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Abstract
Both the complex and evolving nature of time series data make forecasting among one 
of the most challenging tasks in machine learning. Typical methods for forecasting are 
designed to model time-evolving dependencies between data observations. However, it is 
generally accepted that none of them are universally valid for every application. Therefore, 
methods for learning heterogeneous ensembles by combining a diverse set of forecasters 
together appears as a promising solution to tackle this task. While several approaches in the 
context of time series forecasting have focused on how to combine individual models in an 
ensemble, ranging from simple and enhanced averaging tactics to applying meta-learning 
methods, few works have tackled the task of ensemble pruning, i.e. individual model selec-
tion to take part in the ensemble. In addition, in classical ML literature, ensemble prun-
ing techniques are mostly restricted to operate in a static manner. To deal with changes in 
the relative performance of models as well as changes in the data distribution, we employ 
gradient-based saliency maps for online ensemble pruning of deep neural networks. This 
method consists of generating individual models’ performance saliency maps that are sub-
sequently used to prune the ensemble by taking into account both aspects of accuracy and 
diversity. In addition, the saliency maps can be exploited to provide suitable explanations 
for the reason behind selecting specific models to construct an ensemble that plays the 
role of a forecaster at a certain time interval or instant. An extensive empirical study on 
many real-world datasets demonstrates that our method achieves excellent or on par results 
in comparison to the state-of-the-art approaches as well as several baselines. Our code is 
available on Github (https://​github.​com/​Matth​iasJa​kobs/​os-​pgsm/​tree/​ecml_​journ​al_​2022).
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1  Introduction

Time series forecasting has attracted the attention of both academic and industrial com-
munities as it has always been considered one of the principal steps for real-time decision-
making and planning in a wide range of applications such as traffic prediction, weather 
forecasts, and stock market prices prediction (Krawczyk et al., 2017), to name but a few. 
However, forecasting is also considered one of the most challenging tasks in time series 
analysis due to the dynamic behavior of time series data, which may involve non-station-
ary and complex processes (Krawczyk et al., 2017; Saadallah et al., 2018; Cerqueira et al., 
2017). Several Machine Learning (ML) models have been successfully applied to solve 
time series forecasting either by considering as input the whole or some window of an 
ordered sequence of time dependent observations in an offline or a streaming fashion, or by 
using time series embedding into a L-dimensional euclidean space to reformulate forecast-
ing as a regression task (Saadallah et al., 2019; Cerqueira et al., 2017). Nevertheless, it is 
generally accepted that no ML model is universally valid for every forecasting application. 
This seems to be a particular case of the No Free Lunch theorem by Wolpert (1996), which 
means no learning algorithm is best suited for all tasks. More recently, Deep Artificial 
Neural Networks (DNNs) have shown some improvements over previous shallow ANN 
architectures (Romeu et al., 2013) and have been successfully applied to solve the forecast-
ing task (Romeu et al., 2013; Taieb et al., 2012). This success is mainly explained by their 
ability to automatically learn new, complex and enriched feature representations from input 
data (Utgoff & Stracuzzi, 2002). Recurrent-based NNs such as Long Short-Term Memory 
Networks (LSTMs) (Gers et al., 2002), as well as Convolutional Neural Networks (CNNs) 
(Livieris et al., 2020), have been widely used as state-of-the-art NN methods in the context 
of forecasting (Romeu et al., 2013; Gamboa, 2017). However, deep learning models typi-
cally have high variances and low biases (Gamboa, 2017). In a complicated and dynamic 
application environment, it is difficult for an individual deep learning model to maintain 
high forecasting accuracy and robustness (Zhang et al., 2021).

In this context, one reasonable solution is to combine forecasts of different models in 
order to obtain one single desired forecast value. This is formally broached in the ML lit-
erature by ensemble learning. Ensemble methods (Saadallah et al., 2018; Krawczyk et al., 
2017; Cerqueira et al., 2017; Brown et al., 2005; Breiman, 1996; Li et al., 2012; Tsouma-
kas et al., 2009) have been a very popular research topic during the last decades. The suc-
cess of ensemble methods stems in part from the fact that they offer attractive solutions to 
a wide variety of learning problems from the past and the present, such as improving pre-
dictive performance (Li et al., 2012; Saadallah et al., 2018), learning from multiple physi-
cally distributed data sources (Stolpe et  al., 2016), scaling inductive algorithms to large 
databases (Street & Kim, 2001) and learning from concept-drifting data streams (Saadallah 
et al., 2018, 2019). Ensemble construction can be divided into three main stages: (i) single 
model generation, where N possible hypotheses are formulated to model a given learning 
task. This results in N different individual models called base models; (ii) ensemble prun-
ing, where only a subset of k < N hypotheses is kept. This stage is devised to reduce the 
ensemble size and corresponding resources consumption while promoting its performance 
and (iii) model aggregation, where these hypotheses are aggregated together into one sin-
gle model using some combination rule, e.g. majority voting or averaging.

Most existing methods for ensemble learning for time series data are focused around 
optimizing the last stage, i.e. model aggregation (Saadallah et al., 2018; Cerqueira et al., 
2017, 2017, 2018; Saadallah et al., 2021; Saadallah & Morik, 2021). Even though several 
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empirical and theoretical studies have proven the importance of ensemble pruning for 
enhancing both computational efficiency and predictive performance for classification task 
(Li et al., 2012; Tsoumakas et al., 2009; Zhang et al., 2006; Martinez-Munoz et al., 2008; 
Caruana et al., 2004; Yu et al., 2011), only few works investigated this task for forecast-
ing (Saadallah et al., 2019; Krikunov & Kovalchuk, 2015; Ma et al., 2015). This can be 
explained by two main facts. The first is due to the difficulty of the problem itself, espe-
cially when combined with time series. Hence, given a set of trained forecasters, select-
ing the sub-ensemble with the best generalization performance is difficult since it is not 
easy to estimate the generalization error of the sub-ensemble. In addition, finding the opti-
mal subset of models is a combinatorial search problem with exponential computational 
complexity. Thus, it is infeasible to compute the exact solution by exhaustive search and 
approximate search is required (Li et al., 2012; Tsoumakas et al., 2009). This is even more 
computationally expensive for time series since the selected sub-ensemble have to cope 
with the time-evolving nature of data and therefore update and adaption of the pruning are 
required in real-time. The second fact consists of the difficulty of transferring pruning tech-
niques proposed for classification to forecasting since adaptions have to be made in order to 
comply to the characteristics of time series data (Ma et al., 2015).

In this work, we propose a two-staged online pruning procedure for an ensemble of 
DNNs for time series forecasting. Since several studies showed that the performance of 
the ensemble depends largely on the performance of its base models and on the diversity 
amongst them (Li et al., 2012; Tsoumakas et al., 2009; Yu et al., 2011; Saadallah et al., 
2019), our pruning procedure is devised to take into account these two aspects. This is 
achieved by comparing the computed so-called Regions of Competence (RoCs) of the 
DNNs to each other and to the most recent time series sequence pattern. The RoCs are 
computed using saliency maps, derived similarly to the way presented in (Saadallah et al., 
2021) by establishing a mapping between the input time series and the performance of 
the DNN. On the one hand, diversity is encouraged using clustering of the corresponding 
DNNs RoCs, thus promoting the selection of diverse patterns by considering only clus-
ter representatives. On the other hand, the second selection stage takes into account the 
accuracy of the cluster representatives by considering their closeness to the most recently 
acquired time series pattern. The distance between the current pattern and the most dis-
tant RoC from the selected models in the second stage sets its boundary under a form of a 
diameter. By setting up the number of clusters from the first stage, a bound for this diam-
eter is derived, which automatically determines the final number of models that should be 
selected so that the expected ensemble error over the most recent time series window is 
reduced. At test time, we produce forecasts step by step. At the first time step, we perform 
the pruning like explained above. Afterwards, at each time step, we compute the minimum 
distance between the RoCs of the base models and the current time series pattern, i.e. the 
most recently observed window of time series observations. We keep monitoring the differ-
ence between this minimum distance and the initial computed minimum. If the difference 
diverges significantly over time, a drift in the dependency structure between the base mod-
els and the target time series is assumed to take place and the ensemble pruning is updated 
by recomputing the models’ selection using the most recently acquired time series pattern 
following the same methodology. The difference deviation is tested incrementally using 
the well-known Hoeffding Bound (Hoeffding, 1994). Another drift-detection mechanism 
is employed to test the presence of drifts in the time series values. The occurrence of such 
drift triggers the update of both RoCs and the pruning strategy.

