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Abstract
We propose to use Bayesian optimization (BO) to improve the efficiency of the
design selection process in clinical trials. BO is a method to optimize expensive
black-box functions, by using a regression as a surrogate to guide the search. In
clinical trials, planning test procedures and sample sizes is a crucial task. A com-
mon goal is to maximize the test power, given a set of treatments, correspond-
ing effect sizes, and a total number of samples. From a wide range of possible
designs, we aim to select the best one in a short time to allow quick decisions.
The standard approach to simulate the power for each single design can become
too time consuming. When the number of possible designs becomes very large,
either large computational resources are required or an exhaustive exploration
of all possible designs takes too long. Here, we propose to use BO to quickly find
a clinical trial design with high power from a large number of candidate designs.
We demonstrate the effectiveness of our approach by optimizing the power of
adaptive seamless designs for different sets of treatment effect sizes. Comparing
BO with an exhaustive evaluation of all candidate designs shows that BO finds
competitive designs in a fraction of the time.
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1 INTRODUCTION

Clinical research and in particular drug development is typically structured into phases, for example, phases I–IV in drug
development. Similar approaches exist for complex interventions, such as themedical research council (MRC) framework
for nonpharmacological interventions (Campbell et al., 2000). The development phases include elements of learning and
confirmation. For instance, Sheiner (1997) describe the drug development process as two learning and confirming cycles:
The first cycle includes learning about the tolerated dose (Phase I) and confirming the efficacy of the selected dose in a
selected group of patients (Phase IIa), whereas the second cycle consists of learning about the optimal use in representative
patients (Phase IIb) and confirming an acceptable benefit or risk ratio (Phase III).
Traditionally, separate studies are performed for learning and confirming. However, the landscape in clinical research is

changing. Boundaries between the development phases are increasingly dissolving in multiple aspects. Master protocols
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are a new conceptwheremultiple subgroups and substudies are integrated (Bogin, 2020). Here, simultaneously,more than
one treatment and more than one disease type are investigated within the same overall trial structure. Adaptive designs
are established, but are being further developed. In general, study designs become more flexible, and more principled
approaches to decision-making using statisticalmodeling and integrated analyses across studies becomepopular. A related
principle on the analysis side is evidence synthesis, which is a way of combining information from several studies that
have examined the same question to come to an overall understanding.
The increasing complexity of both the designs and the analyses of clinical trials has the consequence that the planning of

such studies often relies also on computer simulations, especially if no closed form solutions for calculations are available.
This applies even to usually fairly straightforward tasks as sample size calculations. Various frameworks and guidance
proposals have been developed over the past years on how to plan, execute, and interpret the results of such simulation
studies. Method comparison studies are used to give clinicians and biostatisticians guidance when an approach improves
currently used methods (Hanneman, 2008). Depending on the setting and the purpose of the simulation study, suitable
metrics must be chosen to compare alternative designs or analysis strategies. Especially relevant are neutral comparison
studies, which are characterized by Boulesteix et al. (2013) as follows: The primary goal of the respective article is not to
introduce a new promisingmethod, the authors are reasonably neutral, and the evaluationmetrics, methods, and datasets
are chosen in a rational way. A comprehensive framework for such an objective assessment of competing strategies for
clinical trial designs is CSE (clinical scenario evaluation) (Benda et al., 2010; Friede et al., 2010). CSE was particularly
developed to support the overall process of performing simulations of clinical trials, especially for complex designs and
analysis strategies. The problem is decomposed into data models, analysis models, and evaluation models that specify the
evaluation metrics.
Here, we propose to use a formal approach to optimization of the clinical trial design, in the situation of a very large

number of available options for the parameters specifying the design. This set of candidate designs can be regarded as
a multidimensional search space, including potentially many real-valued and categorical parameters. The vast space of
possible designs makes the optimization computationally demanding. In the following, we demonstrate that the so-called
Bayesian optimization (BO) framework (Jones, 2001) can be successfully applied to select a clinical trial design. As evalu-
ation metric, we consider the specific case that the statistical power of the clinical trial design should be maximized, for
given effect sizes and a fixed total sample size. Further, it is crucial that such a design is found in a short time.
BO, often also called model-based optimization, has been successfully applied to optimize expensive black boxes (i.e.,

functions that take long to evaluate and are not given in closed form) in many scenarios. Popular applications include
hyperparameter tuning of machine learning methods (Snoek et al., 2012), general algorithm configuration (Hutter et al.,
2011), and many more. Various implementations of BO methods are widely used, such as sequential model-based algo-
rithm configuration (SMAC) (Hutter et al., 2011), Spearmint (Snoek et al., 2012), and BoTorch (Balandat et al., 2020). For
this work, we use the implementation in the R-package mlrMBO (Bischl et al., 2017). This implementation has been success-
fully used to optimize hyperparameters of machine learning methods on various tasks (Bischl et al., 2017; Wozniak et al.,
2018), and in the biomedical context it has been applied to optimize model weights (Browaeys et al., 2020; Richter et al.,
2019). Also, BO is well suited formultiobjective optimization. Different adaptions of BO exist (Horn et al., 2015) that return
a set of nondominated points. Many of them are implemented in mlrMBO as well. However, in this work, we restrict our-
selves to single-objective optimization. Independently of this work, for instance, Wilson et al. (2021) successfully applied
multiobjective BO to minimize the number of participants and the number of clusters in a cluster randomized controlled
trial under the restriction that the power is above a given threshold.
The remainder of the paper is structured as follows. In the next section, we present asmotivating example an application

of adaptive seamless designs for chronic obstructive pulmonary disease (COPD). In Sections 3 and 4, we explain the
background on adaptive seamless designs (asd) and BO, respectively. In Section 5, we present a simulation study that is
closely related to the motivating example and in which the suitability of BO for optimizing trial designs is demonstrated.
In the last Section 6, we discuss promising extensions as well as limitations of the approach.

