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Abstract

We associate a partial hyperfield U (M) with every matroid M by defining an
addition on the elements of its inner Tutte group with an additional zero element
such that M is representable over U(O)(M ), and every representation of M over
a partial hyperfield F' factors over the representation of M over [U(O)(M ).

We investigate the relationship between U (M) and U (N) for minors N
of M and prove that U (M) is the coproduct of U (M;), i =1,...,k, where
My, ..., M, are the connected components of M.

Further, we examine the possible non-trivial decompositions of U (M) as a
coproduct and present sufficient geometrical conditions under which no such
decomposition exists.

We develop an Artin-Schreier-Theory for partial hyperfields and show that
the orderings of a partial hyperfield form a prespace of orderings, which is in
general not a space of orderings in the sense of Marshall, even for the partial
hyperfield U©) (M) of a matroid M.

Moreover, we provide examples of matroids M for which U(O)(M ) is a hyper-
field and its prespace of orderings is a space of orderings in the sense of Marshall,
including affine space of dimension at least 3 and affine translation planes whose
kernel contains at least four elements, for which the inner Tutte group was not
known before.
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1 Introduction

Oriented matroids provide a combinatorial abstraction to point configurations
over the reals, real hyperplane arrangements, convex polytopes, directed graphs,
as well as ordered projective spaces and affine spaces. They were introduced and
studied in full generality independently by Bland and Las Vergnas and Folkman
and Lawrence in 1978. An early axiomatic study was already done by Sperner
in 1949.

The study of the geometrical algebra of matroids was developed by Dress and
Wenzel, who introduced the Tutte groups of matroids in 1989 and provided a
characterization of classes of projectively equivalent orientations of a matroid in
terms of homomorphisms of the inner Tutte group. This was further elaborated
by Gelfand, Rybnikov and Stone, who proved a characterization of the inner
Tutte group of a finite matroid in terms of generators and relations.

A different characterization of orientations was given by Baker and Bowler in
2019 within their theory of representations of matroids over partial hyperfields,
where they characterized orientations as representations over the hyperfield of
signs.

Besides the classical case of projective geometries of dimension greater or equal
to 3, the structure of the set of classes of projectively equivalent orientations
of the matroids has only been studied for projective planes, for which Kalhoff
proved in 1989 that they form a space of orderings in the sense of Marshall.

By introducing an addition on the elements of the inner Tutte group of a
matroid together with an additional zero element, we will associate a partial
hyperfield with every matroid, such that the matroid is representable over this
partial hyperfield and every representation of it over a partial hyperfield factors
over this representation.

By generalizing Marshall’s characterization of spaces of orderings as a special
class of hyperfields, we are able to associate a prespace of orderings with a each
oriented matroid. We will further provide necessary and sufficient conditions
under which these prespaces of orderings are spaces of orderings in the sense of
Marshall.

Furthermore, we will use this characterization to compute the inner Tutte
group for matroids, where the inner Tutte group was not known before.



1 Introduction

1.1 Main results

In chapter 2 we will present an axiomatic characterization of partial hyperfields
that were introduced by Baker and Bowler in [BB19], and provide an algebraic
framework for use in later chapters. Further, for every partial hyperfield we will
explicitly construct an embedding into a hyperfield.

Chapter 3 contains the definition of universal partial hyperfields of matroids
and the relations between the universal partial hyperfield with those of its minors
and its dual. Further, we will prove that a matroid is representable over a partial
hyperfield if and only if there exists a homomorphism from its universal partial
hyperfield to this partial hyperfield.

In Chapter 4 we will present an Artin-Schreier-Theory for partial hyperfields.
Unfortunately, in contrast to the situation for hyperfields there exist partial
hyperfields in which —1 is not a sum of squares that possess no orderings. How-
ever, we will show that every partial hyperfield is embeddable into a hyperfield
in which —1 is not a sum of squares if and only if the original partial hyperfield
possesses an ordering.

We will show that the orderings of a partial hyperfield form a prespace of
orderings which is not necessarily a space of orderings in the sense of Marshall,
even for universal partial hyperfields of matroids. Moreover, we will prove that
the category of these prespaces of orderings is equivalent to the category of
a certain class of partial hyperfields, generalizing the equivalence of spaces of
orderings and real reduced hyperfields by Marshall.

In chapter 5 we introduce the class of artinian matroids, i. e., matroids in
which every element of its inner Tutte group is a cross-ratio. We will show that
they are representable over a field if and only if its universal partial hyperfield
is a subfield of this field.

Futhermore, we will examine the connected components of artinian matroids
and all possible decompositions of the universal partial hyperfield of a matroid
as coproduct of partial hyperfields.

Chapter 6 contains examples of artinian matroids whose universal partial
hyperfield is a hyperfield. First, we generalize a construction by Kalhoff used to
coordinatize matroids of rank 3 to arbitrary rank and obtain a non-desarguesian
analogue of vector space matroids of rank greater or equal to 4. Similar to the
classical case, restricting the matroid to points whose last coordinate is equal to
1, we obtain a non-desarguesian analogue of affine spaces of dimension at least
3.

Second, we will show that the universal partial hyperfield of an affine trans-
lation planes whose kernel contains at least 4 elements is isomorphic to the
universal partial hyperfield of its projective closure.



2 Partial hyperfields

In this chapter we will present an axiomatic characterization of partial hyperfields,
examine several kinds of homomorphisms of partial hyperfields, and generalize
various constructions for hyperfields and partial fields to our setting.

In this generality partial hyperfields were first studied by Baker and Bowler
in [BB19]|, who defined them by restricting the operation of a hyperring.

We further generalize the techniques used by Semple in his PhD thesis
([Sem98]) to prove that every partial hyperfield is embeddable into a hyperfield.

2.1 Axiomatic characterization

Definition. A partial hyperoperation’ on a non-empty set X, is a map + from
the set X x X to the power set of X, denoted by +: X x X — X. If A and B
are subsets of X, we define

and for any a € X and B C X we set a + B := {a} + B and B + a := B + {a}.

Let F be a set, +: F' X F' — F' a partial hyperoperation, and -: F x ' — F
a binary operation. We call (F,+,-) a partial hyperfield if the following axioms
are satisfied:

(PH1) a+b=0b+afor all a,b € F,
(PH2) there is an element 0 € F' such that 0 +a = {a} for all a € F,

(PH3) there is a map —: F' — F such that ¢ € a + b implies b € ¢+ (—a) for
all a,b,c € F,

(PH4) (F\{0},-) is an abelian group with neutral element 1 and 0-a = 0 = a-0,

(PH5) a-(b+c¢)Ca-b+a-cforall abceF.

We explicitly use the name partial hyperoperation instead of the shorter hyperoperation to
emphasize that we allow a + b to be empty.



2 Partial hyperfields

We further set F* := F \ {0} if F is a partial hyperfield. As usual, we set
a—b:=a+(=b) for all a,b € F.

2.1 Lemma. Let F' be a partial hyperfield. Then we have:
(a) The element 0 € F' is uniquely determined.

(b) For all a,b € F we have b = —a if and only if 0 € a + b. As a consequence
the map —: F' — F' is uniquely determined and —(—a) = a for all a € F.

(c) For all a € F we have —a = (—1)a and (—1)%? = 1.

(d) For all a,b,c € F such that a # 0 we have a(b+ ¢) = ab + ac.
(e) For all a,b € F we have 0(a 4+ b) = {0} if and only if a + b # 0.
(f) For all a,b,c,d € F we have

(a+b)(c+d) C ((ac+ ad) + (be+ bd)) N ((ac + be) + (ad + bd)) .2

Proof. To prove (a), let 0/ € F' be an element satisfying 0’ + a = {a} for all
a € F. Then 0/ + 0 = {0} and by (PH2) 0+ 0’ = {0'}. Thus, (PH1) implies
0=0".

To show (b), let a,b € F. Applying (PH3) to a € a + 0 implies 0 € a + (—a).
Therefore, a = —b yields 0 € a + b.

Conversely, if 0 € a + b, it follows that b € 0 + (—a) = {—a} by using (PHI)
and (PH3). Further, using (PH1) we get 0 € a + (—a) = (—a) + a and therefore
—(—a) = a.

In order to prove (d), let a,b,c € F. a(b+ ¢) C ab + ac follows directly from
(PH5). If a # 0, (PH5) implies additionally that

ab + ac = aa"(ab+ ac) C a(a™ ab + a tac) = a(b + ¢).

Moreover, (e) follows from 0-() = and 0- A = {0} for all non-empty A C F.

To show (c), let a € F. By using (b), we get 0 € 1 + (—1). Applying (d) and
(e), it follows that 0 € a(1 + (—1)) = a + (—1)a. Using (b) again, we conclude
that —a = (—1)a. Furthermore, (d) yields

0=(-1)-0€(=1)- (14 (=1)) = (=1)+ (-1

Thus, (b) implies (—1)2 = —(—~1) = 1.

2FEven in the case of a hyperfield F these sets are not necessarily equal, see [Vir10] for a
counter example.

10



2.1 Axiomatic characterization

Clearly, (f) holds whenever a 4+ b or ¢ + d are the empty set. Otherwise, it
follows from (PH1) and

(@+d)(ct+d) = | (a+b)fC |J af +bf

f€ct+d f€ct+d
Ca(c+d) +b(c+d) C (ac+ ad) + (be + bd),

using (d) and (e) twice. m

Definition. We call (G, €) a multiplicative structure if (G, -) is an abelian group
and ¢ € G with €2 = 1.

If (G,e) and (G',€’) are multiplicative structures, we say a group homomor-
phism f: G — G’ is a multiplicative homomorphism if f(e) =€’

Further, if (F,+,-) is a partial hyperfield, we define the underlying multiplica-
tive structure as F = (F*,—1).

2.2 Proposition. Let (F\ {0}, ¢) be a multiplicative structure, where 0 € F'
is an element such that 0-a=0=a-0for all a € F.
For any family (Aq)qep\ fo) of subsets of F'\ {0} satisfying

beA, = ac Ay and a™ ' € A1y (2.1)

for all a,b € F'\ {0}, there exists a unique partial hyperoperation +: F'x F' — F
such that (F,+,) is a partial hyperfield with —1 = ¢ and (1 —a) \ {0} = A,
for all @ € F'\ {0}.

Proof. If (F,+,-) is a partial hyperfield, we have 0 4+ a = {a} = a + 0 for all
a € F. Further, Lemma 2.1 (b), (c) and (d) imply that a +b = a(1 — (—a~'b))
for all a,b € F*. Thus, the partial hyperoperation + is uniquely determined by
the sets of the form (1 —a) \ {0}, a € F*.

It remains to show that for any family (Ay)aer\ oy of subsets of I\ {0}
satisfying (2.1), defining

{b} ifa =0,
£h—
ot {a} ifb=0,
al g1y if a # eb,

al -1, U{0} if a =eb,
yields a hyperoperation such that (F,+,-) is a partial hyperfield with ¢ = —1

and (1 —a)\ {0} = A, for all a € F'\ {0}. Clearly, (F,+,-) satisfies (PH2) and
(PH4).

11



2 Partial hyperfields

In order to prove (PH5) it is sufficient to show that a(b+ ¢) = ab + ac for all
a,b,c € F such that a # 0, since 0- (b+¢) C{0} =0-04+0-c. If {b,c} = {z,0}
for an = € F, we get?

alb+c)=a(lx+0)={azx}=ar+0=azr+a-0=ab+ac.

Moreover, if b, ¢ # 0, we have b = ec if and only if ab = eac. Thus, 0 € a(b+ ¢)
if and only if 0 € ab + ac. Further,

a(b+c)\ {O} = abA -1, = abAs(ab)*lac = (ac+be) \ {0}

To show (PH1), let a,b € F. Clearly, a+b=>b+a if 0 € {a, b}. Since a = ¢b if
and only if b = ea we have 0 € a+ b if and only if 0 € b+ a for all a,b € F'\ {0}.
Thus, using (PH5) it is sufficient to prove that

Ac=(1+ec)\ {0} = (ec+ 1)\ {0} = ecA.

for all ¢ € F'\ {0}.

For d € A, it follows from (2.1) that ¢! € A_.-1;4. Again applying (2.1)
yields ec™'d € A,-1. Therefore, d € ecA 1.

Conversely, if d € ecA,-1, we have ec™'d € A,-1. Applying (2.1) twice, we
get ¢ € A (ce-1q) = Ag and thus d € A..

Finally, to prove (PH3), let a,b,c € F such that ¢ € a + b. We will show that
c € b+ (—a) for the map —: F — F, a > ea.

Ifa=0orb=0,say a=0,it follows that ¢ € 0+ b = {b}. Hence, b = ¢ and
bec+0=c+(e-0).

If c=0 we have a = eb and thus b € 0+ b =0+ (ca).

Otherwise, a, b, c # 0 and therefore ¢ € aA,,-1;,. Since this is equivalent to
a~lc € Ay-1p, we get ca™'b € A,-1, using (2.1). Hence, using (PH1) and
(PH5) we obtain

-1
beea(l+ea"¢) Cea+c=c+ (ca). 0

2.3 Remark and Definition. Lemma 2.1 and (PH3) imply that for any par-
tial hyperfield (F, +,-) the family of sets (Ay)qer+ defined by A, == (1 —a)\ {0}
for a € F'\ {0} satisfies the implication (2.1).

Thus, for any multiplicative structure (F'\ {0}, ), where 0 € F' is an element
such that 0-a =0 =a-0 for all a € F, Proposition 2.2 defines a one-to-one
mapping between the hyperoperations +: F' X F' —o F such that (F,+,-) is a

3By construction, we have 0 +z = x + 0 for all = € F.

12



2.1 Axiomatic characterization

partial hyperfield with ' = (F'\ {0}, -) and the families (As),ep\ {0} of subsets
A, of F\ {0}, a € F\ {0} satisfying the implication (2.1).

Let (F,+,-) be a partial hyperfield. We call an element a € F' fundemental® if
1—a # 0 and denote by F(F) the set of fundamental elements of F'. Further, we
call F' a hyperneofield if F(F) = F (or equivalently if a + b # () for all a,b € F)
and a hyperfield if (a +b) +c=a+ (b+c) for all a,b,c € F.}

Definition. Let F' and F’ be partial hyperfields. We call a map f: F — F’ a
homomorphism of partial hyperfields if £(0) = 0, f(1) = 1,5 f(a+b) C f(a)+f(b),
and f(ab) = f(a)f(b) for all a,b € F.

A homomorphism f: F — F’ of partial hyperfields is called strong or strict
if f(a+b) = f(a)+ f(b) holds for all a,b € F.

Moreover, a homomorphism f: F — F’ of partial hyperfields is called a
monomorphism if f is injective, an epimorphism™ if for all a},a} € F’ and
al € ay + af there exist a; € f~1(a}), i = 1,2, and a3 € (a1 +a2) N f~1(a}), and
an isomorphism if there is a homomorphism g: F/ — F such that go f = idp
and fog=1idp.® As usual the homomorphism g is uniquely determined by f
and is denoted by f~!.

2.4 Lemma and Definition. Let f: F — F’ be a homomorphism of partial
hyperfields.

(a) For all a € F we have f(a) = 0 if and only if @ = 0. Moreover, we have
f(—=a) = —f(a) for all a € F and the map f: F — F’, a — f(a), which
we call the underlying multiplicative homomorphism of f, is well-defined.

(b) f is a monomorphism if and only if the multiplicative kernel ker, f == f~1(1)
of f is trivial, i. e., ker, f = {1}.

(c) If f is an epimorphism, then f is surjective.”

(d) If f is a strong homomorphism, then f is a monomorphism.

*We adopt the terminology from [PV10] for partial fields here.

Since 1€ 140 C 1+ (a —a) = (1 + a) — a every hyperfield is a hyperneofield.

5In most of the literature on hyperfields these first two conditions are not explicitly mentioned
but otherwise constant maps F' — K would be homomorphisms.

"See [DS06, Definition 2.8].

8Clearly all these properties are preserved under composition.

9Not every surjective homomorphism is an epimorphism, cf. Proposition 2.14.

13



2 Partial hyperfields

Proof. Since (F,-) and (F’,-) are monoids with neutral element 1 and f is a
monoid homomorphism it follows that f(F*) C F'*. Additionally, applying
Lemma 2.1 (b) twice yields that for any a € F' we have 0 € a — a and therefore
0 € f(a) + f(—a). Thus, f(—a) = —f(a). This proves (a).

Using (a), it follows that f is injective if and only if f is injective, which
shows (b). B

In order to prove (c), let @’ € F’. Since a’ € a’ + 0 and f is an epimorphism
there exist a € f~1(a’), b € f71(0) and ¢ € (a +b) N f~1(a’). Hence, f is
surjective.

Finally, to show (d), let f be a strong homomorphism and a € ker, f. Then
we have 0 € 1 — f(a) = f(1 — a). So there exists a b € 1 — a such that f(b) = 0.
By (a), it follows that b = 0 and therefore a = 1 using Lemma 2.1. 0

2.5 Lemma. Let F' and F’ be partial hyperfields and f: FF — F’ be a map
such that f(0) =0and f: F — F’, a — f(a) is a multiplicative homomorphism.
Then f is a homomorphism of partial hyperfields if and only if

bel—a = f(b)el— f(a)
for all a,b € F™*.

Proof. Clearly, every homomorphism f of partial hyperfields satisfies this
condition.

Conversely, let f be a map satisfying the condition above and ¢ € a + b for
a,b € F. We have to show that f(c) € f(a)+ f(b).

If a=0or b=0, we can assume b = 0 by (PH1). Then ¢ € a +0 = {a} and
therefore f(c) = f(a) € f(a)+ 0= f(a)+ f(b).

In the case ¢ = 0 it follows by Lemma 2.1 (b) that a = —b. Hence, we obtain
fla) = f(=b) = f((=1)b) = —f(b). Thus, we get f(c) =0 € f(a) + f(b) by
applying Lemma 2.1 again.

Otherwise a,b,c € F*. Tt follows that ca™! € 1 — (—ba~1) and thus

fle)f(a)™ = flca™) €1~ f(=ba™") =1+ f(b)f(a)".
Hence f(c) € f(a)+ f(b), as desired. O

2.2 Constructions of partial hyperfields

In this section we will introduce several constructions of partial hyperfields for
later usage. We will use terms and definitions from category theory (cf. [AHS06])
but not use any methods from category theory in our proofs to keep this section
self-contained.

14



2.2 Constructions of partial hyperfields

2.6 Proposition and Definition. For any partial hyperfield F' the following
conditions are equivalent:

(a) For every partial hyperfield F’ any map f: F' — F’ is a homomorphism of
partial hyperfields if and only if f(0) = 0 and f: F — F’is a multiplicative
homomorphism.

(b) (a+0b)\ {0} =0 for all a,b € F*,
(c) 1 —a)\{0} =0 for all a € F*.

If F satisfies one (and therefore all) of the above conditions, we say that F' is
the discrete partial hyperfield on F.

Proof. By Lemma 2.1, we have a + b = a(l — (=ba™!)) for all a,b € F*.
Therefore, (b) and (c¢) are equivalent. Since (1 —a)\ {0} =0 for all @ € F* the
implication (c) = (a) follows directly from Lemma 2.5.

Conversely, if (a) holds, Proposition 2.2 implies that there exists a unique
partial hyperfield F’ such that I/ = F and (1 —a) \ {0} = 0 for all a € F'".
Thus, f is a multiplicative homomorphism for the identity map f: FF — F",

a +— a and therefore f is a homomorphism of partial hyperfields. Hence, F' = F”,
which yields (c). m

2.7 Proposition and Definition. For any partial hyperfield F' the following
conditions are equivalent:

(a) For every partial hyperfield F” any map f: F' — F is a homomorphism of
partial hyperfields if and only if f(0) = 0 and f: F’ — F is a multiplicative
homomorphism.

(b) (a+0b)\ {0} =F* for all a,b € F*,
(c) (1 —a)\ {0} =F*forallaec F*

If F satisfies one (and therefore all) of the above conditions, we call F' the
indiscrete partial hyperfield on F.

Proof. This can be proven analogously to Proposition and Definition 2.6. g

15



2 Partial hyperfields

2.8 Proposition and Definition. Let F' be a partial hyperfield, (F;);c; a
family of partial hyperfields and (f;: F' — F;);er a family of homomorphisms of
partial hyperfields. The following conditions are equivalent:

(a) Let g: F' — F be amap from a partial hyperfield F” such that g(0) = 0 and
g: F’ — F is a multiplicative homomorphism. Then g is a homomorphism
of partial hyperfields if and only if f; o g for each ¢ € I is one.

(b) For all a,b € F* we have
(a+0)\{0} ={ce F*|Viel: fi(c) € fi(a) + fi(b)}.
(c) For all a € F* we have

(1—a)\{0} = {be F*|VieI: f;(b) € 1 - fi(a)}.

If one (and therefore all) of the above conditions is satisfied, we call F' the initial
partial hyperfield on F with respect to (f;)ier-

Proof. Using Proposition 2.2 and Lemma 2.5, we conclude that (b) and (c) are
equivalent.

We will first prove that (c¢) implies (a). Let F’ be a partial hyperfield and
g: F' — F be a map such that g(0) = 0, g: F/ — F is a multiplicative
homomorphism. It suffices to prove that ¢ is a homomorphism of partial
hyperfields if f; o g is one for each i € I.

Let a,b € F'* such that b € 1—a. Lemma 2.5 yields that f;(g(b)) € 1— f;(g(a))
for each ¢ € I. Using (c) we obtain g(b) € 1 — g(a) and by applying Lemma 2.5
we get that ¢g is a homomorphism of partial hyperfields.

Finally, we show that (a) yields (c). Let F’ be the partial hyperfield on the
same ground set and with the same multiplication as F' but addition defined by

(1—a)\ {0} = {be F*|Vie I: fi(b) € 1 - fi(a)}

for all @ € F*. Tt follows from Proposition 2.2 and Lemma 2.5 that F” is indeed
a partial hyperfield. By construction, the identity map g: F/ — F, a — a
is a multiplicative homomorphism and f; o g is a homomorphism of partial
hyperfields for each i € I.

Using (a), we get that g is a bijective homomorphism of partial hyperfields.
Let a,b € F* such that b € 1 — a. Since f; is an homomorphism of partial
hyperfields it follows that f;(b) € 1 — f;(a) for all i € I. Hence, b€ 1 —a in F.
Using Proposition 2.2, we get F' = F”, as desired. O

16



2.2 Constructions of partial hyperfields

Definition. We call a homomorphism f: F — F’ of partial hyperfields initial
if F'is the initial partial hyperfield with respect to f and embedding if it is an
initial monomorphism.

Let F' be a partial hyperfield and U C F* be a subgroup containing —1. The
initial partial hyperfield with respect to the natural inclusion ¢: U U {0} — F'is
called the restriction of F' to U and is denoted by Fy .

Further, a partial field is defined to be the restriction of a field F' to a subgroup
U C F* containing —1.

We call the restriction of F' to the group generated by —1 and the non-zero
fundamental elements the core of F' and denote it by F(9). Clearly, the inclusion
map F(© — F is a strong embedding.

2.9 Proposition and Definition. Let F' be a partial hyperfield, (F;);cr a
family of partial hyperfields and (f;: F; — F);er a family of morphisms of
partial hyperfields. The following conditions are equivalent:

(a) Let g: F — F' be a map into a partial hyperfield F’ such that g(0) = 0 and
g: F — F’ be a multiplicative homomorphism. Then g is a homomorphism
of partial hyperfields if and only if g o f; is one for each i € I.

(b) For all a,b € F* we have
(@+b)\{0}={ce F*|Tiel:f ()N (fi )+ () #0}.
(c) For all a € F* we have
(1—a)\{0}={be F*|Jiel: f b)n(1-f'(a)) #0}.

If one (and therefore all) of the above conditions is satisfied, we call F' the final
partial hyperfield on F with respect to (f;)ier-

Proof. Using Proposition 2.2 and Lemma 2.5, we see that (b) and (c) are
equivalent.

In order to prove that (c¢) implies (a), let F’ be a partial hyperfield, g: F — F’
be a map such that ¢g(0) =0, g: F’ — F is multiplicative homomorphism. It
suffices to show that ¢ is a homomorphism of partial hyperfields if g o f; is one
for each ¢ € I.

Let a,b € F* such that b € 1 — a. Applying (c), there exist i € I, a; € fi_l(a)
and b; € f;l(b) such that b; € 1 — a;. Since g o f; is a homomorphism of partial
hyperfields g(b) = g(fi(b;)) € 1 —g(fi(a;)) =1 —g(a). Thus, Lemma 2.5 implies
that g is a homomorphism of partial hyperfields.
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2 Partial hyperfields

To prove that (a) implies (c), let F” be a partial hyperfield on the same ground
set as F', with the same multiplication as F' but with addition defined by

(L—a)\{0}={be F*|Jiel: i b)n(1-f ' (a) #0}

for all a € F*. By construction, the identity map g: F — F’, a — a is a
multiplicative homomorphism and go f; is a homomorphism of partial hyperfields
for for each i € I.

Using (a), we get that g is a bijective homomorphism of partial hyperfields.
Let a,b € F'" such that b € 1 — a. By the construction of the addition,
there exist i € I, a; € f; '(a), b; € f;(b) such that b; € 1 — a;. Therefore,
b= fi(b;) €1 - fi(a;) =1 —ain F. Hence, g is an isomorphism and F = F’,
as desired. 0

2.10 Remark and Definition. We call a homomorphism f: F — F’ of par-
tial hyperfields final if F’ is the final partial hyperfield with respect to f.

Let F be a partial hyperfield and U C F* a subgroup. The final partial
hyperfield with respect to the canonical projection 7: F' — F*/U U{0} is called
the quotient of F by U and is denoted by F/U.'°

By [Mar06, Example 2.6], F/4U is a hyperfield if F' is a hyperfield.'!

2.11 Remark and Definition. Clearly, if F' is a field and we view a + b as a
subset of I for all a,b € F, then F is a partial hyperfield.

The indiscrete partial hyperfield on the multiplicative structure ({1},1) was
named the Krasner hyperfield by Connes and Consani (|CC11]) and is denoted
by K.

Furthermore, the discrete partial hyperfield on the multiplicative structure
({£1}, —1) is called the regular partial field and is denoted by Uy (cf. [PV10]).

Additionally, the indiscrete partial hyperfield on the multiplicative structure
({£1}, —1) is denoted by W and the partial hyperfield S := Q/AQ™ is called the
hyperfield of signs. (see [BB19]).

2.12 Corollary. Let (F;);c; be family of partial hyperfields. For each i € T
and a € F; we define

Oij 12 : *
ri(a) = (a ])jel it a € Ff,
(0)jer else.

9T he elements of F/.U are the cosets of U in F and multiplication is defined in the usual way.
The elements of the sum of two cosets aU and bU are the cosets cU that are contained in
the setwise addition of aU and bU.

")Marshall uses the term multifields instead of hyperfields and a different notation.
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2.2 Constructions of partial hyperfields

Further, let N be the subgroup of the (multiplicative written) direct sum
@,c; F; of the Ff*, i € I, generated by r;(—1)k;(—1), 1,5 € 1.

Then the final partial hyperfield J[,.; F; on the multiplicative structure
((@iel FZ*) N, Iiio(—l)N), where ig € I, with respect to the homomorphisms

v By — HE, a+ ri(a) N3
el
is the coproduct!* of (F});cy, i. e., for each family (f;);c; of homomorphisms
fi: F; — F, i € I, of partial hyperfields there exists a unique homomorphism
[+ Hier Fi — F such that fou = f; forallie 1.
Proof. First, note that since ¢;(—1) = kj(—1)N = k;(—=1)N = ¢j(—1) for
all i,j € I, each ¢; is a multiplicative homomorphism and thus [[..; F; is

well-defined.
Let f: [l,c; Fi — F be a homomorphism of partial hyperfields satisfying

i€l

fou = fiforallicI. Then forall (a;)ictN € [[;c; Fi we have
f((az zGIN <H["L az ) = Hfz(az)
el i€l

Hence, there is at most one such f. Conversely, define f: [[,.; F; — F by

f a; ZEIN Hfz az

i€l
for all ((Zi)iEIN € Hie[ F;
The map f is well-defined, since for all ¢, j € I we have
f(ri(=1)N) = fi(=1) = =1 = f;(=1) = f(r;(=1)N).

Further, f(vi(a)) = f(ki(a)N) = fi(a) for alli € I and a € F}*. Thus, foi, = f;
for all i € I.

Moreover, to prove that f is a multiplicative homomorphism let (a;);cr N,
(bz‘)iejN S Hie] Fi- Then

f((as)ierN - (bi)ierN) = f((aibi)ictN)

_ Hfz aib;) (H fi(ai ) : (H fz'(bz’)>

el el el
= f((ai)ictN) - f((bi)icIN).

1251-]' denotes the Kronecker delta, as usual.
13This definition implies that —1 = 1;(—1) = x;(—1)N for all 5 € I.
1n the sense of category theory, see [AHS06, p. 10.63].
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2 Partial hyperfields

Finally, let (a;)ierN, (b;)ierN € (I1;c; Fi)" such that (b;)ie/N € 1 — (a;);erN.
Proposition and Definition 2.9 implies that there exist ¢ € I and a,b € F; such
that (a;)ierN = ti(a) and (b;);erN = 1;(D).

Because f; is a homomorphism of partial hyperfields, it follows that

f((bi)ierN) = f(i(b)) = fi(b) € 1 — fi(a)
=1—f(la)) =1~ f((ai)ierN).

Using Lemma 2.5, we get that f is a homomorphism of partial hyperfields. g

2.13 Remark. For aesthetical reasons we often write F @ F5 for the coproduct
of two partial hyperfields F1, F5.

2.14 Proposition. Let f: FF — F’ be a homomorphism of partial hyperfields.

(a) If f is strong, then f is an embedding.
(b) f is epimorphism if and only if f is surjective and final.

(c) The following statements are equivalent:'®
(i) f is an isomorphism,
(ii) f is a monomorphism and an epimorphism,
(iii) f is a surjective embedding,

(iv) f is strong and surjective.

Proof. To show (a), let f be strong. If a,b € F such that f(a) = f(b) it follows
from Lemma 2.1 that 0 € f(a) — f(b) = f(a —b). Using Lemma 2.5, we get
0 € a — b, which yields that a = b. Hence, f is a monomorphism.

Further, let a,b € F* such that f(b) € 1— f(a) = f(1—a). Since f is injective,
this implies b € 1 — a. It follows from Proposition and Definition 2.8 that f is
initial and thus an embedding.

In order to prove (b), let f be an epimorphism. By Lemma and Definition 2.4,
f is surjective. Let a’, b’ € F'* such that ¥ € 1 — a’. By definition, there exist
ceker.f,ac f~'(a')and be fH¥) N (c— a).

We set a = ac~' and b:=bc~'. Then b€ 1 —a, f(a) =d', f(b) = . Thus,
FEW)N (1 — f~Y(a")) # 0 and hence applying Proposition and Definition 2.9
we get that f is final.

5 Although some of these implication follows directly from category theory, see [AHS06,
Proposition 8.14], we will prove them directly in order to have a self-contained proof.
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2.2 Constructions of partial hyperfields

Conversely, let f be a surjective and final homomorphism. We show that for
all aj,ay € F' and dfy € a} + d), there exist a; € f71(a}), i = 1,2,3, such that
as € a1 + as.

If 0 € {a},dh}, say ab = 0, then ay = a}. Choose a1 € f~'(a}) and set
a3 = a1 and ag := 0. Thus, ag € a1 + as.

Now, let a},ay € F*. In the case aj = 0, Lemma 2.1 implies that a}, = —a].
Choose a; € f~Y(a}). Thus, —a; € f~1(d}), 0 € f~1(a}) and 0 € a1 — a;.
Otherwise ay € F*. Set a/ :== —aba, ' and ¥ := aja]"'. Using Lemma 2.1,

we get b’ € 1 —a’. Since f is final there exist a € f~!(a’) and b € f~1(b') such
that b e 1 —a.

Further, we choose an a1 € f~1(a}), and set as = —aja and a3 = aib.
Applying Lemma 2.1, we get f(a;) = a, for all i = 1,2,3 and a3 € aj +a. This
proves (b).

To show (i = iv) from (c) let g be a homomorphism of partial hyperfields
such that go f =idg and f o g =idps. Clearly, f and g are isomophisms and
Lemma and Definition 2.4 implies that f and ¢ are bijective. For all a,b € F
we have further

fla)+ f(b) = f(g(f(a) + f(b))) € flg(f(a)) + g(f (b)) = fa+D).

Hence, f is strong.

(iv = iii) follows directly from (a).

In order to prove (iii = ii) let f be a surjective embedding. By definition, f
is a monomorphism. Let a/,b’ € F'* such that ¥ € 1 — a’. Since f is bijective
there exist unique a,b € F such that f(a) = a’ and f(b) =¥'.

Thus, f(b) € 1 — f(a) and therefore Proposition and Definition 2.8 implies
that b € 1 — a. Hence, using Proposition and Definition 2.9 and (b) we get that
f is an epimorphism.

Finally, to prove (ii = i) let f be a mono- and epimorphism. Then f is bijective.
We will first show that f is strong. It suffices to show that f(a)+ f(b) C f(a+b)
for all a,b € F.

Since f is an injective epimorphism for each ¢ € f(a) + f(b) we obtain
c:= f~Y(c) € a+b. Therefore, ¢ = f(c) € f(a +b). This implies

FHa+0) = (@) + F(FH0)
= ) + 7)) = fH @) + £7H0)

for all a,b € F. Hence, f~! is a strong homomorphism of partial hyperfields
and thus f is an isomorphism. O
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2 Partial hyperfields

2.15 Proposition. Let f: ' — F’ be a homomorphism of partial hyperfields
and U C ker,f a subgroup. Further, let n: FF — F/U be the canonical
projection. Then there is exactly one homomorphism f: F /U — F’ such that
f=Ffom

Moreover, we have f(F) = f(F) and ker, f = ker, f/U.

Proof. Using Lemma and Definition 2.4 and the homomorphism theorem for
groups, there exists a unique map f: FLU — F’ such that f(0) = 0 and
f=Ffom

Further, it follows that f(alUl) = f(a) for all a € F*, f(F) = f(F) and
ker, f ker, f/U. Since 7 is final, it follows from Proposition and Definition 2.8
that f is indeed a homomorphism of partial hyperfields. O

2.16 Corollary. Let f: FF — F’' be a homomorphism of partial hyperfields.

(a) If f is initial, then F'/.ker, f = \f Py

If f is final, then the embedding F/,, .., — F’ is a strong embedding.
If(F )

(c) If f is an epimorphism, then F’ = F/.ker,f.

Proof. Let U := ker, f, F = F/Uand : F — F the canonical projection. By
Proposition 2.15, there exists a unique homomorphism f: F — F’ of partial
hyperfields such that f = f o . Moreover, ker, f = ker,f/U = {1}, so f is a
monomorphism.

In order to prove (a), let f be initial. To show that ij is also initial, let
F” be a partial hyperfield and g: F/ — F” a map such that g(0) = 0 and
g: F' — F” is a multiplicative homomorphism and g o f is a homomorphism of
partial hyperfields.

Since go f = go f om is a homomorphism of partial hyperfields and f is
initial it follows from Proposition and Definition 2.8 that ¢ is a homomorphism
of partial hyperfields. So [ is initial itself.

Again applying Proposition and Deﬁmtlon 2.8 we get that a+b C f ( ) for all
a,b e f( ). Therefore, f F—>F |f(F*)7 a f( ) is an isomorphism of partial

hyperfields such that f =0 f , where ¢: F‘ Py F’ is the canonical inclusion.

Hence, F Flf(F*)
To show (b), let f be final. Let a},ay € F' and a4y € a} + a). Then
Proposition and Definition 2.9 implies that there exist a; € f~1(a}), i = 1,2,

and a3 € f‘l( ’) N (a1 + ag). Thus, af = f(ag) € f(F) and therefore the
inclusion map F, | f( Py F' is a strong embedding.

Furthermore, az = f (m(as)). Hence, f is final. Therefore, applying Proposi-
tion 2.14 proves (c). 0
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2.3 A-regular partial fields

2.17 Corollary. Let f: F — F’ be an isomorphism of partial hyperfields. If
U C F* is a subgroup, then FLU = F' /. f(U).

Proof. Let 7: F — F/U and 7’: F' — F'/.f(U) be the canonical projections.
It follows from Proposition 2.15 that there is a unique homomorphism g: F LU —
F'[.f(U) of partial hyperfields such that 7’ o f = g o w. Further, ker,g =
ker, (7' o f)/U and g is surjective.

Since f is a isomorphism ker, (7' o f) = U and therefore g is a monomorphism.
Using Corollary 2.16 and the fact that 7o f is an epimorphism, we get that g is
an epimorphism. Finally, Proposition 2.14 implies that ¢ is an isomorphism, as
desired. 0

2.3 A-regular partial fields

Let A be a set of sets. We define A := J,. 4 A and let G4 be the free abelian
group generated by ¢, (a), (a,1) for a € A and (a,b) for a,b € A € A, a # b,
where ¢,1 ¢ A are additional elements.

2.18 Lemma. The kernel of the group homomorphism ¢: G4 — Q(A) defined
by t(g) = —1 and

t((a)) =a, t((a,1)) :=a—1, t((byc)) =b—c

for all a € A and b,c € A € A, b # ¢, where Q(A) is a purely transcendental
extension of Q, is generated by 2 as well as the elements £(a,b)(b,a)™! for

a,be Ac A a#b.

Proof. Clearly, the kernel of + contains €2 and &(a, b)(b,a) ! for all a,b € A € A,
a # b. Conversely, if g € ker, there exist suitable k,l,,mq,np. € Z, a € A,
b,ce A€ A, b+# csuch that

g=e"T[(@" (@)™ [ (a,b)"".
a€A a,bcAc A
a#b
Thus, we have
D [T e - ] (- =ug) =1
acA a,bcAcA
a#b

Let a € A, F, = Q(A\ {a}), and = € F,. Thus, a is transcendental over F,
and the localization of Fy[a] at the prime ideal (a — z) is defined by

Raz=A{p/q € QA) | p,q € Fula], q(x) # O}.
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2 Partial hyperfields

Further, let ¢, 5 Ry o — Fo be the homomorphism evaluating every function
of Ry, at x, i. e., the unique ring homomorphism such that ¢, ,(y) =y for all
y € Fy and @4 2(a) = .

If I, # 0, say l, > 0 (otherwise replace g by g~!), we would get the contradic-
tion 1 = @q0(1) = @a,0(t(g)) = 0. Therefore, I, = 0.

Similarly, we get m, = 0 using g 1.

Moreover, if there would exist a,b € A € A, a # b, such that n,p +np 4 # 0,

say Ngp + Npq > 0, we obtain ngp = —ny, o using Qg p.
Finally, since —1 has order 2 in the multiplicative group of Q(A), k is even,
which yields our claim. O

The PhD thesis of Semple ([Sem98|) contains a proof of the following lemma.
Nevertheless, to keep this section self-contained we will provide a proof of it.

2.19 Lemma ([Sem98, 3.1.4.1]). Let R := Z[z1,...,z,] be the integral
polynomial ring in n variables, X := {x1,...,2,} and X := X U{0,1}. Further-
more, set X == {{a,b} € X |a #b,{a,b} # {0,1}}.

If p1,p2, p3 € R are three coprime polynomials of the form

pi= (08 ] (@ p)eien

{a,b}eX

for ki, li fapy € No, @ = 1,2,3, such that p; + p2 + p3 = 0, then there exist
pairwise different a, b, c € X such that

plza_bv p2:b_C; b3 =c¢c—a,
or pairwise different a, b, c,d € X such that

p1=(a—">b)(c—d), po=(a—d)(b—c), p3=(a—c)(d—0D).

Proof. For¢=1,2,3 we set
Fi = {{avb} €X| {a’ b} # {07 1} and (a —b) |pz}

and F;, == F, U {{0,1}}. Since the polynomials p;, p2, ps are coprime the sets
Fy, Fy, F3 are pairwise disjoint. Further, let m; := |F;|, i = 1,2,3. We may
assume without loss of generality that mi > ms, mg.
Moreover, we have m; > 1 as F} = Fy = F3 = () would lead to the contradic-
tion
0=(—Dk 4+ (=D)k2 4 (=1)k € {£1,+3}, ki, ko, k3 € Z.
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2.3 A-regular partial fields

Thus, let {a,b} € F} such that a € X. Applying the unique non-trivial ring
homomorphism a: R — R such that a(a) = b and a(z) = z for all z € X \ {a},
we get that a(p2) = —a(ps).