Since the base model selection is based on the pre-computed saliency maps-based 
RoCs, suitable explanations of both the selection and the performance of a specific 
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ensemble construction are provided. We further conduct comprehensive empirical analysis 
to validate our framework using 100 real-world time series datasets from various domains. 
The obtained results demonstrate that our method achieves excellent results in comparison 
to the the state-of-the-art approaches for ensemble pruning and learning as well as several 
baselines for time series forecasting. We note that all the experiments are fully reproduc-
ible, and both code and datasets are publicly available.1 The main contributions of this 
paper are thus summarized as follows.

•	 We present a novel method for online ensemble pruning of CNNs for time series fore-
casting using pre-computed saliency maps-based RoCs.

•	 We derive a theoretical bound for the number of final models to be selected and show 
how they should be selected in both pruning stages in order to enhance both ensemble 
accuracy and diversity.

•	 We update the pruning in an informed manner following concept drift detection in the 
candidate CNNs’ performance and the time series.

•	 We exploit the saliency maps to provide suitable explanations for the reason behind 
constructing a specific ensemble to play the role of forecaster at a certain time interval 
or instant.

•	 We provide a comparative empirical study with state-of-the-art methods, and discuss 
their implications in terms of predictive performance and scalability.

In the remainder of this paper, we describe the proposed approach in Sect. 3, after discuss-
ing related work in Sect. 2. In Sect. 4, we present an exhaustive experimental evaluation of 
its efficiency and scalability in practice. Finally, the last section concludes the paper.

2 � Literature review

Ensemble pruning has been widely studied in the literature for classification problems 
(Li et al., 2012; Tsoumakas et al., 2009; Zhang et al., 2006; Martinez-Munoz et al., 2008; 
Caruana et al., 2004; Yu et al., 2011). Few works tackled this issue for time series forecast-
ing, especially in an online dynamic fashion (Saadallah et al., 2019; Krikunov & Koval-
chuk, 2015). Therefore, this section discusses the works on ensemble pruning in general 
and shows which methods have been transferred from classification or devised for time 
series forecasting.

Ensemble pruning is a desirable and widely popular method to overcome the deficiency 
of high computational costs of traditional ensemble learning techniques and improve their 
performance. An ensemble with a very large number of models may add a lot of compu-
tational overhead due to the large memory requirements of some of its base models, e.g. 
decision trees (Margineantu & Dietterich, 1997). The optimization of run-time overhead 
is imperative for certain applications where real-time requirements have to be met, such as 
in online forecasting. In addition, when models are distributed over a network, the reduc-
tion of models leads to a reduction of the resulting communication costs (Tsoumakas et al., 
2009). Furthermore, both theoretical and empirical studies have shown that ensemble per-
formance depends on the performance of its individual models and how diverse they are 

1  https://​github.​com/​Matth​iasJa​kobs/​os-​pgsm/​tree/​ecml_​journ​al_​2022.

https://github.com/MatthiasJakobs/os-pgsm/tree/ecml_journal_2022


3463Machine Learning (2022) 111:3459–3487	

1 3

(Li et al., 2012; Brown et al., 2005; Martinez-Munoz et al., 2008; Caruana et al., 2004). 
All the previous works agree that encouraging diversity is beneficial to the performance of 
ensemble, but it is hard to tell the theoretical properties of diversity in ensemble (Li et al., 
2012). Therefore, understanding and promoting ensemble diversity remains an important 
research question in ensemble learning. The generalization performance of an ensemble 
depends on its empirical error and diversity (Li et al., 2012). It is thus reasonable to design 
the model selection criterion accordingly. However, it is very challenging to decide which 
models exactly need to be selected. Hence, given a set of base learners, it is not easy to 
estimate the generalization performance of a sub-ensemble. In addition, finding the opti-
mal subset is a combinatorial search problem with exponential computational complexity. 
Thus, it is infeasible to compute the exact solution by exhaustive search and approximate 
search is needed. Several methods have been proposed in the literature to solve this issue by 
searching near-optimal solution using either directly using global search (Zhou et al., 2002; 
Zhang, 2002; Chen et al., 2009) or iteratively using greedy search (Martinez-Munoz et al., 
2008; Partalas et  al., 2012). Greedy search methods can be further divided into greedy 
forward pruning which starts with an empty set and iteratively adds the learners optimiz-
ing a certain criterion, and greedy backward pruning that starts with the complete ensem-
ble and iteratively eliminates learners. It has been shown that greedy pruning methods are 
able to achieve comparative performance and robustness with global search methods but at 
much smaller computational costs (Li et al., 2012). Both global and greedy search methods 
can be further divided into three main families based on the paradigm used for the search 
(Tsoumakas et al., 2009).

The first family encloses ranking-based methods where the ensemble base models are 
sorted according to a selection criterion. Kappa pruning (Margineantu & Dietterich, 1997) 
is amongst the most popular methods in this family for classification and uses a diversity 
measure for the selection. It ranks all pairs of base classifiers based on the � statistic of 
agreement calculated on the training set. Kappa pruning could be applied to regression or 
forecasting by reformulating a suitable pairwise diversity measure. In this context, Ma et al. 
(2015) transferred several evaluation measures such as Complementarity (Martınez-Munoz 
& Suárez, 2004), Concurrency (Banfield et al., 2005), and Reduce Error (Margineantu & 
Dietterich, 1997), for rank-based ensemble pruning using a forward greedy search proce-
dure, to time series forecasting. It was shown that Complementarity and Reduce Error have 
the same flaw since they can not guarantee that the base model supplementing the ensem-
ble the most at a given iteration is the one that will be selected. This is mainly explained 
by the fact that the error in time series forecasting is directional. Therefore, it is not very 
reasonable to only focus on decreasing the value of the forecasting error while ignoring its 
direction. Reduce Error-trend that takes into account the trend of time series and the direc-
tion of forecasting error, is then suggested by the authors to mitigate the above issue.

The second family relies on clustering (Giacinto et  al., 2000; Lazarevic & Obra-
dovic, 2001). Methods of this family consist of two stages. First, a clustering algorithm is 
employed in order to discover groups of models that are similar, i.e. make similar predic-
tions. In a second stage, a selection of each cluster’s representative is performed to increase 
the overall diversity of the ensemble. The main issue in this method is the choice of the 
similarity measure according to which the models will be evaluated, as well as the optimal 
number of clusters, i.e. the resulting ensemble size after pruning (Tsoumakas et al., 2009).

The third family of methods include optimization-based methods. Different optimiza-
tion techniques can be employed, including genetic algorithms (Zhou & Tang, 2003), 
semi-definite programming (Zhang et  al., 2006), hill climbing (Caruana et  al., 2004) 
and meta-learning (Partalas et al., 2006). In the context of forecasting, a meta-learning 
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approach for the estimation of ensemble forecasts errors using regression is used in Kri-
kunov and Kovalchuk (2015) to implement the selection procedure for each forecast. 
A more sophisticated approach inspired from classification is proposed in Zhang et al. 
(2021), where Extreme Learning Machines (ELMs) and Hierarchical Extreme Learning 
Machines (H-ELMs) are integrated as the base models, and four distinct meta-attributes 
collections, i.e., hard prediction, local accuracy, global accuracy, and prediction confi-
dence, are presented. Each set of meta-attributes is joined to a specific assessment crite-
rion, constructing thus a meta-data set. A meta-learner is trained on this data and used 
subsequently for deciding whether a base learner should be included in the ensemble or 
not.

This list of pruning method families is not exhaustive and several paradigms are used 
to serve this task. A comprehensive review can be found in Tsoumakas et al. (2009). How-
ever, most importantly for the time series domain, pruning methods need to be dynamic 
in order to cope with the time-evolving nature of time series that can be subject to sig-
nificant changes, more precisely to the so-called concept drift phenomenon (Gama et al., 
2014; Krawczyk et al., 2017). Dynamic methods can adapt the pruning strategy either in 
a blind manner over time, i.e. at each time instant at test time or periodically (Krikunov & 
Kovalchuk, 2015; Zhang et al., 2021), or in an informed fashion following concept-drift 
detection (Saadallah et  al., 2019). A Drift-aware ensemble pruning for time series fore-
casting through adaptive model selection using correlation-based measures for similarity 
and dynamic clustering of the top-similar model with the target time series is proposed in 
Saadallah et al. (2019).

