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Abstract

Developing a numerical and algorithmic tool which correctly identifies unyielded
regions in the yield stress fluid flow is a challenging task. Two approaches are
commonly used to handle the singular behaviour at the yield surface, i.e. the
Augmented Lagrangian approach and the regularization approach, respectively.
Generally in the regularization approach for the resulting nonlinear and linear
problems, solvers do not perform efficiently when the regularization parameter
gets very small. In this work, we use a formulation introducing a new auxiliary
stress [1]. The three field formulation of yield stress fluids corresponds to a
regularization-free Bingham formulation. The resulting set of equations arising
from the three field formulation is treated efficiently and accurately by a mono-
lithic finite element method. The velocity and pressure are discretized by the
higher order stable FEM pair Q2/P

disc
1 and the auxiliary stress is discretized by

the Q2 element.

Furthermore, this problem is highly nonlinear and presents a big challenge to
any nonlinear solver. We developed a new adaptive discrete Newton’s method,
which evaluates the Jacobian with the directional divided difference approach
[2]. The step size in this process is an important key: We relate this size to
the rate of the actual nonlinear reduction for achieving a robust adaptive New-
ton’s method. The resulting linear subproblems are solved using a geometrical
multigrid solver. We analyse the solvability of the problem along with the adap-
tive Newton method for Bingham fluids by doing numerical studies for different
prototypical configurations, i.e. ”Viscoplastic fluid flow in a channel”[2], ”Lid
Driven Cavity”, ”Flow around cylinder”, and ”Bingham flow in a square reser-
voir”, respectively.

Key words— Viscoplastic Fluids, Bingham Fluid, Divided Difference, FEM,
Adaptive Newton Method, Regularization-Free, Edge-oriented FEM stabiliza-
tion.
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Chapter 1

Motivation

1.1 Motivation

Viscoplastic fluids have been the topic of interest since more than 100 years.
These fluids are the prominent part of our daily life. Toothpaste is a well known
example, where it remains in its solid form until the applied stress (friction with
the teeth) is high enough to deform the toothpaste [3]. Similarly, mayonnaise
can be spread over a bread piece and remains at rest afterwards. This tran-
sition from solid state to liquid is reversible if the chemical reactions do not
take place. Apart from the daily life applications, viscoplastic fluids have high
significance in industrial processes too. It involves in so many areas e.g. food
industry (chocolate making, jam), cosmetic industry (creams), cement industry
(concrete flow in constructions) and the paper making industry (suspension of
pulp). Nevertheless, the existence of the solid regime in viscoplastic fluids is a
controversial debate. On one hand, it is often considered as highly viscous fluid
regime [4] instead of true solid. On the other hand, the clear transition of the
rheology from solid to liquid is justified in [5].

The solid and liquid regimes cannot be predicted beforehand. It is a very diffi-
cult task because of the undergoing rheological transition. Specially, when the
fluids are dependent on their flow history, e.g. yield stress fluids. These kind
of fluids are in the focus of the present work because of their advantageous use
as the lubrication in the multilayer flow applications. One of the interesting
applications is viscoplastic lubrication (hydraulic fracturing) and macro encap-
sulation [6]: Heavy crude oil transportation along pipelines, coal-water slurry
transportation and co-extrusion operations. In these processes, the stabilization
of the interfaces and to suppress the interfacial instabilities in multi-layer shear
flows [7] is the main interest by means of viscoplastic fluids.
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CHAPTER 1. MOTIVATION

Figure 1.1: Examples of viscoplastic material. The image is reprinted from [8]

1.2 Introduction

We have slightly discussed the nature of the viscoplastic fluids, which behaves
as solid before a critical yield stress value and as a viscous fluid afterwards. This
threshold value concept is reviewed by Barnes et al. [4]. Accurately knowing
or predicting this yield stress value for different materials having different prop-
erties is really a challenging task. The difficulty arises because of the different
regions i.e. rigid zone (fluid moving with uniform velocity) and dead/plug zone
(zero velocity region). These regions depend on the yield stress value and are
required to be known beforehand. For acquiring this pre-control of viscoplastic
fluids in real life situations, several constitutive models have been proposed.
Bingham [9] constitutive model is the most widely used model, which includes
a discontinuity in the viscosity function, because the fluid does not begin to
flow before meeting the threshold value of the yield stress. Consequently, the
shear rate is zero. This discontinuity raises complexities in solving the Bingham
model not only analytically but also in the numerical approximations. There-
fore, solving yield stress/viscoplastic fluid models numerically is still a difficult
task.

In order to circumvent this problem, there are some proposed methods in lit-
erature for solving viscoplastic fluids e.g. the augmented Lagrangian method
was introduced by Hestenes [10] in 1969. This method has been widely used
by many scientists in their studies [11, 12, 13, 14]. Afterwards, Glowinski [15]
and Fortin et al. [16] used this method to apply on linear Stokes problem and
nonlinear problems e.g. Bingham fluid flow (this model describes the nature of
the viscoplastic fluids, which is not easy to model numerically). The accurate
solution of the Bingham fluid is determined by the determination of the yield

2
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surfaces, which needs highly refined meshes and are computationally very ex-
pensive. One possible solution/remedy was to include a continuous function by
Glowinski et al. [15, 16], which leads to the idea of the regularization technique
[17].

From 1980’s, some regularization models were proposed by regularizing the vis-
cosity term in the Bingham constitutive law. Bercovier and Engelman [18]
proposed a function in 1980. Later in 1987, Papanastasiou [19] also introduced
a function. The main advantage of such techniques was ”easy numerical im-
plementation”. Therefore, a trend of the regularization technique was adopted
during 1980’s and 1990’s. However, in 2001 Samarito et al. [20] again worked
on the augmented Lagrangian method to show its accuracy in the prediction
of yielded zones. In consequence, a competition has been developed between
regularization and augmented Lagrangian approach. The disadvantage of the
latter approach is the requirement of the large computation time for complex
problems, whereas the former one is faster for non-linear complex problems. In
2005, Frigaard et al. [21] has done a detailed review study about the positive
and the negative aspects of the regularization techniques.

1.3 Contribution of the Thesis

The contribution of the work presented in this thesis is to develop a numerical
and algorithmic tool, which is capable of correctly identifying the unyielded re-
gions in yield stress fluid flow. Two approaches are commonly used to handle the
singular behaviour at the yield surface, i.e. the augmented Lagrangian approach
and the regularization approach, respectively. Generally in the regularization
approach, the numerical solvers do not perform efficiently for instance, when
the regularization parameter gets very small.

In this work, we use a formulation by introducing a new auxiliary stress ten-
sor [1]. The three-field formulation of the yield stress fluids corresponds to a
regularization-free Bingham model [22]. This method is free from the two ap-
parent deficiencies that effect the shape of the yield surfaces, which are defined
for the exact Bingham fluid, namely the regularizations and the inefficient al-
gorithms. Furthermore, this problem is highly nonlinear and presents a big
challenge to any nonlinear solver. Therefore, we developed a new adaptive dis-
crete Newton method, which evaluates the Jacobian with the divided difference
approach. We relate the step size to the rate of the actual nonlinear reduction for
achieving a robust adaptive Newton method. The resulting saddle-point prob-
lem is solved efficiently and accurately by a monolithic finite element method.
The velocity and pressure are discretized by the higher order stable FEM pair
Q2/P

disc
1 and the auxiliary stress is discretized by the Q2 element. We anal-

yse the solvability of the problem along with the adaptive Newton method for
Bingham fluids by doing numerical studies for the prototypical configurations.

3



CHAPTER 1. MOTIVATION

1.4 Organization

The organization of this research work, excluding the current motivational chap-
ter, is described as follows:

Chapter 2 initially describes the classification of the fluids, and is devoted to the
detailed introduction of the Bingham viscoplastic fluid along its mathematical
equations. The associated constitutive law exhibits the fluid properties in the
form of shear and rigid zones. The main motivation of using the three-field
formulation for Bingham fluids by pointing out the limitations of the standard
two-field formulation is described. The corresponding strong as well as weak
formulations are also presented in this chapter.

Chapter 3 includes the detailed understanding of finite element methods for
simple Poisson’s equation. Moreover, the space discretization of the Bingham
three-field formulation problem has been discussed. Afterwards, the choice of
the finite elements for three-field Stokes problem and some stabilization tech-
niques (e.g. edge oriented and artificial diffusion stabilization) are presented at
the end of the chapter.

Chapter 4 provides an introduction of the monolithic (non-linear and linear)
solvers. The non-linearity is treated with the discrete Newton with divided
difference evaluation of the Jacobian. The resulting linear subproblem is handled
by a linear solver, which can be direct or iterative i.e. UMFPACK or geometric
multigrid, respectively. A detailed numerical study is also presented in this
chapter regarding the inf-sup stability conditions of three-field Stokes problem
for the ”flow around cylinder configuration”.

Chapter 5 presents the numerical results of Bingham fluid flow in a channel for
direct and iterative solver. Moreover, to analyse the behaviour of the solver,
a detailed parametric optimization study for the multigrid solver is performed.
The effects of adding the stabilization (edge-oriented and artificial diffusion) on
the solver is also investigated for the same flow configuration.

Chapter 6 is devoted to the insights of our newly developed adaptive discrete
Newton approach for any nonlinear problem. A comprehensive description of
the efficiency and the robustness of this method is explained with the help of
graphical representation of the solver’s behaviour. Several comparison studies
for different benchmark configurations are carried out between classical and the
new adaptive discrete Newton.

Chapter 7 summarizes the conclusions and provides the references at the end.
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Chapter 2

Mathematical Modelling for

Bingham Viscoplastic

Fluids

2.1 Classification of the Fluids

Fluids are found everywhere as an essential part of our daily life and almost
everything consists of fluid. The fluids are classified in two major categories
i.e. Newtonian and non-Newtonian. This classification depends on the relation
between shear rate ( du

dy
or γ̇) and the shear stress (τ ). Which describes, how

the fluid behaves in response to the applied stress. A compact depiction of the
classification of the fluids is shown in Fig. 2.1. One can see, that the Newtonian
fluids follow a linear relation between shear stress and the deformation rate. In
the Newtonian fluids, the stress tensor τ is expressed by

τ = −pI + 2ηD, (2.1)

here, p is the pressure field, η is the viscosity and D is the deformation tensor.
The flow characteristic can be explained with the help of Navier-Stokes equa-
tions, which consist of mass balance and force balance laws. The Navier-Stokes
(NS) equations for a viscous incompressible homogeneous flow in its strong form
reads:







∂u

∂t
+ u · ∇u − ∇ · τ + ∇p = 0 in Ω

∇ · u = 0 in Ω

u = gD on ΓD

(2.2)

7
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VISCOPLASTIC FLUIDS

Here, u is the velocity field, τ is the total stress tensor and Γ is boundary of
a domain (depends on the geometry). The deformation tensor form of the NS
equations can be equivalently written as:







∂u

∂t
+ u · ∇u − ∇ · 2µD(u) + ∇p = 0 in Ω

∇ · u = 0 in Ω

u = gD on ΓD

(2.3)

The fluids, which do not follow the linear relation are categorized as non-
Newtonian fluids, also called as generalized non-Newtonian fluids, involving at
least a non-linear viscosity term inside the constitutive equation as follows:

τ = −pI + 2η(||D||)D.

These types of non-linear viscosities appear in the equations of the fluids like
Power law model, Carreau model [25, 26, 27]. One kind of such fluid is shear
thickening, which increases its resistance and shows friction with increasing the
applied stress. Mathematically described with the Power law model, containing
the power index n greater than 1 as follows:

η = −2µ ||D||n−1
n > 1.

On the contrary, shear thinning fluids decreases its resistance, when the applied
stress is increased e.g. pseudoplastic fluids. Bingham plastic is the limited case
of such fluids, which requires a finite value of the applied stress τs before it
begins to flow.

Shear rate (γ̇)

S
h
ea

r
st

re
ss

(τ
)

Newtonian fluid
τs

Bingham fluid

Shear thickening

Shear thinning

Figure 2.1: Classifications of the fluids w.r.t. shear stress and shear rate

8



2.2. BINGHAM VISCOPLASTIC FLUID

2.2 Bingham Viscoplastic Fluid

This section describes the characteristics of the Bingham fluids in details. A
Bingham viscoplastic fluid is defined as: A fluid that requires the applied stress
above a certain non-zero limit of the yield stress to deform and to start flowing
like a fluid. Below this non-zero limit of the yield stress, the fluid behaves like
a solid. The difference of such behaviour can be observed from the constitutive
law of Bingham fluids (dependent on the yield stress properties) defined as:

τ =







2ηD(u) + τs

D(u)

||D(u)|| if ||D(u)|| 6= 0

||τ || ≤ τs if ||D(u)|| = 0

(2.4)

where D(u) = 1
2 (∇u+(∇u)T ) denotes the strain rate tensor, and τs denotes the

yield stress. It is the simplest model, that describes the nature of the viscoplastic
fluids. The equation (2.4) basically represents the straight line behaviour which
has τs as y-intercept and exhibits a linear relation afterwards, presented in Fig.
2.1. The first part of this constitutive law describes the shear region, where
fluid behaves as a liquid. Whereas, the second part describes the rigid or plug
zone, where the fluid behaves as solid or moves with constant velocity. This law
can be equivalently written as:

D =







1

2η

(

1 − τs

||τ ||
)

τ if ||τ )|| > τs

0 if ||τ || ≤ τs

(2.5)

In recent years, the attention has been increased significantly for solving the
Bingham fluids numerically because of its presence in the industry as well as in
many phenomena of nature [28, 29]. There are categorically two methods, that
has been proposed to solve Bingham fluids: Direct regularization techniques
[30, 21, 31] and Lagrange multiplier approach (Uzawa method [17], augmented
Lagrangian method [32, 20] and penalty-Newton-Uzawa-CG method [33]). In
this work, the regularization technique is used for solving the Bingham fluid
flow, discussed in the next section.

2.2.1 Regularization Techniques and Three-Field Formu-

lation

It is well-known from the literature that due to the plug region it is very difficult
to model the Bingham constitutive law for viscoplastic fluids mathematically.
The main problem arises due to the non-differentiability of the viscosity in the
constitutive law and needs to be treated in a special way. The constitutive law
in eq. (2.4) consists of the non-linear viscosity:

η(||D(u)||) = 2η +
τs

||D(u)|| (2.6)

9
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The problem of differentiability arises when the viscosity becomes infinite in the
rigid zone, i.e. ||D(u)|| = 0. Therefore, one approach is to use regularization
to overcome this problem. The purpose is to make the viscosity smooth and
differentiable over the whole domain. There are various regularization models
in the literature e.g. Allouche et al. [34] introduced a regularization parameter
simply added in the denominator as

ηε(||D(u)||)ε = 2η +
τs

ε+ ||D(u)|| . (2.7)

Bercovier and Engelman [18] proposed a different regularization function as

ηε(||D(u)||) = 2η +
τs

√

ε2 + ||D(u)||2
.

(2.8)

Papanastasiou [19] proposed an exponential expression in the regularization
model which is valid for any shear rate

ηε(||D(u)||) = 2η +
τs(1 − e

−||D(u)||
ε )

||D(u)|| . (2.9)

Tanner et al. [35] proposed a different model called bi-viscous model formed by:

ηε(||D(u)||) =







(2η +
τs

||D(u)|| ) if ||D(u)|| ≥ ετs

2η

ε
if ||D(u)|| ≤ ετs

(2.10)

After adding one of the above mentioned regularization techniques, the corre-
sponding Navier-Stokes equations for the steady incompressible Bingham flow
reads:







−∇ · τ + ∇p = 0 in Ω

∇ · u = 0 in Ω

u = gD on ΓD

(2.11)

where τ is stress tensor from eq. (2.4) with regularized viscosity. It is already
discussed above, that the rigid zone inside the flow regimes produces a sin-
gularity. In the present work, we use the Bercovier and Engelman (eq. 2.8)
regularization function to overcome this problem.

A wide range of computational iterative schemes is available and can be used
for numerical approximations of regularized system of equations. Generally in
the regularization approach, solvers do not perform efficiently, when the regu-
larization parameter ε gets very small but the real viscoplastic solution can only
be achieved when ε → 0, which is a very difficult situation for the numerical
solver. For the remedy of such problem, we use a formulation introducing a
new auxiliary stress tensor (σ) [1]. The corresponding three-field formulation

10



2.3. VARIATIONAL FORMULATION

of yield stress fluids leads to a regularization-free Bingham model. Hence, we
proceed within the framework of a three-field Stokes problem defined as follows:

σ =
D(u)

||D(u)||ε
(2.12)

Then, the three-field (u,σ, p) system of stationary Bingham fluid flow equations
is given as follows:







||D(u)||ε σ − D(u) = 0 in Ω

−∇ · (2ηD(u) + τsσ) + ∇p = 0 in Ω

∇ · u = 0 in Ω

u = gD on ΓD

(2.13)

System (2.13) represents the mixed formulation, which solves the regularized as
well as the regularization-free Bingham problem, i.e. ε = 0. This formulation
over comes not only the problem for the numerical solver but also helps to
achieve accurate solution. The numerical studies shown in the next sections
describe the advantages of this three-field formulation, particularly that we can
achieve a true viscoplastic solution by solving a regularization-free Bingham
model. The resulting saddle-point problem is solved efficiently and accurately
by a monolithic finite element method.

2.3 Variational Formulation

In the present work, the finite element method is chosen for the discretization in
space. For this purpose, the strong form of the corresponding system of equa-
tions is converted into the weak formulation by multiplying the test functions
[36] and integrated over the whole domain.

2.3.1 The Weak Form of Navier-Stokes Equations

We consider the two test functions v, q for the stationary incompressible Newto-
nian flow and multiply with the system of equations (2.3). Then, the resulting
weak forms read:

∫

Ω

(

u · ∇u − ∇ · 2ηD(u) + ∇p
)

v dx = 0 in Ω

∫

Ω

∇ · u q dx = 0 in Ω

(2.14)

Let V = H1
0(Ω) :=

(
H1

0 (Ω)
)2

and Q = L2
0(Ω) be the spaces for the velocity and

pressure, respectively, and let V′, Q′, be their corresponding dual spaces. We

11
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introduce the following linear forms: Au, Nu and Lu defined on V −→ V′ as
follows

〈Nuu,v〉 =

∫

Ω

(u · ∇u)v dx, ∀u,v ∈ V

〈Luu,v〉 =

∫

Ω

2ηD(u) : D(v) dx, ∀u,v ∈ V

(2.15)

and we set

Au := Nu + Lu, (2.16)

the following linear forms: B defined on V −→ Q′ as follows

〈Bu, q〉 = −
∫

Ω

∇ · u q dx, ∀u ∈ V, q ∈ Q (2.17)

We define the bilinear forms a(·, ·) defined on V×V −→ R and b(·, ·) defined on
V × Q −→ R reads; for U = (u) and V = (v)

a(U ,V) =〈Auu,v〉,
b(U , q) =b(u, q).