By definition of «, every irreducible factor of a(p;), i = 1, 2,3, is of the form
x —y for {z,y} € X. Since a(p2) and a(p3) have exactly the same irreducible
factors, but ps and p3 are coprime, it follows that x = b or y = b.

Lifting this to ps and p3 implies that

Fy C{{a,z},{b,z} e X|ze X\ {a,b}}, i=23. (2.2)

Moreover, we have |mg — ms| = 1, since the only possibility that a(z — y) is
a unit for an irreducible factor x —y, {z,y} € X, is that {z,y} = {a, 2z} for a
suitable z € X such that {b, z} = {0,1}.

In particular, there exists an ¢ € X \ {a,b} such that {b,c} € F; and
{a,c} € Fj for {i,j} = {2,3}. We may assume without loss of generality that
i=2and j=3.

If my = 1, it follows that mg, mg € {0,1} and there exist k;, ¢;, i = 1,2, 3,
such that

pr= (=DM (a=0)" p2=(-1)2(b~0)%, ps = (~1)"(c — a)".

Suppose ¢; > ¢; for {i,j} = {1,3}. Then the coefficient of the monomial a*
would be (—1)* in p; but 0 in ps and pj, a contradiction. Hence ¢1 = f5 =: (.

Since b or ¢ can be zero but not a, if £ > 1, the coefficient of a‘~'b in p; resp.
the coefficient of /!¢ in p3 would be 1 but 0 in ps and p3 resp. p; and po, a
contradiction. Thus, £ = 1. Using similar arguments we get fo = 1, as desired.

Finally, we examine the case that m; > 2. Using the unique non-trivial ring
homomorphism §: R — R such that (a) = ¢ and B(z) = z for x € X \ {a},
we get

FiC{{a,2},{c,z2} e X |ze X\ {a,¢}}, i=1,2. (2.3)

Therefore, for every {z,y} € Fi \ {{a,b}} there exist a d € X such that
{29} = {a,d} or {w,y} = {c.d}. A

Further, (2.2) and (2.3) imply that every {z,y} € Fg is of the form {b,c} or
{a,z} for z € X \ {a}. Using the same arguments that we used to derive (2.2)
from {a,b} € F}, we can conclude that Fy = {{a,d},{b,c}} from {a,d} € F}
or {c,d} € F}.

Since a € X we get Fi = {{a,b},{c,d}} and F'3 = {{a,c},{b,d}} from
{a,d} € F». Hence, there exists k;, ¢;, ¢;, i = 1,2, 3, such that

pr= (D@D = pe = (—)(a—d)(b- )",
P = (-)"(a= ) (d— ).
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2 Partial hyperfields

Comparing the coefficients of af2b% and a’b% (if b % 0), a® ¢t and a2cf (if
¢ #0), a’*d" and a3d’ (if d # 0) and using the fact that two of b, ¢ and d
must be non-zero, we can conclude that ¢y = ¢y = {3 = and ¢} =l = 4 = ('

Additionally, since only one of these two is equal to 1, a similar argument
yields that £ = ¢/. Now, we procede as in the case for m; = 1 and get that
(=1. o

2.20 Theorem and Definition (cf. [Sem98, Theorem 3.1.4]). Let A be
a set of sets. The non-trivial fundamental elements'® of the restriction of Q(A)
to the image of +, which we call the A-reqular partial field and denote by U4,
are the elements of the form

a—1b
a—c
for pairwise different a,b,c € AU{0,1}, A € A, and the elements of the form
(a—c)(b—d)
(a—d)(b—rc)

for pairwise different a,b,c,d € AU{0,1}, A € A.

Proof. Since
a—>b - b

a—=cC cC—a

1— (2.4)

for all pairwise different a,b,c € AU{0,1}, A € A, and

1 (a—c)(b—d) _ (a—0b)(c—d) (2.5)
(@a—d)(b—c) (a—d)(c-b)
for all pairwise different a,b,c,d € AU{0,1}, A € A, these elements are indeed
fundamental elements.
Conversely, if z € Uy \ {0,1} is a fundamental element, there is a 2’ € Uy
such that 1 — z = 2’. Then 2’ # 0,1 as otherwise we would have z € {0,1}. We

write z = £ and 2/ = %: for suitable p,q,p’, ¢ € Z(A) \ {0}.

a
Through multiplication by the greatest common divisor g of ¢ and ¢’ we get
an equation p; + p2 + p3 = 0 such that p; = g, po = —% and p3 = —7;—,9 are

all elements of an integral polynomial ring with finitely many indeterminants
satisfying the precondition of Lemma 2.19.

Thus, applying this yields that there exists pairwise different a, b, c € AU{0, 1},
A € A, such that py =a — b, po = b — ¢, ps = ¢ — a and therefore

b—c , a-—c

Th—a T a—v

z

6Since 1€1—0and 0 € 1—1, 0,1 are fundamental elements of every partial hyperfield.
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2.3 A-regular partial fields

or there exist pairwise different a,b,c,d € AU{0,1}, A € A, such that
pr=(a=b)(c—d), pp=(a—d)(b—c), p3=(a—c)(d—Db)

and therefore

2.21 Proposition. Let A and A’ be sets of sets and ¢: A — A’ a map such
that the relation

R, ={(A,A) e Ax A | p(A) C A" and ¢ 4: A — A is a bijection}

is left and right total. Then the map ¢: Uyq — Uy defined by ¢(0) = 0,
P(—1) == -1 and

pla) = ¢(a), pla—1):=p(a) =1, (b —c) = p(b) — ¢(c)

for all a € A and b,c € A € A, b # ¢, is an epimorphism of partial hyperfields.
The multiplicative kernel of { is generated by the elements ab™!, (a—1)(b—1)"1
for all a,b € A such that p(a) = p(b), and the elements (a — b)(c — d)~* for
all a,b € A, ¢,d € B, A,B € A, a # b, ¢ # d such that p(a) = ¢(c) and
©(b) = p(d). In particular, ¢ is an isomorphism if and only if ¢ is injective.

Proof. It follows from Lemma 2.18 that  is a multiplicative homomorphism.
Since R, is left total Theorem and Definition 2.20 implies that ¢ maps fun-
damental elements to fundamental elements. Hence, ¢ is a homomorphism of
partial hyperfields by Lemma 2.5.

The right totality of R, implies that every fundamental element of U 4 is the
image of a fundamental element of U4. Thus, Proposition and Definition 2.9
yields that ¢ is a final homomorphism and is therefore an epimorphism (¢ is
necessarily surjective if R, is right total and thus also ¢).

Obviously, all of the elements ab~!, (a — 1)(b — 1)~! for a,b € A with
¢(a) = p(b) and (a —b)(c —d)~! for a,b € A, c,d € B, A,B € A with a # b,
¢ # d and ¢(a) = ¢(c), p(b) = p(d) are elements of ker,p.

Conversely, let z € ker,. Then there exist suitable k,l,,mq, " € Z, a € A,
b,ce Ae A, b#c, such that

z=(-DF [ a(a—1)™ [J(a—b)".
acA a,bcAc A
a#b
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2 Partial hyperfields

Thus, by applying ¢ we get

1=¢(2) = (-1 [T a" (@ =7 T](@ =),

a’e Al a' beAeA
a’' #b
where
lg = Zlaa My = § Mg, Ny = an,c
acp™1(a’) acp™t(a") bep™t(b'),
cep ()

b,ceA, (A,A")ER,
foralla’ € A", V,c € A" € A",V # . Using Lemma 2.18, we get I,y = my =0
for all «’ € A" and ny o« = —ney forall b, €e A e A,V # .

If I, # 0 for an a € A, there exists a b € A such that I, < 0. By definition
of R, there exists an A € A such that a,b € A. Thus, we can successively split
off factors of the form ac™!, a,c € B € A with ¢(a) = ¢(c).

Similarly, if m, # 0 for an a € A, we can split off factors of the form
(a—1)(b—1)"!for a,b € A € A with ¢(a) = ¢(b), and if ngp # —npq, We can
split off factors of the form (a — b)(c — d)~! for a,b € A, ¢c,d € B, A,B € A,
a # b, ¢ # d such that ¢(a) = ¢(c) and ¢(b) = ¢(d), which completes our
proof. O

The following corollary generalizes the notion of k-regular partial fields, k € Ny,
introduced by Semple in [Sem98| to arbitrary cardinal numbers:

2.22 Corollary. Let k be a cardinal number. The isomorphy type of the partial
field Uy 4y for a set A of cardinality « is independent of the choice of A.
We denote this partial field by U, and call it the k-regular partial field.

Proof. Let A and A’ be sets of cardinality x. Since we have {X} = X for
every set X, this follows directly from Proposition 2.21 applied to any bijection
@ A= A 0

2.23 Theorem and Definition. Let F be a partial hyperfield. We set
A={{(a,0)}|a€ F*}U{{(a,b)}|a,be€ F* such that 1 € a + b}

and I := Q(A) 4R, where Q(A) is a purely transcendental extension of Q, and
R is the subgroup of Q(A)* generated by —(—1,0) and the elements

(a,0)(b,0)(ab,0)"%,  (c,d)(c,0)71, (1 —(c,d))(d,0)*

for all a,b,c,d € F* such that 1 € ¢ +d.
Then the map ¢: F' — F defined by ¢(0) := 0 and ¢(a) := (a,0)R, a € F*, is
an embedding, which we call the canonical embedding of F into a hyperfield.
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2.3 A-regular partial fields

Proof. First, note that (a,0)(b,0)R = (ab,0)R for all a,b € F*. In particular,
we have (1,0) € R and therefore (—1,0)R = (—1)R. Hence, ¢ is multiplicative
homomorphism.

To prove that ¢ is a homomorphism of partial hyperfields, let a,b € F* such
that b€ 1 —a. Then 1 € a + b and thus

(b) = (b,0)0R = (1 — (a,b))R € R — (a,b)R'"
=(1,00R — (a,0)R =1 — 1(a).
In order to show that ¢ is injective, let « € ker,t. Then (x,0) € R and there

exist suitable k,l,p, M d,ncq € Z for a,b,c,d € F* satisfying 1 € ¢+ d such
that

(2,0) = (~(~1,0))* T] ((a, 0)(b, 0)(ab, 0)1)"**

a,beF*

T (e d)(e, 0071 ™ (1 = (e,d))(d, 0) 7). (2.6)
c,deF*

1€c+d

For all ¢,d € F* the right-side coefficient of (¢, d) is m.4 and the right-side
coefficient of 1 — (¢, d) is ncq. It follows that m. 4 = n.q = 0 for all ¢,d € F*
such that 1 € ¢+ d. Therefore, both sides of (2.6) are contained in the subgroup
G of Q(A)* generated by the elements —1 and (a,0), a € F*.

Thus, the mapping x: G — F* defined by x(—1) := —1 and ((a,0)) = a for
a € F* is a group homomorphism by Lemma 2.18. Applying it to both sides of
(2.6), we get

z = r((2,0) = (~1)% [ (abab)™)'" =1.

a,beF*

Hence, ¢ is injective.

In order to prove that ¢ is initial, let a,b € F™* such that «(b) € 1 — «(a).
Since ¢(F) C UgkR and |A| =1 for all A € A it follows from Remark and
Definition 2.10 and Theorem and Definition 2.20 that we have ¢(a) = %R and
t(b) = %R for {a’,V/,d} ={0,1,(c,0)}, c€ F* or {a’,V/, '} ={0,1,(d,e)}
for d,e € F* such that 1 € d + e.

Since ¢(b) € 1 — t(a) and ¢(a) € 1 —(b), as wellasbe 1l —aanda €1l —b
are equivalent using Proposition 2.2 and Remark and Definition 2.3, our claim
is invariant under exchange of a’ and /. Similarly, this is true for exchange of b’

"Where — denotes the substraction in the hyperfield Q(A)/AR.
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2 Partial hyperfields

and ¢, as (b) € 1 —1(a) and t(a™!) € 1 — 1(—a"1b), as well as b € 1 — a and
a™l €1 — (—a~1'b) are also equivalent.

Hence, we can assume without loss of generality that ¢’ = 0 and ¢ = 1.
Furthermore, b/ = g for g = (¢,0), c € F*, or g = (d,e) for d,e € F*, 1 € d + ¢,
and (b,0)R = ¢(b) = (1 — g)R.

Obviously, (1—(c,0))(b,0)"! ¢ R for all c € F*. Thus, g = (d,e) for d,e € F*
such that 1 € d 4 e. Therefore, e = b and using that ¢(a) = gR = (d,b)R we
further get that d = a. Hence, 1 € a + b, which implies b € 1 — a, as desired. g

2.24 Remark. In [Mas85a] and [Mas85b| Massouros proved that there are
hyperfields that cannot be written as F/,U for a field F' and a subgroup U C F*
(and cannot be strongly embedded into hyperfields of this kind).

But as we have shown in Theorem and Definition 2.23 every partial hyperfield
and therefore every hyperfield is isomorphic to a restriction of a hyperfield of
this form.
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3 Universal partial hyperfields of
matroids

In this chapter we will introduce the universal partial hyperfield of a matroid,
a partial hyperfield whose multiplicative group is its inner Tutte group, which
was introduced by Dress and Wenzel in [DW89]. We will use their results to
present the relation between the universal partial field of a matroid, its minors,
and its dual.

Further, we will connect representations of matroids over a partial hyperfield*
to homomorphism from certain extensions of the universal partial hyperfield
to this partial hyperfields and show that they thus factor over the identity
homomorphism of the universal partial hyperfield.

Moreover, we will introduce a method inspired by the work of Semple for
k-regular matroids (cf. [Sem98|) to determine the universal partial field for
matroids.

For later usage, we will introduce the characterization of matroids by hyper-
plane and base axioms and define the basic concepts. For further reference we
refer the reader to [Whi86].

Definition. Let F be a set. A set H of subsets of E is called the set of
hyperplanes of a matroid M on E if the following axioms are satisfied:

(HO) For each X C E such that X ¢ H for all H € H there exists a finite
X' C X such that X' ¢ H for all H € H,?

(H1) E ¢ H,
(H2) Hy C Hy = H; = Hy for all Hi,Hy, € H,

(H3) for all Hy,Hy € H, Hy # Hs and © € E \ (H; U Hg) there exists an
Hs € H such that (H; N Hz) U{z} C Hs.

We denote the set of hyperplanes of a given matroid M by H(M) (or by H if
the referenced matroid is apparent from the context).

!Precisely, we mean the weak representations in the sense of Baker and Bowler, cf. [BB19].
*We allow matroids to be infinite as long as their rank is finite, which is ensured by (HO).

31



3 Universal partial hyperfields of matroids

A subset B C E is a base of M if it is minimal with the property B ¢ H for
all H € H. We denote the set of bases of a matroid M by B(M) (or short by B
if the referenced matroid is apparent from the context).

Let A C E. Then A is called independent if it is contained in a base, and a
circuit if it is not independent, but A \ {a} is independent for each a € A. Tts
rank is the maximum number of elements of an independent set contained in A
and is denoted by opr(A) (or short by o(A)). Further, its closure is the (unique)
maximal superset that has the same rank as A and is denoted by oar(A) (or
short by o(A)).

A is called a flat of M, if 0(A) = A. For any two flats K7 and Ky of M the
flat o( K7 U K3) is called the join of K; and Ky and is denoted by K; V Ko. If
there exists a subset {a} such that Ko = o({a}), we often write K; V a instead
of Ky Vo({a}).

The rank of M is the rank of the ground set E and is denoted by o(M).
Clearly, the hyperplanes of M are exactly the flats of M of rank o(M) — 1. A
flat L C F of rank o(M) — 2 is called a hyperline. We denote by Hp, the sets of
hyperplanes that contain a given hyperline L.

The set of hyperlines is denoted by £(M) (or short £). Further, we call a flat
P C E of rank o(M) — 3 a hyperpoint and a flat £ C E of rank 2 a line.

A flat K C E is called modular if o(KV K') + o(KNK') = o(K) + o(K")
for any flat K/ C E. The matroid M is said to be modular if every flat F' of M
is modular.

Furthermore, a collection B is the set of bases of a matroid M if and only if
it satisfies the following three axioms:

(B0O) every set in B is finite,
(Bl) B1 C By = By =Bsforall B,By € B,
(B2) for all By, By € B and x € By \ Bg there is an y € By \ By such that
(B2 \y)U{z} €B.
All bases B € B have equal cardinality o(M).
Definition. Let F7*(M) be the free abelian group generated by € and Xy, for
H € H,ac E\ H and K"(M) be the subgroup of F*(M) generated by €2 and

the elements

—1 —1 —1
5'XH1,G2 - X 'XH2703 - X 'XHs,al - X

Hi,a3 Hz,a1 Hs,az

for Hy, Hy, H3 € H containing a common hyperline L and a; € H;\ L, i = 1,2, 3.
The estended Tutte group is defined as TH (M) == F*(M) /K™ (M). Further, we
set H(a) = Xpg o K*(M) forall He H anda € E\ H.
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3.1 Lemma ([DW89, Lemma 1.3]). Let Hy, Hy € H such that L :== HiNH,
is a hyperline, a,b € E'\ (Hy U Ha) such that L Va = LV b. Then

Hl(a) . Hl(b)_l . Hg(b) . Hg(a)_l =1.

Definition. Let F5(M) be the free abelian group generated by ¢ and (ay, . . ., a,)
for {a1,...,a,} € B and KB(M) be the subgroup of F(M) generated by €2,
the elements

€ (ala cee )an) ’ (aT((l)7 s 7a7r(n))

for all {ai1,...,an} € B, and 7 € S,, \ 4,, and the elements

(ala ey, Qp—2, b17 Cl) : (a17 vy Ap—2, b27 62)
—1 -1
: (alu"'7a’n—27b2701) '(aly"')an—25b1762)
for all a1,...,an—2,b1,b2,c1,c2 € E such that {ai,...,an—2,b;,¢c;} € B for

1,7 € {1,2} but {al,. . .,an_g,bl,bg} ¢ B.
We define T8 (M) = FB(M)/KB(M). Set [a1,...,a,] = (a1,...,a,) KB(M)
and

[A|B) == [di,...,dn_1,0a] - [d1,...,dn_1,0] "
for all A= {d,...,dn_1,a}, B={d1,...,d,_1,b} € B.
Definition. We set

. . 4 | 3LeL such that H;NH;=L
Hy = Ha(M) = {(Hl, Ho, Hs, Hy) € H ‘ £ such that Hin i, }

Hi =HI (M) : {(Hl,H2,H3,H4) 67.[4’ Hi,Ha,Hs, Hy }

pairwise different

Following [GRS95], let F(©) (M) be the free abelian group generated by e and the
clements (Hy, Hy | Hz, Hy) for (Hy, Ho, Hz, Hy) € Hy4 and K (M) the subgroup
of M generated by the elements

(CRO) €2,
(CRl) (Hl,HQ ’Hg,Hg) for (Hl,HQ,H3,H3) € Hy,
(CR2)

(H17H2 ‘ H37H4) ° (H17H2 ’H47H5) : (H17H2 | H57H3)

for (Hy, Ho, H3, Hy), (Hy, Hy, H3, Hs) € Hy,
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3 Universal partial hyperfields of matroids

(CR3)
(Hy, Ha | Hz, Hy) - (H3, Hy | Ha, Hy)

for (Hy, Hy, Hs, Hy) € Hag,

(CR4)
e-(Hy,Hy| Hs,Hy) - (Hy, Hs | Hy, Hy) - (Hy, Hy | Hy, H3)

for (Hy, Hy, H3, Hy) € 1,
(CR5) ¢ if the Fano matroid or its dual is a minor of M,
(CR6)

(H1, Ha | He, Ho) - (H2, H3 | Hy, H7) - (H3, H1 | Hs, Hs)

for Hy,...,Hg € H such that
(i) L; == H; N Hy € L for {i,j,k} ={1,2,3},
(ii) o(H1 N HyN H3) = (M) — 3,

(i) L; € Hit3, Hig for i =1,2,3,

(iv) HyNHs N Hg, HTNHgN Hy € L,

(v) {Hy,Ha, H3} N{Hy,...,Ho} = 0.

Then T (M) == FO (M) /KO (M) is called inner Tutte group of M. Further-
more, let

[Hy,Hy| H3, Hy] == (Hy, Hy | Hg,H4)K(0)(M)

be the cross-ratio of (Hy, Ho, Hs, Hy) € H4.
Further, by abuse of notation, we write ¢ instead of ¢ - K(O)(M).
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For finite matroids M it was already proven by Gelfand, Rybnikov and Stone that
their definition of the inner Tutte group in [GRS95| is equivalent to the original
definition given by Dress and Wenzel in [DW89]. The following proposition
proves that this is also true if M is infinite:

3.2 Proposition. The maps /f: T (M) — TH(M), 5, : TO (M) — TB(M)
defined by (}4(¢) =€, §;(e) := ¢ and

N7 ([Hy, Hy | Hs, Hy)) = Hy(as) - Hi(as)™" - Ha(as) - Ha(ag) ™",
K ([Hy, Ho | Hs, Hy)) = [A13] A14] - [A2q | Azg)

for all (Hy, Ho, H3, Hy) € Ha(M), where L = ﬂ?:l H;, I C L a maximal
independent set and a; € H; \ L, A;j =1 U{a;,a;}, i,j € {1,2,3,4}, i # j, are
group monomorphisms.

Furthermore, T" (M) and TB(M) are free extensions of T (M).

Proof. First, let G is the subgroup of T* (M) generated by ¢ and the elements
H(a)-H(b)" forall a,b€ E\ H, H € H(M), and G’ the subgroup of T5(M)
generated by ¢ and the elements [A | B] for all A, B € B(M), |AA B| =2. Then
[DW89, Theorem 1.1 and Theorem 1.2] imply that the map ¢: G — G’, defined
by ¢(e) = ¢ and
Y (H(a)-H(®) ') =[A]B]

for all a,b € E\H, H € H(M), and A := ITU{a}, B := ITU{b} for any maximal
independent set I C H, is a group isomorphism. Since L% =o ﬂj\"J it suffices
to show that L}’\{/l is a monomorphism.

It follows from [DW90, Proposition 1.1, Lemma 2.4, and Proposition 2.5] and
[GRS95, Theorem 4] that .}, is a well-defined group homomorphism, which is
injective if M is a finite matroid.

In order to show that this also true for infinite M, let g € ker Lg\{/[. Then there

exist k,n € Ny and (Hl(i),Hz(i),Héi), ii)> € Ha(M), i =1,...,n, such that
g=¢"T1, [Hfi), Q(i) Héi), f)]. Then L) = ﬂ?:l Hj@ is a hyperline.
Choose a maximal independent set IV C L), ag-i) € Hj(.i) \LW, j=1,234,
forall i =1,...,n, let FF C E be a finite set such that I(i),agi) C F for all
i=1,...,n,7=1,2,3,4, and N := M|F.
Further, we define KJ(.Z) =oN (I(i) U {a?}), i=1,...,n,7=1,2,3,4, and
ho= b, [KP,KS) Kéi),Kff)]. By [DW89, Proposition 4.1] there exist

group homomorphisms f: T (N) — TO)/(M) and f*: TH(N) — T (M) such
that £ OL% = L?&, of.
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3 Universal partial hyperfields of matroids

Since M|F is a restriction, f is injective and therefore h = 1, which in turn
implies g = f(h) = 1. Thus, /}} is injective for all matroids M.

Finally, [DW89, Theorem 1.5] yields that T? (M) and T?(M) are free exten-
sions of TO)(M1). 0

3.3 Lemma ([DW90, Lemma 2.4, Proposition 2.5]).
Let (Hy, Ho, Hs, Hy) € Hy, L = ﬂ?zl H;, and for every permutation m € Sy set

[Hy, Hy | H3, Hy|"™ := [Hr(1y, Hr(2) | Hr(3), Hr(a))-
(a) For m € {(12)(34), (13)(24), (14)(23)} we have

[Hi,Hy | H3, Hy|™ = [H1, Ha | Hs, Hy),

(b) for m € {(12),(34), (1324), (1423)} we get

[Hy, Hy | Hs, Hy|™ = [Hy, Ho | H3, Hy] ™",

(c) for Hy € Hy \ {Hs, Hy} and H; € Hy \ {H1, H2} we have

[H17H2 ‘ H37H4] - [H17H0 ’H37H4] : [H07H2 | H37H4]7
- [H17H2 ’H37H5] . [H17H2 ’ H57H4]7

(d) if Hy, He, H3, H4 are pairwise distinct and 7w € Sy is an element of order
3,

[Hy, Hy | Hs, Hy] - [Hy, Hy | Hs, Hy]™ - [Hy, Hy | Hs, Hy]™ =¢.

3.4 Proposition and Definition. The family (Aa)a€T<o)(M) defined by
A, = {[Hy,Hs | Hy, Hy] | 3(H\, Hy, H3, Hy) € H : a = [Hy, Hy | H3, Hy]}

for all a € T (M) satisfies (2.1).

We denote the unique partial hyperfield on T(®) (M) U {0}, such that —1 = ¢
and (1—a)\ {0} = A, for all « € T (M) by UO(M). We further call U (M)
the universal partial hyperfield of M .3 Tts fundamental elements are 0, 1, and
the cross-ratios of M.

3The name is justified by Corollary 3.17.
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3.1 Basic properties

Proof. To prove that the family (Aq),erwo) (5 satifies (2.1), we have to show

that for all a,b € T (M) such that b € A, it follows that a € A, and
ale A g-1p-

Let a € T(O)(M). If b € A,, there exists a tuple (Hy, Ho, H3, Hy) € ’HI such
that a = [Hl, H2 ‘ Hg, H4] and b = [Hl,Hg | HQ,H4].

By construction, we have a € A;. Using Lemma 3.3, we obtain

Ea_lb =& [Hl,HQ ‘ H4,H3] . [Hl,Hg ’HQ,H4]
— [H17H4‘H2>H3]'

Hence, a=! € A_,-1p.

Therefore, Proposition 2.2 and Remark and Definition 2.3 yield that there
exists a unique partial hyperfield on T (M) U {0} such that —1 = ¢ and
(1 —a)\ {0} = A,. Clearly, its fundamental elements are 0, 1, and the cross-
ratios of M. 0

3.5 Corollary. We denote the final partial hyperfield* on the set T* (M) U {0}
resp. TB(M) U {0} with respect to the map ¢} resp. (5§, (which we extend by
setting 1} (0) == 0 and (%,(0) := 0) by U*(M) resp. UB(M).

The maps ¢}, and (5, are strong embeddings. If we identify UO (M) with
its image under ¢}, resp. (%, then UM (M) resp. UB(M) is the unique partial
hyperfield such that —1 = ¢ and (1—a)\{0} = A,, where we define (Aq)qer# (ar)
resp. (Ag)qers(ar) as in Proposition and Definition 3.4. The core of U (M)
and UB(M) is equal to U (M).

Proof. It suffices to prove this in the case of UM (M) and ¢%;, as the other case
follows analogously.

Since qu\_f[ is injective by Proposition 3.2, Proposition and Definition 2.8 and
Proposition and Definition 2.9 imply that it is initial and final. Thus, Corol-
lary 2.16 yields that L?{fl is a strong embedding. Finally, the last sentence follows

directly from the construction of U (M). 0

3.1 Basic properties

3.6 Proposition. Let N be a minor of the matroid M on the set F' C E(M).
For every subset S C E(M) \ F such that oy (S) = o(M) — o(N) we can write
N = (M/S)|F. Then the map fg: UO(N) — UO (M) defined by f5(0) = 0,
fs(=1) == —1 and

fS([Hb H2 | H37 H4]) = [Eam ‘ Ea E]

4See Proposition and Definition 2.9.
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3 Universal partial hyperfields of matroids

for all (Hy, Ho, H3, Hy) € H4(N), where H; == op(H; U S), i =1,2,3,4, is a
homomorphism of partial hyperfields.

Proof. Using [DW89, Proposition 4.1|, it follows that fg is a multiplicative
homomorphism. The definition of fg, Lemma 2.5, and Proposition and Defini-
tion 3.4 imply that fg is a homomorphism of partial hyperfields. O

3.7 Remark. The homomorphism fg in Proposition 3.6 depends on the choice
of S, e. g. if M is the uniform matroid of rank 3 on the set {1,2,3,4,5,6},
S1 =15}, So = {6}, and F' ={1,2,3,4}, (M/S1)|F = (M/S2)|F is the uniform
matroid of rank 2 on F', but fs, and fg, are different.

Otherwise, it would follow from Lemma 4.21 that U (Us ) = U (Uyg).
Since M is representable over Fy but Uy g is not (cf. [Ox111, Section 6.5]), this
contradicts Theorem and Definition 3.16.

However, we can always replace S by a maximal independent subset. Thus,
in the special cases that IV is rank-preserving restriction or a contraction, fg is
independent of the choice of S.

3.8 Proposition. Let £ € N and M be the direct sum of the matroids M; on
the ground set F;, i = 1,..., k. Then U©® (M) is the coproduct® of U (M),
i=1,...,k (up to isomorphism).

Proof. Let F = Hle UO (M), v;: UO(M;) — F be the natural inclusion,
i=1,...,k, and define f: F — UO (M) by £(0) =0, f(—1) :== —1, and

f(Li([Hl NE;, HNE; | HsNE;, HyN Ez])) = [Hl, H, ‘ Hs, H4]

for all (Hy, Ha, H3, Hy) € H} (M) such that E; ¢ Hj; and E; C H; for all
i=1,2341=1,....k, | #1.

[DW89, Proposition 5.1| yields that f is a multiplicative isomorphism. It
follows from Lemma 2.5 and Proposition and Definition 3.4 that f is an isomor-
phism of partial hyperfields. 0

3.9 Corollary. For any matroid M of rank n € Ny the universal partial hyper-
field of M & p, i. e., the direct sum of M with the rank 1 matroid with a single
point p, is isomorphic to that of M.

In particular, if for any partial hyperfield F' there exists a matroid M of rank
n € Ny whose universal partial hyperfield is isomorphic to F', there exists a
matroid M’ of rank n’ for any n’ € Ny such that n’ > n whose universal partial
hyperfield is isomorphic to F'.

5See Corollary 2.12.
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3.1 Basic properties

Proof. The only hyperplane of the rank 1 matroid with a single point p is
(). Further, it has neither the Fano matroid nor its dual as minor. Therefore,
it follows that F(©(p) = {1,e} and K©(p) = {1}. Thus, its universal partial
hyperfield is isomorphic to Uy and we get U (M @& p) = UO) (M) @ Uy using
Proposition 3.8.

Hence, applying Proposition and Definition 2.6 and Corollary 2.12, we obtain
that U (M @ p) = UO)(M). Therefore, we can iteratively construct a matroid
M’ of rank n’ > n such that U (M’) = UC)(M), which yields our claim. p

Definition. Let M be a matroid on the ground set E. M is called a combinato-
rial geometry if for all X C E such that 1 < |X| < 2, there exists a hyperplane
H of M such that | X N H| = |X|—1 (or equivalently there exists a base B of
M such that X C B).

For every X C F let sX be the set of rank 1 flats contained in o(X). Further,
if X is a set of subsets of E, we set sX := {sX | X € X'}

The matroid sM on the ground set sE whose hyperplanes are the sets sH (or
equivalently whose bases are the sets sB) is a combinatorial geometry called the
simplification of M. Moreover, for each X C E we have g5 (sF') = oy (F). In
particular, o(sM) = o(M).

3.10 Proposition. For every matroid M the map ¢: UQ (M) — U (sM)
defined by ¢(0) :=0, ¢(—1) := —1, and

(p([Hl, HQ ‘ Hg, H4]) = [SHl, SHQ ’ SH3, SH4]
for all (Hy, Ho, Hs, Hy) € H4(M) is an isomorphism of partial hyperfields.

Proof. By definition of the simplification for all flats Fy, F» of M we have
s(F1 N Fy) = sFy NsFy and sFy = skFy if and only if F; = F,. Therefore,
our claim follows directly from the definition of the inner Tutte group and
Proposition and Definition 3.4. O

3.11 Proposition. Let M be a finite matroid on the ground set E.

(a) The map ppr: UO (M) — UO(M*) defined by (0) == 0, as well as
om(—1) = —1, and
o ([Hy, Hy | Hs, Ha]) = [Hy, Hy | H3, Hj]
for all (Hy, Hy, Hs, Hy) € H4(M) and
H =opy«(E\ (IU{a1,...,ai,...,a4})), i=1,23,4,

where I C L = ﬂ?zl H; is a maximal independent set and a; € H; \ L,
1=1,2,3,4, is a well-defined isomorphism of partial hyperfields.
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3 Universal partial hyperfields of matroids

(b) Let E = FWUSWS* be any partition such that S is an independent set of M,
om(S) =0o(M) — o(N), and N = (M/S)|F. Then S* is an independent
set of M*, opr+(S*) = o(M*) — o(N*), and N* = (M*/S*)|F.

Further, we have @y o fg = fg« 0 pn, where fg: UO(N) — UO (M) and
fs=: UO(N*) = UO)(M*) are the homomorphisms of partial hyperfields
from Proposition 3.6.
Proof. Throughout this proof, we will use Proposition 3.2 and identify the
elements of T (M) with its image under /5.

In order to prove (a), let T(M) be the subgroup of T?(M) generated by ¢
and the elements [A | B] for all A, B € B(M) such that |A A B| = 2, and T(M™*)
be the corresponding subgroup of T8(M*). Applying [DW89, Proposition 1.1
and Theorem 1.1], the map ¢: T(M) — T(M™*) defined by ¢(e) = € and
©([A|B]) = [E\A|E\ B] for all A,B € B(M) such that |[AA B| =2 is a
group isomorphism.

Let (Hy, Ha, Hs, Hy) € H4(M). Then L = (\j_, H; is a hyperline of M.
Choose a maximal independent subset [ C L, a; € H; \ L, i = 1,2,3,4, and set
Aij =T1U{aj,a;}, 1,5 =1,2,3,4, i # j.

Further, let I* .= E\ (I U {a1,a2,a3,a4}), Aj; = I" U {a;, a;}, as well as
H = on-(I*U{a;}), 4,7 =1,2,3,4, i # j. It follows that

E\A” = E\ (IU {ai,aj}) =I*"U {ak,al} = AZZ
for all {1, 7,k,1} ={1,2,3,4}. Thus, Aj; is a base of M* for all 4, j € {1,2,3,4},
i # j , I is an independent set of M*, whose closure is a hyperline of M*, and
(Hy,H5,H3, Hy) € Ha(M*). Moreover, Lemma 3.3 implies that

©([Hy, Hy | Hs, Ha]) = ¢([A13 | A1a] - [Azq | Ags])
= [A5y | Ads] - [AT3 | ALy] = [Hy, Hy | Hy, Hy]

Hence, ppr(g) = ¢(g) for all g € UO(M)". Therefore, oy is a multiplicative
isomorphism, and its definition and Lemma 2.5 yield (a).

To prove (b), let = F'UJSJS* be a partition and N = (M/S)|F such that
S is an independent set of M and ppr(S) = o(M) — o(N). Applying [Oxl111,
Proposition 3.1.26], we obtain

N* = ((M/S\S)" = (M/S)"/S* = (M\S)/S" = (M/S")|F.
By [Oxl111, Proposition 2.1.9], we have gp«(A) = |A| + o (E \ A) — o(M) for
all subsets A C E. Thus, using o/ (S U S*) = | S|, we get
o(M*) = o(N*) = |E| — o(M) — (|F| + om (S U S5%) — o(M))
= 5" =15*+ om(FUS) — o(M) = on+(5).

40



3.1 Basic properties

In particular, S* is an independent set of M*.

Let (Hy, Hy, H3, Hy) € H4a(N), L == ﬂ?:l H;, choose a maximal independent
set I C L, and a; € H; \ L, © = 1,2,3,4. Further, set G; = oy (H; US),
H: = O'N*(I* U {ai}), G;k = UM*(HZ* U S*), Aij =IU {ai,aj}, Bij = Aij us,
A = I"U{a;, a5}, By = Aj; US™ for all 4,5 = 1,2,3,4, i # j, where
I =F\ (IU{a1,a2,a3,a4}).

Then G; resp. G} is a hyperplane of M resp. M*, A;; resp. A;-kj is a base
of N resp. N*, and B;j resp ij is a base of M resp. M*, i,j = 1,2,3,4,
i # j. Furthermore, (Hf,H;,Hg,Hj{) € H4(N*), (G1,G2,G3,Gyq) € Hy(M),
(G, G5, ;,,GZ) € H4(M") and

E\Bw :E\(AWUS): (AZIUSUS*)Q(E\S) :AZlUS*:BZl
for all {i,j,k,1} = {1,2,3,4}. Hence,
om(fs([Hi, He | Hs, H4])) = om([G1, G2 | Gs, G4])
= om([Bis | Bi4] - [Boa | Bas]) = [B3s | B3yl - [Bis | Biy]
= [G1,G5| G35, G| = fs-([HY, H3 | H, Hf])
= fs-(on([H1, Ho | H3, Hy))). O

Definition. Let M and N be matroids. A bijection ¢: E(M) — E(N) is an
isomorphism from M to N if H € H(M) if and only if ¢(H) € H(N) (or
equivalently if B € B(M) if and only if ¢(B) € B(N)).

3.12 Proposition. Let M and M be matroids and ¢ be an isomorphism
from M to N. Then the map ¢: UO (M) — UO(N) defined by »(0) == 0,
@(—1) == -1, and

P([Hy, Hy | H3, Ha]) = [p(H1), p(H2) | p(H3), p(Hy)]
for all (Hy, Ho, Hs, Hy) € H4(M) is an isomorphism of partial hyperfields.

Proof. As we have p(X NY) = p(X)Ne(Y) and (X UY) = o(X) U p(Y)
for all X, Y C E (since ¢ is a bijection), our claim follows directly from the
definition of the inner Tutte group and Proposition and Definition 3.4. O

41



3 Universal partial hyperfields of matroids

3.2 Representability of matroids

3.13 Remark. Let E be a set and F be a partial hyperfield. We denote by F¥
the set of functions f: E — F', let 0 be the constant 0 function and —f: £ — F|
e+ —f(e), define a binary operation -: F x F¥ — FF by (a- f)(e) == a- f(e)
foralla € F, f € F¥, e € E, and a partial hyperoperation +: F¥ x FF — FF
by
f+g={heF¥|h(e) e fle)+gle) forall e € E}
for all f,g € FF.
It follows directly from the definition of a partial hyperfield that

(a) f+g=g+fand 0+ f={f}forall f,gec FF,
(b) if f € g+ h, then h € f+4 (—g) for all f,g,h € FF,

d

)
)
(c) (ab)f =a(bf),0-f=0,1-f=fforalla,be F, f € FF,
(d) (a+b)f Caf +bf foralla,be F, f € FE,

)

(e) a(f+g) Caf +agforallacF, f,gc FF.

For the rest of this section, let M be a matroid on the ground set E, whose set
of hyperplanes we denote by H and whose set of bases we denote by B.

3.14 Proposition and Definition (cf. [DW89, Theorem 3.1]). Let F' be
a partial hyperfield and ¢: F' — F’ an embedding of F into a hyperfield F’. For
a family (fr)pgen of functions fi: E — F such that fﬁl(O) =H forall He H
the following statements are equivalent:

(a) For all hyperplanes Hi, Hy, H3 containing a common hyperline L, there
exist a, o, a3 € F* such that

0€ (o) (vofr)+ulaz): (vofm)+ilas) (tofuy).  (3.1)
(b) The map f: U™ (M) — F defined by f(0) := 0, f(—1) := —1 and
f(H(a)) = fu(a) for HeH, ac E\ H
is a homomorphism of partial hyperfields.

In particular, the condition in (a) is independent of the choice of the embedding
1.8 If (fi)mew satisfies one (and therefore both) of the preceding conditions,
we call it a family of hyperplane functions for M and F.