The last thing to note is that the ensemble combination/aggregation stage can also be 
used to serve the pruning stage implicitly by learning ensemble weighting schemes. This 
is achieved by assigning different weights to the ensemble base models and setting some 
to zero in order to exclude some of the base models. Several methods for automatically 
learning dynamic ensemble weighting schema for time series forecasting are suggested in 
the literature (Cerqueira et al., 2018; Saadallah et al., 2021; Gaillard & Goude, 2016; Cer-
queira et  al., 2017; Saadallah & Morik, 2021). However, not all of them guarantee that 
some of the weights would be set to zero (Saadallah et al., 2021; Gaillard & Goude, 2016; 
Cerqueira et al., 2017; Saadallah & Morik, 2021). In Cerqueira et al. (2018), the authors 
frame their aggregation as a ranking task, in which experts are ranked sequentially by 
their decreasing weight (i.e. the one predicted to perform better is ranked first). Correla-
tion among the output of the base learners is used to quantify their redundancy. A given 
learner is penalised for its correlation to each learner already ranked. If it is fully correlated 
with other learners already ranked, its weight becomes zero. Opposingly, if it is completely 
uncorrelated with its ranked peers, it gets ranked with its original weight.

Deep learning algorithms construct complex models that are opaque for humans. For 
some areas such as health care or autonomous systems, e.g. self-driving cars, where a deep 
understanding of the AI application and the corresponding model behaviour is crucial, there 
is a great need for Explainable Artificial Intelligence (XAI) (Lamy et al., 2019; Tjoa & Guan, 
2020; Zablocki et al., 2021). It is possible to use model-agnostic methods for explainability, 
such as local interpretable models that are used to explain individual predictions of black box 
machine learning models (Ribeiro et al., 2016). However, there are two main reasons for why 
it is necessary to consider explainability methods that are specifically developed for neural 
networks. First, neural networks learn features and concepts in their hidden layers and specific 
tools are required to reveal them. Second, the gradient can be exploited to implement explana-
tion methods that are much more efficient than model-agnostic methods since they look into 
the inside dynamics of the model. A wide variety of explanation methods have been presented 
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in the literature (Camburu, 2020; Samek et al., 2021; Molnar, 2020). These methods can be 
grouped into three main families.

The first family of methods consists of visualization-based approaches where either new 
learned features by the DNN (Olah et al., 2017) or most important input data parts for the 
DNN’s output (i.e. decision) (Simonyan et  al., 2013; Selvaraju et  al., 2017) are visualized. 
In the former, feature visualization is used for making the learned features represented in an 
explicit way. Feature visualization for a “unit” of a neural network (i.e. a “unit” refers either 
to individual neurons, feature maps (channels), entire layers or the corresponding pre-softmax 
neuron in the case for classification) is done by finding the input of the unit that maximizes the 
corresponding activation. In the latter, the so-called heat or saliency maps are used to establish 
a relationship between the output and the input of a DNN given fixed weights. These maps are 
widely used in the context of computer vision with CNNs to create class-specific heat-maps 
based on a particular input image and a chosen class of interest (Selvaraju et al., 2017). These 
maps are used for visualizing regions in the input image that are the most important for a 
particular prediction/ decision of the model. They are computed using the gradient of the net-
works prediction with respect to the input, holding the weights fixed. This determines which 
input elements (e.g. which pixels in case of an input image) need to be changed the least to 
affect the prediction the most.

The second family includes the so-called “conceptual” explanations. A concept can be 
defined as any abstraction, e.g. a colour in the case of an image, an object, a data property or 
even an idea. Given any user-defined concept, although a neural network might not be explic-
itly trained with the given concept, the concept-based approaches are devised to determine 
whether this concept is embedded within the latent space learned by the DNN or not (Kim 
et al., 2018; Küsters et al., 2020).

The third family of methods are model-based approaches that use model distillation to 
explain a neural network with a simpler model (Frosst & Hinton, 2017; Cheng et al., 2020). 
For example, in Frosst and Hinton (2017), the authors express the knowledge acquired by 
the neural net in a decision tree that generalizes better than the one learned directly from the 
training data. Since it relies on hierarchical decisions, explaining a particular decision is made 
much easier.

In Saadallah et al. (2021), the authors use the most salient parts of time series, called the 
models Region of Competence, to forecast new, unseen data points by comparing the new 
data to its historical record. To extract these Regions of Competence, they use a variation of 
Grad-CAM (Selvaraju et al., 2017), which explains the impact of parts of the time series on 
the model loss, rather than the model prediction itself.

In this work, we combine clustering with a rank-based approach to build an online drift-
aware two-staged pruning procedure for time series forecasting. The drift detection will not 
cover only the time series but also models dependencies/performance over time. In addition, 
the final number of selected models is set depending on the number of clusters in order to 
enhance both ensemble’s accuracy and diversity. Moreover, we extend the methodology pro-
posed in Saadallah et al. (2021) to ensemble pruning, which results in a more traceable and 
comprehensible pruning process.
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3 � Methodology

An online two-staged pruning procedure based on clustering and global ranking is devel-
oped to prune an ensemble of deep learning models for time series forecasting by taking 
into account both accuracy and diversity at each stage. Both stages are dependent on each 
other and a bound for the optimal number of final models to be kept is derived. The prun-
ing is not directly performed using the base deep models’ outputs but is based on their pre-
computed Regions-of-Competences (RoCs) which have been proved to be very success-
ful method for single online model selection for time series forecasting (Saadallah et al., 
2021). The pruning is also made in an adaptive informed manner following concept drift 
detection in time series and models’ RoCs dependencies. More details about the method 
are provided in this Section. The RoCs are calculated using performance-based heat-map-
ping method similar to the way presented in Saadallah et al. (2021). A quick reminder of 
the method is also be presented.

3.1 � Notations and definitions

A time series X is a temporal sequence of values, where Xt = {x1, x2,… , xt} is a sequence 
of X until time t and xi is the value of X at time i. Denote with ℙ = {f1, f2,… , fN} the pool 
of N CNN-based models trained to approximate a true unknown function g that gener-
ated X. Let x̂t+f = (x̂

f1
t+f

, x̂
f2
t+f

,… , x̂
fN
t+f

) be the vector of forecast values of X at a future time 
instant t + f , f ≥ 1 (i.e. xt+f  ) by each of the models in ℙ . A ensemble model f̄

ℙ
 of ℙ at time 

instant t + f  can be formally expressed as a convex combination of the forecasts of the 
models in ℙ.

where wj, j ∈ [1,N] are the ensemble weights. The weights are constrained to be positive 
and sum to one. This constraint is necessary for some of the following results. For simplic-
ity, we set the weights to be equal, i.e., wj =

1

N
∀j ∈ [1,N].

The goal of dynamic online ensemble pruning is to identify the subset of models 𝕊 ⊂ ℙ 
that should compose the ensemble at each time step t + f  such that the expected predic-
tion error of the pruned ensemble is reduced compared the the full ensemble f̄

ℙ
 for each 

forecast.

The pruning is performed using the so-called Regions-of-Competence (RoCs) or expertise 
of the models computed by the Performance Gradient-based Saliency Maps (PGSMs) 
(Saadallah et al., 2021). To do so, we divide the time series Xt into Xtrain

�
= {x1, x2,… , xt−�} 

and Xval
�

= {xt−�+1, xt−�+2,… , xt} , with a provided time window size � . Xtrain
�

 is used for 
training the models in ℙ and Xval

�
 is used to compute the RoCs using the PGSMs, since to 

(1)f̄
ℙ
(x̂t+f ) =

N∑

j=1

wjx̂
fj

t+f

(2)f̄
ℙ
(x̂t+f ) =

1

N

N∑

j=1

x̂
fj

t+f

(3)argmax
𝕊⊂ℙ

𝔼
[(
xt+f − f̄

ℙ
(x̂t+f )

)2|Xt+f−1

]
− 𝔼

[(
xt+f − f̄

𝕊
(x̂t+f )

)2|Xt+f−1

]
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measure models performance both true and predicted values of the time series are required. 
The RoCs for each model fj, j ∈ {1,… ,N} are obtained by performing time-sliding win-
dow operations of size n𝜔, n𝜔 < 𝜔 over Xval

�
 either by one step or by z steps. The resulting 

time-windows from Xval
�

 are denoted by Xval,i
n�

 with i ∈ [1, Z] and Z is the total number of 
resulting windows.