2 MOTIVATING EXAMPLE

The general idea of this paper is to apply BO for finding a trial design that is optimal with respect to a certainmetric. As an
example, we consider the maximization of the statistical power of a trial design, given a set of parameters to be chosen for
the trial design. We compare the computation time as well as the maximal obtained power between the results obtained
with BO andwith an exhaustive grid search over the space of adjustable parameters. The presented optimization approach

 15214036, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202000389 by T
echnische U

niversitaet D
ortm

und D
ezernat Finanzen und B

eschaffung, W
iley O

nline L
ibrary on [05/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



950 RICHTER et al.

can also be applied for optimizing other metrics than the power, as long as the metric itself is numeric and the parameters
of the trial design are numeric and include none or just few categorical choices.
One specific trial design that falls into this category is adaptive seamless designs (Barnes et al., 2010) as implemented

in the asd package (Parsons et al., 2012) and described in Section 3. In Friede et al. (2020), the authors present an
application of adaptive seamless designs for chronic obstructive pulmonary disease (COPD). We use this COPD study
to apply BO for finding a trial design with maximal statistical power, given the parameters of the respective design
options.
For the COPD trial, an interim treatment selectionwas performed. Indacaterol is a drug administered to COPDpatients.

The patients were randomized to four doses of indacaterol (75, 150, 300, and 600 µg), to active controls, and to a placebo
control. Here, as in Friede et al. (2020), we ignore the active controls. The primary outcome of the trial was the percentage
of days of poor control over 26 weeks of the COPD patients. Since the recruitment took only a short time, another outcome
was required for treatment selection, in this case forced expiratory volume in 1 s (FEV1) at 15 days. In the original study,
the difference in FEV1 compared to placebo at 15 days for the different doses and corresponding confidence intervals was
estimated. From these, standardized effect sizes were estimated as approximately 0.68, 0.82, 0.95, and 0.91 for the four
indacaterol doses 75, 150, 300, and 600 µg, respectively. For the final outcome days of poor control, also, from real data
the standardized effect sizes were estimated. These were approximately 0.13, 0.17, 0.23, and 0.20, for the four doses. The
approximate sample sizes per arm were 100 patients in stage 1 and 300 patients in stage 2.
In the analysis of Friede et al. (2020), the aim was to select two doses of indacaterol at the interim analysis that are

passed to stage 2, resulting in a total sample size of 5 ⋅ 100 + 3 ⋅ 300 = 1400 patients. In the corresponding simulations,
a positive correlation between early and final outcomes of 0.4 was assumed. Further, different settings with continuous
early and continuous or binary final outcomes and different treatment selection strategies were compared.

3 ADAPTIVE SEAMLESS DESIGNS

Traditionally, drug development is organized in four phaseswith individual clinical trials for the separate phases. Seamless
designs combine elements from different development phases in a single trial, thereby offering the promise of speeding
the development process. For instance, seamless phase II/III designs combine the learning about the dose–response rela-
tionship or subgroup heterogeneity typical for phase II with the confirmation of treatment effects in phase III. If the data
of the phase II part are used for confirmatory purposes, then this needs to be accounted for in the testing strategy to main-
tain the family-wise type I error rate in the strong sense. These types of designs are called adaptive seamless designs. A
recent overview can be found in Friede et al. (2020).
We start by providing some more details on the study design considered (Sections 3.1 and 3.2). Then, in Section 3.3 we

briefly introduce a framework for optimizing such designs, namely clinical scenario evaluation (CSE).

3.1 Two-stage design with treatment selection

We consider a particular type of adaptive seamless designs, namely two-stage designs with treatment (or more specifically
dose) selection. The trial starts in stage 1 with 𝐾 experimental treatments or doses of one experimental treatment which
are compared to a common control. Interest is in assessing the treatment effects 𝛽𝑘 with 𝑘 = 1,… , 𝐾 comparing exper-
imental treatment 𝑘 versus control and testing the null hypotheses 𝐻0,𝑘 ∶ 𝛽𝑘 = 0 against the alternative 𝐻1,𝑘 ∶ 𝛽𝑘 > 0
(larger 𝛽𝑘 being better). For the purpose of treatment selection, test statistics 𝑍1,𝑘 based on data from the first design
stage are considered, with larger 𝑍1,𝑘 indicating more beneficial treatments. These can use data on the primary outcome
used for testing or any other outcome that is available at the time of the interim analysis. In practical applications, early
outcomes are often used to inform interim decisions, since the primary endpoint might take a longer time to observe.
In the interim analysis, treatments are selected for continuation into the second stage; the set of selected treatments is
denoted by  . The selection rules used here are described in Section 3.2. In the final analysis, the closed test principle is
applied to account for the multiple hypotheses. The intersection hypotheses are tested by combining stagewise 𝑝-values
for the respective intersection hypotheses using a prespecified combination function. Here we use the inverse normal
combination function (Lehmacher & Wassmer, 1999), which is given by

𝑤1Φ
−1(1 − 𝑝,1) + 𝑤2Φ

−1(1 − 𝑝,2) (1)
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RICHTER et al. 951

where Φ−1(⋅) denotes the quantile function of the standard normal distribution, 𝑤1 and 𝑤2 weights with 𝑤21 + 𝑤
2
2
= 1,

and 𝑝,1 and 𝑝,2 stagewise 𝑝-values testing intersection hypothesis𝐻. The p-values for stages 1 and 2 are calculated on
those patients recruited in stages 1 and 2, respectively. Note that one might not be able to calculate 𝑝,1 at the time of the
interim analysis since some patients might still be under follow-up for the final endpoint.

3.2 Selection rules

In practice, the totality of the data would be considered by a data monitoring committee (DMC) to make a recommen-
dation regarding the treatment selection. However, it is advisable for the sponsor to define a selection rule, although in
comparison fairly simplistic, to provide some guidance for the DMC regarding the sponsor’s preferences. Furthermore,
formal selection rules are indispensable to conduct simulation studies, for example, to explore sample size and power.
In the following, we give some examples of selection rules which have previously been considered and which we will
feature below.
The treatment selection might consider statistics 𝑍1,𝑘 for the final (primary) outcome or statistics 𝑍

(𝐸)

1,𝑘
calculated based

on some early outcome.We present the selection rules using 𝑍(𝐸)
1,𝑘
, but of course these would be replaced by 𝑍1,𝑘 if the final

outcome was used for treatment selection. Again, larger statistics are considered better.

