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Essentially, all models are wrong, but some are useful
George E. P. Box (1976)



Chapter 1

Introduction

This thesis documents the research and development of an architecture for cyber-
physical production systems with a primary focus on the optimization of the control
parameters of variable and adaptive production processes. The algorithmic solution
developed utilizes process data to generate adequate test functions and test and tune
feasible algorithms during runtime for real-world problems. In combination with the
application of state-of-the-art methods from benchmarking, this enables an automatic
selection of the most promising algorithm from a given portfolio according to estab-
lished performance criteria. This chapter gives the motivation and introduces the prob-
lems and challenges for the aimed solution.
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1.1 Motivation

The 4th industrial revolution, named Industry 4.0 (I4.0) by the german government as
a strategic initiative in 2011, aims at creating intelligent factories [58, 159, 158]. To
cope with challenges like shrinking product life cycles, progress in market penetra-
tion of innovative product technologies, and increasing demand for product individu-
alization, a significant increase in the degree of automation of production processes is
needed [121].

The desired levels of automation and adaption of production processes can not
be reached with conventional manufacturing processes and plants, as high amounts of
manual effort would be needed [7] to, i.e., realize changes in the topology of manu-
facturing plants and optimization of the process itself and the products. The develop-
ment of systems that integrate computation with physical processes has the potential
to solve that problem. Such systems are called Cyber-physical Systems (CPSs). For
a Definition of CPS, we cite Monostori [105, p.1] and extend the definition of CPS to
Cyber-physical Production System (CPPS):

Definition 1 (Cyber-physical production system). “Cyber-Physical Systems (CPS) are
systems of collaborating computational entities which are in intensive connection with
the surrounding physical world and its on-going processes, providing and using, at
the same time, data-accessing and data-processing services available on the internet.
With other words, CPS can be generally characterized as ‘physical and engineered
systems whose operations are monitored, controlled, coordinated, and integrated by a
computing and communicating core’.” [128] CPPS are those CPS, that are realizing a
production process.

Monostori highlights the need to especially understand the interaction between
the physical and the cyber element, and not only the physical and computational ele-
ments separately [105, 89].

As CPPS have the purpose of quickly adapting to new requirements such as new
products or product variants, the automation system requires high manual engineering
efforts for every new adaption [120]. After an adaption, the parameters of the system
need (re-) optimization to run efficiently. Formally, we search arguments of a function
f, realized by the CPPS, that optimizes (minimizes, without loss of generality) this
function:

argmin f(z), f: X - R (1.1)
zeX
The set X C R? is the non-empty, parameter space, and each element x € X rep-
resents a candidate solution. The parameters can broadly be classified into discrete,
categorical, or continuous and the problem can also be of mixed parameter types. In
this thesis, we develop solutions with a focus on continuous parameters.
A suitable algorithm must be selected to solve this problem efficiently. The prob-
lem of selecting an efficient algorithm for an optimization problem at hand is called
the Algorithm Selection Problem (ASP) and is defined as follows [133]:
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Figure 1.1: Schema of the algorithm selection problem defined by Rice (1976). The goal is to
select an algorithm that maximizes some performance metric on a given problem. The figure is
based on [141] and was adapted to the notation of the thesis at hand.

Definition 2 (Algorithm Selection Problem). For a given problem instance m € P,
with features F () € F, find the selection S(F(r)) into the algorithm space A, such
that the selected algorithm a € A maximizes the performance y(a,m) € Y.

The schematic of the problem is shown diagrammatically in Fig. 1.1. The selec-
tion procedure starts with a problem instance 7 (which represents the function f(z)
from Eq. 1.1) and the computation of features F'(r), which are then used as argu-
ments for the selection mapping function. This function selects an algorithm a that
maximizes a performance metric on the problem 7.

In general, Machine Learning (ML)-techniques seem suitable to address the ASP.
Classifiers can be trained to learn the decision boundaries for efficient algorithms on
the problems by modeling the selection mapping function according to a defined per-
formance metric and algorithm portfolio. Exploratory Landscape Analysis (ELA) can
be used to compute numerical features of problem instances [99, 101]. A review of the
current research on ASP methods and examples of a combination of ELA and ML can
be found in the literature [132, 110, 113, 80].

However, both approaches currently have some drawbacks or are even infeasi-
ble for the described online scenario, as a significant number of training samples are
needed, i.e., many results of different algorithms on optimization problems with a cer-
tain similarity to the problem at hand w. r. t. its features. Additionally, recent research
indicates that computation and selection of relevant ELA features can become quite
challenging. It is sensitive to both the sampling strategy applied and the number of
samples [131, 109]. Furthermore, not all features are invariant to simple transforma-
tions of the fitness landscape, i.e., shifting and scaling [85], which is quite possible
when the CPPS is adapted.

Our approach to addressing the ASP will use a data-driven test instance generation
procedure based on Gaussian process model (GPM) to evaluate algorithm performance
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in an online procedure, i.e., during the runtime of the CPPS, since data may not be
available beforehand to perform offline algorithm selection.

We will especially consider the requirements of Small and Medium-sized Enter-
prises (SMEs). Concrete implementations of solutions, even if they address problems
in a generalizable way, are tied to a specific platform or technology. This means that
they cannot be used by all companies or may even become unusable in the future, i.e.,
they rely on subsequent development in terms of bug fixes and adaptation to infras-
tructure changes. To provide added value, the goal is to develop an architecture that
addresses the problem of automatic online algorithm selection for CPPS optimization.
This will ensure cost savings when implementing the targeted solution or parts of it.
The saved effort increases if several use cases are implemented, e.g. optimization of
several machines.

Applications and architectures for CPPS are often associated with the term big
data due to the availability of increased volume, velocity, and variety of data. For a
definition of big data, we cite De Mauro et al.[38, p.131]:

Definition 3 (Big Data). “Big Data is the Information asset characterised by such
a High Volume, Velocity and Variety to require specific Technology and Analytical
Methods for its transformation into Value.”

This raises challenges for organizations in terms of data management, processing
and storage, as well as requirements for solutions such as scalability to maintain per-
formance. However, the intended solution for the ASP will only be slightly affected
by the topic of Big Data, as we do not aim to develop special algorithms dealing with
Big Data, but rather focus on embedding solutions for process parameter optimization
in general in a Big Data context, i.e. in a Big Data architecture and a prototypical
implementation for solving optimization problems in CPPS.

1.2 Research Questions

Considering the schema of the ASP shown in Fig.1.1, there are several open questions
and challenges to be addressed in this thesis. The generation of data-driven test in-
stances during the runtime of the CPPS based on GPM needs to be validated, i.e. to
ensure feasibility in terms of runtime and accuracy on the one hand. The generation
of data-driven test instances during the runtime of the CPPS based on GPM must be
validated, i.e., are they feasible in terms of runtime and accuracy, or are there already
reliable test instances for the optimization problems implemented by CPPS? These
questions refer to the problem space [P and the feature space [F of ASP.

Furthermore, the solution should adapt to new, previously unseen functions au-
tomatically, i.e. without the need for additional expert knowledge to select a suitable
algorithm. This thesis addresses the question of how to measure the performance of
algorithms and how to transfer the necessary knowledge to achieve an automated so-
lution. These questions are related to the specification of the algorithm space A, the
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performance space Y, and the selection mapping function S(F'(7)). Additionally, open
questions regarding architectural aspects will be addressed. This These questions are
summarized below:

(RQ-1)

(RQ-2)

(RQ-3)

Are Gaussian process simulation (GPS) and model variations feasible and ef-
ficient to allow online algorithm selection, and what are the boundaries for an
efficient implementation?

The application of test instance generation based on Gaussian process (GP) re-
quires an analysis of the relationship between test instances generated by dif-
ferent methods and their parameterizations, as well as insight into the impact
of generation method and configuration on the performance of optimization
algorithms.

How can a solution for the ASP be algorithmically implemented, such that
operators can optimize a CPPS online with a minimum of data science knowl-
edge and without a hand-written procedure?

The shortage of skilled workforce affects engineering disciplines, leading to
more responsibilities for employees regarding monitoring and optimizing pro-
duction processes and data science and computer science. The main focus re-
garding this question in this thesis is the development of an algorithmically
exploitable knowledge base for both optimization problems and optimization
algorithms. Important questions are what kind of knowledge and informa-
tion are needed to implement a relationship between optimization problems
and algorithms. This should finally lead to an application without the need
for monolithic solutions to implement an optimization algorithm to optimize
a CPPS.

How can the data-driven online algorithm selection solution be addressed by a
system architecture that provide benefit for many companies and what are the
requirements for an implementation?

Since not every company, especially SMEs, has common requirements re-
garding computing infrastructure or even operating system platforms, the def-
inition of an architecture can greatly reduce the implementation effort when
specific requirements have to be addressed. The level of abstraction at which
an architecture can be defined ranges from e.g. reference architectures, which
provide templates and processes for defining software, to software architec-
tures, which represent a tailor-made solution for a specific company and a
specific use case. Our goal is to develop a system architecture that specifies
the structure and behavior of the necessary components to address CPPS use
cases with a focus on process parameter optimization. Such an architecture
will provide maximum benefit if it can be used by many companies for a large
number of use cases. We will discuss and address the balancing act between
the level of abstraction and the effort required for implementation.
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Figure 1.2: Graphical summary of the contents of this thesis. The numbers represent the
chapters.

1.3 Outline

An overview of the contents of this thesis is summarized in Fig. 1.2. The first three
chapters following this introduction are dedicated to the different spaces of the ASP
and build the fundament for the developed architecture.

Chapter 2 provides insight into the problem space specification. Section 2.1
presents the taxonomy for problem classes in CPPS used in this thesis. The intro-
duction to GPM and three different strategies for generating test instances based on
GPM are given in Section 2.2. In Section 2.3, the generated test instances are evalu-
ated with respect to their features and the performance of the algorithms on different
problems of the injection molding simulation use case. Chapter 3 covers the algorithm
taxonomy used in this thesis. Section 3.1 provides an overview of different algorithm
families and in Section 3.2 we discuss several relevant performance metrics. The selec-
tion mapping approach is described in Chapter 4. Section 4.1 deals with the structure
of the knowledge base that is needed to define the problems and accordingly select
instances from the available algorithm portfolio. The algorithmic implementation of
the selection mapping function is given in Section 4.2, and the applied method for
hyperparameter optimization of the algorithms is described in Section 4.3.

Chapter 5 introduces the developed architecture, which combines and implements
the solutions and approaches of the previous chapters. The requirements for our archi-
tecture, which address CPPS use cases arising from selected use cases and general
considerations are provided in Section 5.1. Several selected reference architectures
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from the fields of automation and cognitive science are discussed and evaluated ac-
cording to the previously collected requirements in Section 5.2. Section 5.3 presents
the newly developed architecture for CPPS.

The developed solutions are finally evaluated and discussed in Chapter 6. Two
real-world case studies are presented. In Section 6.1, we present the results of Case
Study 1, the Versatile Production System. The results of Case Study 2, Injection Mold-
ing Optimization, are presented in Section 6.2.

This thesis concludes with a final evaluation in Chapter 7.

1.4 Publications

The following publications are of relevance to this thesis, as they comprise important
results and findings to the research topic. Parts of these papers were extended, re-
structured, and rewritten where needed to give more detailed information or extend
the experiments where necessary. Some parts were used verbatim in this thesis. The
following listing is presented based on its publication date, and the main contribution
of the author of this thesis is given for each item.

Data-driven Problem Classification and Algorithm Selection for Injection Mold-
ing Optimization, A. Fischbach, F. Rehbach, D. Anders, Materials, Methods &
Technologies, Volume 16, 2022 [52].

* The author of this thesis developed and implemented a strategy to eval-
uate several GPM-based test instance generation methods on an injection
molding simulation use case for algorithm selection.

Benchmark-Driven Algorithm Configuration Applied to Parallel Model-Based
Optimization, F. Rehbach, M. Zaefferer, A. Fischbach, G. Rudolph, and T.
Bartz-Beielstein, IEEE Transactions on Evolutionary Computation, 2022 [130].

* The author of this thesis contributes to the benchmarking concepts imple-
mented for algorithm configuration based on simulations, problem features,
and experimental design considerations.

Cognitive Capabilities for the CAAI in Cyber-Physical Production Systems, J.
Strohschein, A. Fischbach, A. Bunte, H. Faeskorn-Woyke, N. Moriz, and T.
Bartz-Beielstein, The International Journal of Advanced Manufacturing Tech-
nology, 2021 [146].

* The author of this thesis contributed the algorithmic concepts and solutions
for the online algorithm selection problem, corresponding benchmark ex-
periments, and the python implementation of the algorithms and the algo-
rithm selection procedure.
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Benchmarking in Optimization: Best Practice and Open Issues, T. Bartz-Beielstein,
C. Doerr, D. van den Berg, J. Bossek, S. Chandrasekaran, T. Eftimov, A. Fis-
chbach, P. Kerschke, W. La Cava, M. Lopez-Ibanez, K. M. Malan, J. H. Moore,
B. Naujoks, P. Orzechowski, V. Volz, M. Wagner, and T. Weise, arxiv e-Print,
2020 [8].

* The author of this thesis contributed to Section Algorithms in cooperation
with C. Doerr, and contributed fundamental ideas to Section Experimental
Design.

CAAI-a cognitive architecture to introduce artificial intelligence in cyber-phy-
sical production systems, A. Fischbach, J. Strohschein, A. Bunte, J. Stork, H.
Faeskorn-Woyke, N. Moriz, and T. Bartz-Beielstein, The International Journal
of Advanced Manufacturing Technology, 2020 [53].

* The author of this thesis contributed significant parts to the development
of the architecture and the prototypical implementation and evaluation on a
real-world use case based on experiments comparing two Surrogate Model-
Based Optimization (SMBO) variants w.r.t. performance and resource con-
sumption.

Improving the reliability of test functions generators, A. Fischbach and T. Bartz-
Beielstein, Applied Soft Computing, 2020 [51].

* The author of this thesis contributed to the provided problem taxonomy, the
experimental setup, and the evaluation of the referenced random and mixed
ANOVA models for selected problem and algorithm classes.

Open Issues in Surrogate-Assisted Optimization, J. Stork, M. Friese, M. Zaefferer,
T. Bartz-Beielstein, A. Fischbach, B. Breiderhoff, B. Naujoks, and T. TuSar, in
High-Performance Simulation-Based Optimization, Springer, 2020 [145].

* To this book chapter, the author of this thesis contributed to the section
Benchmarking in cooperation and discussion with M. Zaefferer.

Evaluation of Cognitive Architectures for Cyber-Physical Production Systems,
A. Bunte, A. Fischbach, J. Strohschein, T. Bartz-Beielstein, H. Faeskorn-Woyke,
and O. Niggemann, in 24th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), 2019 [23].

* The first three authors share the first authorship with an approximately
equal share of the work. The author of this thesis contributes the evalu-
ation of the Industrial Internet Reference Architecture (IIRA), the evalua-
tion of the Adaptive Control of Thought-Rational (ACT-R) architecture, the
requirements for a new architecture based on the evaluation of an energy
efficiency optimization use case, and general conceptual requirements.
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Simulation Based Test Functions for Optimization Algorithms, M. Zaefferer, A.
Fischbach, B. Naujoks, and T. Bartz-Beielstein, in Proceedings of the Genetic
and Evolutionary Computation Conference, 2017 [155].

* The author of this thesis contributed to the experimental setup and general
ideas for using and applying gaussian process simulations. The simulation-
based test function generation for discrete optimization problems was de-
veloped and implemented by M. Zaefferer.

From Real World Data to Test Functions, A. Fischbach, M. Zaefferer, J. Stork, M.
Friese, and T. Bartz-Beielstein, in 26th Workshop Computational Intelligence
Proceedings, 2016 [54].

* The author of this thesis developed and implemented the evaluation of a
parameter variation strategy on GPM parameters to retrieve and compare
real-world data-based test instances for benchmarking using an ensemble
of similarity metrics.
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Chapter 2

Problem Classes and Problem
Features

This chapter introduces a problem taxonomy for this thesis and discusses different
points of view on defining problem classes. In theory, the No-free Lunch Theorem
(NFL) [150] provides a significant limitation for selecting and tuning global optimiza-
tion algorithms for a problem at hand. First, it is not realistic to have one single algo-
rithm that performs superior on all problem classes. If one algorithm performs superior
on one particular set of objective functions, it must perform correspondingly poorly on
other objective functions [149]. Additionally, improving an algorithm, i.e., by tuning
its parameters, for one class of problems likely makes it perform more poorly for other
problems. As a practical consequence, we focus on well-defined problem classes.

Accordingly, Haftka recommends that optimization algorithms "should be tar-
geted towards a particular application or set of applications rather than tested against a
fixed set of problems." [60, p. 1]. Recommendations according to the consequences of
the NFL for optimization, as described in [8], contain:

a) bound claims of algorithm performances to the tested instances,
b) matching suitable algorithms to problem classes is a good thing,
¢) be cautious about generalizing performance to other problem instances, and

d) be very cautious about generalizing performance to other classes or domains.

This chapter provides the terminology to specify the problem class P for real-
world problems in the context of Cyber-physical Production System (CPPS). The goal
is not to find the best or formally correct definition of a problem class, as there are
many possible ways and perspectives. Instead, the goal is to find a description that
is beneficial to adequately address the Algorithm Selection Problem (ASP) for CPPS.
Consequently, this chapter describes methods to classify problem instances according
to a given real-world process as narrowly as possible to retrieve relevant instances. This
taxonomy will be used as a frame for the boundaries of generalizability of algorithms’
performances.
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Bartz-Beielstein et al. emphasize the significance of a problem taxonomy in the
context of benchmarking optimization algorithms [8]. They provide a slightly different
terminology with one additional level of abstraction compared to the taxonomy used
in the thesis at hand (see Fig. 2.1).

Regarding easy or cheap to evaluate objective functions, many testbeds are avail-
able. Arguably, one of the most widely used is the Black-Box Optimization Bench-
marking suite (BBOB) [63]. The single-objective subset of the BBOB consists of 24
test problems divided into five classes. Users of the BBOB can scale each test prob-
lem in dimensionality and randomize problems w.r.t. translation and rotation. Fur-
thermore, the landscape and optima of each of the problems are known. A detailed
overview of the problems contained in this benchmarking suite can be found in [64].
Besides their beneficial features, testbeds like BBOB might also have some drawbacks,
depending on the use case. Even though benchmark sets are developed with a larger
coverage of the single-objective, bound-constrained problem space [88], their problem
classes may not be relevant to the problem at hand. Mufioz and Smith-Miles generate
a more diverse testbed using genetic programming [111]. Another approach by Di-
etrich and Mersmann, which addresses the lack of diversity in existing testbeds, uses
affine recombinations of pairs of BBOB functions to generate additional benchmark
functions [43]. Although both approaches are specifically helpful for the benchmark-
ing discipline and the research of optimization algorithms in general, regarding the
ASP for a specific problem class, they do not guarantee the availability or the ability
to generate relevant test instances. Performing benchmark experiments for algorithm
selection might then be misleading. Furthermore, as conditions in CPPS under dy-
namic changes affect the optimization problems landscape, it is unclear if the testbed
covers the necessary degree of variety and thus leads to the selection of a non-optimal
algorithm. Ultimately, generating relevant test instances based upon recent data of the
CPPS can address this issue.
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2.1 Problem Classes

The taxonomy for optimization problems used in this thesis is depicted in Fig. 2.1:

Problem Instance A problem instance is a concrete function to optimize, i.e., the gaol
is to find the arguments that yields the minimum function value, see Eq. 2.1. In
the context of injection molding, it is given by a specific mold (the geometry of
the parts to produce), raw material, and environmental properties like humidity,
room temperature, or the machine’s condition.

Problem Class A problem class is the set of problem instances generated by a con-
crete machine or production process.

Problem Family A problem family represents a type of a production process, such as
injection molding.

This thesis aims to find a suitable, robust, and efficient algorithm for an a priori
unknown problem instance of a given single-objective, continuous problem class. A
problem instance is defined as a function f which is to be minimized:

argmin f(z), f: X - R (2.1
zeX

The set X C R? is the non-empty, continuous parameter space, and each element
x € X represents a candidate solution. The dimensionality d of the parameter space
is determined by the CPPS. This parameter space is likely not unlimited in terms of
its boundaries. They are constrained to a given range, especially for real-world appli-
cations, where the parameters also describe physical quantities. To operate a CPPS
safely, bound constraints are defined and must be respected by algorithms during pa-
rameter adaption.

Consequently, we do not expect to transfer locations of optima between different
problem instances. However, algorithms that efficiently optimize one instance will
likely be similarly efficient on a different instance of the same problem class.

If we look at a certain CPPS and consider that the raw material is changed, or
at least some of its properties (e.g., moisture), the problem instance will also change.
Changes in the objective space might only be slight, and several features of the prob-
lem will be preserved. The search space is considered mostly unchanged. The bound
constraints may slightly change, e.g., if a new raw material does not allow certain tem-
peratures. However, the fundamental physical behavior and rules are likely similar. An
example of different instances of artificially generated problem classes generated with
the Gaussian Landscape Generator (GLG) [57] retrieved with the same configuration
for each class is shown in Fig. 2.2.

With only setting a few parameters, the GLG can be used to set up problem in-
stances for continuous, bound-constrained optimization problems. These instances are
variable w.r.t. the number of dimensions, the number of Gaussian components to be
placed randomly, which controls the modality, and the Region of Interest (ROI). The
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s

Figure 2.1: Schema of the Problem Taxonomy used in this thesis. The general hierarchy
is given on the left, and a real-world example is shown on the right. The Problem Family
represents the production process in general. A particular problem class is given by an existing
machine that implements a certain type of this process. A problem instance as the smallest
problem entity represents an optimization problem given by an explicit machine instance, a
given type of raw material with its current condition (e.g., the material moisture), and the
current environmental properties (e.g., the temperature and humidity in the room). The Figure
is based on [9].

user can specify the ratio between the value of the global optimum and the local optima.
This enables the creation of many test instances with a similar structure, representing
a problem class.

An appropriate algorithm for a problem class should perform well on most in-
stances to address the expected variance. Consequently, different instances of one spe-
cific problem class should reflect the natural variance of the process (pure repetition
error), different material properties, and environmental properties.

Table 2.1 summarize the expected relative difference in search space and objective
space between different problem instances, classes, and families.

The primary goal of this thesis is to find an algorithm suitable to robustly optimize
the problem class, not only a single instance. Several findings from the field of bench-
marking should be taken into consideration [8]: The experimenter must choose both
the test problems and the algorithms to benchmark with care. Additionally, statements
regarding the generalizability of the performances of the algorithms will be limited to
the problem class at hand. The degree of similarity w.r.t. the problem characteristic,
i.e., the features of the problem, will be described in Section 2.3.

It is common benchmarking practice, e.g., when new algorithms are introduced
and applied to a problem suite, to select problem instances from different problem
classes and maybe even different problem families. Contrarily, for the task of select-
ing a proper algorithm for a specific CPPS, we focus on problem instances from one
problem class, namely the class representing the CPPS at hand. This impacts the re-
quirements for the desired set of problem instances. Instead of being space-filling or
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Figure 2.2: Contour plot of four different instances retrieved from the Gaussian landscape
generator. The Parameter space (x1, x2) is shown on the x- and y-axis, and the function value
is indicated as a height value on several height levels. The value of the global optimum is 0.
A column-wise significant difference between instances w.r.t. at least some landscape features
can be recognized. Left column: Problem class 11,. Two random instances with the number
of Gaussians set to 2 and the ratio between global and local optima set to 0.8. Right column:
Problem class 11,. Two random instances with the number of Gaussians set to 25 and the ratio
set to 0.8. The Figure is taken from [51, p. 5].

diverse, they should reflect features of the addressed problem class. Arguably, it is hard
to select relevant test problems when the class is unknown or new. So, for the goal of
algorithm comparison, labeled as (G1.2) in Bartz-Beielstein et al. [8], we suggest the
data-driven generation of test instances.