3.2 � Base learners

The ensemble base models are CNN-based models that share more or less the same basic 
types of layers. The common basic structure consists of a sequence of 1D-convolutional lay-
ers with different number of filters, followed by a batch normalization layer, in some cases a 
LSTM layer and an output layer of one neuron. The different architectures are obtained by var-
ying the number of the convolutional layers and their corresponding parameters (i.e. the num-
ber of filters) and in some cases adding or removing another neural network type to the last 
convolutional layer, like a LSTM layer. To obtain further architectures variations, the number 
of units in the LSTM are also varied. The candidate CNNs are devised such that they use the 
same L-lagged values of the time series as input to forecast the following time value.

3.3 � RoCs computation

The PGSMs are first introduced in Saadallah et al. (2021) and inspired by the class activation 
saliency maps, more specifically, Grad-CAM (Selvaraju et  al., 2017). However, instead of 
using these maps to derive the importance of certain features for a given class, a mapping 
between the performance of a given forecasting model and a specific time interval is estab-
lished. The performance of each model fj, j ∈ {0,… ,N} is evaluated using an error-related 
measure, namely the Mean Squared Error, �i

j
 on Xval,i

n�
 : the ith time interval window of Xval

�
 of 

size n� . The goal is to derive an estimate of the relevance of each time point in Xval,i
n�

 to a cer-
tain performance of the model measured by �i

j
 of fj . The intuition behind this method is similar 

to Grad-CAM exploiting the spatial information that is preserved through convolutional lay-
ers, in order to understand which parts of an input image are important for a classification 
decision. The focus here is on the temporal information explaining certain behaviours of fj . 
Therefore, the layer which has produced the last feature maps fmaps is considered. For each 
activation unit u at each generic feature map A, an importance weight w� associated with �i

j
 , is 

obtained. This is done by computing the gradient of �i
j
 with respect to A. Subsequently, a 

global average over all the units in A is computed:

where U is the total number of units in A. We use w� to compute a weighted combina-
tion between all the feature maps for a given measured value of the error �i

j
 . Since we are 

mainly interested in highlighting temporal features contributing most to �i
j
 , ReLU is used to 

remove all the negative contributions by:

(4)w� =
1

U

∑

u

��i
j

�Au

(5)Li
j
= ReLU(

∑

fmaps

w�A)
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Li
j
∈ ℝ

U is used to find the regions in Xval,i
n�

 that have mainly contributed to �i
j
 of the net-

work fj . Note that the candidates are designed such that U < n𝜔 . Note also that different 
time-windows Xval,i

n�
 of size n� are created out of Xval

�
 , so that several performance evalua-

tions of the same model on different windows can take place and the number of RoCs for 
each model is therefore increased. However, the work in Saadallah et al. (2021) is focused 
around single best model selection. That is why a ranking of the models on each Xval,i

n�
 is 

performed. Only the RoC of the best model is computed. At test time, the selection of the 
forecaster is corresponding to the model having the closest RoC to the most recent time 
series pattern. Opposingly, in this work, the performance (i.e. error) of all the candidate 
models is measured and the RoC for each model is computed. This can be viewed as com-
puting the most important time series interval responsible for a certain observed perfor-
mance of each base model in the ensemble. In this way, a buffer RoCj that contain all the 
pre-computed RoCs Ri

j
 on the different validation windows Xval,i

n�
, i ∈ [1, Z] for each model 

fj, j ∈ [1,N] is created, i.e., RoCj = {R1

j
,… ,RZ

j
} . It is important to note that in order to 

obtain one continuous region RoC Ri
j
 within the time series sequence Xval,i

n�
 , a smoothing 

operation is applied to Li
j
 . This is done by normalizing Li

j
 values between 0 and 1 and 

applying a threshold � = 0.1 to filter out smaller values (i.e. these values are set to 0). In 
addition, a moving-average is applied where each point is compared to the previous and the 
subsequent value. After the smoothing operation some regions may become empty. This is 
mainly due to some low Li

j
 (i.e. low relevance of the time point) or high discontinuity.

The base models use the same L-lagged values of the time series as input, 
XL
t+f−1

= {xt+f−L,… , xt+f−1} , ( t + f ≥ k).In addition to the smoothing employed in Saadal-
lah et al. (2021), in order to constrain the RoCs lengths to L, we reject the smoothed RoCs 
with length different from L. At test time, in order to forecast the value of X at t + f , f ≥ 1 , 
the similarity between the input pattern XL

t+f−1
 and the RoCs for each model in ℙ is com-

puted. Euclidean distance (Euc) is used to measure the similarity between XL
t+f−1

 and each 
Ri
j
,∀i ∈ [1, Z],∀j ∈ {1,… ,N}, within each RoCj,∀j ∈ {1,… ,N} buffer. For each model 

fj,∀j ∈ {1,… ,N} , the RoC Rj satisfying:

is selected to represent fj for the ensemble pruning for t + f .

3.4 � Online ensemble pruning

The pruning decision is performed in a step-wise manner online at each time forecast 
t + f , f ≥ 1 . For simplicity of notation, we assume f = 1 . The expected error of the ensemble 
of the models in ℙ ef̄  at a future data point xt+f  can be expressed as follows:

The left term in Eq. 7 refers to the weighted average error of the base models ē and the right 
term to the ensemble ambiguity ā which is simply the variance of the ensemble around the 

(6)Rj = argmin
Ri
j
∈RoCj

Euc(Ri
j
,XL

t+f−1
)

(7)

ef̄ (xt+1) = (xt+1 − f̄ (x̂t+1))
2

=
1

N

N∑

j=1

(xt+1 − x̂
fj

t+1
)2 −

1

N

N∑

j=1

(x̂
fj

t+1
− f̄ (x̂t+1))

2

= ē(xt+1) − ā(xt+1)
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weighted mean and it measures the disagreement between networks on xt+1 . The above 
relations can be averaged over several H time steps and the ensemble generalization error 
can be written as:

The RoCs Rj,∀j ∈ [1,N] , of each base model indicate the degree of expertise of the cor-
responding model in forecasting given the most recent input time series sequence pattern 
that is acquired to forecast the value of X at t + 1 , i.e., XL

t
 (See Eq. 6). Since this selection is 

made based on the closeness of Rj to XL
t
 , Rj can also be viewed as an estimate of XL

t
 by fj . 

In other words, the prediction by fj of the data points in XL
t
 are represented approximately 

by the data points rl
j
∈ Rj,∀l ∈ [1, L]:

The ensemble f̄  of ℙ can the be expressed as:

The ensemble error on the pattern XL
t
 using RoCs approximation R = {R1,… ,RN} by the 

models in ℙ can be then written as:

ĒR =
1

L

∑L

l=1
(
1

N

∑N

j=1
(xt+l−L − rl

j
)2) and ĀR =

1

L

∑L

l=1
(
1

N

∑N

j=1
(r̄l − rl

j
)2) . It is very intuitive 

to see from Eq. 11 that the selection should be made in favor of models whose RoCs are 
closer to the current pattern (i.e. considering the Euclidean distance) in order to minimize 
ĒR and diverse from each other in order to maximize ĀR . To do so, we perform a two-
staged pruning.

In a first stage, we start by clustering the candidate models using Euclidean distance 
into k clusters and select only cluster representatives to take part in the second pruning 
stage. Models belonging to different clusters are expected to have higher distance between 
them compared to models belonging to the same cluster. As a result, clusters’ representa-
tives have higher average distance to the average pattern R̄L = {r̄1,… , r̄L} , which contrib-
utes to increasing ĀR . In addition, models belonging to the same cluster have more or less 
the same distance to the current pattern XL

t
 . Therefore, the average error induced by all the 

models is expected to be similar to the averaged error induced by the clusters’ representa-
tives since one representative shows the same error level as all the models belonging to that 

(8)

Ef̄ =
1

H

H∑

f=1

ef̄ (xt+f )

=
1

H

H∑

f=1

(ē(xt+f ) − ā(xt+f ))

= Ē − Ā

(9)xt+l−L ≈ rl
j
,∀l ∈ [1, L], t ≥ L − 1

(10)f̄
ℙ
(xt+l−L) =

1

N

N∑

j=1

rl
j
= r̄l

(11)

ER

f̄
=

1

L

L∑

l=1

(xt+l−L − r̄l)
2

=
1

L

L∑

l=1

(
1

N

N∑

j=1

(xt+l−L − rl
j
)2) −

1

L

L∑

l=1

(
1

N

N∑

j=1

(r̄l − rl
j
)2)

= ĒR − ĀR
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same cluster. As a result, ĒR is approximately preserved. In this way, we promote diversity 
without increasing the averaged error which reduces the expected ensemble error ER

f̄
 on 

XL
t
 . The selection of a model fr, r ∈ [1,NC] to be representative of a given cluster of mod-

els Cm,∀m ∈ [1, k] where NC is its size, is done based on its closeness to the current pattern 
XL
t
.