𝜅-best rule
Let 𝑍(𝐸)

1,(1)
, … , 𝑍

(𝐸)

1,(𝐾)
denote the ordered statistics with 𝑍(𝐸)

1,(1)
being the largest and therefore best test statistic. The 𝜅-best

rule then selects the treatments associated with the 𝜅 largest values of the test statistic, that is, 𝑍(𝐸)
1,(1)
, … , 𝑍

(𝐸)

1,(𝜅)
.

Epsilon rule
To our knowledge, this rule was first described by Kelly et al. (2005) and has since then featured in a number of simulation
studies including Friede and Stallard (2008) and Friede et al. (2020). All treatments 𝑘with 𝑍(𝐸)

1,𝑘
≥ max𝑖 𝑍

(𝐸)
1,𝑖
− 𝜖with 𝜖 ≥ 0

are selected. For 𝜖 = 0, this rule is equivalent to the 𝜅-best rule with 𝜅 = 1.

Threshold rule
With this rule, all treatments 𝑘 are selected with 𝑍(𝐸)

1,𝑘
≥ 𝜏, where 𝜏 is a given threshold.

We note that with the 𝜅-best rule a fixed number of treatments is carried forward into the next stage, whereas these are
variable with the epsilon rule and the threshold rule.

3.3 Clinical scenario evaluation for ASD

The clinical scenario evaluation framework was first proposed by Benda et al. (2010) and subsequently further devel-
oped by Friede et al. (2010). Figure 1 provides a summary of this framework. A clinical scenario evaluation is defined
by the following three elements: (i) disease-specific features, (ii) design options, and (iii) design performance measures.
The disease-specific features describe distributional assumptions on the early and final outcomes including variances,
correlations, and treatment effect sizes. Here, some can be estimated from data of previous clinical trials, and some are
simply unknown. Considering adaptive seamless designs, the design options include the time point of the interim anal-
ysis and the treatment selection rule, which can in principle both be chosen without any restrictions. In contrast, some
other design options such as the number of treatments and the total sample size are constrained by the environment and
infrastructure available. The performance measures (sometimes also referred to as metrics) in the context with adaptive
seamless designs are, for example, power, sample size distributions, or duration of the study.
The evaluation of some performance measures requires Monte Carlo simulations, since no closed-form solutions are

available. The R-package asd by Parsons et al. (2012) can be used for such simulations. As it generates test statistics, follow-
ing multivariate normal distributions, it is applicable to a wide range of outcomes, at least approximately, and generally
more efficient in comparison to simulating individual participant data. The simulationmodel was described inmore detail
by Friede et al. (2020). It features selection at interim based on early as well as final outcomes.
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Clinical scenarios
Simulation Studies

• Treatment effect on

early interim outcome

• Treatment effect on late

disability outcome

Unknown

• Correlation between

early interim and late

disability outcomes

Historical data

Disease-specific features

• Number of test treat-

ments

• Total subjects in trial

• Recruitment rate

Constrained by health care

environment/infrastructure

Adaptive seamless design

• Time point of interim

analysis

• Treatment selection

rules at interim

Conventional phase 2/3

• Split of resources

between phases

• End of phase futility

criteria

Combination of options

Design options

Design performance
e.g. statistical power

Clinical Scenario Evaluation
Design performance measures evaluated

across a wide range of clinical scenarios

F IGURE 1 Application of the refined clinical scenario evaluation framework to adaptive seamless designs in progressive multiple
sclerosis (the figure is adapted from Figure 2 in Friede et al., 2010)

4 BAYESIAN OPTIMIZATION

BO (Jones, 2001), also known as model-based optimization (MBO), is a state-of-the-art technique for expensive black-
box optimization problems (Shahriari et al., 2016). In comparison to other black-box optimization methods, like genetic
algorithms or simulated annealing, BO is especially suitable when evaluating a configuration (e.g., running a simulation
with certain parameters, here denoted by 𝜃) is very time consuming. In this situation, it becomes infeasible to evaluate
the black box for thousands of configurations.

4.1 General principle

BO solves an optimization problem within a bounded search space Θ:

𝜃∗ ∶= argmax𝜃∈Θ 𝑓(𝜃), (2)

where 𝑓(𝜃) denotes the evaluation of the black box with the input configuration 𝜃. To reduce the number of evaluations
on 𝑓 the key idea of BO is to only evaluate values of 𝜃 that are estimated to lead to a high value of 𝑓(𝜃). The estimate
is generated by a so-called surrogate model. Typically, this is a regression model that predicts the outcome of 𝑓 based on
previous evaluations of 𝑓. First, an initial design of already evaluated configurations is needed. Then, iteratively, the BO
algorithm fits the surrogate on the previous evaluations and proposes a new configuration 𝜃 and evaluates it on 𝑓. The
steps are repeated until a budget is exhausted.
The proposal of a new configuration 𝜃 is obtained by maximizing a so-called acquisition function. The acquisition

function guides the search to promising new regions in the search space Θ by using the mean prediction 𝜇̂(𝜃) as well as
the uncertainty quantification 𝑠2(𝜃) of the surrogate. It balances between exploration of not yet evaluated regions inΘ and
exploitation. The acquisition function achieves exploration by assigning high values to areas where the surrogate predicts
a high uncertainty. Exploitation is achieved by assigning high values to areas of 𝜃 where the surrogate predicts a high
outcome of 𝑓. For deterministic functions, the expected improvement (Jones et al., 1998) is arguably the most popular
acquisition function.
The expected improvement as well as other acquisition functions are derived under the assumption that at each point

𝜃 ∈ Θ the posterior of the function outcome follows a normal distribution. The standard Gaussian process regression, that
is often used as surrogate, models the posterior as a Gaussian with the parameters 𝜇̂ and 𝑠2(𝜃) under the assumption that
𝑓 is a realization of a Gaussian process. In practice, this assumption often cannot be verified. However, benchmarks show
that the approach nevertheless works reliably for many practical problems (Bischl et al., 2017; Snoek et al., 2012).