Another way, which is different from the focus of this thesis, could be to evaluate
the current machine, compute features of the problem, and select available test in-
stances with similar features. Available literature shows that existing test suits do not
cover all regions of the feature space very well; see, e.g., [111, 94, 8]. Consequently,
there is no guarantee that suitable instances are available. Therefore we focus on the
generation of test instances with as few evaluations of the problem and computational
effort as possible w.r.t. the desired quality of the instances. This is important, as the
process, i.e., the CPPS, may be adjusted over time according to market demands and
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Table 2.1: Expected degree of relative changes between different problem families, different
classes from the same family, and different instances from the same problem class w.r.t. search
space and objective space.

Search Space Objective Space

Problem Family typically large differences possibly large difference

of features
typically small to possibly small to medium
Problem Class medium differences differences of features

important features are

Problem Instance typically similar or equal possibly similar or equal

new developments. With a higher degree of automation, changes in the process can oc-
cur more quickly. In the example of injection molding, molds can be produced ad hoc
by, e.g., an additive manufacturing process. An online solution to optimize this pro-
cess must therefore be able to adjust to the expected degree of change and accordingly
select an appropriate algorithm frequently.

2.2 Problem Instance Generation

This section is partly based on the following publications [54, 155, 130]. The notation
and structure were adapted to this thesis, and some text parts were taken verbatim.

As motivated previously, an online solution for the algorithm selection problem
can significantly benefit from a data-driven model-based generation of problem in-
stances for algorithm hyperparameter optimization and algorithm selection. We aim to
generate problem instances that preserve characteristics of the real-world problem at
hand.

In this thesis, we consider Gaussian process models (GPMs) to model the pro-
cess, as they fit very well in the context of CPPS. They can be very accurate and do
not need expert knowledge about the process to model, i.e., the model structure must
not be defined a priori. Furthermore, they provide a measure for uncertainty, which
can be used to balance exploitation and exploration on the one hand and variations on
the other. However, GPMs are not parameter-free, as a kernel must be chosen or can
automatically be selected by, e.g., applying cross-validation during the training pro-
cess. Additional parameters can be fitted employing numerical optimization during
the training process, e.g., the regularization constant A, also called nugget, for noisy
data.
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2.2.1 Gaussian Process Models

GPMs constitute a class of probabilistic statistical models, which can be used, e.g.,
for regression and interpolation. They are based on Gaussian processs (GPs), which
describe the uncertainty about an underlying process. Consider a sampling plan X =
{x 4 }, 1 . 1n a k-dimensional continuous search space, leading to n observations
y = {y }Z 1..ns @ GPM tries to predict values at an unknown location in the search
space by interpreting the observations y as realizations of a stochastic process. This
stochastic process is defined by the set of random vectors Y = {Y (x)},_, .. The
correlation of the random variables Y'(+) is modeled as follows [56]:

cor |V (x™), v (x") ] = exp ( Z@ |2 @ _ §Z)|pﬂ'> (2.2)

The matrix that collects correlations of all pairs { (4, )} is called the correlation matrix
W. It is used in the predictor

J(x) =+ 0 (y - 1) (2.3)

where 7(x) is the predicted function value of a new sample x, /i is the Maximum Like-
lihood Estimate (MLE) of the mean and %) is the vector of correlations between training
samples X and the new sample x. The width parameter 6 = (6,,....,6;,..., Hk)T de-
termines how far the influence of each sample point x spreads. In detail, the larger the
width parameter, the faster the potential changes in the predicted value. The smaller the
width parameter is, the slower the potential changes in the prediction are. Since there is
one 6, for each dimension, this parameter accounts for the activity in each dimension.
The parameter p; is usually fixed at p; = 2, and defines the shape of the correlation
function: At p; = 2, the correlation function is more smooth, whereas p; = 1 is less
smooth. If the process is considered noisy, the regularization parameter A is added
to the diagonal of the correlation matrix W. This enables the model to avoid overfit-
ting, which can occur when all training data are reproduced exactly (interpolation), i.e.,
the model would not be able to discriminate between the underlying response and the
noise. Classically using A to deal with noisy data, it can also smoothen more rugged
fitness landscapes. All model parameters, e.g., 8, A and p, are determined by MLE,
which requires numerical optimization.

2.2.2 Generation Process

To start filling the gap of missing real-world relevant problem instances for a given
process, a data-driven approach for the generation of instances based on real-world
data was published in [54]. It consists of the following subsequential steps.

1. First, a data set of a real-world problem is collected, consisting of a design matrix
X and a vector of corresponding outcome values of the underlying processY .
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2. Then a model with regression and interpolation capabilities is built, further de-
noted as level 0 model. In this work, a GPM is used as the level 0 model.

3. Next, a parameter (scalar or vector) is defined to create variations of the previ-
ously fitted level 0 model. This parameter is used to perturb the generated model,
and generate n test instances, further denoted as level I models, which are in turn
variations of the level 0 model. Finally, a randomly selected subset of the desired
number of m < n instances is chosen for benchmarking experiments.

In the following we discuss three different strategies to generate GPM variations and
their parameterization. The first strategy Parameter Variation (Strategy 1) uses explicit
variations of the model parameters 6; and )\, the second strategy One Stage Simulation
(Strategy 2) uses Gaussian process simulation (GPS), and the third strategy Two Stage
Simulation (Strategy 3) uses the aggregation of two GPS models, one accounts for the
global structure, and a second model adds finer local structure.

2.2.3 Strategy 1: Parameter Variation

The Parameter Variation (PV) strategy aims at directly varying model parameters. The
main parameters controlling the behavior of the GPM are arguable A and 8. The pri-
mary goal of the test instance generator is the deployment upon real-world data, which
is usually noisy. Furthermore, repetition data may not be available, e.g., due to its cost.
Consequently, the variation of the parameter A is a natural first choice. In addition, the
variation of the width parameter 6 appears important to change the model to the desired
degree while maintaining the general characteristic of the fitness landscape under cer-
tain circumstances. The bounds of the parameters’ variations must be defined carefully
and adapted to the problem. Otherwise, the model can show signs of degeneration.

The test function generator will compute lower and upper bounds for the variation
of the parameter according to the fitted level 0 model. We define a variation vector @ as
follows: The first component of « represents the offset of the A\ value, and the remain-
ing components represent the offsets for corresponding @ values. They will further be
denoted as \g and fg; respectively. They will be added to their corresponding values
of the level 0 model to retrieve the altered level I model. Afterward, the correlation
Matrix W is recalculated for predictions, realizing the desired test instance.

This approach addresses two relevant problems: First, if a model shows insensi-
tivity to some parameter, which is varied, derived test instances might be very similar.
Second, if one parameter is highly sensitive and dominating, a random change can lead
to irrelevant test instances without resembling the underlying problem.

The variation parameter « is defined as: @ = (g, 0g;) for i = 1...n, where n is
the dimensionality of the problem, Ag the A\ value for the simulation, and the g, the
values for dimension ¢ for the simulation.
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2.2.4 Strategy 2: One-Stage Simulation

Contrary to a GPM prediction, where the goal is to estimate a function value at a new
sample x as close as possible to the actual value, a simulation tries to produce values
whose moments are as close to the moments of the actual data as possible [77]. The
simulation approach based on GPM creates realizations of a GP with the same mean
and covariances as the level 0 model.
The approach described here is based on the square root of the covariance ma-
trix [34] due to computational reasons, although different methods exist. Firstly, a
set X, of m samples is selected. The process will be simulated at these samples.
Secondly, the correlation matrix K of the set X, is computed. It is decomposed as
o’K, = C, = UAU", where the process variance o is determined by MLE and
C, is the covariance matrix with the eigenvector matrix U and diagonal eigenvalue
matrix A = diag(X). The square root of C, is C1/? = Udiag(A}/Q, S AYIUT and
the simulation is given by
Ve = 1j1+ CY%€ (2.4)

Here, € is a vector of m independent, normally distributed random numbers with zero
mean and unit variance.

The conditional simulation aims to reproduce the moments of the training data
and simultaneously exactly reproduce the training data. The conditional simulation
may result in more realistic shapes than the predictor. For example, higher frequency
behavior may not be visible in the predictor but may be visible in a (conditional) sim-
ulation [34]. Compared to the previously described parameter variation variant, this
can be an advantage.

The simulations based on decomposition rely on selecting a set of samples dis-
tinct from the observed training samples, where the process is then simulated. The
simulation samples can (and should) largely exceed the training samples, so this can
quickly become computationally infeasible, depending on the requirements regard-
ing the response time. If the search space gets larger, the need for interpolation be-
tween the simulation samples rises, again leading to undesired smoothing of the test
instance. Consequently, we recommend the decomposition-based approach, especially
for smaller discrete search spaces.

We follow the spectral method for continuous search spaces, see [34]. It yields a
function that is evaluable at any desired location without interpolation. The main idea
1s to superimpose cosine functions to retrieve the simulation:

N
fs(z) = &\/%; cos(w, - X + ¢,) (2.5)

where ¢, is an i.i.d. uniform random sampled value from the interval [—m, 7], and
w, € R" are i.i.d. random samples from a distribution with a density equal to the
one from the spectral density function of the GPM’s kernel. Using the kernel from
Eq. 2.2, this distribution is the normal distribution with zero mean and variance 20;,
for dimension 4.
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Conditional simulations, i.e., simulation functions that are conditioned to the
training data, can be performed with fgo(x) = f¢(x) + 7" (x).

7*(x) = p+ k"K' (ygc — 11) is the predictor defined in Eq. 2.3, with y replaced by
values from the unconditional simulation ygc, i.e., ysc; = fs(X;), and i = 0.

The one stage simulation can be performed conditional or unconditional, and
the parameter N cos, specifying the number of superimposed cosin functions for the
simulations, have to be set. In this context, unconditional means that the simulation
reproduces only the covariance structure, but not the observed values y of the training
data set.

2.2.5 Strategy 3: Two-Stage Simulation

This section is based on the current implementation and documentation of the soft-
ware package Continuous Optimization Benchmarks By Simulation (COBBS) for the
R platform by Zaefferer [154]. It provides tools to create simulation-based bench-
marks for continuous optimization and especially implements the GPS. The concepts
were first published in [156], and the extension to the two-stage (2-stage) model was
published in [130].

The basic idea of the 2-stage model is to target both global and local structures
of the optimization problem at hand. Using a stationary GPM with a constant global
trend may limit the model quality and, likely, decrease the complexity of the retrieved
test instances. It will either preserve the problem’s global or local structure, as it will
fit only one activity parameter ¢ per dimension.

The approach by Rehbach et al. [130] starts with fitting a GPM as a first-stage
model, with enabling the regularization, i.e., the parameter A\ will be fitted using MLE.
This enables the model to regress and smoothen the data [56]. While this preserves
the global structure, it could smoothen the local structures of the problem. To target
this effect, a second GPM model is fitted to the residuals of the first-stage model.
This second-stage model will function as an interpolation model, i.e., without fitting
the regularization constant, aiming at preserving the local structures of the process.
Simulations of the combined two-stage model are retrieved by adding the predictions
of both simulation models. This leads to a model with a non-stationary trend, which
can be varied for the simulation and works as the level 0 model. Similar to the 1-stage
simulation, the 2-stage simulation can be performed conditional or unconditional, and
the parameter N cos have to be set.

Examples

To get a visual expression of what kind of test instances can be generated with the
described variation strategies, Fig. 2.3 depicts several one-dimensional test instances
generated based on the same level 0 model. The ground truth is described by the
function f(x) = sin(25 * x) + sin(b4 x x — 0.2) + x. The level 0 model is most
accurate in regions where the search space is more exhaustively sampled, i.e., where
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Figure 2.3: The top rows show the ground truth function (dashed line), the training data (cir-
cles), and the GPR model estimation (solid gray line). Row-wise followed by three instances
of each variation strategy, namely the parameter variation (slight changes to \ and 0), 1-stage
simulation (conditional and unconditional), and 2-stage simulation (conditional and uncondi-
tional). Each generated test instance is based on the same level 0 model. The Figure is based
on [156].

0.5 < x < 1.0. The GPM tends to smoothen the function recognizably in sparsely
sampled regions. The PV instances largely reproduce the characteristic of the level 0
model, while the 1-stage and 2-stage simulations extend the characteristics of the well-
known regions to the sparser sampled regions. The conditional simulations not only
reproduce the characteristics of the function, but also respect the training data. This
is important for test instances used to estimate the outcome of optimizers in terms of
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function values. Contrarily, the unconditional simulations appear to be rather erratic.
Additionally, the 2-stage model adds some ruggedness to the function. At this moment,
it needs to be clarified which variation strategy is the best choice for benchmarking
experiments with the goal of algorithm selection or parameter tuning (or both). The
PV approach decreases the objectives’ complexity, while the GPS, especially the 2-
stage simulation, might contrarily increase it. This will be further examined in the next
section.

2.3 Problem Instance Validation

Parts of this section are based on the publication [52]. The paper was largely struc-
turally adapted and extended by the parameter variation instance generation method.
Parts of the paper were taken verbatim and included in this section.

This section analyzes the objective space of the generated problem instances.
There are several ways to describe optimization problems. Numerical feature descrip-
tions can lead to a rather objective classification. One way to extract features of the
problem instances is provided by Mersmann et al. by extracting properties from prob-
lems with few evaluations [100]. They introduced Exploratory Landscape Analysis
(ELA) as a method to efficiently match optimization algorithms to problems. ELA
characterizes optimization problems by a larger number of numerical feature values
that are grouped into categories [99]. These so-called low-level features are deter-
mined by numerical computations based on the sampling of the decision space of
the problems. They describe properties like convexity, curvature, local search, and
y-distribution, with a total of 50 numerical sub-features to characterize the problem
structure. The advantage of this low-level features is that they can be determined
automatically, although they are related to some high-level features, whose creation
requires expert knowledge. This high-level features describe, e.g., the level of multi-
modality, the global structure, the separability, and homogeneity in a rather subjective
manner and result in a classification schema.

To provide an insight into the generated problem instances, created with the three
suggested variants (PV, 1-stage, 2-stage), we employ both an analysis of the landscape
feature space and a performance-based analysis. The focus is on the following two
important questions, formulated as subquestion to RQ-1:

(RQ-1.1) Do the different objectives, different test instance generation procedures, or
different parameter settings of these procedures lead to discernible differences
in instance space, i.e., do they produce different landscape feature vectors?

(RQ-1.2) Do changes in these parameter settings favor or disfavor any algorithm, i.e.,
does the parameterization of the test instance generation have a significant im-
pact on the performance of the algorithms?
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Figure 2.4: The test instance generation for the use case of the injection molding optimization
consists of three steps, namely the process evaluation, delivering the objective values y, ...y for
some experimental design, a correlation analysis, leading to largely uncorrelated objectives,
and the GPS and GP parameter variation, leading to a set of test instances according to the
process. The evaluation of the test instances consists of two procedures, the landscape feature
evaluation, and the algorithm performance evaluation. The former covers the selection of
invariant and non-redundant features and the 2D visualization of the test instances according
to dimensionality reduction. And the latter comprises the definition of an algorithm portfolio,
i.e., some local search heuristics, global search heuristics, and a baseline, and the comparison
of the performances of the algorithms using Elo scores on selected test instances. This Figure
is taken from [52, p. 6].

Smith-Miles et al. introduced the Instance Space Analysis (ISA) to tackle the
task of an objective algorithm performance assessment for optimization on a broader
instance space instead of averaging performance across a set of chosen instances to
avoid bias [140, 112]. While the feature space provides a rather algorithm-independent
approach to describing problems, the performance of algorithms matters for this the-
sis’s primary goal, i.e., selecting the most promising algorithm for the problem class
at hand. So consequently, we will compare the performance of algorithms across sev-
eral problems. We will also employ features of the level 0 model as a baseline for the
ground truth. The applied validation procedure is depicted in Fig. 2.4.

The procedure of the feature selection, feature computation, feature-space visu-
alization based on dimensionality reduction, and performance evaluation to analyze
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the test instance generation methods is demonstrated in the example of the Injection
Molding (IM) optimization using simulations. The IM simulation is described in the
next Section 2.3.1, followed by the process and the experimental setup for the analysis

of the generated problem instances in Section 2.3.2. The results are summarized in
Section 2.3.3

2.3.1 Injection Molding Optimization Problem

The IM process typically consists of the following steps.
1. Filling granulate in a barrel via a hopper,
2. melting the filled polymer using heaters,
3. mixing the polymer using a screw,
4. injecting the molten polymer into a mold cavity,

5. cooling the molten polymer inside the mold cavity, and

(@)

. ejecting the solidified part(s).

The processing of these steps is driven by a set of parameter settings that should
be optimized with respect to several criteria, e.g., the quality of the produced parts (in
terms of dimensional accuracy, surface gloss, mechanical strength, etc.), energy con-
sumption, and the cycle time, which also determines the production cost and through-
put.

We employ Cadmould 3D-F' to simulate the injection molding process. Cad-
mould 3D-F is a commercial software that simulates the filling, cooling, and estimates
the shrinkage and warpage. We use the geometry depicted in Fig. 2.5. The molted
polymer is injected into the mold cavity through the sprue. The cooling channels are
used to steer the cooling of the molten polymer, which in turn lead to a shrinkage of
the mass. This is countered by the holding pressure and the holding pressure time,
such that the mass can mostly keep its form inside the cavity. It becomes clear, that
several control parameters determine the quality of an injection molding process and
its produced parts.

Cadmould 3D-F employs a so-called 2,5-D approach for the filling simulation,
exploiting some simplifications on the assumptions for the numerical model. This
leads to a less accurate simulation but significantly lower computation time. For fur-
ther details and a comparison of the Cadmould 3D-F filling simulation with a classical
3-D Computational Fluid Dynamics (CFD) simulation, we refer to [139] and Anders
et al. [2]. Besides the filling, Cadmould 3D-F also simulates the cooling process to
retrieve objective values regarding the quality, i.e., shrinkage, warpage, and deforma-
tion. Additionally, the required cooling time is measured, determining the cycle time.

"For product details, see https://www.simcon.com/cadmould (accessed: 2023-03-20).
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Figure 2.5: The figure shows a 3-D representation of the injection molding process to simulate
in Cadmould 3D-F. It consists of the mold cavity (the brick), the cooling channels, and the
sprue.

Regarding the optimization problem, we focus on the control parameters melt tempera-
ture (), holding pressure time (z,), and cooling time in the mold after the filling (x3).
The control parameters with their boundaries are listed in Table 2.2. The objectives,
estimated by Cadmould 3D-F in each simulation run used in this thesis, are given
in Table 2.3. Typically, the optimization problem would be addressed using multi-
objective optimization. However, in this section we focus on single-objective analysis
to evaluate the three test instance generation strategies. A multi-objective approach is
presented in Sec 6.2.

Table 2.2: Chosen injection molding simulation control parameters

Name  Range  Description

x,  [230,250] melt temperature [°C]
T [0.3,6.3] holding pressure time [s]
T3 [10,50]  cooling time in the mold after the filling [s]

Table 2.3: Injection molding simulation objectives

Name Objective Description

i minimize deviation from target mass value [g]
Y minimize max. volume shrinkage [%]

Ys minimize avg. volume shrinkage [%]

Ys minimize required cooling time [s]

Ys minimize max. warpage [mm]

Ye minimize max. deformation [mm]

Yz minimize avg. shrinkage [mm]
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2.3.2 Experimental Setup

We fit the level 0 model, which serves as the ground truth for further comparisons, using
Cadmould 3D-F evaluations with three different sizes (10, 15, 20) of Latin Hypercube
Design (LHD) of the parameter search space (see Table 2.2) and three repetitions each
to account for the randomness in the LHDs. The test instances regarding the objectives
(y; to y;) delivered by the IM simulation (see Table 2.3) are fitted using a single GPM
each. Because three replicates are run for each design size, nine ground truth test in-
stances are generated for each objective. The 1-stage and 2-stage simulation variants
are parameterized as follows. A regular grid was used as the design to sample the de-
sired number of test instances (5) for each unique configuration by varying the N cos
parameter from the range [50, 200] with 50 different values and the conditional pa-
rameter with the values true and false. This results in 500 level I models (5x50x2) per
objective as test instances for the 1-stage variant and 500 test instances per objective
for the 2-stage variant. The PV was parameterized as follows. A regular grid of five
points is sampled for each variation parameter (), #;, ¢ = 1..4), resulting in a total of
625 instances per objective (5%.

Baseline comparison To evaluate the retrieved test instances, we compare them with
the artificial test functions from the BBOB test set. We use the function ids (fid) 1-24
and instance ids (iid) 1-10 and set the number of dimensions to three, equivalent to our
IM simulation problems, and the parameter search space for each dimension to [—5, 5].
This leads to a total of 240 BBOB test instances.

For each test instance, a set of ELA features will be computed using Feature-
Based Landscape Analysis of Continuous and Constrained Optimization Problems
(flacco), a software package for the R platform. Following [85], we compute non-
correlated features invariant to rotation and shifting. This is useful to a) decrease the
dimensionality by focusing on relevant features and b) remove misleading features, as
the GPS also may shift and rotate the test instance. The resulting list of ELA features
after removing redundant features is shown in Table 2.4. To compute the selected fea-
tures for each test instance, flacco was configured to sample them with LHDs of size
1500.

Elo developed its rating system to calculate the relative skill levels of players in
chess [49]. Adapted to algorithm performance, each competing algorithm is consid-
ered a player, and the test instance is the game. After a certain amount of test instance
evaluations, pairwise comparisons of the algorithm’s results determine the winning al-
gorithm, i.e., the algorithm that found the lowest objective function value. After every
game, the winning player takes points from the losing one, and the number of points is
determined by the difference in the two player’s ratings.

We will use Elo scores to analyze the impact of the test instance generation strate-
gies and their parameters on the performance of algorithms. This must be processed
to ensure, that benchmarks for algorithm selection based on generated test instances
are valid. Consequently, we only evaluate the generated test instances, and not the
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Table 2.4: Selected landscape features for the test instance validation

Feature names 1-8 Feature names 9-16
cm_angle.angle.mean ela_meta.quad_w_interact.adj_r2
ela_distr.skewness ela_meta.quad_simple.adj_r2
ela_distr.kurtosis ela_meta.lin_w_interact.adj_r2
ela_distr.number_of_peaks disp.ratio_mean_02
ela_meta.lin_simple.adj_r2 disp.ratio_median_25

ela_meta.lin_simple.intercept pca.expl_var_PCl.cov_init
ela_meta.lin_simple.coef.min pca.expl_var.cor_init
ela_meta.lin_simple.coef.min pca.expl_var.cor_init

Table 2.5: Selected algorithms and their control parameters

Algorithm Package (version) Parameter Value

GenSA GenSA (1.1.7) acceptance_param -5

visiting_param 2.62
temperature 5230
DE DEoptim (2.2-6) NP 30
F 0.8
CR 0.9
strategy 2
GENOUD rgenoud (5.8-3.0) pop.size 30

BOBYQA minqa (1.2.4) - -
COBYLA nloptr (1.2.2.2) - -
RS - - -

BBOB functions. We set the number of repeats for each algorithm on each test in-
stance to 500, i.e., the Elo rating is computed after 500 runs of each algorithm, with
an initial Elo score of 1000. The maximum number of function evaluations (i.e., the
algorithm budget) is 300. We chose several different algorithms as follows: General-
ized Simulated Annealing (GenSA) [151], Differential Evolution (DE) [108], Genetic
Optimization Using Derivatives (GENOUD) [72], Bound Optimization BY Quadratic
Approximation (BOBYQA) [126], Constrained Optimization BY Linear Approxima-
tions (COBYLA) [125], and uniform Random Search (RS) as a baseline comparator.
All algorithms with their package, version, and parameter configurations are listed in
Table 2.5. For parameters that are not listed, we applied default values.
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Figure 2.6: Pairwise correlations using Pearson correlation coefficient between the objectives
Y1 to yy. The objectives yq, Y7, Y1, and ys are highly positively correlated. Objective y, do
not show a high correlation, and ys show some mild correlation to the other objectives. This
Figure is based on [52, p. 7].