This helps to reduce the averaged error of the base models. The clustering of the RoCs is 
done using K-means (Burkardt, 2009) with Euclidan distance as similarity measure.

In a second stage, a selection of the best performing clusters representatives, denoted 
here as top-M models, is computed using ranking. As the second stage is dedicated to 
reducing the averaged error ĒR while promoting the diversity even further, the ranking is 
computed using the distance of the candidate clusters’ representatives to the current pattern 
XL
t
 and a bound for the radius � of the L-sphere of center XL

t
 enclosing the top-M models 

that should be preserved in this stage, is derived:

where k is the number of clusters (i.e. number of selected models from the first stage). Note 
that the ensemble’s error is always positive, meaning that the ambiguity can be considered 
as a lower bound of the averaged error of the base models. This applies to the ensemble 
of the k clusters’ representatives ER

k
 . We have then ĒR

k
≥ ĀR

k
 which means that we always 

satisfy that the upper bound of Eq. 13 is bigger than the lower bound of the same equation.

Proof  To ensure a reduction of the averaged error, the error ĒR

top-M
 induced by the subset of 

the top-M models should be lower than ĒR

k
 induced by the subset of k cluster 

representatives.

where |top-M| is the cardinality of the top-M models. Since they are contained within the 
L-sphere of center XL

t
 , we have 

∑L

l=1
(xt+l−L − rl

j
)2 ≤ �2,∀j ∈ [1, �top-M�] . Therefore, each 

single model fj contained within the sphere has at most distance of � to XL
t
 . As a result:

(12)fr = argmin
Rj∈Cm

Euc(Rj,X
L
t+f−1

),∀m ∈ [1, k]

(13)1

2

�∑L

l=1

∑k

j=1
(r̄l − rl

j
)2)

k
≤ 𝛿 ≤

�∑L

l=1

∑k

j=1
(xt+l−L − rl

j
)2

k

ĒR

top-M
≤ ĒR

k

1

L

L∑

l=1

1

∣ top-M ∣

∣top-M∣∑

j=1

(xt+l−L − rl
j
)2 ≤

1

L

L∑

l=1

1

k

k∑

j=1

(xt+l−L − rl
j
)2

�2

L
≤

1

L

1

k

L�

l=1

k�

j=1

(xt+l−L − rl
j
)2

�2 ≤
1

k

L�

l=1

k�

j=1

(xt+l−L − rl
j
)2

� ≤

�∑L

l=1

∑k

j=1
(xt+l−L − rl

j
)2

k
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In addition, we want to ensure that the second stage either preserves the promoted diver-
sity from the clustering stage or enhances it even further by preserving or increasing the 
ambiguity:

The average pattern R̄L of the top-M models is contained within the L-sphere of center 
XL
t
 and the distance between Rj and R̄L can be then at most 2� for all the models fj with 

j ∈ [1, |top-M|] . Therefore:

	�  ◻

In practice, in order to identify the top-M models for a fixed number of clusters k, we 
start by clustering the N models in P and we compute the clusters’ representatives (See 
Eq. 12). Then, we calculate the distance of their RoCs to the current pattern XL

t
 . We set � 

simply to the upper bound of Eq. 13 (i.e. in this case the lower bound is naturally verified) 
and models whose distance is lower or equal to � are selected as the top-M models to com-
pose the ensemble that forecasts the value of X at t + 1 . The upper bound of Eq. 13 can then 
be interpreted as promoting the selection inside the L-sphere close to the true recent pattern 
XL
t
 which reduces the averaged error while the lower bound can be viewed as a regulariza-

tion parameter that disallows radius values that would result in a clustering of the base 
models very closely around XL

t
 which decreases the ambiguity.

The models selected to compose the ensemble at t + 1 (i.e. top-M) are assumed to 
remain valid for the following time instants t + f  with f > 1 unless a concept-drift either 
in the models’ dependencies/performance or in the time series data is detected. If a drift 
is detected, an alarm to update the pruning decision (i.e.top-M models) is triggered. More 
details are provided in the following Subsection.

3.5 � Drift‑aware pruning update

In order to update the pruning decision at test time in an informed manner, two drift detec-
tion mechanisms are deployed.

3.5.1 � Concept drift in time series

Due to the dynamic behaviour of time series, streaming upcoming values can be subject to 
significant changes, more specifically to concept drifts (Gama et al., 2014; Krawczyk et al., 
2017). As a result, the base models’ RoCs have to be updated in order to take into consid-
eration the possible appearance of new patterns in the data and also to gain experience of 

ĀR

top-M
≥ ĀR

k

1

L

L∑

l=1

1

∣ top-M ∣

∣top-M∣∑

j=1

(r̄l − rl
j
)2) ≥

1

L

L∑

l=1

1

k

k∑

j=1

(r̄l − rl
j
)2)

4𝛿2

L
≥

1

L

L∑

l=1

1

k

k∑

j=1

(r̄l − rl
j
)2)

𝛿 ≥
1

2

√√√√1

k

L∑
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j=1

(r̄l − rl
j
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which models are better to compose the ensemble to deal with these patterns if they ever 
reoccur again. The old models’ RoCs buffers are maintained and they are enriched with 
new ones. To do so, if a concept drift in the time series is assumed to take place at a given 
time instant t + f , f > 1 , an alarm is triggered to update of the models’ RoCs by updating 
Xval
�

 on which the RoCs are originally computed. This is done by sliding Xval
�

 to include the 
new recent observations. The detection of concept drifts is performed by monitoring the 
deviation Δmtf

 in the mean of the time series till t + f  (Saadallah et  al., 2019): 
Δmtf

= �(Xtf
) − �t , with �t = �(Xt), t ≤ tf  , the initial computed mean of X up to time t. A 

drift is assumed to take place at tf  if the true mean of Δmtf
 diverges in a significant way 

from 0. We propose to detect the validity of this using the well-known Hoeffding-Bound 
(Hoeffding, 1994), which states that after W independent observations of a real-valued ran-
dom variable with range r, its true mean has not diverged if the sample mean is contained 
within ±�m:

with a probability of 1 − � (a user-defined hyperparameter). Once |||Δmtf

||| exceeds �m , an 
alarm is triggered and the reference mean � is reset by setting t = tf  . This checking proce-
dure is continuously applied online at forecasting time.

The update of the RoCs triggers in turn the update of pruning. Since new RoCs can be 
added to the different RoCs buffers, changes in the distances of these RoCs to the most 
recent pattern XL

t+f−1
 are expected. As a result, new RoCs representatives of the models 

can appear (See Eq. 6) and re-clustering of the models and re-selection of the top-M then 
become necessary.

3.5.2 � Concept drift in models’ performance

Base models’ performance is reflected using the distance of their representative RoCs to 
the current pattern. If we consider forecasting the time series value at t + 1 , the distances 
measured using the most recent pattern XL

t
 can be viewed as a measure of dependencies 

between the set of base models and the target time series. These dependencies can be con-
tinuously computed and monitored over time. The distance dt

j
 of the model fj to XL

t
 is cal-

culated using its representative RoC Rj for the forecasting at time t + 1 . (Eq. 6).

Naturally, with time-evolving data, dependencies change over time and follow non-station-
ary concepts. Stationarity in this context can be formulated as follows:

Definition 1  (Weak stationary Dependencies) Let Dt = {dt
1
,… , dt

N
} ∈ ℝ

N be a resulting 
similarity vector between the base models and the target time series XL

t
 over a window of 

size L (i.e. derived from the above similarity metric Eq. 15). We sort the value of Dt in an 
ascending order so that Dt = {d1,t,… , dN,t} with d1,t ≤ ⋯ ≤ dN,t . Let �d denote the mini-
mum value in Dt at the initial instant of its generation ti = t . The dependence structure is 
said to be weakly stationary if the true mean of Δdift is 0:

(14)�m =

√
r2 ln(1∕�)

2W

(15)dt
j
= Euc(XL

t
,Rj),∀j ∈ [1,N]

(16)Δdift =
||d1,t − �d

||
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Following this definition, we can assume that the distance between the most similar 
models to the current pattern within the same pool of models P sets its boundary under a 
form of a logical diameter. If this boundary diverges in a significant way over time, a drift 
is assumed to take place. We propose to detect the validity of such assumption using the 
well-known Hoeffding Bound �d similarly to the way suggested for detecting the drift in the 
deviation of the mean of the time series (Eq. 14). Once the condition of the weak station-
ary dependencies presented in Definition 1 is violated (i.e. Δdift ≥ �d ), an alarm is trig-
gered, the ensemble pruning is updated by re-clustering of the models and re-selecting of 
new top-M models. Afterwards, the dependencies monitoring process is continued by slid-
ing the time window to update XL

t
 by one value to produce the next forecast. Once a drift is 

detected at time instant td , the reference diameter �d is reset by setting ti = td.
Our method is denoted in the following as OEP-ROC: Online Ensemble Pruning using 

performance saliency maps-based Regions-Of-Competence. The concept drift detected in 
the time series is denoted as Drift Type I while the drift in base models’ perfor-
mance is denoted as Drift Type II. All the steps of OEP-ROC are summarized in 
Algorithm 1.
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4 � Experiments

We present the experiments carried out to validate OEP-ROC and to answer these research 
questions:

•	 Q1 How does OEP-ROC perform compared to the the State of the Art (SoA) and 
existing online ensemble pruning methods for time series forecasting?