 15214036, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202000389 by T
echnische U

niversitaet D
ortm

und D
ezernat Finanzen und B

eschaffung, W
iley O

nline L
ibrary on [05/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



RICHTER et al. 953

4.2 Acquisition function for noisy outcomes

Since this work focuses on optimization of a stochastic simulation, we assume that our nondeterministic optimization
problem can be formulated as follows:

𝜃∗ ∶= argmax𝜃∈Θ 𝑓(𝜃) + 𝜀, with 𝜀 ∼ 𝑁(0, 𝜎
2). (3)

In this setting, the expected improvement is not feasible, as shown in Huang et al. (2006). They propose to use the aug-
mented expected improvement (AEI) instead. Therefore, in a first step, we calculate the effective best solution:

𝜃∗∗ ∶= argmax
𝜃∈

𝜇̂(𝜃) − 𝑐 ⋅ 𝑠(𝜃), (4)

with 𝑐 as a tuning parameter that is usually set to 1 and as the design that contains all previously evaluated values of 𝜃.
The effective best point is the pessimistic estimate of the best observed outcome so far. In the final step, we calculate the
augmented expected improvement (AEI) (Huang et al., 2006) as follows:

AEI(𝜃) = (𝜇̂(𝜃) − 𝜇̂(𝜃∗∗)) ⋅ Φ

(
𝜇̂(𝜃) − 𝜇̂(𝜃∗∗)

𝑠(𝜃)

)
+ 𝑠(𝜃) ⋅ 𝜙

(
𝜇̂(𝜃) − 𝜇̂(𝜃∗∗)

𝑠(𝜃)

)
⋅

(
1 −

𝜎√
𝜎2 + 𝑠2(𝜃)

⏟⎴⎴⎴⏟⎴⎴⎴⏟
Correction

)
, (5)

where Φ and 𝜙 are the distribution and density function of the standard normal distribution, and 𝜎2 denotes the random
error (nugget effect) in the Kriging model. The formula is derived under the assumption of a Gaussian posterior at each
point 𝜃. The intuition in formula (5) is that the first summand favors exploitation while the second summand favors
exploration. The correction term is necessary to avoid exploration in areas where the model uncertainty 𝑠2(𝜃) equals the
random error 𝜎2, because in this case further evaluations will not decrease the model uncertainty.

4.3 Selection of the best point from noisy outcomes

If we chose the configuration 𝜃 from all previously evaluated configurations according to the best outcome of 𝑓 as the
optimization result, we would be overly optimistic. It is likely that a single best outcome can be partially attributed to the
random error 𝜎2. Instead, we are interested in the optimumof the true posteriormean. Therefore, we employ the surrogate
estimate of the posterior mean for each evaluated configuration to cancel out the noise. The configuration for which the
surrogate estimates the best outcome is then returned as the optimization result 𝜃̂∗:

𝜃̂∗ ∶= argmax
𝜃∈

𝜇̂(𝜃). (6)

Using the stochastic outcome 𝑓(𝜃̂∗) observed during the optimization process would still potentially lead to an overly
optimistic result. Therefore, an independent calculation of 𝑓(𝜃̂∗) should be conducted to obtain a fair estimate of the true
value of the best outcome.

5 SIMULATION STUDY

The goal of this simulation study is to investigate the potential benefit of BO for efficiently finding a clinical trial design that
maximizes a given metric. The analysis is motivated by the clinical example with COPD patients introduced in Section 2,
with treatment selection in the first of two stages. In the first stage, five arms (defined by the control and four different
administered doses) are considered, and in the second stage only a selected subset of arms is kept for further evaluation.
The metric to be optimized is the statistical power, where a positive outcomemeans a trial arm with true effect is detected
as the significant effect. Depending on the application the power can be calculated as the proportion of correctly rejecting
any, all, or a subset of the elementary hypotheses (Senn & Bretz, 2007).
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954 RICHTER et al.

TABLE 1 Effect sizes used for simulation in the first (early) and second (final) stage

Treatment
Effect set Stage 0 1 2 3 4
paper Early 0 0.680 0.82 0.950 0.91

Final 0 0.130 0.17 0.230 0.20
linear Early 0 0.200 0.40 0.600 0.80

Final 0 0.050 0.10 0.150 0.20
sigmoid Early 0 0.100 0.20 0.700 0.80

Final 0 0.025 0.05 0.175 0.20
paper2 Early 0 0.680 0.82 0.950 0.91

Final 0 0.260 0.34 0.460 0.40

TABLE 2 Overview of selection strategies to determine which trial arms are kept for the second stage

Notation Procedure of selection strategy
𝜅-best Select 𝜅 = 1, 2, 3 or 4 (all) arms, respectively, according to maximal test statistic
eps Select all arms with test statistic less than 𝜖 (epsilon) below maximal test statistic
thresh Select all arms with test statistic larger than the value 𝜏 (threshold)

TABLE 3 Parameters for the selection strategies representing the search space of trial designs

Parameter Range
Selection strategy {1-best, 2-best, 3-best, all, eps, thresh}
𝑟 (ratio) (0,1)
𝜖 (only for eps) [0,4]
𝜏 (only for thresh) [0,10]

5.1 Clinical trial design and parameters

For the true effect sizes in the simulation, we consider four effect setswhose values are inspired and partially based on the
corresponding numbers of themotivating example (see Table 1). For the effect set paper, we use exactly the same numbers
as in Friede et al. (2020). For the effect set paper2, the effect sizes for the second stage are doubled. As a further case, we
consider a linear effect set with effect sizes linear increasing from 20% to 80% for the first stage and effect sizes divided
by 4 for the second stage as well as a sigmoid relationship, again with four times larger effect sizes for the first stage.
These sets reflect different realistic situations. Sometimes, there are delayed treatment effects (e.g., in the immunotherapy
clinical trial setting) where the early effects are smaller than the delayed final effects. To include this scenario, we added
a further effect set, where the numbers between the early and the final stage of the scenario paper are flipped (see the
Online Appendix).
The strategies for treatment selection for the second stage in the two-phase trial design and their corresponding param-

eters that are used in the simulation study are given in Table 2 and Table 3, respectively. Choices for the boundaries of 𝜖
and 𝜏 are obtained from preliminary studies, and based on the fact that these are thresholds to the absolute amount of nor-
mally distributed random variables. Also, Figure S4 in the Online Appendix shows that the optimum is within the given
boundaries. The strategies follow the concept of adaptive seamless designs discussed in Section 3. The 𝜅-best strategies
select the 1, 2, 3, or 4 best strategies according to their respective test statistics in the first stage (with all representing all
𝑘 = 4 treatments besides the control). The strategies eps and thresh represent strategies with a flexible number of treat-
ments taken to the second stage. In Table 3, the ranges for these two parameters and for the proportion of the total samples
(ratio 𝑟) allocated to the second stage are given.
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RICHTER et al. 955