2.3.3 Results

To reduce the complexity of the analysis, we aim at dimensionality reduction with
respect to the objectives. The training data for the level 0 model is analyzed for the
degree of linear correlation between the different objectives, with the goal of selecting
largely uncorrelated objectives for further investigation. The upper triangular matrix
showing the Pearson correlation coefficients of all initial designs (design sizes 10, 15,
and 20 and 3 replicates each) is shown in Fig. 2.6. The first objective, y;, the deviation
from the target mass, is highly correlated to the objectives ys, y7, yg, and ys. This is
intuitively explainable, as finding a parameter setup that reaches the target mass will
minimize objectives like volume shrinkage, warping, and deformation and vice versa.
The objectives y, and y; are not highly correlated to all other objectives. Additionally,
the objectives v, y7, Y, and y; are highly positively correlated. As a consequence,
we choose y5 as a representative objective for them. Objective y,, the required cooling
time, addresses the process’s cycle time besides the quality of the products. This results
in the following largely uncorrelated objectives to minimize, which will be analyzed
further: y; (avg volume shrinkage), v, (required cooling time), and y5 (max. warpage).

The computed ELA features will be visualized two-dimensionally using t-dis-
tributed Stochastic Neighbor Embedding (t-SNE) [4]. T-SNE tries to preserve local
neighborhood information when projecting the data to lower dimensions. The first vi-
sual analysis of the feature space covered by the generated test instances is depicted in



34 2.3. PROBLEM INSTANCE VALIDATION

50-

25-

t-=SNE Dimension 2
o

—25-

50~

' ' ' '
-50 -25 25 50

0
t-SNE Dimension 1

Figure 2.7: T-SNE visualization of the feature space of all computed test instances based on
different design sizes (10, 15, 20) and selected objectives (ys, Y4, Ys). A tendency of cluster
formation based on the objective can be recognized, despite some overlap of the objectives ys
and y,.

Fig. 2.7. Regardless of the generation method, the test instances based on the differ-
ent objectives form larger clusters per objective. Especially the objective y, (required
cooling time) does not show much overlap with the other two selected objectives, while
ys (avg. volume shrinkage) and y; (max. warping) share at least a portion of test in-
stances in common clusters. We conclude that the different objectives lead to differen-
tiable problem classes, even if some test instances of different objectives share some
ELA-feature-based similarity.

In the next step, we will compare the different test instance generation methods
with test instances from the BBOB test set. Consequently, we will visualize the test
instances per objective and restrict to the expectedly most accurate generation method
based on the LHDs consisting of 20 points. Fig. 2.8 shows the feature space visu-
alization per objective. For each objective, it can be seen that the generated PV and
GPS instances differ from the BBOB instances. Additionally, the 1-stage and 2-stage
simulation-based instances show some similarity, which could already be observed in
the previous Fig. 2.7. As the 2-stage simulation can be informally interpreted as added
minor ruggedness to the 1-stage simulation, a fundamental similarity is already ex-
pected. The ground truth instances are the model estimates of the level 0 models, upon
which the test instances are built. It can be seen that the test instances differ from the
ground truth, which shows the diversity of the generated problem instances, i.e., the
diversity inside the class.
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Figure 2.8: -SNE visualization for each objective with respect to the test instance generation
method related to the BBOB instances and the ground truth, which is the model estimate upon
which the test instances are built. The upper left figure shows the objective y3 (avg. volume
shrinkage), the upper right depicts the objective y4 (required cooling time), and lower left the
objective y5 (max. warpage).

In conclusion, the BBOB instances are not relevant for the single-objective op-
timization problems of injection molding simulation. Furthermore, the generated test
instances provide a certain amount of variety. This ensures that we do not generate
the same or too similar instances. This directly answers to RQ-1.1, that the presented
strategies are feasible to generate test instances that are similar to the ground truth and
provide the desired variety.

Next, we want to inspect the impact of parameters of the test instance generation
on the problem class. For the 1-stage and 2-stage simulations, we will look at both the
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Figure 2.9: T-SNE visualization for 1-stage and 2-stage simulation for objective y5 (max.
warpage) with respect to the parameterization. The first row depicts the impact of the condi-
tioning (left) and N cos (right) on the problem class using I-stage simulation, and the second
row depicts the 2-stage simulation-based problem class.

conditioning to the training data and the impact of the parameter Ncos. We select the
objective y5 (max. warpage) as a representative, as all three objectives show similar
behavior. The results are shown in Fig. 2.9. We observe that the conditioning forms
recognizable clusters for both 1-stage and 2-stage simulations. Regarding the ELA-
features, the parameter conditioning might lead to largely separatable problem classes.
When looking at the number of cosines (N cos), changing values only slightly changes
the positioning of the instance in the feature space.

The evaluation of the impact of the parameters of the PV method, exemplarily
depicted in Fig. 2.10, reveals that the impact of the o value on the instance space po-
sitioning depends on the value or importance of the corresponding A or § value. On
the first row, we see the instance space for the objective y; (avg. volume shrinkage):
The left side shows the impact of the change on A, and the right side shows the impact
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Figure 2.10: Impact of the parameter variation of A (upper left) on objective ys (avg. volume
shrinkage) and 0, on the objectives y5 (upper right), y, (required cooling time, lower left), and
ys (max. warpage, lower right).

of the change on 6, which corresponds to the control parameter z; (melt tempera-
ture). Instances with either high (1.0) or low (-1.0) values on a normalized scale (range
[—1...1]) for changes in A are placed recognizable close to each other. Accordingly, on
the right side, we can observe spaces with rather large amounts of instances gathered
together with either high (1.0) or low (-1.0) values for the variation of #,. This can be
explained as, for the objective s, the control parameter melt temperature has a strong
influence. Contrarily, the lower left shows an example where the value of a parameter
(in this case 6,) does not have a huge impact on the formation of clusters for the objec-
tive y, (required cooling time). The corresponding control parameter melt temperature
does not influence the required cooling time. On the lower right, we can again observe
the impact of the extreme variation of ¢, for the sensitive parameter melt temperature
on the objective y; (max. warpage).

To summarize the feature space visualization results, we can see that the GPM
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Figure 2.11: Elo-scores of all selected algorithms on test instances generated with GPS for
different objectives (separated by the horizontal bars), repetitions, and given configurations
shown on the row and column labels. The y-axis depicts the conditioning parameter (left) and
the objective, used sampling design, and the design repetition number (all on the right side).
The x-axis depicts the method (1-stage, 2-stage), the parameter Ncos (both on the top), and the
algorithm (bottom). A higher Elo value indicates a better relative performance.

based test instance generation lead to recognizable problem classes for each selected
objective. Most importantly, the selected ELA features, which have proven to be ro-
bust for classifying instances to BBOB problem classes, reveal differences between
generated test instances and the BBOB problems, which directly answers (Q-1).

The following results of the benchmark experiment will examine if there is also a
difference in the resulting ranks of the algorithm’s performance between PV, 1-stage,
and 2-stage instances.

We analyze the relative performance of the selected algorithms on one randomly
selected test instance per configuration, i.e., the objective (y/3-ys), the simulation method
(PV, 1-stage, 2-stage) and the corresponding parameter vector @, i.e., the conditioning
(true/ false), the Ncos (50-200), or the A and 6; changes using Elo-scores. We are
especially interested in changes in the algorithm’s ranking on the objectives by varying
simulation or variation parameters, i.e., answering the question if these parameters are
changing the difficulty for some of the algorithms.

At first, we look at the Elo scores for the GPS instances depicted in Fig. 2.11.
Regarding the first objective, y;, GENOUD is often the superior algorithm with the
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highest Elo score, even if its performance dropped slightly for the 2-stage variants.
Objective y, leads to a different rank order, where BOBYQA most often performs
best. For objective y5, GenSA and GENOUD mostly outperform the other algorithms.
Regardless of the changes in the test generation or the design repetition, the rank order
is preserved. Mainly, the objective determines the best-suited algorithm. COBYLA
only performs competitively on objective y,, mainly on the conditioned variants. This
is intuitively explainable, as this objective, the required cooling time, is mainly linear
dependent on both the cooling time in the mold and the holding pressure time. The
global optimizers (DE, GenSA, GENOUD) perform especially well on the more com-
plex objectives y3, which is relatively smooth, and y5, which has a larger degree of
multi-modality.

The analysis of the Elo scores for the test instances generated with parameter
variation are consistent with the previous results. The performance ranks are largely
preserved among the different parameter values of @ for each objective and repetition.

To summarize the results of the performance of the algorithms, we can say that
regardless of the test instance generation method, the performance ranks of the algo-
rithms on the selected instances are kept mainly for each objective, which answers
RQ-1.2. While conditioning affects the Elo score itself, not so much on the perfor-
mance ranks, we recommend applying conditioned GPS instances when an estimate of
the objective values is needed, or the structure of the problems should be kept for, e.g.,
multi-objective optimization.

2.4 Conclusions

In this section, we specified the problem taxonomy used in this thesis and discussed
three different strategies for GPM-based problem class generation for CPPS. We eval-
uated the generation of test instances for three different injection molding problem
classes, namely average volume shrinkage, required cooling time, and maximum warp-
age. For the evaluation, we emphasized both, numerical ELA features of the test in-
stances and algorithm performance.

We have shown that the problem classes generated with GPS and PV based on
process data differ significantly from the problem classes of the well-known and widely
used BBOB test set in terms of ELA feature vectors. Therefore, the BBOB test func-
tions are not relevant for our use case, which answers subquestion RQ-1.1.

Furthermore, the ranking of the algorithms in terms of their performance is largely
preserved, i.e. the test generation parameters do not significantly affect the relative
performance of the algorithms as represented by their Elo score. The PV strategy tends
to smooth the data, which is not easily counteracted by its parameterization. This is not
the case with GPS. Therefore, we will use 1-stage conditional simulation as the default
method. Regardless of the method used to generate the test instances, the performance
ranks of the algorithms on the selected instances are primarily maintained for each
objective , which answers question RQ-1.2.
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However, when the dimensionality of the optimization problem becomes rather
large, the computation of a GPM may consume too much CPU time, depending on the
CPPS and the available computational resources. In a modular implementation, the
test instance generator should therefore be replaceable, e.g. by a less computationally
expensive solution, which may come at the cost of less accuracy.
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Figure 3.1: Schema of the Algorithm Taxonomy used in this thesis. The general hierarchy
is given on the left side, and an example is shown on the right side. An algorithm instance
represents an algorithm with a chosen parameterization. In the best case, it is tuned to the
problem class to solve. The Figure is based on [9].

3.1 Algorithm Classes

Parts of this Section are based on the publication [9], where the taxonomy was first
published. The description of the algorithms and the algorithm families was sharpened
for the application of this thesis. Parts of the text were taken verbatim.

In the previous section, a classification scheme for optimization problems was
provided. During the evaluation of problem classes created with the test instance gen-
erator based on production process data, it was already pointed out that different prob-
lem classes favor different algorithms and vice versa. Therefore, this section deals
with a possible way to describe and classify algorithms in order to select an algorithm
portfolio that is able to solve several problem classes.

To assess the quality of different algorithmic ideas, comparing algorithm instances
from different families is helpful. An online solution for the ASP will likely only have
some feasible algorithms available in an implementation. Still, it can be crucial to
have different algorithms at hand, depending on the dimensionality and the type of the
optimization problem at hand. The taxonomy described in this section aims to have
algorithms from different families which address likely different features of problems.
This can be features stemming from the problem definition, e.g., the dimensionality
of the search space and the available budget, as well as numerical features from the
fitness landscape, i.e., features computed via ELA.

The presented classification covers a large part of common optimization heuris-
tics. A common feature of all of them is a high degree of parameterization of the al-
gorithms, which requires hyperparameter optimization (tuning) on the given problem
class to be solved in order to reveal their full performance potential.
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Extending the work of [144], we discuss five different families of algorithms:
(a) One-Shot Optimization algorithms
(b) Monotonic descending algorithms
(c) Non-monotonic descending algorithms
(d) Population-based algorithms
(e) Surrogate-based algorithms

Arguably these families are given in an order with increasing complexity.

One-Shot Optimization Algorithms When dealing with problems that are very
costly to evaluate or when simply working under high time pressure, sequential op-
timization may not be possible. In such cases, the decision maker has to resort to one-
shot optimization algorithms, which typically sample the decision space in a space-
filling manner. Several criteria to measure the “space-fillingness” exist, and each one
implies different one-shot designs. The debate about which variant to favor under
which circumstances is closely related to a similar discussion around the Design of
Experiments (DOE). One-shot algorithms are typically used to determine an initial set
of candidate solutions in population-based or surrogate-based algorithms.

Quasi-random designs such as LHD and low-discrepancy point sets [42, 98] are
often found to be superior over uniform sampling, see [27, 21, 14] for related theo-
retical works. It is worth noting that even when the prior distribution of the optimum
is exactly known, the best one-shot distribution may be a different one [103] - a phe-
nomenon related to the “Stein phenomenon” [143, 71].

We also classify as one-shot optimization algorithms those strategies in which the
final decision may differ from the evaluated points. In this setting, the user evaluates
n alternatives but is free to use the information these n points provide to decide on
an alternative that is not included in this set. The final decision can be derived by
optimizing a surrogate built on top of the n points [20] or by simply averaging some
of the best points [102].

Thus, summarizing this paragraph, the distinguishing property of one-shot op-
timization algorithms is that no adaptive sampling is permitted, i.e., all points to be
evaluated by the algorithm have to be decided on independently of the quality of other
search points.

Monotonic Descending Algorithms Besides deterministic or stochastic algorithms,
this family covers gradient-based algorithms. The concept of exploration is often not
part of these algorithms, which means that escaping local optima is likely not possible.

Consequently, monotonic descending algorithms (or hill-climbers) are often em-
bedded in more sophisticated global search strategies to enable fast convergence in a
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local optimum. Examples for these algorithms include the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [137], conjugate gradients [55], and Nelder-Mead [117].
Hill-climbers typically start with a single solution and employ a greedy search strat-
egy. The performance of these algorithms relies heavily on the starting point, which
is, due to the absence of individual operators, selected at random or by utilizing do-
main knowledge. Therefore, restarts with different (random or quasi-random) starting
points are a common approach to using hill-climbers effectively. In comparison to the
range of the search space, new candidate solutions are searched within the vicinity of
the current solution. Gradient-based methods compute or approximate the gradients
of the objective function to find the potentially best direction and step size for the im-
provement of the solution. The step size is the most critical control parameter, as it
controls convergence speed. Using an adaptive strategy to change the step size online
is considered state of the art nowadays, e.g., with the well-known !/5-th success rule,
see [129, 136, 41].

Non-Monotonic Descending Algorithms Algorithms of this family extend the idea
of hill-climbing algorithms, so they are aware that multiple places of interest exist.
Exploration is added as a concept of this family, and the search-space is systematically
evaluated by one or more candidate solutions. Algorithms of this family consider
operators to guide the search globally in specific directions. A well-known for this
family is Simulated Annealing (SA) [81]. SA implements an acceptance function that
allows the escape of local optima with a certain probability, i.e., the acceptance of a
worse solution, which enables exploration to a certain degree. Modern SA variants
implement self-adaptive acceptance functions, which allows, e.g., alternating phases
of exploitation and exploration.

Population-based Algorithms Population-based algorithms utilize several candi-
date solutions concurrently. This makes them especially useful when the objective
function can be evaluated in parallel. Examples are Particle Swarm Optimization
(PSO) [79, 138], Ant colony optimization for continuous domains (AC'Oy) [44, 142],
and several Evolutionary Algorithms (EAs). EAs can arguably be considered the state
of the art of the population-based algorithm family, as their search concepts are fun-
damental for this field of algorithms. EAs use paradigms from natural evolution, such
as selection, recombination, and mutation, to guide a population of individuals over
several generations toward optimal or near-optimal solutions [6]. EAs generally have
several tunable parameters, e.g., the selection pressure, variation step size, mutation,
and recombination rate. For an overview of the field of EAs, we refer to [6, 48]. For
an overview of existing methods to tune EAs, we refer to [47, 67].

Surrogate-based Algorithms Surrogate Model-Based Optimization (SMBO) dis-
tinguishes two subfamilies of algorithms using surrogates. Surrogate-based algorithms,
which utilize a surrogate model of the objective function for variation and selection,
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and Surrogate-assisted algorithms, which employ surrogate models to improve the se-
lection of candidate solutions in population-based algorithms. For each group, the
quality of the surrogate model is crucial for the efficiency of the algorithm. Assuming
that different modeling techniques have different advantages and disadvantages, it is
difficult to choose the best-fitting model. Popular examples of surrogate model tech-
niques are regression models (linear, quadratic, polynomial), GPM, regression trees,
artificial neural networks, and symbolic regression models. Recent research focuses
on ensembles of surrogate models to exploit the advantages of different models simul-
taneously to compute predictors superior to a (or any) single predictor. A well-known
example of surrogate-based optimization is the Efficient Global Optimization (EGO)
algorithm, see [76]. Several control parameters are introduced, e.g., the size and sam-
pling strategy used to generate the initial solutions, the employed model technique,
the infill criterion for the candidate selection, the optimizer that searches the surro-
gate for these candidate solutions, and the adaptation technique to converge from an
exploratory infill criterion to an exploitative one. As surrogates are often considered
cheaper (in terms of evaluation time or material cost) compared to the objective func-
tion, they are often (but not exclusively) employed in low-budget scenarios, where
only a few evaluations are affordable, e.g., the parameter optimization utilizing com-
plex CFD simulations or hyper-parameter optimization.

This taxonomy gives an insight into the development of algorithm families over
the last decades and a rough idea of the diversity of implemented concepts, which also
address different features of optimization problems. As these features are often not
known in advance, a benchmark experiment can help to extract knowledge about the
strengths and weaknesses of selected algorithms on the given problem. This is only
feasible when relevant test instances are available or - as this thesis suggests - can be
generated. Typically, some expert knowledge can be applied to preselect a group of
potentially efficient algorithms, apply hyperparameter optimization (tuning), and select
the best-performing algorithm instance. This knowledge might not be available in the
described scenario of this thesis, which needs automatic online algorithm selection.
However, this implies that an even more diverse algorithm portfolio is needed to cover
a broader set of problems. The goal is to select the best-performing algorithm out of the
defined portfolio, contrary to the best-performing in theory. Consequently, this might
exclude not only bad-performing algorithms but also good or even best-performers
when resource (i.e., time or computational resources) constraints still need to be met.
This needs the employment of performance metrics to compare and finally select an
algorithm. These metrics are discussed in the following section.
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3.2 Performance Assessment

This section discusses the evaluation of algorithms’ performances on single or multiple
optimization problems. Parts of this section are based on the publication [51], which
demonstrates an ANOVA-based performance evaluation approach that allows for gen-
eralization to a problem class by taking the randomness of the test problem selection
into consideration for the statistical analysis.

This thesis aims to develop and implement a cognitive system to help optimize
CPPSs mostly automatically. It will be cognitive in the sense of utilizing sensor data to
increase the efficiency of the production process. The main feature is not to procedu-
rally program the solution but to let the system learn to apply (optimization) methods.
This can be made possible by allowing the system to assess its performance numer-
ically and thus let it compare the outcome of different methods. This section covers
the most important available performance measures for continuous single-objective
optimization algorithms and ways to compare the results of several algorithms.

When benchmarks are performed, most of the time one of the following two ques-
tions needs to be answered [8]:

(Q-1) How quickly can a given quality of solution be achieved?
(Q-2) What quality of solution can be achieved with a given budget?

They are also of particular importance for the operator of a CPPS, e.g. after an adapta-
tion of the production process, when a parameter optimization is required. When com-
paring the performance of different algorithms on an optimization problem instance,
we can distinguish between a fixed target (Q-1) and a fixed budget (Q-2) approach , as
shown in Fig. 3.2.

Fixed Target: A certain objective function value to be achieved is specified, and the
number of function evaluations to achieve this target is measured for each algo-
rithm. A fixed target can be represented as a horizontal line, see Fig. 3.2.

Fixed Budget: The maximum available budget in terms of objective function evalu-
ations is given, and the achieved objective function value of the algorithms is
measured. The budget can be represented by a vertical line, see Fig. 3.2.

We can then choose the algorithm that reaches a fixed goal first, or the algorithm that
reaches the best (minimum) objective function value after a given number of function
evaluations. In the context of CPPS, the target value to achieve is sometimes not known
in advance, especially after an adaption of the process or when considering energy
consumption minimization.

We aim for results that can be substantiated by statistical tests that compare sev-
eral repetitions of the selected algorithms. These tests should answer the following
questions:
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Figure 3.2: Visualization of a comparison of achieved (minimum) objective function values by
three different optimizers (dashed lines) using a fixed-budget (blue line) and a fixed-target (red
line) approach. The fixed-budget scenario requires a defined number of function evaluations
at which the best achieved results are compared (vertical line), and the fixed-target scenario
requires a function value to be specified a priori (horizontal line). The Figure is based on [62,

p.5].

(Q-1) Are there significant differences between the results of the different algorithms?
(Q-2) If so, which ones are different?
(Q-3) Which algorithm is superior?

If we are evaluating performance on multiple test instances, we need a test that takes
into account blocked data, where each block represents the problem instance. Consid-
ering the available tests, two groups of relevance can be distinguished: Parametric and
non-parametric tests.

Parametric tests are those that make assumptions about the parameters of the dis-
tribution from which the samples are drawn. Analysis of Variance (ANOVA) [106]
is a well-known example of a parametric test. Often, independence, normality, and
homoscedasticity of the data or the residuals of the corresponding model are assumed.
Independence means that the result of a single experiment, i.e., one run of an algo-
rithm, does not affect the result of another experiment. Normality means that the data
or the residuals of the corresponding models are normally distributed. Homoscedas-
ticity, or homogeneity of variance, means that the variances in different groups (in our
case, groups are the different algorithms) are similar or equal.

At first, we discuss an approach for parametric tests based on ANOVA, which
can be applied if the requirements are met. For the case, that the assumptions for
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Figure 3.3: Scenarios for selecting a number of test instances and evaluating a number of opti-
mization algorithms performances. In this example, the number of problem instances, n., and
the number of algorithms, n,, are set to three. Left: A fixed set of test instances is previously
selected. Problem class information is not used, and results can not be generalized. Right: Test
instances are randomly selected from problem class 11 and are not known in advance, results
can be generalized, and propositions of the performances of the algorithms on the whole test
class can be made. The problem class can be regarded as a black box. The Figure is taken
from [51, p.2]

the safe use of parametric tests do not hold, which is quite possible [40], we discuss
non-parametric tests.