(2.18)

The weak formulation for the classical Navier-Stokes system (2.3) reads:
Find (U , p) ∈ V × Q s.t.

{

a(U ,V) + b(V, p) = 0 ∀V ∈ V,

b(U , q) = 0 ∀q ∈ Q.
(2.19)

2.3.2 The Weak Form of Bingham Three-Field Formula-

tion

We consider the three test functions v, q and τ for velocity, pressure and stress,
respectively, and multiply with the system of equations (2.13). Then, the re-
sulting weak forms read:

∫

Ω

(

||D(u)||ε σ − D(u)
)

τ dx = 0 in Ω

∫

Ω

(

− ∇ ·
(

2ηD(u) + τsσ
)

+ ∇p
)

v dx = 0 in Ω

∫

Ω

∇ · u q dx = 0 in Ω

(2.20)

For simplicity, we consider u = 0 at ΓD and after taking the integration by
parts for the second order derivative and pressure term, the simplified weak

12
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formulation reads:
∫

Ω

(

||D(u)||ε σ : τ
)

dx−
∫

Ω

(

D(u) : τ
)

dx = 0 in Ω

∫

Ω

(

2ηD(u) : D(v)
)

dx+

∫

Ω

(

τsD(v) : σ
)

dx−
∫

Ω

p ∇ · v dx = 0 in Ω

∫

Ω

q ∇ · u dx = 0 in Ω

(2.21)

Let V = H1
0(Ω) :=

(
H1

0 (Ω)
)2

, Q = L2
0(Ω), and M =

(
L2(Ω)

)2×2

sym
be the spaces

for the velocity, pressure and stress, respectively associated with ||.||1,Ω and
||.||0,Ω. Let V′, Q′, and M′ be their corresponding dual spaces. Furthermore, we
set X := V × M and X′ := V′ × M′. We introduce the following linear forms:

A1 defined on V −→ V′

〈A1u,v〉 :=

∫

Ω

2ηD(u) : D(v) dx (2.22)

A2 defined on X −→ X′

〈A2σ, τ 〉 =

∫

Ω

τs||D(u)||εσ : τ dx (2.23)

The associated bilinear forms a1(., .) and a2(., .) defined on V −→ V′ and M −→
M′

a1(u,v) = 〈A1u,v〉, a2(σ, τ ) = 〈A2σ, τ 〉
Let B1 and B2 defined on V −→ Q′ and V −→ M′

〈B1v, q〉 := −
∫

Ω

∇·v q dx , 〈B2v,σ〉 := −
∫

Ω

τsD(v) : σ dx (2.24)

〈A(u,σ), (v, τ )〉 = 〈A1u,v〉 + 〈A2σ, τ 〉 +
〈
BT

2 v,σ
〉

+ 〈B2u, τ 〉
The corresponding operator form reads:






A1 BT
2 BT

1

B2 −A2 0

B1 0 0











u

σ

p




 =






rhsu

rhsσ

rhsp






The associated bilinear form for U = (u,σ) and V = (v, τ ) are

a(U ,V) = a1(u,v) + a2(σ, τ ) + b2(v,σ) + b2(u, τ )

Find (U , p) ∈ X × Q such that:
{

a(U ,V) + b(V, p) = 〈f ,V〉 ∀V ∈ X

b(U , q) = 〈g, q〉 ∀q ∈ Q
(2.25)
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VISCOPLASTIC FLUIDS

2.3.3 Existence and Uniqueness of Solution

In the work of Aposporidis et al. [1], it is shown that the weak formulation
of the three-field Bingham (2.25) is equivalent to the weak formulation of the
two-field Bingham with the regularized viscosity approach i.e. eq. (2.8) and
(2.4) in the reference article. The following theorem states the well-posedness
for the weak form of eq. (2.13)

Theorem 1 (for proof see [1])
The mixed formulation has a unique solution {u,σ, p} from H1

0×(L2
sym)2×2×L2

0

such that

||u||21 + ετs ||σ||2 ≤ ||f ||−1 , ||p||0 ≤ c(||f ||−1 + τsmin{1, ε−1 ||f ||−1}). (2.26)

where ε is a regularization parameter and c is a constant. Moreover, σ ∈
(L∞

sym)2×2 and ||σ||L∞ ≤ 1.

There is no extension of this theorem for the well-posedness of regularization-
free Bingham case i.e. ε = 0. Therefore, It is still an open problem in the
theory. In the coming sections, it is shown that the unique numerical solution
of (u,σ, p) in the three-field Bingham formulation is obtained in the model
problem i.e. ”Bingham fluid flow in a channel”. The numerical solution satisfies
the analytical unique solution not only for the regularized problem but also for
the regularization-free Bingham problem.

2.4 Analytical Solution for Bingham flow in a

Channel

This two dimensional test case provides the analytical solution of the Bingham
fluid flow between infinite parallel plates, the domain is considered unit length
apart and long (h = 1). The viscosity (η) of the fluid is considered as unity. The
flow moves due to the x-component of the velocity (u1) and the y-component
of the velocity (u2) is zero. Considering the analytical solution for velocity and
pressure as:

u1 =







1

8

[
(1 − 2τs)2 − (1 − 2τs − 2y)2

]
0 ≤ y <

1

2
− τs

1

8
(1 − 2τs)2 1

2
− τs ≤ y ≤ 1

2
+ τs

1

8

[
(1 − 2τs)2 − (2y − 2τs − 1)2

] 1

2
+ τs < y ≤ 1

(2.27)

p = ax+ b (2.28)

14
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where the slope of the pressure gradient a = −1 because of the linear pressure in
Poiseuille theory [37]. The analytical expression for the auxiliary stress tensor
σ is calculated as:

σ12 =







1√
2

0 ≤ y <
1

2
− τs

− 4√
2
y +

2√
2

1

2
− τs ≤ y ≤ 1

2
+ τs

− 1√
2

1

2
+ τs < y ≤ 1

(2.29)

with σ11 = 0, σ22 = 0 and σ12 = σ21 due to symmetry. The solution of
velocity and auxiliary stress tensor is dependent on the zones inside the channel,
therefore, the expression for D(u) is calculated and the solution corresponding
to the respective zone is inserted into the three-field system of equations (2.13).
Keeping the definition of deformation tensor in mind i.e. D(u) = 1

2 (∇u +
(∇u)T ), the expression for D(u) is derived as follows:

D12 =







1

4
[(1 − 2τs − 2y)] 0 ≤ y <

1

2
− τs

0
1

2
− τs ≤ y ≤ 1

2
+ τs

−1

4
[(2y − 2τs − 1)]

1

2
+ τs < y ≤ 1

(2.30)

with D11 = 0 and D22 = 0.

||D(u)|| =







1√
8

[(1 − 2τs − 2y)] 0 ≤ y <
1

2
− τs

0
1

2
− τs ≤ y ≤ 1

2
+ τs

1√
8

[(2y − 2τs − 1)]
1

2
+ τs < y ≤ 1

(2.31)

The exact solution should satisfy the system of equations (2.13) for all zones,
therefore, the Newtonian and rigid zones are presented separately.

2.4.1 Newtonian Zone

Constitutive eq







||D(u)||ε σ12 −D12 = 0

1√
8

[(1 − 2τs − 2y)]
1√
2

− 1

4
[(1 − 2τs − 2y)] = 0

0 = 0

15
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Momentum eq







−2η

(
D11

∂x
+
D12

∂x

)

−
√

2τs

(σ11

∂x
+
σ12

∂x

)

+
∂p

∂x
= 0

−2(1)

(

0 − 2

4

)

−
√

2τs (0 + 0) − 1 = 0

1 + 0 − 1 = 0

0 = 0

−2η

(
D12

∂y
+
D22

∂y

)

−
√

2τs

(
σ12

∂y
+
σ22

∂y

)

+
∂p

∂y
= 0

−2(1) (0 + 0) − τs (0 + 0) + 0 = 0

0 = 0

Continuity eq







∂u1

∂x
+
∂u2

∂y
= 0

0 + 0 = 0

2.4.2 Rigid Zone

Constitutive eq







||D(u)||ε σ12 −D12 = 0

0

(−4√
2
y +

2√
2

)

= 0

0 = 0

Momentum eq







2η

(
D11

∂x
+
D12

∂x

)

−
√

2τs

(σ11

∂x
+
σ12

∂x

)

+
∂p

∂x
= 0

−2(1) (0 + 0) −
√

2τs

(

0 − 4√
2

)

− 1 = 0

1 − 1 = 0

0 = 0

−2η

(
D12

∂y
+
D22

∂y

)

−
√

2τs

(
σ12

∂y
+
σ22

∂y

)

+
∂p

∂y
= 0

−2(1) (0 + 0) − τs (0 + 0) + 0 = 0

0 = 0

Continuity eq







∂u1

∂x
+
∂u2

∂y
= 0

0 + 0 = 0
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Hence, the analytical expression of σ,u, p is satisfying the equations of three-
field Bingham formulation. As already mentioned in subsection 2.3.3, the mixed
formulation has a unique solution for the regularized problem but there is no
possible extension for the well-posedness of the regularization-free problem. In
the numerical results for the configuration ”Bingham fluid flow in a channel”
in chapter 5,we show that our monolithic numerical solver with the three-field
Bingham formulation can recover the exact solution not only for the regularized
but also for the regularization-free (ε = 0) Bingham problem. Hence, one can
exactly solve and obtain the unique solution of the regularization-free Bingham
fluid flow at least numerically.
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Chapter 3

Finite Element Method

3.1 Introduction

Several methods are available for the space discretization of any given system of
equations, for example the finite difference method (FDM) [38, 39, 40], the finite
volume method (FVM) [41, 42] and the finite element method (FEM) [43, 44,
45]. FEM is a new method as compared to the other methods, it was mainly used
in structural mechanics but in the present era, it is also widely used in other fields
(e.g. fluid dynamics, heat conduction, magnetic field and many more). The
demand of this method is really high because of its flexibility to solve complex
boundary value problems robustly and accurately. FEM finds the solution of a
complex problem by generating an alternative weak problem: By multiplying
the original differential equations to the test functions and integrating over the
whole domain. Afterwards, the solution of the weak problem is approximated
instead of finding the exact solution of the differential equations (strong form).
Moreover, there can be different ways for the improvement of this approximated
solution e.g. by refining the grid/mesh of the geometry or assuming the higher
order polynomials for the interpolation. In the next section, an explanation of
the fundamentals of finite element method is given, by applying it on the simple
Poisson’s equation.

3.2 FEM for Poisson’s Equation

For understanding the finite element method in a better way, we consider a very
simple steady state problem i.e. Poisson’s equation, defined as follows:

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0 (3.1)
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CHAPTER 3. FINITE ELEMENT METHOD

where ”u” is the distribution of the heat in a rectangular domain Ω = [0, a] ×
[0, b], shown in Fig. 3.1. The value of the temperature at the boundaries is
given as

u(0, y) = 100, u(a, y) = 250,

u(x, 0) = 50, u(x, b) = 200.

x

y

1 2 3 4 5

10 9 8 7 6

11 12 13 14 15

a

b

Figure 3.1: The rectangular domain with global node numbers.

The first step of the finite element method, is to multiply the weight (test)
function with the equation in order to reduce the strong continuity condition
on the variables. Therefore, we multiply the equation (3.1) with a test/weight
function i.e. w(x, y), and integrate over a random domain Ωr, which is basically
inside the solution domain Ω (Ωr ∈ Ω). The resulting equation reads as follows:

∫

Ωr

w(x, y)
(∂2u

∂x2
+
∂2u

∂y2

)

dxdy = 0 (3.2)

∫

Ωr

(

w(x, y)
∂2u

∂x2
+ w(x, y)

∂2u

∂y2

)

dxdy = 0 (3.3)

By using the product rule of the following term

∇(w,∇u) = ∇w∇u+ w∇2u,

rearrange it as:
∇(w,∇u) − ∇w∇u = w∇2u, (3.4)

using the relation 3.4, we obtain the following form of the equation (3.3):

∫

Ωr

(( ∂

∂x

[

w
∂u

∂x

]

− ∂w

∂x

∂u

∂x

)

+
( ∂

∂y

[

w
∂u

∂y

]

− ∂w

∂y

∂u

∂y

))

dxdy = 0 (3.5)
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rearranging the above equation as:

∫

Ωr

(( ∂

∂x

[

w
∂u

∂x

]

+
∂

∂y

[

w
∂u

∂y

])

−
(∂w

∂x

∂u

∂x
+
∂w

∂y

∂u

∂y

))

dxdy = 0 (3.6)

To convert the volume integral into the line integral, we apply Gauss divergence
theorem [46] on the first term of above equation, such that:

∫

Ωr

( ∂

∂x

[

w
∂u

∂x

]

+
∂

∂y

[

w
∂u

∂y

])

dxdy =

∫

Γr

[

w
∂u

∂x

]

· nx +
[

w
∂u

∂y

]

· ny ds (3.7)

where n is the normal vectors on the boundary in outward direction. Taking
the terms of boundary integral on the right hand side, we define the new term
fn as:

fn = nx

∂u

∂x
+ ny

∂u

∂y

substituting the value in equation (3.6)

∫

Γr

wfnds−
∫

Ωr

(∂w

∂x

∂u

∂x
+
∂w

∂y

∂u

∂y

)

dxdy = 0 (3.8)

Then, the complete weak formulation of the equation (3.1) can be written as:

∫

Ωr

(∂w

∂x

∂u

∂x
+
∂w

∂y

∂u

∂y

)

dxdy =

∫

Γr

wfnds (3.9)

The strong continuity requirement is now weakened and equally shared by the
weight function, that satisfies the essential boundary conditions of the domain
and presents variation of the primary variable u. In order to do the approx-
imation of the solution of equation 3.9, we divide the rectangular domain Ω
into the finite elements (e). The node and the edge of the elements must be
common with neighbouring element except on the boundaries. The ansatz for
the approximated solution u of equation (3.9) can be defined as:

ue(x, y) =

nu∑

i=1

ue
iψ

e
i (x, y) (3.10)

where ue
i is value of the solution at node i of the element e and ψe

i is the shape
function for the interpolation of u at node i within the element. The choice of
the shape function must satisfy the following properties:

1. The value of the shape function ψi = 1 at node i and zero at any other
nodes in the domain, where δij is the Kronecker delta,

ψe
i (x, y) = δij =

{
1 if i = j
0 if i 6= j.
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2. The sum of all the basis functions ψi on a local element should be equal
to 1.

nu∑

i=1

ψe
i (x, y) = 1 (3.11)

3. The sum of the derivatives of the shape function’s should vanish at any
point in the element, known as the conservation property.

nu∑

i=1

∇ψe
i (x, y) = 0 (3.12)

After substituting the assumed solution into the equation (3.9), we get

∫

Ωr

(∂w

∂x

nu∑

i=1

ue
i

∂ψe
i

∂x
+
∂w

∂y

nu∑

i=1

ue
i

∂ψe
i

∂y

)

dxdy =

∫

Γr

wfnds (3.13)

As already mentioned, the weight function exhibits the variation of the primary
variable u, therefore, we can assume the same kind of shape function for the w
i.e. wj = ψj for j = 1, 2, 3, ...., n.

∫

Ωr

( nu∑

i=1

nu∑

j=1

ue
i

∂ψe
i

∂x

∂ψe
j

∂x
+

nu∑

i=1

nu∑

j=1

ue
i

∂ψe
i

∂y

∂ψe
j

∂y

)

dxdy

︸ ︷︷ ︸
nu∑

i=1

nu∑

j=1

Ke
ij

u
e
i

=

∫

Γr

nu∑

j=1

ψe
jfnds

︸ ︷︷ ︸

F e
j

(3.14)

Hence, the matrix form of the equation (3.14) reads:

nu∑

i=1

nu∑

j=1

Ke
ijue

i = F e
j (3.15)

In case of any external force or source term, it will be added into the right hand
side of the equation. In order to construct the shape functions, the choice of
the interpolation function is very important.

Choice of the interpolation function

Basis functions on the local elements are constructed from the piecewise poly-
nomials e.g. Lagrangian polynomials [47]. It helps to construct the kth order
shape functions systematically, where k is any positive real number

Lk(x) =

n∏

i=1,i 6=j

x− xi

xk − xi

= ψe
k(x). (3.16)
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Here the Langrange polynomial L is the Kronecker delta and it also satisfy the
properties (3.11, 3.12) of the shape function.

x

y
(−1, 1)

4

(−1,−1)

3

(1,−1)

2

(1, 1)

1

Figure 3.2: A local Q1 quadrilateral from the rectangular domain.