6Such an embedding always exists, see Theorem and Definition 2.23.

42



3.2 Representability of matroids

Proof. We first prove the implication (a) = (b). Let Hy, H2, Hs be hyperplanes
of M containing a common hyperline L and a; € H; \ L, i = 1,2,3. Let
a1, g, a3 € F* such that

0€ w(ar)-(tofm)+ilaz) (o fu,)+elas): (Lo fuy).

Since az € Hy we have fm,(a2) = 0. Thus, 0 € a;fm, (a2) + asfu,(a2). It
follows that fr,(a2) = —ozlozglle (a2). We get fm,(a3) = —ozlozglle (a3) and
frs(ar) = —agaglsz(al) using similar arguments. This implies

fry(a2) - fry(a3) ™" - fi(as) - fp(ar) ™ - fug(ar) - fry(a) ™
RE e

Hence, f is a multiplicative homomorphism.

To prove that f is a homomorphism of partial hyperfields, let Hy, Ho, Hs, Hy
be four pairwise different hyperplanes containing a common hyperline L and
choose a; € H; \ L, i = 2,3,4. Then (3.1) implies

U frs(as)) € v (=5 (ar fr, (as) + o fr,(as)))

and thus using the identification of T* (M) with a subgroup of T (M) from
Proposition 3.2, —fg, (a2) fu,(a2) ™! = aflag and oqoz;l = —fu, (a3) fu,(az) !
from above we obtain
o(f([Hy, H3 | Ha, Ha))
fry (a2) frr, (aa) ™" fry(aq) frs (a2) ")
— fr (a2) frs(a2) ™ fry (a0) "oz (an fay (aa) + as fa, (as)))
1+ oy o fa, (as) ™" fi,(aa))

1— fr, (a3) frr, (aa) "  fr, (aa) frry (a3) )
= (1 — f([Hy, Ha | Hs, Hy))).

=1
SN

L

,—\,—\/—\/—\

=1

Since ¢ is an embedding, f([H1, Hs|H2, H4])) € 1 — f([H1, Ho | H3, H4]). Ap-
plying Lemma 2.5 and Proposition and Definition 3.4 yields that f is a homo-
morphism of partial hyperfields.

Conversely, let f be a homomorphism of partial hyperfields and Hy, Hy, Hs
three pairwise different hyperplanes containing a common hyperline L.

We choose a; € H; \ L, i =1,2,3, and set

a1 = fu,(az) - fi(a3) ™, oz = —1, ag = fu,(a1) - fu,(a1) ™
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3 Universal partial hyperfields of matroids

In order to prove (3.1), we show that fm, € a1 fm, + asfm,. Since all functions
S, 1=1,2,3, are identically zero on L, we have fm,(a) € a1 fm,(a) + asfm,(a)
for all @ € L.

For a € Hy \ L we have H(a) - Ho(a1)™! = Hs(a) - H3(a1)™! by Lemma 3.1

and therefore

fry (@) = fry(a) - frg(a1) ™" firy (an)
€0+ ng(a) ’ st(al)_lsz(al)
= a1 fm,(a) + asfm(a).

Similarly, we get fu,(a) € a1 fm,(a) + asfu,(a) for all a € H3\ L. As f is a
multiplicative homomorphism

fr(a2) - fr, (a3) ™" - fry(as) - fay(a1) ™" - fry(ar) - fry(az) ™" = —1,

so for all @ € Ha \ L we obtain

fry(a) =0 € f,(as) - fu, (a3)™" - fm,(a2) + fr,(a1) - fus(ar) ™" - fry(az)

= a1 fm, (a2) + a3 fm,(az).

Using Lemma 3.1, we have
le (a)st(a)_l = le (a2)fH3 (a2)_1 = —Ozflag,

and it follows that fm,(a) € a1 fm, (a) + asfm,(a).
Finally, let a € E'\ (Hy UH2UHs3). We set Hy := LV a and a4 = a. Applying
Proposition 3.2, we get

asfu,(a) = (fus(as) - fry(a) ™" fry(ar) - fry(as) ™) - fa,(as)
= f([H37H2 | Hy, Hil) - fr,(aq)
€ (1 — f([Hs, Hya| Ha, H1]) - fn,(aa)
= (1= f([H1, H2 | H47H3]) - fr,(aa)
= (1= fu,(aa) - fr,(a3) ™" fry(as) - fry(aa)™") - fry(as)
= fu,(a) — a1 fu, (a).
Thus, Lemma 2.1 yields fu,(a) € a1 fm, (a) + a3 fm,(a). 0
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3.2 Representability of matroids

3.15 Proposition and Definition (cf. [DW89, Proposition 3.1]).

Let F be a partial hyperfield, .: FF — F’ an embedding into a hyperfield F’ and
d: E" — F a map such that d(eqy,...,e,) = 0 if and only if {e;,...,e,} ¢ B.
Then the following statements are equivalent:

(a) For all e1,...,e, € E and 7w € S,
d(ex(1ys- - »€r(n)) = signm-d(e1,...,en), (3.2)

and for all ey, ...,en, fo € E

0¢e Z(—l)’i(d(eo, B e - d(eq, fares, ... en)). (3.3)

(b) The map d: UB(M) — F defined by d(0) := 0, d(—1) := —1 and

N

d([e1,...,en]) =d(e1,...,ep)

for all bases B = {ey,...,e,} of M is a homomorphism of partial hyper-
fields.

In particular, the condition in (a) is independent of the choice of ¢. If d satisfies
one (and therefore both) of the preceding conditions, we call it a Grassmann-
Pliicker map for M and F.

Proof. We first prove that (a) implies (b). Let ai,...,an—2,b1,b2,¢1,c0 € E
such that {a1,...,an—2,b;,¢;} € Bfori,j=1,2and {a1,...,an—2,b1,b2} ¢ B.
Setting fo =01, eg :=ba, €; :=¢;, i = 1,2, and €420 = qa;, i =1,...,n — 2 we
obtain by using (3.2) and (3.3) that

+(d(c1,c9,a1, ... an—2) - d(ba,b1,a1,...,an-2))
—u(d(ba,c2,a1,...,an—2)-d(c1,b1,a1,...,an_2))
+ u(d(b2,c1,a1, ... an—2) - d(co,bi,a1,...,an—2))
=+ (d(a1,...,an—2,b1,c1) - d(ay,...,an—2,b2,c2))
—u(d(ay,...,an—2,b2,c1) - d(ay,...,an—2,b1,c2)).

Using that ¢ is an embedding and Lemma 2.1, we get that

d(al, ceeyAp—92, bl, 01) . d(al, ey Ap—92, bg, 02)

. d(al, ceey Ap—2, bg, Cl)_l . d(al, ey An—2, bl,Cg)_l =1.
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3 Universal partial hyperfields of matroids

Therefore, disa multiplicative homomorphism.

To show that d is a homomorphism of partial hyperfields, let Hy, Ho, Hs, Hy
be four pairwise different hyperplanes containing a common hyperline L. We
choose a basis by,...,b,—2 of L and a; € H; \ L, i = 1,2, 3,4. Setting ey := ay,
e1 = as, €3 = a4, fo = as and e; := b;_o for i = 3,...,n we obtain

0 €+ u(d(as,as,b1,...,bp_2) d(ar,a2,b1,...,by_2))
—(d(ayr,aq,b1,...,bp—2) - d(as,az,b1,...,by_2))
+ u(d(a1,a3,b1,...,bp—2) - d(ayg,a2,b1,...,bp_2)).

Since Hi, Ho, H3, Hy are paarwise different {b1,...,b,—2,a;,a;} is a base of M

and thus d(bi,...,bp—2,a4,a5) #0 for all i,j =1,2,3,4, i # j.
Therefore, using (3.3) and the fact that ¢ is an embedding, we get

~ ~ [b17"')bn—27a17a2] : [bla"'vbn—25a37a4]
d(|Hy,Hs | Hy, Hy|) = d
(LH1, Hs | Ho, Ha) ([b17~.7bn—27a17a4] (b1, ba2,a3,a]
c1_ Zi <[b1,... ,bn_g,al,ag] . [bl,. . .,bn_g,ag,ad)
[bl, . ,bn_g,al,a4] . [bl, . ,bn_g,ag,ag}

1 — d([Hy, Ho | Hs, Hy)).

Hence, Lemma 2.5 and Proposition and Definition 3.4 yield that d is a homo-
morphism of partial hyperfields.

In order to prove that (b) implies (a), let d be a homomorphism of partial
hyperfields. First, let eq,...,e, € E. If {e1,...,e,} ¢ B, then (3.2) is trivially
satisfied. Otherwise it follows from [eq, ..., e,] = sign7 - [ex(1), - - -, €x(n)] for all
T e S,.

To show that d satisfies (3.3), let eg,...,en, fo € E, L = o({es,...,en}),
Hy=LVey, Hy:=LV foand H; = LV e;_5 for i = 3,4.

If Hy is not a hyperplane, then d(e;, f2,e3,...,e,) =0 for all i = 0,1, 2, which
implies that all the three terms of the sum in (3.3) vanish. A similiar argument
shows that this is also true if one of Hy, Hs, Hy is not a hyperplane. Therefore,
(3.3) is trivially satisfied in these cases.

Thus, let Hyi, Ho, Hs, Hy be hyperplanes. If they are pairwise different, then
{€0,-.,€i...,en} and {e;, fa,€3,...,e,} are bases of M for all i =0,1,2 and
thus

d(es,...,en, €0, f2) - d(es, ... ,en, e1,€2)
d(es,...,en,€0,€2) d(es,...,en €1, f2)
= d([Hy, Hy | Ha, Hy)) € 1 — d([Hy, Hy | Hs, Hy)
d(es,...,en,e0,€1) d(es, ..., en, f2,€2)
d(es,...,en,€0,€2) - d(es,... en, fa,€1)

:1—
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3.2 Representability of matroids

Hence,
2 .
0e Z(—l)’a(d(eg, cey Ciyeeyep) - d(eg, fa €3, ,ep)).
i=0

In the case that three of the hyperplanes are equal, each of the summands in
(3.3) vanishes, and therefore the inclusion is trivial.

If exactly two of the hyperplanes are equal, using Lemma 3.3, we can
assume without loss of generality that Hy, Ho #* Hs, Hy but Hy = Hs or
Hs = Hy, since (3.3) is invariant under cyclic permutation of ey, e1, ea. Hence,
[Hy, Hy | Hs, Hy] = 1 and thus

d(637"‘7e7’b760761)’d(€37"'7en7f2762) -1
d(637"‘7en760762)‘d(€37"'7€n7f2761> '
Since d(e1, ..., e,) - d(eg, f2,€3,...,€,) = 0, this implies (3.3). O

3.16 Theorem and Definition. Let M be a matroid and F' a partial hyper-
field. Then the following statements are equivalent:

(a) There exists a family of hyperplane functions for M and F,
(b) there exists a Grassmann-Pliicker map for M and F,
(¢) there exists a homomorphism U©®) (M) — F of partial hyperfields.

If M satisfies one (and therefore all) of the above conditions, we call M is
representable over F'.

Proof. First, (a) or (b) imply (c). This follows by restricting the homomorphism
which we obtain from Proposition and Definition 3.14 or Proposition and
Definition 3.15 to the universal partial hyperfield U (M) of M.

Conversely, Proposition 3.2 implies that we can extend every homomorphism
U (M) — F of partial hyperfields to a homomorphism U*(M) — F and
UB(M) — F of partial hyperfields. Thus, Proposition and Definition 3.14 and
Proposition and Definition 3.15 yield that (c) implies (a) and (b). 0

3.17 Corollary. Every matroid M is representable over its universal partial
hyperfield U (M). Moreover, if M is representable over a partial hyperfield F
the resulting homomorphism of partial hyperfields U®) (M) — F factors over
the universal homomorphism idUm)( M) from this representation.

Proof. Follows directly from Theorem and Definition 3.16. O
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3 Universal partial hyperfields of matroids

3.18 Remark. Theorem and Definition 3.16 generalizes the classical theory of
representability of matroids over fields as well as the theory of representability
of matroids over partial hyperfields by Baker and Bowler in [BB19|.

In particular, we obtain a homomorphism of partial hyperfields U(O)(M ) — F
for every field F' over which M is representable.

The characterization of classes of projectively equivalent representations of
matroids over fields was already done by Dress and Wenzel in [DW89] and
inspired our definition of the addition of the universal partial hyperfield of a
matroid.

3.19 Lemma. Let F’ be a partial hyperfield such that 1 —1 = {0} in F'"
and f: I — F’ be a homomorphism of partial hyperfields. Then we have
ker,f \ {1} C F'\ F(F). In particular, f is injective if F' is a hyperneofield.

Proof. Let a € ker,f N F(F). Then there exists a b € F such that b € 1 — a.
It follows that f(b) € 1 — f(a) =1 —1={0}. Thus, f(b) =0 and Lemma 2.5
implies b = 0. Hence, Lemma 2.1 yields that a = 1. O

3.20 Lemma. Every partial hyperfield F' such that F' = {—1,0, 1} is isomorphic
to UO, Fg, S, W, FQ, or K.

Furthermore, if F, F" € {Ugy,F3,S,W,F9,K} and f: F — F’ is a homomor-
phism of partial hyperfields, then f is uniquely determined and one of the
conditions F' = F', F = Uy, F' =K, or (F,F’) € {(F3, W), (S, W)} is satisfied.

Proof. Let F be a partial hyperfield such that F' = {—1,0,1}. By Remark and
Definition 2.3, the addition of F is completely determined by the sets (1—1)\ {0}
and (14+1)\ {0}. If 1 = —1, then 1 —1 = 141 and we have either 1+ 1 = {0}
or 14+1={0,1}. In the former case F' = Fy and in the latter case F' = K.

Now, let 1 # —1. Ifae€1 -1, weget —a€ —1+1=1—1 by Lemma 2.1.
Thus, 1 —1 = {0} or 1 — 1 = {—1,0,1}. Further, Lemma 2.1 implies that
lel—1lifandonlyiflel+1.

Therefore, if 1 —1 = {0}, we have the two possibilities 1 + 1 = (), which
implies F = Uy, and 1 + 1 = {—1}, which implies F' = F3. Otherwise, either
l1+1={l}and F=S,or1+1={-1,1} and F = W.

To finish the proof, let F,F' € {Up,F3,S,W,Fy,K} and f: F — F’ be a
homomorphism of partial hyperfields. Since, f(0) =0, f(1) =1and f(-1) = —1,
f is uniquely determined.

"Note that any hyperfield F’ with this property is already a field, since for any a,b € F'*
such that b€l —awehave l —a=1+(-1+4+b)=(1—-1)+b={b}.
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Clearly, if —1 = 1in F, —1 = 1 in F’ too. In the case —1 # 1 in F but
—1=1in F';1+1# 0 in F implies 1 +1 ={0,1} in F’. Thus, in this case we
have ' = Uy or I’ =K.

Otherwise, —1 # 1 in F if and only if —1 # 1 in F” and f is the identity map
on the set {—1,0,1}. Finally, such an f can exist if and only the set 1 —a of F,
a € {—1,1} is included in the corresponding set of F”, which proves our claim.p

3.21 Corollary. A matroid M is binary if and only if U©)(M) = U, or
U (M) = Fy, and regular if and only if U®) (M) = U.

Proof. By Tutte’s representation theorem (|Tut65, Th. 5.1.1]) and Theorem
and Definition 3.16, M is binary if and only if there exists a homomorphism
f: UO(M) — Fy. Further, if M is binary, we have that U (M) = {-1,0,1}
(as otherwise M would contain four pairwise different hyperplanes over a common
hyperline).

Thus, Lemma 3.20 implies that M is binary if and only if U©) (M) = Uy or
U© (M) = Fy. Since there are no homomorphisms between fields of different
characteristics, we obtain, using Lemma 3.19, that M is regular if and only if
the former case holds. 0

3.3 Projective planes

Throughout this section let IT = (P, H) be a projective plane, i. e., a connected,
modular combinatorial geometry of rank 3. We will coordinatise IT as in [Pic]
and use the extended radical introduced in [Kal89].

For a quadrangle (o,u,v,e) of II, i. e., {o,u,v,e} is a circuit of II, we set
F = (oVe)\(uVwv). Forp e P\ (uVv) weset p=:(x,y)if (pVv)N(oVe) = {z}
and (pVu)N(oVe)={y}. For H e H with ve H weset H=:[oo] if uec H,
and H = [z] if x € H for x € F.

For H € H such that v ¢ H but o € H we set H =: [m, 0] if HN[1] = {(1,m)}.
Each of these lines intersects u V v in a point different from v and we set
(uVwv)N[m,0] = (m) for all m € F.

Finally, for all other H € H we set H =: [m,c| if HN (uV v) = (m), and
HN[0] = (0,¢). Furthermore, let 0 := o0 and 1 := e. We define a ternary
operation T: F3 — F by

T(m,z,c) =y < (x,y) € [m,(]

for all z,y,m,c € F. The tuple (F,T) is called a planar ternary ring coordi-
natising 11, or a ternary field coordinatising II.
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3 Universal partial hyperfields of matroids

We further set a - b :=T(a,b,0) and a + b :=T(1,a,b) for all a,b € F. Then
(F,+) and (F™*,-) are loops with neutral elements 0 resp. 1. We further denote
by a — b the unique element such that (a —b) +b = a for all a,b € F.

Definition. The radical R = R(F,T) of (F,T) is the normal subloop of F*
generated by the elements r € F* for which there exist a,b,c,d,m,n,x,u € F
such that a # b, m # n, x # u and T'(m,u,c) = T(n,u,d) that satisfy one of
the following equations

T(m,z,a) — T(m,z,b) =r-(a—0b),
T(m,z,c) —T(n,z,d) =r-[(n—m)(u—x).

Moreover, the extended radical R, = Rq(F,T) is the normal subloop of F*
generated by R(F,T) and the elements r € F* for which there exist z,y,z € F*
that satisfy one of the following equations:

x(yz) =r-(zry)z, zy=r-yz.

3.22 Lemma. Let (F,T) be a planar ternary ring. For all « € F* and all
non-empty subsets L, K, M C F satisfying R-K =K, R-L=L R-M =M
we have

() L+ K=K+ L=K— (L),
(b

(c
d

(e

Proof. First note, that [Kal88, (2.8) Korollar| directly yields (b), (c), and the
first equation of (a). Moreover, [Kal88, (2.2) Lemma and (2.4) Lemma| imply
the last equation of (a).

Further, it follows from [Kal88, (2.2) Lemmal that R[b— (—a)] = R[b+ a] and
R[(—c)d] = R[c(—d)] for all a, b, c,d € F. Substituting b for 0, 1 for ¢, and d for
—a and using that R- M = M, we get the first two of the three equations of (d).

Since —Re = R[—e] by [Kal88, (2.3) Satz| for all e € E, the third equation is
implied by substituting e for —a and using R- M = M.

Finally, if x € aM, there exists an m € M such that = am. By definition
of R,, there exists an r € R, such that r - (ma) = am. Therefore, we obtain
x € r(ma) € Ry(Ma) C Ma. Using a similar argument, one shows that
aM C Ma, which completes our proof. O

L+ (K+M)=(L+K)+ M,
a(L+ K)=aL +aK,
M[(=1)(=a)] = M[—(=a)] = Ma = —M[—d],

)
)
)
) Ma=aM if R,- M = M.
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3.3 Projective planes

3.23 Proposition. Let (F,T) be a planar ternary ring. The set {R,x |z € F'}
together with the partial hyperoperation @ defined by

Rox ® Ryy = {Rqz | z € F such that R,z C Ryz + R,y},

and the multiplication defined by Rqz - R,y = R,(xy) for all z,y € F is a
hyperfield, denoted by F/R,.

Proof. We will first prove that F/ R, is a partial hyperfield. If we have
R.z € Ryx ® Ryy for z,y,z € F', Lemma 3.22 yields that

Ryz C Ryx + Ryy = Roy + Ry,

Thus, R,z @ Ryy C Ryy & Ryz, which proves (PH1).

Since Rq - 0+ Ryz = {0} + Rqx = {Rqz}, F/i R, satisfies (PH2). In order to
prove (PH3), let z,y,z € F such that R,z € R,z ® Ryy. Using Lemma 3.22,
we get

R,z € Ryx + Roy = Roy + Row = Ryy — Ra(_x)-

Therefore, there exist r,s € R, such that z = sy — r(—x). It follows that

z 4 r(—x) = sy, and thus R,y C R,z + R,(—x). Hence, Ry € Ryz @ Ro(—2x).
By definition of the extended radical, ({ R,z | z € F*},-) is an abelian group,

R, - Rox = Rgz, and {0} - Ryx = {0} for all x € F, which directly yields (PH4).
To show (PH5), let x,y,z € F. Then Lemma 3.22 implies that

Rox(Ryy + Ryz) = Rox - Ryy + Rax - Ryz = Ro(wy) + Ra(x2).

Thus, Ryx(Rey ® Ryz) C Ry(zy) ® Re(x2).
Finally, in order to show that F/ R, is a hyperfield, we have to show that

(Rax ® Roy) ® Raz C Rox @ (Roy ® Ry2)

for all z,y,z € F (then (PH1) implies that both sets are equal). Let w € F
such that Ryw € (Rex @ Ray) ® Rgz. Then there exists a v € F, such that
Row € Rov ® Ryz and Ryv € Rox @ Ryy. Applying Lemma 3.22, we get

Row C (Ryx + Ray) + Roz = Ryx + (Ray + Ry2).
We can conclude that there exist 7, s,t € Ry, such that w = rxz + (sy +tz). This

implies that for u := sy + tz we have Row C Ryx + R,u and Ryu C Ryy + Ry z.
Thus, Ryw € Ryx @ (Roy @ Ryz). O
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3 Universal partial hyperfields of matroids

3.24 Theorem. For every projective plane IT and any planar ternary ring (F,T)
coordinatising II the family (fg)men of functions fr: P — F/ R, defined by
fu(a)=0for alla € H € H and

Ro(T(m,z,c)—y) it H=[m,c], a=(z,y),

) Ra(m —n) if H=[m,c|, a=(n),
Ju(a) = Ry(x —d) it H=1[d], a = (z,y),
R, else,

for all H € H and a € E \ H, is a system of hyperplane functions for II
and F/ R, such that the map f: UO(II) — F/LR, defined by f(0) = {0},
f(=1) = R4(—1), and

F([Hy, Ho | H3, Hy]) = frr, (as) - frn (aa) ™" - fiz(as) - fp(ag) ™
forall Le L, H; o, H; € Hy, a; € H; \ L, 1= 3,4, such that Hy, Hy # Hs, Hy,

is an isomorphism of partial hyperfields.

Proof. Using Proposition and Definition 3.14, it suffices to show that f is an
isomorphism.

First, let I be the projective plane of order 2. Since II is binary and non-
regular, it follows from Corollary 3.21 that U (IT) = Fy. Further, F' = {0,1},
and (F,+) is a loop. This implies R, = {1}, and using Lemma 3.20 that
F/R, = TF,.

For the rest of the proof, let IT a projective plane of order strictly greater than
2. By [Kal92b, Theorem 3| and since Lemma 3.22 yields R,[(—1)(—x)] = Rz
for all x € F, f is a multiplicative isomorphism.

Furthermore, using our coordinatization, we obtain for any x € F*

F({[oel, [01] [1], [2]]) = fio (@) fioy (1) ™" = Raz,

as in [Kal92b, Theorem 3|. Therefore, using Lemma 2.5, it suffices to show that
f(1—[[oc], [0] | [1], [x]]) = Ra® Ra(—=) in order to prove that f is an isomorphism
of partial hyperfields. It follows from Proposition and Definition 3.4) and the
fact that f is surjective that

1 — [[oc], [0} [ [1]; [#]] = {[[oc], (1] O], [y]] | y € Raz}-

Further, applying Lemma 3.22 yields that for any y € R,z we have

F([[oe], 1[0, [y])) = finy () fy(0) ™! = Ra(1 — )
C Ry — Ryy = Ry + Ra(_y) =R, + Ra(—l').

52



3.4 Matroids of rank 2

Converserly, if z € F* such that R,z C R, — Ryx, we have Ry, C Ryz + Rqx.
Thus, there exist r, s € R, such that 1 = rz + sx. Therefore, rz = 1 — sx, which
implies

Raz € Ra(1 — sz) = f([[oc], [1][[0], [sz]]) € f(1 = [[oc], [O] | [1}; [2]])- 4

3.25 Proposition. The universal partial hyperfield of the projective geometry
PG(d, F) of dimension d > 2 over a skew field F is isomorphic to F/.F*', where
F*' is the commutator subgroup of F™*.

Proof. First, note that by setting T'(m, z,c) := mx + ¢ for all m,z,c € F we
can regard F' as a planar ternary ring whose extended radical R, is equal to
F*.

For each hyperplane H of PG(d, F) we fix a left linear form ®p such that
®,'({0}) = H and set fyr: E — FLF¥, e Oy(e)F*. Clearly, (fu)men is a
system of hyperplane functions for PG(d, F) and F/F*'.

It follows from the proof of Theorem and Definition 3.16 that the underlying
multiplicative homomorphism of the induced homomorphism of partial hyper-
fields f: UO(PG(d, F)) — F/,F* is the same as the group homomorphism
®: TO(PG(d, F)) — F*/F* induced by the (®5)mez via [DW90, Proposition
1.5].

Moreover, [DW90, Theorem 3.6] yields that ® is bijective and thus also f.
Finally, [DW90, Lemma 4.5| and Proposition and Definition 3.4 imply that f is
an isomorphism. O

3.4 Matroids of rank 2

In his PhD thesis ([Sem98]) Semple proved that for all k& € Ny the uniform
matroid Us ;43 on k + 3 points of rank 2 is representable over the partial field
Uy, but is not representable over Uy for all k' € Ny, where k' < k.

We will extend this result to infinite uniform matroids of rank 2. Further, we
will prove that the universal partial hyperfield of a uniform matroid of rank 2
that has at least 3 points is isomorphic to U,_3, where « is the cardinality of
the set of points.

Let M = Us g be the uniform matroid of rank 2 on the set E, which contains
at least 3 elements named 00,0,1. Let A := E'\ {00,0,1} and Q(A) be a purely
transcendental extension of Q.
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3 Universal partial hyperfields of matroids

3.26 Proposition. Let f: £ — Q(A)? be the map defined by f(co) := (1,0)7
and f(e) = (e,1)T for all e € E\ {o0}. Then the map f: U0 (Uy ) — Q(A)
defined by f(0) =0, f(—1) == —1, and

. __det(f(a1), f(a3)) - det(f(a2), f(a4))
f([H1,Hy | H3, Hy)) = det(f(a1), f(aq)) - det(f(az), f(as))

for all hyperplanes H; = {a;}, i = 1,2,3,4, of Uy g such that Hy, Hy # H3, Hy
is an embedding of partial hyperfields whose image is equal to Uy 43.

Proof. First, we define fi,): £ — Q(A) by frsy(e) = det(f(a), f(e)), a € E.
Using Tutte’s representation theorem (|Tut65, Th. 5.1.1]), we get that (f{a})acE
is a system of hyperplane functions for Us i and Q(A). Thus, Proposition and

Definition 3.14 implies that f is a homomorphism of partial hyperfields.

Moreover, straightforward computations show that fi,3(a) =0, fiy(b) =1,
fipy(00) = =1, and fyy(c) =b—cforalla € E, b,c € E\{oo}, b # c. It follows
that

F([{oo}. {a} b} {e}) = == (3.4)
for all paarwise different a,b,c € E '\ {oo}, and
(a=c)(b—d)
Fah P U AN = (=5 —g) (3.5)

for all paarwise different a,b,c,d € E'\ {oo} Hence, the definition of the inner
Tutte group and Lemma 3.3 imply that f(F) C Uy 4y, where F = UON(U g).

Substituting 0 for a and 1 for b in (3.4) yields ¢ € f(F) for all ¢ € A, and
replacing b by 0 in (3.4) yields a~ Ya—c) e f(F) for a,c € A, a# c. Therefore,
F(F) =Ugqy.

To prove that f is an embedding, we will show that there exists a ho-
momorphism g: Ugyy — F such that g oj‘ = idp. For z,y € F we have
|z +y)| < |f(x)+ f(y)] <1, since Uyay is a partial field. Thus, [z +y| <1
because f is injective.

Suppose = +y = () but |7(z) 4+ f(y)| = 1. This would yield the contradiction
l9(F (@) + F ()| < 19(f(2)) + 9(J(y))] = |z +y| = 0. Hence, | is strong and
thus an embedding by Proposition 2.14.

We define g by ¢(0) :=0, g(—1) := —1 and

—

g(a) = [{oo}, {0} [ {1}, {a}],
gla=1) = =[{oo}, {1} [{0}, {a}],
9(b—c¢) = =[{oo}, {c} [ {0}, {b}] - [{oo}, {0} [ {1}, {c}]
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3.4 Matroids of rank 2

for all a,b,c € A, b # c¢. By using Lemma 3.3, we get

9(b—a) = =[{oo}, {a} [ {0}, {b}] - {oo}, {0} [{1}, {a}]
= [{oo}, {6} [{0}, {a}] - [{o0}, {0} [{a}, {b}] - [{oo}, {0} | {1}, {a}]
= [{oo}, {6} [{0}, {a}] - [{oo}, {0} [ {1}, {b}] = —g(a — D).
Thus, Lemma 2.18 implies that g is a well-defined multiplicative homomorphism.
Moreover, for a € A, it follows from Lemma 3.3 that

gla—1) = —[{oo}, {1} [ {0}, {a}]
= —[{oo}, {1} [{0}, {a}] - [{oo}, {0} [{1}, {1}],
9(1 —a) = [{oo}, {1} [{0}, {a}]
= —[{oo}, {a} [{0},{1}] - {oo}, {0} [{1}, {a}].
Therefore, all a,b € E'\ {c0,0}, a # b, satisfy

g(a =b) = —[{oo}, {0} [{0}, {a}] - [{oo}, {0} | {1}, {b}]. (3.6)

Since g and f are both multiplicative homomorphisms, it is sufficient to show that
g(}([Hl, Hy | Hs, Hy))) = [H1, Hy | Hs, Hy| for all pairwise different hyperplanes
H; ={a;}, a; € E, i=1,2,3,4, of Uy g. Using Lemma 3.3, it remains to prove
this for the following cases:

First, let a; # 00,0 for i = 1,2, 3,4. It follows from (3.5) and (3.6) that

e )

_ [{oo}, Hy [{0}, Hs] - [{oo}, Ha [{0}, Hi]
’ [{00}7 Hy | {0}7H3]

B [{OO}>H1 | {0}7H4]
= [Hy, Ho | Hs, Hy).

Next, if a; = oo and ag, a3, a4 # 0, (2.4) and (3.6) imply that

ot =0 (550) = 5 oy

= [Hy, Hy | Hs, Hy).

Further, let a; = 0 and ag, as, as # co. By using (3.5) and (3.6), we get

g(F([Hy, Hy | H3, Hi])) = g <a3(a2 - a4)>

as(az — as)

[{oo}, {0} [{1}, H3] - [{oo}, Ha | {0}, Hi]

[{oo}, {0} [ {1}, Ha - [{oo}, H2 [{0}, H3]
= [Hy, Ho | H3, Hy).
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3 Universal partial hyperfields of matroids

If a3 = oo and ag = 0, it follows from (3.4) and (3.6) that

<“4> _ oo}, {0} {1}, Hy]
az ) [{oo}, {0} [ {1}, H3]
= [Hla HQ ‘ H3, H4]

Finally, let a; = oo and a3 = 0. Then (3.4) and (3.6) imply that

g(F((Hy, Hy | Hs, Hy))) = g <a2 - a4> _ (_a4 - a2>

[{oo}, H2 [ {0}, Ha - [{oo}, {0} | {1}, Ho]
[{oo}, {0} [ {1}, H]
= [Hy, Hy | Hs, Ha).

~

Therefore, g o f = idp, which completes our proof. O

3.27 Theorem. For every cardinal number x > 3 and every set F of cardinality
 the universal partial field of Us g is isomorphic to U, _3.

Proof. We choose three pairwise different elements co,0,1 € E. Using Propo-
sition 3.26, we obtain an embedding f: U (U z) — Q(E \ {00,0,1}) whose
image is equal to Up\(o0,0,11}- Using Corollary 2.16, we can conclude that
VO (Uy ) U{E\{0c,0,1}}- Hence, Corollary 2.22 completes the proof. o

3.5 Matroids of rank greater or equal to 3

Using the results of the previous section, we will prove that the universal partial
hyperfield of a matroid is the quotient of an A-regular partial field for a suitable
set of sets A. We will use this method to compute the universal partial hyperfield
of the ternary affine plane AG(2,3) and the ternary Reid geometry Ry.

Definition. We denote by £ the set of those hyperlines of M that are contained
in at least four distinct hyperplanes of M, and for each L € LT we denote by

’H(L3) the set of triples of pairwise different hyperplanes containing L.
Further, we call a map K: LT — Urert ’Hf) a system of hypercoordinates

for M if K(L) € H(L?') for all L € LT, write (cor,0r, 1) for the elements of the
triple K(L), L € LT, and set A(K) .= {Ap | L € L1}, where

A = {(L, H) | HeH; \ {OOL,OL, 1L}}.
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3.28 Theorem. For every system of hypercoordinates K: LT — [J; ¢+ 7-{(3)
for M the universal partial hyperfield of M is isomorphic to U 4y AR (K), Where
R(K) is the subgroup of UZ(K) generated by —1 if M has the Fano matroid or
its dual as a minor, and the elements

|H1 Hel|x - |H2 Holx - |H2 Halx - |H3 Hr|k - |H3 Hs|x - |H1 Hs|k
|H1 Hyl|x - |H2 Hel|x - |H2 Hr|x - |H3 Halx - |H3 Hs|x - |H1 Hs|k

for hyperplanes Hy,..., Hg satisfying the conditions (i) - (v) of (CR6), where
|H H'|x = det(fr(H), fL(H'))® and

(1,0)7 if H=o0p,
0,1)T if H=0p,

fny = O =0
(1,1) if H=1p,
(L, H),1)T  else,

for all H,H' € H,, H# H', L € L.

Proof. For every hyperline L and every hyperplane H of M such that L C H
theset HY :=s(H \ L)isa hyperplane of s(M/L). Thus, applying Corollary 2.22
and Proposition 3.26, the map f; : U® (s(M/L)) — U (k) defined by F(0) =0,

fL(— ) == —1, and

|Hy Hs|xc - |H2 Hal
|Hy Hylx - [H2 Hs|k

o ([HE Hy | H HE]) =

for all Hy,Hy,H3,Hy € Hy, L € ﬁ(M), such that Hy, Ho 7é Hs, Hy is an
embedding of partial hyperﬁelds

Let F:= [[cp+ UO (s(M/L)) and vf,: UQ)(s(M/L)) — F be the canonical
injection, L € LT. Using Corollary 2.12, there exists a unique homomorphism
of partial hyperfields f: F — U 4(k) such that f oLy, = }’L for each L € LT. Tt
follows from Corollary 2.12 and Proposition 3.26 that

FE) = | FL0OsM/L) = |J Uga,y = Uagey-

LeLt LeL+

Thus, f is surjective. Since we have Uga,1NU4,,3 = {-1,0,1} by construction
of A(K) for all hyperlines L, L’ of M such that L # L', and —1 # 1 in F,
Corollary 2.12 further yields that f is an embedding. Hence, Proposition 2.14
implies that f is an isomorphism.

8Since we always have L = H N H' in this setting the hyperline L on the right side can be
always inferred from H and H'.
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3 Universal partial hyperfields of matroids

Let R(M) be the subgroup of F* generated by —1 if the Fano matroid or its
dual is a minor of M, and the elements of the form

[ H1L3 ’ H2L3

HGLB,Hé:S] . |:H2Ll’H?{fl

H4LlaH7L1} . [H?)L2,H1L2

Héa ’ Hélz}

for Hy,...,Hg € H and Ly, Lo, L3 € L satisfying the conditions (i) - (v) from
(CR6). Since f maps R(M) to R(K), we get FLR(M) = U i) AR(K) by
applying Corollary 2.17.

To complete the proof we will show that U®) (M) = FLR(M). Combining
Proposition 3.6 and Proposition 3.10 we obtain that for each L € £T the map
gr: UO(s(M/L)) — UO (M), defined by g1,(0) =0, gr(—1) := —1, and

g ([HE, HY | HY, HY)) = [Hy, Hy | H, H]

for all Hy,Hs, H3, Hy € Hj, such that Hy, Hs # Hs, Hy is a well-defined
homomorphism of partial hyperfields.

Using Corollary 2.12, there exists a unique homomorphism of partial hy-
perfields g: F — U© (M) such that g oy, = gr, for all L € £*. Tt follows
immediately from the definition of the inner Tutte group that its multiplica-
tive kernel is equal to R(M). Hence, Proposition 2.15 implies that the map
g: FLR(M) — UO(M) defined by §(0-R(M)) == 0, §((~1) - R(M)) = —1,
and

g ([H{,Hy | Hy, Hy] - R(M)) = [Hy, Hp | H3, Hi]

for all Hy, Ho, H3, Hy € H, such that Hy, Hy # Hs, Hy, L € LT, is a bijective
homomorphism of partial hyperfields.

To show that § is an isomorphism it suffices to prove that g~
phism of partial hyperfields. Clearly, ! is a multiplicative homomorphism.
Let a,b € T (M) such that b € 1 — a. Then Proposition and Definition 3.4
implies that there exist L € £ and pairwise different H;, Ho, H3, Hy € H,
such that a = [Hy, Ho | H3, Hy] and b = [Hy, H3 | Ho, Hy]. It follows that

1'is a homomor-

g b) = [H, HY | HY Hf] - R(M)
€ R(M) - [Hf, HY |HY H] - R(M) =1 -5 (a).

Thus, ¢~ is a homomorphism of partial hyperfields by Lemma 2.5. O

Definition. For any set X, n € N, and any Y C X" such that (z1,...,2,) € Y
implies (21, .-, Trpn)) € Y for all m € Sy, we call an equivalence relation ~
on'Y a similarity relation if for all (z1,...,2,), (Y1,...,yn) €Y, and w € S,

(xla v a'xn) ~ (yla v ’yn) = (xﬂ(1)7’ : 'axw(n)) ~ (yﬂ'(l)7 s 7y7r(n))
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3.5 Matroids of rank greater or equal to 3

Clearly, any relation ~ on Y generates a similarity relation =, which is defined
by (x1,...,2n) = (Y1,...,Yn) for (z1,...,2,), (y1,...,yn) € Y if there exists a
7 € Sy such that (zr(1),--+,Trm)) = (Y1,---,Yn), where = is the equivalence
relation generated by ~.

We further call a similarity relation =~ on ’HI a congruence relation if for all
(Hy, Ho, Hs, Hy), (HY, H}, H}, H}) € Hy, (Hy, Ho, Hs, Hy) ~ (H}, Hy, H}, HY})
implies that [Hy, Hs | Hs, Hy| = [HY, Hy | Hy, H}].

3.29 Proposition and Definition ([DW90, Theorem 2.9]).
The relation ~ on HJ defined by (Hy, Ha, Hs, Hy) ~ (H}, H}, Hj, H}) for all
(Hy, Ho, H3, Hy), (HY, Hy, H, H}) € H if there exists a Z € H such that

() My Hi # Nizy 7,
(ii) for all i =1,2,3,4 we have H; = H or ;N H/=H,NZ=H/NZ € L,

generates a similarity relation that is a congruence relation, called projective
equivalence, which is denoted by z.

3.30 Corollary. Let K: LT — Urert ’Hf’) be a system of hypercoordinates
for M, A’ be a set of sets, and p: A(K) — A’ be a map such that

R, = {(A4, A’) € AK) x A" p(A) C A’ and e A—>Aisa bijection}

is left and right total relation, and for all (L, H;), (L', H]) € A(K) such that
o(L,H)) = (L' HY)), = 1,2, we have

(OOL, OL7 1L7 Hl) R (OOL’a OL/v 1L/7H{)7

(OOL7 H17 0L7 HQ) ?\C (OOL’a Hi? 0L’7 Hé)

Then the universal partial hyperfield of M is isomorphic to Uy Lp(R(K)),
where ¢: U 4x) — Uy is the homomorphism of partial hyperfields from Propo-
sition 2.21, defined by ¢(0) := 0, p(—1) := —1, ¢(a) = ¢(a), p(a—1) = p(a)—1,
@b —c) == p(b) —p(c) for all a € A(K) and b,c € A € A(K), b+# c.