Parametric Tests Statistical tests are performed to analyze the effect of a factor of an
experiment. A factor is an independent variable, such as an algorithm or a test instance
in a benchmark experiment, and the factor levels represent values for the factor. Based
on the ideas of Chiarandini and Goegebeur [29], we propose the following approach:
A small set of problem instances {m; € II|i = 1,2,...,n,} is randomly chosen from
a larger class II of possible instances of the problem. The problem instances 7; are
called factor levels. This factor is different from the fixed algorithmic factors in the
classical ANOVA setup. In fact, the levels are chosen randomly, and the interest is
not in these specific levels, but in the problem class II from which they are sampled.
Therefore, the levels and factors are random. In contrast to the classical approach,
which is illustrated in the left panel of Fig. 3.3, our results are not based on a limited,
fixed number of problem instances because they are randomly drawn from an infinite
set as illustrated in the right panel of Fig. 3.3. This approach avoids overfitting and
enables generalization.
Bartz-Beielstein and Preuss [10] introduced a classification schema for bench-

marking that was extended as follows [51]:

* one single algorithm is tested on a single problem instance (SASP),

* one single algorithm is tested on multiple problems instances (SAMP),

* one single algorithm is tested on multiple problem classes (SAMC),

» multiple algorithms are tested on one single problem instance (MASP),

* multiple algorithms are tested on multiple problem instances (MAMP), or

» multiple algorithms are tested on multiple problem classes (MAMC).
We will present results of an ANOVA-based approach that requires basic knowledge
of the underlying ANOVA only. The approach is a generic extension of the widely
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Table 3.1: Settings of parameters for generating GLG instances.

Parameter Name Range Value

d Dimensionality of the problem instances {2..20} 2

nGaussian Number of single Gauss components to be N, 10
generated

ratio Ratio of the values of the local and global [0..1] 0.7
optima.

lower Vector of lower bound values of length d. R? (—=2,...,—2)T

upper Vector of upper bound values of length d. R? (2,...,2)7

used practice of classical ANOVA and hypothesis testing framework. We exemplify
the results of such an approach on the SAMP and MAMP scenarios.

Standard models in statistics are based on linear combinations of the factor effects.
The standard analysis assumes that the factors remain fixed, i.e., the levels of the factors
were the levels of interest. Conclusions from the statistical analysis are valid for these
levels. In our setting, we are interested in concluding about a larger population of
levels, not only those that were used in the experimental design. Therefore, factor
levels are chosen at random from a larger population or class. Fixed factors occur in
our models as well: to estimate the effects of algorithm parameters such as population
size, the corresponding algorithm factors are systematically changed.

The statistical analysis in this approach is based on models with fixed (algorithm)
and random (problem instance) factors, so-called mixed models. For a detailed de-
scription of the used models and performed tests we refer to [51].

We use the GLG to generate test instances 7; € II according to the setup given
in Tab. 3.1. The GLG places the number of gaussian components randomly inside
the user defined lower and upper boundaries. Furthermore, the Generalized Simu-
lated Annealing (GenSA) algorithm was chosen. We consider n, = 4 problem in-
stances and n = 30 repeats, i.e., 120 observations, with a budget of 100 objective
function evaluations each. Furthermore, the tuned parameters of the GenSA algorithm
(temp = 65, q, = 85.65, q, = —2.69) are used. The parameter tuning was performed
using SPOT. See Table 3.2 for the configuration, and Fig. 3.4 for the performance im-
provement. The box plots indicate that the locations of the performance distributions
of the four problem instances differ and that there is almost no variance in problem
instance PInst 3. A look at the data reveals the unexpected behavior: Mean and stan-
dard deviation are close to zero: y; = 4.74e-16 and o(y3 ) = 1.80e-15. These values
indicate that the third problem instance is not suited for further investigations. We can
procede by removing the instance.

The random factor effects model will be used to answer the following questions,
which are all related to the robustness of algorithms, in the SAMP setting:

SAMP-1 Does the algorithm a show a different performance on problem instances 7;
that were randomly drawn from a problem class I1?
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Table 3.2: SPOT configuration for parameter tuning

Parameter Value

spot budget (n,) 40

design method LHD

design size 20

model type Random Forest
optimizer Nelder-Mead

optimizer budget (n;) 150

40 o
30 D :
20

10

best reached function value

|
+

GenSA.tuned.3 — 'i

GenSA.untuned.1 — °
GenSA.tuned.1 —
GenSA.untuned.2 - °
GenSA.tuned.2 —
GenSA.untuned.3 — f---ccmmimimmmmoooes
GenSA.untuned.4 — f------ooaeeaooon
GenSA.tuned.4 —

Tuned / PInst

Figure 3.4: Box plot illustrating the performance of GenSA on four different GLG instances
(1-4) tuned and untuned. GenSA.tuned.l shows the results of the tuned GenSA algorithm on
problem instance w; € 11, GenSA.untuned.2 shows the results of the untuned GenSA algorithm
on problem instance o € 11, etc. Y-axis shows the best-reached function value y. Lower values
are better.

SAMP-2 What is the estimated mean performance of the algorithm on this problem
class I1?

SAMP-3 What is the 95% confidence interval for this estimated mean performance?

SAMP-4 What is the effect of the extent of variation between the different problem
instances?

The null hypothesis of our tests suggests that there is no difference between the
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Figure 3.5: Mean performance of the GenSA algorithm on three randomly selected instances
from a pre-defined GLG problem class for given confidence levels from about 0.75 to 1.0. The
red arrows indicate the 95% confidence interval [6.36; 11.51].

compared algorithms or test instances The analysis of variance for this use case re-
veals that the null-hypothesis can not be rejected. This answers question [SAMP-1].
These results indicate that the mean performance values of the algorithm on different
problem instances do not differ. To answer question [SAMP-2] the overall mean value
will be estimated, where we obtain /1. = 8.93. To answer question [SAMP-3], the 95
percent confidence interval shows that the mean performance of the algorithm is in the
interval from 6.36 to 11.51. We can also plot the confidence intervals for varying error
probabilities, as shown in Fig. 3.5. Answers to question [SAMP-4] for our example are
as follows. Consider, e.g., an error of @ = 10%. With a confidence coefficient o, we
conclude that the variability of the mean performance values of the different problem
instances 7; accounts for between zero and twenty percent of the total variability in the
performance values. These answers provides valuable insights into the performance of
one specific algorithm on one problem class.

To exemplify the MAMP approach, we chose three algorithms from different fam-
ilies: GenSA, DEoptim, and Sequential Parameter Optimization Toolbox (SPOT). Ad-
ditionally, a simple uniform random sampling method, RS, is included as a baseline.
The test generator parameters and the chosen parameters of the optimizers after the
tuning process can be seen in Table 3.3. SPOT was configured to perform the tuning
of each method with a budget of 40 runs, and the method’s budget was set to 160 eval-
uations each. The results of the experiments are illustrated in Fig. 3.6. First, we will
test for the presence of relevant effects, which results in the following questions:

MAMP-1 Do the algorithms differ in performance?
MAMP-2 Do different problem instances affect the performance?
MAMP-3 Do the algorithms and problem instances interact?

If relevant effects can be detected, then we are interested in their magnitudes. This
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Table 3.3: Resulting parameters for the optimizers and the parameters of the GLG for the
MAMP scenario. The budget for each experiment was set to 240 objective function evaluations.
The dimension is denoted as d.

DEoptim SPOT GenSA GLG

popsize=10 designSize=30 temp=65 d=4
itermax=23 designType=LHD ¢,=—15.68 nGaussian=7
strategy=1  modelType=Kriging ¢,=—2.38  ratio=0.6

F=1.81 lower=(—1,...,—1)T
CR=0.27 upper=(1, ..., 1)T
c=0.91

Table 3.4: Confidence intervals for the fixed effects contrasts. Significant differences are shown
in boldface.

Algorithm Difference d;; lower 95% CI  upper 95% CI
SPOT - DEoptim  dy, =7, — ¥,  —3.17 -14.38 8.04
SPOT - RS dis=19, —Yy;. —7.99 -19.2 3.22
SPOT - GenSA diy =7, — Ty, —23 -33.97 -11.55
DEoptim - RS dys =7y — 7y — —4.82 -16.03 6.39
DEoptim - GenSA  dy, =7, —7y, —19.59 -30.8 -8.38
RS - GenSA dsy =795 — 7y, —14.77 -25.98 -3.56

results in the following questions:

MAMP-4 What are the fixed factor effects?

MAMP-5 What are confidence intervals for the fixed effects contrasts?

MAMP-6 What are the marginal means?

MAMP-7 How large are the confidence intervals for the marginal means?

A summary of the results answers the questions as follows. To answer [MAMP-1],
the analysis reveals that there are significant main effects for factor A (fixed factor,
algorithm). To answer [MAMP-2], the analysis reveals there are also significant main
effects for factor B (random factor, test instance). For [MAMP-3], the analysis reveals
that there are significant factor AB interaction effects as well. Figure 3.7 shows the
average performance of the algorithms and illustrates the interactions. For [MAMP-
4], the following effects were calculated: 7, = —8.48, 7, = —5.31, 73 = —0.49 and
T4 = 14.28, where 7 is caused by SPOT, 7, by DEoptim, 753 by RS, and 7, by GenSA.
For [MAMP-5], the point estimation of fixed effect contrasts for balanced mixed model
is shown in Table 3.4. These results can be interpreted as follows: We conclude with a
confidence coefficient of 0.95 that SPOT is better than GenSA. Its mean improvement
is between 33.97 and 11.55. To answer [MAMP-6], the results of the estimates 7,
are shown in Table 3.5. To answer [MAMP-7], confidence intervals approximated
with the Satterthwait procedure [134] are shown in Fig.3.7. Note that negative values



3.2. PERFORMANCE ASSESSMENT 53

spPoT4 - {
RS4 - t---[ [ ]----- i e
GenSA.4 - | |
DEoptim.4 — P[Ij ----- 1 o ®
spoT3 - | o
RS3 - t---[] }----- 1 ooo
2 GensA3 - | | - ]
2 DEoptim.3 - --fooo
8  spot2  {
g RS.2 e I:I:l- ----------- q
GenSA.2 o o boommmmeeeee I
DEoptm2 4 +{ [ J------- | e
spoT1 - {
Rs.L - ] }---4
GenSA.1 — o |
DEoptim.1 — F[D-{ °

40 —

I I
o o
N 9]

0
10

best reached function value

Figure 3.6: Box plots illustrating the performance of the different algorithms on randomly
chosen problem instances w € 11. Lower y values are better. The global optima have a value of

0.

occur. These values are a consequence of the definition of confidence intervals (CI).
Because the width of the CI increases as the confidence level increases, the CI will
cover every region if the confidence level is sufficiently high (and the sample size
remains constant). To solve this problem, the confidence level can be decreased, or
truncated distributions could be used.

The MAMP analysis can greatly help practitioners to understand the performance
of different algorithms on a set of problem instances. The results of these experiments
are truly generalizable because they do not depend on a specific (fixed) problem in-
stance, but on a set of several (randomly chosen) problem instances.

When applicable, such a method is a powerful tool for comparing different al-
gorithms and estimating their performance on a (small) class of problems. If the as-
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Figure 3.7: Left: Mean performances on several test functions plotted against algorithms.
Right: Marginal mean performances of the four algorithms with confidence intervals.

Table 3.5: Confidence intervals for the marginal means

Algorithm Mean Value lower 95% CI upper 95% CI

SPOT 7. 0.18 -5.25 5.61
DEoptim ¥, 3.35 -2.08 8.78
RS Ts. 8.17 2.74 13.6
GenSA 7,  22.94 17.51 28.37

sumptions for applying a parametric test are not met, or e.g. the performance metric
does not allow a meaningful interpretation of the performance estimates, we will apply
nonparametric tests as described in the following section.

Non-parametric Tests For the case where we use a single test instance to com-
pare the performance of the algorithms, i.e. the non-blocked case, we first perform a
Kruskal-Wallis rank sum test [83] to answer the question whether there are significant
differences between the results of the different algorithms (Q-1). The null hypothesis
of our tests suggests that there is no difference between the compared algorithms. We
reject the null hypothesis if the p-value produced by the test is less than o« = 0.05. If
this test shows that there are significant differences, i.e. the null hypothesis is rejected,
a post hoc test for multiple pairwise comparisons is needed. This will answer the ques-
tion of which algorithms are different (Q-2) [32]. For this test, we will use the multiple
pairwise comparisons of Conover [33].

When multiple test instances are used (the blocked case), the same procedure can
be applied using the Friedman test and the Conover post hoc test [32, 33]. We will use
the implementation from the PMCMRplus package [124] for the R platform.
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To answer the question of which algorithm is superior (Q-3), we will use the
following procedure, which is also described in [153]. We select the superior algorithm
based on the rank sum comparison between the two algorithms under consideration.
To obtain a final ranking of the algorithms, we proceed as follows. First, all algorithms
that are not significantly worse compared to other algorithms are given the first rank
and removed from the list. Each of the remaining algorithms that is not worse than any
other of the remaining algorithms is given rank two and removed from the list. This is
repeated until all algorithms have been ranked. If more than one algorithm is ranked
first, we choose the algorithm with the lowest resource consumption.

3.3 Conclusions

In this chapter, we discussed several algorithms for single-objective, continuous op-
timization and a suitable taxonomy to distinguish different approaches by assigning
algorithms to algorithm families and classes. This allows a proper specification of an
algorithm portfolio capable of addressing several different problem classes, which is
important for automatic algorithm selection for previously unknown problems.

We discussed parametric and non-parametric approaches to statistically analyze
the performance of algorithms on randomly selected test instances from a problem
class. Parametric tests, such as ANOVA, provide a powerful tool for the user to under-
stand the performance of algorithms on the problem class. However, for an automated
solution, parametric statistical tests are more complex to handle and may not be feasi-
ble if test assumptions are not met. Therefore, we discussed a procedure that relies on
non-parametric tests and multiple pairwise comparisons based on rank sums to obtain
a final ranking of the algorithms. Since several algorithms can achieve the first rank,
the lowest computational cost determines the best performing algorithm selected for
optimizing the CPPS.

The results of this chapter address and partially answer the question RQ-2. Com-
bined with the data-driven test instance generation and the provided algorithm taxon-
omy, this allows for a fully automated benchmark experiment and selection of the best
performing algorithm for a problem class derived from a CPPS.
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Chapter 4

Selection Mapping Function

This chapter contains work based on the following publications [53, 146]. The notation
and structure was adapted to this thesis, some parts of the text were taken verbatim.

This chapter discusses the requirements for automatic selection and deployment
of the best found algorithm based on experiments using one of the data-driven test in-
stance generation methods discussed in Section 2.2. A taxonomy of feasible algorithms
is defined in Section 3.1. Section 4.1 discusses and defines the necessary notation for
metadata regarding both the problem to be solved and the optimization algorithms.
The implementation of the algorithm that iteratively selects and tunes an optimizer for
the problem at hand is given in section 4.2. This chapter concludes with section 4.3,
the procedure for tuning the optimizers.
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4.1 Problem Definition and Metadata Requirements

The method used to optimize the CPPS is selected automatically for ease of use. This
i1s made possible by using declarative goals, i.e., the user specifies the goal, not the
individual process steps to achieve it. However, this declarative goal must be formu-
lated, and goals such as Resource Optimization are too unspecific to be translated into
an appropriate processing pipeline. Therefore, we have implemented a step-by-step
procedure to assist the practitioner.

The task of an algorithm in the context of an optimization problem is to find the
setting of one or more control parameters z € R" that minimizes (or maximizes) a
function y = f(x) subject to bounded constraints:

argmin f(z) s.t.
zeR"
[ <z<u

where bounds [, € R" can be infinite. The formulation of an optimization problem
typically involves at least three steps [16]:

1. Selecting control variables =,
2. choosing the objective function, and

3. identifying constraints on x.

The first and third steps result in the definition of the parameters that control the process
and adapt the CPPS. For this thesis, we focus on bound-constraints only, which must
be defined by the operator. We developed a simple multi-stage goal selection for the
second step, the objective function formulation, which guides machine operators. This
is presented through the four-stage selection for optimization:

1. The user selects the overall goal, such as optimization, anomaly detection, con-
dition monitoring, or predictive maintenance. Please note that this thesis focuses
on optimization only.

2. Next, the parameter and target signals are selected. Typically these stem from a
source like Open Platform Communications Unified Architecture (OPCUA), and
may or may not be annotated. OPCUA is a client-server communication proto-
col for industrial communication and has been standardized in IEC 62541 [59].
It enables a multi-vendor data exchange across several units, e.g., machines and
sensor-devices. Additionally, OPCUA allows for a semantic description of the
data in form of metadata. Therefore, the necessary knowledge to identify the
correct and relevant signals is use-case dependent. Depending on the use case,
all, many, or just a single signal must be selected to define a parameter or the
target. We assume that the operator emphasize his knowledge to increase effi-
ciency. For example, due to this knowledge, some parameters of the process that
are known to be unimportant for the target can be excluded and thus reduce the
search space for the optimizers.
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1) Use Case | Optimization |

2a) Parameter z1_temp |—>| c_time |
2b) Target L_rPower |

3) Aggregation |—>| Sum |

4) Goal |—>| Minimize |

Figure 4.1: Application of the four-stage declarative goal selection. Figure is based on [146].

3. Aggregation functions like mean, delta, min, or max value, or the value itself,
can be selected.

4. The user selects the optimization goal, e.g., minimization or maximization.

This four-step process allows the user to select the optimization goals more abstractly.
This is exemplified in Figure 4.1 on an energy optimization use-case of an injection
molding process. The chosen parameters (2a) are the melt temperature (z1_temp)
and the cooling time (c_time), and the target signal (2b) is the power consumption
(L_rPower). The goal of the use case is the minimization of the sum of the power
consumption. Available algorithms are described using a standard schema. From a
knowledge representation perspective, these are frames [104]. A frame represents an
instance (in this case, an algorithm) using a pre-defined schema; thus, each frame slot
can be interpreted semantically. Furthermore, relations between frames can be defined
as the connection to a declarative goal. The schema defined for this work is shown
in Table 4.1. The presented properties can be divided into mandatory properties that
must have a specific value to enable algorithm usage, such as the property use case
class. Properties in the middle section are also relevant for selection purposes, as
they describe some hard constraints, e.g., the minimum number of data needed, or
the possibility of being set up as running in parallel. Other properties represent the
performance of the algorithms on a specific benchmark, and thus, the best matching
algorithms can be chosen, such as the property performance. Please note that this is
a relative value based on the comparison with other feasible algorithms, which may
change if other algorithms are added. The required input data type, output data type,
and the use case class are mandatory properties. They enable the system to determine
which algorithms are feasible for a certain processing pipeline. The property algorithm
class is used as a high-level property for the selection process.

Using this structure, a knowledge base to compose and configure feasible pro-
cessing pipelines can be set up. A processing pipeline is a sequence of several meth-
ods implemented in modules. The preprocessing could, e.g., consist of two steps: The
imputation of missing data (if any) and data aggregation to a production cycle. De-
pendent on the use case, this can be followed by a processor like an optimizer or a
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Table 4.1: Properties of Algorithms, italic properties can be updated by the cognition module.
This thesis focuses on data types, use cases, and algorithms in bold face as they address the
parameter optimization for CPPS.

Property \ Values

Input data type Continuous, discrete, hybrid

Output data type Continuous, discrete, hybrid

Use case class Optimization, Condition monitoring,
Anomaly detection, Diagnosis

Algorithm class One-shot, Monotonic Descending,
Non-Monotonic Descending,
Population, Surrogates

Use multithreads true, false

Min Training Data 0..n

Prefer usage true, false

Avoid usage true, false

Performance 0..1

Computational effort | 0..1

RAM usage 0..1

model training step, e.g., for classification or regression. In this work, we use the
YAML Ain’t Markup Language (YAML), which is a data serialization language com-
monly used as an input format for various software applications. It can be used to
declare resources. Alternatives to YAML include JavaScript Object Notation (JSON)
and Extensible Markup Language (XML). YAML is also used to describe resources
for Kubernetes and is known for its improvement in human readability compared to
JSON or XML. The representation structure describing an algorithm instance is based
on the 4-step process to define declarative goals, presented earlier in Fig. 4.1. List-
ing YAML 1 shows the exemplary knowledge representation of the Random Forest
algorithm. Surrogate model-based optimization can already be defined as a pipeline
consisting of at least two processors: E.g., the Random Forest model and an optimizer
searching the model for promising candidate solutions. It can already be seen that
several methods can be reused in other (different) pipelines. Thus, an algorithm can
be listed at several locations in the knowledge base. Lines 1-3 represent the declara-
tive user goals, and the following lines describe the algorithms suited to achieve the
individual goals. Algorithms are described with the parameters, metadata about the
algorithm, and the required input. Parameters (lines 6-11) are described by the type,
minimum, maximum, and default value of the parameter. This also functions as the
search space for tuning the algorithms, described in Sec. 4.3. The metadata (lines 12-
20) represents Table 4.1 for a specific algorithm. Not initialized values are indicated
by -1. Those values are determined during the run time of the algorithms. The best
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YAML 1: Knowledge Representation

1 Optimization:

2 | minimize:

3 Minimum:

4 Algorithms:

5 Random Forest:

6 parameter:

7 NumberOfTrees:

8 type: int

9 default: 100

10 min: 1

11 max: 1000

12 metadata:

13 Class: Surrogate

14 Performance: -1

15 Computational effort: -1
16 RAM usage: -1

17 Use multithreads: false
18 Min training data: 5

19 Prefer usage: true
20 Avoid usage: false
21 input: preprocessed data

algorithm for the problem gets the value 1, and the worst-performing algorithm gets
the value 0 as a result of a normalization of the achieved performance results. The
performance is evaluated with one of the metrics discussed in Sec. 3.2. The resulting
ranking can then be used to select the best algorithm for solving the configured use
case. Please note that this evaluation is use-case dependent. The input data type for
the algorithm (line 21) is described as a string, e.g., preprocessed data. All algorithms
that compute an output that matches the given input type are candidates for a preceding
module in a pipeline. Starting from the desired output for the use case, e.g., a mini-
mization, the selection process can be repeated until the required input is designated
as raw data, which marks the end of a pipeline. Thus, the representation enables a fast
and easy composition of feasible pipelines and provides all necessary information to
evaluate pipelines and decide which is the best suited for the production process.
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4.2 Algorithmic Implementation

Depending on the available computation resources, the dimension of the data, and the
amount of available data, the computational effort of each pipeline can be rated. Since
resources are limited, it is required to consider whether one pipeline with good results
but high resource usage or several pipelines with a lower chance of good results should
be further evaluated. In an extreme case, it might be impossible to apply a certain
pipeline or retrieve a new parameter suggestion during a production cycle if the com-
putational resources are very limited. So the computational resources are significant
criteria for the selection of suitable pipelines.

To rate the quality of results for a certain pipeline, experiences from previous
experiments can be used. Therefore, the quality of each experiment is evaluated, and
the related quality parameter in the knowledge base is adapted. When a production
process is set up or adjusted, often some data will be generated or is already available,
e.g., using a design of experiment. The findings from previous experiments can only
be meaningfully selected from the same type of machine since it is not exactly known
which characteristics influence the quality of results.