For a local Q1 quadrilateral Fig. 3.2, the interpolation functions are calculated
with the Lagrange polynomial [47] as follows, where k 6= i:

Case 1: k = 1, j = 1

L1(x1, y1) =
x− x2

x1 − x2
.
y − y4

y1 − y4
= ψe

1(x, y)

ψe
1(x1, y1) =

x− (1)

(−1) − 1
.
y − 1

(−1) − 1

ψe
1(x1, y1) =

x− 1

−2
.
y − 1

−2

ψe
1(x1, y1) =

1 − x

2
.
1 − y

2

ψe
1(x1, y1) =

1

4
(1 − x)(1 − y)

Case 2: k = 2, j = 2

L2(x2, y2) =
x− x1

x2 − x1
.
y − y3

y2 − y3
= ψe

2(x, y)

ψe
2(x2, y2) =

x− (−1)

1 − (−1)
.
y − 1

(−1) − 1

ψe
2(x2, y2) =

x+ 1

2
.
y − 1

−2

ψe
2(x2, y2) =

x+ 1

2
.
1 − y

2

ψe
2(x2, y2) =

1

4
(1 + x)(1 − y)
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Case 3: k = 3, j = 3

L3(x3, y3) =
x− x4

x3 − x4
.
y − y2

y3 − y2
= ψe

3(x, y)

ψe
3(x3, y3) =

x− (−1)

1 − (−1)
.
y − (−1)

(1) − (−1)

ψe
3(x3, y3) =

x+ 1

2
.
y + 1

2

ψe
3(x3, y3) =

x+ 1

2
.
1 + y

2

ψe
3(x3, y3) =

1

4
(1 + x)(1 + y)

Case 4: k = 4, j = 4

L4(x4, y4) =
x− x3

x4 − x3
.
y − y1

y4 − y1
= ψe

4(x, y)

ψe
4(x4, y4) =

x− 1

−1 − 1
.
y − (−1)

1 − (−1)

ψe
4(x4, y4) =

x− 1

−2
.
y + 1

2

ψe
4(x4, y4) =

1 − x

2
.
1 + y

2

ψe
4(x4, y4) =

1

4
(1 − x)(1 + y)

Here, x and y are the local coordinates of an element. Hence, the basis functions
for a Q1 element can be collectively written as:

ψe
1(x, y) =

1

4
(1 − x)(1 − y)

ψe
2(x, y) =

1

4
(1 + x)(1 − y)

ψe
3(x, y) =

1

4
(1 + x)(1 + y)

ψe
4(x, y) =

1

4
(1 − x)(1 + y)

(3.17)

The matrix Kij from the equation (3.15) can be calculated with the following
definition: ∫

Ωr

[∂ψe
i

∂x

∂ψe
j

∂x
+
∂ψe

i

∂y

∂ψe
j

∂y

]

dxdy (3.18)

This integration can be numerically computed through Guass-Legendre Quadra-
ture [48]. The integrals from equation (3.18) for the matrix Kij , can be written
as: For i = 1 and j = 1, 2, 3, 4
∫

Ωr

(∂ψe
1

∂x

[∂ψe
1

∂x
+
∂ψe

2

∂x
+
∂ψe

3

∂x
+
∂ψe

4

∂x

]

+
∂ψe

1

∂y

[∂ψe
1

∂y
+
∂ψe

2

∂y
+
∂ψe

3

∂y
+
∂ψe

4

∂y

])

dxdy

(3.19)
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We denote ψ11 as:

ψ11 =

∫

Ωr

(∂ψe
1

∂x

[∂ψe
1

∂x

]

+
∂ψe

1

∂y

[∂ψe
1

∂y

])

dxdy (3.20)

The corresponding matrix for all the shape functions of the local element (Fig.
3.2) can be written as:








ψ11 ψ12 ψ13 ψ14

ψ21 ψ22 ψ23 ψ24

ψ31 ψ32 ψ33 ψ34

ψ41 ψ42 ψ43 ψ44















u1

u2

u3

u4







. (3.21)

For writing the matrix of the global nodes, the connection details between the
local and the global node numbers of an element are required. Thus, the con-
nectivity matrix of all the elements in Fig. 3.1 is given as Kg, where g denotes
the global node numbers,

[
Kg

]
=


















1 2 9 10

2 3 8 9

3 4 7 8

4 5 6 7

7 6 15 14

8 7 14 13

9 8 13 12

10 9 12 11


















, (3.22)

consisting of the total 15 global nodes. The mapping of the first two elements
are given below, describing, how the global and the local nodes are connected.

Element 1








(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(4, 1) (4, 2) (3, 4) (4, 4)








7−→








(1, 1) (1, 2) (1, 9) (1, 10)

(2, 1) (2, 2) (2, 9) (2, 10)

(9, 1) (9, 2) (9, 9) (9, 10)

(10, 1) (10, 2) (10, 4) (10, 10)








Element 2








(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(4, 1) (4, 2) (3, 4) (4, 4)








7−→








(2, 2) (2, 3) (2, 8) (2, 9)

(3, 2) (3, 3) (3, 8) (3, 9)

(8, 2) (8, 3) (8, 8) (8, 9)

(9, 2) (9, 3) (9, 8) (9, 9)







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Lets assume a reference element Ωref = [−1, 1] with the coordinate system
(ξ, η). The bilinear mapping of a Q1 element from real to the reference element
can be seen in Fig. 3.3, defined by the following equation:

(

x

y

)

=

(

ψref
1 (ξ, η).x1 + ψref

2 (ξ, η).x2 + ψref
3 (ξ, η).x3 + ψref

4 (ξ, η).x4

ψref
1 (ξ, η).y1 + ψref

2 (ξ, η).y2 + ψref
3 (ξ, η).y3 + ψref

4 (ξ, η).y4

)

(3.23)

x

y
(x4, y4)

4

(x1, y1)

3

(x2, y2)

2

(x3, y3)

1

Fe

F−1
e

ξ

η

(−1, 1)

4

(−1,−1)

3

(1,−1)

2

(1, 1)

1

Figure 3.3: Mapping of aQ1 quadrilateral between real(right) and reference(left)
element.

Hence, the final assembly equation reads:

[
Kg

]
{U} = {F}

The nodal solution vector ui is already known at the boundaries because of
the given essential boundary conditions. On the shared boundary nodes, either
the average value (on both boundaries) or the higher value of u is considered.
Therefore, after substituting the boundary conditions, the vector {U} is given
as:

{U} = {75 50 50 50 150 250 u7 u8

u9 100 150 200 200 200 225}

The equation in the matrix form reads:




 Kg











u7

u8

u9




 =




F





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The solution of such equation yields:






u7

u8

u9




 =




 Kg






−1 


F






3.3 Finite Element Approximations

The basics of the FEM is already explained in details in the previous section
using simple Poisson’s equation. In the following subsections (3.3.1) and (3.3.2),
the finite element approximation for the Navier-Stokes equations and the three-
field formulation of Bingham fluid is presented, respectively.

3.3.1 The Navier-Stokes Equations

For the space discretization, let the bounded domain Ω ⊂ Rd be partitioned by
a grid Th consisting of elements K ∈ Th such that Ω =

(⋃

K∈Th
K
)
. For an

element K ∈ Th, we denote by E(K) the set of all 1-dimensional edges of K.
Let Ei :=

⋃

k∈Th
E(K) be the set of all interior element edges of the grid Th.

For the approximation of the problem (2.19) with the finite element method,
we introduce the approximation spaces Vh and Qh of V and Q, respectively.

Vh =
{

vh ∈ V,vh|K ∈ (Q2(K))2
}
,

Qh =
{

qh ∈ Q, qh|K ∈ P disc
1 (K)

}

.
(3.24)

The velocity and pressure fields are discretized using higher order stableQ2/P
disc
1

FEM [49, 50], presented in Fig. 3.4. Then the approximate problem of (2.19)
reads; Find (Uh, ph) ∈ Vh × Qh s.t.

{

a(Uh,Vh) + b(Vh, ph) = 0 ∀Vh ∈ Vh,

b(Uh, qh) = 0 ∀qh ∈ Qh.
(3.25)

The corresponding nonlinear discrete Navier-Stokes system reads:

[

Au BT

B 0

][

u

p

]

=

[

rhsu

rhsp

]

, (3.26)

where

Au := Lu + Nu, (3.27)

here, Lu is the discrete diffusion and Nu is the discrete nonlinear transport
operator w.r.t. u. Moreover, B is the vectorial discrete divergence operator.
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3.3.2 The Bingham Three-Field Formulation

This section is devoted for the implementation of the finite element approxi-
mation of the three-field Bingham model. The strong form of the system of
equations in (2.13) is converted into the weak formulation by multiplying it
with the test functions and integrated over the whole domain (already devel-
oped in section 2.3). Let the bounded domain Ω ⊂ Rd be partitioned by a
grid Th consisting of elements K ∈ Th such that Ω =

(⋃

K∈Th
K
)
. For an ele-

ment K ∈ Th, we denote by E(K) the set of all 1-dimensional edges of K. Let
Ei :=

⋃

k∈Th
E(K) be the set of all interior element edges of the grid Th. We

introduce the approximation spaces as:

Vh =
{

vh ∈ V,vh|K ∈ (Q2(K))2
}

Mh =
{

τ h ∈ M,σh|K ∈ (Q2(K))2×2
}

Qh =
{

qh ∈ Q, qh|K ∈ P disc
1 (K)

}
(3.28)

The velocity, stress and pressure are discretized using Q2, Q2, P
disc
1 finite ele-

ments, respectively, as shown in Figure 3.4. Q2(K) is the bi-quadratic space on
the quadrilateral K with nine degrees of freedom located at vertices, mid points
and in the center of the edges of quads, is defined as:

Q2(K) = {q ◦ F−1
K : q ∈ span < 1, x, y, xy, x2, y2, x2y, xy2, x2y2 >} (3.29)

The P1(K) is defined as:

P1(K) = {q ◦ F−1
K : span < 1, x, y >} (3.30)

with three degrees of freedom at the centre of the quadrilateral containing func-
tion’s value and its partial derivatives. For the pressure element, if the trans-
formation (F−1

K ) is being performed from real to reference coordinates, then the
resulting linear function along with the Q2 bilinear mapping, does not contain
the full bilinear basis. This affects the order of approximation of the finite el-
ement method. Therefore, to cure such problem, consider (ξ, η) as the local
coordinate system by joining the midpoints of the opposite faces of the element
K [51, 52, 53], The P1(K) is now defined as; .

P1(K) = span{1, ξ, η} (3.31)

Consequently, the approximation method turns out to be second order (in in-
terpolation error) not only for the velocity but also for the pressure field.

||p− ph||0 = O(h2) and ||u − uh||0 = O(h2) (3.32)

The approximate discrete problem is now defined as: Find (Uh, ph) ∈ Xh × Qh

such that: {

a(Uh,Vh) + b(Vh, ph) = 〈f ,Vh〉 ∀Vh ∈ Xh

b(Uh, qh) = 〈g, qh〉 ∀qh ∈ Qh
(3.33)
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We introduce the discrete solutions for uh,σh and ph, respectively as follows:

uh =

NNu∑

i=1

uivi σh =

NNσ∑

i=1

σiφi ph =

NNp∑

i=1

piψi (3.34)

Here NN denotes the number of unknown nodes in each element and vi, φi and
ψi are the basis functions. By keeping the test and basis functions same, the
discrete formulation will be similar to the system (2.25) and will provide an
approximate solution.

Q2 Q2 P disc
1

Figure 3.4: Finite elements Q2, Q2, P
disc
1 for the velocity, stress and pressure,

respectively, on each quadrilateral.

3.4 Stability of the Finite Elements

The chosen FEM spaces for the field variables should satisfy the LBB stability
conditions [54]. In the present work, the choice of the elements for the velocity
and pressure are compatible according to the LBB (inf-sup) condition.

sup
u∈Vh

∫

Ω
∇ · uqdx

||u||1,Ω

≥ α ||q||0,Ω ∀q ∈ Qh (3.35)

In the three-field Stokes problem, the compatibility condition for the velocity-
stress [55] variables should also satisfy such that:

sup
σ∈Wh

∫

Ω
∇ · σudx

||σ||0,Ω

≥ γ ||u||1,Ω ∀u ∈ Vh (3.36)

where α and γ are the mesh independent parameters, ||.||1,Ω and ||.||0,Ω are the

standard H1(Ω), L2(Ω) norms and Wh ⊂ (L2(Ω))4, respectively. According to
Fortin and Pierre [56], when the solvent viscosity terms vanishes in the problem
(e.g. viscoelastic fluid) then the approximation spaces of the discrete problem
should satisfy the following properties:
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CHAPTER 3. FINITE ELEMENT METHOD

• Condition 1: The velocity-pressure spaces must be compatible with re-
spect to estimate (3.35).

• Condition 2: If the stress tensor σ is approximated by a discontinuous
FEM space, the deformation tensor must be a member of the same space

D(u) =
1

2
(∇u + (∇u)T ) ∈ Mh,∀u ∈ Vh. (3.37)

• Condition 3: If the same tensor is approximated by a continuous FEM
space, the number of local degrees of freedom must be larger than the
velocity space.

In our work, the choice of the FEM pair for the velocity-pressure satisfies the
condition 1, whereas, there are some proposed solutions [57, 58] in the form of
different element types for the fulfilment of the second and the third conditions.
Moreover, Baranger et al. [59] proposes that there is no need of inf-sup condition
on the non-Newtonian extra stress tensor (i.e. condition 2 and 3) unless the
solvent viscosity (η) vanishes. They define a three-field Stokes discrete problem
as:
Find (σh,uh, ph) ∈ Mh × Vh × Qh such that:







(σh, τ h) − 2α(D(uh), τ h) = 0 ∀τ h ∈ M
h

(σh, D(vh)) + 2η(1 − α)(D(uh), D(vh)) − (ph, ∇ · vh) = 〈f , vh〉 ∀vh ∈ V
h

(∇ · uh, qh) = 0 ∀qh ∈ Q
h

(3.38)

For 0 < α < 1, the problem 3.38 allows to suppress the second and third condi-
tions, which broadens the spectrum for choosing the finite element approxima-
tion for the extra stress tensor σ. In the present three field Bingham problem,
the case of α = 1 does not appear (solvent viscosity (η) is always present).
Therefore, the inf-sup condition for the stability of velocity-stress (u,σ) is not
required. Henceforth, the corresponding operator form reads:






A1 BT
2 BT

1

B2 −A2 0

B1 0 0











u

σ

p




 =






rhsu

rhsσ

rhsp




 . (3.39)

Nevertheless, for the convection dominated or the complex Bingham flows (the
value of the yield stress τs is too large), the convergence of the solving method
may be effected. Moreover, when the solvent viscosity vanishes in the non-
Newtonian fluids and the choice of the stable finite element is not available,
the solver faces difficulties in the convergence. In order to circumvent such
situations, solver may need any kind of pre-conditioner/stabilization (e.g. edge-
oriented or artificial diffusion stabilization etc.). The numerical studies for such
situations are shown in the forthcoming chapters.
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3.5 Edge Oriented FEM Stabilization

In the EOFEM, a jump term of the solution gradient over the element edges is
added either in the velocity or stress tensor equations. It controls the solution
jumps between the edges of the two neighbouring elements. The jump term
[60, 61] for the velocity can be defined as:

Ju =
∑

edge E

γuh

∫

E

[∇u] : [∇v]ds (3.40)

Ju =
∑

edge E

γuh
2

∫

E

[∇u] : [∇v]ds (3.41)

where γu is a constant parameter (chosen according to the numerical oscillations
in the problem) and h is the mesh refinement size. The resulting sparsity-pattern
of the matrix does not remain the standard one, after the addition of this term.
The corresponding operator form reads as follows:






A1 + Ju BT
2 BT

1

B2 −A2 0

B1 0 0











u

σ

p




 =






rhsu

rhsσ

rhsp




 (3.42)

Similarly, the jump term [62, 63] for the stress tensor can be defined as:

Jσ =
∑

edge E

γσh

∫

E

[∇σ] : [∇φ]ds (3.43)

where γσ is a constant parameter, the corresponding operator form reads as
follows: 




A1 BT
2 BT

1

B2 −A2 + Jσ 0

B1 0 0











u

σ

p




 =






rhsu

rhsσ

rhsp




 (3.44)

3.6 Artificial Diffusion Stabilization

While solving the highly non-linear system of equations, the numerical oscil-
lations might appear in the solution effecting its convergence behaviour. In
order to suppress these oscillations, the artificial diffusion can be used as a
stabilization. In the present work, the system of equations (2.13) is also non-
linear. Therefore, some amount of artificial diffusion is added to the constitutive
equation of the stress tensor σ in the form of a linear operator Lσ = γh2∆σ.
This stabilization is controlled by a parameter γh2, which decreases with mesh
refinement.
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The non-linearity of the system of equations (2.13) increases, when the regular-
ization parameter ε gets very small. To overcome this problem, we add a small
amount of stabilization in order to increase the stability of the numerical solver
but the accuracy of the solution is a little bit compromised. The corresponding
operator form reads as follows:






A1 BT
2 BT

1

B2 −A2 + Lσ 0

B1 0 0











u

σ

p




 =






rhsu

rhsσ

rhsp




 (3.45)

The effect of the stabilization can be observed in the detailed numerical studies
carried out in the next chapters.
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Chapter 4

Nonlinear and Linear

Solvers

4.1 Nonlinear Solver

This chapter provides a brief description of the numerical solvers, that have been
used for solving the nonlinear system of equations (3.39). The nonlinearity of
this system arises due to the presence of the nonlinear viscosity term in the
constitutive equation of the new auxiliary stress tensor. Solving such a system
is a big challenge for any nonlinear numerical solver. Usually, the Newton or
fixed point iteration methods [64] are used to solve the nonlinear problems in
fluid dynamics. Since the Newton method usually has a faster convergence rate
than the fixed point method, therefore, it is preferred in most of the cases.

4.1.1 Newton Method

This section explains the linearization process of the Newton method. For a
function R(U) ∈ C1 and its non-zero first derivative R′

(U), where U = (u,σ, p)
is the solution vector and R is the residual of the current nonlinear system
(3.39). The Newton iteration reads as:

Un+1 = Un − R′

(Un)
−1R(Un) for all n ≥ 0 (4.1)

The basic purpose of this method is to find the root of the equation (4.1), where
the derivative of the function should be non-zero. Moreover, the initial guess
U0 must be provided at n = 0 to solve the following step:

J(Un) δUn = R(Un)
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where J(Un) = ∂R(Un)
∂Un is the Jacobian matrix. The advantageous quadratic

convergence of the Newton method is proved according to the following theorem.

Theorem 2 Let x be a solution of F (x) = 0 and the Jacobian J(xn) = ∂F (x
n)

∂x
n

is invertible and locally Lipschitz continuous. Then, if x0 is sufficiently close to
x, the Newton algorithm has the following property [65]

∣
∣
∣
∣xn+1 − x

∣
∣
∣
∣ ≤ c ||xn − x||2 .