5.2 Calculation of the statistical power

The simulation of the statistical power of the trial design can be formulated as a black-box function as follows:

𝑦 = 𝑓(𝑛stage1, 𝑛stage2, selection strategy, 𝜖, 𝜏, effect set) , (7)

whereas 𝑛stage1 and 𝑛stage2 be the numbers of patients (samples) allocated to each treatment in stage 1 and stage 2 of the
trial, respectively and effect set remains fixed as we are interested in the optimal trial design for a given effect set. Our main
optimization goal is to maximize the statistical power 𝑦 depending on the trial design.
However, we are interested in keeping the total sample size 𝑛total constant in the overall trial for a fair comparison of

the power of different designs. Therefore, we introduce the ratio of patients (samples) per treatment in stage 1, compared
to patients per treatment in both stages

𝑟 =
𝑛stage1

𝑛stage1 + 𝑛stage2
(8)

as a new parameter that will replace 𝑛stage1 and 𝑛stage2 in (7).
In the following, we will explain how we derive the values of 𝑛stage1 and 𝑛stage2 in dependence of 𝑟 and 𝑛total so that we

can maximize

𝑦 = 𝑓(𝑟, selection strategy, 𝜖, 𝜏, effect set, 𝑛total) (9)

instead of (7), whereas 𝑛total and effect set remain fixed.
Let 𝑘1 and 𝑘2 denote the number of treatments in stage 1 and stage 2, respectively. Within one stage, the same number

of patients is allocated to all different treatments. Then 𝑛total is given by

𝑛total = 𝑘1 ⋅ 𝑛stage1 + 𝑘2 ⋅ 𝑛stage2. (10)

In our scenario (as described in Section 5.1), we have 𝑘1 = 5 and 𝑘2 ∈ {2, … , 5}, where 𝑘2 depends on the result of the
treatment selection strategy in stage 1. The control treatment is included in both stages.
Given the number of treatments 𝑘1 and 𝑘2 in the two stages and the total sample size 𝑛total, optimizing the power with

respect to 𝑛stage1 and 𝑛stage2 is equivalent to optimizing with respect to 𝑟, since

𝑛stage1 = 𝑛stage1 ⋅
𝑛total

𝑘1 ⋅ 𝑛stage1 + 𝑘2 ⋅ 𝑛stage2
= 𝑛total ⋅

𝑛stage1

𝑘1 ⋅ 𝑛stage1 + 𝑘2 ⋅ 𝑛stage2

= 𝑛total ⋅
𝑟

𝑘1 ⋅ 𝑟 + 𝑘2 ⋅ (1 − 𝑟)
and

𝑛stage2 = 𝑛total ⋅
1 − 𝑟

𝑘1 ⋅ 𝑟 + 𝑘2 ⋅ (1 − 𝑟)
. (11)

These formulas give the numbers of patients (samples) per treatment arm in the two stages, if 𝑘2 is known. This is only
the case for selection strategies 1, 2, and 3.
For the selection strategies eps and thresh, 𝑘2 depends on the outcome of stage 1. In these cases, for given values of 𝑛stage1

and 𝜖 or 𝜏, respectively, we can obtain an estimate 𝑘̂2 of 𝑘2 with a so-called calibration step. For a set of values for 𝑛stage1 in
the interval [⌈0.01 ⋅ 𝑛total

𝑘1
⌉, ⌈𝑛total

𝑘1
⌉], we simulate stage 1 of the trial multiple times. We calculate 𝑛stage2 = (1 − 𝑟)∕𝑟 ⋅ 𝑛stage1

from formula (8) and 𝑘̂2 as the average of the resulting values of 𝑘2 for all simulations with a fixed value for 𝑛stage1. Then
we select the value of 𝑛stage1 such that the corresponding total sample size is closest to 𝑛total. More precisely, we minimize

ℎ(𝑛stage1) ∶=

((
𝑘1 ⋅ 𝑛stage1 + 𝑘̂2 ⋅

1 − 𝑟

𝑟
⋅ 𝑛stage1

)
− 𝑛total

)2
(12)
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956 RICHTER et al.

with respect to 𝑛stage1, where the estimate 𝑘̂2 is obtained as described above dependent on 𝑛stage1. The calibration step is
necessary to guarantee that the total sample size 𝑛total is (on average) the same, also for the variable selection strategies
eps and thresh.
The above procedure gives us the values for 𝑛stage1 and 𝑛stage2, allowing us in the following to find the optimal clinical

trial design for a given effect set and a fixed total sample size, by optimizing the parameter values for 𝑟, Selection strategy,
𝜖 and 𝜏 through maximizing 𝑓 in (9).

5.3 Optimization strategies

In the simulation study, we compare the ability of two optimization approaches for finding an optimal parameter con-
figuration, on the one hand an exhaustive grid search on the parameter space and on the other hand BO. For different
scenarios, we compare the statistical power of the best found clinical trial design. We also compare the runtime needed
to determine the respective optimization results. Next we introduce the two optimization strategies.

Grid and Grid small
We conduct an exhaustive grid search with a resolution of 𝑙 points per real-valued dimension and one point for each cate-
gorical dimension. Referring to our application, for each selection strategy we evaluate a numerical grid with a resolution
of 𝑙. All six selection strategies have the numeric parameter 𝑟. The strategies epsilon and thresh both have an additional
second parameter, 𝜖 or 𝜏, respectively. For 𝑙 = 25, we call this approach Grid, with a total of 4 ⋅ 25 + 2 ⋅ 25 ⋅ 25 = 1350
design configurations that are evaluated for one scenario. We chose 𝑙 = 25 generously to obtain an estimate of the opti-
mum that should be close to the true optimum. Previous studies used half the resolution to assess the behavior of similar
problems (Friede et al., 2020). We defineGrid Small thto be a subset of this grid with 𝑙 = 7 points per dimension, resulting
in 4 ⋅ 7 + 2 ⋅ 7 ⋅ 7 = 126. This results in a number of evaluations that can be easily carried out in practice.
Both grids are evaluated with 20 stochastic replications to estimate the variance of the estimated power.
The best point per evaluated grid is determined by selecting the configurationwith the best outcome, that is the concrete

trial design with the largest power. The corresponding value is generally too optimistic, as the random noise on the esti-
mated value can contribute to the quality of the outcome. To account for this optimism and report unbiased performance
estimates, for each of the 20 replicate simulations, we identify the best configuration and consider the corresponding 19
outcomes of the other 19 replicate simulations, similar to a cross-validation framework in machine learning applications.