The procedure to gather or use available data, generate test instances, perform
a benchmark and tuning experiment upon a list of feasible pipelines, and select the
best pipeline to optimize the CPPS is presented in pseudo code in Algorithm 1. At
first, needed variables are defined (lines 1-5). The parameter ¥ is defined to store
the currently applied parameter configuration of the CPPS. If no historical data are
available, an initial design representing a list of different parameter configurations is
created, the parameters are applied to the CPPS, and the resulting data are stored in the
list d. For each entry, this list contains a parameter configuration Z and the associated
performance 7.

As several design methods exist and due to the modular design of the architecture,
which is presented in Sec. 5.3, the design method can easily be adapted for special
purposes of the CPPS. A Latin hypercube design is the default configuration due to its
beneficial properties towards GPMs. For an overview of several design methods and
corresponding optimality criteria, we refer to [5, 66, 107].

After the initialization phase, algorithm selection based on data-driven simula-
tion, benchmarking, tuning, and selection starts within an infinite loop (line 13). Since
we do not want to change pipelines in every iteration, a user-defined step size 6 and
a variable ( are checked to potentially alter the pipeline only after each 6 steps or in
situations of prolonged stagnation or performance decrease. Then, a test function set s
is generated based on the data d (line 16). Currently, the three strategies presented in
Sec. 2.2.3-2.2.5 are available. The default is the conditional one-stage GPS. Simulation
intends to reproduce the covariance structure of a set of samples (in this case, the pro-
cess data gathered with the initial design), which maintains the topology of the problem
landscape. The intention is to analyze the behavior of the performance of candidate
algorithms on problems similar to the CPPS problem. The generation of several differ-
ent instances allows a benchmarking of feasible algorithms. With this benchmark, the
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Algorithm 1: Procedure for Algorithm Selection for Optimization

Input: Initial design size s, selection step size 6, algorithm characteristics
K B, goal g, available resources 7, historical data d;
1 define List for evaluation e
2 define List process data d
3 define List pipeline resource consumptions p,
4 define Parameter ¥
5 define ( = Flalse
6 if (|dy| = 0) then
7 List parameter [ <— createlnitialDesign(s, KB)
8 forall (parameter [) do
9 d < d + applyToCPPS(1)
10 L x =1

1 else
12 | d,x < historicalData d;

13 repeat

14 if (nrlterations % 60 = 0V ( = True) then

15 ( = False

16 testFunctionSet S < generateTestFunctions(d)
17 List p +— determineFeasiblePipelines(K B, g, d)
18 p <+ selectCandidatePipelines(K B, r, p, e)

19 forall p[i| do in parallel

20 | e < applyPipeline(pli], S)

21 K B, py.s; < ratePipelines(K B, p, €)

22 Thest < getBeStX(pbestv d7 I)
23 if(|$ - xbest| > ¢) then
24 L e < applyToCPPS(z}.)

25 xr = xbest

26 d < d + receiveNewDataFromCPPS()
27 if ( since 0/2 steps stagnation \/ performance decrease) then
28 L ¢ = True

29 until true;

algorithms can be analyzed regarding their resource consumption (computation time
and memory consumption) and performance even for a larger number of production
cycles. We assume that the resource consumption depends on the current machine
load, the number of function evaluations to perform, i.e., the volume of the data, and
the dimensionality of the problem, but not on the problem landscape structure. Conse-
quently, resource consumption can be analyzed quite accurately using simulations.

The algorithm description from the knowledge base is used to determine a list of
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all feasible pipelines in line 17. Based on the available resources, the knowledge base,
and possibly existing earlier evaluations, the most suitable pipelines are selected from
the list of feasible pipelines in line 18. This ensures that pipelines can be excluded
which are already known not to compute a result in time or are set to avoid usage by
the operator. These pipelines are applied in parallel on the test function set s, which
is used for parameter tuning and benchmarking pipelines (lines 19-20). Instances are
drawn randomly for each step, first tuning the algorithms with an equal budget and
then benchmarking on different instances afterward.

The final decision, which pipeline is used, is computed in line 21. A normalized
processing time, computed by dividing the used CPU time by the runtime of a standard
algorithm, is suggested by Johnson and McGeoch [75] and Weise et al. [148]. Inspired
by this idea, we chose to consider a baseline comparator, e.g., the random search, as
the reference algorithm. Consequently, algorithms performing worse than the baseline
will be removed from this iteration.

The best pipeline in the remaining list is chosen for application on the CPPS (line
22). If the list is empty, the current 7 will be returned. Should the new z;.,;, suggested
by the selected pipeline, differ significantly from the current Z, the new x,, is applied
to the CPPS for the next iteration (lines 23-25).

The new data produced by the CPPS in terms of the parameter ' and the objectives
y are added to d (line 26). If there is no significant improvement after half of the step
size, the ( is set to T'rue to perform an unscheduled algorithm selection cycle in the
following loop sequence. This should help at the beginning of the process to recover
from poor decisions.

Process Description The main goal of this thesis is not only to implement an al-
gorithm selection for CPPS in the context of Big Data but to define an architecture
providing the necessary degree of abstraction to benefit of the algorithm selection pro-
cedure in many different use cases with different requirements.

Consequently, we will examine the selection process and its impact and emerg-
ing requirements on the architecture and its components needed to embed into a Big
Data Platform (BDP). First, the architecture implementation needs a cognitive mod-
ule, further denoted as cognition module to select different algorithms and evaluate
their results as described in Algorithm 1. The general workflow of the architecture is
depicted in Figure 4.2. It defines several modules involved in the processing of the
data. A comfortable implementation requires modularity. This allows reusability of
data processing steps, e.g. the model training and optimization modules to implement
SMBO algorithms. We use SMBO as an example to describe the process. SMBO uses
a surrogate model to replace the expensive objective function. In the context of CPPS,
expensive can refer to production cycle time or raw material usage, for example. An
initial design is used to fit a data-driven (surrogate) model, such as a GPM or Random
Forest. This model is sequentially updated with new observations selected by an op-
timizer using an infill criterion to sample the cheap to evaluate surrogate model. The
cognition module receives the necessary information from a knowledge module and
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Figure 4.2: The workflow represents nine steps that are continuously performed to adapt the
pipelines and increase their performance over time.

starts the workflow, which consists of the following nine steps:

1.

The cognition module initializes candidate pipelines for parallel processing by
varying model types and parameters. The knowledge module provides the re-
quired information about feasible algorithms and boundary constraints. Suitable
models for this example use case are, e.g., GPM or random forest.

. A protocol translation module transfers the data from a server, e.g., a OPCUA

Server, on the CPPS to the BDP. As different types of data sources and protocols
are available, an entry point to transform the data is needed.

. The preprocessing module cleans the raw data. If there is missing data, imputa-

tion could address this issue. Otherwise, feature generation and extraction can
be performed. For the model training, we perform a data normalization only.

In this step, the GPM and Random Forest models fit or update their parameters
to the data and send the results to an analytics data bus for further processing.

. The model application + optimization module implements the sequential step of

the SMBO algorithm: it searches the previously fitted model until an optimal
solution is found or the maximum number of iterations is reached. The module
passes the result to the analysis bus.

The cognition module decides which pipeline to choose to optimize the CPPS
by comparing the model accuracy and the predicted optimum.



4.3. HYPERPARAMETER OPTIMIZATION 65

Experimental Design - . Fit Surrogate Search Model using .
{ Generation Objectve Evaluation "O'{ Model Infill Criterion Update Design

yes

Analyze and
Report

Figure 4.3: The SPO cycle of SPOT starts on the left with design generation. Next, the de-
sign points are evaluated against the (costly) objective function and a surrogate model is fitted.
Then, the model is searched for a new candidate solution using an infill criterion, such as the
best predicted value or expected improvement. The design is updated with this new information
and the candidate is evaluated by the objective function. The loop continues until a stopping
criterion is reached, such as the maximum number of objective function evaluations or conver-
gence.

7. The business logic module checks whether the solution violates any constraints
defined for the CPPS and communicates the appropriate adjustment back to the
analytics bus. This is necessary to ensure the safe operation of the CPPS, e.g. in
the event of a software failure involving optimization algorithms, which may be
third-party software.

8. The adaption module translates the adaptations for the specific CPPS and sends
the instructions from the BDP to the CPPS using the protocol translation.

9. The cognition module analyzes the system performance achieved with the re-
sulting pipeline configuration from step 6. In the following steps, the impact
of changes is verified and made available to the operator through information
provided by the monitoring module.

4.3 Hyperparameter Optimization

Effective tuning of the parameters of optimization algorithms typically requires several
runs of the algorithms with different configurations and is therefore considered costly
(in terms of computation time). For costly objective functions, surrogate models can
be an efficient solution. This involves the training of a data-driven (surrogate) model,
e.g., a GPM, based upon some sample data, and sequentially updating the model with
new observations selected using an infill criterion to sample the cheap to evaluate sur-
rogate model using an optimization algorithm until a defined budget is exhausted or
the process converged. Such a procedure, called SMBO, was introduced in [76]. The
general workflow is shown in Fig. 4.3. An overview of several SMBO algorithms using
different infill criteria can be found in [26]. In this thesis, we use the implementation
of SPOT [12] for tuning the feasible optimization algorithms, due to our experience
with this tool and its well known capabilities in terms of tuning. While several bene-
ficial goals performing tuning are available [12], we aim at avoiding wrong parameter
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Figure 4.4: Levels of Configurations during Tuning using SPOT. The Figure is based on [12].

configurations and helping towards the selection of the best algorithm for real-world
problems emerging from the CPPS. All feasible optimizers for a given problem will
be tuned before benchmarking to select the best optimizer adapted explicitly to the
problem. The tuning procedure will start when the initial exploration of the process is
finished; thus, the test instances can be generated. An overview of the different levels
of needed configurations occurring in tuning using SPOT is shown in Fig. 4.4. L1, as
the first level, is the objective function from the real-world system, which, in this thesis,
is implemented by a CPPS. The operator defines its parameters and their boundaries,
which are stored in the knowledge base; see Sec. 4.1. The second level (L2) represents
the optimization algorithm for solving L1. For parameter tuning, the algorithm param-
eter specification is needed. For evolutionary algorithms, e.g., the mutation rate, the
crossover rate, the population size, and the number of offsprings are natural choices.
The initial temperature and the cooldown factor are essential parameters for Simu-
lated Annealing. Those parameters, determining the performance of the algorithms on
specific problems, should be tuned. The algorithm is used to compute an optimal pa-
rameter configuration to solve the objective function in L1. The most abstract level in
this scenario is the tuning algorithm (L3), which also comes with a list of parameters.
Please note that there are algorithms that are not meant to be tuned, e.g., self-adaptive
or internally tuning algorithms [11], which determine their optimal parameters during
the search by evaluating the feedback of the objective function themselves, or by a
fixed rule set, e.g., decreasing a step size parameter each n iterations. Consequently,
during the algorithm implementation, the tunable parameters with their lower and up-
per bounds must be configured. The algorithms will be tuned on randomly drawn
instances from a generated test instance set using 1-stage conditional simulation.

4.4 Conclusions

This chapter addresses the posed question RQ-2: How can a solution to the ASP be
implemented algorithmically so that operators can optimize a CPPS online with a min-
imum of data science knowledge and without a hand-written procedure? We presented
a step-by-step procedure for declaratively specifying the optimization problem. In
addition, metadata for algorithms is also provided in a declarative way and can be
combined with the specified problem to generate a list of feasible algorithms with their
parameters to solve the problem, e.g., to minimize an objective such as the energy
consumption of a production process. We have provided an algorithmic description
of the procedure for collecting data from the CPPS, generating test instances, tuning
and benchmarking algorithms to automatically select and apply the best performing
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optimizer based on a statistical analysis. The procedure either uses available data from
the process or generates a design of experiments to be evaluated by the CPPS, and thus
can be processed in a highly automated manner.
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Chapter 5

Architecture for Cyber-physical
Production Systems

This chapter contains work based on the following publications [23, 53, 146]. The
notation and structure was adapted to this thesis, some parts of the text were taken
verbatim.

A collection of requirements for an architecture for CPPS, specified based on
the inspection of three different real-world use cases in the context of Cyber-physical
Systems (CPSs) is given in Section 5.1. As several architectures and reference archi-
tectures exist, Section 5.2 reviews selected well-known architectures from the field of
automation and cognitive science. Section 5.3 presents the developed Cognitive Archi-
tecture for Artificial Intelligence in Cyber-physical Production Systems (CAAI) and a
concluding summary is given in Section 5.4.
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5.1 Use Case Requirements

In the preceding chapters, we discussed several features regarding the aimed solution
with a focus on continuous optimization, such as data-driven test instance generation,
declarative goal configuration, algorithm portfolio specification, hyperparameter opti-
mization, and algorithm selection based on benchmarking results. Some requirements
regarding the definition of an architecture can be explicitly or implicitly derived from
these previous chapters. This refers to requirements such as modularity to enable re-
usability, maintainability, and extensibility of algorithms in a language-agnostic way.
Furthermore, a knowledge representation (for metadata about algorithms and the use
cases) is needed, to enable a declarative problem configuration. Among the arguably
most important benefits in using an architecture to realize a software system are flex-
ibility, maintainability, and scalability [13]. To achieve these benefits, a broad scale
of use cases addressed by the architecture are desired. Therefore, we will discuss
three selected different use cases for CPS and CPPS and derive requirements for the
architecture and algorithmic solutions. The first use case Diagnosis of Modular CPPS
address a condition monitoring problem and related diagnosis in a versatile system,
the second use case Energy Efficiency Optimization in Bakeries includes a discrete op-
timization problem and analysis of decentralized prediction models, and the third use
case Process Control of Concrete Spreading Machines deals with a dynamic parame-
ter optimization problem. The formulated requirements emerge from interviews with
process engineers and experts dealing with these use cases.

5.1.1 Diagnosis of Modular CPPS

The Versatile Production System (VPS) located in the SmartFactoryOWL is a CPPS,
specifically composed as a highly flexible demonstrator (see Fig. 5.1). This CPPS
processes corn in different modules and finally produces popcorn. It consists of the
modules delivery, storage, quality control, dosing, and production. The modules have
compatible interfaces that allow different hardware configurations to enable adaptive
production.

It is also possible to expand the system by adding new modules, sensors and actu-
ators. Therefore, a self-diagnostic system is needed to detect anomalies independently
of the current configuration, determine the root cause of failures, and shut down the
faulty modules to prevent additional damage. A recent example of a model-based ap-
proach can be found in [24].

Due to the variety of possible combinations, no diagnostic system is implemented
directly in the VPS, since today’s approaches cannot efficiently handle such versatile
systems. Therefore, data-driven approaches can be an efficient method for anomaly
detection, as it is done in [96]. These methods have a huge potential, but are difficult
to implement because they require common interface definitions and implementations
have to be adapted for each specific application with some effort. A solution to imple-
ment the self-adaptation upon a model-based diagnostics must use the OPCUA stan-
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Figure 5.1: A modular and versatile production system to produce popcorn. The modules are
equipped with compatible hardware interfaces, sensors, and actuators. The system can quickly
be adapted if needed.

dard and Modbus for communication. Modbus is a communication protocol based on

the client-server principle to establish information exchange between multiple hard-

ware devices using Ethernet or serial interfaces. In terms of an architecture, the fol-

lowing requirements and tasks must be addressed for the VPS:

(R-A.1) Collect data via OPCUA server and Modbus.

(R-A.2) Store data to collect all lifecycle information such as process data and models
of the CPPS.

(R-A.3) Perform preprocessing to handle missing values, normalize data, or adjust
format.

(R-A.4) Learn diagnostic models that enable diagnosis with few training data sets for
online and offline learning.

(R-A.5) Provide a diagnostic algorithm that performs a diagnosis in less than 100 ms.

(R-A.6) Decide whether a response is required and select an action.

(R-A.7) Access the controller to perform the selected action to prevent further damage.

5.1.2 Energy Efficiency Optimization in Bakeries

Optimizing the use of energy is an important task, especially in industries with high en-
ergy consumption. This scenario considers bakeries consisting of several chain stores
of different types, i.e. sales only, production only, and stores combining both pro-
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duction and sales. Production equipment, especially ovens, are the main energy con-
suming equipment in these stores. Ovens contain several trays that can be controlled
individually. Planning an optimal baking process with different amounts of products
at different target temperatures is a crucial task for optimizing energy efficiency, as
unnecessary idle and cooling times of the ovens must be avoided. A company’s energy
costs are not only calculated on the basis of total energy consumption, but also on the
basis of the maximum power required at any given time. It is therefore advantageous
for companies to spread their energy consumption over the day if possible, rather than
creating large peaks by, for example, turning on all equipment at the same time at
the start of the day, which is not unusual in reality. A smart startup schedule can be
a significant improvement in terms of cost optimization. In addition, stores typically
have large variations in the number of customers arriving at different times of the day,
and thus in the required inventory of products. In addition to monitoring energy con-
sumption, the predicted amount of products to be sold and the available inventory of
products should be considered. Intelligent integration of inventory and sales systems
enables the calculation of accurate decentralized models of product sales for a given
time of day. Enabling the exchange of information between different models located in
different stores can lead to a higher level of adaptability. The architecture must address
the following requirements and tasks:
(R-B.1) Handle highly distributed and heterogeneous systems.
(R-B.2) Store data, such that appropriate historical data can be used, e.g. for optimiza-
tion.
(R-B.3) Preprocess data, e.g. handle missing data and generate features such as max-
imum energy consumption.
(R-B.4) Learn and update models for predicting energy consumption and product de-
mand across multiple stores.
(R-B.5) Provide simulation to enable optimization of energy efficiency and reduction
of peaks in energy consumption.
(R-B.6) Provide information and guidance to store staff on energy efficient use through
the implementation of an appropriate Human Machine Interface (HMI).

5.1.3 Process Control of Concrete Spreading Machines

A concrete spreading machine produces pre-cast concrete components. The mold con-
sists of a steel pallet, casing and additional reinforcements. The machine pours con-
crete on the steel pallet. Casing and reinforcements mounted on the steel pallet de-
termine the shape and properties of a component. Control parameters for the process
must be set manually, which is quite difficult and requires a lot of experience, as some
parameters are difficult to estimate, such as the consistency of concrete from a previous
pour mixed with fresh concrete. In addition, changing parameters does not result in an
immediate response because the concrete moves slowly. The goal of this use case is to
learn a model that can control the process to optimize two conflicting goals: minimiz-
ing production time while maximizing the quality of the resulting product. The quality
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itself is influenced by many factors, such as the speed of the machine or the amount

of concrete in the tank and the time since mixing. In order to implement a system that

learns from process data to control and optimize production output, the architecture

requirements are as follows:

(R-C.1) Acquire sensor data and perform preprocessing to extract standardized pro-
cess information.

(R-C.2) Store relevant production process information.

(R-C.3) Learn models from both historical and current sensor data to control the pro-
cess and account for trade-offs.

(R-C.4) Make decisions in real time or near real time to be useful in a real production
process.

(R-C.5) Verify results in a simulation before allowing the algorithm to control an ac-
tual concrete spreading machine.

(R-C.6) Communicate with the machine in a standardized format for compatibility
with different models/manufacturers.

5.1.4 General Requirements

The goal of our architecture is to cover versatile use cases with a focus on automatic
algorithm selection for parameter optimization in CPPS. Implementations of the archi-
tecture can be easily adapted to different use cases, which greatly reduces engineering
costs. In a particular use case, the adaptation could be the selection of an appropriate
algorithm based on the specifications given by the user. The architecture must allow
users to implement decisions and learn which decisions are promising for which appli-
cation. To achieve this with a high level of automation, some additional requirements
arise that cannot be directly derived from the use cases described above:

(R-D.1) Receive declarative goals from the user.

(R-D.2) Specified interfaces are well defined.

(R-D.3) Strategies for selecting an appropriate algorithm.

(R-D.4) The system learns from experience.

(R-D.5) Thorough knowledge representation.

The user should be able to easily define goals. If the system accepts declarative
goals (R-D.1) such as "minimize energy consumption”, the system can achieve this
goal by applying and evaluating available methods with the focus on improving the re-
sult, without the need to implement an explicit sequence of commands for each goal. In
addition, the user should be able to specify constraints, such as response time limits or
bounds on control parameters. Furthermore, the architecture should have well-defined
interfaces (R-D.2) with a thorough description of what data will be transferred to en-
sure modular extensibility and data consistency. Reusability and adaptability benefit
from such a modular structure, and this will also enable concepts such as Software as
a Service. In addition, the exchange and purchase of services between vendors is pos-
sible. The architecture requires a strategy for selecting an algorithm (R-D.3) that can
efficiently produce a feasible result under the current conditions, such as the volume
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Table 5.1: Consolidation of requirements for an architecture in automation.

Result Source Description
R.1 R-D.1 Receive declarative goals from the user
R.2 R-D.2 Specified interfaces are well defined
R.3 R-D.3 Strategies to select a suitable algorithm
R.4 R-D.4 The system learns from experiences
R.5 R-D.5 Thorough knowledge representation

R.6 | R-A.1,R-B.1, R-C.1 | Acquire data from distributed system

R.7 | R-A.2,R-B.2, R-C.2 | Store and manage acquired process data and models
R.8 | R-A.3,R-B.3, R-C.1 | Perform preprocessing

R.9 R-A4,R-B.4,R-C.3 | Learn a model from data, might be time and
resource-limited

R.10 | R-A.5, R-B.5, R-C.5 | Perform a model analysis which might have a lim-
ited response time

R.11 R-B.6 Interaction with the user (HMI)

R.12 R-A.6,R-C4 Decision making, e.g. send new parameters to the
controller

R.13 R-A.7,R-C.6 Apply the action on the controller

of data, the required response time, or the nature of the problem to be solved. A cogni-
tive architecture reflects on decision making and is able to learn from past experience
(R-D.4) to improve processing efficiency and outcome over time. To support this de-
cision making and to model/store additional learned knowledge, it is necessary to im-
plement an appropriate knowledge representation (R-D.5) that represents information
about machines and processes, newly learned rules, and expert domain knowledge.

Please note that this list of requirements is not meant to be complete or exhaustive,
but it gives an overview of some important concepts needed to address several use cases
in the context of CPS. In the following section, we review existing known architectures
with a focus on the requirements discussed above.

5.2 Evaluation of Existing Architectures

There are at least two different classes of architectures related to this work, namely
reference architectures from the field of automation and cognitive architectures from
the field of cognitive sciences. We do not consider models or architectures that are
used to classify the current level of digitalization or automation of a company or parts
of a company, such as manufacturing, which can be done by applying, for example, the
Reifegradmodell Industrie 4.0 [74] or the Fraunhofer Industrie 4.0 Layer Model [118].
The reference architectures in automation represent a generic structure for a class of
architectures that should help to design automation systems. We chose the well-known
Reference Architecture Model Industrie 4.0 (RAMI4.0) [17, 1], Industrial Internet Ref-
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erence Architecture (IIRA) [95], and 5C architecture [90].

In comparison, cognitive architectures steming from the field of cognitive sci-
ences have been developed to understand and reproduce human cognition. Such a cog-
nitive architecture is defined in [92] as ’a theory of the fixed mechanism and structures
that underlie human cognition.” According to Neisser [116, p.4], cognition refers to
“all processes by which the sensory input is transformed, reduced, elaborated, stored,
recovered, and used”. Regarding the context of Industry 4.0 (I4.0), we define cognition
as follows.