Newton method is very sensitive regarding the initial guess of the solution and
depends strongly on the properties of the Jacobian matrices during the itera-
tions. It is very important to have initial guess close to the solution for achieving
the quadratic convergence. In the present work, the Newton method solves the
nonlinear steady system of equations (2.13) with the following steps:

Algorithm 1 Newton method solver

• Provide the input parameters, e.g. tolerance, parameters of the non linear
solver, initial guess and the iteration number n

• Repeat until the tolerance is achieved

• Calculate the residual R(Un) = A Un − b

• Build the Jacobian J(Un) = ∂R(Un)
∂Un

• Solve J(Un) δUn = R(Un)

• Find the optimal value of the damping factor ωn ∈ (−1, 0]

• Approximate Un+1 = Un − ωn δUn

There are also some other factors in the Newton method which should be taken
into account for the numerical stability, e.g. a damping factor ω (when the
solution is non-smooth). In our work, this factor is calculated by a root finding
technique called the line search method [66, 67]. This method calculates the
damping parameter ω automatically by adaptively changing the length of the
correction vector. The ωn ∈ (−1, 0] is calculated such that:

J(Un+1) · Un+1 ≤ J(Un) · Un

The residual is calculated by the following equation:

R(ω) = Un − ωn δUn

If Un is far from the final solution, then the damping strategy helps to minimize
the residual R(ω) by back tracking into the Newton direction i.e. δUn [62]. To
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find the new value of ω, the method first tests the value ω = −1 (called full
step). Afterwards, the new damping factor can be calculated using the following
quadratic equation:

ωnew =
−
∣
∣
∣

∣
∣
∣R′

(0)
∣
∣
∣

∣
∣
∣

2(||R(1)|| − ||R(0)|| − ||R′(0)||) (4.2)

where ω0,R(0) and R′

(0) are the known factors (calculated from step 3 and
4 in the algorithm 1). Once the ωnew is calculated, the old value R(ω = −1)
is replaced with the new one and the process continues till R(ω) is minimized.
For the current nonlinear Bingham problem, one Newton iteration reads:











un+1

σn+1

pn+1











=











un

σn

pn











− ωn












∂Ru(Un)

∂u

∂Ru(Un)

∂σ

∂Ru(Un)

∂p

∂Rσ(Un)

∂u

∂Rσ(Un)

∂σ

∂Rσ(Un)

∂p

∂Rp(Un)

∂u

∂Rp(Un)

∂σ

∂Rp(Un)

∂p












−1









Ru(Un)

Rσ(Un)

Rp(Un)











(4.3)
In the Newton method, first derivative of the residuals are needed in every
nonlinear iteration called Jacobian matrix. The Jacobian is either calculated
analytically or approximated by the divided difference method. The advantage
of the approximation of the Jacobian is that this method acts in a black box
manner so that it allows any nonlinear equations to be handled automatically
without having to derive the corresponding calculations [62, 68]. In this work,
the Jacobian matrix is not computed exactly, instead its approximation is com-
puted using divided differences and the corresponding j-th column is given as
follows [

∂R(Un)

∂Un

]

j

≈ R(Un + χδj) − R(Un − χδj)

2χ
(4.4)

where δj is the vector with unit j-th component and zero otherwise. The advan-
tage of this approximation is that we don’t need any knowledge of the Jacobian
a priori. However, in this method, the step-size χ is a ”free” parameter and the
right choice might be a delicate task. The parameter χ can be fixed or can be
modified according to some norm of the solution ||Un|| or the norm of the up-
date in the previous step, i.e.

∣
∣
∣
∣δUn−1

∣
∣
∣
∣. Theoretically [69], for double machine

precision the value of the χ
1
3 = 10−6 is suggested but practically, the step size

is chosen to be χ
1
2 = 10−8.

4.2 Linear Solver

After the linearization of the problem with Newton method, the next significant
task is to solve the linear sub-problem. Usually, the linear solvers are divided
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into two categories, direct and iterative solvers. The choice of using one of
these types, depends on the size of the problem matrix. The computations of
the linear solver are expensive w.r.t. time. Therefore, considering that the
computational machine has sufficiently high memory, the direct solver may be
a good choice. There are several direct solvers in the literature e.g. Gauss
elimination or LU decomposition [70, 71]. In these solvers, if the matrix A
and right hand side is provided, the method solves the problem in one step
and gives the solution of unknown vector U containing all the unknown fields
{u,σ, p}. The unsymmetric multifrontal package (UMFPACK) [72] is one of
the ready to use available routines. Moreover, if the computing machines do
not have enough memory, then the iterative methods can be a good choice, ILU
decomposition, conjugate gradient method, bi-conjugate gradients and variants
(BICG, BICGSTAB [73], GMRES [74]) or multigrid [75] are examples of the
iterative methods.

4.2.1 Multigrid Method

Multigrid [75, 76, 77] is one of the fastest numerical solver for the linear systems,
consisting of different components named as smoother, restriction, prolongation
and a direct coarse mesh solver (UMFPACK). These components contribute
their part in solving the linear sub-problem. Multigrid works with grid re-
finement levels from higher to lower. Restriction is performed to convert the
solution from finer mesh to coarser and prolongation from coarse to finer mesh
levels. Moreover, pre and post smoothing steps are applied before and after
restriction/prolongation. The applied smoother is of Vanka-type [78, 53] with
the local pressure-schur complement approach:
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(4.5)

where |K represents that the corresponding terms are calculated on each element
and then the summation is carried out to assemble all elements. The algorithm
of one multigrid cycle is given below named as algorithm 2. The frequency of
visiting the coarser mesh level depends on the cycle types e.g. V-cycle, F-cycle
or W-cycle. The coarsest level is visited once in V-cycle and more than one
time in F-cycle. The gird of the coarsest level needs memory storage because it
is solved by the direct solver. Therefore, it should be coarse enough in order to
avoid any memory issue.
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Algorithm 2 One cycle multigrid

• Provide the input parameter, i.e. linear tolerance

• Set the coarse and maximum grid of level L

• Pre-smoothing: smooth eL

• Restriction: restrict A, R
• if (L− 1) is min level then

Solve Ae = R
Prolong the error e

else
Pre-smoothing: smooth e(L−1)

end if

In the next sections, solvability of the Newton-multigrid solver has been tested
for some simple benchmark problems for the Newtonian fluid flows i.e. laminar
flow around cylinder and lid driven cavity.

4.3 Flow Around Cylinder Benchmark

This DFG 2-dimensional benchmark [79] analyse the attributes of the flow
around an obstacle in a rectangular channel, where a cylinder of radius r = 0.05
is placed with the centre at (0.2, 0.2) in a rectangular channel of length 2.2, the
upper and lower walls are 0.41 length apart. The geometrical configuration and
coarse mesh are shown in Fig. 4.1 and 4.2. The fluid density (ρ) and kinematic
viscosity (η) are set to 1 and 0.001, respectively. The fluid is characterised by
the incompressible stationary three-field Navier-Stokes equations as follows:







σ − 2ηD(u) = 0 in Ω

u · ∇u − ∇ ·
(

2η(1 − α)D(u) + ασ

)

+ ∇p = 0 in Ω

∇ · u = 0 in Ω

u = gD on ΓD

(4.6)
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Γno-slip

Γout

Γno-slip

Γin

0.21

0.2

0.2

2.2

Figure 4.1: Flow around cylinder configuration.

Here, α is a constant parameter with the range 0 ≤ α ≤ 1. Dirichlet boundary
is defined at the inlet Γin with a parabolic profile

ux(y) =
(4.0Uy(0.41 − y)

(0.41)2
, 0
)

,

having maximum velocity Umax = 0.3. The corresponding mean velocity is
Umean = 0.2, where Umean is defined as:

Umean =
2

3
Umax.

No slip boundary condition is defined at the upper and lower walls and do-
nothing boundary condition is defined at the outlet Γout. The characteristic
length of the cylinder (L = 2rc = 0.1) along with the viscosity (η) and mean
velocity yields the Reynolds number Re = 20, depicting a laminar flow. Here
rc is the radius of the cylinder:

Re =
UmeanL

η
. (4.7)

Force acting on cylinder surface has two components i.e. lift and drag, respec-
tively. Lift is perpendicular to the direction of flow, whereas drag is parallel to
the direction of the flow. The mathematical expressions for lift and drag are
defined as:

FL = −
∫

S

(η
∂uτ

∂n
n1 − pn2)ds, FD =

∫

S

(η
∂uτ

∂n
n2 − pn1)ds. (4.8)

The dimensionless drag and lift coefficients are also calculated with following
definitions:

CD =
2

U2
meanL

FD, CL =
2

U2
meanL

FL.

For testing the robustness and efficiency of the resulting discretization in com-
parison with the Stokes solver both in two-field as well as in three-field formu-
lation, we substitute α = 0, for reducing this system of equations into two-field
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formulation. The numerical results illustrating the performance of system (4.6)
for flow around cylinder benchmark are presented in Table [4.1]. Numerical
results in the form of lift/drag are compared and validated with the results of
Damanik et al. [62]. Convergence of the solution is presented for higher order
finite elements (Q2/P

disc
1 ). Where ”NL” denotes nonlinear iterations, ”LL” de-

notes the average number of multigrid iterations. Each refinement level shows a
strong agreement between both studies. The accuracy of the solution in terms
of velocity magnitude, pressure and stream functions are presented in Fig. 4.3.
However, the basic purpose of this numerical study is to show the suppression
of the inf-sup condition on velocity-stress (u,σ) for the range of α between 0
and 1. Therefore, a detailed study [80] is carried out in Table [4.2] to show the
stability of the three-field system, unless α = 1. One can see the accuracy of the
solution as well as the robustness of the monolithic Newton-multigrid solver in
the above mentioned tables. Moreover, these results obtained from higher order
finite elements show mesh convergence with respect to the mesh refinements.
For the extreme case, when the solvent viscosity is absent i.e. α = 1, the solver
is not able to converge at all because the finite element pair for velocity-stress
(u,σ) is not stable. In order to circumvent this stability issue, edge-oriented
stabilization is added and clearly the solver is able to achieve accurate results
as well as the behaviour of convergence is quite good with the decent number of
iterations. The eofem stabilization can also be added to eliminate the numerical
oscillations of the solver. Moreover, it is beneficial to add eofem, when the yield
stress value is very large in the three-field Bingham formulation.

Figure 4.2: Flow around cylinder coarse mesh.

Table 4.1: Flow around cylinder Drag/Lift: Comparison with Damanik
et al.[62], where NL denotes the number of Newton iterations, LL denotes the
average number of multigrid iterations.

L Drag/Lift NL/LL Drag/Lift [62] NL/LL [62]
1 5.5550/0.009498 9/1 5.5550/0.009498 9/2
2 5.5722/0.010601 9/1 5.5722/0.010601 9/2
3 5.5776/0.010616 9/1 5.5776/0.010616 9/1
4 5.5791/0.010618 8/1 5.5790/0.010618 8/1
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(a) Velocity magnitude

(b) Pressure distribution

(c) Stream function

Figure 4.3: Flow around cylinder: Visualization of the velocity, pressure and
stream function.
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Table 4.2: Flow around cylinder: Values of lift and drag coefficient [80] for
flow around cylinder benchmark at different refinement levels for 0 ≤ α ≤ 1 in
the system (4.6) along with the solver performance in terms of ”NL/LL”.

With EOFEM

α L Lift/Drag NL/LL Lift/Drag NL/LL

0 1 0.008786117/5.5285 7/4 0.010107982/5.5427 7/3
0 2 0.010424275/5.5663 7/4 0.010702943/5.5674 7/3
0 3 0.010597517/5.5764 7/3 0.010619474/5.5757 7/3
0 4 0.010615911/5.5788 7/4 0.010616941/5.5782 7/3
0 5 0.010618494/5.5794 7/4 0.010618268/5.5790 6/4

0.25 1 0.009307183/5.5454 7/3 0.010013472/5.5301 7/3
0.25 2 0.010559395/5.5701 7/2 0.010677420/5.5639 7/2
0.25 3 0.010611104/5.5772 7/2 0.010615166/5.5744 7/3
0.25 4 0.010617270/5.5790 7/2 0.010615982/5.5777 7/3
0.25 5 0.010618658/5.5794 6/3 0.010617947/5.5788 6/4

0.5 1 0.009075847/5.5363 7/3 0.009911587/5.5171 7/3
0.5 2 0.010506223/5.5681 7/3 0.010650185/5.5601 7/2
0.5 3 0.010605621/5.5767 7/3 0.010610603/5.5730 7/3
0.5 4 0.010616682/5.5789 7/3 0.010614926/5.5771 7/3
0.5 5 0.010618582/5.5794 7/3 0.010617576/5.5785 7/4

0.75 1 0.008786117/5.5285 7/4 0.009800026/5.5039 7/3
0.75 2 0.010424275/5.5663 7/4 0.010620649/5.5562 7/3
0.75 3 0.010597517/5.5764 7/3 0.010605686/5.5715 7/3
0.75 4 0.010615911/5.5788 7/4 0.010613740/5.5764 7/3
0.75 5 0.010618494/5.5794 7/4 0.010617138/5.5782 7/4

1 1 - - 0.009675569/5.4903 7/3
1 2 - - 0.010587841/5.5520 7/3
1 3 - - 0.010600252/5.5698 7/3
1 4 - - 0.010612372/5.5756 7/3
1 5 - - 0.010616606/5.5778 7/4
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4.4 Lid Driven Cavity Benchmark

The numerical simulation of Newtonian fluid flow in the lid-driven square cav-
ity is a well-known as well as a very simple benchmark because of its wide
application in the industry e.g. where a shear is applied on the upper wall of
the square container. The geometrical configuration consists of a unit square
domain Ω = [0, 1]2, where the Dirichlet boundary conditions are imposed for
u|y=1 = (1, 0)T and u = 0 everywhere else. Two different Reynolds numbers
are tested i.e. Re = 1000 and Re = 5000, which corresponds to the constant
viscosity η = 1e− 3 and η = 2e− 4, respectively. For simulating the Newtonian
fluids, the yield stress value is set to zero i.e. τs = 0 in the system of equations
(2.13). The numerical results shown in the Table [4.3] presents a validation of
this benchmark with the Damanik et al. [62], where the Kinetic energy E is
calculated and compared at different refinement levels as:

E =
1

2
||u||20 .

The results calculated using Q2P
disc
1 elements, converged and are mesh indepen-

dent Table [4.3]. Fig. 4.4 represents the stream contours (top) and the velocity
magnitude (bottom) at the cut line passing through the centre of the square
domain for the mesh refinement level 8. It can be clearly observed that the
results are in good agreement with the results of Damanik et al. [62].

Table 4.3: Lid driven cavity: Comparison of the kinetic energy values with
Damanik et al. [62] for Newtonian fluid flow at Re = 1000 and Re = 5000 for
different mesh refinement levels.

Re = 1000 Re = 5000

L K.E. K.E. [62] K.E. K.E. [62]

4 5.245101e− 02 5.2454e− 02 8.486944e− 02 1.0860e− 01
5 4.541506e− 02 4.5418e− 02 6.082526e− 02 6.1149e− 02
6 4.458871e− 02 4.4590e− 02 4.955858e− 02 4.9571e− 02
7 4.452357e− 02 4.4524e− 02 4.768668e− 02 4.7691e− 02
8 4.451904e− 02 4.4519e− 02 4.744816e− 02 4.7465e− 02
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Figure 4.4: Lid driven cavity: stream line contours (top) and velocity mag-
nitude (bottom) at the cutline x = 0.5 for Newtonian fluid flow at Re = 1000
(left) and Re = 5000 (right).
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Chapter 5

Numerical Study of

Bingham

In this chapter, the numerical studies for different prototypical configurations of
Bingham viscoplastic fluid are carried out to test the solvability of the problem.
Three-field formulation with a constitutive equation of an auxiliary stress tensor
σ with Bercovier-Engelmann viscosity regularization model is solved with the
discrete Newton solver, the resulting linear problem is then solved with the
multigrid solver. Moreover, higher order finite elements Q2 are used to discretize
the velocity, stress and P disc

1 for pressure field. This discrete nonlinear system is
solved in a coupled manner/monolithically. The results of different benchmarks
show the accuracy and efficiency of the solver in the prediction of unyielded or
dead zones in the Bingham fluid regimes, which is very important for achieving
the ’true’ viscoplastic solution.

5.1 Bingham Fluid Flow in a Channel

The two dimensional channel is considered as a domain consisting of two parallel
plates with h length apart and long, shown in Fig. 5.1. Two different types of
boundary conditions have been imposed on this configuration in subsection 5.1.1
and 5.1.2, respectively.

As already discussed in chapter[2], that the three-field formulation has a poten-
tial to solve the Bingham fluid accurately as the regularization parameter can
be reduced to zero (”ε → 0”), reads as follows:

σ =
D(u)

||D(u)||ε
(5.1)
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





||D(u)||ε σ − D(u) = 0 in Ω

−∇ ·
(

2ηD(u) +
√

2τsσ
)

+ ∇p = 0 in Ω

∇ · u = 0 in Ω

u = gD on ΓD

(5.2)

x=1

y
=

1

u = 0

u = 0

Figure 5.1: Flow in a unit square channel (left) with the coarse mesh (right).

5.1.1 Boundary Conditions: Case 1

The problem is solved under the assumption of Dirichlet boundary conditions
on the domain Ω = [0, h]2 boundaries and the analytical velocity profile is given
for the x-component as:

u1 =







1

8

[
(h− 2τs)2 − (h− 2τs − 2y)2

]
0 ≤ y <

h

2
− τs

1

8
(h− 2τs)2 h

2
− τs ≤ y ≤ h

2
+ τs

1

8

[
(h− 2τs)2 − (2y − 2τs − h)2

] h

2
+ τs < y ≤ h

(5.3)

with u2 = 0 and p = −x + c [81]. The viscosity of the fluid is set to be η = 1,
the body force is f = 0 and h = 1 is considered. The central part of the channel
flow is the rigid/plug zone of constant velocity, i.e.

h

2
− τs ≤ y ≤ h

2
+ τs. (5.4)

A comparison study is carried out for the two-field (u, p) and the three-field
(u,σ, p) formulation in the Table [5.1], consisting of Newton iterations ”NL”
and L2 norm of the velocity error ||u − uex||. In this table, the mesh refinement
level 3 (h=1/8) is the coarse mesh level and no initial solution is given to this
refinement level. It can be clearly seen, that the two-field formulation could
only solve up to ε = 10−2, which concludes that this formulation can only solve
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Bingham for non-vanishing regularization parameter. On the other hand, the
three-field formulation can not only solve very small ε but also ε = 0 accurately,
quantitatively shown by ||u − uex|| in the Table [5.1]. Hence, the goal to solve the
regularization-free Bingham numerically is achieved with quite accurate results,
which assures the true viscoplastic solution.

Fig 5.2 presents the velocity magnitude for different ε at the refinement level
5 (h=1/32), where different flow regimes (shear and plug zones) are developed
depending on the yield stress value. When the applied stress is greater than
the threshold value τs (0.25 in the current test), the flow develops a parabolic
profile due to the shear region, whereas the middle region of the channel contains
the plug zone, where the ||D(u)|| = 0 and the fluid moves with the constant
velocity (u = c). Moreover, the value of the regularization parameter has a
great influence on the velocity profile inside the channel domain, when the ε
is large (10−1), the interface of the plug zone is not accurately captured. On
the other hand, when the value of the regularization parameter is smaller or
vanishes (i.e. ε = 0), the interface and the unyielded zones can be predicted
more accurately, which can be described quantitatively in the form of ||u − uex||
in the Table [5.1. The unyielded/dead zones can be expressed with the ||D(u)||
and its contours, shown in Fig. 5.3 and 5.4, respectively. The blue region in Fig.
5.3 corresponds to nearly zero value of the deformation tensor ||D(u)|| ≈ 0, it also
has a great impact of regularization parameter’s value. In this figure, the blue
region is almost absent in the case of ε = 10−1, which implies the compromised
accuracy of the solution in the rigid zone. The pressure distribution inside the
rigid zone of the fluid is not linear, Fig. 5.5 illustrates that the pressure is linear
in the Newtonian zone of the fluid (which is according to the expected solution)
but some singularities/perturbations occur near the boundaries and in the plug
zone. Moreover, the magnitude of the new auxiliary stress tensor (||σ||) in Fig.
5.6 demonstrates the effect of the regularization parameter, where all the cases
including ε = 0 shows that the ||σ|| < 1 in the rigid zone, as expected in this
channel flow.
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Table 5.1: Bingham flow in a channel: A comparison of the two-field (regu-
larized viscosity approach) (u, p) and three-field (u,σ, p) formulations in terms
of Newton iterations ”NL” and ||u − uex|| for different mesh refinement levels L
and regularization parameter ε, with the yield stress value τs = 0.25.