Proof. First, note that if (Hy, Ho, Hs, Hy), (H}, H}, Hy, H;) € H] are projec-
tively equivalent, we have
|H1 Hs|x - |Hy Ha|c |Hi Hjlx - |[Hy Hglx
|H1 Halxc - [H2 Hslxc  [Hy Hi|xc - [Hy Hylxc

e R(K). (3.7)

This follows from Proposition and Definition 3.29, since if Z € H such that
L= Hi # iy H = L', and for all i = 1,2,3,4 we have H; = H! or
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H,NZ =H/NZ = L; € L, we can assume without loss of generality that
Hy = Hj using Lemma 3.3 and the proof of Theorem 3.28.

Set Ly := Lo, Ly == L/, L3 = L, H; == L; vV Ly, for {i,j,k} = {1,2,3},
HZ+3 = L; V L3, and Hz+6 .= L;V Ly fori=1, 2 3.

Then Hy,...,Hy satisfy the conditions (i) - ( ) of (CR6). Therefore, as
H H fOI‘Z—1,27 H4—H3, H7—H4, H3 HQ, H5 HS,ngHi, and
Hg = Hy, (3.7) is implied by Theorem 3.28.

Moreover, Proposition 2.21 yields that ¢ is an epimorphism and ker,® is
generated by the elements ab~! and (a — 1)(b — 1)~! for all a,b € A(K) such
that ¢(a) = ¢(b) and the elements (a — b)(c —d)~! for all a,c € Ap, b,d € Ay,
L,L' € L7 such that p(a) = ¢(c) and ¢(b) = p(d).

For a = (L,H), b= (L', H) € A(K) such that ¢(a) = ¢(b), and ¢ = (L, Hy),
d=(L,Hy) € Ap, e = (L',H}), f = (L', H}) € Az such that p(c) = ¢(e) and
o(d) = ¢(f), where L, L’ € L, we obtain using (3.7) and (3.4) from the proof of
Proposition 3.26 that

a _ |oop 1pfk - |0p H - Joors H'|kc - [0 1|k

= e R(K),
b |OOL H|](;’0L ].L‘]C'|OOL/ 1L’|IC"OL’ Hl|]c ( )

a—1 _ |OOL OL‘IC . |1L H‘)C . |OOL/ H/|]C . ylL/ OL’|IC

b—l ’OOL H|]C’1L 0L‘]C'|OOL/ OL’|/C"1L’ Hl|]c

(C— d)e _ ’OOL OL‘IC . |H1 HQ‘]C . ’OOL/ Hé‘}c . ’H{ OL”IC
cle=f)  [oor Halk - [Hy Oplk - oor Oprlic - [Hy Hlxc
Hence, ker,p C R(K). Therefore, it follows that ker.(mw o ¢) = R(K), where

m: Ug — Uy k@(R(K)) is the canonical projection. Thus, our proof is com-
pleted by applying Corollary 2.16. O

= R(K)a

€ R(K).

3.31 Lemma. Let M be PG(2,3) \ U or PG(2,3) \ (UU{p}) \ {w}), where
U= (1,0,0)TF3 + (0,1,0)TF3, w := (1,1,0)TF3, p :== (~1,—1,1)F3. Further,
let 0 := (0,0,1)TFs.

Then (Hy, Ho, Hs, Hy) and (Hy, Hs, Hy, Hy) are projectivly equivalent for all
{Hl,HQ, Hs, H4} = 7‘[09 such that Hy N {w,p} # 0.

Proof. Let E be the ground set of M and e = (1,1,1)TF3. To reduce the
notational overload we will do all of our computations in PG(2, 3) instead of M.

Clearly, H| = 0+ w and p,e € Hy. Since our claim is invariant under cyclic
permutation of the hyperplanes Hs, Hs, Hy, we can assume without loss of
generality that

Hy =0+ (1,0,0)TFs, H3 =0+ (0,1,0)F3, Hy = 0+ (1,—1,0)TFs.

9Since the hyperlines of M are of the form {e}, e € E, we often write e instead of {e}.
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3.5 Matroids of rank greater or equal to 3

Further, let

Ky =e+(1,0,0)"F3, K3 = e+ (0,1,0)"F3, Ky :=e+ (1,—1,0)TFs,
Zy =w+(0,1,1)TFs3, Zy == w+(1,0,1)TFs.

By straightforward computation, we obtain

(=1,0,1)"Fy € Ho, K4, Z1, (0,1,1)"F3 € Hj, Ko, Z1,
(1,-1,1)"F3 € Hy, K3, 71, (1,0,1)'F5 € Hy, K3, Zo,
(0,—1,1)"Fy € Hs, K4, Zs, (—1,1,1)"F3 € Hy, K>, Zo.

It follows that

(Hy, Hy, H3, Hy) X (Hy, Ky, Ko, K3) % (Hy, Hz, Hy, Hy). O

3.32 Proposition. The universal partial hyperfield of the ternary Reid geome-
try Ry, i. e., the combinatorial geometry obtained from PG(2,3) by removing
four points, of which exactly three of them are collinear, is isomorphic to F3.1°

Proof. We continue to use the notations from the previous lemma throughout
this proof and set Ry = PG(2,3) \ (U U {p}) \ {w}). Further, let oo, := Hj,
0, := Hs, 1, := Hs, a, := Hjy.

For every f € E'\ {0} let Z; be the restriction of a hyperplane of PG(2, 3)
to Ry that contains (o V f) N U but not p. Then three of the hyperplanes
{Hy,Hy, H3, H} intersect Zy and therefore (00,,0,, 1o, ao) 2 (00f,0¢,1¢,ay)
for suitably chosen {oof,0¢,1¢,ar} = Hy. Setting K(f) :== (ooy,0¢,1¢) for all
[ € E defines a system of hypercoordinates K: LT — ¢+ ’H(Ls) for Ry.

Further, let ¢: A(K) — A’ be the map defined by ¢(af) = a for all f € E,
where A’ := {{a}}. By construction, ¢ satisfies the precondition of Corol-
lary 3.30. Therefore, U®)(Rg) = U Lp(R(K)), where ¢: U 4(c) — U is the
epimorphism of partial hyperfields defined by ¢(0) := 0, p(—1) := —1, as well
as ¢(ay) =a and ¢(ay — 1) :=a—1forall f € F.

Moreover, it follows from Lemma 3.3, Proposition and Definition 3.4 and
Lemma 3.31 that for @ := ap(R(K)) we have a®> = —1 and 1 —a = {a~'}. Hence,
UO)(Ry)" is a cyclic group.

0Together with Lemma 3.19 we obtain an alternate proof for the Lemma of Reid, i. e., the
ternary Reid geometry is representable over a field F' if and only if F' has characteristic 3,
cf. [Kun90, Lemma (2.2.1)]
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Now, let e; := (1,0,1)TF3 and (in addition to the hyperplanes Hy, Hy, Hj,
Hy, 7y, Z3 from the proof of Lemma 3.31)

Gi=e1+(1,1,0TF3, Gy :=e; + (0,1,0)TF3, Z3 :=e+ (1,—1,0)F3.
Straightforward computation yields

w € Hi,Z1,Z5, (1,0,1)"F3 € Hy, G2, Z5, (0, —1,1)"F3 € H3, G1, Zo, Zs,
as well as e € Hy, G2, Z3 and (—1,0,1)"F3 € Hy, Zy, Z3. Therefore, we obtain

(Hy, Hy, Hy, Hy) X (21, Go, Gy, Hy) * (Ha, Hy, H3, Hy).

Thus, it follows from Lemma 3.3 that a> = 1 and hence @ = @> = —1. This
yields 1 —1 = {—1} and 1 # —1. Finally, the proof of Lemma 3.20 implies our
claim. 0

3.33 Lemma and Definition. The sizth roots of unity partial field is the
restriction of C to the group of sixth roots of unity and is denoted by /1.1% If
¢ € C is a primitive sixth root of unity, the addition of v/1 is characterized'? by

0 if i =2,3,4,
1-¢'=<¢{0} ifi=0,
{¢7 ifi=1,5

foralli=0,...,5.

Proof. Clearly, 1 —(°=1—-1={0}and 1 — (3 =1+1 = (. It follows from
X2 - X +1=(X—¢H(X —¢%) € C[X] that

1-¢t={-¢}={¢} and 1 - = {-¢""} = {¢'}.

Now, suppose 1 — (% # () for i = 2 or i = 4. Since /1 is a partial field it would
follow 1 — ¢? = {¢*} and 1 — ¢* = {¢?}. As (¢*)? = (2 we could conclude that
X2+ X -1=(X-O)(X - ¢ ecCx].

But the discriminant of X2 + X — 1 is equal to 12 —4-(—1) = 5, and therefore
this polynomial has two distinct real roots, a contradiction. 0

Hgince we already use the symbol S for the hyperfield of signs, we denote the partial fields as
the corresponding class of matroids, see [SW96].
12¢f. Proposition 2.2.
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3.34 Lemma. Let M = (E,H) be a matroid with the following property:

For all pairwise different hyperlines Ly, Lo, L3, L, L' of M containing a common
hyperpoint P such that L,L" ¢ H; := L; V Ly for all {4,5,k} = {1,2,3}
and Hy, Hs, Hs are pairwise different hyperlines, there exists an n € Ny and
hyperlines L = Ky, ..., K, = L' O P of M such that for eachi=1,...,n and
suitable j € {1,2,3} the flat (K;_1 V K;) N H; is a hyperline of M.

Then K© (M) is the subgroup of F(©) (M) generated by the elements from
(CRO) — (CR5) and the elements

(CR67) (HlvH? ’ H37H4) ’ (HLH& | HA/UHZ/S)

for all quadruples (Hy, Ha, Hs, Hy), (Hj, H5, H}, H}) € Hj such that there
exists a Z € H satisfying

NN 4
() Miz1 Hi # Nizy H,
(ii) for all i =1,2,3,4 we have H; NH = H;,NZ =H/NZ € L or H; = H.
In particular, any affine or projective geometry has this property.

Proof. Let U be the subgroup of F(O)(M) generated by the elements from
(CRO) — (CR5) and (CR6’). Using Proposition and Definition 3.29, we get
U C KO(M).

To prove the remaining inclusion, let Hy, ..., Hg be hyperplanes of M sat-
isfying the conditions (i) — (v) from (CR6). Further, let L; == H; N Hy, for
{i,j, k‘} = {1, 2, 3}, L= HsNHsNHg, L' .= H;NHgNHgy, and P := L1NLyNL3.
Then there exist n € Ny and hyperlines L = Ky,...,K, = L' O P of
M such that for each ¢ = 1,...,n there exists a j € {1,2,3} such that
(Ki—1V K;) N Hj € L. We will prove that

g = (Hy, Hy | He, Hy) - (H2, H3 | Hy, H7) - (H3, Hy | Hs, Hg) € U
by induction on n. If n = 0, then H;y3 = H;yg for all ¢ = 1,2,3. Thus,
(Hj,Hk,Hi_;,_g,,HZ‘_;,_G) e U for all {i,j, k} = {1,2,3}.
Let n > 1 and set Hyyg = L; V K,,—1 for i« = 1,2,3. Then Hy,..., Hg,

Hyo, H11, Hyo satisfy (i) — (v) from (CR6). Hence, applying the induction
hypothesis, we get

(Hi1, Hy | He, Hi2) - (Ha, H3 | Ha, Huo) - (Hs, Hi | Hs, H11) € U.
Therefore, using (CR2) we obtain

gU = (Hy,Hy | Hi2, Hy) - (Ha, H3 | Hio, H7) - (H3, Hy | Hi1, Hg) - U.
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3 Universal partial hyperfields of matroids

If there exists {i,j,k} = {1,2,3} such that Ly C K,—1 V L' = Z, then
(Hi,Hj|Hk+g,Hk+6) € U. Thus, we obtain that H; N Z = L, = H; N Z,
HiigNZ= L' = Hj+6 NZ,and HoNZ =K, 1= Hj+9 N Z. Using (CRG’),
this implies

9U = (Hi, Hy | Hjo, Hjy6) - (Hi, Hj | Hio, Hite) - U = U.

Otherwise, there exists {7, 7, k} = {1,2, 3} such that Z N Hy, =: L] is a hyperline
of M different from L;, Ly and Ls. Therefore, H, N Z = L}, = H; N Z for
Hj = Ly V Lj, and using (CRE’), it follows that

(Hy, Hy | Hint9, Hino) - (Hiy Hy | Hingo, Hmto) € U
for all {I,m} = {i,j}. Hence, (CR2) and (CR3) imply that
gU = (H;, Hj | Hyyg, Hyy) - (Hj, Hy | Hyqg, Hyqs) - U = U.

To prove the last sentence, let M be an affine or projective geometry. Let Ly,
Lo, L3, L, L' be hyperlines of M containing a common hyperpoint P such that
L.L' ¢ H; == L;V Ly, for all {1,5,k} = {1,2,3} and Hy, Hy, H are pairwise
different hyperlines.

Since s(M/P) is an affine resp. projective plane it follows that there exists a
j € {1,2,3} such that (L Vv L) N Hj is a hyperplane of M. Thus, the desired
property is satisfied by setting n:= 1, Ky := L, and K; .= L'. O

3.35 Corollary. The universal partial hyperfield of the ternary affine plane
AG(2,3) is isomorphic to the sixth roots of unity partial field /1.

Proof. We choose a base {0,e1,e2} of AG(2,3) and extend it to a circuit
{o,e1,e,e2} of AG(2,3). For every p € E \ {o} choose a line Z, that is parallel
to oV p but does not contain p, set oo, =0V eq, 0, =0Ver, 1, =0V e, and
define a, by H, = {00,, 00, 1o, a0}

Then three of the hyperplanes {Hy, Hy, H3, Hy} = H,, intersect Z, and there-
fore (000, 05, 1o, Go) 2 (00p, 0p, 1p, ap) for suitably chosen {oop, 0p, 1y, ap}t = Hyp.
Setting IC(p) = (00p, 0p, 1) for all p € E thus defines a system of hypercoordi-
nates C: LT — Upcps ”H(L?)). Further, let ¢: A(K) — A’ be the map defined by
¢(ap) = a for all p € E, where A" := {{a}}.

Hence, it follows from Corollary 3.30 that U (AG(2,3)) = U4 Lp(R(K)),
where @: Uygx) — Uy is the epimorphism of partial hyperfields defined by
@(0) =0, p(—1) :== —1, as well as ¢(ap) '=a and ¢p(ap — 1) :==a—1for p € E.

Moreover, as in the proof of Proposition 3.32 it follows that a®> = —1 for
a:=a@p(R(K)) and 1 —a = {a1}. Thus, U (AG(2,3))" is a cyclic group.
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Let p € E\ {o}. For {Hy,Hs,Hs, Hy} = H,, {H}, Hy, H;, Hj} = H, and
Z € M such that H; = H{ and H; N Z = H{NZ € L we get that Z is parallel
to oV p, since each line of AG(2,3) contains exactly three points.

Each equivalence class of parallel lines of AG(2,3) consists of three lines.
Thus, there are only two possibilities for the choice of Z. Since one of them,
Zp, was already used in the construction of K and the other one in the proof of
Lemma 3.31, Lemma 3.31 and Lemma 3.34 yield that ¢(R(K)) is generated by

a(l —a).
Therefore, 1 —a’ = () for i = 2,3,4, 1 —a’ = {0} and 1 — @ = {@*} for
i = 1,5. Hence, our claim follows from Lemma and Definition 3.33. 0
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4 Universal partial hyperfields of
orientable matroids

In this chapter we will present an Artin-Schreier theory of partial hyperfields.
Although the orderings of a partial hyperfield do not form a space of orderings
in the sense of Marshall, we will construct a real reduced hyperneofield that
corresponds to a prespace of orderings. Further, we will show that the orderings
of the universal partial hyperfield of a matroid correspond to its orientations up
to projective equivalence.

The Artin-Schreier theory of hyperfields and the concept of real reduced
hyperfields where already introduced by Marshall in [Mar06] . For the theory of
spaces of orderings we refer the reader to [Mar96|.

4.1 Real partial hyperfields

Throughout this section let F' denote a partial hyperfield.

Definition. A subset P of F' is said to be an ordering if we have PU—P = F,
Pn—-P={0}, P+ P C P,and P-P C P. We denote the set of orderings of
F by X(F) and call F an real partial hyperfield if X (F') # 0.

Further, a subset T of F is said to be a preordering of Fif F2C T, T-T C T,
and T+ T C T. A preordering T of F' is called proper if —1 ¢ T and real if
there exists an ordering P of F such that T'C P.

The unique smallest preordering of F is Y F? = UnENo Y, where g = F?
and ¥, == %, 1 + X,_1 for n € N. We call F reduced if Y F?> = {0,1} and
quasi-real if —1 ¢ Y F2.!

4.1 Lemma. Every ordering of F' is a proper and real preordering. Further,
for every preordering T of F' the set T := T N F* is a subgroup of F* such that
T+ T* CT* if and only if T is proper.

'A hyperfield F is real if and only if it is quasi-real, cf. [Mar06].
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Proof. First, let P be an ordering of F' and a € F. Thena € Pora € —P. In
the former case a® € P- P C P. In the latter case there exists a b € P such that
a = —b. Therefore, a> = (—b)? = b> € P. Hence, 1 € F? C P. In particular,
—1 € —P, which shows that P is proper.
Furthermore, if T is a preordering of F, we have 1 = 12 € T* and for all
a,beT*
abt =ab(b" €T -T-F*CT.

Therefore, ab™! € T*.

If we have additionally 0 € a + b, then Proposition 2.2 implies that b = —a
and therefore —1 = —(—ab™!) € T. Thus, T is not proper.

Conversely, if T' is not proper, +£1 € T, which implies0 € 1 — 1 C T* 4+ T* o

4.2 Lemma. Let f: F — F’ be a homomorphism of partial hyperfields, 7" a
preordering of F’ and T := f~1(T"). Then

(a) T is a preordering of F,
(b) T is proper if and only if 7" is proper,
(c) T is real if T is real.

Proof. In order to prove (a), let a,b € T. Then f(a?) = f(a)? € F'> C T’ and
f(ab) = f(a)f(b) € T'-T" C T'. Further, ¢ € a + b implies that

fle)e fla)+ f) CT +T CT.

Thus, T is a preordering of F'.

Since f(—1) = —1, —1 € T implies that —1 € T’. Conversely, if —1 € T”,
there exists an a € T such that f(a) = —1. This yields f(—a) = 1. Therefore,
~1=—aa"t € T-T C T, which proves (b).

Finally, to prove (c) let P’ be an ordering of F’ such that 77 C P’ and
P = f~1(P'). Using (a) and the fact that f~1{(P'N—P') = f~L{(P)Nn—f~Y(P)
and f~1(P'U—-P') = f~Y(P)U—f~1(P"), we get that P is an ordering. Since
T = f~YT") C f~1(P") = P it follows that T is real. 0

4.3 Proposition. For every ordering P of F

1 if a € P*,
op: F—=S, a—<0 if a =0,
-1 ifae—-P*

is a homomorphism of partial hyperfields, and the map X (F) — Hom(F,S),
P — op, is a bijection.
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Proof. Lemma 2.1 and Lemma 4.1 imply that op is a multiplicative homomor-
phism for every ordering P of F. Let a,b € F* such that b€ 1—a. If a € —P,
then a = —c for a ¢ € P. Thus,

bel—a=1—(-¢)=1+ceP+PCP,

and therefore op(b) =1€1+1=1—-o0p(a).

Otherwise @ € P and op(b) € {-1,0,1} =1 -1 =1—o0p(a). Hence, it
follows from Lemma 2.5 that op is a homomorphism of partial hyperfields.

To prove that the map X (F') — Hom(F,S), P — op, is bijective, let 0: ' — S
be a homomorphism of partial hyperfields. Then it follows from the proof of
Lemma 4.2 that P := o~%({0,1}) is an ordering of F' (since obviously {0, 1} is
an ordering of S) such that ¢ = op. Further, for all orderings P and @ of F' we
have that op = 0¢ implies P = (), which proves our claim. O

4.4 Proposition. Let t: F — F be the canonical embedding into a hyperfield
(cf. Theorem and Definition 2.23). For every real preordering 7" of F' there exists
a real preordering T of F' such that T = .~1(T).

Proof. First, recall that F' = Q(A)LR and ¢: F — F is defined by 1(0):=0
and ¢(a) == (a,0)R for all a € F*, where

A= {{(a,0)} |a € F*YU{{(a,b)} | a,b € F* such that 1 € a + b}

is algebraically independent over Q, and R is the subgroup of Q(.A)* generated
by —(—1,0) and the elements

(a,0)(b,0)(ab,0)71,  (c,d)(c,0)7%, (1= (c,d))(d,0)7"

for all a,b,¢,d € F* such that 1 € ¢ +d.

We define T to be the subset of F' that contains 0 such that 7\ {0} is the
subgroup of ' generated by the elements (¢c,0)R,ceT*, (1—(c,0))R, c e =T*,
as well as (c 0)273 ce F\T, and (1—(c,0))?R, CEF\ ~T.

Clearly, T-T C F. Since F is generated by —1, and the elements (¢,0)R

and (1 — (¢,0))R, c € F*, it follows that P cT.

As Lemma 4.1 yields that T™ is a subgroup of F* and R does not contain any
element of the form 1 — (a,0), a € F*, we have x € T* if and only if «(z) € T
for all z € F*. Thus, —1 ¢ T and T = .~ (7).

In order to prove T + T C T, using the proof of Theorem and Definition 2.23
it is sufficient to show that z € —T implies 1 — z € T, where z = (¢, 0)R for
ace F* orx = (d,e)R for d,e € F* such that 1 € d + e. In both cases this
follows directly from the definition of T.
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Therefore, Tisa proper preordering of F. Hence, [Mar06, Lemma 3.3] implies
our claim. 0

4.5 Theorem. A partial hyperfield F' is real if and only if —1 ¢ > F 2, where
v: F — F is the canonical embedding of F into a hyperfield (cf. Theorem and
Definition 2.23).

Moreover, every proper preordering of a real partial hyperfield is real and is
equal to the intersection of all orderings containing it.

Proof. It was already proven by Marshall that Fisreal if and onlyif =1 ¢ > F ?

(see [Mar06, Lemma 3.3|). Thus, if —1 ¢ > FQ, there exists an ordering P of
F. As in the proof of Lemma 4.2, P = L’l(p) is an ordering of F'. Hence, F is
real in this case.

Conversely, let F' be a real partial hyperfield and T a real preordermg of
F. Using Proposition 4.4, there exists a real preordering T of I such that
T =~ Y(T). In particular, I is real and therefore —1 ¢ 3 fa

Further, let S be the intersection of all orderings that contain T'. If there
existed an a € S \T we would have «(a) € S\ T, where S is a real preordering of
F such that S =~ (S) Since F' is a hyperfield, applying [Mar06, Proposition
3.4], would yield an ordering P D S such that a ¢ P. As ¢ is an embedding and
P := 1~'(P) would be an ordering of F, as above, we would obtain that a ¢ S,
a contradiction. 0

4.6 Remark. By Lemma 4.1, —1 ¢ > F? is a necessary condition for F' to be
real. However, unlike in the special case of hyperfields, it is not sufficient. Let G
be a group of exponent 2 of order at least 8, ¢ € G \ {1} and set F' := GU{0}.
Then the sets (Ag)qcq defined by

{1} ifa=c¢,
A, =L G ifa=1,
G\ {e,a} else

for all a € G satisfy (2.1). Further, let + be the unique partial hyperoperation
on F such that (1 —a)\ {0} = A, for all @ € G and ¢ = —1. It follows that
(F,+,+) is a quasi-real reduced partial hyperfield that does not possess any
orderings.

Proof. In order to show that F' is a partial hyperfield, using Proposition 2.2
and Remark and Definition 2.3, as well as the fact that > =1 for all @ € G, it
suffices to show that for all a,b € G we have that b € A, implies a € Ap N Aggp.
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First, suppose there existed a € G and b € A, such that a ¢ A,. Then
A, = {1} and A; = G would imply that a # € and b # 1. Thus, a = b, leading
to the contradiction b ¢ A,.

Second, suppose there existed a € G and b € A, such that a ¢ A_y. Then
we would have either a # 1 and eab = ¢, or a € {¢,cab} and cab # 1,e. The
former would imply that a = b # 1 and thus b = a ¢ A,, a contradiction.

In the latter case we would obtain either that a = ¢ and b # 1,6, or b=¢
and a # 1, ¢, contradicting € € A, if and only if g =1 for all g € G.

Further, F is quasi-real reduced, as we have —1 ¢ {0,1} = >_ F2. If there
existed an ordering P of F, there would exist an a € —P \ {0, —1}. Therefore,
G\{-1,a} =1—a C P, which would imply P* = F*, since P* is a subgroup
of F*, a contradiction. o

Definition. Let F' and F’ be partial hyperfields. For any subgroup U of F*
we denote the set of homomorphisms f: F' — F’ such that U C ker,f by
Homy (F, F').

4.7 Proposition and Definition. Let T" be a real preordering of F. For all
a € F we define ap: Homp«(F,S) — S, 0 +— o(a). Setting ar - by = aby and

ar + by = {¢r | o(c) € o(a) + o(b) for all ¢ € Homp«(F,S)}

for all a,b € F defines a real reduced hyperneofield Qr(F), called the canonical
real reduced hyperneofield of F' with respect to T', on the set {ar |a € F}.

Moreover, if f: F — F’ is a homomorphism of partial hyperfields and T” is a
real preordering of F” such that T C f~1(T”), then Qr 7 (f): Qr(F) — Qr (F'),
ar — f(a)g is also a homomorphism of partial hyperfields.

Proof. First, we will show that Qr(F) is a hyperneofield. Clearly, Q7 (F)
satisfies (PH1), (PH2), (PH4), and az, by € ar + by for all a,b € F.

To prove (PH3), let a,b,c € F such that ér € ar + by. It follows that
o(c) € o(a) + o(b) for all o € Homp+(F,S). Lemma 2.1 and Lemma 2.5 imply
that o(b) € o(c) + o(—a) for all ¢ € Homp«(F,S). Therefore, by € ¢r + —ar.

To show (PH5), let a, b, ¢, d € F such that dr € ar(br+¢7). Then there exists
an e € F such that ép € by + ér and @ér = dr. Thus, for all ¢ € Homp«(F,S)
we obtain

o(d) =o(a)o(e) € a(ab) + o(ac).

Hence, ElT S C_ZTI_)T + asCr.
Further, our construction of Q7 implies that for any o € Homyp«(F,S) the
map 7: Qr(F), ar — o(a) is a homomorphism of partial hyperfields, and for
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all a € F' such that ar € 14+ 1 we get o(a) € 1 +1 = {1}. Hence, ar =1 and
therefore Q7 (F) is real reduced.

Finally, we show that Q7 7/(f) is a homomorphism of partial hyperfields for
any homomorphism of partial hyperfields f: F' — F’ and real preorderings T'
of F, T' of F'" such that T C f~Y(T"). Let a,b € F. If ar = by, then for
every o' € Homp(F',S) we have o’ o f € Homp«(F,S) (since T C f~1(T"))

and therefore o’(f(a)) = o'(f(b)). Thus, f(a)p = f(b); and Qr(f) is
well-defined.

Further, f(a)g - f(b) = f(ab)y and =17 = f(—1)p,. Therefore, Qr.1v is a
multiplicative homomorphism.

To prove that Q7 7 (f) is a homomorphism of partial hyperfields, let a,b,c € F'
such that ér € ar + by. We have o(c) € o(a) + o(b) for all ¢ € Homy«(F,S).
Thus, o’(f(c)) € o'(f(a)) + o'(f(b)) for all ¢’ € Homypv+(F,S). Therefore, we
obtain f(c);» € f(a)p + f(b)y. Hence, Lemma 2.5 yields that Q77 (f) is a

homomorphism of partial hyperfields. O

4.8 Remark. By convention, we write Q(F) instead of Qs p2(F) and Q(f)
instead of Qs~ g2 s~ g2 (f), where f: F' — F” is a homomorphism of real partial
hyperfields.

If g: F/ — F" is another homomorphism of real partial hyperfields, we have

Q(go f)(a) = g(f(a)) = Qg)(f(a)) = Q(9(Q(f)(a)).

for all @ € F. Thus, @ defines a functor from the category of real partial
hyperfields to the category of real reduced partial hyperfields.

4.9 Lemma. Let f: F — F’ be a homomorphism of real partial hyperfields
and T and T” preorderings of F resp. F' such that T C f~1(T").

(a) If the map f*: Homg(F',S) = Homy«(F,S), o' = o' o f is surjective,
Qrr(f) is an embedding.

(b) If Qv (f) is surjective, f* is injective.

(c) If fis an epimorphism, Q7 7/(f) is also an epimorphism.
Proof. Let a,b,c,u € F such that f(u)p = 1 and f(c)p € f(a)p + F(b)p-
Then o(f(u)) =1 and o(f(c)) € o(f(a)) + a(f(b)) for all o € Homp(F’,S).
Since f* is surjective this implies that o(u) = 1 and o(c) € o(a) + o(b) for
all 0 € Homyp«(F,S). Thus, ur = 1 and ér € ar + by. Hence, QT (f) is an
embedding, which shows (a).
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4.1 Real partial hyperfields

In order to prove (b), let o}, 0y € Homp+(F',S) such that o} o f = o} 0 f.
For each a/ € F’ there exists an a € F such that a’7v = f(a), since Qr v (f)
is surjective. Therefore, o/ (a') = o (f(a)) = o4(f(a)) = oh(a’).

To show (c), let f be an epimorphism, U := ker, f, F = FLU and 7: F — F
be the canonical projection. Using Proposition 2.15, there exists a homomor-
phism f: F — F’ such that for = f. It follows from Lemma 4.2 that
T = fﬁl(T’) is a real preordering of F. In particular, F' is real.

Thus, QT,T'(}) ° Qpz(m) = Qrr(f). Since f is an isomorphism by Corol-

lary 2.16, Q7 1 (f) is a surjective embedding by part (a) of this lemma. Therefore,

Proposition 2.14 yields that QT,T,(]N“) is an isomorphism. Hence, it suffices to
show that QT,T(T(') is an epimorphism.

Set U := {u|u € U} and let 7: Qr(F) — Q7(F)/U be the canonical
projection. Clearly, U is a subgroup of ker,Q(f). Thus, Proposition 2.15 implies
that there exists a surjective homomorphism g: Q7(F)/AU — Q(F) such that
gom = QT,T(T‘-)'

Let a1,a2,a3 € F such that a3U € g(aiU) + g(axU) = a1U + aU. For
each 0 € Hom(Q(F)/U,S), applying Proposition 2.15, there exists a unique
& € Hom(F,S) such that § om = g o T o h, where h: F — Q(F), a — @, since
obviously U C ker,(c o T o h).

Then 5(a3U) € 6(a1U) + 6(azU) and therefore o(azU) € o(a1U) + o(azU).
Hence, a3U = g(azU) € g(a;U + a3U). Thus, g is strong and Proposition 2.14
implies that ¢ is an isomorphism, which in turn yields that QTj,(ﬂ) is an
epimorphism, as desired. O

4.10 Proposition. Let T' be a real preordering of F and ¢r: F — Qr(F),
a+ ar. Then ¢7'({0,1}) = T and we further have

(a) gr is an epimorphism if and only if for all a € F'\ =T the set T+ Ta is a
preordering of F and F = T* — T* ?

(b) the map ¢j: Hom(Q7(F),S) — Homy«(F,S), 0 — o o qr, is a bijection.
In particular, Q(Qr(F)) = Qr(F).
(c) if F' is a hyperfield, Q7 (F) is also a hyperfield.

Proof. First, note that (c¢) was already proven by Marshall in [Mar06, Corollary
4.4].

By definition of Q7 (F), for all @ € F* we have ar = 1 if and only if o(a) =1
for all o € Homyp«(F,S). Thus, it follows from Proposition 4.3 that ker,qr is

?In fact, in this case we have Qr(F) = F/T, cf. Corollary 2.16. This condition is always
satisfied if F' is a hyperfield, cf. [Mar06].
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4 Universal partial hyperfields of orientable matroids

the intersection of all P*, where P D T is an ordering of F'. Hence, Theorem 4.5
yields that ker,qr = T* and ¢ ({0,1}) = T.

In order to prove (a), we will use the fact that ¢r is an epimorphism if and
only if it is final, which follows from Proposition 2.14 since gr is surjective by
definition of Q7 (F).

Let gr be final. Clearly, 0 € T* —T*. For a € F* we have o(a) € 1 — 1 for all
o € Hom(F,S). Thus, ar € 1 — 1 and therefore there exist s,t € T™ such that
as €1 —t. Hence,a € s~ —s 1t CT* —T*.

Further, let a € F'\ —T and S the intersection of all orderings of F' containing
T U{a}. Clearly, T+ Ta C S. If b € S*, then Proposition 4.3 implies that
o(b) € 1+ o(a) for all ¢ € Homp«(F,S) such that o(a) = 1. Thus, by € 1+ ar.

Therefore, there exist s,t € T* such that bs € 1 + ta. This implies that
be st +sta C T+ Ta. Hence, T +Ta = S is a preordering of F.

Conversely, let F' = T* — T* and T + Ta be a preordering of F' for all
a€ F\—-T. Let a,b € F* such that br € 1 4+ ap. We have to show that there
exist ' € F* and ¥ € 1+ o’ such that a'7 = @y and b/ = by.

If a € =T, then ar = —1. Let s,t € T* such that b € s —t. Set V/ := bs™!
and a/ == —ts~'. Thus, /7 = —1, b/y =br and ¥ € 1 +d.

Similarly, if b € T, we set o' == at™! and ¥ = st~! for s,t € T* such that
a € s—t, and if b € Ta, we set a’ = at and V' := as for s,t € T* such that
ales—t

Otherwise, a € F\ =T and b € F \ (T'UTa). Thus, T + Ta is a proper
preordering (if —1 = s+ ta for s,t € T, we would get ¢t € T™, as T is proper and
hence a = —t~!—t~1s € —T, a contradiction) and therefore real by Theorem 4.5.

Since o(b) € 1+ o(a) for all 0 € Homgp«(F,S), Proposition 4.3 implies
that b € P for all orderings P of F' such that T C P and a € P. Applying
Theorem 4.5, their intersection is T' 4 T'a. Hence, b € T + Ta and there exist
s,t € T such that b € s + ta.

Moreover, s,t € T* (since s = 0 resp. t = 0 would imply that b € T resp.
b€ Ta). Thus, b’ € 1+ a' for @’ :=tas™! and ¥ := bs~!. Further, ¥’z = by and
a/7 = ar, which proves (a).

In order to show (b), let o € Homp«(F,S) and 7: Qp(F) — S, ar — o(a).
Since T* C ker,o, we get that @ is a multiplicative homomorphism. If a,b,¢c € F
such that ép € ap + by, it follows that

g(er) =o(c) € o(a) +o(b) =a(ar) +a(br).

Hence, 7 € Hom(Qr(F),S) using Lemma 2.5.
Further, 0 = ¢}(¢) and thus ¢} is surjective. As this is also true for g7 the ho-
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4.1 Real partial hyperfields

momorphism QT7{071}(qT): Qr(F) = Q(Qr(F)), which maps ar to qT(a){Ovl},?’
is surjective. Therefore, applying Lemma 4.9 twice, we get that ¢ is bijective
and QT7{071}(qT) is a surjective embedding. Hence, Proposition 2.14 yields that
it is an isomorphism. 0

For the convenience of the reader we recall the definition of spaces of orderings
from [Mar96|. We will use the first two axioms to define prespaces of orderings.
It follows from [Mar96, Proof of Theorem 2.2.4] that a prespace of orderings in
our sense is a prespace of orderings in the usual sense (cf. [ABR96, Chapter I1I,
Proposition and Definition 1.1]).

Definition. Let X be a non-empty set and G be a subgroup of {—1,1}%.4
Further, let x(G) be the group of quadratic characters of G and vx: X — x(G)
the function defined by ¢(z)(a) == a(z) for all z € X, a € G.

For a,b € G we set

D(a,b) = {c e G|c(z) € {a(x),b(x)} for all z € X}.

A tuple (X, Q) is called a prespace of orderings if it satifies the following two
axioms:

(AX1) X is non-empty, G is a subgroup of {—1,1}%, contains the constant
—1 function and separates points in X (i.e. for all z,y € X, z # v,
there is an a € G such that a(z) # a(y)),

(AX2) if z € x(G) satisfies z(—1) = —1 and a,b € kerz = D(a,b) C kerz,
then x is in the image of ¢x.

It is called further a space of orderings if it additionally satisfies:

(AX3) For all a1,a2,a3 € G and b € D(ay,c) for some ¢ € D{ag,as), we
have b € D(d,as) for some d € D{ay,az).

If (X,G) and (Y, H) are (pre)spaces of orderings, a morphism a: (X,G) —
(Y, H) of (pre)spaces of orderings is a function a: X — Y such that

H—->G, a—aof

is a group homomorphism.

3Proposition and Definition 4.7 yields that Qr(F) is real reduced.
‘For a,b € {—1,1}* we define a-b: X — {—1,1}, z + a(x)b(x).
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4 Universal partial hyperfields of orientable matroids

4.11 Theorem. The tuple (Homp«(F,S), Qr(F)) is a prespace of orderings
for any real preordering T of F. It is a space of orderings if and only if Q7 (F)
is a hyperfield.

Furthermore, if f: F — F’ is a homomorphism of partial hyperfields and 7"
is a real preordering of F’ such that 7' C f~1(T"),

f*: Homqv=(F',S) — Homp«(F,S), o+ oof
is a morphism of prespaces of orderings.

Proof. Set X := Homy«(F,S) and G := Qr(F)". Clearly, (X, G) satifies (AX1)
by construction. We will first show that D(ar,br) = (ar + br) \ {0} for all
a,be F*.

Let ¢ € F*. By definition, ér € D(ar,br) if and only if @y (o) = br(o) implies
that ér(0) = ar(o) = br(o) for all 0 € X. Since dr(0) = o(d) for all d € F
and o € X, this is equivalent to o(c) € o(a) + o(b) for all z € X, which is by
definition true if and only if ¢7 € ar + br.

To prove (AX2), let z € x(G) such that z(—1) = —1 and D(a,b) C ker x for
all a,b € kerx. We define o: F — S by ¢(0) := 0 and o(a) := z(ar) for all
a € F*. Obviously, ¢ is a multiplicative homomorphism.

Let a,b € F* such that b € 1 — a. Then we get by € 1 — @7, which yields
br € D(1,=ar). Thus, if -0(a) = z(—ar) = 1, it follows that o(b) = x(by) = 1.
This implies that o(b) € 1 — o(a).

Hence, by Lemma 2.5 we get that o € Homp-(F,S) and tx(0) = x, since
ar(o) = o(a) = xz(ar) for all a € F*.

In order to show that (X, G) satisfies (AX3) if and only if Q7 (F) is a hyperfield,
let a1, a9,a3 € F. Note that if 0 € {a1, a2, a3}, we have

air + (aar + azr) = bip + bor = (@17 + G2r) + aa7

for {al, ag, a3} = {0, bl, bz}.

Further, 0 € a1 + (@21 + a3r) yields that —a1 € azr + a3, and therefore
—agr € air + azr. Thus, 0 € (a1 + Gz7) + azp. Since by, er € by + er for all
b,c € F, we have by € bip + (bap +bsr), i = 1,2,3 for all by, be, b3 € F. Hence,
(X, G) satisfies (AX3) if and only if Q7 (F) is a hyperfield. Finally, Proposition

and Definition 4.7 implies the last part of our claim. O

4.12 Proposition. Let (X, G) be a prespace of orderings. For all a € GU {0}
weset 0-a:=a-0:=0and a+0:=0+a:={a}. Further, let

o
D<a, b> if a ?é b
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4.1 Real partial hyperfields

for all a,b € G. Then Q(X,G) = (GU{0},-,+) is a real reduced hyperneofield
whose orderings are of the form P, := {a € G| a(z) =1} U{0}, z € X.

