to add a penalty

term to the functional that becomes large if a „large fraction“ of a cell is cut by the pre-

scribed boundary. This term would have to be designed in such a way that it does not

violate the original growth conditions of the functional.

85

CHAPTER 7. Conclusions and Outlook

86

Bibliography

[AF08] Robert A. Adams and John J. F. Fournier. Sobolev Spaces. Number 140 in

Pure and Applied Mathematics. Academic Press, Amsterdam Heidelberg, 2.

ed., reprinted edition, 2008.

[Alt12] Hans Wilhelm Alt. Lineare Funktionalanalysis: Eine anwendungsorien-

tierte Einführung. Springer-Lehrbuch Masterclass. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 6. aufl. 2012 edition, 2012.

[Bal76] John M. Ball. Convexity conditions and existence theorems in nonlinear elas-

ticity. Archive for Rational Mechanics and Analysis, 63(4):337–403, Decem-

ber 1976.

[Bän91] Eberhard Bänsch. Local mesh refinement in 2 and 3 dimensions. IMPACT of

Computing in Science and Engineering, 3(3):181–191, September 1991.

[BCD09] O. Boiron, G. Chiavassa, and R. Donat. A high-resolution penalization

method for large Mach number flows in the presence of obstacles. Computers

& Fluids, 38(3):703–714, March 2009.

[BMdY11] Boubakeur Benahmed, Hocine Mokhtar-Kharroubi, Bruno de Malafosse, and

Adnan Yassine. Quasi-Newton methods in infinite-dimensional spaces and

application to matrix equations. Journal of Global Optimization, 49(3):365–

379, March 2011.

[Bra07] Dietrich Braess. Finite Elemente: Theorie, schnelle Löser und Anwendungen

in der Elastizitätstheorie. Springer-Verlag Berlin Heidelberg, Berlin, Heidel-

berg, 4., überarbeitete und erw. aufl edition, 2007.

[Cia78] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems. Num-

ber v. 4 in Studies in Mathematics and Its Applications. North-Holland Pub.

Co. ; sole distributors for the U.S.A. and Canada, Elsevier North-Holland,

Amsterdam ; New York : New York, 1978.

[Cia88] Philippe G. Ciarlet. Mathematical Elasticity. Number v. 20, 27, 29 in Studies

in Mathematics and Its Applications. North-Holland ; Sole distributors for the

U.S.A. and Canada, Elsevier Science Pub. Co, Amsterdam ; New York : New

York, N.Y., U.S.A, 1988.

87

Bibliography

[Cla20] Christian Clason. Introduction to Functional Analysis. Compact Textbooks

in Mathematics. Birkhäuser, Cham, Switzerland, 2020.

[CN85] Philippe G. Ciarlet and Jindřich Nečas. Unilateral problems in nonlinear,

three-dimensional elasticity. Archive for Rational Mechanics and Analysis,

87(4):319–338, December 1985.

[CR72] P.G. Ciarlet and P.-A. Raviart. Interpolation theory over curved elements,

with applications to finite element methods. Computer Methods in Applied

Mechanics and Engineering, 1(2):217–249, August 1972.

[Dav04] Timothy A. Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-

pattern multifrontal method. ACM Transactions on Mathematical Software,

30(2):196–199, June 2004.

[Deu11] Peter Deuflhard. Newton Methods for Nonlinear Problems, volume 35 of

Springer Series in Computational Mathematics. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2011.

[DLR15] Juan Carlos De Los Reyes. Numerical PDE-constrained Optimization.

SpringerBriefs in Optimization. Springer, Cham Heidelberg, 2015.

[DY99] Y. H. Dai and Y. Yuan. A Nonlinear Conjugate Gradient Method with a Strong

Global Convergence Property. SIAM Journal on Optimization, 10(1):177–

182, January 1999.

[Fle64] R. Fletcher. Function minimization by conjugate gradients. The Computer

Journal, 7(2):149–154, February 1964.

[Gra08] Matthias Grajewski. A New Fast and Accurate Grid Deformation Method for

R-Adaptivity in the Context of High Performance Computing. PhD thesis, TU

Dortmund, 2008.

[HKT14] Michael Hinze, Michael Köster, and Stefan Turek. Space-Time Newton-

Multigrid Strategies for Nonstationary Distributed and Boundary Flow Con-

trol Problems. In Günter Leugering, Peter Benner, Sebastian Engell, Andreas

Griewank, Helmut Harbrecht, Michael Hinze, Rolf Rannacher, and Stefan Ul-

brich, editors, Trends in PDE Constrained Optimization, volume 165, pages

383–401. Springer International Publishing, Cham, 2014.

[HS52] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving

linear systems. Journal of Research of the National Bureau of Standards,

49(6):409, December 1952.

[HZ05] William W. Hager and Hongchao Zhang. A New Conjugate Gradient Method

with Guaranteed Descent and an Efficient Line Search. SIAM Journal on

Optimization, 16(1):170–192, January 2005.

[Jened] Robert Jendrny. Operator-Adaptive Newton Solver for 3D Non-Newtonian

Flow with Application to Extrusion Dies. PhD thesis, TU Dortmund, Dort-

mund, to be published.

88

Bibliography

[KOS+12] M. Köster, A. Ouazzi, F. Schieweck, S. Turek, and P. Zajac. New robust non-

conforming finite elements of higher order. Applied Numerical Mathematics,

62(3):166–184, March 2012.

[LV07] Qianlong Liu and Oleg V. Vasilyev. A Brinkman penalization method

for compressible flows in complex geometries. Journal of Computational

Physics, 227(2):946–966, December 2007.