Two-Field Three-Field

ε L NL ||u − uex|| NL ||u − uex||
10−1 3 3 3.346 × 10−3 6 2.598 × 10−3

4 3 2.790 × 10−3 3 2.597 × 10−3

5 2 2.563 × 10−3 2 2.597 × 10−3

10−2 3 9 1.760 × 10−3 45 5.873 × 10−4

4 6 1.041 × 10−4 4 5.818 × 10−4

5 3 6.771 × 10−4 3 5.818 × 10−4

10−3 3 - - 14 6.257 × 10−5

4 - - 6 6.415 × 10−5

5 - - 4 6.416 × 10−5

10−4 3 - - 49 6.407 × 10−6

4 - - 5 6.262 × 10−6

5 - - 4 6.298 × 10−6

10−5 3 - - 39 6.788 × 10−7

4 - - 13 6.378 × 10−7

5 - - 5 6.297 × 10−7

0 3 - - 18 2 × 10−11

4 - - 4 7 × 10−12

5 - - 3 4 × 10−12
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(a) ε = 10−1 (b) ε = 10−2

(c) ε = 10−3 (d) ε = 10−4

(e) ε = 10−5 (f) ε = 0

Figure 5.2: Bingham flow in a channel: The velocity magnitude ||u|| at mesh
refinement level 5 (h = 1/32) for ε = 10−1, 10−2, 10−3, 10−4, 10−5 and 0 by using
system of equations 5.2 with τs = 0.25.
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(a) ε = 10−1 (b) ε = 10−2

(c) ε = 10−3 (d) ε = 10−4

(e) ε = 10−5 (f) ε = 0

Figure 5.3: Bingham flow in a channel: The norm of deforma-
tion tensor ||D(u)|| at mesh refinement level 5 (h = 1/32) for ε =
10−1, 10−2, 10−3, 10−4, 10−5 and 0 by using system of equations 5.2 with τs =
0.25.
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(a) ε = 10−1 (b) ε = 10−2

(c) ε = 10−3 (d) ε = 10−4

(e) ε = 10−5 (f) ε = 0

Figure 5.4: Bingham flow in a channel: The contours of the unyielded
zones with ||D(u)|| < 0.1 at mesh refinement level 5 (h = 1/32) for ε =
10−1, 10−2, 10−3, 10−4, 10−5 and 0 by using system of equations 5.2 with τs =
0.25.
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(a) ε = 10−1 (b) ε = 10−1

(c) ε = 10−3 (d) ε = 10−3

(e) ε = 0 (f) ε = 0

Figure 5.5: Bingham flow in a channel: The pressure distributions at mesh
refinement level 5 (h = 1/32) for ε = 10−1, 10−3 and 0 by using system of
equations 5.2 with τs = 0.25.
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(a) ε = 10−1 (b) ε = 10−2

(c) ε = 10−3 (d) ε = 10−4

(e) ε = 10−5 (f) ε = 10−5

Figure 5.6: Bingham flow in a channel: The visualization of ||σ|| at mesh
refinement level 5 (h = 1/32) for ε = 10−1, 10−2, 10−3, 10−4, 10−5 and 0 by using
system of equations 5.2 with τs = 0.25.
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5.1.2 Boundary Conditions: Case 2

Instead of assuming all Dirichlet boundary conditions for the velocity, the fol-
lowing boundary conditions are prescribed on the respective boundary parts
[82, 37]:

u2 = 0 at inflow and outflow

u = 0 at upper and lower walls

τn · n = LC at inflow

τn · n = 0 at outflow

(5.5)

where L is the length of the channel (which is unit in our case) and C is the
prescribed normal stress, which reduces to pressure in this case, C = ∂p

∂x
and n

is the unit normal vector. The analytical solution for the Poiseuille flow in case
of Bingham fluid is calculated in [1, 81]. The exact solution for the unit length
and width channel reads:

u1 =







C

2η
y(1 − y) − τs

η
y 0 ≤ y <

1

2
− τs

C

C

2η
(
1

2
− τs

η
)2 1

2
− τs

C
≤ y ≤ 1

2
+
τs

C

C

2η
y(1 − y) − τs

η
(1 − y)

1

2
+
τs

C
< y ≤ 1

(5.6)

p(x, y) = −C(x− L) (5.7)

where L = 1 and C = 1 in this test case, Fig 5.7 presents the velocity mag-
nitude for the regularized as well as regularization-free case i.e. ε = 0 at the
refinement level 5 (h=1/32), where different flow regimes (shear and plug zones)
are developed depending on the yield stress value as expected from the exact
solution. It is already mentioned that the value of the regularization parameter
has a great influence on the velocity profile inside the channel domain, therefore
for ε = 10−3, the interface of the plug zone is not accurately captured. On
the other hand, when the value of the regularization parameter vanishes (i.e.
ε = 0), the solution of the velocity in the plug zone perfectly matches with the
exact solution shown in Fig. 5.7, the L2 and H1 error of the velocity magni-
tude in Table. [5.2] also present the accuracy of the three-field formulation for
regularization-free Bingham solver. The pressure distribution inside the channel
is completely linear throughout the domain based on the Poiseuille theory in
the infinite channel. Moreover, the magnitude of the new auxiliary stress ten-
sor shows that the ||σ|| < 1 in the rigid zone, as expected in this channel flow,
the analytical expression for the unique solution of velocity, pressure and stress
tensor (u, p,σ) is calculated already in section (2.4). The blue region in Fig.
5.8 corresponds to nearly zero value of the deformation tensor ||D(u)|| ≈ 0 and
the symmetric part of the auxiliary stress tensor (σ12) shows its linear change
in the plug zone w.r.t. y-axis.
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(a) ||u|| , ε = 10−3 (b) ||u|| , ε = 0

(c) p, ε = 10−3 (d) p, ε = 0

(e) ||σ|| , ε = 10−3 (f) ||σ|| , ε = 0

Figure 5.7: Bingham flow in a channel: The visualization of ||u||, p and ||σ||
at mesh refinement level 5 (h = 1/32) for ε = 10−3 (left) and 0 (right) by using
system of equations 5.2 with τs = 0.25.
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(a) ||D|| , ε = 10−3 (b) ||D|| , ε = 0

(c) σ12, ε = 10−3 (d) σ12, ε = 0

Figure 5.8: Bingham flow in a channel: The visualization of ||D|| and σ12 at
mesh refinement level 5 (h = 1/32) for ε = 10−3 (left) and 0 (right) by using
system of equations 5.2 with τs = 0.25.

Table 5.2: Bingham flow in a channel: L2 and H1 errors for velocity for
τs = 0.25 at different mesh refinement levels, the errors are calculated for the
regularization-free Bingham.

DOF L NL ||u − uex||2 ||u − uex||1
4741 3 6 3.435092763644e− 08 2.49700187926642e− 06
18309 4 6 1.639790671967e− 08 1.32702565344534e− 06
71941 5 5 1.637294427502e− 08 8.92504780298530e− 07

So far, the results are obtained using the direct linear solver i.e. Umfpack. In
the next sections, the computations are performed with an iterative linear solver
i.e. multigrid.
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Figure 5.9: Bingham flow in a channel: Velocity magnitude at x = 0 for
ε = 10−3 and ε = 0, plotted with exact velocity profile for τs = 0.25.

5.2 Multigrid Parameters Study

Similar to the Newton method, multigrid linear solver also has several sensitive
parameters e.g. smoothing steps, prolongation etc. These parameters can be set
according to the requirement of the numerical test, depending on the complexity
and challenges of the problem. The same flow configuration of the Bingham
fluid flow in a channel is tested with the Newton-multigrid solver shown in
Table 5.3, where the ”NL” denotes the number of Newton iterations and ”LL”
are the multigrid average iterations. As expected, the velocity error decreases
with decreasing ε. However, the solver shows slightly slow convergence in the
case of small regularization parameter i.e. ε = 10−3. In order to obtain the fast
convergence, a detailed study is carried out for this case to obtained the optimal
choice of the multigrid parameters.
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Table 5.3: Bingham fluid flow in a channel: Number of Newton-multigrid
iterations ”NL/LL” for the three-field formulation (u,σ, p) at different mesh
refinement levels L for yield stress τs = 0.25.

ε L NL/LL ||u − uex||
10−1 3 6/1 2.598 × 10−3

4 3/1 2.597 × 10−3

5 2/1 2.597 × 10−3

6 2/1 2.597 × 10−3

10−2 3 5/1 5.873 × 10−4

4 4/1 5.818 × 10−4

5 3/1 5.815 × 10−4

6 3/1 5.815 × 10−4

10−3 3 151/5 6.257 × 10−5

4 43/5 6.415 × 10−5

5 8/6 6.416 × 10−5

6 8/5 6.394 × 10−5

On the first place, the smoother damping parameter is varied from 1.0 to 0.2 as
shown in the Table [5.4]. In this study, the optimal smoother damping parameter
turns out to be 0.8 because it gives the faster convergence rate as compared to
all other values. On the second place, the effect of the multigrid cycle is studied
as shown in the Table [5.5], which concludes that the cycle does not has any
significant influence on the current benchmark settings. On the third place, the
effect of smoothing steps in combination with the prolongation is carried out in
the Table [5.6], which concludes that the optimal value of the smoothing steps
and the prolongation are 8 and 0.6, respectively.
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Table 5.4: Smoother damping parameter study: Number of Newton-
multigrid iterations ”NL/LL” for the Bingham flow in a channel at mesh re-
finement level 3 (h = 1/8) for yield stress τs = 0.25, where ”lp” denotes the
stopping criteria of the linear solver, the regularization parameter is ε = 10−3.

ε NL/LL Smoother Damping lp

10−3 50/9 1.0 10−3

8/7 0.8 10−3

35/9 0.6 10−3

diverges 0.4 10−3

diverges 0.2 10−3

10−3 22/10 1.0 10−4

69/9 0.8 10−4

diverges 0.6 10−4

diverges 0.4 10−4

—– 0.2 10−4

Table 5.5: Multigrid cycle study: Number of Newton-multigrid iterations
”NL/LL” for Bingham flow in a channel at different mesh refinement levels L
for the yield stress τs = 0.25, where ”lp” denotes the stopping criteria of linear
solver, the regularization parameter is ε = 10−3.

ε L NL/LL MG-Cycle lp

10−3 3 8/7 F 10−3

4 4/7 10−3

5 6/9 10−3

6 4/9 10−3

10−3 3 8/7 V 10−3

4 4/7 10−3

5 6/9 10−3

6 4/9 10−3
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Table 5.6: Smoothing steps and prolongation study: Number of Newton-
multigrid iterations ”NL/LL” for Bingham flow in a channel at different mesh
refinement levels L for the yield stress τs = 0.25, where ”lp” denotes the stopping
criteria of linear solver, the regularization parameter is ε = 10−3.

ε L NL/LL Smoothing Prolongation lp

10−3 3 151/5 4 1.0 10−1

4 43/5 4 1.0 10−1

5 8/6 8 1.0 10−1

6 8/5 8 1.0 10−1

10−3 3 19/8 4 1.0 10−2

4 40/7 4 1.0 10−2

5 7/7 4 1.0 10−2

6 8/5 8 1.0 10−2

10−3 3 7/6 8 0.2 10−2

4 12/6 8 0.2 10−2

5 12/9 8 0.2 10−2

6 28/8 8 0.2 10−2

10−3 3 9/6 8 0.4 10−2

4 13/5 8 0.4 10−2

5 7/8 8 0.4 10−2

6 12/6 8 0.4 10−2

10−3 3 12/8 8 0.4 10−3

4 11/8 8 0.4 10−3

5 8/9 8 0.4 10−3

6 7/9 8 0.4 10−3

10−3 3 27/9 8 0.2 10−3

4 8/8 8 0.2 10−3

5 11/9 8 0.2 10−3

6 - 8 0.2 10−3

10−3 3 8/7 8 0.6 10−3

4 4/7 8 0.6 10−3

5 6/9 8 0.6 10−3

6 4/9 8 0.6 10−3
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From Table [5.3] it can be concluded that the multigrid can solve the Bing-
ham fluid upto the moderate value of the regularization parameter but the
regularization-free Bingham is difficult to obtain with the current settings. One
possible remedy can be the addition of some kind of stabilization, therefore, at
the first place the edge oriented FEM stabilization is added and discussed in
the next section.

5.3 Bingham Flow in a Channel with EOFEM

Stabilization

In order to achieve the solution of regularization-free Bingham with the Newton-
multigrid solver, the numerical studies for the stationary Bingham fluid flow in
a channel are performed by applying the edge oriented stabilization.

In the first step, the stabilization γuh is added in the velocity term and its effects
on the accuracy of the solution are investigated. For the sake of comparison with
the already calculated results (Table [5.1]) without any stabilization, we add the
eofem into the Newton-umfpack solver and the corresponding comparison study
is shown in the Table [5.7], where the γu is set as 10−1. The results clearly
concludes that the eofem does not harm the solution accuracy.

In the second step, eofem is added while using the multigrid as the linear solver,
shown in Table [5.8]. In this table, two values of γu (i.e. 2.5 × 10−2 and
1.0 × 10−1) are tested for the regularization parameter ε = 10−3 and the results
show that the solution remains undisturbed for both values of γu. Afterwards,
the study is extended for all values of regularization parameter ε, given in Table
[5.9]. The Newton-multigrid solver is able to solve for ε = 10−4, which is a
clear improvement in the solver after adding the eofem stabilization. Moreover,
the solver can converge with a decent number of iterations, which was not the
case earlier. One more comparison study is carried out between the direct
and iterative linear solver after adding the eofem, i.e. umfpack and multigrid
respectively, shown in Table [5.10. The results describe that the accuracy of the
solution is sustained in all the cases but the task of regularization-free Bingham
with Newton-multigrid is still not achieved.

In the third step, the contribution of the stabilization was reduced by adding
h2 (instead of h) shown in Table [5.11], which slightly reduces the nonlinear
iterations by keeping the accuracy of the solution unharmed. On the other side,
the linear solver becomes a little bit slower because of the less contribution of the
stabilization term h2 with the mesh refinement. Hence, the eofem in the velocity
term does not seems to be so much helpful for achieving the regularization-free
Bingham.

Therefore, the next idea is to add stabilization in the stress tensor i.e. γσh,
where γσ is set as 10−2 in the Table [5.12]. A new improvement from the multi-
grid solver is achieved by solving the smallest ε = 10−5 with this stabilization.
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Nevertheless, the solution with vanishing regularization (ε = 0) is yet to be
achieved with the Newton-multigrid solver, so the idea of adding some other
kind of stabilization (e.g. artificial diffusion) might be helpful in this regard,
which is discussed in the next section.

Table 5.7: Bingham flow in a channel: Comparison of Newton iterations
with and without eofem stabilization in velocity (u), where γu = 10−1, for
different mesh refinement levels L and regularization parameter ε, yield stress
τs = 0.25.

EOFEM

ε L NL ||u − uex|| NL ||u − uex||
10−1 2 6 2.641 × 10−3 6 2.627 × 10−3

3 3 2.598 × 10−3 3 2.598 × 10−3

4 2 2.596 × 10−3 3 2.597 × 10−3

5 2 2.597 × 10−3 2 2.597 × 10−3

6 1 2.597 × 10−3 2 2.567 × 10−3

10−2 2 9 6.079 × 10−4 9 6.130 × 10−4

3 5 5.873 × 10−4 5 5.893 × 10−4

4 4 5.818 × 10−4 4 5.819 × 10−4

5 4 5.815 × 10−4 3 5.815 × 10−4

6 3 5.815 × 10−4 3 5.815 × 10−4

10−3 2 19 6.237 × 10−5 15 6.228 × 10−5

3 7 6.257 × 10−5 5 6.296 × 10−5

4 5 6.415 × 10−5 5 6.426 × 10−5

5 4 6.416 × 10−5 5 6.418 × 10−5

6 3 6.395 × 10−5 4 6.395 × 10−5

10−4 2 15 7.835 × 10−6 14 7.564 × 10−6

3 14 6.407 × 10−6 9 6.300 × 10−6

4 4 6.262 × 10−6 5 6.265 × 10−6

5 4 6.298 × 10−6 4 6.308 × 10−6

6 3 6.286 × 10−6 4 6.304 × 10−6
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Table 5.8: Bingham flow in a channel: Comparison of Newton-multigrid
iterations with and without eofem stabilization in velocity (u) of different γu,
for different mesh refinement levels L and ε = 10−3, yield stress τs = 0.25.

EOFEM

γu L NL/LL ||u − uex|| NL/LL ||u − uex||
2.5 × 10−2 2 19/1 6.237 × 10−5 15/1 6.228 × 10−5

3 7/7 6.257 × 10−5 6/5 6.258 × 10−5

4 4/3 6.415 × 10−5 5/4 6.415 × 10−5

5 4/4 6.416 × 10−5 4/4 6.416 × 10−5

6 6/6 6.395 × 10−5 4/4 6.395 × 10−5

1.0 × 10−1 2 19/1 6.237 × 10−5 15/1 6.228 × 10−5

3 7/7 6.257 × 10−5 5/4 6.296 × 10−5

4 4/3 6.415 × 10−5 5/4 6.426 × 10−5

5 4/4 6.416 × 10−5 4/3 6.418 × 10−5

6 6/6 6.395 × 10−5 4/4 6.395 × 10−5

Table 5.9: Bingham flow in a channel: Comparison of Newton iterations
with and without eofem stabilization in velocity (u), where γu = 2.5 × 10−2, for
different mesh refinement levels L and regularization parameter ε, yield stress
τs = 0.25.