•	 Q2 What is the importance of each pruning stage in OEP-ROC?
•	 Q3 What is the benefit of each drift type detection for the performance of OEP-ROC?
•	 Q4 What is the impact of different values of the number of clusters k on the perfor-

mance of OEP-ROC?
•	 Q5 What is the impact of choosing the size of top-M automatically using the bound in 

Eq. 13?
•	 Q6 How can different aggregation techniques benefit from our pruning method?
•	 Q7 How scalable is OEP-ROC in terms of computational resources compared to the 

most competitive online model selection methods? What is the computational advan-
tage of the drift-aware adaption of pruning?

•	 Q8 How can OEP-ROC be exploited to provide suitable explanations for the reason 
behind selecting specific models to compose the ensemble at a certain time interval or 
instant?

•	 Q9 How can OEP-ROC be used also to provide reasonable explanations for the perfor-
mance of the selected ensemble at a certain time interval or instant?

4.1 � Experimental setup

The methods used in the experiments were evaluated using the root mean squared error 
(RMSE). The used time series was split into three parts, where the first 50% is used for 
training ( Xtrain

�
 ), the next 25% for validation ( Xval

�
 ) and the last 25% for testing. The results 

are compared using the non-parametric Wilcoxon Signed Rank test. We use 100 real-world 
time series shown in Table 1 for our experiments. For computational reasons, we chose to 
sample random time series for each dataset to gather a total of 100 diverse time series.

4.2 � OEP‑ROC setup and baselines

We construct a pool P of CNN-based candidate models using different parameter settings 
(e.g. number of filters varies in {32, 64, 128} , kernel size varies in {1, 3} ), like explained 
in Sect.n 3.2. For construction of the base learners, we define four architectural building 
blocks. Our notation of layer1-layer2 implies a sequential connection between the two lay-
ers. Let Conv1 be a sequential subnet made up of one convolutional layer with ReLU acti-
vation, followed by a batch normalization layer. Conv2 is similar, except that we use max 
pooling instead of batch normalization. Conv3 is the same as Conv1, but the number of 
filters for the convolutional layer is reduced by half. Lastly, we define a ResidualBlock as 
Conv-BatchNorm-ReLU-Conv-BatchNorm-ResidualConnection-ReLU. From these build-
ing blocks, we create our base learners as in Table 2, where each Dropout layer has a prob-
ability parameter of 0.9 and FCN refers to a fully-connected layer. There, we also show the 
different configurations we created by varying the number of filters in the convolutional 
layers as well as the number of hidden units in the LSTM layer.

OEP-ROC has also a number hyper-parameters that are summarized in Table 3.
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Table 1   List of datasets used for the experiments

Name Nr. of 
time 
series

Source Characteristics

Amount registered 1 Bike sharing (Cerqueira et al., 
2017)

Hourly, January 1–March 01, 2011

AbnormalHeartbeat 1 3053 measurements (4 kHz)
CatsDogs 1 14,773 audio samples (16 kHz)
Cricket 1 1197 accelerometer readings (184 

Hz)
EOGHorizontalSignal 1 UEA 1250 measurements (1 kHz)
EthanolConcentration 1 & UCR (Bagnall et al., 2017) 1 s spectrum measurement
Phoneme 1 1024 samples of audio
Rock 1 2844 samples of spectrum analysis
SNP500 1
DJI 1 UCI (Dua & Graff, 2017; Hosein-

zade & Haratizadeh, 2019)
Daily closing, 2010–2017

NYSE 1
RUSSELL 1
Electricity (Hourly) 11 Energy consumption measurements
KDD Cup 2018 13 Monash Forecast air quality indices (AQIs)
Pedestrian Counts 12 Forecasting Hourly pedestrian counts from 

Melbourne
Solar (10 min) 12 Benchmark Solar power production
M4 (Daily) 12 (Godahewa et al., 2021) Daily time series from M4 dataset
M4 (Weekly) 13 Weekly time series from M4 dataset
Weather 15 Daily weather forecasts

Table 2   Configurations and architectures for all base learners

Different configurations are generated by taking all combinations of filters and hidden units as described in 
the last column. In total, this results in 33 base learners

Base learner Architecture Configurations

Shallow FCN Conv1-Dropout-FC nfilters ∈ {32, 64, 128}

Small CNN Conv2-LSTM nfilters ∈ {32, 64, 128}
nhidden ∈ {10, 30}

Medium CNN Conv1-Conv1-LSTM nfilters ∈ {32, 64, 128}
nhidden ∈ {10, 30}

Large CNN Conv1-Conv1-Conv1-LSTM nfilters ∈ {32, 64, 128}
nhidden ∈ {10, 30}

Fewer Filter CNN Conv3-Conv3-LSTM nfilters ∈ {32, 64, 128}
nhidden ∈ {10, 30}

One Residual ResBlock-Dropout-FCN-Dropout-FCN nfilters ∈ {32, 64, 128}

Two Residual ResBlock-Resblock-Dropout-
FCN-Dropout-FCN

nfilters ∈ {32, 64, 128}
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We compare OEP-ROC against the following approaches which include SoA meth-
ods for forecasting and ensemble pruning methods devised in the context of forecasting. 
Some of them operate in an online fashion.

•	 SoA Forecasting Models

ARIMA (Box et al., 2015): Auto-Regressive Moving Average model.
LSTM (Gers et al., 2002): Long Short Term Memory Network.
ETS (Jain & Mallick, 2017): Exponential Smoothing model.
CNN, CNN-LSTM (Romeu et al., 2013): The two best performing base models.

•	 Online SoA Pruning Methods:

Ran-Pr-m : Random selection of base models to construct the ensemble with m 
indicating the ensemble size.
Ens: Ensemble of all the base modes in ℙ.
NCL (Mozaffari & Azad, 2014): Negative correlation Learning for pruning 
ensembles of deep learning methods. We use the same pool of base models as ℙ.
OCL (Saadallah et al., 2019): Online drift-aware clustering of the base modes in 
ℙ using covariance-based clustering.
OTOP (Saadallah et  al., 2019): Online drift-aware Top best performing models 
ranking using temporal correlation analysis.
DEMSC-C (Saadallah et al., 2019): Dynamic Ensemble Members Selection using 
Clustering: Online drift-aware Top best performing models ranking using tempo-
ral correlation analysis combined with covariance-based clustering.
DEMSC-K (Saadallah et al., 2019): Same as DEMSC-C but uses K-means clus-
tering using Dynamic Time Wrapping.
OS-PGSM (Saadallah et al., 2021): Online single model Selection using Perfor-
mance Gradient-based Saliency Maps from the pool ℙ that uses the principle of 
selection using gradient based RoCs and Hoeffding-based drift detection mecha-
nism in the time series to update the RoCs.
OSPGM-Int (Saadallah et al., 2019): Same as OS-PGSM but the time windows 
of size n� are slided with step size z = n�.

•	 OEP-ROC Variants:

OEP-ROC-C: Variant of OEP-ROC that uses only clustering without top-M 
selection.