[Man17] Saptarshi Mandal. Efficient FEM Solver for Quasi-Newtonian Flow Problems

with Application to Granular Materials. PhD thesis, TU Dortmund, 2017.

[MI05] Rajat Mittal and Gianluca Iaccarino. IMMERSED BOUNDARY METH-

ODS. Annual Review of Fluid Mechanics, 37(1):239–261, January 2005.

[Mos14] Jörn Mosler. Nonlinear Continuum Mechanic. 2014.

[MV15] Andreas Meister and C. Vömel. Numerik linearer Gleichungssysteme: eine

Einführung in moderne Verfahren ; mit MATLAB-Implementierungen von C.

Vömel. Lehrbuch. Springer Spektrum, Wiesbaden, 5., überarb. aufl edition,

2015.

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer

Series in Operations Research. Springer, New York, 2nd ed edition, 2006.

[Pat18] Hemant Kumar Pathak. An Introduction to Nonlinear Analysis and Fixed

Point Theory. Springer Singapore : Imprint: Springer, Singapore, 1st ed.

2018 edition, 2018.

[Pau17] Jordi Paul. Nonlinear Hyperelasticity-based Mesh Optimisation. PhD thesis,

TU Dortmund, 2017.

[Pol69] B.T. Polyak. The conjugate gradient method in extremal problems. USSR

Computational Mathematics and Mathematical Physics, 9(4):94–112, Jan-

uary 1969.

[PR69] E. Polak and G. Ribiere. Note sur la convergence de méthodes de directions

conjuguées. Revue française d’informatique et de recherche opérationnelle.

Série rouge, 3(16):35–43, 1969.

[Pra57] William Prager. On Ideal Locking Materials. Transactions of the Society of

Rheology, 1(1):169–175, January 1957.

[RGR+21] Hannes Ruelmann, Markus Geveler, Dirk Ribbrock, Peter Zajac, and Stefan

Turek. Basic Machine Learning Approaches for the Acceleration of PDE

Simulations and Realization in the FEAT3 Software. In Fred J. Vermolen

and Cornelis Vuik, editors, Numerical Mathematics and Advanced Applica-

tions ENUMATH 2019, volume 139, pages 449–457. Springer International

Publishing, Cham, 2021.

[Rum96] M. Rumpf. A variational approach to optimal meshes. Numerische Mathe-

matik, 72(4):523–540, February 1996.

89

Bibliography

[Sch] Ben Schweizer. Partielle Differentialgleichungen: Eine anwendungsorien-

tierte Einführung. Partielle Differentialgleichungen.

[TGB+10] Stefan Turek, Dominik Göddeke, Christian Becker, Sven H. M. Buijssen, and

Hilmar Wobker. FEAST-realization of hardware-oriented numerics for HPC

simulations with finite elements. Concurrency and Computation: Practice

and Experience, 22(16):2247–2265, November 2010.

[Tur99] Stefan Turek. Efficient Solvers for Incompressible Flow Problems, volume 6

of Lecture Notes in Computational Science and Engineering. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1999.

[TWR03] Stefan Turek, Decheng Wan, and Liudmila S. Rivkind. The Fictitious Bound-

ary Method for the Implicit Treatment of Dirichlet Boundary Conditions

with Applications to Incompressible Flow Simulations. In Timothy J. Barth,

Michael Griebel, David E. Keyes, Risto M. Nieminen, Dirk Roose, Tamar

Schlick, and Eberhard Bänsch, editors, Challenges in Scientific Computing

- CISC 2002, volume 35, pages 37–68. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2003.

[Yam08] Nobuo Yamashita. Sparse quasi-Newton updates with positive definite matrix

completion. Mathematical Programming, 115(1):1–30, September 2008.

90

	1 Introduction
	2 Preliminaries
	2.1 Matrices and Tensors
	2.2 Functionals and derivatives
	2.3 Function spaces
	2.4 Specialisations for Hilbert-Spaces
	2.5 Optimization
	2.6 Nonlinear continuum mechanics
	2.7 Geometric entities and meshesThis section follows a similar section in paulNonlinearHyperelasticitybasedMesh2017 because we used the same software and worked at the same chair
	2.8 Finite Elements and parametric families of finite element spaces
	2.9 Interpolation estimates for affine-equivalent finite elements
	2.10 Interpolation estimates for finite elements with nonlinear transformations

	3 Mesh optimisation
	3.1 Mesh quality
	3.2 Deformations and variations
	3.3 Reference cells Jordi Paul used the same software, so the reference cells are identical to those in paulNonlinearHyperelasticitybasedMesh2017 and therefore, we follow paulNonlinearHyperelasticitybasedMesh2017 here
	3.4 Existence of minimizer
	3.5 Optimization algorithm

	4 Choice and analysis of the energy functional
	4.1 Choice of the Energy functional
	4.2 Analysis of the energy function
	4.3 Modification of the stored energy function
	4.4 Analysis of the derivatives

	5 Numerical results I
	5.1 Implementing the algorithm
	5.2 First tests - smoothing a mesh
	5.3 Effects and
	5.4 Finer mesh
	5.5 Initial antigradient steps
	5.6 Different testcases in 2D
	5.7 Triangle meshes
	5.8 3D Testcase

	6 Numerical results II - r-Adaptivity
	6.1 Adapting a square to a circle
	6.2 Adapting a square to a circle - small cells
	6.3 Adapting a square to a circle - triangle mesh
	6.4 3D Testcase

	7 Conclusions and Outlook
	Bibliography