EOFEM

ε L NL/LL ||u − uex|| NL/LL ||u − uex||
10−1 2 6/1 2.641 × 10−3 6/1 2.627 × 10−3

3 4/1 2.598 × 10−3 4/1 2.598 × 10−3

4 3/1 2.596 × 10−3 3/1 2.597 × 10−3

5 3/1 2.597 × 10−3 3/1 2.597 × 10−3

6 2/1 2.597 × 10−3 2/1 2.567 × 10−3

10−2 2 9/1 6.079 × 10−4 9/1 6.130 × 10−4

3 5/1 5.873 × 10−4 5/1 5.893 × 10−4

4 4/1 5.818 × 10−4 4/2 5.819 × 10−4

5 4/1 5.815 × 10−4 3/1 5.814 × 10−4

6 3/1 5.815 × 10−4 3/2 5.815 × 10−4

10−3 2 15/1 6.237 × 10−5 15/1 6.228 × 10−5

3 7/7 6.257 × 10−5 6/2 6.296 × 10−5

4 4/3 6.415 × 10−5 5/1 6.426 × 10−5

5 4/4 6.416 × 10−5 5/2 6.418 × 10−5

6 3/4 6.395 × 10−5 4/2 6.395 × 10−5

10−4 2 - - 14/1 6.228 × 10−6

3 - - 12/4 6.504 × 10−6

4 - - 10/7 6.339 × 10−6

5 - - 11/8 6.338 × 10−6
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Table 5.10: Bingham flow in a channel: Comparison of Newton and Newton-
MG iterations with eofem stabilization in velocity (u), where γu = 10−1, for
different mesh refinement levels L and regularization parameter ε, yield stress
τs = 0.25.

Newton Newton-MG

ε L NL/LL ||u − uex|| NL/LL ||u − uex||
10−1 2 5 2.627 × 10−3 5/1 2.627 × 10−3

3 2 2.598 × 10−3 4/1 2.598 × 10−3

4 2 2.597 × 10−3 4/1 2.597 × 10−3

5 1 2.597 × 10−3 3/1 2.597 × 10−3

6 1 2.597 × 10−3 2/1 2.597 × 10−3

10−2 2 7 6.130 × 10−4 7/1 6.130 × 10−4

3 2 5.893 × 10−4 4/1 5.873 × 10−4

4 2 5.819 × 10−4 4/1 5.819 × 10−4

5 2 5.814 × 10−4 4/1 5.814 × 10−4

6 1 5.814 × 10−4 3/1 5.815 × 10−4

10−3 2 11 6.228 × 10−5 11/1 6.228 × 10−5

3 4 6.296 × 10−5 4/8 6.296 × 10−5

4 3 6.426 × 10−5 3/9 6.265 × 10−5

5 3 6.418 × 10−5 3/9 6.308 × 10−5

10−4 2 14 7.564 × 10−6 14/1 7.832 × 10−6

3 5 6.300 × 10−6 8/6 6.300 × 10−6

4 4 6.265 × 10−6 8/7 6.265 × 10−6

5 5 6.307 × 10−6 12/8 6.308 × 10−6

10−5 2 20 9.323 × 10−7 25/1 9.323 × 10−7

3 6 6.672 × 10−7 - -
4 5 6.369 × 10−7 - -
5 4 6.293 × 10−7 - -
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Table 5.11: Bingham flow in a channel: Comparison of Newton and Newton-
MG iterations with eofem stabilization γuh

2, where γu = 10−1, for different
mesh refinement levels L and regularization parameter ε, yield stress τs = 0.25.

Newton Newton-MG

ε L NL/LL ||u − uex|| NL/LL ||u − uex||
10−1 2 5 2.621 × 10−3 5/1 2.621 × 10−3

3 2 2.597 × 10−3 4/1 2.598 × 10−3

4 2 2.596 × 10−3 3/1 2.597 × 10−3

5 1 2.597 × 10−3 2/1 2.597 × 10−3

6 1 2.597 × 10−3 2/1 2.597 × 10−3

10−2 2 7 6.100 × 10−4 7/1 6.100 × 10−4

3 2 5.779 × 10−4 5/1 5.876 × 10−4

4 2 5.794 × 10−4 4/1 5.818 × 10−4

5 2 5.808 × 10−4 3/1 5.815 × 10−4

6 1 5.814 × 10−4 3/1 5.815 × 10−4

10−3 2 11 6.234 × 10−5 11/1 6.234 × 10−5

3 3 6.258 × 10−5 6/2 6.262 × 10−5

4 4 6.415 × 10−5 5/2 6.415 × 10−5

5 3 6.415 × 10−5 5/3 6.416 × 10−5

10−4 2 13 7.713 × 10−6 13/1 7.713 × 10−6

3 2 5.481 × 10−6 8/7 6.382 × 10−6

4 2 6.139 × 10−6 7/9 6.265 × 10−6

5 1 6.297 × 10−6 8/18 6.298 × 10−6

10−5 2 34 9.408 × 10−7 - -
3 7 6.758 × 10−7 - -
4 6 6.380 × 10−7 - -
5 4 6.304 × 10−7 - -
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Table 5.12: Bingham flow in a channel: Comparison of Newton-multigrid
iterations with and without eofem stabilization in the stress (σ), where γσ =
10−2 for different mesh refinement levels L and regularization parameter ε, yield
stress τs = 0.25.

EOFEM

ε L NL/LL ||u − uex|| NL/LL ||u − uex||
10−1 2 6/1 2.641 × 10−3 3/1 2.616 × 10−3

3 4/1 2.598 × 10−3 4/1 2.598 × 10−3

4 3/1 2.596 × 10−3 3/1 2.597 × 10−3

5 3/1 2.597 × 10−3 3/1 2.597 × 10−3

10−2 2 9/1 6.079 × 10−4 3/1 6.018 × 10−4

3 5/1 5.873 × 10−4 4/1 5.874 × 10−4

4 4/1 5.818 × 10−4 5/1 5.819 × 10−4

5 4/1 5.815 × 10−4 4/2 5.815 × 10−4

10−3 2 15/1 6.237 × 10−5 15/1 6.257 × 10−5

3 7/7 6.257 × 10−5 6/3 6.287 × 10−5

4 4/3 6.415 × 10−5 6/2 6.437 × 10−5

5 4/4 6.416 × 10−5 5/4 6.417 × 10−5

10−4 2 - - 21/1 8.919 × 10−6

3 - - 7/7 6.650 × 10−6

4 - - 7/4 6.985 × 10−6

5 - - 6/6 6.900 × 10−6

10−5 2 - - 9/1 9.772 × 10−7

3 - - 5/1 2.743 × 10−6

4 - - 11/34 3.003 × 10−6
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5.4 Bingham Flow in a Channel with Artificial

Diffusion Stabilization

The aim of adding the artificial diffusion stabilization is to achieve the solution
of regularization-free Bingham with the nice behaviour of multigrid solver for
the direct steady state Bingham problem. Therefore, the three-field (u,σ, p)
system of equations after the addition of artificial diffusion stabilization reads
as follows: 





||D(u)||ε σ − D(u) + γh2∆σ = 0 in Ω

−∇ · (2ηD(u) + τsσ) + ∇p = 0 in Ω

∇ · u = 0 in Ω

u = gD on ΓD

(5.8)

where the parameter γ is multiplied with h2, which implies that it’s effect will
reduce with the the mesh refinement (h).

In the first step, a comparison study is carried out between Newton-umfpack
and Newton-multigrid solvers shown in Table [5.13], where γ is set to 10−2.
The results illustrates that in the presence of artificial diffusion, both solvers
exhibit good convergence rate. However, the accuracy of the solution is a little
bit compromised. Nevertheless, the Newton-multigrid solver has successfully
achieved the goal of solving regularization-free Bingham fluid flow. The accuracy
of the solution can be increased by choosing the suitable value of γ, therefore,
the value of the γ is decreased to γ = 10−3 and γ = 10−4 in the Table [5.14]
and [5.15], respectively. The effect of reducing γ can be seen from velocity
error ||u − uex||, which reduces at higher mesh refinement levels. Based on
the convergence rate and velocity error from the parameter γ study, it can be
concluded that the γ = 10−3 is optimal value for these numerical tests.

In the second step, we fix γ to the optimal value and reduce the contribution of
the stabilization from the mesh size by multiplying it with h3 in order to improve
the accuracy of the solution. The corresponding results are shown in Table
[5.16]. As expected, the velocity error gets smaller with the mesh refinements
due to the less contribution from the stabilization term, on the other hand, the
solver slightly slows down and the convergence is achieved with more number
of iterations.

In this third step, another idea can be applied to improve the accuracy of the
approximated solution, by choosing different values of γ for the Jacobian matrix
(γj) and the residuals (γd). The basic purpose is to keep the value of γd small
in order to have less effects on the defect and the value of γj big in order to
help the solver in convergence. Table [5.17] shows that the idea did not fully
supported in the current test case because the convergence rate gets very slow
even for bigger ε. Therefore, sticking to the old strategy and keeping the same
γ for the Jacobian and residual, we can conclude that the artificial diffusion
stabilization helps the multigrid to solve regularization-free Bingham fluid with
acceptable accurate results.
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Table 5.13: Bingham flow in a channel: Comparison of Newton and Newton-
multigrid iterations with artificial diffusion stabilization γh2, where γ = 10−2,
for different mesh refinement levels L and regularization parameter ε, yield stress
τs = 0.25.

Newton Newton-MG

ε L NL ||u − uex|| NL/L ||u − uex||
10−1 2 5 2.633 × 10−3 5/1 2.633 × 10−3

3 3 2.621 × 10−3 3/2 2.621 × 10−3

4 3 2.607 × 10−3 3/4 2.607 × 10−3

5 2 2.601 × 10−3 2/5 2.601 × 10−3

6 2 2.598 × 10−3 2/5 2.598 × 10−3

10−2 2 7 1.384 × 10−3 7/1 1.384 × 10−3

3 4 8.964 × 10−4 4/6 8.964 × 10−4

4 3 6.887 × 10−4 3/3 6.887 × 10−4

5 2 6.159 × 10−4 3/4 6.159 × 10−4

6 2 5.919 × 10−4 3/5 5.919 × 10−4

10−3 2 7 1.245 × 10−3 7/1 1.245 × 10−3

3 4 5.811 × 10−4 5/9 5.811 × 10−4

4 4 2.326 × 10−4 4/8 2.326 × 10−4

5 4 1.107 × 10−4 3/6 1.107 × 10−4

6 4 7.725 × 10−5 3/8 7.725 × 10−5

10−4 2 7 1.243 × 10−3 7/1 1.243 × 10−3

3 4 5.724 × 10−4 4/6 5.724 × 10−4

4 4 2.056 × 10−4 4/5 2.056 × 10−4

5 4 6.740 × 10−5 4/6 6.740 × 10−5

6 4 2.670 × 10−5 5/6 2.670 × 10−5

10−5 2 7 1.243 × 10−3 7/1 1.243 × 10−3

3 4 5.724 × 10−4 6/2 5.724 × 10−4

4 4 2.056 × 10−4 4/3 2.056 × 10−4

5 4 6.636 × 10−5 4/5 6.636 × 10−5

6 4 2.458 × 10−5 5/6 2.458 × 10−5

0 2 3 1.243 × 10−3 3/1 1.243 × 10−3

3 3 5.724 × 10−4 4/1 5.724 × 10−4

4 3 2.056 × 10−4 5/2 2.056 × 10−4

5 3 6.635 × 10−5 5/2 6.635 × 10−5

6 6 2.459 × 10−5 6/9 2.459 × 10−5
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Table 5.14: Bingham flow in a channel: Comparison of Newton and Newton-
MG iterations with and without artificial diffusion stabilization γh2, where γ =
10−3, for different mesh refinement levels L and regularization parameter ε, yield
stress τs = 0.25.

Newton Newton-MG

Stab. Stab.

L NL NL ||u − uex|| NL /LL NL/LL ||u − uex||
ε=10−1

2 6 6 2.648 × 10−3 6/1 6/1 2.641 × 10−3

3 3 3 2.603 × 10−3 3/2 3/2 2.598 × 10−3

4 2 2 2.598 × 10−3 2/4 3/2 2.597 × 10−3

5 2 2 2.597 × 10−3 2/3 2/4 2.597 × 10−3

6 2 1 2.597 × 10−3 2/4 2/4 2.597 × 10−3

ε=10−2

2 8 9 7.764 × 10−4 9/1 8/1 6.079 × 10−4

3 3 5 6.364 × 10−4 5/2 3/2 5.873 × 10−4

4 3 4 5.974 × 10−4 4/3 3/3 5.818 × 10−4

5 3 4 5.860 × 10−4 4/4 3/3 5.815 × 10−4

6 2 3 5.827 × 10−4 3/5 2/4 5.827 × 10−4

ε=10−3

2 9 12 3.457 × 10−4 12/1 9/1 6.237 × 10−5

3 4 8 1.452 × 10−4 9/20 4/2 6.257 × 10−5

4 4 8 8.630 × 10−5 7/9 4/2 6.415 × 10−5

5 4 5 7.022 × 10−5 7/16 4/3 6.417 × 10−5

6 5 4 6.569 × 10−5 6/11 4/4 6.395 × 10−5

ε=10−4

2 9 15 3.306 × 10−4 - 10/1 7.835 × 10−6

3 6 14 1.117 × 10−4 - 6/4 6.407 × 10−6

4 7 4 4.155 × 10−5 - 5/5 6.262 × 10−6

5 5 4 1.787 × 10−5 - 7/6 6.298 × 10−6

6 6 - 9.418 × 10−6 - 6/8 6.284 × 10−6

ε=10−5

2 17 - 3.304 × 10−4 - 17/1 -
3 7 39 1.112 × 10−4 - 6/4 6.788 × 10−7

4 6 13 4.041 × 10−5 - 5/3 6.378 × 10−7

5 5 5 1.563 × 10−5 - 7/6 6.297 × 10−7

6 6 - 5.840 × 10−6 - 7/8 -

ε=0

2 3 - - - 3/1 3.304 × 10−4

3 4 - - - 6/2 1.112 × 10−4

4 4 - - - 6/4 4.040 × 10−5

5 5 - - - 6/11 1.557 × 10−5

6 11 - - - 12/22 5.694 × 10−6
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Table 5.15: Bingham flow in a channel: Comparison of Newton and Newton-
MG iterations with artificial diffusion stabilization γh2, where γ = 10−4, for
different mesh refinement levels L and regularization parameter ε, yield stress
τs = 0.25.

Newton Newton-MG

ε L NL ||u − uex|| NL/L ||u − uex||
10−1 2 6 2.642 × 10−3 6/1 2.642 × 10−3

3 3 2.599 × 10−3 3/2 2.599 × 10−3

4 3 2.597 × 10−3 3/3 2.597 × 10−3

5 2 2.597 × 10−3 2/3 2.597 × 10−3

6 2 2.597 × 10−3 2/3 2.597 × 10−3

10−2 2 9 6.232 × 10−4 9/1 6.232 × 10−4

3 5 5.937 × 10−4 5/4 5.937 × 10−4

4 4 5.836 × 10−4 4/3 5.836 × 10−4

5 4 5.820 × 10−4 4/4 5.820 × 10−4

6 3 5.816 × 10−4 3/4 5.816 × 10−4

10−3 2 21 9.234 × 10−5 21/1 9.234 × 10−5

3 6 7.413 × 10−5 7/6 7.413 × 10−5

4 5 6.728 × 10−5 8/9 6.728 × 10−5

5 5 6.486 × 10−5 6/8 6.486 × 10−5

6 6 6.414 × 10−5 6/12 6.414 × 10−5

10−4 2 29 4.428 × 10−5 24/1 4.428 × 10−5

3 6 2.418 × 10−5 12/11 2.418 × 10−5

4 6 1.299 × 10−5 11/4 1.299 × 10−5

5 8 8.243 × 10−6 10/4 8.243 × 10−6

6 5 7.023 × 10−6 9/4 7.023 × 10−6

10−5 2 12 4.304 × 10−5 12/1 4.304 × 10−5

3 3 2.226 × 10−5 4/11 2.224 × 10−5

4 5 1.075 × 10−5 6/12 1.062 × 10−5

5 9 4.953 × 10−6 13/28 4.567 × 10−6

6 10 2.577 × 10−6 16/47 2.313 × 10−6

0 2 4 4.292 × 10−5 4/1 4.292 × 10−5

3 5 2.225 × 10−5 6/7 2.225 × 10−5

4 6 1.012 × 10−5 7/6 1.012 × 10−5

5 10 4.448 × 10−6 13/15 4.448 × 10−6
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5.4. BINGHAM FLOW IN A CHANNEL WITH ARTIFICIAL
DIFFUSION STABILIZATION

Table 5.16: Bingham flow in a channel: Comparison of Newton and Newton-
MG iterations with artificial diffusion stabilization γσh3, where γ = 10−2, for
different mesh refinement levels L and regularization parameter ε, yield stress
τs = 0.25.

Newton Newton-MG

ε L NL ||u − uex|| NL/L ||u − uex||
10−1 2 3 2.651 × 10−3 3/1 2.651 × 10−3

3 2 2.604 × 10−3 3/1 2.604 × 10−3

4 2 2.598 × 10−3 3/1 2.598 × 10−3

5 1 2.597 × 10−3 2/1 2.597 × 10−3

6 1 2.597 × 10−3 3/2 2.597 × 10−3

10−2 2 6 9.336 × 10−4 6/1 9.336 × 10−4

3 2 6.465 × 10−4 5/1 6.465 × 10−4

4 2 5.920 × 10−4 4/1 5.920 × 10−4

5 2 5.830 × 10−4 4/1 5.830 × 10−4

6 1 5.816 × 10−4 3/2 5.816 × 10−4

10−3 2 6 6.121 × 10−4 6/1 6.121 × 10−4

3 3 1.622 × 10−4 6/1 1.622 × 10−4

4 3 7.902 × 10−5 8/1 7.902 × 10−5

5 3 6.626 × 10−5 10/1 6.626 × 10−5

6 2 6.432 × 10−5 5/2 6.432 × 10−5

10−4 2 6 6.046 × 10−4 6/1 6.046 × 10−4

3 3 1.306 × 10−4 6/2 1.306 × 10−4

4 4 3.203 × 10−5 6/5 3.206 × 10−5

5 3 1.110 × 10−5 9/6 1.113 × 10−6

6 4 6.867 × 10−6 7/6 6.823 × 10−6

10−5 2 6 6.045 × 10−4 6/1 6.045 × 10−4

3 3 1.302 × 10−4 6/2 1.302 × 10−4

4 4 3.076 × 10−5 6/2 3.076 × 10−5

5 5 8.498 × 10−6 8/12 8.498 × 10−6

6 15 2.443 × 10−6 11/12 2.443 × 10−6

10−6 2 6 6.045 × 10−4 6/1 6.122 × 10−4

3 2 1.293 × 10−4 6/2 1.302 × 10−4

4 2 3.072 × 10−5 6/2 3.076 × 10−5

5 2 9.826 × 10−6 8/13 8.435 × 10−6

6 3 3.308 × 10−6 21/13 3.308 × 10−6

0 2 6 6.045 × 10−4 6/1 6.045 × 10−4

3 3 1.302 × 10−4 6/2 1.302 × 10−4

4 4 3.072 × 10−5 6/5 3.072 × 10−5

5 5 8.436 × 10−6 10/15 8.436 × 10−6

6 17 2.274 × 10−6 33/25 2.263 × 10−6
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Table 5.17: Bingham flow in a channel: Comparison of Newton and Newton-
MG iterations with artificial diffusion stabilization γh2, where γj = 10−3 and
γd = 10−4, for different mesh refinement levels L and regularization parameter
ε, yield stress τs = 0.25.