BO (model-based optimization) and BO Grid
For applying BO, we first define how the surrogate model that predicts the outcome of 𝑓 for unknown values of 𝜃 (param-
eter configurations) is generated. As regression model for the surrogate we choose Kriging (also called Gaussian process
regression) and use the implementation in the R-package DiceKriging (Roustant et al., 2012), because it is known towork
well for fairly low dimensional search spaces. We configure Kriging to apply theMatérn 5

2
kernel with an estimated nugget

effect to account for the noisy response of 𝑓 and without scaling the input variables to [0,1]. Note, that by doing so, we
implicitly assume that 𝑓 is a realization of a Gaussian process and that each single outcome is a realization of a Gaussian.
However, as stated in Section 4, we can expect the method to work well even if the assumption is slightly violated.
Kriging expects a numerical input, but our search space contains categorical parameters and is even hierarchical. First,

to transform the categorical parameters of the search space (see Table 3) into numerical values we use one-hot encoding.
Furthermore, our search space is hierarchical because the parameters 𝜖 and 𝜏 are only active for the respective selection
strategies eps and thresh. The hierarchical structure introduces inactive values for the configurations (𝜃), that is if the
selection strategy is set to eps then the parameter 𝜏 of thresh is inactive. If a value is inactive, we set it to a value two times
as high as the maximum in its active range (e.g., if 𝜏 is inactive it will be set to 20). This ensures that within the original
range the Kriging model is not or only minimally affected by the inactive values. Note that this trick only works because
we did not scale the input variables to [0,1] and because the estimated covariance of the Matérn 5

2
kernel is approximately

zero for distances greater than 4. With the above steps, we ensure that the input for the Kriging is purely numeric.
As an acquisition function,we choose theAEI as explained in Section 4.We start BOwith an initial design of 16 randomly

sampled points, following an established rule-of-thumb of four points per dimension, which is also well in line with the
recommendation of using around 10% of the budget for the initial design (Bossek et al., 2020). We allow 100 further
iterations, summing up to a total budget of 116 evaluated configurations of the simulator 𝑓.
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RICHTER et al. 957

TABLE 4 Parameter choices for the R function treatsel.sim

Meaning of parameter Parameter Value
Number of simulation iterations nsim 1000
Correlation between early and final outcomes corr 0.4
One-sided significance level level 0.025
Vector of treatment numbers for determining power ptest (3,4)

At the end of the optimization procedure, the best configuration is chosen according to the best prediction obtained
on the set of evaluated points as explained in Section 4.3. Again, overoptimism must be avoided. Thus, the best selected
parameter configuration is then independently evaluated 20 times again.
The whole BO procedure is repeated 20 times to estimate the variance of the optimal solution found.
Additionally, we investigate how BO performs when it is limited to return configurations that are within the grid intro-

duced previously. Therefore, we introduce BOGrid, which executes the optimization exactly as BO, but the best configura-
tion is mapped to the closest value on the grid. In other words, for BO Grid we conduct the independent evaluation using
the configuration within the grid that is closest to the optimal configuration that is proposed by BO. The comparison of
the results of BOGrid andGridwill allow two possible conclusions: First, if BOGrid is worse than BO, we can assume that
the resolution of Grid is not high enough to find an optimal configuration. Second, if BO Grid is better than Grid, it shows
that Grid did not select the optimal configuration, due to noise. Summing up, there are two factors that can prevent Grid
from finding the optimal configuration: lack of resolution and noise of the outcome.

5.4 Implementation

The algorithms used in this study are implemented in R. For the BO, the R-package mlrMBO (Bischl et al., 2017) is used.
For the simulation of clinical trials, the function treatsel.sim of the R-package asd (Parsons et al., 2012) is used, with
parameter values given in Table 4. The vector of treatment numbers ptest determines the hypotheses for which rejections
are counted towards the power. Here, the rejection of one or both of the hypotheses that treatment 3 or 4 has no effect
against the control determines the power, as in Friede et al. (2020).
Note that the parameter nsim denotes the internal simulation iterations of 𝑓. The 20 additional stochastic repetitions

we conduct for the grid search and BO are additional replicates.

5.5 Main results for comparison of algorithms

In this section,we present an overview of the results for the comparison of the four optimization strategies: exhaustiveGrid
search, grid search with a reduced resolution (Grid Small), BO, and BO Grid. We focus our comparison on independent,
replicated evaluations of the configurations proposed by each optimizer. The evaluations provide unbiased estimates of
the performance (𝑦valid) of all optimizers.
For this study we consider 12 scenarios. The scenarios are generated by combining the four different effect sets (see

Table 1)with the three different numbers for𝑛total. Each optimizer is applied to each scenariowith 20 stochastic repetitions.
Figure 2 shows the estimated power values 𝑦valid for the best solutions in each scenario. The plots show thatBO generally

gives results that are comparable to those obtained with the (exhaustive) Gridmethod across all scenarios. Only in some
cases, Grid has a slight advantage (effect: linear, 𝑛total = 2000; effect: sigmoid, 𝑛total = 1000; effect: sigmoid, 𝑛total = 2000).
Below we will see that these scenarios have in common that the optimal configuration is close to the border of the search
space. In other cases, BO yields slightly better results (effect: paper, 𝑛total = 2000; effect: paper2, 𝑛total = 500; effect: sigmoid,
𝑛total = 500). Across all scenarios, BO and Grid perform similarly; although due to its evaluation budget, BO is allowed
only 116 evaluations as opposed to the 1350 evaluations for Grid, when using a resolution of 25 points per dimension. The
difference in the number of evaluations is clearly reflected in the average runtime of the optimization methods given in
Table 5. Runtimes weremeasured on a single core of a compute nodewith 2 Intel Xeon E5-2697v2 (2.70 GHz) with 12 Cores
each and 512 GB of RAM in a nonexclusive usage of the node. BO is approximately 20 times faster.
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F IGURE 2 Box plots of performance (power) values on independent replicates of the best solutions for the four optimizers, the different
effect sets, and different numbers of 𝑛total (500, 1000, 2000)