Moreover, if a: (X,G) — (Y, H) is a morphism of prespaces of orderings,
Qa): QIY,H) — Q(X,G) defined by Q(«)(0) := 0 and Q(«)(a) := a o « for
all @ € G is a homomorphism of partial hyperfields.

Proof. By construction, (G, —1) is a multiplicative structure and for all a,b € G
we have {a,b} C D(a,b) C a+b. In order to show that Q(X,G) is a partial
hyperfield using Remark and Definition 2.3 and the fact that a® = 1 for all
a € G, it suffices to prove that

be D(1,—a) = a€ D(1,—b)N D(1,ab)

forall a,b € G. Let a,b € G such that b € D(1, —a). Thus, for all z € X we have
that a(x) = —1 implies b(z) = 1. It follows directly that for all x € X we have
that b(x) = —1 or (ab)(x) = 1 imply a(x) = 1. Hence, a € D(1,—b) N D(1, ab).

By construction of P,, and definition of + and D({a,b) for all a,b € G, the
sets P, are orderings of Q(X,G) for all z € X.

It follows that Q(X,G) is a real hyperneofield (X # (), which is reduced
since (AX1) implies that a(x) =1 for all x € X if and only if a = 1 and thus
D(1,1) ={1}.

Conversely, let P be an ordering and op: G U {0} — S be the corresponding
homomorphism of partial hyperfields (see Proposition 4.3). Since P* + P* C P*
by Lemma 4.1, the restriction of ¢ to G is a character of G satisfying the
precondition of (AX2). Thus, there exists an x € X such that P = P,.

It remains to show that Q(«) is a homomorphism of partial hyperfields for
any morphism of prespaces of orderings a: (X, G) — (Y, H). Clearly, Q(«) is
by definition a multiplicative homomorphism.

Let a,b € H such that b € D(1,—a). Thus, for all y € Y we have that
a(y) = —1 implies b(y) = 1. For z € X such that a(a(z)) = Q(a)(a)(z) = —1
we get Q(a)(b)(xz) = b(a(x)) = 1. Hence, Q(«)(b) € D(1,—Q(c)(a)). Using
Lemma 2.5, we get that Q(«) is a homomorphism of partial hyperfields. o

4.13 Corollary. We have Q(Homy«(F,S),Qr(F)*) = Qr(F) for every pre-
ordering T' of F. Further, if f: FF — F’ is a homomorphism of partial hy-
perfields and 7" is a real preordering of F’ such that T C f~1(T"), we have
Q(f*) = Q. (f).

In particular, the category of real reduced hyperneofields and the category of
prespaces of orderings, as well as the category of spaces of orderings, and the
category of real reduced hyperfields are equivalent.®

5For the case of spaces of orderings and real reduced hyperfields this was already proven by
Marshall, cf. [Mar06, p. 461].
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4 Universal partial hyperfields of orientable matroids

Proof. It follows from the proof of Theorem 4.11 and Proposition 4.12 that
Q(Homp«(F,S), Qr(F)*) = Qr(F). Further, for any a € F we have

QUf*)(ar)(o") =ar(f*(o')) = ar(o’ o f) = o' (f(a) = f(a)p:(o")

4.2 Orientable Matroids

In this section, we will use the characterization of orientations of matroids by
Dress and Wenzel in [DW89] to show that the classes of orientations modulo
projective equivalence of a matroid M correspond to the homomorphism of
partial hyperfields from the universal partial hyperfield U (M) to the sign
hyperfield S.

For the theory of oriented matroids we refer the reader to [Bjo+99].

Definition. Let M = (FE,B) be a matroid of rank n € Ny. A chirotope of M is
amap x: E™ — {—1,0,1} which satisfies the following three properties:

(Chl) The bases of M are the subsets {ey, ..., e,} of E where x(e1,...,e,) # 0,

(Ch2) y is alternating, that is, for all eq,...,e, and 7w € S,, we have
X(€r(1)s -+ »€r(n)) =signo - x(e1....,en)
(Ch3) for all eq,...,e,, fo € E either all of the terms

&= (=1'x(e0,-- 16, ...,en)x (e, f2,€3,...,en), i=0,1,2,
are equal to zero or & = —¢; # 0 for some 4,5 = 0,1,2.°

Let x: E™ — {—1,0,1} be a chirotope of M. For any a € {—1,1} and any map
n: E — {—1,1} the map

Xag: E" = {-1,0,1}, (e1,...,en) = (H 77(60) x(e1,...,en)

=1

is also a chirotope of M. Two chirotopes x,x’ of M are called projectively
equivalent if there exist & € {—1,1} and n: E — {—1,1} such that x’' = xa.-
M is called orientable if there exists a chirotope x: E™ — {—1,0,1} for M.

6See Remark 4.15.
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4.14 Proposition. Let M = (E, B) be a matroid of rank n € Ny.

(a) A map x: E" — {—1,0,1} is a chirotope of M if and only if it is a
Grassmann-Pliicker map for M and S.

(b) A multiplicative homomorphism ¢: U®) (M) — S is a homomorphism of
partial hyperfields if and only if for all (Hy, Ha, Hs, Hy) € ”HI exactly one
of the values

o([H1, Ha | Hs, H4)), o([H1, H3| Hy, Ho)), o([H1, Hy | Ha, H3))
is equal to —1.7

Proof. First, note that for any map x: E” — {—1,0, 1} that satisfies (Chl),
(Ch2) is equal to (3.2) from Proposition and Definition 3.15.

Moveover, since 0 € ag + a1 + ao for all a; € S, i = 0,1,2, if and only if
a; = —aj for some ¢, j = 0,1, 2, (Ch3) is equivalent to (3.3) from Proposition and
Definition 3.15. Thus, (a) follows directly from Proposition and Definition 3.15.

In order to prove (b), let o: U (M) — S be a multiplicative homomorphism
and (Hy, Hy, Hs, Hy) € ’HI. Thus, either all or exactly one of the values

O’([Hl, H2 |H3, H4]), U([Hl,Hg | H4,H2]), U([Hl, H4 | HQ, H3])

are equal to —1. Hence, we have o([Hy, Hs | Ha, Hy4]) € 1 — o([H1, Hy | Hs, Hy))
if and only if o([H1, Ha | H3, Hy])) = —1 implies that o([H1, Hs | Hy, Ho]) = 1.
Since Lemma 2.5 yields that ¢ is a homomorphism of partial hyperfields if
and only if we have o(b) € 1 — o(a) for all a,b € U (M)* such that b € 1 — a,
applying Proposition and Definition 3.4 completes our proof. O

4.15 Remark. Let M = (E, B) be a matroid of rank n € Np.

(a) Instead of (Ch3), frequently the following equivalent axiom is used to

define orientations of matroids: for ey, ..., ey, fo,..., fn € E either all of
the terms

&= (—1)'x(eo,...,E,...,e0)x(€, fas.oosfrn), i=0,...,n,
are equal to zero or § = —¢; # 0 for some 4,j = 0,...,n.

(b) It follows from part (b) of Proposition 4.14, [DW90, Proposition 2.19|
and the last sentence of Lemma 3.34 that an ordering of the universal
partial hyperfield of a projective geometry is an ordering of the projective
geometry in the classical sense,® and vice versa.

A similar characterization was already given by Dress and Wenzel, cf. [DW89, Theorem 6.1].
8See [KKSS, p. 125].
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4.3 Uniform matroids

We will use the methods developed in the two previous sections to characterize
the preorderings and orderings of uniform matroids of rank 2.

We will employ this characterization to investigate the canonical real reduced
hyperneofield of a uniform matroid and prove that it is not a hyperfield unless
the uniform matroid is regular or isomorphic to Us4. This proves that there
exist matroids whose canonical real reduced hyperneorfield is not a hyperfield
and thus the corresponding prespace of orderings is not a space of orderings in
the sense of Marshall.

4.16 Lemma. Let E be a set and 00,0,1 € E be pairwise different.

(a) For any partial order < on E satisfying 0 < 1 and a < oo for all a € E,
the (multiplicative) submonoid T< of Ugg; generated by U% By and the
elements a — b for a,b € E \ {00} such that b < a is a real preordering of
Uspy-

(b) For every proper preordering T of Uy gy there exists a partial order < on F
such that 7" = T< that satisfies 0 <1 and a < oo for all a € E. Moreover,
T is an ordering if and only if < is total.

Proof. In order to prove (a), let < be a partial order. Then TZ% =T \ {0} is
a subgroup of U7 Jo since for each ¢ € TZ we have =172t Tﬁerefore, similar
to the proof of Lemma 2.5, it suffices to show that 1 —¢ € T< for all t € —TZ.
Using Theorem and Definition 2.20, we have to consider two cases: -

If —Z—:Z € T< for pairwise different a,b,c € E'\ {oo}, it follows that b < a < ¢

or ¢ < a<b. Thus C;bGTS.

’ c—a
Else, if —% € T< for pairwise different a,b,c,d € E \ {oo}, we obtain
that one of the following eight statements

a<c<b<dia<d<b<cb<c<a<d b<d<a<ceg,
c<b<d<a,d<b<c<a,c<b<d<a,d<a<c<bd

is true. Therefore, % € T<. Hence, T< is a preordering.
To show (b), let T' be a proper preordering of Uyg). We define < by a < oo for
alla € E,and a <bif b—a €T for all a,b € FE \ {o0}. Clearly, < is reflexive.
If there existed a,b € E \ {oo} such that a < b, b < a and a # b, we would
get —1 = —% € T, a contradiction.

Moreover, let a,b,c € E \ {oo} such that a < b and b < ¢. Then

c—a=(c—=b)+b—-—a)eT+TCT
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and therefore a < c¢. Hence, < is a partial order. By construction, we have
T=T<.

Since obviously T< C T< if and only if <’ extends <, and every partial order
extends to a linear order (cf. [Szp30]), we get that T< is an ordering if and only
if <'is total. Furthermore, this yields that 7< is real for every partial order <.

4.17 Lemma. Let E be a set and 00,0,1 € E be pairwise different.

(a) A map x: E2 — {—1,0,1} is a chirotope of Us g such that y(a,o0) =1 for
all a € E \ {oo} if and only if < defined by a <b < x(a,b) € {0,1} for
all a,b € E is a total order on E. Furthermore, this defines a one-to-one
mapping between the chirotopes of Us g and the total orders on E such
that a < oo for all a € E.

(b) A multiplicative homomorphism o : [U(O)(UZ g) — S is a homomorphism
of partial hyperfields if and only if there exists a total order < on E such
that

o([{oo}, {a} [{b},{c}]) =—1 @ b<a<corec<a<b (41)

for all pairwise different a,b,c € E '\ {oo}. Moreover, this defines a one-to-
one mapping between the orderings of U(O)(UZ p) and the total orders <
on Fsuchthat 0<landa<ooforallac FE.

Proof. To prove (a), let x: E? — {—1,0,1} be a map. Obviously, < defined by
a < b if and only if x(a,b) € {0,1} for all a,b € F is a reflexive, antisymmetric,
and total relation if and only if x satisfies (Chl) and (Ch2).

Clearly, for all @ € E \ {oo} we have that x(a,00) =1 is equivalent to a < co.
Thus, it remains to show that if x satisfies (Chl), (Ch2), and x(a,c0) = +1 for
all a € E'\ {oo}, then it satisfies (Ch3) if and only if < is transitive.

Let eq, e1,e2 € E such that eg < e; and e; < eg. If 0o € {eg, €1, €2}, we have
eo = 00, and thus eg < eo. Otherwise, set fo :== 0o, and let

o = x(e1,e2)x(eo, f2), &1 = —x(eo,e2)x(e1, f2), & = x(eo,e1)x(e2, f2).

Straightforward computation yields that &y, &2 € {0,1} and & = —x(ep, e2). It
follows from (Ch3) that & € {0,—1}. Hence, ey < ea.

Conversely, let < be transitive and eqg, e1,es, fo € E. Let &, i = 0,1, 2, be
defined as above. We may assume without loss of generality that fo ¢ {eg,e1,e2},
since otherwise trivially & = 0 for all ¢ = 0,1,2 by (Chl), and that eg, e1, e2 are
pairwise different, as otherwise (Ch3) is implied by (Ch2) in this case.

Up to multiplication by —1, the &;, ¢ = 0, 1, 2, are invariant under permutations
of the ¢;, 7 = 0,1, 2, and exchange of e¢g and fo. Therefore, we may further assume
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4 Universal partial hyperfields of orientable matroids

without loss of generality that x(e;, fo) =1 for all i = 0,1,2, x(eg,e1) = 1 and
x(e1,e2) = 1. Thus, ey < e; and e; < ey. It follows that ey < ey and hence
& =-1=2¢.

The last sentence of (a) follows trivially.

To show (b), first note that using Proposition 3.2, Proposition and Defini-
tion 3.15, and Proposition 4.14 we get that a multiplicative homomorphism
o: U(O)(UZ £) — S is a homomorpism of partial hyperfields if and only if there
exists a chirotope x: F? — {—1,0,1} of M such that

o([{a}, {b} [{c},{d}]) == x(a, c)x(a, d)x(b, c)x(b, d)

for all pairwise different a,b,c,d € E.

Since projectively equivalent chirotopes induce the same o, we can assume
without loss of generality that x(0,1) = x(a,00) = 1 for all a € E \ {o0}
(otherwise replace x by Xa, for n: E — {—1,1} and o € {—1,1} defined by
n(a) == x(a,00) for all a € E '\ {oo}, and n(oco) = a = n(0)n(1)x(0,1)).

Since o([{oo}, {a}|{d},{c}]) = x(a,b)x(a,c) for all a,b,c € E \ {o0}, it
follows directly from (a) that o is a homomorphism of partial hyperfields if and
only if there exists a total order < on FE satisfying (4.1), 0 < 1, and a < oo for
all a € E.

As for all a,b € E '\ {00,0}, a # b, we have o([{oo}, {0} |{1},{a}]) = x(0,a)

and o([{oc},{a} {0}, {b}]) = x(a,0)x(a,b), the total order < is uniquely de-
termined by these conditions, which completes our proof. 0

To simplify the notation for the rest of this section we will write [a, b| ¢, d] for the
cross-ratio [{a}, {b} | {c},{d}] of Uz g, where a,b,¢,d € E, E a set containing at
least 2 elements and further [a, b| ¢, d] for [{a}, {b} | {c}, {d}]; € Qr(U© (U1 k),
where the preordering 7' of U(O)(Ug, g) is known from the context.

4.18 Example. Let E = {00,0,1,a,b} be a set of five elements. Then Us g
has exactly twelve orderings o;, 1 = 1,...,12, corresponding to the linear orders
< on F such that e < oo foralle € F and 0 < 1.

Their values on the cross-ratios o := [00,0|1,a] and o/ == [00,1]a, 0], as well
as = [00,0|1,b], B’ :=[00,1]b,0], and v = [00,a|0,b] are
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4.3 Uniform matroids

i Linear order oi(a) o) oi(B) or(8) o)
01 O0<l<a<b<oo +1 -1 +1 -1 +1
oo O<l<b<a<oo +1 -1 +1 -1 -1
o3 O<a<l<b<oo +1 +1 +1 -1 +1
oy O<b<l<a<oo +1 -1 +1 +1 -1
o5 O<a<b<l<oo +1 +1 +1 +1 +1
og O<b<a<l<oo +1 +1 +1 +1 -1
o7 a<0<l<b<oo -1 +1 +1 -1 -1
og b<l<l<a<oo +1 -1 -1 +1 -1
o9 a<0<b<l<oo -1 +1 +1 +1 -1
ol b<l<a<l<oo +1 +1 -1 +1 —1
11 a<b<i0<l<oo -1 +1 -1 +1 -1
12 b<a<0<1l<oo -1 +1 -1 +1 +1.

4.19 Lemma. Let £ = {00,0,1,a,b} be a set of five elements. For pairwise
different a1, as, as, aq, b1, ba, b, by € E such that {al, as,as, CL4} # {bl, ba, b3, b4}
we obtain

l+a={l,a}, 1 —a={l,—ad,—a,d'}, 1 £ af = {1, +af}

for o := [a1,a2 | a3, a4], & = [a1,a3| a4, az], B = [b1,ba | b3, bs] € Q(Uz ).

Proof. Let Q .= Q(Usz ). Regarded as vector space over Fa, Q* and the group
G of all monoid homomorphism o: Q — S together with the multiplication
defined by 0 -0’: Q — S, x +— o(x)o’(z) for all o,0" € G are dual to each other
and have dimension 6.

Clearly, the set 1 4 z is the annihilator of the subspace {o € G| o(x) = 1} of
G and contains {1, z} for all x € Q. Moreover, Proposition and Definition 4.7
implies that o/ € 1 — a. Hence, also —aa/ € 1 — a.

Since |E| = 5, the intersection of {a1, a2, as,as} and {by1, ba, b3, by} contains
exactly three points. Therefore, we can assume without loss of generality that
alzblzoo, bQZCLQ:O, bgzagzl, a4 = a, andb4:b.

Using Example 4.18, we compute that {c € G | o(z) = 1} has dimension 4 if
x = —a, and dimension 5 if x € {a, +af}. Thus, |1+ «a| =2 =1+ +af| and
1 —a| =4. 0

4.20 Lemma. Let £ = {00,0,1,a,b} be a set of five elements. Then Q(Us g)
is not a hyperfield.
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4 Universal partial hyperfields of orientable matroids

Proof. Let a = [00,0]1,a], o := [00,1]a,0], and " := [00,a|0,1]. Further,
we set 3 = [00,0|1,b], 5/ = [00,1]b,0], and " := [00,b]|0,1]. It follows from
Lemma 3.3 that ad’a” = —1 = 83'3”. Therefore, Lemma 4.19 yields that

(= +1)—ap ={l,a,—d, —ad'} — aff
— {1,—af'} Ua(l - B) U (-a)(1 - ") Ua"(1 + o'f)
={1,a,af8,—d,—ad,—afB’, —aBp'},
2 {l,a,—d/,—ad, —ap'},
={l-a}Uu-d(1-a"8)
=—d +{l,-ap'} = - + (1 —ap)).

Hence, Q(Us,g) is not a hyperfield. O

4.21 Lemma. Let E be a set of at least n € N, n > 2, elements. Then the
map B: UO(U, ) — UO(Uy g) defined by 3(0) := 0, B(—1) :== —1 and

B([Hy, Hy | Hs, Ha]) := [a1, a2 | a3, a4]

for every hyperline L of U, g, pairwise different a1,a2,a3,a4 € E \ L and
H; = LU{a;},i=1,2,3,4, is an epimorphism of partial hyperfields.

Proof. Let B: FO(U, g) — TO(Uyg) be the group homomorphism defined
by B(e) := € and

B((Hl, H2 | Hg, H4)) = [al, az | as, a4]
for every hyperline L of U, g, pairwise different a1,a2,a3,a4 € E \ L and
H; =LU{a;},i=1,2,3,4.

Obviously, the kernel of /3 is contained in K(%) (Uy,E) and contains the elements
of (CRO) — (CR4). Further, neither the Fano matroid nor its dual is a minor of
any uniform matroid.

Finally, let Hy,..., Hg be hyperplanes of U, g that satisfy (i) — (v) from
(CR6). Then there exists a subset P C E of n— 3 elements and pairwise different
ai,az,a3,a,a’ € E\ P such that H; := P U {a;,ax} for all {i,j, k} = {1,2,3},
Hii3 = PU{a;,a} and H;1¢ := P U{a;,a'} for all i = 1,2,3. Thus, we obtain

B((Hi, Hy| He, Hy) - (H2, H3 | Hy, Hr) - (H3, Hy | Hs, Hs))
= la1,a2|a,d’] - [ag,a3|a,d’] - [a3,a1 | a,a] = 1.
Therefore, ker 8 = K(O)(UnyE). )
By construction we have §([Hy, Hy | Hs, H3]) = 8((Hy, Hy | Hs, Hy)) for all

(Hy,Hs,Hs,Hy) € Ha(Uz ). Hence, Lemma 2.5 and Proposition and Defini-
tion 3.4 complete our proof. O

84



4.3 Uniform matroids

4.22 Theorem. For any integer n > 2 and any set E that contains at least
max{5,n + 2} elements Q(U, g) is not a hyperfield.

Proof. Since we obtain U(O)(UH,E) = U(O)(U‘E|_H7E) for finite £ using Proposi-
tion 3.11, it suffices to consider the case |E| > 2n.

Further, if n > 3, then |E| — (n — 2) > n+ 2 > 5 and therefore there exists
a hyperline L of U, g and a 5-element set E' C E \ L such that c0,0,1 € E’
are pairwise different. Set F:= Q(Up g), F' = Q(Usz,p/). Using Proposition 3.6
and Proposition and Definition 4.7, the map @: F’ — F defined by @(0) := 0,
a(—1) = -1, and

a([ay,az2|as,aq4]) = [LU{a1}, LU{az} | LU{as}, LU{as}]

is a homomorphism of partial hyperfields.

It is now sufficient to construct a subgroup U C F* such that 7w o @ is an
isomorphism, where w: F' — F /U denotes the canonical projection, because, if
F was a hyperfield, then Proposition 4.10 would imply that F’ is a hyperfield
too, contradicting Lemma 4.20.

Fix a total order < on F'\ E’. Applying Lemma 4.17, for each o € Hom(F”,S)
there exists a total order <, on E’ that satisfies (4.1), 0 <, 1, and a <, o©
for all a € E’. We extend this to a total order on E by defining a <, b for all
a€ E\E and b € F', and a <, b if and only if a < b for all a,b € E\ E'.
Again using Lemma 4.17, we associate a & € Hom(F,S) to o.

Let Y := {6 | 0 € Hom(F,S)} and U := [,y keryo. Then U Na(F™) = {1}
by construction. In order to show that F* = U -a(F"™*) = G, let x = [a,b]| ¢, d]
for pairwise different a,b,c,d € F.

As it follows from Lemma 3.3 that [a,b]|c,d] = [w,b| ¢, d] - [w,a|c,d] for all
w € E\{a,b,c,d}, we can assume without loss of generality that a = oo and
— using a similar argument — also that ¢ = 1. Moreover, let b ¢ E' or d ¢ F’
(otherwise trivially « € @(F")). We distinguish four cases:

First, if b = 0 and d ¢ FE’, we have d <, 0 <, 1 for all 0 € Y. Hence,
x =[00,0]1,d] € =U C G, since —1 € &(F"™).

Second, let b € E'\ {c0,0} and d ¢ E’. Therefore, d <, 0,b for all 0 € Y.
It follows that [0o,d|0,b] € U. Thus, Lemma 3.3 and the previous case imply
that [00,0|b,d] = [00,0|b,1] - [00,0]1,d] € G. Applying Lemma 3.3 again, we
can conclude that x € G.

In the case b ¢ E' and d ¢ E', since o(x) = —1 if and only if d < b for all
o €Y and —1 € G, we obtain = € G.

Finally, if d € E' we get € U because b <, 0,d for all 0 € Y.

Thus, F* is the direct product of U and @(F’*), which implies that m o @
is a multiplicative isomorphism. Moreover, our construction of Y shows that

85



4 Universal partial hyperfields of orientable matroids

every ordering of F/U is liftable to an ordering of F’. Therefore, w o @ is an
isomorphism, which completes our proof. 0

4.23 Corollary. For all n € Ny and sets E containing at least n elements,
Q(U,,r) is not a hyperfield, except in the following special cases:

(a) n€{0,1} or |E| € {n — 1,n}, and thus is regular,
(b) n=2and |E| =4.

Proof. It follows from Theorem 4.22 that n € {0,1}, or |E| € {n — 1,n}, or
n =2 and |E| =4 if Q(Uy,g) is a hyperfield.

Since in the first two cases Uy g is regular, it follows that Q(Usz g) = S, which
is therefore a hyperfield.

In the remaining case we have E = {00,0,1,a} and there exist obviously
three linear orders < on F such that 0 < 1 and 0,1,a < oo. Thus, Lemma 4.17
implies that we have three orderings in this case.

Furthermore, as in Example 4.18 we get that G := Q(Usz g)" is generated by —1,
o = [00,0]1,a] and o’ == [00,0] 1, a], and has order 23. Thus, G = {—1,1}* for
X = Hom(UO)/(U3 ), S). Hence, it follows from [Mar96, Theorem 3.3.2] that
(X, @) is a space of orderings.” Therefore, Theorem 4.11 yields that Q(Us ) is
a hyperfield. O

Tt is the SAP space with three orderings.
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5 Algebraic decomposition of
matroids

If the universal partial hyperfield of a matroid is a hyperfield, then necessarily
every element of the inner Tutte group is a cross-ratio. We will prove that for
matroids that are representable over a field this is also a sufficient condition for
their universal partial hyperfield to be a hyperfield.

Furthermore, we will show that with at most one possible exception the inner
Tutte group of all connected components of these matroids contains only {1,¢}
and examine conditions of minors such that a matroid satisfies this condition.

Additionally, we will examine under which conditions the universal partial
hyperfield of a matroid is the coproduct of at least two partial hyperfields.

Definition. Let M be a matroid. We denote by F (M) the set of fundamental

elements of U®) (M). We call M semiartinian if UC (M) C £F(M), almost

artinian if UO(M)\ {1} € F(M), and artinian if UO (M) C F(M).
Further, we call M slender if U (M) C {~1,0,1}.

5.1 Remark. Clearly, every artinian matroid is almost artinian and every
almost artinian matroid is semiartinian. The reverse implications are both false,
as AG(2,3)! is a semiartinian matroid that is not almost artinian and every
slender matroid is almost artinian, but artinian if and only if it is not regular.

However, if 1 = —1 in U(O)(M ), these three properties are equal to each other.

5.2 Proposition. Let M be a matroid representable over a field F'.
(a) M is artinian if and only if U()(M) is isomorphic to a subfield of F.

(b) If M is almost artinian and one of the following conditions is satisfied,
then M is regular or artinian:?
(i) F' is of characteristic # 2, 3,

(ii) F is the field of two or three elements,

1See Corollary 3.35.
2Tt is unknown to us if there exists an almost artinian matroid that is neither regular nor
artinian.
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5 Algebraic decomposition of matroids

(iii) F is of characteristic 3 and M is orientable.

Proof. Since M is representable over F', Theorem and Definition 3.16 implies
the existence of a homomorphism f: U — F' of partial hyperfields, where
U:= U(O)(M ). Clearly, if U is isomorphic to a subfield of F it is itself a field.
Hence, M is artinian.

Conversely, if M is artinian, Lemma 3.19 yields that f is injective. Further-
more, as F'is a field, we get |f(a+b)| < |f(a)+f(b)| < 1forall a,b € U. Because
M is artinian, this implies |a + b| = 1. Thus, f is strong and Proposition 2.14
yields that f is an embedding. This proves (a).

In order to prove (b), let M be almost artinian but not regular. We will show
that M is artinian if one of the conditions (i) — (ii) is satisfied and there are no
such matroids if (iii) is satisfied. So let one of (i) — (iii) be fulfilled.

For the particular case F' = [Fy of condition (ii), we have shown this already
in the proof of Corollary 3.21. Thereby, for the rest of the proof we may assume
that F' contains at least three elements.

Suppose f was not injective. Applying Lemma 3.19, we would get that
ker, f = {1, —1}. Hence, we would have —1 =1 in F' and therefore F' would be
a field of characteristic 2 which is not isomorphic to Fs, a contradiction.

If F is not of characteristic 2 or 3, by injectivity of f and Lemma 3.20 there
exists an a € U\ {—1,0,1}. Since M is almost artinian and —a ¢ {—1,0,1},
there exist b€ 1 —a, c € 1 +a, and d € b+ ¢ (otherwise we would have b = ¢
and therefore f(a), f(—a) € 1 — f(b) by Lemma 2.5, which would imply a = —a,
since f is injective and F is a field). It follows by Lemma 2.5 that

f(d) € f(0) + f(c) = (1 = f(a)) + (1 + f(a)) =1+ 1.

Since F' is not of characteristic 2 or 3, f(d) ¢ {—1,0,1} and we get d ¢ {—1,0,1}
using the injectivity of f. So there exists an e € 1 —d. But f(e) =1— f(d) = —1
and therefore e = —1. Thus, Lemma 2.1 yields that M is artinian in this case.

Now, let F' be a field of characteristic 3. If F' = [F3, then our claim directly
follows from Lemma 3.20. Otherwise, suppose M were orientable. Using Theo-
rem and Definition 3.16 and Proposition 4.14, we would get a homomorphism
of partial hyperfields o: U — S.

It now suffices to show that there would exist a € U\ {—1,0,1} andbe 1—a
such that o(a) =1 and o(b) = —1. Then b = —a would imply that b € 1 +b
and thus f(b) = 1+ f(b), a contradiction.

Thus, b~'a # —1 and there exists a ¢ € b —a = b(1 — b~ 'a) for which we
would get o(c) € o(b) + o(—a) = {—1}. Hence, o(c) = —1. On the contrary we
would have

fle) e f(b) = fla) = (1 = f(a)) = f(a) =1+ f(a) = f(1 + a).
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5.1 Decomposition of the universal partial hyperfield

This would imply that ¢ € 1 + a and therefore o(c) € 1+ o(a) = {1}, a
contradiction.

In order to construct such a,b € U, let z € U\ {—1,0,1} (exists using
Lemma 3.20 and the fact that f is injective). Since —x ¢ {—1,0,1} we can
assume without loss of generality that o(x) = 1.

Using the fact that M is almost artinian, there existsay € 1—z. If o(y) = —1,
we set a = x and b := y. Otherwise, we set a := ™! and choose a b € 1 — a.
Clearly, o(a) = 1. Further, Lemma 2.5 implies that

fb) €1~ fa) = —f(2) 7' (1~ f(2)) = f(=a"y).

Thus, b = —x 1y and o(b) = —1. 0

5.1 Decomposition of the universal partial hyperfield

In Proposition 3.8 we have shown that the universal partial hyperfield of a direct
sum of matroids is the coproduct of the universal partial hyperfields of these
matroids.

We now will characterize geometrically when we can write the universal partial
hyperfield of a matroid M as a coproduct of two partial hyperfields that are
both not contained in {—1,0,1}. Since we will show that this is not possible if
M is semiartinian, this enables us to determine the possible universal partial
hyperfields of connected components of M in this case.

Definition. We call a partial hyperfield F' decomposable if there exist partial
hyperfields F| and F; such that F' = F| @ Fy and F; 2 F’ for all i = 1,2 and
F' € {Ug,F3,S,W,Fo,K},® and else we call F' indecomposable. Further, we call
a matroid M algebraically decomposable resp. algebraically indecomposable if
U©) (M) is decomposable resp. indecomposable.
Clearly, every slender matroid is algebraically indecomposable.

5.3 Lemma. Let (F});cs be a family of partial hyperfields, F := [[,.; F; and
t;: F; — F the canonical injection for ¢ € I as in Corollary 2.12. Then

(a) F(F) = Uier i (F(E)),

(b) F' = J;cy ti(F;) if and only if there exists an 4 € I such that F; € {—1,0,1}
forall j € 1,7 #1.

3See Remark and Definition 2.11 and Lemma 3.20.
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5 Algebraic decomposition of matroids

Proof. Clearly, Lemma 2.5 implies that (J;c; t:(F(F3)) € F(F).

If a € F(F)\ {0,1}, then there exists a b € F* such that b € 1 —a. By
Proposition and Definition 2.9 and Corollary 2.12, there exist i € I, a; € ¢; L(a)
and b; € (1 —a;) N ¢ (b). Thus, a € ¢;(F(F;)), which proves (a).

Moreover, if j € I such that F; C {—1,0,1} for all i € I, i # j, it follows that
F =1;(F;) € Ujer u(F).

Conversely, let F' C |J;c; vi(Fi). Further, for each i € I let s;: F; = K@ F;
and \;: K — K@ F; be the canonical injections. Since 1+ 1 = {0,1} in K, we
have {0,1} = \j(1+1) C1+1 in K& F;. Therefore, Lemma 2.5 yields that the
map p;: F; — K@ F; defined by p;(0) := 0 and p;(a;) =1 for all a; € F is a
homomorphism of partial hyperfields.

Moreover, Corollary 2.12 implies that for each i € I there exists a unique
homomorphism g;: F' — K @ F; such that g; o ; = x; and g; o t; = p; for all
j e\ fi}.

Now, let J C I be a two element set and a; € F;", 7 € J. Then there exist
k € I and a;, € F} such that ¢;(a;)ej(a;) = wlag) for {i,j} = J. If k # 4,7,
applying gr, we get ar, € {—1,1}, as ker A\, = {—1,1} by construction of the
coproduct. Using g; or g; yields similarly a;,a; € {—1,1}.

Otherwise, k =i or k = j. In the former case, we get aialgl, a; € {—1,1} and
in the latter case a;, ajalzl € {—1,1} using g; and g;. Thus, it is not possible to
have F; € {—1,0,1} for both I € J. a

5.4 Lemma. A partial hyperfield F' is indecomposable if F¥ C +F(F). In
particular, a semiartinian matroid M is algebraically indecomposable.

Proof. Let F' = [} @ F5 for partial hyperfields Fy, F5 and denote by ¢;: F; — F
the canonical injection, ¢ = 1,2. Then Lemma 5.3 yields that

:EF(F) = (Ll(ﬂ:]:(Fl)) U LQ(ZI:F(FQ))) C L1(F1) U LQ(FQ).

Applying Lemma 5.3 again, F' C +F(F) implies F; C {—1,0,1} for an ¢ € {1,2},
which proves our claim. O

5.5 Theorem. Let M be a matroid.

(a) M is algebraically indecomposable if and only if there exists a slender
matroid S and a connected algebraically indecomposable matroid N such
that M =2 S @ N.

(b) M is semiartinian if and only if there exists a slender matroid S and a
connected semiartinian matroid N such that M = S @ N.
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5.1 Decomposition of the universal partial hyperfield

Proof. First, if M is slender, then M = M ® N, where N is the empty matroid
and in this case (a) and (b) follow trivially, since every slender matroid is
semiartinian and therefore algebraically indecomposable by Lemma 5.4.

Otherwise, Corollary 2.12 and Proposition 3.8 imply that at least one of the
connected components My, ..., M} of M is not slender. We may assume without
loss of generality that M7 is such a component. Set N := M; and S := @5.12 M;.
Further, let U := UO(N) and F := U (S). Using Proposition 3.8, we have
UO(M)=U@F. Let v: U— U (M) and +: F — U©® (M) be the canonical
injections.

Clearly, U (M) is decomposable if S is not slender and therefore M is not
semiartinian by Lemma 5.3. So let S be slender. Then U (M) = v(U).

Now, (b) follows quickly as Lemma 5.3 yields that M is semiartinian if and
only if N is semiartinian. In order to prove (a), it suffices to show that M is
algebraically indecomposable if and only if N is algebraically indecomposable.

If N is algebraically decomposable, there exist partial hyperfields F}, Fb
such that F; ¢ {-1,0,1}, i = 1,2 and U & F; ® F,. Thus, it follows from
Lemma 5.3 that Fy @ F ¢ {~1,0,1} and UO(M) = F, @ (F, @ F). Hence, M
is algebraically decomposable.

Conversely, if M is algebraically decomposable, there exist partial hyperfields
Fy and F such that UO(M) = Fy @ Fy and F; ¢ {—1,0,1}, i = 1,2. Further,
let 1;: F; — U (M) be the canonical injection, i = 1,2. Then U (M) = v(U)
implies ¢;(F;) C v(U), i =1, 2.

Further, let F be the initial partial hyperfield with respect to the set inclusion
v (y(F) — U, i = 1,2, In order to show U & F| & Fj and thus N is
algebraically decomposable, using Corollary 2.12, it is sufficient to show that
for all homomorphisms f;: F/ — F’, i = 1,2, into a partial hyperfield F’, there
exists a unique homomorphism f: U — F’ such that fo = f;, i =1,2.

If f: U— F’issuch an f, then using Corollary 2.12, for every a € U there
exist a; € Fj, i = 1,2, such that v(a) = ¢1(a1)t2(ag). Therefore, a = afal, for
suitable a; € F!, i = 1,2, and f(a) = f(}(a})i4(ah)) = fi(a})f2(d)). Hence,
there exists at most one such f.

Conversely, setting f(a) = fi(a})f2(dy) if a = dja}, for a) € F!, yields a
well-defined multiplicative homomorphism f: U — F’, since if a # 0 and
a = ajah, = bybl, for al, b, € F!, i = 1,2, it follows from F] NF) = {-1,0,1} that
a, =b,,i=1,2,or a; = —b], i = 1,2. Therefore, fi(a))f2(ay) = f1(b])f2(b5).

Ifa,b e U*and b € 1—a, we get v(b) € 1—v(a). Applying Corollary 2.12, there
exist ¢ € {1,2} and a;,b; € F} with ¢;(a;) = v(a), t;(b;) = v(b) and b; € 1 — a;.
It follows that a,b € F and therefore f(b) = fi(b) € 1— fi(a) = 1— f(a). Using
Lemma 2.5, f is a homomorphism of partial hyperfields, completing our proof.g
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5 Algebraic decomposition of matroids

5.6 Corollary. Let M be a matroid such that 1 # —1 in U (M),

(a) M is almost artinian if and only if there exists a slender matroid S and a
connected almost artinian matroid N such that M =S @ N.

(b) M is artinian if and only if there exists a slender matroid S and a connected
almost artinian matroid N such that M = S @ N and at least one of S or
N is artinian.

Proof. Since every almost artinian or artinian matroid is semiartinian, it follows
from Theorem 5.5 that M is neither almost artinian nor artinian, if M is not
the direct sum of a slender and a connected semiartinian matroid.

Thus, it suffices to examine the case M = S @® N where S is a slender matroid
and N a connected semiartinian matroid. Set U := U (N) and F := U©)(S),
and let v: U — UO (M) and ¢: F — U (M) denote the canonical injections, as
in the proof of Theorem 5.5. Further, note that F* C {—1,0,1} and Lemma 5.3
yields U (M) = v(U).

Since —1 # 1 in U (M), v is bijective and ¢ injective. Therefore, Lemma 5.3
implies that v(F(U) \ {—1}) = F(M) \ {—1}. Thus, M is almost artinian if
and only if NV is almost artinian, which proves (a).

Finally, since —1 € F(M) if and only if —1 € F(U) or —1 € F(F'), we obtain
that M is artinian if and only if at least one of S or N is artinian. This proves
(b). o

5.7 Example. The matroid M = AG(2,3) ¢ PG(2,2) is semiartinian by The-
orem 5.5. Since the Fano matroid PG(2,2) is a minor of M we have —1 =1 in
U©(M). Thus, M is artinian.

Both AG(2,3) and PG(2,2) are representable over Fy and therefore classical
matroid theory, or Proposition 3.8 and Theorem and Definition 3.16 imply

that M is also representable over Fy. Hence, applying Proposition 5.2, we get
UO (M) = TFy.

5.8 Remark. Unfortunately, a characterization of the universal partial hy-
perfields of the connected components of matroids, whose universal partial
hyperfield is a hyperfield, similar to Theorem 5.5 and Corollary 5.6, does not
exist.

Proof. Let F be a hyperfield. Since U@ F = F and Fo @ F = F/(—1), F'®& F
is a hyperfield if F' € {Up,Fy}.

This is not necessarily the case for F' € {F3,S,W K}. If F is field of
characteristic 0, then 14 (14 ¢(2)) =14 ¢(3) = {¢(4)}, where t.: F — F' ® F is
the canonical injection, but ¢(3) € 14 ¢(2) C (14 1) 4+¢(2) if F' € {S,W,K}, or
le—-1+u2)C(1+1)+(2)if F' € {F3, W}. 0
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5.1 Decomposition of the universal partial hyperfield

5.9 Lemma. The uniform matroid U, g for any set E' containing at least n + 2
elements, n € N, n > 2, is not semiartinian.
In particular, a uniform matroid is semiartinian if and only if it is regular.

Proof. Let M = U, g, N := Uy g and 00,0,1 € F pairwise different. Using
Theorem 3.27, we obtain U©) (N) 2 Up\{o0,0,1}- Further, Theorem and Defini-
tion 2.20 and Theorem and Definition 2.23 yield that +a? ¢ F(Ug {c0,0,1}) for
any a € E'\ {00,0,1} and thus N is not semiartinian.