Newton Newton-MG

ε L NL ||u − uex|| NL/L ||u − uex||
10−1 2 12 2.642 × 10−3 12/1 2.642 × 10−3

3 8 2.599 × 10−3 7/1 2.599 × 10−3

4 5 2.597 × 10−3 5/2 2.597 × 10−3

5 4 2.597 × 10−3 4/3 2.597 × 10−3

6 2 2.597 × 10−3 2/3 2.597 × 10−3

10−2 2 33 6.232 × 10−4 33/1 6.232 × 10−4

3 26 5.937 × 10−4 26/4 5.937 × 10−4

4 21 5.836 × 10−4 20/3 5.836 × 10−4

5 13 5.820 × 10−4 13/5 5.820 × 10−4

6 8 5.816 × 10−4 8/3 5.816 × 10−4

10−3 2 69 9.234 × 10−5 69/1 9.234 × 10−5

3 54 7.413 × 10−5 53/14 7.413 × 10−5

4 39 6.728 × 10−5 40/5 6.728 × 10−5

5 29 6.486 × 10−5 28/5 6.486 × 10−5

6 19 6.414 × 10−5 20/5 6.414 × 10−5
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Chapter 6

Adaptive Discrete Newton

This chapter is devoted to the insights of our newly developed adaptive discrete
Newton approach for any nonlinear problem. A comprehensive description of
the efficiency and the robustness of this method is explained with the help of
graphical representation of the solver’s behaviour. Several comparison studies
for different benchmarks configurations are carried out between classical and
the new adaptive discrete Newton.

6.1 Adaptive Discrete Newton

Devoting our attention back to the details of Newton method explained in the
section (4.1), which uses the approximated Jacobian matrix, calculated using
divided difference. This method consists of some sensitive parameters in the
algorithm 1 e.g. initial solution and the damping factor ω. The approximation
of the derivatives is carried out with the following equation, where the j-th
column is given as follows:

[
∂R(Un)

∂Un

]

j

≈ R(Un + χδj) − R(Un − χδj)

2χ
(6.1)

here δj is the vector with unit j-th component and zero otherwise, χ is the step-
size and chosen as a free parameter. The parameter χ plays a very important
role in the convergence rate of the discrete Newton solver. The advantage of
such Newton method is that it acts in a black box manner. Therefore, it handles
any nonlinearity coming from the equations automatically, without deriving the
corresponding calculations. However, the choice of the χ is really important as
it is a free parameter and the right choice is a very delicate task because it has
a strong impact on the accuracy and robustness of any difference method [69].
Based on the perturbation analysis for the residuum, it can be a fixed constant
and often chosen according to the machine precision [64]. On the other hand,
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the sensitivity study of the nonlinear behaviour of the Power law models w.r.t.
the step-size parameter χ, the mesh width h and the strength of the nonlinearity
suggests an adaptive choice [49]. Indeed, choosing χ too big leads to the loss
of the advantageous quasi-quadratic convergence behaviour of Newton method.
On the contrary, if we choose very small value of χ, the divergence occurs due to
the numerical instabilities. In order to observe these effects, a study is carried
out for the Bingham fluid flow in a channel configuration presented in Table
[6.1].

Table 6.1: Bingham flow in a channel: Number of Newton iterations for
different step-size χ and the nonlinear tolerance for regularization-free Bingham,
where the yield stress τs is set to 0.25.

↓ χ/Tol → 10−5 10−6 10−7 10−8

10−2 13 16 19 22

10−3 13 14 14 16

10−4 14 14 15 diverge

10−5 15 15 oscillate oscillate

10−6 15 oscillate oscillate diverge

10−7 16 diverge oscillate diverge

10−8 17 37 diverge diverge

The results strongly agrees with the suggestion of not choosing too big or too
small value of parameter χ. These results lead to the idea of choosing the
suitable step-size χ adaptively during the approximations. Therefore, a test is
performed for the regularization-free Bingham by changing the step size manu-
ally after achieving a certain reduction in the residual R(Un), shown in Fig. 6.1,
where two different constant step sizes χc1

and χc2
are considered. Initially, the

big step-size χc1
is given and after obtaining a certain reduction in the residual,

the step-size is reduced to the smaller value i.e. χc2
. The implemented idea

of changing the step-size between the iterations produced remarkable results as
one can see that the convergence was faster after the value of the step-size χ
was changed to χc2

.

However, to implement this strategy in a smart way, such that the choice of
χ depends on the residual reduction automatically and removes the numerical
instabilities, we allow a process which chooses bigger step-size in the start and
changes afterwards between the nonlinear iterations. The ratio of the residuum’s
norm can be used for the choice of the step-size as a step function and to
relate this ratio continuously to the successive nonlinear reduction, we use a
characteristic function introduced in [83] or the slightly modified one introduced
in [84]

f(rn) = 0.2 +
4.0

0.7 + exp (1.5rn)
(6.2)
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Figure 6.1: Nonlinear convergence w.r.t. χ for the adaptive discrete
Newton method: The norm of the residual versus number of iterations w.r.t.
constant χ strategy (χc1

, χc2
) and the adaptive strategy (χa) at refinement level

L=2 (hx = 1/4, hy = 1/12).

where

rn =
||R(Un)||

||R(Un−1)|| (6.3)

Doing so, the new strategy uses this function to adapt the step-size as follows:

χn+1 = f−1(rn)χn (6.4)

Hence, to test the efficiency and robustness of the new adaptive discrete Newton
method, the numerical studies are carried out for four different prototypical
configurations (channel flow, lid driven cavity, flow around cylinder and flow in
a square reservoir) in the next sections.

6.2 Numerical Results

6.2.1 Bingham Fluid Flow in a Channel

The two dimensional channel is considered as a domain consisting of two parallel
plates with h length apart and long, shown in Fig. 5.1. The problem is solved
under the assumption of Dirichlet boundary conditions on the domain (Ω =
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[0, h]2) boundaries, where the analytical velocity profile for the x-component is:

u1 =







1

8

[
(h− 2τs)2 − (h− 2τs − 2y)2

]
0 ≤ y <

h

2
− τs

1

8
(h− 2τs)2 h

2
− τs ≤ y ≤ h

2
+ τs

1

8

[
(h− 2τs)2 − (2y − 2τs − h)2

] h

2
+ τs < y ≤ h

(6.5)

with u2 = 0 and p = −x + c [37, 81]. The viscosity of the fluid is set to be
η = 1, the body force is f = 0 and h = 1 is considered. After the implemen-
tation of the new adaptive discrete Newton strategy, a test (setting the value
of τs = 0.23) is performed to investigate the behaviour of the adaptive against
constant step-size strategy. Fig. 6.2 (a,c) clearly describes the efficient perfor-
mance of the newly adaptive step-size because the tolerance criteria is achieved
in less than 10 iterations as compared to the classical Newton, which converges
in approximately 70 and 50 iterations for refinement levels L=2 and L=3, re-
spectively. This implies a remarkable faster convergence rate of the adaptive
discrete Newton. Moreover, the relative change of χa is presented in Fig. 6.2
(b,d).

Afterwards, the yield stress threshold value τs is slightly increased to τs = 0.25
and the same test is performed. Again, the χa shows the faster convergence
rate than the χc as it achieves the convergence in less than 10 iterations, shown
in the Fig. 6.3.

The basic idea behind this strategy is to relax the step-size by setting a big χ at
the start and when the residual norm reduces then the step-size χ gets smaller
accordingly. On the contrary, if we choose smaller χ at the start, what will
happen? In order to investigate this point, a test is performed by setting the
two different values of initial adaptive step-size i.e. χa1

= 10−1 and χa2
= 10−4,

respectively (the yield stress value is set to τs = 0.25). It can be clearly seen
in Fig. 6.4, when the initial step-size is chosen smaller (χa2

= 10−4), the solver
first oscillates and then faces slow convergence. On the other hand, when the
initial step size is chosen bigger (χa2

= 10−1), the solver converges very fast,
which concludes that initial step-size should be big. Furthermore, the lower
bound must be according to the machine precision i.e. 10−8.

Moreover, a similar test is carried out for the yield stress τs = 0.23 for two
initial step-size i.e. χa1

= 10−1 and χa2
= 10−6, respectively. As expected,

the χa2
again showed oscillatory behaviour and also the number of nonlinear

iterations increases to meet the convergence criteria, shown in Fig. 6.5 (b),
which strengthens our already drawn conclusion. These tests are performed for
regularization-free Bingham using the three-field formulation.
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(c) Nonlinear convergence at L=3
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(d) Relative change of χa at L=3

Figure 6.2: Nonlinear convergence and relative change of χ for the
adaptive discrete Newton method: The norm of the residual versus number
of iterations w.r.t. constant χ strategy (χc1

= 10−1, χc2
= 10−4) and the

adaptive strategy (χa = χn
a/χ

0
a) at refinement level L=2 (top) (hx = 1/4, hy =

1/12) and L=3 (bottom) (hx = 1/8, hy = 1/24) with τs=0.23.
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(a) Nonlinear convergence at L=2
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(c) Nonlinear convergence at L=3
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Figure 6.3: Nonlinear convergence and relative change of χ for adaptive
Newton method: The norm of the residual versus number of iterations w.r.t.
constant χ strategy (χc1

= 10−1, χc2
= 10−4) and the adaptive strategy (χa =

χn
a/χ

0
a) at refinement level L=2 (top) (hx = 1/4, hy = 1/12) and L=3 (bottom)

(hx = 1/8, hy = 1/24) with τs=0.25.
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Figure 6.4: Non-linear convergence w.r.t χ for the adaptive discrete
Newton method: The norm of the residual versus number of iterations w.r.t
two strategies (constant and adaptive) at refinement level L=2 (a,b)(hx =
1/4, hy = 1/12) with τs=0.25.
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Figure 6.5: Non-linear convergence w.r.t χ for the adaptive discrete
Newton method: The norm of the residual versus number of iterations w.r.t
two strategies (constant and adaptive) at refinement level L=2 (a,b)(hx =
1/4, hy = 1/12) with τs=0.23.
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Extending the numerical tests, a comparison study is carried out between the
new adaptive discrete Newton and the classical Newton for the two-field formu-
lation. Applying both methods, the number of nonlinear iterations is presented
in Table [6.2]. For the coarse refinement level (L=2 in the present case), starting
with the zero solution as an initial guess, we perform Newton iterations until
the tolerance is achieved. However, the next refinement level takes the solution
from the previous refinement level as an initial solution. For the first test, we
choose the yield stress value to be τs = 0.23 because this value is aligned as
interface with the coarse mesh. It is observed that the two-field formulation
along with the classical Newton method faces difficulties in convergence, when
the regularization parameter ε → 0. On the other hand, the adaptive discrete
Newton solver is able to converge even for very small values of ε, exhibiting the
advantages of our newly developed solver. Moreover, it shows a good speed of
convergence for all the cases of regularized Bingham fluid.

Similarly, for testing the efficiency of the three-field formulation for the regular-
ization -free Bingham problem, a numerical study is carried out for both of the
Newton strategies. The efficiency of the three-field formulation and the robust-
ness of the adaptive strategy for the discrete Newton is showcased successfully
in Table 6.3.

Table 6.2: Bingham flow in a channel: Comparison of the Newton and the
adaptive discrete Newton iterations for the two-field formulation at different
mesh refinement levels L and regularization parameter ε, yield stress τs = 0.23.

Newton Adaptive Newton

↓ L/ε → 10−1 10−2 10−1 10−2 10−3 10−4 10−5

3 2 3 4 4 5 5 9

4 2 3 4 4 6 5 9

5 2 3 3 5 5 4 7

6 2 3 3 5 5 4 7
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Table 6.3: Bingham flow in a channel: Comparison of the Newton and the
adaptive discrete Newton iterations for the three-field formulation at different
mesh refinement levels L and regularization parameter ε, yield stress τs = 0.23.

↓ L/ε → 10−1 10−2 10−3 10−4 10−5 0

Newton

2 5 17 61 100 53 23

3 2 3 4 6 9 1

4 2 3 4 8 9 1

5 1 2 3 9 5 2

Adaptive Newton

2 5 14 21 26 36 16

3 2 2 2 5 1 2

4 2 2 2 4 2 2

5 1 1 1 1 3 1

Furthermore, to highlight the efficiency and robustness of our newly developed
solver, a comparison study for four different yield stress value τs i.e. 0.23,
0.3, 0.35, 0.4 is carried out, presented in Fig. 6.6 and 6.7 for mesh refinement
levels L=2 and L=3, respectively. All of these tests are carried out for the
regularization-free (ε = 0) Bingham case, for seven different constant step-
sizes, from biggest to smallest i.e. χc1

= 10−1, χc2
= 10−2, χc3

= 10−3, χc4
=

10−4, χc5
= 10−5, χc6

= 10−6 and χc7
= 10−7. One can notice that in each case

of χc, the solver either converges very slowly or it starts to oscillate. On the
other hand, χa is very fast to meet the convergence criteria because initially
χa is relaxed and once the solution enters the radius of convergence, then the
χa dynamically changes to achieve the accuracy of the solution. The adaptive
discrete Newton solver exhibits the remarkable performance for every τs, even
for the hardest case (when τs = 0.4), where the plug zone covers a very big area
in the centre of the channel and the situation becomes very difficult for the fluid
to flow.
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(b) τs=0.3
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(c) τs=0.35
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(d) τs=0.4

Figure 6.6: Nonlinear convergence w.r.t. χ for the adaptive dis-
crete Newton method: The norm of the residual versus number of iter-
ations w.r.t. two strategies (constant (set as χc1

= 10−1, χc2
= 10−2,...,

χc7
= 10−7) and adaptive (χa)) at refinement level L=2 (hx = 1/4, hy = 1/12)

for τs = 0.23, 0.3, 0.35, 0.4.

82



6.2. NUMERICAL RESULTS

10
-10

10
-9

10
-8

 0  10  20  30  40  50  60

D
e

fe
c
t

Iterations

χc1
χc2
χc3
χc4
χc5
χc6
χc7
χa 

(a) τs=0.23
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(b) τs=0.3
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(c) τs=0.35

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 0  20  40  60  80  100  120  140

D
e

fe
c
t

Iterations

χc1
χc2
χc3
χc4
χc5
χc6
χc7
χa 

(d) τs=0.4

Figure 6.7: Nonlinear convergence w.r.t. χ for the adaptive dis-
crete Newton method: The norm of the residual versus number of iter-
ations w.r.t. two strategies (constant (set as χc1

= 10−1, χc2
= 10−2,...,

χc7
= 10−7) and adaptive (χa)) at refinement level L=3 (hx = 1/8, hy = 1/24)

for τs = 0.23, 0.3, 0.35, 0.4.

6.2.2 Lid Driven Cavity

The numerical simulation of Bingham fluid flow for the lid-driven square cav-
ity benchmark is performed for the system of equations (2.13). The geometry
consists of a unit square domain Ω = [0, 1]2. Dirichlet boundary conditions are
imposed for u|y=1 = (1, 0)T and u = 0 everywhere else. The viscosity of the
fluid is set to be η = 1. The geometrical configuration is shown in Fig. 6.8.
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x=1

y
=

1

u = 0

ux = 1, uy = 0

u
=

0

u
=

0

Figure 6.8: Configuration for the lid driven cavity

In the first step, a validation study with the results of Aposporidis et al. [1] for
the two-field formulation is carried out, applying both Newton and the adaptive
discrete Newton solver, where the yield stress value is set to τs = 2.0, shown
in Table [6.4]. Looking at the nonlinear iterations in this table, one can clearly
observe that the Newton solver is faster than the Picard’s iterative solver (used
in the reference study) and the adaptive discrete Newton is the fastest among
all, for both values of regularization parameter (ε).

Table 6.4: Lid driven cavity: Validation of the Newton and the adaptive dis-
crete Newton iterations with Aposporidis et al. [1], for the two-field formulation
at different mesh refinement levels L, with the yield stress τs = 2.0.

ε L Aposporidis et al. [1] Newton Adaptive Newton

4 22 10 4
10−1 5 99 8 4

6 213 5 4

4 49 8 4
10−2 5 173 8 4

6 - 5 4

In the second step, a validation study with the reference results [1] for the
three-field formulation is carried out, applying both Newton and the adaptive
discrete Newton solver, specifically for the extreme case i.e. regularization-free
Bingham, where the yield stress value is set to τs = 2.0, shown in Table [6.5].
Again, the nonlinear iterations of the Newton solver is faster than the Picard’s
iterative solver (used in the reference study) and the adaptive discrete Newton
is the fastest among all.
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Table 6.5: Lid-driven cavity: Validation of the Newton and the adaptive
discrete Newton iterations with Aposporidis et al. [1] for regularization-free
(ε = 0) Bingham, for three-field formulation at different mesh refinement levels
L, with the yield stress τs = 2.0.

L Aposporidis et al. [1] Newton Adaptive Newton

4 21 13 5
5 23 21 5
6 15 18 6

The accuracy of the solution can be checked in terms of the prediction of un-
yielded zones in the domain. Therefore, a validation of the unyielded zones is
presented in Fig. 6.9, which shows a good agreement with the reference results
[1] and [85]. Basically, these zones present the image of the dead regions, where
the velocity is either constant or zero and no deformation occurs in the fluid.

(a) Adaptive Newton (b) M. A. Olshanskii [1] (c) E. Mitsoulis [85]

Figure 6.9: Lid driven cavity: The superposition of unyielded zones on the
streamline contours for the regularization-free (ε = 0) Bingham, for the three-
field formulation at mesh refinement levels L=6 (h=1/64), where the yield stress
is set to τs = 2.0.

In order to investigate the effects of the regularization parameter ε on the devel-
opment of unyielded zones, a numerical study is performed with the yield stress
value τs = 2.0, given in the Fig 6.10. It can be concluded from the results that
for the accurate prediction of these zones, the regularization parameter should
be small enough (ε → 0).
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(a) ε = 10−1 (b) ε = 10−2

(c) ε = 10−3 (d) ε = 10−4

(e) ε = 10−5 (f) ε = 0

Figure 6.10: Unyielded zones: The superposition of the contour of the un-
yielded zones on the streamline contours in the lid driven cavity computed for
regularization-free (ε = 0) and regularized (ε = 10−1 to 10−5) Bingham with
the yield stress value τs = 2.0 at refinement level L=6 (h = 1/64).
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Moreover, the corresponding nonlinear iterations of Newton and the adaptive
discrete Newton solver are presented in Table [6.6]. Again, the performance of
the adaptive Newton is very impressive, specially in case of regularization-free
Bingham (which is a very complex case for the lid driven cavity benchmark).