TABLE 5 Average runtime in hours, for evaluating one grid and one optimization run of MBO

linear paper paper2 sigmoid
500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000 evals

Grid 51.2 55.3 56.3 56.7 58.7 63.0 55.1 59.2 61.6 50.7 51.3 56.8 1350
Grid Small 3.8 4.1 4.1 4.1 4.2 4.6 4.1 4.3 4.4 3.7 3.8 4.1 126
BO 3.5 3.3 3.7 3.3 3.6 3.7 3.5 3.3 3.2 3.3 2.9 3.6 116

For BO Grid, only solutions on the grid that was evaluated by Grid are considered in the evaluation. Comparing the
results of BO Grid to those of BO, we mainly see similar performances for both. This indicates that the resolution of Grid
is fine enough to achieve similar performance to BO.
Comparing BO Grid to Grid, we observe that for the scenarios effect: paper, 𝑛total = 500 and effect: paper, 𝑛total = 1000,

BOGrid achieves slightly better performance thanGrid. This suggests that theGrid optimization selects the best outcome
“optimistically” from all observed outcomes and does not take into account the stochasticity of the problem, that is in
this case the noise on the predicted power. Accordingly, we assume that for the mentioned scenarios, the noise was so
high, that Grid was misguided by too optimistic outcomes when selecting the final configuration as optimization result.
In our evaluation, the independent validation 𝑦valid represents the unbiased performance of this final configuration, and
the overoptimism becomes apparent. In such scenarios BO performs better, since the final configuration is determined
based on the mean prediction of the surrogate of BO, as explained in Section 4.3. Further below, we will study on a single
scenario if a reduced noise due to a higher number of simulations nsim decreases the effect of the overoptimistic selection
of Grid.
In cases in which BO was not able to find a better solution than Grid, also BO Grid cannot yield better results as it

just selects the configuration on the Grid that is closest to the configuration found by BO. Therefore, any increase in
performance of BO Grid compared to BO is purely due to chance.
To compare BO with a grid search that takes approximately the same time (see Table 5) and number of evaluations,

we consider Grid Small. Here, a resolution of seven points per dimension leads to 126 evaluations, close to 116 allowed
evaluations of BO, with only a small advantage for Grid Small. Despite the 10 more evaluations allowed, in the majority
of cases BO is superior to Grid Small (see Figure 2). The advantage is particularly apparent for all scenarios with effect set
effect: linear and for scenario effect: paper2, 𝑛total = 500. Only for the scenarios (effect: sigmoid, 𝑛total = 1000) and (effect:
sigmoid, 𝑛total = 2000), Grid Small has a notable advantage over BO and Grid. In the second case, the absolute differences
are negligible and all methods lead to a high power. Also, for this case we will later show that the optimal configuration
is close to the border of the search space.
As stated above, the high resolution of the exhaustive Grid probably leads to the selection of slightly suboptimal con-

figurations close to the optimum due to stochasticity. These points are not included in the more coarse grid used by Grid
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F IGURE 3 All evaluated configurations and their outcomes on the Grid. For the epsilon and threshold rule, only the curve for the 𝜖 and
𝜏 value with highest power (𝑦) is displayed. For each configuration in the grid, 20 results are obtained. A line connects the mean outcomes for
each configuration. In addition, the best configurations identified from BO are displayed

Small. In other words, if a configuration close to the optimum is included in the grid used by Grid Small, then it is more
likely to select it with less overoptimism, as the number of candidates in the region is smaller.
Note that between the scenarios the absolute differences of the optimization results are of different practical relevance.

For example, for scenario effect: sigmoid, 𝑛total = 2000Grid andGrid Small are superior to BO, but the difference is smaller
than 0.5%.

5.6 Detailed analysis of identified configurations

We now investigate the results in more detail. We analyze the differences depending on the selection strategy and the
number of samples at stage 1, as determined by the stage ratio (𝑟). Figure 3 shows the observed outcomes for all evaluations
on the grid and the final configurations found by BO. For the selection strategies epsilon rule and threshold rule only
curves representing the 𝜖 and 𝜏 values with the best outcome, respectively, are shown. Note that for the effect sets linear
and sigmoid the curves for selection strategy 1 best and eps are nearly identical. As intuitively anticipated, in almost all
scenarios the worst results were obtained if all available samples are used in stage 1 and none in stage 2 (i.e., 𝑟 = 1).
In all scenarios, BO identified the peak of all combined curves. Within the 20 stochastic repetitions per scenario, BO

found different configurations, but all had similar high power. The fact that no unique best setting was found across the
repetitions can be attributed to the relatively high noise of the simulation and the relatively flat peaks, that is, different con-
figurations yield similarly good outcomes. In cases in which multiple optimization runs result in different configurations,
it might be advisable to let a human expert choose the final configuration, also depending on the medical background.
The curves also show the potential of optimization for the different scenarios. If the total sample size is high (𝑛total =

1000), then nearly all design configurations yield high statistical power and optimization is less important. If the total
sample size is too small (𝑛total = 500), then no configuration yields a practically usable design. In this situation, a fast
optimization helps to determine if a desired total sample size can actually yield sufficiently powerful designs. Of special
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F IGURE 4 Best configurations found with Grid and BO runs, that is corresponding 𝑦valid values for the ratio 𝑟 for the selected
configurations. For the epsilon rule, 𝜖 and for the threshold rule 𝜏 are not displayed

interest are the scenarios where the correct choice of the design configuration can make a difference between a design
with acceptable power and a design with too low power, for example, for the scenarios (effect: linear, 𝑛total = 1000; effect:
linear, 𝑛total = 2000, effect: paper, 𝑛total = 1000; effect: sigmoid, 𝑛total = 1000). Note, that the selection strategies thresh and
all never selected powerful designs.
Figure 4 visualizes in detail which configurations were selected by BO and Grid and the corresponding values for 𝑦valid