Table 3   Hyperparameters of our method and their values for the experiments

Parameter Description Value

N Size of the Pool of base models ℙ 33
n� Size of time windows within the validation set 60
z Number of steps for sliding the n� time windows 25
L Number of lags for training the base models 5
k Number of base models clusters {5, 10, 15, 20}

� Hoeffding-Bound parameter 0.05
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OEP-ROC-TOP: Variant of OEP-ROC that performs top-M selection without clus-
tering.
OEP-ROC-ST: Static variant of OEP-ROC. Pruning decided at the initial forecast-
ing instant and kept fixed along testing.
OEP-ROC-Per: Pruning is updated periodically in a blind manner (i.e. without tak-
ing into account the occurrence of the drift).
OEP-ROC-I: Variant of OEP-ROC that takes into account only the occurrence of 
Drift Type I.
OEP-ROC-II: Variant of OEP-ROC that takes into account only the occurrence of 
Drift Type II.
OEP-ROC-k: Variant indicating the number k of clusters used in the clustering stage 
of OEP-ROC.
OEP-ROC-k-topm-M: In OEP-ROC and all its above variants the size of top-M 
(i.e. |top-M| ) is decided automatically using the bound in Eq. 13. In this variant, we 
set the size of models to select to a fixed value of M.

We also evaluate how different ensemble aggregation methods (i.e. ensemble weighting 
methods) can benefit from our pruning strategy. Instead of feeding all the base models in ℙ 
into the aggregation schema, we only input the models selected by pruning. To do so, we 
report the evaluation results over various aggregation methods including:

OEP-ROC-SW: Variant of OEP-ROC that uses sliding-window ensemble (Saadallah 
et al., 2018) for aggregation instead of equal weighting.
SW: Sliding-window ensemble (Saadallah et al., 2018) over all the models in ℙ.
OEP-ROC-OGD: Variant of OEP-ROC that uses Online Gradient Descent (Zinkevich, 
2003) for aggregation.
OGD: Online Gradient Descent (Zinkevich, 2003) aggregation over all the models in ℙ.
OEP-ROC-FS: Variant of OEP-ROC that uses Fixed Share method (Gaillard & 
Goude, 2016) for aggregation.
FS:Fixed Share method (Gaillard & Goude, 2016) for aggregation over all the models 
in ℙ.
OEP-ROC-EW: Variant of OEP-ROC that uses Exponential Weighting (Gaillard & 
Goude, 2016) for aggregation.
EW: Exponential Weighting (Gaillard & Goude, 2016) aggregation over all the models 
in ℙ.
OEP-ROC-MLPOL: Variant of OEP-ROC that uses Polynomial Potential aggregation 
rule with different learning rates for each base model (Wintenberger, 2017) for aggrega-
tion.
MLPOL: Polynomial Potential aggregation rule (Wintenberger, 2017) for aggregation 
over all the models in ℙ.

4.3 � Results

Table 4 presents the average ranks and their deviation for OEP-ROC and its variants and 
SoA methods for time series forecasting and online ensemble pruning. For the paired 
comparison, we compare our method OEP-ROC against each of the other methods. We 
counted wins and losses for each dataset using the RMSE scores. We use the non-paramet-
ric Wilcoxon Signed Rank test to compute significant wins and losses, which are presented 
in parenthesis (significance level 0.05).
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Figure  1 represents the average rank, and respective standard deviation, of OEP-
ROC and its variants, state of the art approaches for ensemble pruning, and other typi-
cal forecasting baselines.

Table 5 presents the average ranks and their deviation for OEP-ROC and its variants.
Table 6 shows the average rank, and respective standard deviation, of different aggre-

gations methods taking as input at one time the pruned models by OEP-ROC and all 
the base models in ℙ at a second time.

We compare also the run-time of OEP-ROC and its variants against the most com-
petitive SoA method, DESMC-C, in Table 7.

Figure 3 shows a comparison between the current input time series pattern XL
t
 (left 

part in black) with the average RoC (See Eq.  10) of the pruned ensemble to perform 
the forecast. Finally, a more general overview over the RoCs of the models selected by 
OEP-ROC compared to models selected by random pruning is shown in Fig. 2.

Table 4   Comparison of OEP-
ROC with k = 15 to different 
SoA for 100 time series. The 
rank column presents the average 
rank and its standard deviation 
across different time series. A 
average rank of 1 means the 
model was the best performing 
on all time series

Method Our Method Avg. Rank

Looses Wins

OS-PGSM 11(3) 89(71) 24.76 ± 3.11

Ran-Pr-5 20(5) 80(69) 18.35 ± 4.93

Ran-Pr-10 25(6) 75(68) 15.91 ± 5.03

Ran-Pr- 15 31(3) 69(61) 12.82 ± 6.17

CNN 14(7) 86(66) 20.32 ± 6.90

ETS 11(4) 89(71) 24.98 ± 9.36

Ran-Pr-20 32(16) 68(58) 10.42 ± 6.17

ARIMA 16(7) 84(73) 14.91 ± 9.69

OTOP 25(5) 75(60) 15.32 ± 9.89

OEP-ROC-PER 27(9) 73(61) 10.07 ± 5.84

OS-PGSM-Int 17(8a) 83(66) 23.30 ± 4.84

DEMSC-K 19(7) 81(60) 15.52 ± 7.45

CNN-LSTM 26(12) 74(62) 12.63 ± 7.55

DEMSC-C 32(19) 68(55) 13.68 ± 7.66

OEP-ROC-I 33(7) 67(35) 8.98 ± 5.69

OEP-ROC-II 30(7) 70(42) 10.08 ± 5.83

LSTM 43(30) 57(49) 8.88 ± 8.41

OEP-ROC-15-topm-8 33(15) 67(36) 5.59 ± 4.53

NCL 49(25) 51(26) 9.07 ± 9.28

OEP-ROC-15-topm-6 33(11) 67(33) 6.25 ± 5.19

Ens 47(27) 53(33) 7.73 ± 3.34

OEP-ROC-15-topm-10 39(10) 61(35) 4.90 ± 4.55

OEP-ROC-TOP 38(13) 62(33) 4.97 ± 5.84

OCL 36(17) 74(61) 6.17 ± 6.66

OEP-ROC-C 39(13) 61(33) 3.79 ± 3.42

OEP-ROC-ST 37(10) 63(34) 6.31 ± 4.83

OEP-ROC – – 3.29 ± 3.08
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Fig. 1   Distribution of the ranks of OEP-ROC with k = 15 in comparison to (a) different SoA methods 
across the different time series and (b) with different variants of OEP-ROC 

Table 5   Comparison of OEP-
ROC with k = 15 to its variants 
for 100 time series. The rank 
column presents the average rank 
and its standard deviation across 
different time series

A average rank of 1 means the model was the best performing on all 
time series

Method Avg. rank

OEP-ROC-II 9.98 ± 5.91

OEP-ROC-I 8.88 ± 5.76

OEP-ROC-TOP 4.86 ± 5.55

OEP-ROC-PER 9.96 ± 5.91

OEP-ROC-15-topm-8 5.84 ± 4.61

OEP-ROC-5 6.50 ± 6.28

OEP-ROC-15-topm-6 6.14 ± 5.27

OEP-ROC-15-topm-10 4.79 ± 4.62

OEP-ROC-10 5.73 ± 5.87

OEP-ROC-20 5.74 ± 5.27

OEP-ROC-C 3.68 ± 3.49

OEP-ROC-ST 6.19 ± 4.91

OEP-ROC 3.18 ± 3.15
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Table 6   Comparison of OEP-
ROC with k = 15 combined with 
different aggregation methods for 
100 time series

Method Avg. rank

SW 7.10 ± 2.54

OEP-ROC-SW 6.21 ± 3.95

EWA 6.83 ± 2.78

OEP-ROC-EWA 5.25 ± 2.24

OGD 4.81 ± 1.52

OEP-ROC-OGD 4.75 ± 1.75

FS 5.11 ± 2.75

OEP-ROC-FS 4.61 ± 2.16

MLPOL 3.85 ± 1.71

OEP-ROC-MLPOL 3.11 ± 2.05

Table 7   Average runtime plus 
variance (both in seconds) for 
three variants of OEP-ROC over 
5 datasets

Name Mean runtime (in 
seconds)

Variance of 
runtime (in 
seconds)

OEP-ROC 14.41 13.03
OEP-ROC-ST 0.49 0.24
OEP-ROC-Per 27.61 0.66

Fig. 2   Comparison of the clusters’ representatives of OEP-ROC-10 (top row) with k = 10 and OEP-ROC-
10-topm-6 (low row) (also k = 10 ) on the Abnormal Heartbeat dataset. We report the ambiguity amb of the 
clustered ensemble as well as the euclidean distance of each RoC to the input pattern, which is shown in the 
right most column. In red, we visualize the models that where chosen by each method for prediction

Fig. 3   Left: For the time series to predict (black), we show the ground truth value (red) as well as the pre-
diction of OEP-ROC-10 (green). Right: Visualization of each nearest RoC from the selected models (light 
blue), as well as the mean RoC (dark blue). Both plots were generated on the Abnormal Heartbeat dataset
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4.3.1 � Comparing OEP‑ROC to the state of the art approaches

In the results in Table  4, OEP-ROC outperforms almost all the baseline methods in 
terms of ranks and wins/loses in pairwise comparison. In addition, it is clear from Fig. 1 
that the first six best performing methods are variants of OEP-ROC. Ens, OCL and 
NCL seem to have quite good performance. However, their average ranks are approxi-
mately more than double the average rank of OEP-ROC.