Table 6.6: Lid driven cavity: Comparison of the Newton and the adaptive dis-
crete Newton iterations for three-field formulation at different mesh refinement
levels L and regularization parameter ε, with the yield stress τs = 2.0.

↓ L/ε → 10−1 10−2 10−3 10−4 10−5 0

Newton

3 7 12 13 13 13 13

4 3 17 21 21 21 21

5 4 11 19 22 7 18

Adaptive Newton

3 3 4 4 5 4 5

4 3 4 4 5 6 5

5 3 4 5 7 7 6

In the next step, the effects of the yield stress value on the growth of the
unyielded zones are investigated by increasing the τs value from 2.0 to 5.0,
presented in Fig. 6.11, where the region of the dead zones grows, when the τs

increases to 5.0. Table [6.7] presents the corresponding comparison study for
both Newton and adaptive Newton solver. The results are according to the
expectations, the adaptive Newton solver is robust and efficient in all cases.
Note that the classical Newton faces difficulties specially on higher mesh levels
for small values of ε. Fig. 6.12 illustrates the efficiency of the adaptive Newton
solver for both values of τs for the regularization-free Bingham, as it converges
in very less number of iterations. On the other hand, the constant step-size
either oscillates or converges very slowly.

In order to test the limit of the complexity handled by the adaptive discrete
Newton, in terms of the threshold value τs of Bingham fluid. The forthcoming
tests are carried out by increasing the value of τs, given in Table [6.8]. The
adaptive Newton shows faster convergence with significantly less number of
nonlinear iterations. Furthermore, Table [6.9] summarizes all the test carried
out for the regularization-free Bingham in the lid driven cavity for all values
of yield stress, starting from moderate (2.0) to very high (50.0). The effect
of increasing the τs on the growth of dead zones in the cavity can be seen
very clearly in Fig. 6.13, where the unyielded zones grows significantly (which
increases the no flow area (shaded in black)). This implies that the adaptive
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Newton solver is not only efficient but also solves accurately by predicting the
accurate unyielded zones.

(a) τs = 2.0 (b) τs = 5.0

Figure 6.11: Unyielded zones: The superposition of the contour of the un-
yielded zones on the streamline contours in the lid driven cavity computed for
regularization-free (ε = 0) Bingham with the yield stress value τs = 2.0 and
τs = 5.0 at refinement level L=6 (h = 1/64).
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(b) τs=5.0

Figure 6.12: Nonlinear convergence w.r.t χ for the adaptive discrete
Newton method: The norm of the residual versus number of iterations w.r.t.
two strategies (constant and adaptive) at refinement level L=4 (hx = 1/16, hy =
1/16) with the constant χ strategy (set as χc1

= 10−1, χc2
= 10−2,..., χc7

=
10−7) and the adaptive strategy (χa) for τs 2.0 and 5.0.
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Table 6.7: Lid driven cavity: Comparison of the Newton and the the adap-
tive discrete Newton iterations for the three-field formulation with yield stress
τs = 5.0 at different refinement levels L and regularization parameters including
regularization-free Bingham.

↓ L/ε → 10−1 10−2 10−3 10−4 10−5 0

Newton

3 10 21 21 21 21 5

4 11 28 31 31 31 -

5 4 27 - - - -

Adaptive Newton

3 4 4 5 5 5 5

4 3 4 5 6 4 5

5 3 3 3 6 6 6

Table 6.8: Lid driven cavity: The adaptive discrete Newton iterations for
the three-field formulation with yield stress values τs = 7.5, 10, 15 at different
refinement levels L and regularization parameters including regularization-free
Bingham.

↓ τs /ε → L 10−1 10−2 10−3 10−4 10−5 0

7.5 3 14 29 37 40 4 2
4 4 5 6 6 6 6
5 4 4 6 4 4 2

10 3 13 22 31 100 101 101
4 4 4 4 6 12 4
5 3 4 5 7 9 3

15 3 20 29 54 65 78 79
4 5 5 5 5 5 5
5 4 4 7 2 2 5

Table 6.9: Lid driven cavity: Summary of the adaptive discrete Newton iter-
ations for the three-field formulation, for different yield stress values at different
refinement levels L, for regularization-free (ε = 0) Bingham.

↓ L/τs → 2 5 7.5 10 15 20 40 50

3 5 5 2 101 79 3 8 18
4 5 6 6 4 5 5 6 7
5 6 6 2 3 5 5 6 9
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(a) τs = 10 (b) τs = 15

(c) τs = 20 (d) τs = 30

(e) τs = 40 (f) τs = 50

Figure 6.13: Unyielded zones: The unyielded zones of the regularization-free
(ε = 0) Bingham for different yield stress values τs = 10, 15, 20, 30, 40, 50 at
refinement level L=5 (h = 1/32).
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6.2.3 Flow Around Cylinder

This DFG 2-dimensional benchmark [79] analyse the attributes of the flow
around an obstacle in a rectangular channel, where a cylinder of radius r = 0.05
is placed with the centre at (0.2, 0.2) in a rectangular channel of length 2.2, the
upper and lower walls are 0.41 length apart. The geometrical configuration and
coarse mesh are shown in Fig. 4.1 and 4.2. The fluid density (ρ) and kinematic
viscosity (η) are set to 1 and 0.001, respectively. The fluid is characterised by
the stationary three-field Navier-Stokes equations:











||D(u)||ε σ − D(u) = 0 in Ω

−∇ · (2ηD(u) + τsσ) + u · ∇u + ∇p = 0 in Ω

∇ · u = 0 in Ω

(6.6)

where u is the velocity and p is the pressure. No-slip boundary conditions are
set on upper, lower walls and also on cylinder surface. Parabolic velocity profile
is given at the inlet as:

ux(y) =
(4.0Umaxy(0.41 − y)

(0.41)2
, 0

)

with maximum velocity Umax = 0.3. The outflow boundary condition is set as
do nothing. The average velocity for Umax = 0.3 is Uavg = 0.2. According to
the characteristic length of the cylinder i.e. cl = 0.1, the Reynolds number is
calculated as:

Re =
Uavgcl

η
= 20

For the validation of Newtonian flow benchmark, τs is subtituted as 0 in the
system of equations (6.6), which reduces the system into the classical Navier-
Stokes equations. The corresponding numerical results (in terms of drag/lift
values) strongly agree with the Damanik [62], shown in Table [6.10].

Table 6.10: Flow around cylinder Drag/Lift: Comparison with Damanik
[62], where NL denotes the number of adaptive discrete Newton iterations, LL
denotes the average number of multigrid iterations.

L Drag/Lift NL/LL Drag/Lift [62] NL/LL [62]

1 5.5550/0.009498 9/1 5.5550/0.009498 9/2
2 5.5722/0.010601 6/1 5.5722/0.010601 9/2
3 5.5776/0.010616 5/1 5.5776/0.010616 9/1
4 5.5791/0.010618 4/1 5.5790/0.010618 8/1

Afterwards, in order to get the viscoplastic effects in the flow, the value of
the yield stress is increased from 0 to 0.002, 0.02 and 0.2, respectively. The
corresponding numerical results for drag and lift coefficients at different mesh
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refinement levels are presented in Table 6.11, where ”NL” denotes the nonlin-
ear iterations of adaptive discrete Newton. The effects of increasing the yield
stress value can be observed in Fig. 6.14, where the velocity profile is drawn
through x = 1.5. Note that the velocity magnitude changes it’s behaviour from
parabolic profile to flat profile, which reflects the rigid zone where the fluid
moves with constant speed. Therefore, when the τs increases the flat region
grows accordingly.

Table 6.11: Bingham stationary flow around cylinder: Adaptive discrete
Newton iterations for the regularization-free (ε = 0) Bingham fluid at different
mesh refinement levels L with different yield stress values (τs).

τs L Drag/Lift NL

0 6.1228/0.014789 7
0.002 1 6.2469/0.026615 10

2 6.2679/0.032125 11

0 12.7121/0.072606 13
0.02 1 13.4006/0.084327 13

2 13.5184/0.081366 16

0 78.7969/0.418760280 7
0.2 1 83.5063/-0.050840764 14

2 87.4437/-0.151120580 16

Figure 6.14: Bingham stationary flow around cylinder: The velocity pro-
file of regularization-free Bingham (ε = 0) through x = 1.5 at refinement level
L = 2, for different yield stress values.

Fig. 6.15 presents the visualization of the velocity magnitude and distribution
of the pressure in the channel. It can be noticed that the maximum velocity
decreases, when the τs increases because the big part of the fluid in the middle
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of the channel behaves as solid and the maximum pressure increases. Moreover,
the visualization of ||D(u)|| and ||σ|| is presented in Fig. 6.16, where the region
(||σ|| < 1) of auxiliary stress tensor grows with the increasing τs. This region
indicates the rigid regime of the Bingham fluid flow in the channel.

(a) ||u||, τs = 0 (b) p, τs = 0

(c) ||u||, τs = 0.002 (d) p, τs = 0.002

(e) ||u||, τs = 0.02 (f) p, τs = 0.02

(g) ||u||, τs = 0.2 (h) p, τs = 0.2

Figure 6.15: Bingham stationary flow around cylinder: The visualiza-
tion of the velocity magnitude and pressure distribution for regularization-free
Bingham (ε = 0) at refinement level L = 2 for different yield stress values.
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(a) ||D(u)||, τs = 0 (b) ||σ||, τs = 0

(c) ||D(u)||, τs = 0.002 (d) ||σ||, τs = 0.002

(e) ||D(u)||, τs = 0.02 (f) ||σ||, τs = 0.02

(g) ||D(u)||, τs = 0.2 (h) ||σ||, τs = 0.2

Figure 6.16: Bingham stationary flow around cylinder: The visualization
of ||D(u)|| and ||σ|| for regularization-free (ε = 0) Bingham at refinement level
L = 2 for different yield stress values.

6.2.4 Rotational Bingham Flow in a Square Reservoir

To test the accuracy of the three-field formulation of Bingham fluid flow along
with the adaptive discrete Newton solver, a numerical study of the rotational
Bingham flow in a square reservoir benchmark [86, 87] is carried out, specifically
for the regularization-free (ε = 0) case. This configuration should produce the
true viscoplastic solution of the problem.

The benchmark is validated with a recent numerical results of Sergio et al. [87].
The configuration settings includes a wall driven force f as:

f(x1, x2) = 300 (x2 − 0.5, 0.5 − x1)

over the domain Ω = [0, 1]2 with the yield stress value τs = 14.5. In this
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numerical experiment, the flow behaviour is analysed with the motion on the
boundaries. Fig. 6.17 presents the validation of the results in terms of the
velocity field and the plug zones prediction, respectively. A central solid rigid
zone is expected as a true solution of the Bingham viscoplastic fluid in this
application. Our results are in very good agreement for the velocity field Fig.
6.17 (a) as well as for the calculation of the unyielded zones Fig. 6.17 (b). This
assures the accuracy and the efficiency of the three-field Bingham formulation
along with our newly developed adaptive discrete Newton solver.

(a) Velocity field (b) Velocity field [87]

(c) Plug zones (d) Plug zones [87]

Figure 6.17: Bingham flow in a square reservoir: Velocity field and the plug
zones of regularization-free (ε = 0) Bingham at mesh refinement level L = 5 for
yield stress value τs = 14.5.
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Chapter 7

Conclusions

In this work, a new adaptive discrete Newton method and a regularization-free
solver for yield stress fluids is developed. Firstly, by introducing a new auxiliary
stress in a three-field formulation. This formulation is very beneficial because it
can robustly solve small regularization parameter (ε) as well as regularization-
free (ε = 0), which is usually a very difficult task for a numerical solver in the
case of primitive variable formulation of any viscoplastic fluid. The existence
and the uniqueness of the weak form of the regularized problem has been briefly
discussed (chapter 2), whereas the uniqueness of the regularization-free Bing-
ham is still an open problem in the theory. The nonlinearity is treated with
the discrete Newton method and the resulting saddle-point problem is solved
with a monolithic finite element method to simulate the viscoplastic flows. The
advantage of this formulation is to achieve a true regularization-free viscoplastic
solution, i.e. ε = 0, efficiently and accurately. Several numerical experiments
are carried out for the benchmark problem ”Bingham fluid flow in a channel”,
where the three-field formulation predicts the unyielded surfaces correctly with-
out effecting the shape of the yield surfaces.

Secondly, a robust and accurate new adaptive discrete Newton method is devel-
oped, which evaluates the Jacobian matrix with the divided difference approach
and converges faster as compared to the classical Newton. A step function (de-
pending on the reduction of the nonlinear residual) automatically adapt the
step-size (χ) value, which is in the denominator of the approximated Jacobian.
This step-size has a great role in the performance of any difference method,
which is smartly adapted in our new strategy. The robustness and the efficiency
of this newly developed adaptive discrete Newton is tested for several flow con-
figurations (Bingham fluid flow in a channel, lid driven cavity, flow around cylin-
der and rotational Bingham flow in a square reservoir), where comparisons are
carried out for the classical and the adaptive discrete Newton. The numerical
results illustrates that the number of nonlinear iterations is significantly reduced
as compared to the constant step-size strategy (classical Newton). The remark-
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able performance of the adaptive discrete Newton along with the three-field
formulation provides an efficient and robust monolithic solver for the Bingham
fluid flow problems. Moreover, the adaptive discrete Newton solver is also very
useful for other nonlinear problems as it can handle any nonlinearity of the sys-
tem of equations in a black box manner and produces a remarkable speed of
convergence with accurate solution.

98



Bibliography

[1] A. Aposporidis, E. Haber, M. Olshanskii, and A. Veneziani, “A mixed
formulation of the Bingham fluid flow problem: Analysis and numerical
solution,” Computer Methods in Applied Mechanics and Engineering 200,
2434–2446 (2011).

[2] A. Fatima, S. Turek, A. Ouazzi, and M. A. Afaq, “An Adaptive Dis-
crete Newton Method for Regularization–Free Bingham Model,” Tech. rep.,
Fakultät für Mathematik, TU Dortmund (2021). Ergebnisberichte des In-
stituts für Angewandte Mathematik, Nummer 635.

[3] P. Coussot, “Yield stress fluid flows: A review of experimental
data,” Journal of Non-Newtonian Fluid Mechanics 211, 31–49 (2014).
URL https://www.sciencedirect.com/science/article/pii/

S0377025714000895.

[4] H. A. Barnes and K. Walters, “The yield stress myth?” Rheologica Acta
24, 323–326 (1985).

[5] G. Astarita, “Letter to the Editor: The engineering reality of the
yield stress,” Journal of Rheology 34(2), 275–277 (1990). Cited By
88, URL https://www.scopus.com/inward/record.uri?eid=

2-s2.0-84955051287&doi=10.1122%2f1.550142&partnerID=

40&md5=3df925123f82a2a45ce35566eadc2bed.

[6] A. Maleki, S. Hormozi, A. Roustaei, and I. A. Frigaard, “Macro-size drop
encapsulation,” Journal of Fluid Mechanics 769, 482–521 (2015).

[7] P. Sarmadi, O. Mierka, S. Turek, S. Hormozi, and I. A. Frigaard, “Three di-
mensional simulation of flow development of triple-layer lubricated pipeline
transport,” Journal of Non-Newtonian Fluid Mechanics 274, 104–201
(2019).

[8] N. Balmforth, I. A. Frigaard, and G. Ovarlez, “Yielding to Stress: Recent
Developments in Viscoplastic Fluid Mechanics,” Annual Review of Fluid
Mechanics 46, 121–146 (2014).

99



BIBLIOGRAPHY

[9] E. C. Bingham, Fluidity and plasticty, International chemical series, 1st ed.
(McGraw-Hill Book Company, inc., 1922).

[10] M. R. Hestenes, “Multiplier and gradient methods,” Journal of Optimiza-
tion Theory and Applications 4, 303–320 (1969).

[11] R. Huilgol and M. Panizza, “On the determination of the plug flow re-
gion in Bingham fluids through the application of variational inequali-
ties,” Journal of Non-Newtonian Fluid Mechanics 58(2), 207–217 (1995).
URL https://www.sciencedirect.com/science/article/pii/

037702579501342S.

[12] R. Huilgol and Z. You, “Application of the augmented Lagrangian method
to steady pipe flows of Bingham, Casson and Herschel–Bulkley flu-
ids,” Journal of Non-Newtonian Fluid Mechanics 128(2), 126–143 (2005).
URL https://www.sciencedirect.com/science/article/pii/

S0377025705000911.

[13] P. Saramito and N. Roquet, “An adaptive finite element method
for viscoplastic fluid flows in pipes,” Computer Methods in Ap-
plied Mechanics and Engineering 190(40), 5391–5412 (2001). URL
https://www.sciencedirect.com/science/article/pii/

S004578250100175X.

[14] R. Glowinski, “Approximation of a Bingham-Type Elliptic, Variational
Inequality,” Rev Fr Autom Inf Rech Oper 10(12), 13–30 (1976). URL
https://www.scopus.com/inward/record.uri?eid=2-.

[15] R. Glowinski, Lectures on numerical methods for non-linear variational
problems (Springer Science & Business Media, 2008).

[16] M. Fortin and R. Glowinski, Augmented Lagrangian methods : applications
to the numerical solution of boundary-value problems (Elsevier Science Pub.
Co., 1983).

[17] E. Dean, R. Glowinski, and G. Guidoboni, “On the numerical simulation
of Bingham visco-plastic flow: Old and new results,” Journal of Non-
Newtonian Fluid Mechanics 142, 36–62 (2007).

[18] M. Bercovier and M. Engelman, “A finite-element method for incompress-
ible non-Newtonian flows,” Journal of Computational Physics 36(3), 313–
326 (1980).

[19] T. C. Papanastasiou, “Flows of Materials with Yield,” Journal of Rheology
31(5), 385–404 (1987).

[20] N. Roquet and P. Saramito, “An adaptive finite element method for Bing-
ham fluid flows around a cylinder,” Computer Methods in Applied Me-
chanics and Engineering 192(31), 3317–3341 (2003).

100



BIBLIOGRAPHY

[21] I. A. Frigaard and C. Nouar, “On the Usage of Viscosity Regularisa-
tion Methods for Visco-Plastic Fluid Flow Computation,” Journal of Non-
Newtonian Fluid Mechanics 127, 1–26 (2005).

[22] A. Fatima, S. Turek, A. Ouazzi, and M. A. Afaq, “An adaptive discrete
Newton method for regularization-free Bingham model,” in Book of Ex-
tended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain, pp. 180–189 (Editorial Universitat
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