(result of the independent validation). The optimal values for 𝜖 and 𝜃 are not shown. For some scenarios, most runs of
Grid returned the same optimal configurations (e.g., for effect: sigmoid, 𝑛total = 1000). In such cases, the signal-to-noise
ratio was sufficiently high to reliably find the best configuration. In some scenarios, Grid was superior to BO, as could be
seen in the previously shown box plots in Figure 2. Furthermore, for all scenarios with effect: sigmoid and the scenarios
effect: linear, 𝑛total = 500 and effect: paper, 𝑛total = 500, small values of 𝑟 lead to an optimal outcome. Here, BO was not
able to find these values close to the border of the search space. A common remedy for this problem is to log-transform
the values of 𝑟.
In other cases, Grid found different configurations in different runs, while BO lead to more stable results, also with

higher power values (e.g., effect: linear, 𝑛total = 1000; effect: paper2, 𝑛total = 500; effect: sigmoid, 𝑛total = 500). Here we can
assume, that BO successfully accounted for the noise. A special case is scenario effect: paper2, 𝑛total = 2000: Here nearly
all found configurations yield perfect outcomes.

5.7 Results for more simulation rounds

To investigate the effect of the function noise variance (𝜎2) on the optimization result, we increase the simulation iter-
ations from 𝑛sim = 1000 to 𝑛sim = 5000, restricting to the scenario effect: paper, 𝑛total = 2000. Additionally, we run the
algorithms 100 times instead of the previously used 20, in order to obtain more precise estimates for the power values in
the independent validation.
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F IGURE 5 Optimization progress for BO: Best
outcome found so far for each iteration, in comparison
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F IGURE 6 Validated performance of all optimization strategies on effect set paper and 𝑛total = 2000 with 100 stochastic repetitions and
different values for nsim

We expect that increasing 𝑛sim decreases the variance of the power values of the identified design configurations. For
the exhaustiveGrid, we expect that the decreased noise leads to fewer selections of overly optimistic outcomes. BO should
profit as well from a less noisy objective function since the predictions of the surrogate function will be more precise.
Figure 5 shows that indeed the lower noise level leads to more stable simulation runs, meaning that single optimization

runs lead to results closer to the mean result. Both curves indicate that more iterations of BOwould not yield substantially
better outcomes as no substantial improvements are observed after 80 iterations It has to be noted that this plot reports
the best observed outcome so far and not the one that is chosen as final result. Despite the differences in the optimization
paths, the median validation error reported in Figure 6 is nearly identical for BO for the low and the high value of 𝑛sim.
Therefore, we can assume that the “bias correction” ofBO as explained in Section 4.3 seems to be effective.For all methods,
the IQR displayed in the box plots is much smaller for 𝑛sim = 5000, indicating that the solutions that are found vary less
between the 100 stochastic replications. Also, the absolute differences between the methods are even smaller now. This
demonstrates that for the selected scenario all methods can find the optimal configuration if the results are not noisy.
However, an increased value of 𝑛sim also increases the runtime linearly, which conflicts with the goal to find the optimal
configuration quickly. In summary,BO can find configurationswith a small number of required simulations (higher noise)
that are nearly as good as the optimal solution which is identified with a large number of simulations.

6 DISCUSSION

BO is a state-of-the-art optimizer that can be used for parameter optimization in a wide range of applications. Here, we
propose, for the first time, to optimize the power of adaptive seamless designs using BO. In clinical trials, determining the
test methods and sample sizes is a key step in the planning process. For our optimization, we chose to maximize the test
power, given a set of treatments with corresponding effect sizes and a fixed number of samples. If determining the test
power involves intensive simulations, trying out different treatment design configurations can become a laborious task.
Either large computational resources are required for an exhaustive investigation of all the different configurations, or a
tedious manual trial-and-error process is required.
In this paper, we analyzed if BO can quickly find an adaptive seamless design with high power, more efficiently than

an exhaustive grid search. For various sets of treatment effect sizes and total sample sizes, BOwas able to find competitive
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designs in a fraction of the time. In contrast to grid search, BO was able to account for stochasticity in the metric that
should be optimized. For our optimization, we chose wide intervals for the parameters of the selection rules (i.e., epsilon
and threshold rule) to show that BO is generally applicable. In practical applications, however, these values might some-
times be based on clinical rather than statistical considerations or the range of these values might be restricted by such
considerations. Here we consider an optimization problem maximizing the power given a total sample size. If, for exam-
ple, the task was to select all treatments with clinically relevant effect sizes, then clearly the selection parameter needs
to be informed by clinical reasoning. In general, the application of BO to clinical trial design selection in general seems
promising. Additional restrictions on the search space decrease its size and therefore promise even more reliable results.
The same concept could be applied for subgroup selection in adaptive enrichment designs, which make use of interim
data in selecting the target population for the remainder of the trial (Burnett & Jennison, 2020).
Only in cases in which the optimal values of one parameter are close to the lower border, we sometimes observed poor

performance of BO. Here, a possible improvement can be to apply a log transformation to such parameters. We chose to
maximize the power for a fixed number of samples. Other aspects like study duration or the cost of a trial in general could
be of interest either as an additional constraint or an additional outcome. Also the number of samples can be included as
an additional outcome instead of being fixed.Multiple outcomes that are subject to optimization give a (possibly restricted)
multiobjective optimization problem. The result of which is a set of points (a Pareto front) that maximizes the statistical
power and, for example, minimizes the total sample size at the same time. The user could then see for which sample size
the power is above a certain threshold (e.g., 95%). Anotherway to speed up the optimizationwould be to iteratively increase
the number of simulation rounds of the trial design evaluation. If few simulations already indicate a bad outcome for a
configuration then additional simulation rounds are not necessary. Such a procedure can be guided by statistical testing
and is already common in machine learning under the terms racing ormultifidelity optimization.
In this work, we assumed the effect sizes to be fixed. In Stallard et al. (2009), the authors propose a Bayesian approach,

where the effect sizes follow a prior, to calculate the expected trial performance. This requires amore expensive simulation
making the optimization of a clinical trial design according to such metric an excellent candidate for BO.
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