The online ensemble pruning methods, e.g., OCL, OTOP, DEMSC-K and DEMSC-
C, show inferior performance compared to OEP-ROC. ARIMA, ETS, and CNN, SoA 
methods for forecasting, are considerably worse in average rank compared to OEP-
ROC. LSTM and CNN-LSTM show better performance, but are still worse than OEP-
ROC. The ensemble Ens that uses all 33 models has also worse average rank comparing 
to OEP-ROC which uses on average only 6 base models which is almost a fifth of the 
pool P size. These results address research question Q1.

4.3.2 �  Comparing OEP‑ROC to its variants

It can be seen from Table 5 that none of the pruning stages on its own (i.e. OEP-ROC-
C and OEP-ROC-TOP) is able to achieve good results similar to OEP-ROC, which 
shows the importance of each stage. It is also clear that OEP-ROC-C has better perfor-
mance than OEP-ROC-TOP since proceeding by only ranking the base models accord-
ing to their closeness to the current pattern kills the diversity (i.e. selection is made in 
favor of RoCs that are most similar to the current pattern and as a result more or less 
similar to each other). In this way, the ensemble ambiguity is decreased even though 
the averaged error of its base models is decreased. This shows that our two-staged pro-
cedure helps to establish a trade-off between ensemble’s diversity and accuracy. This 
answers research question Q2.

It can also be seen from Table 5 that none of the drift detection mechanisms (i.e. OEP-
ROC-I and OEP-ROC-II) is able on its own to achieve good performance. The combi-
nation of both is necessary to update the pruning in the right moment when it is needed. 
It is also clear that performing the updates periodically in a random blind manner with 
OEP-ROC-Per does not necessarily improves the performance even though it is designed 
to trigger more updates than all the drift-aware methods. This demonstrates that informed 
adaption is always beneficial. This answers research question Q3.

4.3.3 � Optimal choice of k and top‑M size

The right set-up of the number of clusters k to be computed seems also to be a important 
factor for the performance. While it can be seen from Table 5 that low values of k like 5 do 
not help to achieve good performance, increasing the value of k seems to improve largely 
the rank of OEP-ROC (i.e. decreasing the rank which means better performance across all 
the data sets). This can be mainly explained by the fact that small number of clusters would 
lead to bigger clusters’ sizes which means that the selection of the clusters’ representatives 
will no longer be representative of the same error level by all the base models belonging to 
the same cluster, so the control over the average error of the base models is lost. Increas-
ing the value of k too much is also not desired since it would lead to small cluster size and 
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more similar cluster representatives which may alter the diversity by decreasing the ambi-
guity. This answers research question Q4.

Finally, Table 5 shows also the usefulness and the benefits of our theoretical insights in 
setting up the size of top-M automatically. This size is set up by the derived bound (See 
Eq. 13) such that the base models’ average error is reduced and the ambiguity is increased. 
Fixed values for M could not achieve the same performance as OEP-ROC. The best fixed 
model selection configuration is OEP-ROC-15-topm-10 which has a bigger average rank 
than OEP-ROC. This addresses research question Q5.

4.3.4 �  Combination OEP‑ROC with different aggregation methods

It can be seen from Table 6 that all aggregation methods achieve better results when com-
bined with OEP-ROC than using all the based models in P . The advantage in performance 
is clearly seen especially for SW, EWA and MLPOL. This can be explained by the fact that 
the dimension of the input for the ensemble’s weights learning is reduced from N = 33 to 
an average of |top−M| = 6 . This make the meta-learning task in EWA and MLPOL eas-
ier. In addition, the weighting schema is focused more around the most suitable base mod-
els in terms of accuracy and diversity. The difference in performance between the methods 
can be explained by the difference in the weights learning paradigm behind each method. 
This addresses research question Q6.

4.3.5 � Scalability analysis

To compare scalability between our configurations, we considered OEP-ROC, OEP-
ROC-Per and OEP-ROC-ST, because these configurations nicely illustrate which steps 
of our algorithm are most costly. We show the results in Table 7. As can be seen, OEP-
ROC-ST is by far the fastest method on average, since it does not adapt its RoCs during 
the algorithms runtime. We noticed that recreating the RoCs takes by far the longest time 
in comparison to other steps of the algorithm and we plan to address this in future work. 
OEP-ROC-Per illustrates this problem the best, since it blindly and frequently recreates 
the RoCs and reclusters the models. Thus, its runtime is always high, no matter if an adap-
tion to new time series properties is necessary or not. OEP-ROC strikes a balance between 
these two extremes and detects whether or not an adaption to a drift is necessary. As can 
be seen from the table, this results in a high variance of the runtime, since some datasets 
contain more concept drifts than others. We see this behaviour as a benefit, since OEP-
ROC outperforms the other two methods we measured its runtime against, indicating that 
sometimes a higher runtime can be justified by overall better performance.

4.3.6 � Explainability aspects

We provide some insights into how OEP-ROC can be used to provide suitable expla-
nations for the reason behind specific base models selection to construct the ensem-
ble at a specific time instant of interval. First, we compare the clusters’ representatives 
of OEP-ROC-10 (top row) and OEP-ROC-10-topm-6 in Fig. 2. The current input pat-
tern is shown in black on the right side. It can be clearly seen that OEP-ROC selects the 
RoCs that are quite different from each other without being too far from the current pat-
tern which shows the trade-off established by OEP-ROC between accuracy and diversity. 
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OEP-ROC-10-topm-6 is promoting the selection of diverse pattern. However, the fixed 
size results in too many uninformative models (i.e models outside the L-sphere; See 
Sect. 3.4 for further details) being picked, leading to higher averaged error. This addresses 
research question Q8.

Figure 3 shows a comparison between the current input time series pattern XL
t
 (left part 

in black) with the RoCs of the pruned ensemble to perform the forecast on the left. A clear 
similarity between the trend in both patterns can be observed which justifies the choice of 
this ensemble construction since it has been proven to show some degree of competence 
in forecasting using patterns with similar trend as input. This is further validated when 
also comparing between the true time series value (ground truth, red) and the predicted 
value (green). While these two values differ slightly, an evaluation of all the candidates in 
this point showed that the ensemble by OEP-ROC has the smallest error. This addresses 
research question Q9.

4.4 � Discussion and future work

The empirical results indicate that OEP-ROC has performance advantages compared to 
popular forecasting methods and most SoA approaches for online ensemble pruning. We 
show that our method using RoCs-based pruning in two well-studied stages is able to gain 
excellent and reliable empirical performance in our setting. The informed adaption and 
update of the pruning decision following concept drift detection in both time series and 
base models’ performance makes our method in addition to better predictive performance, 
computationally cheaper than the most competitive SoA. OEP-ROC can also be used suc-
cessfully for providing useful explanations behind the selection of a specific subset of base 
models to compose the ensemble at a given time instant or interval. As future work, we 
plan to investigate the impact of varying some parameters in our setting, more specifically 
the size of the input pattern L. More candidate models from different families of machine 
learning models can also be considered by devising specific local attribution method to 
each family of models instead of being restricted to CNNs with gradient-based saliency 
maps as local attribution method to compute the RoCs. Explainability can further be pro-
moted by making the base models more explainable or supported by their specific expla-
nation tools. To improve the runtime of our methods further, we plan to investigate the 
impact of sampling RoCs from the validation dataset instead of computing them for the 
entire validation set every time.

5 � Conclusion

This paper introduces OEP-ROC: a novel, practically useful online ensemble of DNNs 
two-staged pruning method using performance saliency maps-based RoCs for time series 
forecasting. The pruning is updated online in an informed-manner using concept drift 
detection in both time series and ensemble base models’ performance. The two pruning 
stages in addition to the size of the resulting ensemble are supported by theory. An exhaus-
tive empirical evaluation, including 100 real-world datasets and multiple comparison algo-
rithms showed the advantages of OEP-ROC in terms of performance and scalability.
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