Definition 4 (Cognition). Cognition refers to all the processes by which the input data
is transformed, reduced, elaborated, stored, recovered, and used to make decisions in
terms of selecting methods and monitoring results for improvement in solving I4.0 use
cases such as condition monitoring, anomaly detection, optimization, and predictive
maintenance.

Note that this is a rather abstract definition and cannot be considered equivalent to
human cognition, as a system cannot yet generate or invent completely new methods
to solve a use case. Our goal is to enable cognition with respect to the parameter
optimization problems in CPPS by providing methods for selecting from available
tools and learning from applications for future improvements.

5.2.1 Reference Architecture Model Industrie 4.0 (RAMI4.0)

In 2013, the three German associations Bitkom, VDMA, and ZVEI founded the Plat-
tform Industrie 4.0 to merge the different interests and requirements of electrical en-
gineering, mechanical engineering, and information technology into a common model
for Industry 4.0. The resulting reference architecture model, shown in Fig. 5.2, was
published in 2015 [17, 1]. The model consists of three dimensions to represent the
most important aspects:

» Layers: The six layers are based on the Smart Grid Architecture Model [28] and
have been adapted to meet the requirements of 14.0. The layers represent the
digital representation of an asset, such as a machine. The digital representation
includes the specification of the asset, but also a description of its functional
and communication behavior. The complexity of the layers increases up to the
Functional and Business layers. These provide a runtime and orchestrate the
services that support the business processes. The layers are loosely coupled and
events and data are intended to be exchanged within a layer or between adjacent
layers[1].

* Life Cycle & Value Stream: The horizontal axis represents the life cycle of assets
and products in the I14.0 environment based on IEC 62890 and distinguishes
between types and instances.[1].

* Hierarchy Levels: This dimension classifies assets in terms of their 14.0 func-
tionality and responsibilities within a production facility. The classification is
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Figure 5.2: Reference Architecture Model Industrie 4.0 (RAMI4.0). The Figure is based on [1].

based on IEC 62264 and IEC 61512 and extends the automation pyramid by
introducing the additional levels product and connected world to meet the new
requirements [17].

Consequently, RAMI4.0 can be used to classify machines and components of a
CPPS and provides a standardized approach for the design of 14.0 machines. This
intention was confirmed when the first related model was presented in the same publi-
cation. The "Industrie 4.0 Component" contains communication functionality and an
administrative shell [1, 122]. Such an 14.0 component could be an entire production
system, a single machine, or even just a module of a machine. Existing assets can be
upgraded to 14.0 components because the additional functionality can be provided by
an external system.

5.2.2 Industrial Internet Reference Architecture (IIRA)

The Industry IoT Consortium (IIC) introduced its IIRA in 2015 and updated it to ver-
sion 1.10 in 2022 as a standards-based architectural template and methodology to en-
able Industrial Internet of Things (IIoT) system architects to design their systems based
on a common framework and concepts [95]. Figure 5.3 shows its three dimensions,
comparable to the RAMI4.0.

* Viewpoints: As a result of the analysis of various IIoT use cases, e.g. developed
by the IIC, relevant stakeholders and their concerns are processed and mapped
to four viewpoints (business, usage, functional, and implementation).

* Lifecycle Process: The IIRA is a system conceptualization tool that highlights
important system concerns that may affect the lifecycle process. Through its
viewpoints, it provides guidance for specifying a system lifecycle process from
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Figure 5.3: Scheam of the Industrial Internet Reference Architecture. The Figure is based
on[95].

IIoT system conception through design and implementation to system disposal,
specialized for a specific use case.

* Industrial Sectors: The related stakeholders in each viewpoint need to consider
the affected industrial sectors to capture and describe the specific concerns that
result in the unique system requirements.

The IIRA summarizes common concerns from different stakeholder perspectives gath-
ered from many use cases and projects, and therefore represents a high level of abstrac-
tion. A central idea of the IIRA is the need to network larger systems and to establish
control over hierarchies of machines. Therefore, this architecture seems well suited for
Industrial Control Systems (ICS). Accordingly, typical IIoT systems are decomposed
into five functional and interconnected domains (control, operations, information, ap-
plication, business). The IIRA is intended as an iterative top-down process model to
describe and develop architectural concerns on each viewpoint by its stakeholders. The
results of one viewpoint serve as a guide and impose requirements on the viewpoint be-
low, while discussion of the concerns in a subsequent viewpoint may validate or cause
a revision of the decisions in the viewpoint(s) above. However, the IIRA remains at a
high level of abstraction to support broad industry applicability. System architects can
use and extend the architectural results of the implementation viewpoint as the basis
for a concrete system architecture. For this purpose, the IIRA describes some suitable
architecture patterns, mainly based on the three-tier architecture pattern, which must
then be adapted, extended and specified by architects for a specific use case.
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Figure 5.4: 5C architecture for implementation of cyber-physical systems. The Figure is based
on [90].

5.2.3 5C-Architecture

The 5C architecture is introduced by Lee et al. in [90] and focuses on I4.0-based
manufacturing systems. 5C stands for the five levels: connection, conversion, cyber,
cognition, and configuration. The architecture can be seen as a guideline on how to
reach the goal of cognition (called self-x in the context of 5C), starting with initial data
acquisition. Self-x refers to a set of techniques needed for efficient operation, such as
self-configuration, self-diagnosis, or self-optimization, where the self means that the
task is performed automatically by the CPS. Consequently, this architecture ultimately
aims to provide cognitive functionality to autonomously operate the CPS. The architec-
ture is presented in Fig. 5.4. At the Smart Connection Level, data from multiple sources
such as sensors, controllers, Manufacturing Execution Systems (MES), or Enterprise
Resource Planning (ERP) is collected by a central server. In addition, characteristics
such as sensor signals are selected at this level. The Data-to-Information Conversion
Level uses algorithms to process the data and generate information, such as health val-
ues or remaining useful life. Typically, machine learning techniques are implemented
at this level. The information from many machines is collected in the Cyber Level,
which acts as a central information hub. It can be used to compare machines, make
predictions, or get more insight from a machine by combining information or using
historical information. The Cognition Level provides deeper insights, especially to the
user, who gets comparative information as well as information about individual ma-
chines. In the first publication [90], it is described as a resilient control system that
gives feedback from the cyber space to the physical space, while in later publications,
such as [91], decision making is the focus of this layer. It can be used, for example, to
optimize maintenance by prioritizing tasks or logistical planning [91]. Configuration
Level is the top layer that provides feedback from cyberspace to physical space and is a
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Figure 5.5: Simplified structure with focus on memories of Soar 9. The figure is based on [119].

supervisory control necessary for self-configuration and self-adaptation. In particular,
it can be used for optimization or product quality improvement.

5.2.4 Soar and ACT-R

The development of Soar was motivated by the study of the requirements for general
intelligence based on the theory of human cognition. The first version of Soar was
created in 1982 by Laird et al. [87], but it is still under development and an active
area of research [86]. This brief review focuses on the most basic components and
features. Memory in the Soar architecture, shown in Fig. 5.5, is divided into long-term
memory and working memory. The working memory consists of objects representing
states, while long-term memory consists of procedural memory, semantic memory, and
episodic memory. To perform a task, there is an initial state, a target state, a problem
space, and operators that can be applied to change the states. Production rules from
procedural memory are used to suggest an operator with certain preferences that can be
applied. A particular operator is applied to the state. This sequence is repeated until the
target state is reached. If no suitable operator could be identified (called an impasse),
a subgoal is created and solved by trial and error. Impasses are caused by lack of
knowledge. Once an impasse is solved, chunking is used to preserve the knowledge by
creating new production rules to avoid running into the same impasse again.

In Adaptive Control of Thought-Rational (ACT-R) theory [3], cognition is con-
sidered as the result of an interaction between procedural and declarative knowledge.
Procedural knowledge is represented in units called production rules, which consist
mainly of a goal, actions, and conditions. Declarative knowledge is represented in the
form of chunks. The high degree of connection between the two becomes clear as
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Figure 5.6: ACT-Rs architecture, distinguishing declarative and procedural memory. The Fig-
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both the state and the actions of production rules are stored as declarative knowledge.
Anderson’s basic idea behind this theory is that, in order to achieve cognition and in-
telligence, “the whole is no more than the sum of its parts, but it has a lot of parts” [3,
p-356]. Anderson states that intelligence is the result of the collection and coordination
of many small units of knowledge. The main questions that are the focus of current
ACT-R research are the following:

* How are these units of knowledge represented?
* How are they acquired?

* How are they used in cognition?

An overview of the ACT-R architecture is given in Fig. 5.6. The visual and aural inter-
faces to the external world are responsible for creating declarative knowledge chunks
by appropriately encoding the environment. The manual and vocal functions connected
to the external world provide the ability to perform actions on the environment, such
as steering movements in a car driving situation or using a computer keyboard to enter
a solution to a math equation. The potentially large amount of knowledge accumulated
during the application of cognition is only partially activated during a task, depending
on its context and prior success. This allows efficient access even when the amount of
data collected is quite large.

5.2.5 Evaluation Results

An overview of the evaluation of the examined architectures with respect to the require-
ments is given in Table 5.2. The requirements were previously summarized Table 5.1.
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Table 5.2: Evaluation results for the architectures. ’-’ indicates that the requirement is not
addressed by the architecture, 'O’ means that it is not sufficiently addressed, e.g. there may be
some additional effort needed, and *v'’ indicates that the architecture fulfills the requirement.
The requirements are listed in Table 5.1.

Requirement | RAMI4.0 | [IRA | 5C | SOAR | ACT-R
R.1 - - - v v
R.2 O O - - -
R.3 - - - O O
R.4 - - - v v
R.5 v - - v v
R.6 v v v - -
R.7 v v O - -
R.8 v v O - -
R.9 O v v - -

R.10 O v v - -
R.11 v O - - -
R.12 O v v v v
R.13 - v v v v

For a more detailed discussion of this evaluation, we refer to [23]. As can be seen, none
of the architectures presented fulfills all of our requirements for a cognitive architec-
ture for CPPS. In Fig. 5.7 we have graphically classified the architectures according to
their level of abstraction and their generalizability. A high level of abstraction means
that there is a lot of freedom in the implementation (which we consider as a higher
level of effort at the same time), while a high level of generalizability means that the
architecture can be easily adapted to many different use cases. The cognitive archi-
tectures have a low level of abstraction because there are fixed structures for imple-
menting use cases. Although the architectures are cognitive, they need to be adapted
for different use cases because each use case requires different knowledge. Especially
requirements towards big data, e.g., horizontal and vertical scalability or expandabil-
ity, are (of course) not addressed by the cognitive architectures. In comparison, the
reviewed automation architectures are considered more abstract. There are no strong
constraints or specifications on their implementation, which adds more challenges and
effort to an implementation. However, they can be applied to many use cases. The 5C
architecture, with its focus on manufacturing and self-optimization, is less generic and
less abstract than the other automation architectures, but we still consider it too abstract
to be easily used for the use cases described. It is important to rely on well-defined
interfaces. This allows for modularity and thus reusability of existing code, and main-
tains data consistency. This need is also mentioned for RAMI4.0 [1] and for IIRA [95],
where interfaces are defined in the implementation view. We identified a gap: An ar-
chitecture with a low level of abstraction to reduce implementation effort, and a high
level of generalizability to solve many CPPS use cases. We conclude that none of the
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evaluated architectures are directly suitable for an implementation to solve, e.g., a pa-
rameter optimization problem in CPPS. Addressing the gap can probably be achieved
by combining the features of the two types of architectures evaluated, a big data archi-
tecture for CPPS with cognitive capabilities in terms of automated algorithm selection
for declaratively configured goals. In the next section, we address the identified gap
and present concepts, methods, and technologies that comprise a new architecture to
solve CPPS parameter optimization use cases in a highly automated manner.

5.3 CAAI—A New Cognitive Architecture for Artifi-
cial Intelligence in Cyber-physical Production Sys-
tems

This section presents our cognitive big data architecture for CPPS. First, we summarize
the goals and methods of our architecture and present solutions and technologies to
implement these methods.

5.3.1 Goals and Methods

Our goals (G) for the application of CAAI are represented by several requirements
that emerge from different use cases and companies and that need to be fulfilled by an
Artificial Intelligence (AI) solution.

(G-1) Reliability: In a competitive market environment, the efficiency of the CPPS is
important, and reliability is a prerequisite for achieving it. Since the CAAI sup-
ports the CPPS, the two are interconnected and share the same requirements.
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Capturing the complete data is essential, as it contains a great deal of value,
especially when it contains information about the quality of the products pro-
duced, which can be used by Al applications. To avoid data loss or downtime
of the CPPS, the CAAI and its underlying infrastructure must be stable and
reliable [135, 45].

(G-2) Flexibility: A major drawback of existing Al solutions is that they are often

developed by an Al expert for a single machine or a single problem. As a re-
sult, these solutions do not include common interfaces that allow for adaptation
or extension of the existing system. This inflexibility is unacceptable, because
there is a great demand in the market for quickly adaptable CPPS, which cannot
be satisfied by the approach of specific Al solutions. The CAAI has to be flex-
ible and extensible in order to react quickly to this market demand [25] and for
future developments, e.g. in the field of big data algorithms.

(G-3) Generalizability: The CAAI should apply to many types of CPPS and support

many different use cases. Since it is not possible to pre-select algorithms for all
combinations of system types and applications, their selection should be auto-
matic in a declarative manner. Thus, the CAAI must process the user-defined
goals, derive a feasible process pipeline for the specific system, and learn over
time to improve the system’s performance, i.e., the CAAI implements cognitive
capabilities [123].

(G-4) Adaptability: The realization of adaptability through the CAAI increases the

efficiency of the CPPS by directly adjusting process parameters, so that users
do not have to change them manually. In addition, adaptability allows for au-
tomation of the adjustment, which is less prone to error and ultimately allows
for an autonomous system. However, the CAAI must ensure the safe operation
of the CPPS throughout the process. For example, during optimization, the op-
erating limits of the CPPS must be respected, while during anomaly detection,
there may be machine parts that must continue operating even in an emergency.
Therefore, the boundary conditions must be included in the CAAI, and CPPS
adjustments are only allowed within these boundaries [123, 93].

To tackle the goals (G-1) - (G-4), the following methods (M) are considered in

this approach:

(M-1) Big Data Platform: The continuous and reliable operation (G-1) is ensured by

a BDP. The BDP includes various techniques to achieve the goal, such as or-
chestration, virtualization, and containerization. Orchestration instantiates and
connects the selected modules, creating the necessary data processing pipelines.
Orchestration also allows applications and their containers to be moved to the
remaining functional infrastructure when parts of the system fail. Containeriza-
tion, which provides virtualization at the operating system level, allows multi-
ple isolated user space instances to exist. It improves reliability because each
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(M-2)

(M-3)

(M-4)

instance can only access the contents of its container and the devices associ-
ated with that container [115]. Orchestration of virtualized containers also sup-
ports horizontal and vertical scalability, since it is possible to create multiple in-
stances of a container to work in parallel, or to assign computationally-intensive
modules to computation units with sufficient resources.

Modularization: A modularization of the Al components enables the flexibil-
ity (G-2) of the CAAI, e.g. to adapt the processing pipelines to specific require-
ments. In addition, modular components require well-specified interfaces with
detailed definitions. Furthermore, the modular design reduces development and
maintenance costs by integrating existing components. Only new components
need to be developed.

Cognition: Automated process pipeline generation methods allow the realiza-
tion of different use cases without the involvement of an Al expert and the
extension to different types of CPPS. Automated pipeline generation is an im-
portant feature to ensure generalizability (G-3) for specific use cases, dynamic
systems and changing environments. It is realized by the cognitive module,
which generates and tunes the feasible pipelines and selects the most appropri-
ate algorithms according to the given data and the defined goal. For the goal of
continuous parameter optimization, we have implemented a tuning and selec-
tion procedure based on test instance generation (see Sec. 4.2). The cognitive
module evaluates the different pipelines to gather information about the perfor-
mance of different algorithms for a given use case.

Automatic Decision: Knowledge is required to interpret the results of the algo-
rithms and to derive suggestions for implementing automatic or CAAl-assisted
adjustments. Therefore, new parameter sets or other system changes identified
by the algorithms must be applied to the CPPS. (G-4). In addition, boundary
conditions may be defined and applied to the decision, such as a minimum ex-
pected improvement or specifications that ensure a safe adaption of the CPPS.
Moreover, the decision has to be applied to the CPPS controller that adapts
the physical machine. For the realization, several existing approaches, such as
skill-based engineering, can be used [25, 160, 97].

5.3.2 Architecture Overview

A graphical overview of our architecture is given in Fig. 5.8. The CAAI-Big Data Plat-
form (CBDP) wraps the architecture and arranges software modules in two processing

layers,

the Data Processing Layer (DPL) and the Conceptual Layer (CL), and connects

them via three bus systems (Data, Analytics, and Knowledge Bus). This conceptual
structure is based on a three-tier architecture with a focus on the data processing per-
spective to simplify interoperability and ensure horizontal scalability.
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Figure 5.8: CAAI Architecture Overview. The CAAI Big Data Platform (CBDP), shown in
dark gray, manages the bus systems and layers. Bus systems are colored in blue and establish
communication between the modules. The arrows show the intended information flow. The
layers are shaded in light gray and contain the different modules. The cognition module, which
provides automatic configuration, is colored in turquoise. Oval shapes represent external sys-
tems, such as a CPPS or a human-machine interface. The figure is taken from [53, p.614].

processing Application

The CBDP is a distributed system and can be hosted on a single machine, an
on-premise cluster, or by a cloud provider. Our stated architectural goals (G1-G4) are
supported by the CBDP through the implementation technologies, which are presented
below. Transferring incoming/outgoing data, orchestrating the data processing tasks,
assuring the persistence of results, and managing the communication between modules
are the resulting tasks of the CBDP. The following concepts and technologies (T) are
used to accomplish these tasks.

(T1) Container Virtualization: All components of the system exist as virtualized
containers on the CBDP. The isolation of module requirements from the general
environment ensures that all requirements for a specific module are met and do
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(T2)

(T3)

(T4)

(T5)

not interfere with other modules on the same platform, similar to virtual ma-
chines. Unlike virtual machines, a container uses the host operating system, and
containers share binaries and libraries where possible, resulting in less overhead.
Containers are consistent and immutable, ensuring compatibility across systems.
A central container registry stores container images and tracks changes through
versioning. Docker is used as the container engine for the implementation [115].
Images consist of all the necessary code instructions to install the requirements
and create a specific environment to run the desired algorithm or software. In
general, a validated, executable image guarantees that it will work the same on
any computer, server, or cloud environment.

Orchestration: The CBDP manages the necessary infrastructure and orches-
trates virtualized components to compose a system of microservices that perform
a specific task. Orchestration frameworks handle the deployment, configuration,
updating, and removal of the virtualized software components. A text file declar-
atively composes a system and lists the various services. The orchestration is
done by Kubernetes, which can use the Docker container engine [65]. The cog-
nition module uses the orchestration to instantiate pipelines with selected algo-
rithms and evaluate the results.

Microservices: All modules are developed as microservices to compose the soft-
ware system for a specific use case from smaller, self-sufficient parts. Each mod-
ule includes standardized communication functionality to publish and subscribe
to relevant topics on the bus system [147]. The resulting system is modular, lan-
guage agnostic, and uses well-defined interfaces. Following microservice best
practices, each microservice can store internal data in its local storage.

Messaging: The various bus systems managed by the CBDP transfer data via
messaging. Messaging allows asynchronous communication between modules
and allows for parallelization as well as multiple processing of data for different
purposes via topics and consumer groups. Adding more instances to the same
consumer group would result in distributed processing of incoming messages,
which is useful when a task is very time consuming or response time is limited.
We chose Kafka [114] as a reliable messaging system for our platform.

Schema Management: A schema stores the metadata of the data, with all the
available fields and datatypes [31]. When a module publishes to the bus system,
the serializer applies the schema and encodes the message or filters out non-con-
forming messages. A consumer subscribing to a topic on the bus has access to
the same schema and can verify integrity before encoding the incoming mes-
sage. This ensures unambiguous communication over the bus system and allows
easy integration of additional modules. A central schema registry distributes and
versions the schemas, allowing controlled data evolution.

The combination of technologies (T1-T5) supports the overall goals and the methods
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Figure 5.9: The cognition creates new data processing pipelines based on information about
the available algorithms from the knowledge module and information on current resource us-
age provided by the monitoring module. The Cognition decides on one or more pipelines and
instructs the Kubernetes Controller to instantiate the data processing modules for each. The
Kubernetes Controller loads the container images from the registry and starts all the jobs that
form the data processing pipeline. The figure is based on [146, p.3524].

to achieve them, namely to provide a reliable infrastructure (M-1) for modular devel-
opment (M-2), e.g. to reuse existing modules, or to extend the system with additional
algorithms. This allows the cognition module to run and evaluate additional experi-
ments by automatically creating processing pipelines (M-3) and automatically adapt-
ing the CPPS (M-4) when a feasible and beneficial solution is found. The complete
process to dynamically create a data processing pipeline is depicted in Figure 5.9.

5.3.3 Bus Infrastructure

Data bus is a term used in computer architecture and electronics to refer to a subsys-
tem that facilitates the transfer of data between various components of a computer or
electronic system. The concept of a data bus is essential to enable communication
between different components in a computer or electronic system, such as the central
processing unit, memory, input/output devices, and other peripherals.

In the context of this thesis, a data bus acts as a central hub for data integration,
allowing data from different sources to be collected, transformed, and distributed to
other systems or data consumers. An implementation must be designed to scale hor-
izontally to accommodate increasing data volumes and support high-throughput data
transfer. A data bus decouples data producers from data consumers, which means that
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changes in one system do not necessarily affect other systems connected to the data
bus.

To implement the bus systems of the CBDP, we chose Kafka, a distributed stream-
ing platform that is widely used for building real-time data pipelines and event-driven
applications. Kafka uses topics to organize and categorize data streams, and each topic
represents a specific stream of events or messages [114]. Accordingly, the data pro-
cessing modules of the CBDP communicate asynchronously over three buses, the data
bus, the analytics bus, and the knowledge bus. The level of data processing increases
incrementally from bottom to top, and in some cases horizontally. Each bus contains
multiple topics that can be subscribed to by modules connected to the bus. Kafka topics
can be configured to be automatically created when producers or consumers first write
to or read from them. Topics in Kafka are divided into partitions where each partition
is an ordered and immutable log of messages. Partitions are the unit of parallelism and
distribution in Kafka, allowing concurrent reads and writes. Additionally, the user can
configure the number of replications for each topic. Replicas are copies of the same
partition distributed across different nodes in the Kafka cluster. If a partition becomes
unavailable, replications ensure that the data remains accessible.

All modules publish their data to the respective attached bus on a predefined topic,
so that one or more other modules can use the data and intermediate results for their
processing. The architecture thus implements a message-driven processing approach,
resulting in a flexible and agile system with clear interfaces and hierarchies. The main
features of applications that use message queuing techniques are [68]:

(i) No direct connections between modules.
(i1)) Communication between modules can be time-independent.
(i11) Work can be done by small, self-contained modules.
(iv) Communication can be controlled by events.
(v) Data integrity through validation schemes.
(vi) Recovery support.

The following paragraphs provide a detailed description of the three bus systems, while
Tab. 5.3 gives an overview and summarizes the estimated differences of each data type
with respect to volume and velocity, computational effort, entropy, and interpretability.