Applying Lemma 4.21, there exists an epimorphism f: U (M) — UO(N).
Now, if M were semiartinian, N would also be semiartinian, since for every
a’ € UO(N) there exists an a € f~(a’). Thus, b€ 1 —a or b € 1+ a would
imply that f(b) € 1 —da’ or f(b) € 1+ a’. Hence, a’ € F(N).

In all other cases, i.e., n € {0,1} or |E| € {n — 1,n}, M is regular and
therefore almost artinian. 0

5.10 Proposition. Let M be a modular combinatorial geometry.
(a) If M is semiartinian, it is either regular or artinian.

(b) If M is non-slender, then M is semiartinian if and only if M is the
direct sum of a slender modular combinatorial geometry and a non-slender
projective geometry of dimension at least 2.

(¢) M is slender if and only if M is the direct sum of matroids of the following
types:
(1) Uoo, U1, Usp, or Uas,
(ii) PG(d,Fp) for d € N, d > 2, and p € {2, 3},

(iii) a projective plane IT such that the extended radical of a planar ternary
ring coordinatizing it is not {1}, but is either F* or a normal subloop
of F'* of index 2 not containing —1.

Proof. Since a combinatorial geometry is modular if and only if it is a direct sum
of projective geometries ([Whi86, Corollary 3.6.5|) it follows from Theorem 5.5
that it is sufficient to examine the universal partial hyperfields of projective
geometries.

Let IT be a projective geometry and E := E(II). If IT has dimension at most
1, it is uniform and therefore using Lemma 5.9 semiartinian if and only if it is
equal to U070, U171, U272, or U273.

Applying Proposition 3.25, any projective geometry of dimension at least 3 is
artinian. It is slender if and only if IT = PG(d,F)), d > 3, and p € {2, 3}.
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5 Algebraic decomposition of matroids

Finally, let IT be a projective plane and (F,T') be a planar ternary ring coordi-
natizing it. Then Theorem 3.24 implies that II is artinian. We have UO)(IT) 2 F
for F' € {Fy,F3} if and only if IT = PG(2,F)) for p € {2,3}. Furthermore, if
UON(IT) = F for F € {S,W, K}, then IT is non-Pappian. Therefore, R, # {1}
and we have either R, = F or F = R, U —R, and —1 ¢ R,.

Conversely, if R, = F* or F* = R, U —R, and —1 ¢ R,, it follows from
Lemma 3.20 that IT is slender. 0

5.11 Remark. Let P be an archimedian ordering of a field F' and k € P\{0,1}.
Setting
mkx+c ifm,z e —P,

T(m,x,c) = {

max + ¢ else,

we obtain a planar ternary ring (F,T) such that U©)(II) 2 S for the projective
plane II that is coordinatized by (F,T) (see [Kal92a, Proposition (4.2)]).

Let (F,T) be a planar ternary ring coordinatizing a projective plane II. If
(F,T) is finite but not a field, U (IT) 2 K (see Corollary below). However, we
have not found any planar ternary ring (F,T) such that U© (II) = W.

5.12 Corollary. Let M be a finite modular combinatorial geometry.

(a) M is slender if and only if M is the direct sum of matroids of the following
types:
(i) Uoo, Un,1, Uz, or Uz,
(ii) PG(d,Fp) for d € N, d > 2, and p € {2, 3},
(iii) a non-Desarguesian finite projective plane.
(b) M is non-slender and artinian if and only if M is the direct sum of a

slender modular combinatorial geometry and PG(d, F') for d € N, d > 2,
and a finite field I’ with at least four elements.

Proof. Follows from Proposition 5.10 and [JK90, Korollar §]. 0

5.13 Proposition. For each matroid M of rank at least 3 such that £ = HU/{
for a hyperplane H and a line ¢ of M such that o(H N¥¢) > 1 we have

UOM) 2 UO(M|H) @ UO (M]0).

Moreover, M is algebraically indecomposable if and only if s(M|¢) contains at
most 3 points and M |H is algebraically indecomposable.
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5.1 Decomposition of the universal partial hyperfield

Proof. Let s .= HN/{ and n := o(M). Since E is not a hyperplane, o(s) = 1.
In particular, each line of M thus intersects H non-trivially and therefore H is
modular.

We set My .= M|H, My = M|{, F :=UO (M), and F; .= UO (M), i = 1,2.
Further, we choose maximal independent sets S; C ¢ and So C H such that
0(S1Us) =L and 0(S2Us) = H. Then |S;| = 1 and |S2| = n — 2. Using
Proposition 3.6, it follows that ¢;: F; — F' defined by ¢;(0) =0, ¢;(—1) = —1
and

ti([H1, Ho | Hs, Hy)) :== [H1, Ho | H3, Hy],

for (Hy, Ho, Hs, Hy) € Ha(M;), where H; == oy (H; US;), j = 1,2,3,4, is a
homomorphism of partial hyperfields for ¢ = 1, 2.

Applying Corollary 2.12, F' = F ¢ F5 follows if we show that for all homomor-
phisms f;: F; — F’, i = 1,2, into a partial hyperfield F’ there exists a unique
homomorphism f: F — F’ such that fou = f;, 1 =1,2.

We first construct a group homomorphism g: FOO (M) — F'*. Set g(e) == —1.
For any (Hy, He, H3, Hy) € H4(M) we set

9((Hy, Ho| H3, Ha)) = q fo([H{,Hy | HY,Hf]) ifsZ L CH,

1 else,

where L=, H;, and H, == H;NH, H' == H;N (. i=1,2,3,4.

Then g is well-defined, as the modularity of H implies that H; N H is a
hyperplane and L N H is a hyperline of M|H, i =1,2,3,4,if L ¢ H, and H;N/{
is a hyperplane of M|¢if s¢ L C H*i=1,23,4.

It is now sufficient to show that all the elements of (CRO) — (CR6) are
contained in ker g, since this implies that K(©) (M) C ker g and thus there exists
a unique group homomorphism f: F* — F’* such that

f([Hy, Ho| H3, Hy]) = g((Hy, Ho | H3, Hy)).

Thus, by setting f(0) := 0 and using Lemma 2.5 as well as Proposition and
Definition 3.4 we obtain the desired homomorphism f: F' — F’ such that
foLi:fi,’izl,Q.

For all hyperlines L O s of M we have H; = {H,L V ¢}. Therefore, by
construction, all the elements of (CR0) — (CR4) are contained in ker g. In order
to show that ker g contains e (this is (CR5)) if M has the Fano matroid or its
dual as a minor, we prove that in this case M; has the Fano matroid or its dual
as a minor.

In this case H; = H or H; = L Up for a hyperplane p of M|
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5 Algebraic decomposition of matroids

Let N be such a minor of M on the set E/ C E. Then there exist an
independent set I such that N = (M/I)|E’. Since op(¢) =2, [INL] < 2.

Suppose I C H. It would follow that £ C E'\ I and N would be a minor of
M’ = (M/I)|(E \ I), which has the same rank as N. This would imply that £
is the union of a hyperplane and a line of N, because E \ I is the union of the
hyperplane H \ I and the line £ of M.

This is a contradiction, as their union can contain at most 6 points and
|E'| =7 (if N is the Fano matroid both are lines, which contain 3 points, and if
N is the dual of the Fano matroid, each hyperplane contains 4 and each line 2
elements). Therefore, I ¢ H and let i € I NZ.

Further, since I N¢ contains at most 2 elements, there is at most one j € I\ H
such that j # i. If such a j exists, we have ¢ C o);(I) and therefore, we can
replace j by any j' € H N ¢ such that o({j'}) = 1.

Hence, we can assume without loss of generality that |[I\ H| =1 and E' C H
(we have opr/i({z,y}) < 1for all m,y € £\ (H U{i})). Thus, N = (M/I)|E" is
a minor of (M /i)|H = M.

Finally, we show that ker g contains all the elements of the form (CR6). Let
Hy,..., Hg be hyperplanes satisfying (i) — (v) from (CR6), i. e., L; == H; N Hy,
L, = HiNHsNHg, Ly := H7NHgNHy, hyperlines of M for all {7, j, k} = {1, 2, 3},
P = Hy N Hy N Hs a hyperpoint of M, L; C H;y3,H;1¢ for i = 1,2,3 and
{Hy1,Hs,Hs} N {Hy,...,Hg} = (. We have to prove that

xTr = (HI,HQ ’ Hﬁ,Hg) . (HQ,Hg ‘ H4,H7) . (Hg,HQ ’H5,H8) c kerg.

If Ly = Ls, this is trivial, so assume Ly # Ls. Then Ly,..., L5 are pairwise
different. If P ¢ H, then the H, .= H;NH, i =1,...,9, satisfy (i) — (v) from
(CR6) of M; and thus

Otherwise, P C H implies that either three of the hyperlines L;, i = 1,2,3,4,5,
are contained in H or intersect £\ H in a flat of rank 1 (and thus are contained
in the hyperplane PV {) Since Hi, Ho, H3 are pairwise different we can assume
without loss of generality that these three hyperlines are Ls, L4, Ls. This implies
Hg = Hg and therefore (Hy, Ha | Hg, Hy) € ker g.

If L3, Ly, Ls C H, we thus obtain for H] :== H; N H,i=1,2,3,4,5,7,8, that
H{ = H}, Hj = H,, H, = H§. Hence, by definition of g, we get

g(x) = [Hy, Hy | H}, Hy] - [Hy, H1 | Hy, Hy] = 1.

The case Ls, Ly, Ls € PV £ is proven similarly. Finally, the last sentence follows
as in the proof of Theorem 5.5. O
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5.1 Decomposition of the universal partial hyperfield

Definition. Let M be a matroid on the ground set E. The free extension of
M is the matroid on the set E'U {w} for any w ¢ E whose hyperplanes are the
hyperplanes H of M and the sets L U {w} for hyperlines L of M. It is denoted
by M + w and its rank is equal to that of M.

Further, let M; be a matroid on the ground set E;, ¢ = 1,2, such that
U := E1 N Ey is a modular flat of My and M;|U = M|U. Then the generalized
parallel connection of M7 and My is the matroid on the set Fq U Eo whose flats
are the sets K C F7 U FEs such that K N E; is a flat of M;, ¢ = 1,2. It is denoted
by Py(Mjy, Ms).5 Further, the rank of a flat K of Py (M, Ms) can be obtained
by

0Py (My,Mp) (K) = oar, (K N E1) + oap (K N E2) — o(K N U).

Thus, o(Py(Mi, Ms2)) = ni + ng — k, where n; = o(M;), i = 1,2, and k = o(U).

5.14 Corollary. For each matroid M of rank at least 3 such that £ = H U/
and o(H N¥¢) = 0 for a hyperplane H and a line ¢ of M we have

UO(M) =2 UOM|H +w) e UO (M + w)

for an w ¢ E. In particular, M is algebraically indecomposable if and only if
M|H + w is algebraically indecomposable and s(M |¢) contains at most 2 points.

Proof. Let M = P, s(M|H +w, M| +w), where s == o) () U{w}, and for each
flat K of M we set K := o (K). We will show that UO (M) = UO(M). Since
M|K = M|K + w for K € {H, ¢}, then Proposition 5.13 implies our claim.
Using Lemma 2.5 and Proposition and Definition 3.4, we accomplish this
by proving that the group homomorphism g: F(O (M) — T (M ), defined by
g(e) = —1 and o
g((Hl, H2 | Hg, H4) = [Hl, H2 ’ Hg, H4]

for all (Hy, Ha, H3, Hy) € H4(M), is an epimorphism whose kernel is equal to
KO (Mr).

For each flat K of M we have QM(K) = on(K) and thus K NE = K. Let
K1, Ky be flats of rank k € N of M such that oy (K; N K2) = k — 1. Clearly,
Kﬁ\I{Q C [/(\1 N I/(\Q and [/(\1 Vv I/(\Q C sz. Since QM(I/{\l N I/(\g) = k would
imply that I/(\l = I/(\Q and therefore K1 = I/(\lﬂE = I/(\QHE = K>, a contradiction,
we get KlmKQ —KlﬂKg

Thus, QM(Kl Vv Kg) =k+1, Wthh also yields K1 Vv K2 = K1 V Ky In
particular, (Hl,HQ,Hg,H4) € Ha(M ) for all (Hy, Hy, Hs, Hy) € H4(M). Hence,

5CF. [Bry75, Theorem 5.3 and Proposition 5.5]. If U = @, then Py (M, M2) =2 My & Mo; if
o(U) =1 and U = {p}, it is the classical parallel connection.

97



5 Algebraic decomposition of matroids

g is well-defined and its kernel contains all the elements from (CR0) — (CRA4)
and (CR6).

Further, we have K(O)(M ) C ker g. To prove that ker g contains the element
from (CRS5), it suffices to show that if M has the Fano matroid or its dual as a
minor, then this is already a minor of M.

Let N be the Fano matroid or its dual and let it be a minor of M on the
set E'. Using the proof of Proposition 5.13, we obtain that N is a minor
of M|H + w. Thus, there exists an independent set I C E \ E’ such that
N=((M|H +w)/I)|E".

We will show that w € E'. Then we have N = (M/I')|E’ for I' = T U {p} if
wé¢l,and I' = (I \ {w}) U{p,q} else, where {p, ¢} is a maximal independent
set of /.

Suppose w € E’. Every hyperplane of M|H + w which contains w is of the
form L U {w} for a hyperline L of M|H, contradicting the fact that in the
case that IV is the Fano matroid, every hyperplane contains 3 points and every
hyperline 1 point, and if NV is its dual, every hyperplane contains 4 points and
every hyperline 2 points.

Finally, to show that g is surjective, let (H}, H}, H4, H}) € Ha(M) and
L = ﬂ?zl H!. If w € L', then the proof of Proposition 5.13 yields that
Hp = {H U{w}, LV} (since oy, (w) =s). Thus, H] = Hy and Hy = H}, and
we get [Hi, Hy| Hj, Hy| = 1.

Otherwise, L := L' N E is a hyperline of M such that L = L' and H; == H/NE
is a hyperplane of M such that f{\z = H/,i=1,2,3,4. Hence,

g((Hlv Hy ‘ Hs, H4>) = [Hiv Hé | Hf,%> Héll]
Therefore, g is surjective, which completes our claim. O

It follows from Proposition 3.11, Lemma 5.4 and Lemma 5.9 that a matroid
of rank less or equal to 2 is algebraically indecomposable. Thus, it remains to
study matroids of rank greater or equal to 3 whose ground set is not the union
of a hyperplane and a line.

For the rest of this section we will prove that matroids of rank greater or
equal to 3 whose ground set is not the union of two hyperplanes are algebraically
indecomposable if certain additional assumptions are satisfied.

5.15 Lemma. Let F; be a partial hyperfield, i = 1,2, ¢;: F; — F; & F5 the
canonical injection, ¢ = 1,2, and E be a set which contains at least 4 elements.
For any homomorphism of partial hyperfields f: U(O)(UQ,E) — I @ Iy there
exists a k € {1,2} such that f(UO (U g)) C t(F).
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Proof. There is nothing to prove if f(U©) (Uy g)) € {~1,0,1}. So let there
exist pairwise different 00,0,1,a € E such that f([{occ}, {0}|{1},{a}]) # —1,1.

Using Proposition 3.26, it suffices to prove that for any homomorphism of
partial hyperfields g: F' — F1 @ Fy, where F' := Uyp\ {00,011}, With g(a) # —1,1
there exists a k € {1,2} such that g(F) C tx(F}).

Lemma 5.3 yields that there exists a unique k € {1, 2} such that g(a) € vx(Fk).
We will first show g(b) € ¢x(F}) for all b € E'\ {c0,0,1}.

Let 4,7 € {1,2} such that a=1b~! € 1;(F;) and b € ¢;(F}). Since 4, j, k cannot
be pairwise different, ¢;(F}*) is a subgroup of (Fy @ F»)* for all { = 1,2, and as
a-a"'b~! b= 1 we obtain that i = j = k.

Further, Corollary 2.12 implies that g(1 — b) € ¢ (F)). Thus,

glb—c)egb—1) +9(1 —c) € wi(Fp)
for all b,c € E \ {00,0,1} such that b # c. Hence, g(F) C tx(F}). 0

Definition. Let f: U® (M) — F, @ F, be a homomorphism of partial hyper-
fields, where M is a matroid, Fy, Fy are partial hyperfields and ¢;: F; — Fy & Fy
is the canonical injection, i = 1, 2.

For each hyperline L of M let k(L) be the set of all j € {1,2} such that for
all pairwise different Hy, Hy, H3, Hy € Hp, we have f([Hy, Ha | H3, H4)) € 1;(Fj).
It follows from Lemma 5.15 that k(L) # 0.

Further, we say that M is f-indecomposable if we have k¢(L) C k¢(L') or
kf(L'") C k(L) for all hyperlines L, L’ of M. Clearly, M is indecomposable if
M is f-indecomposable for any isomorphism f: U (M) — F| @ F, such that
Fy ¢ {-1,0,1},i=1,2.

5.16 Lemma. Let L be a hyperline of a matroid M and Hiy, Hy, Hs, Hy € Hf,

pairwise different such that f([Hy, Hy | Hs, Hy4]) # —1, 1 for a homomorphism

f: IU(O)(M) — F1 @ F5 to the coproduct of two partial hyperfields F;, i = 1, 2.

(a) If H is a hyperplane such that P := H N L is a hyperpoint, as well as

r € {1,2,3,4} such that H N H; is a hyperline for i = 1,2,3,4, i # r,

then ky(L') = k¢(L) for all hyperlines L' O P such that L' ¢ H, H; for
1=1,2,3,4,1#r.

In particular, if H N H; is a hyperline for all © = 1,2,3,4, we have
kf(L") = k(L) for all hyperlines L' O P such that L' ¢ H.

(b) If M is the uniform matroid of rank 3 on m € {5,6} points, and if m =6
we have additionally —1,1 ¢ 1 — 1 in Fy @ F5, then k¢(L) C ky(L') for all
hyperlines L’ of M.

Moreover, we have k¢(L') = k¢(L) for at least two hyperlines L' # L.
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5 Algebraic decomposition of matroids

Proof. First, to prove (a), let H be a hyperplane such that P := H N L is
a hyperpoint, r € {1,2,3,4} such that L, := HN H; € L for all i = 1,2,3,4,
i #r, and L' O P be a hyperline such that L' ¢ H, H; for all i = 1,2,3,4,
i #r. If weset H. .= H, and H, == L' V L; for all i = 1,2,3,4, i # r,
then (Hi, Hs, Hs, Hy) and (Hj, H), H;, H)) are projectively equivalent, and
Proposition and Definition 3.29 yields that

o = [Hy, Hy | H3, Hy) = [Hy, Hy | Hy, Hy).

Since f(a) # —1,1 there exists a j € {1,2} such that f(a) = ¢;(F}), where
ti: F; — F1 @ F> is the canonical injection, ¢ = 1,2. Thus, Lemma 5.15 yields
that ky(L') = {j} = k(L)

To show (b), let M be the uniform matroid of rank 3 on the points {1,...,m},
where m € {5,6} and set 7j := {i,j} forall4,j =1,...,m, i # j. Let L' be a
hyperline such that k¢(L") # ky(L). It follows from Lemma 3.3

f([Hy, Ho| Hs, Hy]) = f([Hy, Ha | H3, H5)) - f([H1, H2 | Hs, Hy))

for any Hs € Hr \ {H1, Ha2, Hs, Hy}. Hence, using the fact that every permu-
tation of {1,...,m} is an automorphism of M and Proposition 3.12, we may
assume without loss of generality that L = {1}, L' = {2} and 1i = H;_; for all
i=2,3,4,5. Applying (CR6) yields that

It follows from the proof of Lemma 5.15 that k¢({1}) = {j} = ks({i}) for an
i € {2,3}. Hence, k¢({1}) = ks ({3}).

Similarly, we get kf({1}) = k¢({i}) for an i € {4,5}, and Lemma 3.3 yields
f([Gl,GQ ‘ G3,G4D S {—1, 1} for all {Gl,GQ,Gg,G4} = {ﬁ,ﬁ,ﬂ,%} If
m =5, it follows immediately that k¢({2}) = {1, 2}.

Else, suppose we would have m =6 and —1,1 ¢ 1 — 1 in F} & F,. This would
imply f([G1,G2|Gs,G4]) # 1 for all (G1,G2,G3,Gy) € ’HI using the definition
of U (M) from Proposition and Definition 3.4. Thus, Lemma 3.3 would yield
f([21,2312,26]) # —1,1 for an i € {4,5} and we would get kr({2}) = ks ({i'})
for a ¢ € {1,3}. Hence, k¢({2}) = k¢({1}), a contradiction. 0
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5.17 Lemma. Let M be a matroid of rank 3 such that E Q Hi U Hs for all
hyperplanes Hi, Ho of M, and F; a partial hyperfield, i = 1, 2.

Then M is f-indecomposable for a homomorphism of partial hyperfields
f:UOM) - Fy @ F» if and only if each minor N = Usg is (f o fn)-
indecomposable, where fy : U (N) — U©) (A1) is the homomorphism of partial
hyperfields defined by fx(0) :=0, fx(—1) := —1, and

In([Hy, Hy | Hs, Hy)) == [Hy, Ho | H3, Hy]

for all (Hy, Ho, H3, Hy) € H4(N), where H; :== op(H;), i = 1,2,3,4 (cf. Propo-
sition 3.6).

Proof. Clearly, all minors N = Us ¢ of M are (f o fn)-indecomposable if M is
f-indecomposable.

Conversely, let F; be a partial hyperfield, i = 1,2, f: UO(M) — F} & F be
a homomorphism of partial hyperfields such that each minor N = U3¢ of M
is (f o fn)-indecomposable, and Li, Lo be different hyperlines of M such that
ke(L;) #{1,2}, i =1,2. We will show that k¢(L1) = kf(Lo).

Let G1 := Hy .= L1 V Lo. It follows from the proofs of Proposition 3.26 and
Theorem 3.28 that there exist pairwise different Hy, Hs, Hy € Hy, \ {H1} such
that

{f([Hy, Hy | H3, Hal), f([Hy, H3 | Hy, Ho])} N {—=1,1} = 0. (5.1)

First, we consider the case there exists a hyperplane H such that H N H; € L
for all i = 1,2,3,4. Since Lemma 5.16 yields k¢(L) = ks(Ly) for all hyperlines
L ¢ H,let Ly C H =: Gy, as else we have trivially kf(L1) = ky(Ls).

Similar as above there exist different G3, G4 € Hr, \ {G1, G2} such that

{f([G1,G2]G3,G4)), f([G1,G3| Gs,Ga])} € {—1,1}. (5.2)

Set Lz := Go N Hy. We will show there exists a hyperline L ¢ H such that
k(L) = kyg(L2).

If there exists a hyperplane G SZ Lo such that GNG; € Lforalli=1,2,3,4,
then there exists an L ¢ G U H for which we have kf(L) = kf(L2) using
Lemma 5.16.

101



5 Algebraic decomposition of matroids

If there exist hyperlines L;11 C Gy, Ljv1 # Lo, © = 3,4, such that every
hyperline H’ contains at most two of the four hyperlines Ly, L3, Ly, L, let E’
be a set of five points such that o(L; N E') = 1 for all ¢ = 1,...,5. Then
N = M|E' = Us5 and thus Lemma 5.16 implies that k¢(L2) = ks(L), where

L = L; for a suitable j € {4,5}.

Ly Ly

Hj

Else, there necessarily exist a hyperplane G ¢ Ly and an s € {1,2,3,4} such
that GNG; € Lfor all i =1,2,3,4,i # s, but GNG4 ¢ L. Then Lemma 5.16
yields that k(L) = ks(Lz) for a hyperline L ¢ H such that L ¢ G;, 1 =1,2,3,4,
i # s. If additionally s # 2, we choose a hyperline L C G such that L # Ls.

Gs Ly
Hy
G
H= G2 L2
L H Hj
Gy

If additionally s = 2, we choose a hyperline L ¢ GU H. Since we may assume
without loss of generality that L ¢ G; for i = 3,4 (otherwise we would be in the
second subcase), this follows directly if L ¢ G1. Else, we choose any hyperline
Ls O P such that Ly C H and Lg # Lo, and get ]{Zf(LQ) = kf(Lg) = kf(L)

G4 G
G \ -

Hy
L3 H == G2 L2
Ho ;s

In the remaining case, for all hyperplanes H 2 Ly there exists anr € {1,2,3,4}
such that H N H, ¢ L. Choose a hyperline Ly C Hs, L3 # L; and set
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5.1 Decomposition of the universal partial hyperfield

Go == LoV L3. It follows from the proofs of Proposition 3.26 and Theorem 3.28
that there exist different Gs, G4 € Hp, \ {G1, G2} that satisfy (5.2).

Moreover, we may assume without loss of generality that for all hyperplanes
G 2 Ly there exists an s € {1,2, 3,4} such that GNG; ¢ L (otherwise exchange
the roles of L; and Lo and apply the first case). Thus, using Lemma 3.3, we may
further assume that there exist {k,l} = {3,4} such that Ly .= Gy N H; € L.

If additionally L5 := G; N Hy, € L, then every hyperplane H’' contains at most
two of the five hyperplanes L,. .., Ls. Hence, we get kf(L1) = ky(L2), as in
the first case. Thus, for the rest of the proof let o(G; N Hy) = 0.

L1 H
L
2 LQ Gl L5

If there exist Ls C Hy, Ls # L1, Lg C Gy, Lg # Lo, such that each hyperline
contains at most two of the five hyperlines Lq,..., Ly, Ly,,, m € {5,6}, then it
follows from Lemma 5.16 that for

Si=A{L € {L1,..., Ly, Layi} | kp(L) = kp(L:)}

we have |S;| > 3, i = 1,2. Clearly, we get kf(L1) = ky(Lz) if S; NSy # 0. Thus,
let |Sl U S2| =6and Li14 €S5;,1=1,2.

If additionally K := Ls V Lg contains both Ls and L4, then it follows from
Lemma 5.16 that k¢(L1) = ky(L2). Similarly, we get k¢(L1) = k¢(L;) = k¢(L2)
if K contains L; but not L; for {4, j} = {3,4}.

Else, K contains neither L3 nor L, and since the G; and the H;, i = 1,2, 3, 4,
are pairwise different all hyperplanes contain at most two of the six hyperplanes
Li,...,Lg. Let E’ be a set of six points such that o(L; N E’) = 1 for all
i=1,...,6. Then N := M|E' = Usg. Since N is (f o fy)-indecomposable we
obtain k¢(L1) = kf(L2).
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5 Algebraic decomposition of matroids

Ly H, L
H, I
Ls 5
Gk Hk;

G [, G Lg

If for every choice of Ls C Hy, Ly # L1, Lg C Gy, Lg # Lo, there exist an
m € {5,6} and a hyperplane of H that contains at least three of the hyperlines
Li,...,L4, Ly, we may assume without loss of generality that m = 5 and
H = Ly V L3 contains L; for {i,j} = {3,4} (since Hy, Hy, Hs, Hy are pairwise
different). If G := Ly V Lg contains also L;, then Lemma 5.16 yields that
k(L) = kyg(Lj) = ky(La2).

Else, if G contains neither L; nor L;, we get k¢(L1) = k(L) = k¢(Lo) for
anm € {j,5}.

Finally, let G contain L;. Then there exists a hyperline L ¢ G U H. Further,
we choose n € {j,5} and p € {i,5} such that L ¢ Ly V L, and Ly € LV L,.
Therefore, using Lemma 5.16, we obtain

5.18 Proposition. A matroid M such that E ¢ Hy U Hy for all hyperplanes
Hy, Hy with o(Hy N Hy) > o(M) — 3 is algebraically indecomposable if one of
the following conditions is satisfied:
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5.1 Decomposition of the universal partial hyperfield

Proof. Let n:= o(M) >3 and f: U(M) — F| ® F» be a homomorphism of
partial hyperfields, where F; is a partial hyperfield, i = 1,2. We will show that
if —1,1¢1—1in F} ® F,, and additionally —1 ¢ 1 + 1 in F; & Fy if n > 4,
then M is f-indecomposable.

This proves our claim, since Lemma 2.5 and Theorem and Definition 3.16
imply that (b) is a special case of (a) and (d) is a special case of (c). If n = 3, it
follows directly from Lemma 5.16 and Lemma 5.17 that M is f-indecomposable.

Thus, let n > 4 for the rest of the proof. It follows from the definition of the
addition of U®) (M) in Proposition and Definition 3.4, the proof of Lemma 3.20,
—1,1¢1—1,and —1 ¢ 1+ 1 that f([Hy, Ho | Hs, H4]) # —1,1 for all hyperlines
L and pairwise different Hy, Ho, H3, H4 € H. Hence, we obtain from the proof
of Lemma 5.15 that k¢(L) = {1,2} if and only if |H| = 3 (the case |Hr| =2 1is
not possible since otherwise E = Hy U Hy for {Hy, Ho} = Hp).

Let L1, Lo be distinct hyperlines of M such that k¢(L;) # {1,2}, 7= 1,2, and
K := Ly N Ly. We will prove by induction on o(K) that kf(Lq) = ky(L2). If
o(K) = n — 3, this follows from Proposition 3.6 and the proof of (a).

Else, o(K) < n—3 and we choose a hyperpoint P of M such that K C P C L.
Then PV Lo has at least rank n — 1 and therefore there exist a; € Lo \ P,
i = 1,2, such that L} := PV a;, i = 1,2 are two distinct hyperlines. Since
LiNL, =P and o(Ly N L,) > o(K) + 1 by construction of L, i = 1,2, we can
apply the induction hypothesis if k¢(L}) # {1, 2} for an ¢ € {1, 2}, and obtain
kf(L1) = ky(Ls) = kg(La).

Otherwise, we would have k¢(L}) = {1,2} and thus |H /| = 3 for all i = 1,2.
We will show that this would imply that the simplification of M /P is isomorphic
to the Fano matroid, a contradiction to k¢(L1) # {1,2}.

Let G;,Giy2 2 L} be hyperplanes such that Hy ={H,G;,Gita}, i = 1,2,
and H := L} V L}. For each i = 1,2 every hyperline L' D P such that L' ¢ H
would be contained in G; or Gjo. Thus, there would exist an r € {4,5,6} and
pairwise different hyperlines Lf, ..., L O P such that L) ¢ H,i=3,...,r, and
E=HUJ,_;L}. Further, r > 5, since E ¢ HU (L§ vV L).

Moreover, every hyperplane H' O P such that H' # H would contain at most
three hyperlines that contain P. In particular, the LV L; fori,j € {3,...,r},
i # j, are s pairwise different hyperplanes, where s = 3 if r =5, and s = 6 if
r = 0.

For any hyperline L' O P with L’ C H there would exist {i,7,k} = {3,4,5}
such that Hy = {H,L' VvV L;,L; V L}, or {i,j,k,1} = {3,4,5,6} such that
Hi ={H,L; vV Lj,L; Vv L;}. Thus, we obtain that also H would contain at
most 3 hyperlines that contain P. Hence, |H /| = 3 for all hyperlines L' D P,
which yields that s(M/P) is isomorphic to the Fano matroid. 0
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5 Algebraic decomposition of matroids

5.19 Corollary. A matroid M is algebraically indecomposable if one of the
following conditions is satisfied:

(a) sM is uniform; in particular when o(M) < 2,

(b) o(M) > 3 and for every hyperpoint P and every hyperplane H of M such
that P C H there exist pairwise different hyperlines L1, Lo, L such that
PCL;CH,i=1,2,35

Proof. If M is uniform, it follows from Theorem and Definition 2.20, Propo-
sition 3.26, and Lemma 4.21 that there exist a partial hyperfield F' and a
homomorphism f: UC)(M) — F such that f([Hy, Hy | H3, Hy)) # 1 for all
(Hy, Hy, Hs, Hy) € Hj . Thus, Proposition 3.11 and the proof of part (c) of
Proposition 5.18 imply (a).

In order to prove (b), let n == o(M) > 3, f: UO(M) — F| ® F, be a
homomorphism of partial hyperfields, where F; is a partial hyperfield, i = 1, 2,
and for every hyperpoint P and every hyperplane H such that P C H let there
exist pairwise different hyperlines Ly, Lo, L3 such that PC L, C H,i=1,2,3.

We will show that for every hyperpoint P, every hyperline L O P and all
pairwise different Hy, Ho, Hs, Hy € H, such that f([Hy, Ho | Hs, Hy)) # £1, all
hyperlines L' O P such that k¢(L") # k¢(L) are contained in a hyperplane
H D L. Then if L,L' O P are hyperlines such that kf(L) # {1,2} and
kf(L') # k¢(L), there exists a hyperline L” O P such that L”" ¢ LV L' = H
and kg(L") = k¢(L).

Thus, ks(L) = ks(L) for all hyperlines L O P such that L ¢ H,H' = LV L",
that is L # L' and k;(L') = {1,2}. Hence, we get k;(L1) = ks(Lg) by induction
on o(Li N Lg), as in the proof of Proposition 5.18.

Suppose, there existed hyperlines L, O P such that ks(L}) # k¢(L), i = 1,2,
and LV L] # LV L. Then there would exist hyperlines L; 2 P such that
L C H;, Ly # L, and L; € L} vV L}, i = 1,2. Further, choose a hyperline
Ls D Psuchthat Ls C L1V Lo =G, Ly # L;, i =1,2.

Using Lemma 3.3, we can assume without loss of generality that Ls C Hs.
Thus, Lemma 5.16 would imply GN Hy = P, L) C H,,, and Ly C H,, for
r0, S0 € {1,2,3} such that rg # s¢. Additionally, it follows from Lemma 5.16
that kp(K) = ky(L) for all K C Hy.

Moreover, there would exist hyperlines K; > P with K; C Hy, j = 1,2, such
that K7, Ky, L are pairwise different. Let jE {1, 2}. Then (Gl’j, GQJ‘, Gg,j, G4’j)
and (Hi, Ho, Hs, Hy) are projectively equivalent, where G, ; = L; V K; for
1= 1,2,3, and G47j = H4.

In particular, a Sylvester matroid, i. e., a matroid whose lines each contain a circuit, is
algebraically indecomposable.
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5.2 Decomposition of the canonical real reduced hyperneofield

Therefore, applying Lemma 5.16, there exist r;,s; € {1,2,3}, ; # s;, such
that L C Gy, j and Ly C Gy, ;. Since K1, Ko, L are pairwise different, the same
holds for rg,r1, 79 as well as sg, s1, so. Hence, there exists a k € {1,2} such that
Sk = T0.

Finally, since H; intersects G, i, G, k, and G4y in a hyperline, applying
Lemma 5.16 yields k¢(L5) = k¢(K}), a contradiction to k¢(Ky) = k¢(L). 0

5.2 Decomposition of the canonical real reduced
hyperneofield

We will now prove a characterization of the connected components of oriented
matroids M where Q(M) is a hyperfield. Additionally, we will apply this as an
example for modular combinatorial geometries.

5.20 Lemma. Let F' be a partial hyperfield, T" a real preordering of F' and
x € F*.

(a) 1+7r = {7y € Q(F) | o(z) =1 = o(y) =1V o € Homy-(F,S)}.

(b) If y,z € F* such that §; € 1 + Zp, we have yzp € 1 + Tp if and only if
zr €1+
Proof. In order to prove (a), let y € F*. If y € 1 + Ty and o € Homyp« (F,S)
such that o(z) = 1, it follows that o(y) € 1 + o(z) = {1}.

Conversely, if o(y) = 1 for all ¢ € Homp-(F,S) such that o(x) = 1, we have
olyy=1€l+1=1+4o0()ifo(x) =1, and o(y) € 1 —1 =1+ o(z) if
o(z) = —1 for all ¢ € Homyp«(F,S). Thus, gp € 1 + Z7.

Finally, (b) follows directly from (a), since for every o € Homp+(F,S) such
that o(y) = 1 we have o(yz) = o(2). 0

5.21 Proposition and Definition. For any real preordering T' of a partial
hyperfield F' the following statements are equivalent:

(a) the map Hom(Qr(F),S) — Hom(Qr(F),W), 0 — ho o is surjective,
where h: S — W is the unique homomorphism (see Lemma 3.20),

(b) a+b={a,b} for all a,b € Qr(F)* such that a # —b,
(¢) 1+a={1,a} for all a € Qr(F)\ {0, —1}.

If one (and therefore all) of the statements above is satisfied, we call Q7 (F) a
fan.” Moreover, in this case Qr(F) is a hyperfield.

"This is equivalent to that the corresponding prespaces of orderings is a fan in the sense of
Marshall.

107



5 Algebraic decomposition of matroids

Proof. Using Proposition and Definition 2.7, (a) is fulfilled if and only if
each group homomorphism o: Qp(F)* — {—1,1} such that o(—1) = —1is a
homomorphism of partial hyperfields (by setting o(0) := 0).

Thus, the equivalence of (a), (b) and (c) is implied by [Mar96, Theorem 3.1.2],
Proposition 2.2, and Theorem 4.11.

The last sentence follows from [Mar96, Theorem 3.1.1] and Theorem 4.11. o

5.22 Lemma. Let I be a set, T; be a real preordering of a partial hyperfield
Fi,icl, F = [];c; Fi, and ¢;: ' — F; the canonical injection for i € I as in
Corollary 2.12. Then the (multiplicative) submonoid 7" of F' generated by 0 and
1i(T;), i € 1, is a real preordering of F. Moreover

(a) the map Homp«(F,S) — [[;c; Homy+ (F;,S), 0 = (0 0i)ier is a bijection,

(b) for any j € I and a; € Fj we have 1+ ¢(a;j), = Qr; 7(15)(1 +chTj).
Further, 1 + a7 = {1,ar} for any a € F such that ar ¢ Qr, 7(¢;) for all
1el.

(c) Qr(F) is a hyperfield if and only if there exists a j € I such that Q7 (F})
is a hyperfield and Qr,(F;) is a fan for all i € I\ {j}.

Proof. Applying Corollary 2.12 and Lemma 5.3, we get that T is preordering
of F. Further, (a) follows from the universal property of the coproduct of partial
hyperfields.

In order to prove (b), let F} =[], ,; F}, k;: F; — F] the canonical injection
i €1,i+# j,and T} be the (multiplicative) submonoid of I} generated by 0 and
ki(T;), 1 € 1,1 # j. Using Corollary 2.12, there exists a unique homomorphism
v;: Fj — F such that o o r; = ; for all i € I, 7 # j. Further, set

Hj(o) := {0’ € Homp«(F,S) |c o =0"ou; foralliel,i+#j}

for every o € Hom(F,S).

Let a € F*. Clearly, we always have 1,ar € 1 4 ar.

Consider the case a = tj(a;) for an a; € F;. Lemma 2.5 implies that
Qr; r(15)(1 + (TjTj) C 1+ ar. If there would exists a b € F] such that

br € 1+ar\ {1} for b = 1 (b), there would be a o’ € Homy-(F,S) such that
o'(b) = —1. Applying (a) would yield the existence of a o € H;(o’) such that
o(tj(a;)) = 1, contradicting by € 1+ ap. Hence, using Lemma 5.20, we obtain
l+ar = QTj7T(Lj)(1 —i—CTjTj).

Similarly, we get 1+ ¢%(a}) = QTJ{7T(L;-)(1 + ;;T;). Thus, it remains to show
that 1 +ar = {1,@r} for a = cc’, where ¢ := 1;(a;), ¢ = i}(a}) for a; € F; and

£ 41,

l I o I 1
a; € Fj, such that o := T, O = Wy
J
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5.2 Decomposition of the canonical real reduced hyperneofield

Let b = dd’ such that by € 1+ a@r, where d == ¢j(b;), d' == v; () for b; € Fj

and b € F, and B = by, 8/ =¥}, # 1.

First,let f € 1+a. If a = 3, thenjalso o = (3, as otherwise there would exist
a o' € Hom(F,S) such that o/(¢) # ¢/(d') and (a) would imply there exists a
o € Hj(o") with o(c) = ¢/(¢). Thus, o(a) =1 but o(b) = —1, a contradiction
to Lemma 5.20.