Data Bus The data bus transports raw data from a CPPS, as well as data from demon-
strators, external simulators, or simulation modules. Cleaned and further pre-processed
data is also published back to the data bus by the pre-processing modules. Therefore,
the data volume and velocity is high, although the entropy is still quite low and the
interpretability is complicated. Overall, the data bus transports streams of real-time
data.
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Table 5.3: Comparison of the data and estimated differences on the three bus systems used in

the CAAL
Data bus Analytics bus Knowledge bus
Type of data Raw, Preprocessed Processed Enriched
Volume and Velocity High Moderate Low
Computational effort Low High Moderate
Entropy Low Moderate High
Interpretability Complicated Moderate Easy

Analytics Bus Data transported on the analytics bus have a higher information den-
sity than data on the data bus. The number of processing pipelines and the type of
algorithms used determine the computational complexity. These get instantiated by
the cognition module and are expected to consume a significant amount of the avail-
able processing power. Consequently, the analytics bus hosts knowledge, models, and
results from the model application or optimization, the monitoring module, and the
business logic to derive commands to adjust the system.

Knowledge Bus The knowledge bus enables communication between the end user
and the system and combines the knowledge, business logic, and user-defined goals
and actions. The cognitive module receives declarative goals defined by the user. In-
formation from the analytics bus is condensed into reports for the user. In addition,
user feedback can be requested. In this way, the knowledge bus uses enriched data,
which supports interpretability and provides the most value to the user.

5.3.4 Layer

Multiple modules process the data within two layers. Each layer can be expanded
individually. Each of the modules processes the data in a specific way, e.g. with a
specific algorithm. Several modules are combined to enable complex data processing.

Data Processing Layer The Data Processing Layer (DPL) handles sub-symbolic
data and therefore contains all modules that process sub-symbolic data. Instances of
modules are combined into processing pipelines to solve a desired task based on the
raw data (see Figure 5.10). Except for the monitoring module, all initially provided
modules belong to one of the following four types:

(i) Preprocessing modules receive data from the data bus and return results to the
data bus. They prepare data for use, for example, by imputing missing values or
synchronizing timestamps.
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Figure 5.10: Top: DPL with modules highlighted that can be selected and varied by the cog-
nitive module. Bottom: An example of five different process pipelines. All pipelines use the
same (shared) results of one preprocessing module. Two different modeling algorithms are
trained on the preprocessed data (Gaussian Process Model and Random Forest) and searched
for an optimum by Differential Evolution (pipelines 1+2). Three pipelines use an optimizer
directly after the preprocessing (pipelines 3-5): Differential Evolution, Generalized SA, and
L-BFGS-B. This represents a typical example, where the cognition module selects algorithms
from different families for a continuous optimization problem.

(i1)) Modeling modules receive pre-processed data from the data bus and send their
results to the analytics bus.

(iii)) Model application modules receive data, e.g., the trained model, from the data
bus and the analytics bus and send their results to the analytics bus.

(iv) Optimization modules receive data from the data bus and the analytics bus and
send their results to the analytics bus.

The modules are instantiated with their configuration retrieved from knowledge via the
analytics bus. The modeling modules contain various machine learning algorithms in
a modular fashion. There is a need for the architecture to incorporate multiple algo-
rithms to select appropriate modules based on the task, the type of data, and the result-
ing model. As a result, multiple modules can be processed in parallel, see Fig. 5.11 for
an example. Both modeling algorithms in this example (Random Forest and Kriging)
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Figure 5.11: Parallel processing of messages through different algorithms. The cognition
module instantiated two pipelines with candidate algorithms and assigned them to different
consumer groups. As two consumer groups are subscribed to this topic, both groups receive
all new messages, and various algorithms can be trained independently. More instances can
be added to the same consumer group, which results in a distributed processing of incoming
messages.

share the same results from the previous preprocessing. Model application modules
can access the final model on the analytics bus. In addition, the model application will
access the data bus to compare the model with the process data to detect deviations,
which will be provided to the analytics bus. The cognitive module ensures that each
model application module is compatible with a specific task and a specific model. Each
of these components has a specific purpose, such as condition monitoring, predictive
maintenance, diagnostics, optimization, or similar tasks. Note that the task of param-
eter optimization does not specifically require modeling. An example of five different
pipelines for a continuous optimization problem with algorithms selected from the al-
gorithm families discussed in Sec. 3.1 is shown in Fig. 5.10. The first two pipelines
consist of three subsequent modules (preprocessing, model, and optimizer), and the
last three pipelines optimize the CPPS directly evaluating the preprocessed data.

Conceptual Layer The Conceptual Layer (CL) is located between the analytics bus
and the knowledge bus and contains the following four modules.

(i) The reporting module visualizes the process data for the Human-Machine Inter-
action (HMI). It processes data resulting from, e.g., monitoring or model appli-
cation results.

(i) The knowledge module includes

(a) relevant information about the CPPS, such as signal names, device types, or
its topology,
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(1)

(iv)

(b) general knowledge, such as an algorithm topology that describes the capabil-
ities and properties of algorithms, and

(c) constraints that can be defined by the user, such as time constraints.

The business logic module decides whether or not an action is required. To do
this, it monitors the results from the model application modules, checks the con-
straints from the knowledge module, and derives actions, such as adjusting the
CPPS to set optimized process parameters.

The cognition module is responsible for creating and optimizing the processing
pipelines. When given a specific task by the user, the cognition module aggre-
gates and configures appropriate modules of the DPL into processing pipelines
by processing the algorithm topology of the knowledge module. By monitoring
the results of the pipelines and switching to more promising and better perform-
ing pipelines, performance can be improved over time. Therefore, the cognitive
module is an elementary module of the CAAI and the reason why we call it a
cognitive architecture.

5.3.5 Cognition

The cognition module is a crucial part of the CAAI architecture, as it enables the
system to learn over time and transfer knowledge to multiple use cases (G-3). It is
responsible for important tasks in the CAAI architecture, such as algorithm selection
and processing pipeline generation, parameter tuning, and performance monitoring of
the CPPS. To properly address these tasks, the following prerequisites must be met:

@)

(ii)

(iii)

Feature engineering is the task of selecting and extracting relevant features from
sensor data after or during preprocessing. Involving domain knowledge and ex-
perience of the engineers is considered a prerequisite and can significantly speed
up the process time and increase the quality of the resulting models and applica-
tions.

A declarative goal for the system must be given, e.g., “minimize energy con-
sumption.” Furthermore, the goal must be reflected in the CPPS and the sensor
data. In Sec. 4.1 we presented a multi-stage selection process using available
sensors and parameters of the CPPS. A set of appropriate algorithms must be
available to address the specified goal.

Finally, relevant knowledge and business logic must be available to solve the
given task and adapt the CPPS.

The cognitive module selects feasible processing pipelines as candidates to meet

the configured goal. Pipelines consist of, for example, preprocessing, modeling, model
applications (such as classification, regression), or optimization. While some modules
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may require specific predecessors, e.g., a particular preprocessing, other module in-
stances may be the same across pipelines, so their results need only be computed once.
The CBDP orchestrates the sequence of modules and manages their processing, which
can be in parallel. Once the pipelines are selected, the initialization step involves tun-
ing the hyperparameters to avoid incorrect configurations and parameter settings that
lead to poor performance. Finally, the cognition evaluates the candidate pipelines and
selects the best according to their performance. An algorithmic procedure for the goal
of continuous parameter optimization is shown in Algorithm 1 in Sec.4.2. This algo-
rithm can be used as a blueprint for other use cases.

5.4 Conclusions

In this chapter, we have specified requirements gathered from several use cases in the
context of CPS and defined goals (G1-G4) to be achieved by a cognitive architecture
to improve or maintain the efficiency of CPPSs. Each goal is addressed by a particular
method (M1-M4) that can be implemented by multiple technologies or solutions, e.g.,
(T1)-(TS). Figure 5.12 details the coherence of these goals, methods, and solutions,
resulting in our cognitive architecture CAAI, which has been presented and will be
further evaluated on real-world problems in the following chapter. A key feature is the
cognition module, which configures, instantiates, and evolves process pipelines over
time to solve the problem, i.e., to achieve the declaratively configured goal by the oper-
ator. This is done with a minimum of expert knowledge and no manual implementation
effort.

The presented architecture provides horizontal and vertical scalability, as modules
can be run in parallel and deployment on high performance workstations or even cloud
infrastructure (local or remote) is considered. This allows its use in many scenarios,
especially in the context of big data. Different optimization use cases, e.g. multi-
ple machines, can be solved even without changing the implementation. From our
point of view, the architecture can be classified as a system architecture with reference
character, due to the described goals and methods. The solutions, technologies, and
implementation blueprints and prototypes, such as the cognitive module and the spec-
ified algorithm portfolio, provide detailed guidance towards a software architecture.
This directly answers research question RQ-3, since the benefit of the architecture
increases with less abstraction while maintaining generalization in terms of the use
cases addressed. In the next chapter, we will examine prototypical implementations
for several real-world use cases to evaluate the architecture and the performance of the
cognition module with respect to the optimization problems.



5.4. CONCLUSIONS

93

Goals

Reliability

Methods

Solutions

Big Data Platform

Virtualization

Flexibility

Orchestration

Modularization

Microservices

Generalizability

Messaging

Cognition

Data-Driven Test
Instance Generation

Adaptability

Automated Algorithm
Selection

Automatic Decision

Skill Based
Approach

Business Logic

Figure 5.12: Overview of the architecture’s goals, methods, and solutions. The goals and
methods on the left represent the higher-level reference parts of the architecture, while the
solutions on the right represent the current state of the art or promising approaches in their

respective disciplines.



94

Chapter 6

Evaluation

This chapter contains work and results based on the following publications [53, 146,
52]. The notation and structure was adapted to this thesis, some parts of the text were
taken verbatim.

To evaluate the architecture and the developed algorithm selection procedure, we
will present two different real-world case studies. The first case study in Section 6.1
examines the performance on the Versatile Production System using two different al-
gorithm portfolios, and the second case study in Section 6.2 demonstrates the param-
eter optimization of the injection molding process. A concluding summary is given in
Section 6.3.
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6.1 Case Study 1: Versatile Production System

We evaluate the CAAI which is presented in Sec. 5.3, through its implementation
for the VPS, which is located in the SmartFactoryOWL. There are typically four VPS
units: Delivery, Storage, Dosing, and Production (see Fig. 5.1). Due to its modularity,
the first three units can be easily swapped or removed. Different configurations are
used depending on the current orders. The need for different configurations increases
when, for example, the dosing unit needs to produce a small and precise amount of
popcorn. However, when larger quantities are required, it is more efficient to dispense
with the dispenser, which is slow and expensive to operate. In this use case, all VPS
units are used and small boxes of popcorn are produced. Each batch must fill one box
of popcorn. The excess popcorn produced in a batch, or boxes that are not fully filled,
cannot be used, so it is waste.

6.1.1 Multi-objective Optimization

A multi-objective optimization problem can be defined by a function

FrACR SR, f(z) = (fi(2), s finla) 6.1)

with z € R", and the feasible set A. A common way to handle multi-objective opti-
mization problems is Pareto optimization based on the concept of Pareto-dominance.
A solution z € A dominates (<) another solution y € A:

v =<y iff Vi:fi(x) < fily) NTj: f(x) < f;(y) for i,je{l,...,m} (6.2)

Theset {x € A| Py € A: y < x} is called the Pareto-set, and the corresponding set
under mapping f is called the Pareto front.

6.1.2 Optimization Problem

The goal of this use case is to optimize the amount of corn in the reactor as delivered
by the dosing unit. The optimum is a trade-off between three minimization functions
with conflicting goals: the energy consumption ( f;), the processing time (f5), and the
amount of corn needed for a small box (f3). The result of the optimization is a param-
eter value for the dosing unit. To address this multi-objective optimization problem, at
least two promising approaches can be considered: An approach using multi-objective
optimization algorithms, or an aggregation of the three objective functions and the im-
plementation of a single-objective optimizer to find a solution. To keep the focus on
the evaluation of the developed concepts and the architecture, we aim at keeping the
complexity of the problem as simple as possible. Consequently, we apply a single-
objective approach and compute a weighted sum of the objectives.
This leads to the following optimization problem.

3 3
argmin Y w; fi(x); w.rt x € [3000,11000] and w; > 0and » w; =1 (6.3)
=1

=1
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The parameter = controls the runtime of the conveyor (in ms) and thus affects the
amount of corn processed, the cycle-time, and hence the total energy consumption
per cycle. The scalar weights of the corresponding objectives, w;, are chosen based
on the user’s preferences. We use equal weights for each objective, and compute a
normalization of the objectives before aggregation. The minimum of (6.3) is a always
a Pareto optimal solution (see e.g. [46]), but with this approach, we can only find
Pareto optimal solutions on the convex parts of the Pareto front [35]. Consequently,
the solutions found by the single-objective approach may be worse than those found
by the multi-objective approach, depending on the shape of the true Pareto front.

A single-objective approach improves the performance of the system with a cer-
tain effort in terms of the number of objective function evaluations, i.e., the number of
production cycles, and does not depend on a human decision maker, but comes with
the trade-off of solutions that may not be Pareto optimal. Consequently, the quality
of the solutions is implicitly determined by the a priori choice of the weights. With-
out knowledge of the Pareto front, it is not known whether this choice of weights is
desired.

In the following, we present two different solutions with different portfolios of
algorithms used to optimize the VPS. We will use a fixed-budget benchmark scenario,
since the objectives of the optimization problem are not yet known. The first solution
is motivated by the Automated Machine Learning (AutoML) approach, an automated
process of applying machine learning models to real-world problems, which aims to
allow non-experts to use machine learning models [37]. We use two different regres-
sion models to approximate the objective function based on some sample data points
of the process, and optimizers to search the models for an optimum, which is then val-
idated on the real objective function. This allows the models to be compared and the
best model to be selected for further iterations of the process in terms of optimization.
The second solution extends the algorithm portfolio by adding optimizers and allow-
ing pipelines without surrogate models, i.e., pipelines that use optimizers to directly
optimize the parameters of the function.

6.1.3 Solution 1: Surrogate Model-Based Optimization

In this approach, the problem is optimized by SMBO [73]. SMBO uses a data-driven
surrogate model to create an approximation of the real VPS production process. Model
construction requires training data, which ideally should be a representative set of all
possible settings, i.e., space-filling. In this case, the set is generated by evaluating an
equidistantly spaced design in the full parameter range of . The cognition module
will evaluate different surrogate models: Random Forest [22] and GPM, in this con-
text further referred to as Kriging [82]. Kriging is particularly suitable for modeling
continuous data with few variables and comes with an uncertainty measure. Random
forest is known for its fast computation and flexibility. Recent examples of Kriging
and Random Forest applications in CPPS scenarios can be found in [78, 152].

These two modeling algorithms already cover a wide range of systems. The cog-
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Figure 6.1: The resulting CAAI architecture for the VPS use case. The numbers indicate the
order of the workflow, where some steps can be computed in parallel, i.e., the two different
surrogate models.

nition module decides which model is best suited to approximate the process data and
perform optimization based on a performance evaluation of the entire optimization
cycle. The surrogate is then optimized to identify the next candidate solution to be
evaluated on the VPS by applying a local search algorithm.

When a new parameter is identified, the business logic defines if an adjustment
should be performed and checks for constraints, such as parameter limits to ensure a
safe operation of the VPS. Finally, the adaption module changes the VPS parameters
to achieve better performance.

The resulting implementation of the CAAI for the given use case, including all
applied modules and their processing order, is shown in Figure 6.1. The individual
steps of the workflow are as follows:

1. The cognition module initializes the two pipelines for parallel processing. The
knowledge module provides the necessary information about the algorithms and
bounds for the control parameter.

2. The protocol translation module transfers the data from the OPCUA server on
the VPS to the BDP.

3. The preprocessing module aggregates the raw data for each production cycle, 1.e.
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it cumulates the energy consumption, the amount of corn used, and calculates the
cycle time. For model training, we also perform data normalization.

4. In this step, the Kriging and Random Forest models fit or update their parameters
to the data and send the results to an analytics data bus for further processing.

5. The model application + optimization module implements the sequential step of
the SMBO algorithm: It searches the previously fitted models until an optimal
solution is found or the maximum number of iterations is reached. The module
passes the result to the analytics bus.

6. The cognition module decides which pipeline prediction is selected to optimize
the CPPS by comparing model accuracy using cross-validation.

7. The business logic module checks whether the solution violates any constraints
defined for the CPPS and communicates the appropriate adjustment back to the
analytics bus.

8. The adaption module translates the adjustment for the specific CPPS and sends
the instructions from the BDP to the CPPS using the protocol translation, i.e.
writing the new value for the control parameter x to the OPCUA server.

9. The cognition module analyzes the system performance achieved with the re-
sulting pipeline configuration from step 6. In the following steps, the impact of
the changes is verified and made available to the operator through information
provided by the monitoring module.

Results

Data from the real-world VPS was collected to evaluate the modeling and optimiza-
tion. This data consists of 36 production cycles with 12 different settings (three pure
repetitions per configuration) for the runtime of the conveyor. Based on this data, we
trained a model that reflects the real behavior of the VPS and use it for further ex-
periments. The three different objectives, i.e., the energy consumption, the processing
time, and the amount of corn required, were aggregated by taking the sum of the single
objectives multiplied by equal weights of 1/3.

The statistical software R version 3.4.3 was used to evaluate the algorithms [127].
For Kriging and Random Forest, the software packages SPOT (2.0.5) and caret (6.0-
84) [84] were used. Initially, the algorithms used five equidistant data points to build
their initial models. Consequently, the results in the figures presented in this section
start at production cycle number five. The aggregated results use the median of ten
repetitions, each with a budget of 20 production cycles.

The obtained values of the objective function are shown in Figure 6.2. Initially,
Kriging outperforms Random Forest converging to an optimum after 10 cycles, while
later, after 12-15 cycles, Random Forest performs comparably to Kriging.
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Figure 6.3: This plot shows the CPU and memory consumption over time using median ag-
gregation over 20 repetitions. Left: The consumed CPU time in seconds is depicted over the
production cycle. Right: The memory (MB) consumption of the modeling algorithms for differ-

ent production cycles is shown.

Fig. 6.3 plots the CPU consumption in seconds and the memory consumption in
MB against the VPS production cycles. For both methods, Kriging and Random Forest,
an increasing trend in the CPU usage can be observed. However, the computation time
of Kriging shows a larger slope compared to Random Forest. Both algorithms behave
as expected due to their internal data representation and processing. The increasing
trend can also be observed for the memory consumption. Initially, the Random Forest
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algorithm uses more memory than Kriging. After about 15 iterations, the situation
changes as Kriging begins to consume more memory than Random Forest. While both
algorithms continue to consume more memory, Kriging shows the steeper slope.

The results of our study reveal the following valuable insights:

(1) It is worth using more than one algorithm: taking only the best performing one
(i.e. Kriging) can lead to future problems due to limited computational resources
and time.

(i1)) Random Forest needs more data to improve compared to Kriging, and starts to
be a good competitor after about 15 cycles.

(i11) Overall, it may be beneficial to switch algorithms after a certain number of pro-
duction cycles, considering all performance metrics together, i.e., the achieved
objective value, CPU time, and memory consumption, according to user pref-
erence and system capacity. Otherwise, the memory and CPU consumption of
Kriging can quickly make its use infeasible in terms of available computing re-
sources.

The cognition module uses the aggregated information shown in figures 6.3-6.2 to
select the best algorithm for the next production cycles. This also demonstrates the
relative degree of information density on the analytics bus compared to the data bus
(see Table 5.3), as the cognition module does not use the raw data, which consists of
several hundred rows of data for each production cycle.

6.1.4 Solution 2: Extended Algorithm Portfolio

The AutoML-like comparison of multiple algorithms is not possible when using non-
SMBO optimizers. The algorithm selection in this solution is performed by comparing
several optimizers from different families (see Sec. 3.1) on generated test instances
(see Sec. 2.2) using a fixed-budget approach and statistical comparison (see Sec. 3.2).
The test instances are generated using 1-stage, conditional GPS with the parameter
Ncos set to 100 (see Sec. 2.2.4 for details). For the statistical analysis of the algo-
rithm performance after tuning, we chose a nonparametric test that can be easily run
automatically. The generated test instances used for tuning and benchmarking the algo-
rithms are shown in Fig. 6.4. We use the following portfolio of algorithms: Differential
Evolution, Kriging, Random Forest, BOBYQA, and Random Search as baseline com-
parator. For an overview of all algorithms used in this scenario and their parameters,
see Tab. 6.1. Tuning is performed using SPOT with the following settings: SPOT’s
budget is set to 30 evaluations, i.e., algorithm runs, and the algorithm parameters listed
in Tab. 6.1 have been selected for tuning. The budget for the algorithms is set to a max-
imum of 20 function evaluations. SPOT uses a Kriging model for tuning and an initial
design size of ten points. The resulting parameter values are also listed in Tab. 6.1.
The results of the tuning procedure are shown in Fig. 6.5. It can be seen that Differen-
tial Evolution and Random Search are outperformed by the other algorithms and could
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Figure 6.4: This graph shows the resulting VPS problem instances based on the real-world
data taken from the machine. The dashed line shows the ground truth, and the solid blue curves
represent the conditional simulations used as test instances for tuning and benchmarking of the
algorithm pipelines. The x-axis shows the runtime of the conveyor in ms, and the y-axis shows
the equally weighted normalized aggregated objective function value of the objectives process
time, amount of corn, and energy consumption.

therefore be removed from further analysis. However, our fully automated analysis
does not rely on figures or plots to remove individual algorithms, but will proceed with
a full statistical comparison. The questions to be answered by the benchmark are

Q-1 Do the algorithms differ in performance after the tuning procedure with a given
confidence, and which algorithm performs best?

Q-2 How much improvement does the best algorithm provide over the baseline?

The statistical analysis to evaluate possible differences between the performance
of the algorithms was performed as follows (see Sec. 3.2). First, a Kruskal-Wallis test
was performed, which yields a very low p-value (< 2.2e — 16). Therefore, significant
differences between the performance of the algorithms were analyzed in a post hoc
test. The results of the multiple pairwise comparison using the Conover’s test are
shown in Tab. 6.2. The null hypothesis states that any observed differences in the
rank sums of the performance of the algorithms are due to chance alone. If the p-
values (< 0.05) indicate a significant difference, we want to decide which algorithm is
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Table 6.1: Settings of parameter ranges and corresponding default and tuned values of chosen
optimizers

Parameter Range Default Tuned Family
Differential Evolution Population
popsize N, 5 4

strategy {1,2,3,4,5} 2 4

F [0, 2] 0.8 1.647

CR 0, 1] 0.5 0.141

c [0, 1] 0.5 0.430

Kriging (SPOT) Surrogate
designSize N, 7 4

designType {Lhd,Uniform} Lhd Lhd

Random Forest (SPOT) Surrogate
designSize N, 7 5

designType {Lhd,Uniform} Lhd Uniform

BOBYQA Hill-climber
Random Search Baseline

Table 6.2: Results of pairwise post-hoc analysis using the Conover test. A significant difference
at a significance level of 0.001 is marked with *** and indicates that the null hypothesis stated
in the first column should be rejected.

Null hypothesis q value Pr(>Iql)

Differential Evolution - BOBYQA == 18.604 2.4425e-13 ***
Kriging - BOBYQA == 7.138 7.4403e-05  #**
Random Forest - BOBYQA ==0 10.004  7.7765e-08 ***
Random Search - BOBYQA == 20.459 2.4092e-13  #**
Kriging - Differential Evolution == 0 -11.466 2.3796e-09  ***
Random Forest - Differential Evolution == -8.599  2.3031e-06 #***
Random Search - Differential Evolution == 1.855 0.68556

Random Forest - Kriging == 2.866 0.27010

Random Search - Kriging == 13.321  3.28209e-11 ***
Random Search - Random Forest == 0 10.454  2.6413e-08 ***

superior. We select the superior algorithm based on the rank sum comparison between
the two algorithms. To obtain a final ranking of the algorithms, we proceed as follows.
First, all algorithms that are not significantly worse compared to other algorithms are
given the first rank and removed from the list. Each of the remaining algorithms that is
not worse than any other of the remaining algorithms is given rank two and removed



6.1. CASE STUDY 1: VERSATILE PRODUCTION SYSTEM 103

Tuning effect for budget 20

0.26

0.25

0.24 Tuned

FALSE
E3 TRUE

0.23

Objective function value y

0.22

0.21 e

BOBYQA
Kriging
Random Forest
Random Search

Differential Evolution <[H>

Optimizer

Figure 6.5: This graph shows the tuning results of all optimizers. It can be seen that Differen-
tial Evolution shows a more robust performance after tuning. For Kriging and Random Forest,
the size of the initial design was tuned, but the differences in performance are not noticeable.
For BOBYQA and Random Search, there were no parameters to tune, so performance differ-
ences are only due to chance.

from the list. This is repeated until all algorithms have received a rank. The analysis
of the multiple pairwise comparisons based on the Conover test and the sorting of the
ranks using the rank sums yields the final ranking of the algorithms: BOBYQA (1),
Kriging (2), Random Forest (2), Differential Evolution (3), Random Search (3). Since
only one algorithm receives the first rank, selecting BOBYQA is straightforward. If
there are more algorithms with the first rank, we use the average CPU consumption
over the repetitions as a secondary objective. With these results, we can answer the
two questions above:

Q-1 The difference in the performance of the algorithms on the VPS problem is sta-
tistically significant in a majority of the pairwise comparisons. BOBYQA was
selected as the superior algorithm based on the significant differences and the
rank sums.

Q-2 BOBYQA achieves a relative improvement in VPS performance of 5.65% over
the baseline comparator (Random Search).
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6.2 Case Study 2: Injection Molding Optimization

The previous case study was used to demonstrate the concept of online algorithm se-
lection based on process data on a rather simple optimization problem with only one
control parameter. Even this problem motivated the need to address multiple, pos-
sibly conflicting, objectives simultaneously, which is arguably typical for industrial
processes. Often, these objectives include the quality of a product or process, the
process or cycle time, and the consumption of resources such as a raw material or en-
ergy. In this case study, we analyze the extension of the developed automatic online
algorithm selection to multi-objective optimization problems by using an appropriate
performance metric and an appropriate algorithm portfolio.

6.2.1 Performance Indicator and Algorithm Portfolio

To evaluate the approximation of the Pareto front, achieved by a multi-objective opti-
mizer, we will use the value of the dominated hypervolume as the performance indica-
tor. We will compute the hypervolume of the achieved Pareto set of the final population
of the algorithms with respect to a given reference point as a scalar value to evaluate
the set of solutions of an algorithm. Maximizing this hypervolume pushes the solu-
tions towards the desired objective values and rewards a higher diversity of solutions
along the border to the non-dominated region. Alternatives for the metric to compare
the performance of algorithms are, e.g. the Inverted Generational Distance (IGD) [30]
or Inverted Generational Distance Plus (IGD+) [69]. These alternatives assume that
the Pareto front or an approximation of the Pareto front is already known, so they are
not feasible for our black-box scenarios.

Well-known Multi-objective Evolutionary Algorithms (MOEAs) such as NSGA-
II, SPEA2, SMS-EMOA, MOPSO, and MOEA/D have become standard solvers for
multi-objective optimization problems [5S0]. MOEAs generalize the idea of EA and
are typically designed to iteratively approach solutions that are well distributed across
the Pareto front. Exploiting a population of individual solutions that collectively ap-
proximate the Pareto front harmonizes well with processes and concepts in natural
evolution [50].

Three main paradigms for the design of MOEAs can currently be distinguish-
ed [50]:

» Pareto-based MOEA, where the algorithms use a two-stage ranking scheme.
First, the Pareto dominance properties of individuals are used to determine the
ranking. If a decision between equally ranked individuals is required, a second
level ranking is performed using properties contributing to diversity.

* Indicator-based MOEA, where the algorithms measure the performance of a so-
lution set according to an indicator such as the hypervolume indicator. This
measure is used by the algorithms in such a way that improvements in its value
determine the selection or ranking procedure of its individuals.
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* Decomposition based MOEA, where the algorithms decompose the problem into
several subproblems. Each subproblem targets different parts of the Pareto front
and uses a different weighting of a scalarization method.

Consequently, our algorithm portfolio for multi-objective optimization problems
consists of the following MOEAs algorithms: S-Metric Selection Evolutionary Mul-
tiobjective Optimization Algorithm (SMS-EMOA) [15] (indicator-based), Nondomi-
nated Sorting Genetic Algorithm III (NSGA-III) [39, 70] (decomposition-based), and
Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) [157]
(decomposition-based).

SMS-EMOA uses the hypervolume indicator to evaluate the quality of a Pareto
front approximation. Its main idea is to explicitly aim at maximizing the hypervolume
indicator within the optimization process [15]. It requires a predefined reference point
for calculating the size of the hypervolume.

MOEA/D decomposes a multi-objective optimization problem into a number of
scalar optimization subproblems for simultaneous optimization. It uses evolutionary
techniques to find optimal solutions. The subproblems are the individuals that repre-
sent the population of the algorithm. Each individual is assigned a unique weight vec-
tor. The weights are chosen to be equally distributed among the different objectives.
On the set of subproblems, a neighborhood can be defined such that good solutions in
one subproblem should be close to good solutions in neighboring subproblems due to
their proximity and thus similarity in the fitness landscape. Thus, the algorithm can
update neighboring individuals by comparing their objective values.

NSGA-III uses reference points on a normalized hyperplane to guide the evo-
lution of its individuals towards the Pareto front. Solutions are associated with the
reference points, aiming for a uniform distribution. We use the Das-Dennis approach
to compute the reference points [36]. The NSGA-III uses the same non-dominated
sorting procedure as in NSGA-II.

Please note that this portfolio is easily customizable and is not intended to solve
all existing problems in the most efficient way. We chose these algorithms because
they have shown good results on many problems and because they implement different
approaches to approximate the Pareto front. For our solution, we use the implemen-
tation of the algorithms from the pymoo package [18] (version 0.6.0.1) for the Python
platform (version 3.9).

6.2.2 Multi-objective Optimization Problem

In this case study, we want to optimize the injection molding filling simulation. There-
fore, we will use the three largely uncorrelated objectives of the injection molding
simulation already discussed in Sec. 2.3.1: The average volume shrinkage [%] (f;), the
maximum warpage [mm] (f;), and the required cooling time [s] (f5). Consequently,
the multi-objective optimization problem to be solved can be formulated as follows:

mxin (@) = (fi(x), fo(z), f3(2)),z € R? (6.4)
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Table 6.3: Lower and upper boundaries for the control parameters of the injection molding
simulation optimization problem

T To T3

lower 230 0.3 10
upper 250 6.3 50

Table 6.4: Default parameters of the multi-objective evolutionary algorithms

:LL pC p’UC TIC pm nm nn pnm

SMS-EMOA 100 09 05 15 09 20
NSGA-III 100 09 05 15 09 20
MOEA/D 100 09 05 15 09 20 20 09

Table 6.5: Lower and upper boundaries for the parameters selected for tuning

/’L pC p’UC nc pm T]m nn pnm

lower 40 05 0.1 3 0.7 3 3 0.1
upper 150 1.0 09 30 1.0 30 20 09

The lower and upper bounds for x are given in Tab. 6.3, and z, is the melt temperature
[°C], x4 is the holding pressure time [s], and x5 is the cooling time in the mold after
filling [s].

6.2.3 Experiments and Tuning

The default parameters of the algorithms are listed in Tab. 6.4. These parameters are
the population size p, the crossover probability p,., the probability for each variable to
participate in crossover p,,., the n parameter for crossover 7)., the mutation probability
D, the 1 parameter for mutation 7,,,, the number of neighbors n,,, and the probability
for neighbor mating p,,,,. Note that the last two parameters are only valid for MOEA/D.

We apply a tuning procedure with the goal of optimizing the control of the al-
gorithms to maximize the dominated hypervolume after a certain number of function
evaluations. Changing the value of 1 for MOEA/D requires the set of reference points
to be of equal size, making the Das-Dennis approach for generating well-spaced ref-
erence points infeasible. Instead, we use a so-called s-energy approach, which allows
the setting of an arbitrary number of points [19]. This allows tuning of all listed pa-
rameters. The lower and upper bounds for tuning are given in Tab. 6.5.

The test instances are generated per objective using 1-stage, conditional GPS with
Ncos set to 300. The data is based on an initial Lhd sampling of the Cadmould 3D-F
simulation with 20 points using the lower and upper boundaries of the control parame-
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Table 6.6: Resulting parameter values for the multi-objective evolutionary algorithms after
tuning

/"L pC p’UC 770 pm nm n?’L pnm

SMS-EMOA 77 0.70 0.87 21 091 10
NSGA-III 97 0.63 024 14 0.89 26
MOEA/D 150 0.79 090 23 088 3 3 047

ters listed in Tab. 6.3. All algorithms were allowed to optimize the objective functions
with a maximum of 2000 function evaluations and 10 repetitions. SPOT was used to
tune the algorithms with a budget of 30 evaluations for each algorithm. The reference
point for the hypervolume computation was set to r = (3.5, 60, 0.1) for the objectives
f1, f2, and f5 respectively. This reference point is also used as a maximum, such that
the achieved objective values of the Pareto sets can be normalized between a minimum
point p = (0,0, 0) and the maximum.

6.2.4 Results

The resulting parameter values after the tuning are shown in Tab. 6.6. The achieved
hypervolume in the final populations per algorithm run after 10 repetitions before and
after the tuning can be seen in Fig. 6.6. Visually, there is no significant difference af-
ter tuning recognizable for SMS-EMOA and NSGA-III. However, MOEA/D achieved
improved hypervolume values after tuning, but is significantly outperformed by the
other algorithms. It will be included in the following statistical analysis anyway, as it
is performed automatically.
The questions to be answered by the benchmark are

Q-1 Do the algorithms differ in performance in terms of hypervolume after the tuning
procedure with a given confidence, and which algorithm performs best?

Q-2 How much improvement does the best algorithm provide over the baseline?

For the statistical analysis of the algorithm performance after tuning, we chose
the same procedure as for the VPS use case (see Sec. 6.1.4). The Kruskal-Wallis test
yields a very low p-value (< 3.482e — 13). Therefore, significant differences between
the performance of the algorithms were analyzed by the multiple pairwise comparison
using Conover’s post hoc test. The results are shown in Tab. 6.7. The analysis of
the multiple pairwise comparisons based on the Conover test and the sorting of the
ranks using the rank sums yields the final ranking of the algorithms: SMS-EMOA (1),
NSGA-III (2), and MOEA/D (3).

Therefore, SMS-EMOA is used to optimize the problem. In this use case, the
computed Pareto front is used by a human decision maker to select a solution accord-
ing to his subjective preferences based on his expert knowledge. Several solutions can
be compared visually at the same time, as shown in Fig. 6.7, an example of such a
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Tuning effect
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0.55

Tuned
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MOEAD NSGA3 SMS-EMOA
Optimizer

Figure 6.6: This graph shows the tuning results of all three multi-objective optimizers. There
is no significant difference for SMS-EMOA and NSGA-III. MOEA/D achieved a significant
improvement in terms of the dominated hypervolume indicator after the tuning procedure.

Table 6.7: Results of the pairwise post-hoc analysis using the Conover test. A significant dif-
ference at a significance level of 0.001 is marked with *** and indicates that the null hypothesis
stated in the first column should be rejected.

Null hypothesis q value Pr(>Iql)

NSGA-III - MOEAD == 10.445 1.7849e-07 ***
SMS-EMOA - MOEAD == 20.889 6.0063e-14  ***
SMS-EMOA - NSGA-III == 10.445 1.7849e-07 ***

Pareto front obtained by SMS-EMOA. The plot of the Pareto front allows the decision
maker to visualize the trade-offs between different objectives. It is often not possible
to optimize all objectives simultaneously, and the Pareto front shows the tensions and
trade-offs between objectives. By examining the Pareto front, the decision maker can
choose a solution that best meets his or her preferences. This may be a solution that
excels in a particular goal domain, or it may be a balanced compromise between dif-
ferent goals. In the example shown in Fig. 6.7, a single solution from the Pareto front
is highlighted with a fairly low value for the required cooling time and a trade-off be-
tween the average volume shrinkage and the maximum warpage. Because the Pareto
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Figure 6.7: This plot shows a Pareto set computed by SMS-EMOA for the injection molding
optimization problem. Each point represents a Pareto optimal solution and the plot can be
interactively analyzed, rotated and zoomed by a user, e.g. the human decision maker.

front illustrates trade-offs between objectives, it allows the decision maker to weigh

which combination of objectives best meets requirements or preferences. It facilitates
informed decision making by considering different options.
With these results, we can answer the two questions above:

Q-1 The difference in the performance of the algorithms on the injection molding
simulation problem is statistically significant in all pairwise comparisons, and

SMS-EMOA was selected as the superior algorithm in terms of dominated hy-
pervolume.

Q-2 To achieve a comparable result in terms of the three objectives, we proceeded
as follows: Instead of a human decision maker, we specify four different weight
vectors ©; — ¥, with three components each, representing the weight for each
objective. The first vector gives equal weight to each objective, the second gives
more weight to the first objective, the third gives more weight to the second ob-
jective, and the fourth gives more weight to the third objective. The results of
the relative improvement over a baseline are shown in Tab. 6.8. Note that such
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Table 6.8: Relative improvement of the injection molding simulation compared to a baseline

Weight vector Y3 Ya Ys

v, = (1/3,1/3,1/3) 66.79% 1235% -45.32%
,=(08,0.1,0.1) 1634% 728% 23.68 %
Uy = (0.1,0.8,01) 4427% -279% 9.16%
(0.1,0.1,08) 7.86% 2477% -0.82%

Vy =

an automatic procedure may select a worse solution compared to a human deci-
sion maker. Overall, the improvement in the required cooling time is noticeable
(except for 75, with a slightly worse cooling time: —2.79%), which is impor-
tant since the cooling time determines the cycle time of the process and thus
the throughput. The largest improvements can be seen in the average volume
shrinkage, where SMS-EMOA achieved results for all four vectors ranging from
7.86% — 66.79% improvement. It can be seen that a baseline can improve one
objective at a time (especially y5, the max. warpage), but SMS-EMOA optimizes
several objectives simultaneously.

6.3 Conclusions

In this chapter, we evaluated the architecture and the automatic algorithm selection
approach on several optimization problems. The specification of algorithm portfolios
with algorithms from different families is crucial for an automatic approach in the
context of black-box problems. On the VPS problem, we could show that a solver
with an arguably lower degree of complexity, i.e., BOBYQA, can outperform more
complex algorithms, depending on the fitness landscape of the problem, which might
be previously unknown. The automatically selected algorithm was able to improve
the performance of the VPS by 5.65%, which can be directly translated into energy
savings, resource savings, and higher throughput.

When it comes to the application of multi-objective optimizers, we could demon-
strate the ability of the cognition module to automatically improve and select algo-
rithms in terms of the dominated hypervolume. We demonstrated the feasibility of
the online algorithm selection approach for multi-objective problems on an injection
molding optimization problem using filling simulations to estimate the quality of the
produced parts and to minimize the cycle time in terms of the required cooling time.
In each of the automatically selected solutions, according to four different weight vec-
tors, the solutions obtained by SMS-EMOA were significantly superior to the baseline
in at least two of the objectives. The solutions obtained with the highest weight for the
maximum warpage achieved a relative improvement of 24.77% in the required cooling
time and 7.86% in the average volume shrinkage, while only the maximum warpage
was slightly worse (—0.82%) compared to the baseline. Overall, this is a huge im-
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provement and supports the human decision maker in providing a large set of high
quality candidate solutions.

The designed architecture and its high degree of automation in algorithm selec-
tion drastically reduces implementation time, as different problems are mostly solved
by changing configurations. New algorithms can be easily added as needed and are
automatically tuned when their control parameters and bounds are configured. The
cognition module automatically performs statistical tests after tuning, minimizing un-
certainty in the selection process.
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Chapter 7

Final Evaluation
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7.1 Research Questions and Contributions

At the beginning of this document, we formulated research questions that address sev-
eral challenges related to automatic algorithm selection based on data-driven test in-
stances for CPPS optimization. To conclude this document, we will discuss the contri-
butions of this work to these challenges.

We asked RQ-1: Are GPS and model variations feasible and efficient to allow
online algorithm selection, and what are the limits to efficient implementation? To
sharpen this question, we asked RQ-1.1 whether the different objectives, different test
instance generation procedures, or different parameter settings of these procedures lead
to discernible differences in the instance space, i.e., do they produce different land-
scape feature vectors? In addition, we asked RQ-1.2 Do changes in these parameter
settings favor or disfavor any algorithm?

This led us to our first contributions:

(C-1) We have experimentally validated the three proposed test instance generation
strategies on several injection molding simulation optimization problems. Our
results show that existing test instances from the well-known BBOB testbed
are not relevant for the considered optimization problems. Therefore, the data-
driven approach using GPM was shown to be feasible for the use case.

(C-2) In our experiments, we have shown that it is the objective that determines the
performance ranking of the algorithm, and not the strategy for generating test
instances. For the online algorithm selection problem for optimizing CPPS, we
concluded that the conditional one-stage Gaussian process simulation is the most
appropriate.

Since the focus of this thesis is to develop a solution with a high degree of automa-
tion, we asked RQ-2 How can a solution to the ASP be algorithmically implemented,
such that operators can optimize a CPPS online with a minimum of data science knowl-
edge and without a hand-written procedure?

(C-3) To map the feasible algorithms to an optimization problem in CPPS, we devel-
oped a multi-stage problem configuration procedure. This procedure enables the
formulation of optimization problems with a minimum of expert knowledge:
The selection of the control parameters and objectives from sources such as
OPCUA, i.e., without the need for the knowledge of optimization experts.

To add value, we asked RQ-3 How can the solution of data-driven online al-
gorithm selection be addressed by a system architecture that provides value to many
companies, and what are the requirements for implementation?

(C-4) We have specified a system architecture that describes the necessary compo-
nents for processing data streams for optimization, and is easily extensible due
to its modularity and flexibility. The presented architecture provides horizontal
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and vertical scalability, as modules can be run in parallel and deployment on
microcontrollers, high performance workstations, or even cloud infrastructure
(local or remote) is considered. This allows its use in many scenarios, especially
in the context of big data. The message-driven approach allows for language-
independent implementation, making it easy to adapt to the needs of the compa-
nies. This significantly reduces the implementation effort.

7.2 Discussion and Conclusion

In summary, this thesis has contributed significantly to several research areas to ad-
vance the degree of automation in CPPS. We developed an automatic solution for
selecting optimization algorithms for newly implemented or adapted production pro-
cesses. This was made possible by evaluating different test instance generation meth-
ods based on GPM in terms of ELA and the impact of these methods on the perfor-
mance ranking of optimization algorithms. The limitations of the approach are closely
related to the limitations of using GPM for optimization problems in general: The
model must be of sufficient quality, which can be checked using common model vali-
dation methods such as cross-validation. New data can be added, for example by ap-
plying space-filling designs. If necessary, the implementation of the cognition module
can be extended if special design methods are required for the process to be optimized.

The architecture developed enables cost savings in the implementation of produc-
tion process optimization solutions, especially in the context of large data and data
streams. It addresses the shortage of both engineering and automation profession-
als. The algorithmic implementation strongly supports CPPS operators and potentially
increases overall system efficiency by largely automatically optimizing control param-
eters. To benefit from the solution described, data quality must be sufficiently high.
This means ensuring that the relevant machine parameters can be collected with suf-
ficient frequency and accuracy. If the data is coming from a source other than OPC
UA, then the protocol translation needs to be extended in such a way that the new data
is compatible with a Kafka data stream. The company needs information technology
personnel who are familiar with the software and its implementation, and who can
configure, customize, and extend it. Therefore, appropriate resources and budget must
be considered.

The modular structure of the architecture provides horizontal and vertical scala-
bility, addressing a wide range of companies with different IT infrastructure require-
ments. Implementations have been tested for microcontrollers and on-premise cluster-
based systems. If the optimization problem of the CPPS changes, e.g. if new control
parameters are added as a result of process adaptation, the need to change the imple-
mentation is largely done by adjusting and extending the configuration of the objective
and the required data, since the optimization problems are formulated in a declarative
manner.

However, configuring and deploying a multi-container Docker application based
on Kafka can be a complex task, and several technical challenges can arise along the
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way. These challenges often revolve around network configurations, resource alloca-
tion, and ensuring proper coordination between different Kafka components. Here are
some common technical issues and challenges encountered during development:

Network Configuration: Docker containers within a Kafka application need to com-
municate effectively. Ensuring proper networking, such as setting up container
networks or using Docker Compose networks, is critical for seamless commu-
nication between Kafka brokers, producers, and consumers. Configuring the
network to allow communication between containers and the host machine is
critical. Kafka brokers often require specific ports to be exposed, and ensuring
that these ports are accessible while maintaining security is a challenge.

Resource Allocation: Determining the appropriate resource allocation for each Kafka
container, including brokers and ZooKeeper nodes, is essential for optimal per-
formance. Incorrect allocation can lead to performance bottlenecks or resource
contention. Kafka relies heavily on disk I/O for persistence. Configuring stor-
age volumes, ensuring sufficient disk space, and optimizing disk performance
are important aspects of deploying a Kafka cluster in Docker containers.

Dynamic Configuration: Dynamically managing and updating Kafka configurations in
Docker containers requires a robust system. Ensuring that configuration changes
are applied consistently across the cluster without causing disruption is a chal-
lenge.

Security Considerations: Implementing secure communication channels between Kaf-
ka components is essential. This includes configuring SSL/TLS for encryption
and authentication to ensure that sensitive data is protected during transmission.
Properly configuring access controls and authentication mechanisms for Kafka
brokers and nodes within Docker containers is critical to preventing unautho-
rized access.

Monitoring and Logging: Implementing effective monitoring and logging for Kafka
containers can be challenging. Tools such as Grafana can be used to monitor
container health, Kafka metrics, and log data.

Overcoming these technical challenges requires a thorough understanding of both the
Kafkas architecture and Docker containerization. In addition, staying abreast of up-
dates and best practices for both technologies is essential to successfully configuring
and deploying a multi-container Kafka application in an industrial context.

We demonstrated the developed solutions on two real-world use cases, where
we successfully optimized different single and multi-objective optimization problems.
The specification of a big data architecture with cognitive capabilities in terms of auto-
matic algorithm selection and thus optimization of CPPS is a significant step towards
fully self-optimized production systems. The extension of the developed concepts and
solutions to additional applications, e.g., predictive maintenance or condition monitor-
ing, is the next logical step towards such a system.
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