Otherwise, o # [ and there exists a o; € Hom(Fj,S) such that o;(a;) # o;(b;).
Thus, Lemma 5.20 yields 0j(a;) = —1 and 0j(b;) = 1. Let 0/ € Hom(F,S).
Then (a) implies the existence of a o € H;(o”) such that o(c) = 1if o’(¢/) = 1 and
o o1; = 0j else. Hence, o(a) =1 and therefore o’(d") = o(b) = 1, contradicting
B # 1.

Similarly, we get ap = brp if —f €1+ aor £8 € 1+ .

It remains to consider the case § ¢ 1+ « and —f' ¢ 1+ /. Applying
Lemma 5.20, we would get a o’ € Hom(F, S) such that o/(¢') =1 =o(d’) and a
o € Hj(o') with o(c) =1 and o(d) = —1. Therefore, o(a) =1 but o(b) = —1,
a contradiction to Lemma 5.20.

Finally, we prove (c). Let j € I such that Qr,(F}) is a hyperfield and
Qr,(F;) is a fan for all i € I, i # j, and a,b,c € F. It is sufficient to show
(@r +br) +er = ar + (b +¢7) for all a,b,c € F*, since both sides are equal
to Ty + yp for all {z,y,0} = {a,b,c} C F.

Set further = ab™! and y = c¢b~!'. Therefore, we have to show that
(Tr+1)+ypr =T+ (1 +7p) for all x,y € F*.

If Tr,yp € F;, where F; = Qr, 7(:)(Qz,(F;)) for all i € I, this follows
directly from (b).

Otherwise, we can assume without loss of generality that ZTp ¢ Fj, as addition
is commutative. In the case 7 ¢ F;, (b) yields

@r+1) +yr ={L,Zr} +¥r = (1 +¥7) U (Tr + Jr)
= @r +yp) U{Lyr} =27 + (1 + 7).

In the remaining case, it follows from (b) that z7zr ¢ Fj for all z € F such
that Zr € 1 4+ yp, because F' ; is a subgroup of Q7 (F)*. Therefore,

(@r +1) +yr ={L, 27} +yr = (1 +yr) UZ7(1 + Z7Yr)

= (1 +§T) U {ET} = U fT(l +ETET)
Zr€l+yr

= | @r+zn)=2r+0+77)
zZrel+yr

Hence, Q7 (F) is hyperfield.
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5 Algebraic decomposition of matroids

Conversely, if Q7(F') is a hyperfield, it follows directly from (b) that each
Qr,(F;) is a hyperfield, i € I. Let j € I such that Qr,(F}) is not a fan and let
k€ I\ {j} such that there exists an Tp € F, \ F;.

Ifyr € F j» we obtain as in the last case of the proof of the reverse implication
that

@r +1) +yr =Tr + (1 +7p) = {1,710} + Yr-

Since this set obviously contains each zZp € 1 + Ty we h_ave Zr € 14y or
Zr € Ty + Yp for such a Zp. Since it follows from (a) that F'p N F; = {—1,0,1},
this implies Z7 € {1,Zr}. Hence, (b) yields Qr, (F}) is a fan. 0

5.23 Remark and Definition. Using the notations of Lemma 5.22, we denote
the preordering T of F' by [[,.; T;.

Since part (b) Lemma 5.22 yields Q; r(¢;) is a strong embedding, for conve-
nience we will identify Q;(F;) with its image under Qr; 7(¢5), j € I.

If j € I such that each Qr,(F;), i € I, i # j, is a fan and Qr;(F}) is a
hyperfield, then the corresponding space of orderings via Proposition 4.12 of
Qr(F) is a group extension of the corresponding space of orderings of Q7 (F;).
Thus, Qr(F) is a fan if and only if each Q7 (F;) is a fan, i € 1.

5.24 Theorem. Let M be a matroid and T a real preordering of U (M).
Then we have that Q7 (M) is a hyperfield if and only if M = S@® N for matroids
S and N such that QL§1(T)(S) is a fan and QLEI(T)(N) is a hyperfield, where

vx: UO(X) — UO (M) is the canonical injection, X € {S, N}.8

Proof. If Qp(M) is a fan, then M = S@ N for S := N and the empty matroid
N. Otherwise, let My, ..., M}, be the connected components of M.

Since Proposition 3.8 implies that U®) (M) = ]_[f:1 U (M;), we can assume
without loss of generality that Q7 (M7) is not a fan, using Lemma 5.22, where
T; = 1; (T) and ¢;: UO(M;) — UO(M) is the canonical injection, i = 1,..., k.

Moreover, Lemma 5.22 yields Q7 (M) is a hyperfield if and only if Q7 (M) is
a hyperfield and Qr,(M;) is a fan, ¢ = 2,..., k. Our claim thus follows from the
fact that QL§1(T)(S) is a fan for S = @?:2 M; if each Qr,(M;),i=2,...,k, is
a fan (see Remark and Definition 5.23). O

5.25 Corollary. Let M be an orientable modular combinatorial geometry.

(a) Q(M) is a hyperfield which is not a fan if and only if M is the direct sum
of an orientable modular combinatorial geometry S such that Q(S) is a
fan and a matroid of the following type:

8See Corollary 2.12 and Proposition 3.8.
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5.3 Minors

(1) U2,47

(ii) a projective plane II such that the space of orderings of the planar
ternary ring (F,T') coordinatizing it is not a fan,

(iii) a projective geometry PG(d, F'), where F' is a skew-field whose space
of orderings is not a fan and d € N, d > 3.

(b) Q(M) is a fan if and only if it is the direct sum of matroids of the following
types:

(i) Uop, Ui, U2, or Ua s,

(ii) a projective plane II such that the space of orderings of the planar
ternary ring (F,T) coordinatizing it is a fan,

(iii) a projective geometry PG(d, F'), where F' is a skew-field whose space
of orderings is a fan and d € N, d > 3.

Proof. As in the proof of Proposition 5.10, using Theorem 5.24, it suffices to
examine whether Q(M) is a hyperfield for a projective geometry M and whether
it is a fan.

If M has dimension at least 2, this follows from Theorem 3.24, Proposition 3.25
and Proposition 4.10. Otherwise, M has dimension at most 1 and is uniform.
Thus, Corollary 4.23 yields our claim. O

5.3 Minors

Definition. We call a set of minors M of M an algebraic cover of M if there
exists a map S: M —o E(M)? such that S(N) is an independent set of M,
om(S(N)) =0o(M) — o(N) and N = (M/S(N))|E(N) for each N € M, and

UOM) = [ fson (WO W),
NeM

where fo(ny: UO(N) - UO (M) is the homomorphism of partial hyperfields
from Proposition 3.6.

For convenience, we call a minor N an algebraic cover of M if {N} is an
algebraic cover of M. Furthermore, we say that a minor N dominates M
if there exists an independent set S of M such that ppr(S) = o(M) — o(N),
N = (M/S)|E(N), and fg is an epimorphism of partial hyperfields.

Where X — Y denotes a map from the set X to the power set of the set Y.
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5 Algebraic decomposition of matroids

5.26 Remark. Clearly, every dominant minor of a matroid M is an algebraic
cover of M, but the converse is false. As a regular matroid, the non-Fano
matroid is an algebraic cover of the Fano matroid which does not dominate the
Fano matroid.

5.27 Lemma. Let M be a finite matroid.

(a) A set M of minors of M is an algebraic cover of M if and only if the set
M* = {N* | N € M} of minors of M* is an algebraic cover of M*.

(b) A minor N of M dominates M if and only if N* dominates M™*.

Proof. To prove (a), let £ = E(M) = E(M*) and M be an algebraic cover
of M. We define a map S*: M* — E by S*(N*) := E\ (E(N)US(N)) for all
N e M. Thus, E = E(N)US(N)U S*(N*) and Proposition 3.11 implies that
S*(N*) is an independent set of M* for all N € M.

Further, let ppr: UO(M) — UO(M*) and ¢on: UO(N) — UO(N*) for
each N € M be the isomorphisms of Proposition 3.11, which also yields

VO = oWV M) = | en(fson U (IV))
NeM

= U fovmen@O(N)) = | Forun) (WO (N9)).

NeM N*eM*

Therefore, M* is an algebraic cover of M™.

In order to prove (b), let N be a minor of M that dominates M. As this implies
{N} is an algebraic cover of M, we will reuse the definitions and notations
from the proof of part (a). Set S := S(NN) and S* := S*(N*). It follows from
Proposition 3.11 that fg+ = ¢as o fso go&l.

Since fg is an epimorphism of partial hyperfields and ¢j; as well as oy are
isomorphisms, it follows that fg« is also an epimorphism of partial hyperfields.
Hence, N* dominates M™*. O

5.28 Proposition. Let M be a matroid and M be an algebraic cover of M.
Then M is semiartinian resp. almost artinian resp. artinian if each N € M has
this property.

Proof. Let S: M — E(M) be a map such that S(IN) is an independent set of
M, opm(S(N)) = o(M) — o(N) and N = (M/S(N))|E(N) for each N € M, as
well as UO (M) = Uyeg fsn (DO (N)),

Since fgn)(F(N)) € F(M) by Lemma 2.5 for each N € M, we have
Unem fsvy(@F(N)) € aF (M) for a € {—1,1}. Thus, our claim follows from
the definitions of semiartinian, almost artinian, and artinian matroids. O
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5.29 Proposition. Let M be a matroid which has a modular hyperplane U.
Then M|U is an algebraic cover of M if and only if either o(M\U) # 2 or
S(M\U) = U2,2.

Proof. If o(M\U) < 2, then our claim follows from the proof of Proposition 5.13.
Let o(M\U) > 3 and E := E(M). Then Proposition 3.6 implies that the map
f:UO(M|U) - UO (M) defined by f(0) =0, f(—1) :== —1, and

f([Hi,H2 | H3, Hy)) = [H1V p,Hy Vp|H3 Vp, Hy V p]

for all (Hy, Ha, Hs, Hy) € H4(M|U), where p C E\ U is a flat of M of rank
1, is a homomorphism of partial hyperfields, since f = fr,, for any maximal
independent set {e} C p.

Set ¥ := oy (E\U)NU, let L be a hyperline of M and Hy, Ho, Hs, Hy € Hf,
be pairwise different. To show [Hy, Ha | Hz, Hy] € f(T®)(M)) and thus f is
surjective, we consider three cases:

First, let L ¢ U. Then L' :== LNU is a hyperline of M|U and each
H! = H;NU is a hyperplane of M|U containing L', i = 1,2,3,4. As U is
modular, (Hy, Hy, Hs, Hy) and (ﬁl,flg,ﬁg,ﬁ4) are projectively equivalent,
where H; == H!Vp,i=1,2,3,4. Therefore, Proposition and Definition 3.29
yields

[H1>H2|H3aH4] = []::I17f{2 |f{37ﬁ4] = f([HivHé|Hi/’nH4/L])

Second, let L C U and pp (L NY) > 0. Using Lemma 3.3, we can assume
without loss of generality that Hy = U. Let {s} be an independent set of L N3
and choose a flat P such that oy (P U {s}) = L = L). Then P is a hyperpoint.
As Hs, Hy # U there exist hyperlines L3, L4 of M such that P C L; C H; and
H; =LV L;,i=3,4. Further, H := L3V L, intersects U in a hyperline L}, O P.

If there exists a hyperline L # L of M such that P C Lj C H; and
Ly ¢ H, then H] = L v Lj, for all {i,j,k} = {1,2,3}, H],; = L, V L3, and
Hj ¢ = L;V Ly for all i = 1,2,3 satisfy the conditions (i) — (v) from (CR6).
Since Hy = LV L, = Hy, Hy = U = LV L) = H, Hy = LV Ly = H},
Hy=LV Ly = H}, and H, = H, = H, it follows from the first case

[Hy, Hy | Hy, Hy] = [Hy, Hy | Hj, Hy] = [Hy, H | Hg, Hyl € f(TO(M|U)).

Otherwise, H N H; is a hyperline of M and H; = LU(H; N H). Therefore, there
exists a hyperline L’ of M such that P C L’ and neither L' C U nor L' C H,
because E\U ¢ H (otherwise we would have ¥ C P). Set H' := Ly V L'. Using
the previous subcase, we can conclude

[Hy, Hy | Hs, Hy] = [Hy, H' | Hs, Hy) - [H', Hy | Hs, Hy] € f(TO(M|U)).
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5 Algebraic decomposition of matroids

Finally, let L C U and o(L NY) = 0. We will first show by induction that for
every k € {0,...,0(M) — 3} there exist flats K1 C L of rank k and Ko C U of
rank k 4+ 1 with K; C Ky, ¥ ¢ Ko, and p(K2 NX) > 0. If k = 0, this follows
from the fact that o(M\U) > 3 implies p(X) > 2.

Let £ > 0. By induction hypothesis there exist flats K1 C L of rank k — 1
and Ky C U of rank k such that K1 C Ky, ¥ ¢ Ks, and o(K2 N'3) > 0. Since
k < o(L) there exist two different flats K ; of rank k such that K C K;; C L,
i=1,2. As o(K2NX) > 0 and therefore Ko ¢ L we get K1,NKy = Ky, i=1,2.
It follows Ka; == K1;V Ka, i = 1,2, are two different flats of rank k& + 1 such
that KQ’Z' g U and Klﬂ' g Kgﬂ', 1= 1, 2.

Suppose % C K271 N K272. Then K; VY C K271 N K272 = Ko, yielding the
contradiction ¥ C Ky. Thus, for a suitable j € {1,2}, K| :== K; ; C L is a flat
of rank k and K} :== Ky ; C U a flat of rank k + 1 with K] C K}, ¥ ¢ K} and
o(K5N%) > (K2 NX) > 0.

Applying this in the case k = o(M) — 3, there exists a hyperpoint P of M
such that P C L and a hyperline Lj of M such that P C L) CU, ¥ ¢ L), and
o(L5N %) > 0. Further, set L} := L and choose hyperlines L}, L; O P, i = 3,4,
with H =L} vV L and H; =LV L;, i = 3,4.

Then the hyperplanes H} := L;\/L;C for all {7, j,k} = {1,2,3}, H] 5 == L}V L3,
and H{ ¢ = LjV Ly for all i = 1,2, 3 satisfy the conditions (i) — (v) from (CR6)
and — since Hy = LV Ly = H), Hy=U = LV Ly = H,, Hy = LV Ly = H),
Hy =LV Ly = H, — we get using the previous cases

[Hy, Hy | H3, Hy) = [H{, Hy | HS, HY] - [Hb, H{ | Hg, H)] € f(TO(M|U)). 0

5.30 Remark. Let M; = (E;, H;), i = 1,2, be matroids such that U := E1NEy
is a modular hyperplane of M; and M;|U = Ms|U. Then E; is a modular
hyperplane of the generalized parallel connection Py (M, Ms) of M; and Mo.
Moverover, if M is a matroid which has a modular hyperplane U, and addi-
tionally o(M\U) =1 or s(M\U) = Us 2, then M|U dominates M (we even have
U (M) =2 UO(M|U)). However, this is not necessarily the case if o( M\U) = 3.

Proof. First, let M = Py (M, Ms), n == o(Ms) and k := o(U). Then we have
o(Mi)=k+1and o(M)=k+1+n—k=n+1. Further,

ov (E2) = on, (B2 N Ey) + o, (B2) —o(U) =k +n—k =n.

Therefore, Es is a hyperplane of M. If Fs was not modular, there would exist a
line £ C Ey C E of M such that oy (¢ N E2) = 0. Thus, opy(NU) =0 and U
would not be a modular hyperplane of M7, a contradiction.
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Furthermore, that M|U dominates M (as well as U (M) = UO (M|U)) if
U is a modular hyperplane of M, and o(M\U) =1 or s(M\U) = Uy 3, follows
directly from Proposition 5.13.

Finally, if M; is the Fano matroid and M is the non-Fano matroid, then
M = Py(Mj, Ms), where U is a common 3-point line of M7 and Mp, is a binary
matroid which is not regular, but My = M|E; is regular. Thus, Corollary 3.21
yields U (M) = Fy and U©®) (M) = Uy. Hence, My does not dominate M,
completing our proof. O

5.31 Example. Choose a line ¢ of PG(2,2) and identify its points with the
points of a line of AG(2,3). Then Proposition 5.29 and Remark 5.30 imply
that AG(2,3) is an algebraic cover of M = Pp(PG(2,2),AG(2,3)). Since
AG(2,3) is semiartinian and M contains the Fano matroid PG(2,2) as a minor
Proposition 5.28 yields that M is artinian.

Further, AG(2,3) is representable over [F4 and thus a restriction of PG(3,4).
If we choose any hyperplane of PG(2,4) which intersects this restriction in
three collinear points, two of these points can be extended to a quadrangle such
that the remaining point is one of its diagonal points. As the restriction of the
chosen hyperplane to the quadrangle and the diagonal points is isomorphic to
PG(2,2) it follows that M is representable over Fy. Hence, U®) (M) = F, by
Proposition 5.2.

5.32 Lemma (cf. [Wen89, Proposition 2.9]). Let M be a matroid.
(a) If o(M) # 2, then {M /e |e € E} is an algebraic cover of M.
(b) If |E| # o(M) + 2, then {M\e | e € E} is an algebraic cover of M.

Proof. Let E := E(M). First, we prove (a). If o(M) € {0,1}, then M and all
of its minors are regular. Thus, (a) follows from Lemma 3.20 in this case.

Otherwise, let o(M) > 3. Then every hyperline L has rank at least 1. If
Hy,Hy, Hs, Hy O L are pairwise different hyperplanes and {e} C L is indepen-
dent, we have

frey([Hi\{e}, Ho \ {e} | H3 \ {e}, Ha \ {e}]) = [H1, Ha | H3, Hy]

for the homomorphism of partial hyperfields fy): UO(M/e) — UO(M) from
Proposition 3.6. Thus, {M/e|e € E} is an algebraic cover of M.

Using Lemma 5.27, it remains to prove (b) in the case that M is infinite, since
otherwise we have |E| # o(M) + 2 if and only if o(M*) = |E| — o(M) # 2 and
(M/e)* = M*\e for all e € E.
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5 Algebraic decomposition of matroids

Let L € £ and Hy, Ho, H3, Hy O L pairwise different hyperplanes. Choose a
maximal independent set I C L and a; € H; \ L, i = 1,2,3,4. As M is infinite
there exists an e € E'\ (I U{a1,as,as3,a4}). Therefore, opr(L \ {e}) = L and
om(H; \ {e}) = H; for all i = 1,2,3,4. Thus, using the homomorphism of
partial hyperfields fz: U® (M\e) — U (M) from Proposition 3.11, we obtain

fo([Hi\{e}, Hy \{e} | H3\ {e}, Ha\ {e}]) = [Hy, Hy | H3, Ha],

proving our claim. O

5.33 Theorem. A matroid M is artinian if M /e is artinian for all e € E, or if
M \e is artinian for all e € E.

Proof. First, note if o(M) = 2 resp. |E| = o(M )+ 2, we have o(M/e) = 1 resp.
|E\ {e}| = o(M\e) + 1 for all e € E. Such matroids are regular and therefore
not artinian.

Thus, applying Lemma 5.32, if M /e is artinian for all e € E resp. M\e is
artinian for all e € E, we get that {M/e|e € E} resp. {M\e|e € E} is an
algebraic cover of M where each minor is artinian. Hence, Proposition 5.28
implies that M is artinian. O

5.34 Remark. The statement above is no longer true if we replace artinian by
almost artinian or semiartinian, e. g. U 4 is not semiartinian despite Us 4/e and
Uz 4\e are regular and thus almost artinian for all e € {1, 2, 3,4}.

5.35 Theorem. Let N be a minor of the matroid M which dominates M.
(a) UO(M) is a hyperfield if U (N) is a hyperfield.
(b) Q(M) is a hyperfield if Q(N) is a hyperfield.

Proof. Follows from Remark and Definition 2.10, Lemma 4.9, and Proposi-
tion 4.10. O

Definition. We call an artinian matroid extremally artinian, if for every e € E
neither M /e nor M \e is artinian.

5.36 Proposition. A finite matroid is extremally artinian if and only if its
dual is extremally artinian.

Proof. Follows from Proposition 3.11 and the fact that (M/e)* = M*\e and
(M\e)* = M*/e. 0
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5.37 Theorem. The Fano matroid PG(2,2), the ternary Reid geometry Ry
and their duals are extremally artinian.

Proof. Using Proposition 5.36, it suffices to show that PG(2,2) and Ry are
extremally artinian. Since PG(2,2)/e and Ry/e have rank 2 for every point e,
Proposition 3.10 and Proposition 3.26 imply they are not artinian.

Furthermore, for every point e of PG(2,2) the matroid PG(2,2)\e is a binary
matroid which does not have PG(2,2) as a minor and therefore is regular. Thus,
PG(2,2) is extremally artinian.

To prove that Ry is extremally artinian we use the result from [Kun90| that
there are three isomorphy types of ternary combinatorial geometries on 9 points,
which are obtained by removing 4 points from PG(2, 3):

We get the ternary affine plane AG(2,3) by removing a line, the ternary
Reid geometry Ry by removing 3 points on a common line ¢ and a point w ¢ ¢,
and the ternary Dowling geometry over the cyclic group Cy of two elements by
removing a circuit.

Let e be a point of Ryg. We will show that Rg\e is representable over C. This
implies Rg\e is not artinian, as if Rg\e were artinian, then Proposition 3.6
would imply the existence of a homomorphism f: F3 — U© (M ) of partial
hyperfields. Hence, Theorem and Definition 3.16 would yield that there would
exist a homomorphism Fg — C (which would be a classical field homomorphism),
a contradiction.

Let ¢ be a line and w ¢ ¢ a point of PG(2, 3) such that Ry = PG(2, 3)\ (¢U{w}).
If e € ¢, then Rg\e is also a minor of AG(2,3) and thus Corollary 3.35 yields it
is representable over C.

Otherwise, if e ¢ ¢, there exits a circuit C' containing e, w and two points from
¢. Therefore, Rg\e is a minor of the ternary Dowling geometry. It follows from
[Dow73, Theorem 11| that Rg\e is representable over C. 0
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6 Affine and projective like matroids

In this chapter we will present additional classes of examples for artinian matroids
whose universal partial hyperfield is a hyperfield.

First, we will introduce a generalization of vector matroids over skew fields
(and thus also a generalization of projective geometries) and of affine geometries.
In particular, we will show that each affine geometry of dimension at least 3 has
this property.

Second, we will prove that the universal partial hyperfield of an affine transla-
tion plane, whose kernel contains at least 4 elements, is isomorphic to that of
its projective closure.

6.1 Vectorlike matroids

By generalizing a construction from Kalhoff in [Kal96|, we will construct a series
of artinian matroids over quasifields @) of rank greater or equal to three, whose
universal partial hyperfield is the isomorphic to the one of the projective plane
over (. Although no longer modular in general, these matroids are supersolvable,
i. e., they contain a maximal chain of flats, where each of them is modular. Their
simplifications are thus a generalization of projective geometries of dimension at
least 3 to the quasifields case.

Moreover, we will construct generalizations of affine geometries of dimension
at least 3, whose universal partial field is isomorphic to the one of the projective
plane over Q). In particular, the universal partial hyperfield of an affine geometry
of dimension greater or equal to 3 is isomorphic to the one of their projective
closure.

Definition. A quasifield® is a set QQ with two binary operations +: Q x Q — Q,
-1 Q X @ — @ that satisfy the following axioms:

(Q1) (Q,+) is a group with neutral element 0 € Q,?
(Q2) (Q\ {0},-) is a loop? with neutral element 1 € Q,

'We consider only left quasifields here. Every quasifield is a planar ternary ring via
T(m,x,c) :=mz + c for all m,z,c € Q.

>This group is always abelian, cf. [Pic, Satz 31, p. 91].

3As usual, we denote by a/b and a\b the unique elements such that (a/b)b = a and a(a\b) = b.
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(Q3) a(b+c¢) =ab+ ac for all a,b,c € Q,

(Q4) for all a,b,c € Q such that a # b the equation az — bx = ¢ has exactly
one solution x € Q.

For each quasifield @@ we define the left nucleus, the right nucleus and the kernel
of Q) by

N = Ni(Q) = {q € Q| q(ab) = (qa)b for all a,b € Q},
Ny = No(Q) = {q € Q| (ab)q = a(bg) for all a,b € Q},
K =KerQ:={qgeN;|(a+b)g=aq+bgforall a,b e Q}.
In particular, @) is a right-vector space over K.
For any quasifield @ and n € N, n > 2, we call a tuple A = (Ay,...,A,) a
system of coordinates for Q andn if Ay =As=Q and A, C--- C A3 C K is

a chain of skew fields. For any system of coordinates A for ) and n, we set
Eon={(z1,...,2,) € Q" | z; € Aj} and for all ay,...,a, € Q let

n
Zaixi = O}.

[a1,...,aplp = {x € Epa
i=1

Further, we set £4(0) :== 0 and
p(x) = mjx{i e{l,...,n}|z; #0}

for any « € E, A \ {0}, where < is the total order on the set {1,...,n} defined
by
2<1<3<4<---<n.

Moreover, if u(x) # 0, then A =1, # 0 and Z == (z1/A,..., 2o /) € Epp is
an element such that p(7) = pu(z) and 7,z = A/A = 1. We call the elements
x € Epa \ {0} such that z,,,) = 1 the canonical elements of Ej, 5.

Furthermore, we call a subgroup V of (E,a,+) a A-subspace of E, p if
A2y = {ZAA € Ay} € Vforallz € V\{0}. The dimension of a A-subspace
V of E, 4 is defined as supremum of the length k of chains Vo C --- C V, CV
of A-subspaces V; of E,, 5, ¢ =1,...,k, and is denoted by dim V.

For the rest of this section let () be quasifield.

6.1 Lemma. Let A be a system of coordinates for () and n € N, n > 2. For
any A-subspace V' of E, n we have dim V' < n.

Furthermore, the A-subspaces of E,, 5 of dimension k € {0,...,n} are exactly
the sets of the form Zle T\, (z,) for canonical elements 1, ..., 2, € Ep A such
that p(x1) < -+ < p(xg). In particular, dim V' = n if and only if V = E,, 4.
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Proof. We will first show that for canonical elements z1,...,z; € E, o with
w(xy) < -+ < p(xg) the set V= Zle Ty (z,) s a A-subspace of E, 4.

To prove that V' is a subgroup of (E,a,+), let 2,y € V. Then there exist
Xisti € Nz, @ = 1,...,k, with z = Zi?:l xiA; and y = Zle xip;. Using
(Q3), we obtain x;A; + zjpu; = x;(A; + i) foralli =1,... k. Thus, z+y € V.

Moreover, let x € V\{0} and X\ € A,,,, where m := u(x). Then there exist
Ai € Nyzyy, t=1,...,k, such that z = Zle z; \;. We show ZA € V.

For k = 1 we have T = x1, so there is nothing to prove. If m > 3, then A,, is
a skew field contained in K and therefore

k k
— (Z xi)\i/\;f> A=) mi(Air,\) €V
=1 =1

The only remaining case is k = 2 and m = 1. Since \; =0 foralli=3,...,n

we can assume without loss of generality that n = 2. Then there exists a

u € @ such that z; = (0,1) and z2 = (1,u). It follows that z = (1,v), where
= (A1 + ud2)/A2. Setting w := v\ — u\ we obtain

A = (0,w) + (N, ul) = z1w + z2A € V.
Conversely, let V' be a A-subspace of E, . We set

E(V) = |{p(z) |z € V\{0}}| €{0,...,n}.

We will prove by induction on k(V') that dim V = k(V') and there exist canonical

elements 1, ..., ) € V with V = Z A ) 2 ()

Clearly, k:(V) = 0 implies V = {0}. If k == k(V) > 0, we choose a canonical
element 3 € V such that p(zy) is maximal among all pu(x) with respect to =<,
zeV,andset Vi={z eV |ux) < ulz)}.

As p(z 4+ y) =< max{u(z), u(y)} and w(ZA) < p(z) for all z,y € V and
A E Ny V is a A-subspace of F,, o. By construction, we have k(V) = k(V) —

Thus, the induction hypothesis yields dlm(V) = k — 1 and there exist canonical
elements z1,...,25_1 € V such that V = Z 1 Til\ ()

It follows that Zi:l T, (z) © V), because V' is a A-subspace of E, 5. For all
xz €V \V, we have u(z) = pu(xy) and therefore Z — x;, € V. Hence,

k
v €Vt by = D Tibute):

Since Zle T\, (z;) 18 a A-subspace of E, it also contains xz. Therefore,
k
V= Zizl xlA#(mz)
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Further, dim(V') > dim(V)+1 = k. If there would exist a A-subspace V' C V
of E, s such that k(V’) = k, then for V' = {x e V' | u(z) < p(xy)} we would
have {pu(z) |z € V/} = {u(x) |z € V}. Using the same argument as above, we
would get V' = Zf:_ll Til\y(zy) = V and thus V/ = V, a contradiction. Hence,

using the induction hypothesis, we get dim(V') = k, as desired. o

Definition. Let n € N, n > 2. We call a1,...,a, € Q admissible for a system

of coordinates A for Q and n, if as € AV, and for all j = 1,...,n we have
a; € ZaiAi, or a;#0anda;=0foralli<j. (6.1)
<7
Further, let H, o be the set of all [a1,...,an|s, where a1,...,a, € Q are

admissible for A and a; # 0 for at least one i € {1,...,n}.

6.2 Lemma. Let n € N, n > 3, a1,...,a, € @ be admissible for a system
of coordinates A for @ and n, and k € {3,...,n}. Then ay,...,ay,...,a, are
admissible for A®) = (Ay,..., Ay, ..., A,).

Proof. Clearly, (6.1) is satisfied if j = 1,...,k — 1, or ax = 0, or a; = 0 for all
i<j. Letje{k+1,...,n},ap #0,and q; #0 foran [ € {1,...,7—1}. Since
ai,...,a, are admissible for A there exist \; € A, i =1,...,7 — 1 and p; € A;,
i=1,...,k—1 such that a; € Zf:_ll a;\; and ay € Z?:_ll aip;. Thus,

k—1 j—1
aj € Zal()\l + Ni)\k) + Z ;.
=1 i=k+1

Hence, a1, ..., @, ..., a, are admissible for A%, 0

6.3 Lemma and Definition. Let A be a system of coordinates for ¢ and
n € N, n > 2. For each H = [a1,...,an]a € Hp,a We set

w(H) = min{k e{1,...,n}|ar #0}.
Then we have H C H' := [a},...,ap]n € Hpa if and only if m == p(H) = p(H')
and ap\a; = al,\a} for all i = 1,...,n (and thus H = H’).

In particular, the a; are uniquely determined by H if a,, = 1, and we call
these coefficients the canonical representation of H.
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Proof. We will first show that we can assume without loss of generality that
am =1 =al,, where m' :== p(H'). If m = 2, since ay € N, it follows for all
x e En, A

n

Zaixi = Z(ag . CLQ\CLZ')SCZ‘ = ZCLQ . (ag\ai . l‘z) = an (Z ag\ai . a:z) .
=1 i=1 =1

i=1
If m > 1, set j :== max<(3,m+1). For all z € E,,  we obtain, as z; € K for all

i =m,

n n
AmTm + Z ;T = AmTm + Z(am O \ ) T

i=j i=j
n
= amTm + Y am((am\ai)z;)
i=j
n
= Q- (Z(am\ai) xz> .
i=1
Further, a;,\a2 =0 =as € V.

Hence, in both cases, ap\aq, ..., amn\a, are admissible for A by definition,
and x € [a1,...,a,)a if and only if € [am\a1,...,amn\ap]a. Thus, we can
assume without loss of generality that a, =1=a, .

It remains to show H C H' implies a; = a} for all i € {1,...,n}. If m = n, we
obtain a; = ... =a,—1 =0 and a, = 1. Since for every k € {1,...,n — 1} the
element x € E,, A such that x; = d;;, for all i = 1,...,n is contained in H' O H

it follows that @, =0 foralli=1,...,n — 1.
Otherwise, let m < n. We will prove first there exists an x € H such that

w(x) =n and thus m’ <n. If a,, =0, set z; = s, for alli =1,... n.

If a,, # 0, there exist \; € A;,i=1,...,n — 1, such that a, = Z?;ll a;\;, as
ai,-..,a, are admissible for A, so we set z; = —\; and x,, = 1.

Now, we will proceed by induction on n. If n = 2, it follows that ay = 1 = d},
and ajxy + x2 = 0 = ajx1 + x2. Thus, a3 = —z9/x; = df.

Else, we have n > 3 and ay,...,an—1 as well as af,...,al,_; are admissible

for A Additionally, H™ = [ay, ..., an_1]po and H'™ = [a],... a/,_]\m
are the canonical representations of two hyperplanes such that H (n) c g/,

Therefore, the induction hypothesis implies a; = a} for i =1,...,n — 1.
Moreover, our construction of z yields a, = 0 if and only if a), = 0 and
Gy, = Z?;ll aiN; = Z?;ll ai\; = al, otherwise. O
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6 Affine and projective like matroids

6.4 Proposition. For any system of coordinates A for Q and n € N, n > 2,
the sets of H,, o are the hyperplanes of a matroid M (n, A) of rank n on the set
Epa.

Proof. First, (H2) follows directly from Lemma and Definition 6.3. To complete
the proof we will show by induction on n that the set of A-subspaces of E, o of
dimension n — 1 is H;, o, which directly implies (H1).

To prove that it yields also (H3), let Hy, Hy € M, a with Hy # Hy and
x € Epa\ (H1UHz). Then Hy N Hy is subspace of dimension k € Ng, k <n—2.
Clearly, the A-subspace V generated by H; N Hy and x has dimension k + 1.
Therefore, there exists a A-subspace Hz of rank n — 1 for which we have
(Hl N HQ) U {:L'} C Hs.

Finally, for any subset X C E, » we have X ¢ H for all H € H, 5 if and
only if for each k =1,...,n the set X contains an x € E,, 5 such that p(z) = k.
Thus, H, a satisfies (HO) and (H1), and the resulting matroid has rank n.

If n =2, then H € H,, 5 if and only if either H = [1,0]5 = {(0,y) |y € Q} or
H = [a,1]p = {(z,—az) |z € Q} for an a € Q. In this case our claim follows
directly from Lemma 6.1.

Else, let n >3 and H = [a1,...,an|aA € Hpa be in Canonical representation.
Ifag=---=an,_1=0and a, = 1 then H = > "7 L2 A; for any canonical
elements z; € E,, A with p(x;) =4,i=1,...,n — 1. Hence, H is a A-subspace

of B, A of dimension n — 1 using Lemma 6.1.

Otherwise, there exist \; € A;, i =1,...,n — 1, such that a, = Z?:_ll a; i,
since aq, ..., a,—1 are admissible for A. Lemma 6.2 yields that aq,...,a,_1 are
admissible for A" where A = (Ay,..., A,_1), and therefore by induction
hypothesis there exist canonical elements yi,...,yn—2 € E,_; ) such that

w(yr) < -+ < pu(Yn— 2) <n—1and [a1,...,ap-1]pA(n-1) = Z?:_f Yil\p(yo)-

Thus, H = S A w(w) and p(w1) < - < p(zn) for z; = (yi,0) € Epa,
i=1,...,n—2and x,—1 = (A1,...,\p, —1). Hence, Lemma 6.1 implies H is a
A-subspace of E,, A of dimension n — 1.

Conversely, let V' = Z?;ll T\, (z;) be a A-subspace of E, 5 of dimension n—1,
where z1,..., 2,1 are canonical elements of E, x with p(x1) < -+ < p(zp—_1).

If p(zp-1) <n—1,then V=10,...,0,1]. Else, set y; = (zi1,...,ZTin-1),
where z; = (23, b S Zin),t=1,...,n—2. Then p(y;) = p(x;), i =1,...,n—2,
and V = Zl 1 Yiluy,) 1s a A _subspace of E, 1 Am-

By induction hypothesis, there exist aq,...,a,-1 €  which are admissible
for AU such that V = [ay,...,an_1]pm. Since u(x,) =n and —1 € K we have
an = Z?;ll a;(—xz;). Thus, V C [ai,...,an]a =t H. As both have dimension
n—1wegetV=H. O
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6.1 Vectorlike matroids

6.5 Corollary. For any system of coordinates A for @ and n € N, n > 2, the
flats of rank k of M(n,A) are the A-subspaces of E, o of dimension k.

Proof. Clearly, every intersection of A-subspaces of I, A is also an A-subspace
of E, . Thus, the proof of Proposition 6.4 implies that every flat of M(n, A) is
a A-subspace of F), 4.

Conversely, let V' be a A-subspace of dimension k € {0,...,n}. We will prove
by induction on k that V' is a flat of rank k of M (n,A). If k =n, then V =F
is a flat of M (n,A) of rank n.

Otherwise, k < n and it follows from the proofs of Lemma 6.1 and Propo-
sition 6.4 there exist H € H, A such that V' C H and a canonical element
y € Epa with y ¢ H. Thus, V' := yA,,) + V is a A-subspace of E, 5 of
dimension k + 1. Therefore, the induction hypothesis yields that V’ is a flat of
rank k + 1. Hence, V = V' N H is a flat of rank k. O

6.6 Lemma. Let A be a system of coordinates for Q and n € N, n > 4. For
each k € {1,...,n} the hyperplane UT’f’A = [01k - - -, Onk)a Of M (n, A) is modular
if and only if k € {n —1,n} or Ay =... = Ap_1.

Proof. Throughout this proof, we will use the fact that a hyperplane of a
matroid M is modular if and only if has a non-trivial intersection with each line
of M (see |Bry75, Corollary 3.4]).

Let £ = 2A, ) + yAuq), where x = (z1,...,20), ¥ = (Y1,---,Yn) € Ena
are canonical elements such that p(z) < p(y). Since p(x) < n it follows that
z € Uy . Furthermore, either () <n—1and z € Ugj\l, Or TYn_1 — Y Is a
non-zero element which is contained in both ¢ and Ug’xl. Therefore, U,’f’ Alsa
modular hyperplane for k € {n — 1,n}.

IfA,=...=A,_1,then 2 =0 and x € US?A, oryr =0 and y € U,’f?A, or
Tk, yr € AZ. In the last case we obtain zA —y € £N Uff’N where \ :== z1\yy.

Conversely, if Uff A is modular and £ < n — 2, we will show that the dimension
of Ay as a right An7+1-vector space is 1, which implies A, = ... = A,_1.

Let a,b € Ay, and set z,—1 == 1 = yy, T} = a, Yy = b and z; := 0 = y; for
alli,7 =1,...,nsuch that i # k,n — 1, j # k,n. Then £, == 2A,,_1 +yA, is
a line of M(n, A) with o(£yp N U,’;A) =1

Thus, there exist \; € A;, i =n — 1,n, such that z = xA\,_1 + y\, € UﬁA. In
particular, we have a\,,_1 + b\, = 0. 7 0

6.7 Proposition. Let A be a system of coordinates for () and n € N, n > 3.
For every H € H, a we set

fH: En,A — Q/*Raa x— Ry <Z ai$i> s
=1
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6 Affine and projective like matroids

where H = [a1,...,ap]s is the canonical representation of H. Then (fx)me,, »
is a system of hyperplane functions for M (n,A) and Q/LR,.

Proof. By construction, we have f(e) = 0if and only if e € H for all H € H,, o
and e € E, . We will prove our claim by induction on n.

First, let n = 3 and II = (E,H) be the projective plane over (). The map
p: sk o — E defined by

p(s(2,9,1)) = (2,9),  ¢(s(1,m,0)) = (m), ¢(s(0,1,0)) = (c0)

for all m,x,y € @ is an isomorphism, since we have

30([_m7 1, _C]A) = [ma C]a (p([l, 0, _d]A) = [d]7 30([()? 0, 1]/\) = [OO]

for all ¢,d,m € Q.
Let (gr)men be the system of hyperplane functions for IT and @ /R, from
Theorem 3.24. For all ¢,d, m,n,z,y € QQ we obtain

Iim, (2,9)) = Ra(mz + ¢ — y) = = flom,1,—d, (2,9, 1)),
Iim,((n)) = Ra(m —n) = — fi_m 1., ((1,n,0)),
Iim,q((00)) = Ra = fimma,-d, ((0,1,0)),
9ia)((z,y)) = Ro(z — d) = fl1,0,-q, ((z,9,1)),
9ia)((n)) = Ra = f1,0,—q, ((1,7,0)),
9i] (%, 9)) = Ra = flo,011, (2, 9,1))

Therefore, fr(e) = n(H)n(e)gy(m(v(e)), where

n(H)=-1 < H=[-m,1,—¢] for m,c€Q,
ne)=-1 <« e=(0,1,0)

for all H € H, A and e € E, p. Thus, Proposition and Definition 3.14 and
Theorem and Definition 3.16 yield that (fg)y,, , is a system of hyperplane
functions for M (n,A) and Q /R, in this case.

Now, let n > 3 and H;, H2, Hs be pairwise different hyperplanes of M (n, A)
which contain a common hyperline L and let H; = [a;1,...,a;n]a be their
canonical representation, ¢ = 1,2,3. Applying Proposition and Definition 3.14,
we have to show there exist ag, as € (Q/AR,)* such that 0 € fr, +ao fr, +as fi,-

If L= Us;\l N U, n, we choose canonical elements z; € H; \L,i=2,3. We

can assume without loss of generality that p(z2) = p(xs) = n. Further, set

az = —fm, ($3)fH2(-T3)_1 and agz == —fp, ($2)fH3($2)_1-

n,A
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6.1 Vectorlike matroids

As p(xg —x3) =n — 1 (otherwise o — x3 € L and thus He = Hj3), it follows
from Lemma 6.1 that for every x € E, o there exist unique y € L and \; € Ay,
i=n—1,nwith z =y + (2 — x3)\n—1 + £3\,,. This implies

OEle(Jf)—le(l')ngl( ) fH1(x2) le(‘T?))()‘ — An— 1)
- fH1 (x) + O‘QfHQ(xfi)(/\n - )\n—l) + O‘3fH3(x2))‘n—1
C fu(z) + a2 fr, (2) + a3 fuy (2).

Otherwise, there exists a j € {n — 1,n} such that L ¢ UiA. Moreover,
we set G; = [ai1,...,Qij,--,Gin)A, ¢ = 1,2,3. Since UjA is modular by
Lemma 6.6 and M (n — 1,AV)) is isomorphic to M (n, A)|U? war G1,G2,Gg are
pairwise different hyperplanes of M (n — 1, A(J)) which intersect in the hyperline
K = {(z1,...,%j,...,xn) |z € L}.

Applying the induction hypothesis, we obtain aq, as, a3 € Q /LR, such that
0 e alf(;l + oo fg, + Oé3fG3 Let z € E, A. Using Lemma 6.1, there exist
Y€ U]A and z € L\UjA with = y + 2. Setting w = (y1,...,9j,...,yn) We
get

0 € a1 fa, (w) + aafa, (w) + asfa, (w)
Caifu, (y) +aafu, (y) + a3 fm, (y)
- alfH1 (1,‘) + a?sz(x + a3fH3 (Jj),

~— —

completing our proof. O

6.8 Theorem. For any system of coordinates A for Q and n € N, n > 3, the
universal partial hyperfield of M (n, A) is isomorphic to Q /i R,.

Proof. Let M = M(n,A) and (fy)newn, , be the system of hyperplane func-
tions for M and Q /R, from Proposition 6.7. Applying Theorem and Defini-
tion 3.16, it induces a homomorphism f: U (M) = Q/R,. We will show by
induction on n that f is an isomorphism. For n = 3 we obtain this directly from
Theorem 3.24 and the proof of Proposition 6.7.

Let n >4, A = A", M = M(n—1,A), (f}lq)HeHn Ln be the system
of hyperplane functions for M’ and Q/,R,, and f': UO(M') — Q/ R, be the
induced homomorphism.

Since it follows from Lemma 6.6 that U;} ‘A 18 a modular hyperplane and M !
is isomorphic to M|U"A, the proof of Proposmon 5.29 yields that the map

g: UO (M) = UO (M) defined by ¢(0) := 0, g(—1) := —1, and

g([Hl,HQ |H3,H4]) = [Hl Ve, Hy V6|H3 Ve HyV 6]
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6 Affine and projective like matroids

for all (Hy, Ha, Hs, Hy) € Ha(M'), where e == (1p,...,0nn) € Epa, is a
surjective homomorphism of partial hyperfields.

As[ay,...,an—1]ar Ve =1la1,...,an—1,0]p for all a1,...,a,—1 € Q which are
admissible for A’ and n — 1, Proposition and Definition 3.14 and Proposition 6.7
imply fog = f’. Using the induction hypothesis, f’ is an isomorphism, and
therefore g is bijective. Hence, also f is bijective.

For all a},dy € QLR, and dy € a) + aly set a; = g(f'~(a})) € UO(M),
i =1,2,3. Then a; € f~!(a}) for all i = 1,2,3 and a3 € a1 + ag, as f is
an isomorphism and ¢ a homomorphism of partial hyperfields. Thus, f is an
epimorphism and it follows from Proposition 2.14 that f is an isomorphism. g

6.9 Remark. If F'is a skew field, n > 3 and A = (Ay,...,A,,), where A; = F,
i=1,...,n, then M(n,A) is the usual vector space matroid of rank n on F".
Thus, s(M(n,A)) is isomorphic to the projective geometry PG(n — 1, F') and
we obtain another proof of the result of Proposition 3.25.

Further, in contrast to the case of projective geometries, s(M(n,A)) can
contain two lines /1 and ¢y with |¢1] # |la].

In particular, for all natural numbers k,m,r{,...,r; such that there exist
a prime number p and natural numbers sq,...,s; with s;_1]s;, i = 2,...,k,
and r; = p*, i = 1,...,k, and infinite cardinal numbers x; < --- < K, the
matroid sM (k 4+ m,A) for A = (A1, ..., Ap4i), where A; =T, fori=1,...,k
and Ay, is a field of characteristic p of cardinality x;, i = 1,...,m, such that
Apyic1 2 Mgy, 2 =1,...,m, is a combinatorial geometry which has lines of
cardinality r; + 1, ¢ = 1,...,k, and lines of cardinality x;, 1 = 1,...,m.

6.10 Proposition. Let A be a system of coordinates for Q and n € N, n > 3.
The empty set and the sets = + V', where z € E,, » and V is a A-subspace of
E, A, are the flats of a matroid N(n, A) of rank n + 1 on the set Ej, 4.

Proof. We will show that the bijection
L Epn = B (@1,..,m) = (21,0020, 1),

where E' = {z € En+1,fX | zZnt1 = 1} and A= (A1, ..., Ap, Apyq) for a fixed
skew field A,41 C Ay, induces a bijection between the sets 4+ V', x € E, A and
V a A-subspace of Ey, 4, and the flats of M := M (n + 1,A)|E’. Then our claim
follows from Proposition 6.4.

Let x € E, A and V' be an A-subspace of I, r. Using Lemma 6.1, there exist

k € Ny and canonical elements y1, ...,y of Fj, o such that V = Zle yiA“(yi)
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6.1 Vectorlike matroids

and pu(y1) < -+ < pu(yx). Thus, for M = M(n +1,A) we obtain

k

O'M(L(.f + V)) = Z ZiAM(zz‘) +yApr1 = W,
=1

where z; = (Yi1,.-,¥in,0), y = (z1,...,2Tpn,1) € E qpi=1..k It
follows from Corollary 6.5 that W is a flat of M. Since W N E’ # () we obtain
(x+V)=WnNEis aflat of M.

Conversely, let W N E' be a flat of M, where W # {0} is a flat of M. Then
there exist k € N and canonical elements z1, ..., z; such that W = Zle z,-A#(ZZ_)
and p(z1) < -+ < p(zg) =n+ 1.

Hence, WNE' = 1(yx + V), where y; = (zi1,...,2in) € Ena fori=1,... k,
and V = Zf:_ll Yil\u(y,)- This proves N(n, A) is a matroid isomorphic to M.

Moreover, o(N(n,A)) = o(M) =n + 1, as a hyperplane H = [a1, ..., ant1]3
of M that contained all by, := (01ky- -3 0nk, 1) € B k=1,...,n+ 1, would also
contain by — byy1 = (91K, - - - 0nk,0), K = 1,...,n. This would imply a; = 0 for
all k=1,...,n4 1, a contradiction. 0

Definition. We call a subset A C Q a subring of a quasifield @ if (4,+) is a
subgroup of (Q,+), 1 € A and ab € A for all a,b € A.

Moreover, for any subring A of a quasifield @, n € N, n > 3, and a system of
coordinates A for @ and n we call a tuple Z = (Z1,...,5,) a subsystem of A
for Aand nif 21 = =9 = A, each Z; is a subring of A;, i=1,...,n, E,_1 D E;
for i = 2,...,n and for each \; € A; there exists a £ € =, such that \;§ € &,
1=1,...,n.

For any subring A of ) and any subsystem Z for A and n of a system of
coordinates A for @ and n we define E,, y :={x € B,z |z; €5, i =1,...,n}
and let N(n,Z) := N(n,A)|E, = be the restriction of N(n,A) to E, =.

6.11 Lemma. Let A be system of coordinates for Q and n € N, n > 3, and =
be a subsystem of A for A and n, where A is a subring of @, and p,q € E,, A.
Further, let L 5 p be a hyperline of N(n,Z) and Hy, He, H3, Hy € Hp be
pairwise different such that q € H;.

Then there exist a hyperline L' 3 ¢/ with L’ C H; and pairwise different

H) Hy, Hy € Hpo \ {L1} such that (Hy, Ho, Hs, Hy) and (Hy, H), Hy, H)) are
projectively equivalent.
Proof. Since obviously for every v € F,, = themap 7,: B,z — Ep=, v — x+v
is a matroid isomorphism of N(n,A), we may assume without loss of generality
that o € L, where 0 € E,, = with 0, =0, ¢ = 1,...,n, and p(x) < p(p) for all
x € L. Let Wk = Uﬁ,/\ for k=1,...,n. We consider two cases:
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First, let there exist a k € {n—1,n} such that L ¢ W* = Z. Then H; # Z for
all t =1,2,3,4, and it follows from Lemma 6.6 that P := L N Z is a hyperpoint,
and L; := H; N Z is a hyperline for all 1 = 1,2,3,4. Thus, in this case our claim
follows for H! :== L; V ¢, i = 2,3, 4.

Second, let L = W"~!nW™. Applying a suitable 7, v € E, =, we may
further assume without loss of generality that ¢ € W™ and H; = W". Set
Z = la1,...,an]r, where a; = 0 for all # = 1,...,n — 3 and a; = 1 for
i=n—2,n—1,n.

Let i € {2,3,4}. If H; = [ai1,...,a;x)A is the canonical representation, then
a;j=0forall j=1,...,n—2and a;,—1 = 1. As a;1,...,a;, are admissible
for A there exists a x,—1 € Ap—1 With a;, = @i p—12n—1.

Let x,, € =, such that z,,_ 12, = yp—1 € Zp. Set yn == —Tn, Yn—2 = Tn—"Yn—1
and y; =0forall j =0,...,n—3. For P:= LN W"=2 thus the hyperline PVy
is the intersection of H; and Z.

Hence, for H] .= (H; N Z) V q, i = 2, 3,4, we obtain our claim. o

6.12 Theorem. For any system of coordinates A for QQ and n € N, n > 3, the
universal partial hyperfield of N(n,A) is isomorphic to Q /i Rg.

Moreover, if A is a subring of @ and = is a subsystem of A for A and n, the
universal partial hyperfield of the restriction N(n,Z) of N(n,A) to the points
x € E, 5 such that z; € E;, i = 1,...,n, is also isomorphic to Q /4 R,.

Proof. It suffices to prove that the universal partial hyperfield of N := N(n, =)
is isomorphic to @/ Rg, since A is itself a subsystem of A for @ and n.
Let o € E, = be defined by 0; := 0 for all t = 1,...,n. We will show first that
the map
p:s(Enz\{o}) = E, sy—7,

where E is the set of canonical elements of Ej, A, is an isomorphism from N/o
to M :== M(n,A)|E.

Clearly, it follows from the definition of N, Lemma 6.1, Corollary 6.5, and
Proposition 6.10 that for all z,y € E, =\ {o} we have sz = sy if and only if
T = y. Thus, ¢ is well-defined and injective.

To prove that ¢ is surjective, let zg € E, A be a canonical element. As = is a

subsystem of A for A and n there exist &1,...,&, € =, such that z; = z;_1§;
satisfies z;;, € 55, i =1,...,n. As each 5; is a subring of A;, ¢ =1,...,n, we
get z, € 24, i =1,...,n. Thus, z, = ¢(sz,).

Applying Proposition 3.6 and Proposition 3.11, we obtain that the map
B: UO (M) — UO(N) defined by (0) == 0, 3(—1) := —1, and

B([Hy, Hy | H3, Hy)) = [H}, Hy | Hy, Hy),
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where H! := H; N E,=, i = 1,2,3,4, for all (Hy, Hy, H3, Hy) € H4(M), is an
homomorphism of partial hyperfields. It follows from Lemma 3.3 and Lemma 6.11
that g is surjective.

Moreover, using the proof of Proposition 6.10, we can view N as restriction
of the matroid M = M(n+1, A), where A = (A1,...,Apy1) and Ay C A, s
a skew field. Thus, Proposition 3.6 yields that the map a: UQ)(N) — UO) (M)
defined by «(0) :=0, a(—1) := —1, and

a([r + Hy,x + Hy|x + H,x + Hy]) == [f[l,f]2|f]3,ﬁ4],

A~

where (Hy, Hp, H3, Hy) € Ha(M) and = € E, =, as well as H; == H; + 2Ap41
and & = (x1,...,2p,1) for all i = 1,2,3,4, is a well-defined homomorphism of
partial hyperfields.

Using the isomorphism g: U©) (M) — U (M) from the proof of Theorem 6.8,
we obtain a o 8 = g by straightforward computation. Therefore, 8 is bijective
and thus also a.. As in the proof of Theorem 6.8 we get that « is an epimorphism.

Hence, o and also § are isomorphism, which yields our claim. 0

Definition. A (not necessarily commutative) integral domain R is said to be a
right Ore domain if aR N bR # O for all a,b € R*, where R* is the set of units
of R.

For any right Ore domain R there exist (unique up to isomorphism) a skew
field F, called field of right fractions, and an embedding ¢: R — F' such that
for each f € F there exist r,s € R, s # 0, satisfying f = ¢(r)e(s)! (see [Coh08,
Proposition 1.3.4]).

6.13 Corollary. Let d € N be at least 3.

(a) For any skew field F' the universal partial hyperfield of the affine geometry
AG(d, F) of dimension d over F' is isomorphic to F/4F*', where F*' is the
commutator subgroup of F™*.

(b) For any right Ore domain R and its field of right fractions F' the universal
partial field of the restriction of AG(d, F') to the elements R? is isomorphic
to F/*F*'.

Proof. Let R be a right Ore domain and F be its field of right fractions. Set
2 =(21,...,8¢) and A = (Ay,...,Ay), where Z; := R and A; := F for all
i=1,...,d. Since AG(d, F) = N(d,A) and AG(d, F)|R? = N(d,E), our claim
follows from Theorem 6.8 and Theorem 6.12 (see Remark 6.9). o
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6.2 Affine translation planes

The systems of hyperplanes functions for an affine plane M and S which extend
to their projective closure were characterized by Karzel ([Kar63]) to satisfy two
conditions. Later, Kroll ([Kro86]) proved that these two conditions are true in
case of affine translation planes, whose kernel contains at least four elements.

Based on the methods Kroll used in his proof we will show that the homo-
morphism of partial hyperfields from the universal partial hyperfield U(O)(M )
of an affine translation plane to that of its projective closure, which we obtain
from Proposition 3.6, is an isomorphism.

For the theory of affine planes and especially translation planes we refer the
reader to |Pic|.

Definition. An affine plane is a combinatorial geometry M = (E,H) of rank
3 such that for each H € H and a € F \ H there exists a unique H' € H with
a€ H and HNH' = ).

Two hyperplanes H, H' € H are called parallel (denoted by H || H') it H = H’
or HNH' = (). For any a € E and any H € H we denote the unique H' € H
such that a« € H and H || H' by {a || H}.

6.14 Lemma. Let M = (E,H) be a matroid. For H € H and aj,a2 € E\ H
we set [H |ay,as] == H(a1) - H(az)~! € TH(M). Then we have

(a) [H |ay,az2]-[H |ag,a3] = [H|ai,as] for all H € H and aj,a2,a3 € E\ H,

(b) [Hl |a1,a2] = [H2|a1,a2] for all Hi, Hs € H and aj,a3 € E\ (Hl UHQ)
such that L := Hy N Hsy is a hyperline of M and LV a; = LV as,

(¢) [Hy|ag,as] - [Ha|as,a1] - [Hs|a1,a2] = € for Hy, He, H3 € H which are
pairwise different such that L := H; N Hy N Hs is a hyperline of M and
a; € H;\L,i=1,2,3.

Proof. Follows from the definition and Lemma 3.1. 0

6.15 Lemma (cf. [Kro86, (1)]). Let C = {z,a1,a2,a3} be a circuit of an
affine plane M = (E,H) and Hy, He, H3 € H three hyperplanes such that
a1 ¢ Ho, H; || aj Vap and H; N Hj € 2V ay, for all {i,j,k} = {1,2,3}. Then

[Hi | ag,a3] - [H2| a3, a1] - [Hz | a1, a2] = 1.
a9 Hl

z as
ai HQ

Hj
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6.2 Affine translation planes

Proof. Clearly, a;,a; ¢ Hy, for all {3, j,k} = {1,2,3}, as otherwise we would

have Hy, = a; V a; for all {7,7,k} = {1,2,3}, a contradiction to a; ¢ Ho.
Further, we have either z € H; for all i =1,2,3, or z ¢ H; for all i = 1,2, 3.

In the former case H; = zVa;, i = 1,2, 3, and our claim follows from Lemma 3.1.
In ther latter case, since H; N Hj, ay, z are collinear it follows from Lemma 6.14

that [H; | ay, 2] = [Hj | ax, 2] for all {7,7,k} = {1,2,3}. Thus,

[Hi | az,a3] - [Ha | a3, a1] - [H3 | ay, a9
= [Hi|ag, 2] - [H1|2,a3] - [Ha]| a3, 2]
-[H2|z,a1]-[Hg\al,z]-[Hglz,ag]:1. 0

Definition. An automorphism o of an affine plane M = (E, H) is called dilation
if o(H) || H for all H € H. Any dilation o which is not the identity map has at
most one fixpoint, thus o is called a translation if it is the identity map or has
no fixpoint, and dilation with center z if it has z € E as fixpoint.

An affine plane M = (E,H) is said to be an affine translation plane if for
all z,y € F there exists a translation 7 such that 7(x) = y. The group of
translations of an affine translation plane is abelian. Its endomorphism ring,
called the kernel of M, is a skew field.

Moreover, for every z € E there exists a bijection between the dilations whose
center is z and the elements of the kernel of M.

6.16 Lemma (cf. [Kro86, (3)]). Let {a,b, z} be a basis of an affine transla-
tion plane M = (E,H). For every non-trivial dilation o with center z let

2= (avb)n{z|aVvelh)},

L is a dilation

and 7 the unique translation such that 7(2) = 2’. Then ¢/ := 707~
with center 2’ and ¢'(a) = b.

Furthermore, the mapping o +— ¢’ is a bijection between the non-trivial
dilations with center z and the dilations with a center mapping a to b.

In particular, there are at least two dilations mapping a to b with different

centers if the kernel of M contains at least four elements.

o(a)

133



6 Affine and projective like matroids

Proof. Clearly o/(2') = 2’. Let ¢ := o~ 1(b). Since o/(2' V a)||z’ V a we have
o'(a) €o'(Va)=2Va. AsaVel| zV~Z, it follows 771(a) € aV c. Therefore,
(o771 (a) € o(a) Vb | a Ve Thus, o'(a) € o(a) Vb. Because b € 2’ V a, we
obtain ¢’(a) = b.

In order to prove that this an injective mapping, let 01,09 be non-trivial
dilations with center z with o] = o}. By construction, o} has center

Zii=(aVvbd)N{z|aVvao; (b))},

i=1,2. As 2} = z, we obtain a V o7 (b) = aV oy ' (b). Thus, o; '(b) € 2V b
yields o7 (b) = o5 '(b). Hence, o1 = o9.

Finally, if & is a dilation with center Z such that 6(a) = b, let 7 be a translation
with 7(2) = z and o := 767!, Then o(z) = 2z and therefore ¢’ is a dilation
with center z such that ¢/ = &, which proves that the mapping is bijective.

The last sentence follows from [Pic, 4. on p. 203]. 0

6.17 Lemma (cf. [Kro86, Satz (4)]). Let M = (E,#) be an affine trans-
lation plane whose kernel contains at least four elements, G,H € H, and
a,b€ E\ (GUH) such that G || H || a Vb. Then

[Gla,b] = [H|a,b].

Proof. Let r € {a,b} and p € G. Using Lemma 6.16 there exists a dilation o
with center z; such that o1 (r) = p.

Further, we choose an X € H,\{G,rVp} and set ¢ := X NH. Again applying
Lemma 6.16, there exist two dilations o with o(r) = q. Let o2 be the one whose
center zo ¢ {z || X}.

Since p, q,r are not collinear by choice of X, z1 # z9. Set Z = 21 V 29 and
let z:=ZN{r| X} (X | Z would imply 22 € Z = {z || X}). Moreover, we
choose an s € (aVb)\ (ZU{r}),set y:==XNZandY ={y ||z V s}
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6.2 Affine translation planes

By construction, {z;,r,x, s}, i = 1,2, are circuits and r ¢ GUH. Furthermore,
Y|zVvs, G| H|rvs, X||rVezand XNY =y ez Ve i=12 As
oi(r) € X, it follows

oi(x)=0;(ZN(xVr)=ZNX=y

for ¢ = 1,2. Therefore, we have

YNG=01((zVs)N(aVb)=01(s) € 21 Vs,
XNG=o1((zVvr)Nn(aVvb)=oi(r)ez Vr,
YNH=0((xVs)N(aVb))=o2s) € 22 Vs,
XNH=0((xVvr)N(aVb)=o02r) € zVr

Thus, applying Lemma 6.15 twice, we get
¥ [s,a] - [X | @,0] - (Gl rys] = 1= [V]s,a] - [X |,7] - [H | ,s].

We conclude [G|r,s] = [H|r,s].

If in one of the cases r = a or r = b, the constructed line Z does not contain
any point of {a,b} we can choose the point s above such that {r, s} = {a, b}
and immediately get [G|a,b] = [H |a,b].

Otherwise, in both cases Z N {a,b} # 0 and we can choose s € (aV b) \ {a, b}
independently of r € {a,b}. Hence,

[Gla,b] = [Gla,s]-[G|s,b] = [H|[a,s]- [H]|s,b] = [H]a,b]. 0

6.18 Lemma. Let M = (E,H) be an affine translation plane whose kernel
contains at least four elements. For (Hy, Ho, Hs, Hy), (H}, Hy, H;, H)) € Hy we
have

[Hy, Ho | H3, Ha] = [Hy, Hy | H3, Hy]
if there is an H € H such that p,p’ ¢ H, where p == ﬂ?:l H; and p' == ﬂ;l:l H,
and for all i = 1,2,3,4 either H;NH = HNH or H; || H || H..

Proof. If H;NH = H/ N H for all i = 1,2, 3,4, our claim follows directly from
Proposition and Definition 3.29.

Otherwise, using Lemma 3.3 we can assume without loss of generality that
H, || H || H]. Obviously, we have Hy = Hy if and only if H{ = H) and Hs = Hy
if and only if H} = H}. In both cases

[H17H2 | H3>H4] =1= [H{7Hé ’HéaHéll]
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6 Affine and projective like matroids

Finally, let Hy, Ha, H3, Hy resp. H}, H), H}, H} be pairwise different and set
a; = HiNH = H/NH, i=3,4. Since a3, as, Hy N Hj are collinear and
Hy, H{,a3V a4 are parallel it follows from Lemma 3.1, Lemma 6.17 and the
identification of T (M) as a subgroup of T (M) from Proposition 3.2 that

[H1, Ha | H3, Hy| = [H1 | a3, a4] - [H2 | a4, as]
= [Hi‘a3va4]'[H§‘a4va3] :[HiaHé’Hi/’nH!l] O

6.19 Proposition. Let M = (E,H) be an affine translation plane whose kernel
contains at least four elements. For (Hy, Ho, Hs, Hy), (H}, Hy, H;, H)) € Hy we
have

[H17 Hy | Hs, H4] = [HL Hé | H‘éﬂ Héll]

if H; || H] for alli=1,2,3,4.

Proof. If p = p/, where p = ﬂ?zl H; and p' = ﬂ?zl H!, we have H; = H] for
all 7 =1,2,3,4 and thus our claim follows trivially. Therefore, let p # p'.

It suffices to show our claim in the case H; = H/ for a suitable i € {1, 2, 3,4},
because otherwise we obtain using Lemma 3.3

(Hy, Ho | H3, Hy] = [H1, K | H3, Hy] - [K, Hy | H3, Hy,

where K := pV p/. We can further assume without loss of generality that
H, = Hy, and thus Hy = H] = K and H; # H| for all i = 2,3, 4.

Since M is of order at least 4 there exists a hyperplane Z of M such that
p¢ Zand Z }f H; for all i = 1,2,3,4. Set a; := ZN H;, i = 1,2,3,4, and let
7 be the unique translation of M such that 7(p) = p’. Then for Z' == 7(Z2)
and a == 7(a;), i = 1,2,3,4, we have p’ ¢ Z', Z' }f H! and o, = Z' N H] for all
i=1,2,3,4.

H,  Hs Hy  Hj

_ _ !
=K== @ p ay

Moreover, as 7 is a non-trivial translation, Z || Z" and Z # Z'. Thus, a;,a’,
i,j =1,2,3,4, are eight pairwise different points and G; :=a; V a} || p V p’ for
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6.2 Affine translation planes

all i = 1,2,3,4. Hence, using Lemma 6.17, we get [G1 | a;,a;] = [G2 | a;, a}] for
i =3,4, and Hy = G; = H}. Therefore, Lemma 3.1 and Lemma 6.14 yield

(G}, 4]

-[G2 | a3, as]

Thus, we get [Hy, Hy | Hs, Hy| = [HY, Hy | Hj, H}] similarly as in the proof of
Lemma 6.18. O

6.20 Lemma. Let M = (E,H) be an affine translation plane whose kernel has
at least four elements. Then for any (Hy, Ho, Hs, Hy), (H{, H), Hy, H}) € Ha
we have

[H1, Ha | Hs, Ha] = [Hy, Hy | H3, Hj]

if ﬂ?zl H;, = ﬂ?zl H! =: p and there exist K € H, and H,H' € H \ H,, such
that for each ¢ = 1,2,3,4 either H; N H and H, N H' are both points which lie
on a common line parallel to K, or H || H; and H' || H..

Proof. If H = H', then H; = H] for all i = 1,2, 3,4 and thus our claim follows
trivially. Therefore, let H # H'.

Furthermore, as H; = H;y3 if and only if H] = H] 5 for all i = 1,3, and
Lemma 3.3 implies that both cross-ratios are equal to 1 in this case, we can
assume that Hy, Ho, Hs, Hy as well as Hy, H), H;, H} are pairwise different.

Let G:={p|| H} and G' .= {p || H'}. As G € {Hy, Ho, Hs, H,} if and only
if G’ € {H{, H), H;, H}} using Lemma 3.3 we can further assume without loss
of generality that H; = G and H] = G'.

_Let a; == H; N H and aj = H; N H', i = 2,3,4, as well as H := a V ay and
G={pl asVa,}. Since G ||azV a4, G' | a5V a), H| a3V as| asV a}, and
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6 Affine and projective like matroids

G || a3 V d, it follows from Lemma 6.14 and Lemma 6.17

(G| az, a4] - [H | ag,dy] - [G | d}, a3] = 1,
=1.

(G| dy, a)] - [G |}, as] - [H | a3, aj]

Using Lemma 6.14 and Lemma 6.17, we therefore obtain

Hence, our claim follows as in the proof of Lemma 6.18. O

For convenience of the reader we repeat the definition of the projective closure
of an affine plane (cf. [Pic, Satz 7, p. 11]).

Definition. Let M = (E,H) be an affine plane. For a hyperplane H € H we
set [H] .= {H' € H|H' || H} and H := H U {[H]}.

Further, let U .= {[H]|H € H}, P==EUU, and H:={H | H € H} U{U}.
Then II = (P,H) is a projective plane called the projective closure of M.

6.21 Lemma ([Kal92b, p. 6]). For any projective plane Il = (E, H) of order
at least 3 its inner Tutte group is isomorphic to F()(M)/U, where U is the
subgroup of IF(O)(M ) generated by the elements of the form (CR2) and the
elements of the form (CR6’).

6.22 Theorem. For any affine translation plane M = (E,H) whose kernel
contains at least four elements and its projective closure Il = (P, H), the map
a: TO(M) — TO(II) defined by a(0) =0, a(—1) := —1 and

o([Hy, Ho | Hs, Hy)) = [Hy, Ho | H3, Hy),

where H; = op1(H;), i = 1,2,3,4, and (Hy, Hy, H3, Hy) € H4(M), is an isomor-
phism of partial hyperfields.

Proof. As M =TII|E, Proposition 3.6 implies that a = fj is a homomorphism
of partial hyperfields. In order to show that « is an isomorphism, we construct

the inverse homomorphism o 1.
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6.2 Affine translation planes

First, we define a group homomorphism 3: F(O(II) — T©) (A1), whose kernel
contains the subgroup U C FO)(II) from Lemma 6.21. We set 8(¢) = e. Further,
let (G1,Ga,Gs,Gy) € Ha(IT) and p = i, G;.

If pe E, we set

B((G1,G2|Gs,Gy)) = [G1 \U,G2\U |G\ U,G4 \ U].

Otherwise, p ¢ E. We choose an e € Gy \ U, where k € {1,2,3,4} is minimal
such that G, # U, and a Z € H with e ¢ Z and Z }f G, \ U, and define

B((G1,G2 | Gs,Gy)) = [G1(e, Z),Gale, Z) | Gs(e, Z), Gyle, Z)] = v(e, Z),

where Gi(e, Z) = op((ZNG;)U{e}) if GxNZ € E, and Gi(e, Z) = {e || Z}
else, 1 =1,2,3,4.

This definition is independent of the choice of e and Z, since for 1, e5 € G \U
and Zy,Zy € H such that e; ¢ Z; and Z; f G, \ U, i = 1,2, there exists an
e € G\ (UUZ1 U Zy) (M has order at least 4).

As the Gi(e;, Z;) and the Gi(e, Z;), i = 1,2,3,4 and j = 1,2 satisfy the
precondition of Lemma 6.18 by construction, we have v(e;, Z;) = v(e, Z;) for
j = 1,2. Similarly, the G;(e, Z1) and the G;(e, Z2), i = 1,2, 3,4, satisfy the
precondition of Lemma 6.20. Thus, we get v(e, Z1) = v(e, Z2), which yields the
desired result v(ey, Z1) = v(ea, Z2).

Clearly, for all p € P and G1, G2, G3,G4, G5 € H, such that G; # G, i = 1,2,
7 =3,4,5 we have

(G1,G2| G3,G4) - (G1,G2] G4, Gs5) - (G1, G2 | G5, G3) € ker B.

Therefore, ker § contains all elements of F(®) (M) of the form (CR2).

To show that ker 3 also contains all elements of F(®)(M) of the form (CR6’),
let (G1,G2,G3,Gy), (G, Gh, GY, GY)) € Ha(II) satisty (i) and (ii) of (CR6’) and
set p = ﬂ?zl Gi,p = ﬂ?zl G!. Thus, there exists a G € H such that p,p’ ¢ G
and GNG; = GN G, is a point of II.

Ifp,p/ € E,let H:==G;\U and H, =G, \U,i=1,2,3,4.

In the subcase G = U we have H; || H] for all i = 1,2,3,4. Therefore,
Proposition 6.19 implies

[HlaHQ | H3aH4] = [HivHé | Hi/%HZ/L]
This is also true for the subcase G # U. Since H := G \ U is a line such that

for all i = 1,2,3,4, we have either that H N H; = H N H] is a point or H; || H,
and it follows from Lemma 6.18.
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6 Affine and projective like matroids

If either p e U or p/ € U, say p’ € U, we set H; .= G; \ U and H| := G'(e, Z)
for all i = 1,2,3,4, where e := p and Z := G \ U. By choice of e and Z, we get
H; = H/ for alli=1,2,3,4.

Otherwise, p,p’ € U. We choose an e € E\ G and set Z := G \ U. Moreover,
let H; :== G,(e,Z) and H] := G)(e, Z) for all i = 1,2,3,4. As in the previous
case we get H; = H/ for all i = 1,2, 3, 4.

Hence, in all cases we get

(G1,G2]G3,Gy) - (G, Gy | Gy, GY) € ker B.

Thus, by the homorphism theoArem for groups and Lemma 6.21,Athere exists a
multiplicative homomorphism 3: T (IT) — T (M) such that 3(e) := ¢ and

~

B([G1, G2 | G3,G4]) = B((G1, G2 | G3,G4))

for all (G1,G2,G3,Gy4) € Hy(ID).

The definition of 8, Lemma 2.5, and Proposition and Definition 3.4 imply
B: U (ITI) — U (M) is a homomorphism of partial hyperfields such that
Boa= idy) (apy if we extend it by B(O) = 0.

In order to prove that « oB = idIU(O)(H)a let (G1,G2,G3,Gy4) € Hq(II) and
p = ﬂ?zl G;. If p € E, we have H; = G;, where H; :== G;\U, foralli = 1,2, 3, 4.

Otherwise, let e € Gy \ U, where k € {1,2,3,4} is minimal with Gy, # U
and Z € H such that e ¢ Z and Z }f G, \ U. Then (G1,G2,G3,G4) and
(Hy, Ho, H3, Hy) satisfy (i) and (ii) of (CR6’), where H; :== G;(e, Z),i=1,2,3,4.

Thus, in both cases we have
a(B([G1,Ga| Gs, Gu)) = [Hi, Hy | Hy, Ha] = [G1, G2 | G, G,
which proves our claim. O

6.23 Corollary. The universal partial hyperfield of an affine translation plane
M = (E,H) whose kernel contains at least four elements is isomorphic to @ /R,
where @ is the quasifield coordinatizing its projective closure IT = (P, £) with
respect to a quadrangle (o, u,v,e), where o,e € E and u,v € U.

Proof. Our choice of the points o, u, e, v implies that the planar ternary ring
coordinatizing II is indeed a quasifield?, see [Pic, §8].
Thus, our claim follows from Theorem 3.24 and Theorem 6.22. O

4The kernel of this quasifield is isomorphic to the kernel of M.
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6.2 Affine translation planes

6.24 Remark. For affine planes M of order at least 3 and their projective
closure II the map a: U (M) — U©(IT) defined in Theorem 6.22 is an epi-
morphism.

However, in general it is not necessarily injective. For example, it follows
from Corollary 3.35 that « is not injective if M is the ternary affine plane.

This is even the case for orientable affine planes M. Joussen ([Jou63| and
[Jou66]) proved that if I is a free projective plane, then M and II are orientable,
but there exists a system of hyperplane functions for M and S which does not
extend to II, and proves « is not injective in this case.
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Notation

Notation

AG(d, F) Affine geometry of dimension d over F

B(M), B Set of bases of matroid M

@ F Coproduct of partial hyperfields Fi, F>

FLU Quotient of partial hyperfield F' by subgroup U
F, Finite field of order ¢

F/R, Hyperfield associated to planar ternary ring (F,T)
Fy Restriction of partial hyperfield F' to subgroup U
KVa Join of the flat K and the flat generated by a
H(M), H Set of hyperplanes of matroid M

[Hl,H2|H3,H4] Cross-ratio of Hy, Hy, H3, Hy

K Krasner hyperfield

KV Ky Join of the flats Ky and K>

L(M), L Set of hyperlines of the matroid M

M\F Restriction of M onto E \ F

M|F Restriction of M onto F

M/F Contraction of M onto E \ F

PG(d, F) Projective geometry of dimension d over F

@le M; Direct sum the matroids M;, i =1,...,k

ic; Fi Coproduct of partial hyperfields F;, i € T

Q(F) Canonical real reduced hyperneofield of F w.r.t. > F?
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Notation

Canonical real reduced hyperneofield of F' w.r.t. T
Ternary Reid geometry

Extended radical of planar ternary ring (F,T)
rank of the set A as subset of the matroid M
Rank of the matroid M

Hyperfield of signs

Closure of the set A as subset of the matroid M
Simplification of matroid M

Inner tutte group of matroid M

Regular partial field

A-regular partial field

k-regular partial field

The universal partial hyperfield of a matroid M
Extension of U®)(M) to the bases Tutte group
Extension of U (M) to the extended Tutte group
Uniform matroid of rank n on the set

Uniform matroid of rank k on the set {1,...,k}
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Index

affine
geometry, 63, 119, 131
translation plane, 133, 140

base, 32

canonical
embedding, 28, 70
real reduced hyperneofield, 71,
80
circuit, 32
closure, 32
core, 17, 37
cross-ratio, 34, 36, 82

embedding, 17, 20, 22, 42, 45
canonical, 28, 70
strong, 17, 22, 37
epimorphism, 13, 20, 22, 72, 73, 84,
141

fan, 107

final
homomorphism, 18, 20, 22
partial hyperfield, 17, 37

flat, 32
modular, 32, 97

fundamental elements, 13, 26, 36, 87

geometry
affine, 63, 119, 131
combinatorial, 39, 93, 94, 110
projective, 53, 63, 79, 111, 128
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ternary Reid, 56, 61, 117
Grassman-Pliicker map, 45, 79

homomorphism, 13, 20, 22, 42, 45,
47,72, 79, 81
final, 18, 20, 22
initial, 17, 22
strong, 13, 20
underlying, 13
hyperfield, 13, 73, 76, 77, 86, 87, 92,
108, 110, 116, 119
Krasner, 18
of signs, 18
hyperline, 32
hyperneofield, 13, 48, 67, 77
canonical real reduced, 71, 80
hyperplane, 31, 94, 97
functions, 42, 52, 126, 141
modular, 113, 125
hyperpoint, 32
independent set, 32
initial
homomorphism, 17, 22
partial hyperfield, 16

inner Tutte group, 31, 34, 87, 138
isomorphism, 13, 20, 23, 39, 41

join, 32
line, 32, 94, 97

matroid, 31



almost artinian, 87, 92, 112
artinian, 87, 92, 93, 112, 116,
119
binary, 49
direct sum, 38, 89, 93, 94, 110,
111
Fano, 57, 117
generalized parallel connection,
97, 114
minor, 37, 111
modular, 32, 93, 94, 110
representable, 47, 87
semiartinian, 87, 90, 93, 112
slender, 87
uniform, 56, 93, 106
modular
flat, 32, 97
matroid, 32, 93, 94, 110
monomorphism, 13, 20
multiplicative homomorphism, 11
multiplicative kernel, 13
multiplicative structure, 11
underlying, 11

ordering, 67, 80

partial field, 17
A-regular, 26
k-regular, 28, 53
regular, 18

partial hyperfield, 9
coproduct, 19, 89, 108
discrete, 15
indiscrete, 15
initial, 16, 17, 37
quasi-real, 67, 70
quotient, 18
real, 67
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reduced, 67
restriction, 17
universal, 31, 36, 38, 53, 56, 67,
78, 119, 132
partial hyperoperation, 9, 42
planar ternary ring, 49, 93, 111
plane
affine, 132
affine translation, 133, 140
projective, 49, 52, 138
ternary affine, 64, 141
preordering, 67
real, 67, 80
prespace of orderings, 75, 77
projective
equivalence, 59, 67, 78
geometry, 53, 63, 79, 111
plane, 49, 52, 138

radical, 50
extended, 50

rank, 32

real
partial hyperfield, 67
preordering, 67, 80

simplification, 39
space of orderings, 75-77
strong
embedding, 17, 22
homomorphism, 13, 20

ternary
affine plane, 64, 141
Reid geometry, 56, 61, 117

underlying
homomorphism, 13
multiplicative structure, 11
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